
IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. XX, NO. X, MONTH 202X 1

M-PolKA: Multipath Polynomial Key-based
Source Routing for Reliable Communications

Rafael S. Guimarães, Cristina Dominicini, Víctor M. G. Martínez, Bruno M. Xavier, Diego R. Mafioletti
Ana C. Locateli, Rodolfo Villaca, Magnos Martinello, and Moisés R. N. Ribeiro

Abstract—Innovative traffic engineering functions and services
require disrupting routing and forwarding mechanisms to be
performed with low overhead over complex network topologies.
Source routing (SR) is a prominent alternative to table-based
routing for providing the needed expressiveness and agility by
reducing the number of network states. This work proposes
the M-PolKA, a topology-agnostic multipath source routing
scheme and orchestration architecture for reliable communi-
cations, which explores special properties from the Residue
Number System (RNS) polynomial arithmetic. A P4-based proof-
of-concept is experimentally demonstrated using emulated and
hardware prototypes. Also, use cases for revealing M-PolKA’s
functionalities are tested in different scenarios in order to address
problems, such as communication reliability improvement, agile
path migration and fast failure reaction. Finally, low overhead for
extra functionalities is observed when RNS-based SR is compared
to traditional routing approaches.

Index Terms—source routing, residue number system, SDN,
Chinese remainder theorem, reliability, multipath.

I. INTRODUCTION

In recent years, we have seen a rising interest in the evolu-
tion of a new generation of network architectures, thanks to the
emergence of network programmability enabled by Software-
Defined Networking (SDN) [1] and Network Function Virtu-
alization (NFV). In this sense, SDN and NFV are enablers
for the management and control of different technologies in
order to meet stringent end-to-end (E2E) service requirements.
Indeed, they are essential to tackle modern challenges in 5G
networks, such as selecting routing paths in an agile and
efficient manner for scenarios with high mobility [2], and
adapting to variable traffic patterns [3].

Nowadays, networks are characterized by topologies with
high path diversity, which can be exploited to route traffic
across diverse paths. Multipath routing enables efficient us-
age of the available bandwidth offering high-quality network
services, and may increase the reliability and resilience of
communications [4]. The new generation of networks re-
quires abilities for routing and forwarding packets under strict
reliability requirements, which introduces the need and the
complexity of managing multiple paths in the network.

Rafael S. Guimarães, Cristina Dominicini Bruno M. Xavier and Diego R.
Mafioletti are with the Federal Institute of Education, Science and Technology
of Espírito Santo Espírito Santo, Brazil (e-mail: rafaelg@ifes.edu.br).

Ana C. Locateli, Víctor M. G. Martínez, Rodolfo Villaca, Magnos Mar-
tinello, and Moisés R. N. Ribeiro are with the Federal University of Espírito
Santo, Espírito Santo, Brazil.

Manuscript received month XX, 202X; revised month XX, 202X.

In many cases, the multipath routing proposed in the
literature is difficult to implement due to the diversity of
technologies and processes involved [5]. However, the ar-
chitectural disaggregation of the planes from SDN opens up
new opportunities. On the one hand, the control plane is in
charge of implementing more efficient algorithms to compute
multiple paths for a flow. On the other hand, programmable
data planes deal with packet forwarding and traffic splitting
schemes across multiple paths.

A major challenge to support an efficient multipath routing
is the inherent data and control planes scalability limitations
in a legacy SDN table-based approach. From the data plane
side, as the switching hardware supports limited table sizes, the
growing number of table entries leads to scalability and per-
formance concerns. From the control plane side, path diversity
brings the challenge of dealing with a large number of control
messages needed to reconfigure the network and consequently
keep the multipath state. This is far from a trivial problem
due to the scale, dynamics, heterogeneity, mobility, and high-
performance required by modern applications, such as Ultra-
reliable and Low Latency Communication (URLLC) [6] [7].

In this context, source routing (SR) schemes for multipath
forwarding [8] arise as strong candidates to replace table-based
routing [9], [10], since they avoid the reconfiguration of all the
nodes along the path. These schemes allow traffic engineering
to dynamically exploit all existing paths to achieve maximum
throughput [11]. SR also reduces the control signaling and
latency related to path setup convergence, so that migrating
paths is only a matter of changing the state at source or
edge nodes1. However, traditional multipath SR solutions lack
expressiveness, depend on updating a list state in the packet,
and do not offer intrinsic mechanisms to react to failures [12].

In this paper, we want to push to an extreme design choice,
and answer the following questions: (i) is it possible to define
a fully stateless multipath SR approach (i.e., no state in
the core nodes, nor in the packet) in a network fabric that
intrinsically enables reliable communication via exploitation
of path diversity (i.e., does not depend on upper layers)?; and
(ii) how to implement such approach in commodity network
hardware with support to any topology?

To this end, we propose a topology-agnostic multipath SR
scheme and orchestration components for reliable communi-
cations, named M-PolKA (Multipath Polynomial Key-based
Architecture), which explores special properties from the

1The edge node may be a virtual switch in a server, a hypervisor, a top-
of-rack (ToR) switch, or an ingress domain gateway.978-1-7281-5684-2/20/$31.00 ©2020 IEEE

2 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. XX, NO. X, MONTH 202X

Residue Number System (RNS) with polynomial arithmetic
using Galois field (GF) of order 2 [13], known as GF(2).
These properties can be applied to any network topology and
guarantee that the node sequence is irrelevant to derive the
route label, which remains unchanged throughout all the path
[14], [15]. In this scheme, at core nodes, the transmission
states of the output ports are given by the remainder of the
binary polynomial division (i.e., a mod operation) of the
route identifier of the packet by the node identifier.

M-PolKA is a generalization of our previous work, named
PolKA [12]. It redefines the RNS coding representation for
multipath trees, in contrast to the single path routing of PolKA.
As a consequence, the result of the forwarding operation is
not an output port, but it gives the transmission states of the
ports. In this way, M-PolKA offers reliability features with the
specification of a tree or even a specific branch that can be
quickly configured by only setting a route label in the edge.
Furthermore, a packet duplication mechanism has been added
to the M-PolKA switches to support multipath routing.

In summary, the contributions of this work are: (i) we
propose M-PolKA, a topology-agnostic RNS-based multipath
SR scheme and an orchestration architecture for network
fabrics that is compatible with binary polynomial arithmetic;
(ii) we implement such scheme in P4-enabled programmable
switches [1] by reusing the Cyclic Redundancy Check (CRC)
hardware to enable the polynomial <>3 operation; (iii) we
implement emulated and hardware prototypes to demonstrate
that M-PolKA can achieve similar performance to traditional
approaches; and (iv) using programmable networks as a proof-
of-concept, we demonstrate how M-PolKA can explore path
diversity and RNS properties to enable intrinsic reliability
features in the network fabric, like packet duplication, agile
path selection and fast failure reaction.

The remaining of this work is organized as follows. Section
II discusses the problem statement and related works. Sec-
tion IV-A presents the M-PolKA architecture. In Section III
introduces the source routing scheme used in our proposal,
and performs a scalability analysis. Section IV studies how to
implement M-PolKA according to P4 data plane architecture,
followed by the implementation and evaluation of proof-of-
concept prototypes in Sections V and VI. Then, Section VII
discusses conclusions and future works. Finally, Annex I
presents the mathematical background of M-PolKA.

II. PROBLEM STATEMENT AND RELATED WORK

This section details the scope and contributions of our
proposal considering the state-of-the-art.

A. Problem definition

In the context of computer networks, path diversification has
been studied to solve several problems, such as load balancing,
congestion control, reliability, Quality of Service (QoS), and
security [8]. Our specific objective is to investigate how a
multipath forwarding strategy in the lower layers can help
network operators to achieve better reliability. To this end,
the following requirements are important:

A

B

C

D'D

s4

s1

s3

s2 s5

s6

s7
s8

(a) Scenario

s1

s3

D'

s5 s7s6

s8 B

A

s2

D

s4

C

(b) Multipath tree

Figure 1: Multipath routing for reliable communications.

• Expressiveness: Is it possible to represent any set of paths
to distribute packets to single or multiple endpoints?

• Agility: What is the convergence time to modify the
paths, and apply these changes in all the affected nodes?

• Low overhead: What are the control plane and packet
duplication overheads?

• Topology-agnostic: Is it possible to enable multipath
routing in any topology?

Fig. 1(a) describes a high level scenario to show some
functionalities that can improve the reliability of the system
by exploring the multipath routing mechanism capacities, and
Fig. 1(b) shows the correspondent multipath provisioning tree:
• Seamless mobility between endpoints: If node D mi-

grates from (2 to (5 (e.g., handover scenarios), the con-
tent may be proactively (or reactively) delivered to both
endpoints in order to enable reliable communications.

• Packet duplication for failure protection: By providing
several (preferable disjoint) paths from source to des-
tination and sending the same packet through each of
them, the communication remains uninterrupted in case
of failure in one of the paths. For example, node A sends
duplicated packets to node B over two paths ((1−(3−(7
and (1− (4− (7). Thus, if one path fails, the packets will
still reach the destination.

• Agile path migration for failure reaction or QoS: By
adding the link (5−(8 in the multipath provisioning tree,
it is possible to enable a new path to node C ((1 − (2 −
(5 − (8). If this change can be quickly configured, the
network can react to a failure of the link (3 − (6 or a
performance degradation of the path (1 − (3 − (6 − (8
(e.g., concurrent flows sharing some links).

• Content distribution to multiple endpoints with min-
imal overhead: Node A distributes a flow to nodes B,
C and D over multiple paths with no need to duplicate
packets in shared links (e.g., (1 − (3 and (1 − (2).

B. Multipath routing and scope definition

Fig. 2 presents a classification of multipath protocols and
highlights the scope of this paper (in yellow). Several layered-
based protocols have been proposed to explore the maximum
benefit of multiple paths with least overhead, but each layer
presents some advantages and drawbacks. In general, the
higher layers (e.g., transport or application layers) have a poor
knowledge of the underlay network, and depend on the lower
layers to share information regarding the path diversity [8].

GUIMARÃES et al.: M-POLKA: MULTIPATH POLYNOMIAL KEY-BASED SOURCE ROUTING FOR RELIABLE COMMUNICATIONS 3

ForwardingComponentsLayers

Application

Transport

Network

Link

Physical

Multipath
Computation

Multipath
Forwarding

Traffic Splitting
& Aggregation

Hop-by-Hop

Source-based

Hashing

Objectives

Load Balance

Cong. Control

Reliability

QoS

Security

Figure 2: The scope of this work (in yellow), considering the
classification of multipath protocols.

For example, in [16], authors discuss the advantages of
Multipath TCP (MPTCP) aiming to boost application network
performance by the aggregation of bandwidth over multi-
ple network links, employing SDN to track the available
bandwidth of the connected links and selects the best path.
However, as shown in [17], as the number of failed links
increases, MPTCP can only recover full throughput if the link
failure occurs on the server side.

On the other hand, traditional network and link protocols
(e.g., OSPF or STP) suffer many limitations for supporting
multipath provisioning [8]. For instance, Dinh et al. [18]
discuss that in classical IP networks, IP packets are mostly
forwarded using the shortest path toward the destination. How-
ever, in the scenario of network with several spare links, a link
failure occurs, the router in the network would immediately
calculate a new shortest path and shift the network data over
to the new link. This would lead to the new path becoming
congested, while the other spare links would not be utilized to
lessen the congestion. Nonetheless, the total time to recalculate
the new route can impact latency-sensitive network traffic.

As shown in Fig. 2, our proposal is a combination of layers
2 and 3, but it leverages its own source routing approach over
programmable data planes. Thus, M-PolKA differs from most
of the related works, because it does not depend on upper
layers to enable multipath routing and reliability features, and
is not built upon traditional network and link protocols.

Fig. 2 shows the three basic components of a multipath
protocol [4], [8]: (i) multipath computation algorithms, with
a global view of the network topology, compute multiple
node/link-disjoint paths for a given traffic flow in order to im-
prove fault-tolerance and offer more aggregate bandwidth; (ii)
multipath forwarding algorithms forward packets on diverse
paths, by mapping incoming packets to outgoing links; (iii)
traffic splitting and aggregation algorithms split and combine
traffic across multiple paths according to different algorithms
(e.g., Round-Robin or Per-flow) [4]. M-PolKA focuses on the
multipath forwarding mechanisms to forward packets along
multiple paths. Although it is not in the scope of this work,
it can exploit multipath computing algorithms to find node-
disjoint paths as well as link-disjoint paths between the end-
hosts or even traffic splitting strategies [8].

The last column of Fig. 2 presents some of the well-known
multipath forwarding mechanisms: (i) destination-based (hop-
by-hop) forwarding, as in today’s IP networks; (ii) source-
based routing approach, in which the responsibility of defining
the route belongs to the source of packets, which can specify
all the elements of the path to the destination; and (iii) hashing,
in which the router performs a hash on the packet’s header,

and the outcome of the hash function gives the output port.
M-PolKA does not suffer from the limitations of per-hop

table-based methods, such as the scalability of the number of
states and latency for path modification. This is achieved by
embedding the paths inside the packets in a arithmetic fashion
that can be decoded by the programmable switch hardware.

C. Source routing schemes

1) Single path SR: Many works investigated the benefits
of SR over traditional table-based routing, such as massive
reduction of network states, and optimal use of network
capacity [19] [11] [20]. The most traditional way of executing
source routing is a list-based SR (LB-SR) approach, in which
the route label represents a ordered list (or stack) of output
ports, and the forwarding operation is a pop of the first element
[19]. Although this approach drastically reduces the burden of

managing network states by eliminating tables in core nodes,
it still needs to maintain a state in the packet by using a route
label rewrite operation in every node to update the position in
the list. This operation may be costly for packet networks and
difficult to implement in optical networks [15].

A classical problem in SR is how fast it reacts to node
or link failures [21]. When a failure is detected, the source
calculates a new route label, but this change takes a long time
leading to a loss of packets in transit. A solution is to embed
alternate paths in the nodes, but it increases the number of
network states. An alternative is to embed paths in the packets,
but the flat list encoding does not offer an implicit way of
representing additional paths.

Recent works [22] [12] have brought RNS-based SR as
an alternative method to perform SR that defines the outgoing
port on each node by using modulo operation between the
route label and a node identifier. Related works integrated RNS
with SDN [14], developed fast failure reaction mechanisms
[21], investigated techniques to improve the scalability of the
routeID [23], and applied the scheme to enable SFC [24].
However, all these works rely on integer RNS arithmetic,
and the integer mod operation cannot be implemented in
current commodity network hardware. Therefore, they either
use software switches implementations [14], [24], or depend
on synthesizing integer division to ASICs or NetFPGAs [22].

PolKA [12] differs from previous RNS-based SR works by
bringing a broader SR expressiveness that is closer to ele-
mentary binary polynomial operations. The immediate benefit
of PolKA is to enable the reuse of commodity embedded
network functions that are based on polynomial arithmetic. For
instance, CRC hardware provides wire-speed implementations
of a mod operation [25], and is evolving for supporting con-
figurable polynomials [26], [27]. Another work of the authors
[28] deployed PolKA SR in a continental testbed composed of
P4-enabled Tofino switches, demonstrating PolKA matches the
data plane performance of traditional approaches. PolKA also
provides a fast failover mechanism, which explores deflection
routing for specifying additional protection nodes that force
the packets back to the original single path. However, with
PolKA, there is no way to define a route label that represents
a multipath tree for the main path.

4 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. XX, NO. X, MONTH 202X

01 | M

upstream
leaf

00 | M

upstream
spine

0011

downstream
core

01:[P2] | 11:[P3]

downstream
spine

11:[L6] | 10:[L5] | 01:[L7]

downstream
leaf

Core forwards
to spine pods

Leave forwards
to hosts & spine
pods

Spine pod
forwards to
leaves & core

Spine pods
forward to leaves

Leaves forward to hosts

Figure 3: Example of ELMO’s header. Adapted from [9].

Table I: Comparison of multipath routing methods
Routing
method

State at
core

Forwarding
operation

Comm.
hard.?

Topo.
Agnostic?

Table-based
Multipath table lookup X X

List-based SR
(LB-SR) [9] packet pop X ×

Hybrid
Multipath SR [10]

packet
table

pop
lookup X X

Integer RNS-based
SR [29] [22] - integer

mod × X

M-PolKA
RNS-based SR - polynomial

mod X X

2) Multipath SR: The single path SR approaches can be
extended to enable multipath routing, if the list with port labels
is replaced by the transmission state of the output ports of
each node. In this way, each core node can extract an array
representing which of its ports should duplicate the received
packet and transmit it over multiple paths.

To the best of our knowledge, aside from RNS-based SR,
there is no other multipath SR method in the literature that is
topology-agnostic, while not depending on tables in the core
network. This is justified by the fact that the encoding of a
multipath route label depends on the flattening of a tree, which
is a non-linear structure. Thus, flattening demands a mapping
into a vector structure with explicit index calculations to track
the parent child relation, or even recursive mechanisms [30].
This issue is particularly critical for networking applications
that operate at line rate. To tackle this problem, the related
works either propose solutions tightly coupled to specific
topologies with predefined characteristics [9], or explore hy-
brid approaches that combine tables with SR [10].

In this direction, ELMO [9] enables multipath SR, but it is
not topology-agnostic, since it is strictly designed for a three-
tiered Clos topology. Fig. 3 shows an example of how complex
and purpose-specific is its encoding of the multipath tree. The
header is formed by upstream (leaf and spine) and downstream
(core, spine, and leaf) packet rules (p-rules), which encode
a set of output ports as a bitmap to provide the multipath
forwarding in a given node. For example, in the first p-rule
(upstream leaf), the leave connected to the source host transmit
to the neighbor host (01) and to all the connected spine pods
(M). Then, in the next p-rule (upstream spine), the spine
pods don’t transmit to any leaves (00), but transmit to all
the core pods (M). Similarly, the remaining fields define the
downstream transmission in each part of the tiered topology.

In contrast, BIER [10] proposed a hybrid multipath SR
approach: each switch has a table to define the next-hop (con-
figured using an IGP protocol), and the route label determines
a list of switches that the packet must go through. Depending
on the next hop, the data plane can modify the route label,
and clone the packet to one or many interfaces. However, to

S1 S30 1 0
1 2

4
3

6
7

53

0
1
2Edge Edge

Edge
Source

Dest2

Dest1
Controller

10101100101100

S2

(a) Multipath tree example (in red).

s1 =111

s2 = 10011

s3 = 100011011

MOD o1 = 1010101100101100

10101100101100 MOD

10101100101100 MOD

o2 = 0110

o3 = 10010100

(b) M-PolKA multipath forwarding

Figure 4: M-PolKA operation.

modify paths, the control plane may need to configure the
states in the tables along the path.

In this context, the exploitation of RNS properties appears as
an innovative alternative to solve this encoding of a multicast
tree in SR. Previous works explored integer RNS-based SR
[29] [22] for providing multicast communication, but they
cannot be deployed in commercial programmable switches and
do not explore the role of multipath routing for reliability.

Table I summarizes a comparison of multipath routing
methods, considering where the forwarding state is stored in
the core nodes, what is the forwarding operation, whether this
operation is implemented in commodity network hardware,
and whether it is topology-agnostic. Note that only RNS-based
methods offer topology-agnostic and fully stateless multipath
SR. However, M-PolKA takes a step further by exploiting
polynomial RNS-based arithmetic to represent a multipath
SR scheme that can be deployed in commodity switches. In
addition, M-PolKA provides an orchestration architecture and
a data plane implementation that enables reliability features.

III. M-POLKA FORWARDING

This section introduces the M-PolKA principles that explore
polynomials over GF(2) and the RNS system.

A. Multipath source routing scheme

Annex I presents the mathematical background that supports
our proposal. In this paper, all polynomials will be considered
as polynomials over GF(2). Note that a polynomial 5 (C) =
0=C

= +0=−1C
=−1 + . . .+01C

1 +00C
0 can be represented by the bit

string 0=0=−1 . . . 0100. Thus, an identifier is represented by a
bit string formed by the coefficients of a polynomial, which
are either 0 or 1, and the bit length of the identifier is ;4=(5).

As presented in Fig. 4(a), M-PolKA architecture is com-
posed by core nodes (in blue), edge nodes (in yellow), and a
logically centralized controller (in green). In this architecture,
the multipath SR relies on three polynomial identifiers over
GF(2): (i) routeID: a multipath route identifier, calculated
by the controller using the polynomial Chinese Remainder
Theorem (CRT) and embedded into the packet by the edge
nodes; (ii) nodeID: an identifier previously assigned to core
nodes by the controller in a network configuration phase; and
(iii) portID: an identifier assigned to the state of the output
ports of each core node.

GUIMARÃES et al.: M-POLKA: MULTIPATH POLYNOMIAL KEY-BASED SOURCE ROUTING FOR RELIABLE COMMUNICATIONS 5

Let S = {B1 (C), B2 (C), . . . , B# (C)} be a set of polynomials
representing the nodeIDs. The set S must be composed of
pairwise co-prime polynomials, so we assume that B8 (C) are
irreducible polynomials, and satisfy the condition 346(B8) ≥
=?>ACB, where =?>ACB denotes the number of ports in the node.

Let O = {>1 (C), >2 (C), . . . , ># (C)} be the set of # polyno-
mials >8 (C) representing the transmission state of the ports in
the node 8 (i.e., 0 do not transmit, 1 transmit a packet copy).
For instance, the polynomial >8 (C) = 02C

2 + 01C + 00 maps the
state 020100, which means that there are 3 ports in the node
B8 , and each coefficient represents the state of one port. If the
output port polynomial is >8 (C) = C2 + C = 110 then 02 = 1,
01 = 1, and 00 = 0. This means that port 2 is transmitting,
port 1 is transmitting, and port 0 is not transmitting.

A multipath is defined as the set (and its correspondent
set $. The Controller calculates the routeID of a multipath
using the polynomial CRT (see Annex I) as the polynomial
'(C) that satisfies:

'(C) ≡ >8 (C) mod B8 (C), 5 >A 8 = 1, 2, . . . # (1)

Then, the forwarding operation in each core node calculates
the transmission state of the output ports as the remainder
of the euclidean division of the routeID in the packet by its
nodeID: >8 (C) = < '(C) >B8 (C)

B. Operation

Fig. 4 shows an example of M-PolKA operation for a topol-
ogy composed of three core nodes. In a network configuration
phase, the Controller calculates and assigns the nodeIDs. The
degrees of the polynomials assigned to switches B1, B2, and B3
must be equal or greater than 2, 4, and 8, respectively. Consider
the following irreducible polynomials assigned to the B8 nodes:

B1 (C) = C2 + C + 1 = 111
B2 (C) = C4 + C + 1 = 10011
B3 (C) = C8 + C4 + C3 + C + 1 = 100011011

In this example, packets should be routed via a multipath
represented in red in Fig. 4(a). The Controller may proactively
compute '(C) or calculate it when the first packet of a
flow arrives. Considering the nodes B1, B2, and B3 and the
transmission states of Fig. 4(a), the set O is composed by:

>1 (C) = C = 10
>2 (C) = C2 + C = 0110
>3 (C) = C7 + C4 + C2 = 10010100

Let '(C) be the polynomial satisfying:
'(C) ≡ (C) mod (C2 + C + 1)
'(C) ≡ (C2 + C) mod (C4 + C + 1)
'(C) ≡ (C7 + C4 + C2) mod (C8 + C4 + C3 + C + 1)

As in CRT for polynomials (see Annex I), we have:
" (C) = (C2 + C + 1) · (C4 + C + 1) · (C8 + C4 + C3 + C + 1)
<1 (C) = B2 (C) · B3 (C) = (C4 + C + 1) · (C8 + C4 + C3 + C + 1)
<2 (C) = B1 (C) · B3 (C) = (C2 + C + 1) · (C8 + C4 + C3 + C + 1)
<3 (C) = B1 (C) · B2 (C) = (C2 + C + 1) · (C4 + C + 1)

Algorithm 1 Computation of the maximum ;4=(').
1: function MAXLEN(=?>ACB, 380<4C4A, B8I4)
2: <8=346 ← =?>ACB
3: =>34;8BC ← 64=4A0C4_8AA43_?>;H_;8BC (<8=346, B8I4)
4: ?0Cℎ;8BC ← 64C_;0BC_8C4=B(=>34;8BC, 380<4C4A)
5: ;4=6Cℎ← 0
6: for 4;4< ∈ ?0Cℎ;8BC do
7: ;4=6Cℎ← ;4=6Cℎ + 346(4;4<);
8: return ;4=6Cℎ ⊲ Maximum ;4=(')

And solving Eq. (6) of Annex 1, we find =8 (C):
=1 (C) = C, =2 (C) = C3 + C + 1, =3 (C) = C6 + C5 + C4

Finally, we calculate '(C) according to Eq. (3) of Annex 1:

'(C) = C13 + C11 + C9 + C8 + C5 + C3 + C2 = 10101100101100

After the routeID computation, the Controller installs
flow entries in the edge element to embed the routeID
10101100101100 in the packets of that flow. Therefore, each
node can calculate its portID by dividing this routeID by
its own nodeID, as shown in Fig. 4(b). For example, the
remainder of '(C) = 10101100101100 when divided by
B2 (C) = 10011 is >2 (C) = 0110. Thus, in B2, ports 1 and 2
transmit, while ports 0 and 3 do not transmit.

C. Scalability analysis of the routeID

The goal of this section is to investigate the overhead of
our new scheme in the bit length of routeID in comparison to
the Port Switching and integer RNS-based approaches. The bit
length of '(C), ;4=('), in M-PolKA is given by the equation:

;4=(') = ;4=(< '̃(C) >" (C)) ≤
#∑
8=1

346(B8) (2)

Algorithm 1 shows a pseudo-code for computing the max-
imum ;4=('), given: the number of ports in each node
(=?>ACB), the number of nodes (B8I4), and the topology di-
ameter (380<4C4A). For the sake of simplicity, we consider
all nodes have the same number of ports. A list of nodeID
polynomials (=>34;8BC) is generated, which consists of B8I4
irreducible polynomials with degree greater than or equal to
the minimum degree (<8=346). Note that we select polynomi-
als with the lowest possible degree (e.g., if <8=346 = 5, we
start assigning one of the 6 existing irreducible polynomials
of degree 5 to nodes, and, if necessary, we use the 9 existing
irreducible polynomials of degree 6, and so forth). Thus,
=>34;8BC is already ordered by degree. Finally, we select the
very worst case scenario in which the polynomials in =>34;8BC
with the greatest degrees assigned to the nodes in the longest
possible path (i.e., the diameter). To this end, we pick the G
last elements of =>34;8BC, where G = 380<4C4A , and calculate
the maximum ;4=(') according to Eq.(2).

Table II compares the scalability of M-PolKA and LB-SR
for two common DC topologies (fat-tree and two-tier), and
three continental backbone topologies [31] (ARPANET, and
GEANT2). This topology set covers diverse properties for
number of ports, diameter and size. For backbone topologies,
as the number of ports varies per node, we considered =?>ACB

6 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. XX, NO. X, MONTH 202X

Table II: Maximum ;4=(') for example topologies.

Topology =?>ACB 380<. B8I4
Bits for
M-PolKA

Bits for
LB-SR

Two-tier S16 L16* 24 3 32 72 72
Fat-tree 16 pods 16 5 320 80 80
ARPANET 4 7 20 44 28
GEANT2 8 7 30 56 56

* Two-tier topology with 16 spine switches and 16 leaf switches.

as the maximum number of ports of any node. The results for
the integer RNS-based approach were omitted, because they
are very close to M-PolKA. This means that using M-PolKA
instead of the integer version does not incur in reserving extra
bits for the routeID header.

The LB-SR method is a simplified implementation, where
the array of output ports is replaced by an array of transmission
states of each port for each node, considering all the nodes
have the same number of ports. This LB-SR implementation
consumes equal or less bits for representing the routeID than
M-PolKA, but it does not solve the multipath SR problem for
any topology. We chose this method for worst-case baseline
comparison, as explained in more details in Section IV-C.

For the topologies under worst case analysis in Table 1,
the maximum ;4=(') results show that M-PolKA fits existing
packet headers (e.g., 96 bits of Ethernet source and destination
addresses, or a stack of MPLS labels with 20 bits per label).
When deploying RNS-based SR, the cost to exploit RNS
features may be to reserve more bits in the packet header
for representing the routeID. Nevertheless, there are known
techniques that make optimal assignment of nodeIDs (avoiding
the worst case scenario), and reduce routeID length [22], [23].

IV. M-POLKA DESIGN AND IMPLEMENTATION

This section studies how to design and implement M-PolKA
architecture in a P4-enabled data plane [1].

A. M-PolKA Architecture

The M-PolKA architecture is composed of three separate
layers as shown in Fig. 5:

1) Data plane layer: M-PolKA architecture assumes the
existence of a physical topology with high path redundancy,
and a data plane composed of P4-enabled programmable
switches that perform the role of edge or core nodes.

2) Control and orchestration layer: It is composed of four
modules that enable the multipath routing. The monitoring
module collects the network topology and state, such as link
failure and congestion, in order to provide a feedback loop
for orchestration decisions. The path computation module is
responsible for computing multiple paths for a flow, which
may be node-disjoint, link-disjoint or non-disjoint. The node
configuration module is responsible for setting the nodeIDs
of the core nodes, and for inserting, deleting, and updating
flow entries at the edge nodes. It abstracts all the procedures
involved in the setup of those parameters independently of the
specific interfaces of the data plane architectures. The polyno-
mial calculation module calculates the nodeIDs, portIDs, and
routeIDs, according to the requests of the other modules.

Service Layer

Control and Orchestration Layer

Data Plane Layer

P4-enabled
switches Edge

Core

Monitoring Path
Computation

Polynomial
Generation

Node
Configuration

Network
Functions

Network
Applications

Network
Tools

Figure 5: M-PolKA architecture.

3) Service layer: This layer is responsible for deploying
network functions on top of the M-PolKA architecture. For
example, functions to consolidate duplicated packets or re-
ordering after multipath routing operations. Moreover, this
layer is composed of all user applications and other tools used
in the architecture implementation and validation stages.

B. M-PolKA data plane implementation

The M-PolKA header contains a routeID, whose maxi-
mum length depends on the network topology, as explained
in Section III-C. Fig. 6(a) shows the format of M-PolKA
header with a fixed length field for storing the routeID,
after the Ethernet header. When the packet reaches an edge
switch from an end-host, the etherType in the Ethernet
header is TYPE_IPv4=0x800. Thus, the switch must parse
the IPv4 header, encapsulate the SR header, and change the
etherType to TYPE_SR=0x1234.

Each edge switch has a table, which is populated by the
controller and maps destination IP address to their routing
paths. The result of the table lookup is an action that sets
the output port to the directly connected core switch and
encapsulates a single routeID.

At core switches, the pipeline of Fig. 7(a) is executed.
When etherType is TYPE_SR, as M-PolKA only needs
read access to packet headers, it uses the lookahead method
of P4 language that evaluates a set of bits from the input packet
without advancing the packet index pointer. To discover the
transmission state (t_state), the switch has to perform a
mod operation between the routeID in the packet and its own
nodeID. To iterate onto the transmission state, we use a chain
of if (<condition>) statements for each port. We do
not to use resubmit or recirculate actions, because we
observed a huge overload in the latency when we tested them,
since these built-in actions behave as repetition statements.

When the packet reaches an edge switch, the SR header is
removed and the etherType is changed to TYPE_IPv4.

Fig. 7(b) shows the comparison with our previous PolKA
work for single path routing, which uses the result of the
mod operation for identifying the label of a single output
port, and, therefore, cannot provide multipath routing.

Polynomial or integer mod operations with non-constant
operands are not natively supported by commodity network
hardware and are not available in P4 language. To overcome
this limitation, in [12], the authors developed a technique that

GUIMARÃES et al.: M-POLKA: MULTIPATH POLYNOMIAL KEY-BASED SOURCE ROUTING FOR RELIABLE COMMUNICATIONS 7

routeIDEthernet IP data

(a) M-PolKA header with fixed length

t_stateEthernet IP databos t_statebost_statebos ...

(b) Simplified LB-SR header with variable length

Figure 6: Source routing headers.

lookahead
ethernet header

etherType==
TYPE_SR?

lookahead
routeID

emit packet

start

end

T

routeID mod
nodeID

=> t_state

drop packet F

T

T

Tport n in t_state?

port 2 in t_state?

port 1 in t_state?

continue

continue

clone packet
to port

... ...

continue

(a) M-PolKA

lookahead
ethernet header

lookahead
routeID

set output port

start

end

T

routeID mod
nodeID => port

drop packet
F

emit packet

etherType==
TYPE_SR?

(b) PolKA

Figure 7: P4 core pipelines for M-PolKA and PolKA.

allows the execution of the polynomial mod in hardware by
reusing common CRC operations, as follows:

1) � = nodeID, A = 346A44(�)
2) � = routeID ÷ 2A (SHIFT RIGHT)
3) 38 5 = routeID − � ∗ 2A (SHIFT LEFT, XOR)
4) ' =< � ∗ 2A >� (CRC)
5) portID = 38 5 + ' (XOR)
Therefore, the switch calculates the transmission state by

using two SHIFT, one CRC, and two XOR operations. With
the use of this technique, M-PolKA can be deployed in P4
targets that allow the configuration of generator polynomials.
Since P4 supports CRC operations through the use of external
libraries [1], the support for customized polynomials depends
on the architecture models and how specific targets imple-
ment them. The PSA2 and v1model3 architectures support
customized polynomials of 16 and 32 bits. In terms of targets,
the software switch bmv24 and the hardware switch Tofino
from Barefoot support customized CRC polynomials, while
Netronome SmartNICs only support fixed CRC polynomials.

C. Comparison with list-based approaches

In contrast to M-PolKA, related works in the literature
do not provide a multipath SR solution that is simultane-
ously topology-agnostic and tableless (see Section II-C2). A
topology-agnostic multipath LB-SR solution involves mech-
anisms to flattening the tree structure and recursions, which

2https://p4.org/p4-spec/docs/PSA.html
3https://github.com/p4lang/p4c/blob/master/p4include/v1model.p4
4https://github.com/p4lang/behavioral-model

would incur high performance costs. For the sake of compari-
son, we implemented a simplified version of a LB-SR solution,
which uses a list of the transmission states of the ports of
each node in the path. Although this simplified LB-SR solution
does not solve the general multipath SR problem, it works for
a linear branch use case, which is useful for the worst-case
performance comparison presented in Section VI-B.

In our simplified LB-SR implementation, the edge nodes
embed a list of SR headers to the original packet header,
as shown in Fig. 6(b), and change the etherType to
TYPE_SR=0x1234. Each item of the list has a bos (bottom
of stack) bit and a transmission state (t_state). In the core
switch pipeline, it parses the first SR header of the list, gets the
t_state, and pops this header from the list. After acquir-
ing the transmission state, the data plane clones the packet
that is enqueued in the packet buffer to the correspondent
egress ports. The bos is 1 only for the last hop, when the
etherType is changed back to TYPE_IPv4.

It is important to note the following differences between the
pipelines of M-PolKA and this simplified LB-SR solution:
• LB-SR header has variable size, while M-PolKA has a

fixed-length header;
• In P4, LB-SR needs to create one encapsulating ac-

tion for each list size (e.g., add_header_1hop,
add_header_2hops, ...), which increases the number
of code lines and memory for deploying the edge code;

• In LB-SR, each core switch rewrites the header to update
the list, while M-PolKA does not change the routeID;

• In LB-SR, the transmission state is directly available in
the header, while M-PolKA uses an arithmetic operation.

V. PROOF-OF-CONCEPT PROTOTYPES

To evaluate the main functionalities of M-PolKA, two
prototypes were implemented: (i) an emulated setup, and (ii)
a physical setup that uses Netronome SmartNICs5.

A. Emulated prototype
1) P4 architecture and target: The software switch bmv2

simple_switch with the v1model architecture was se-
lected as the target for this prototype, once it supports all
the functionalities required by M-PolKA, such as the con-
figuration of CRC polynomials. Also, we use the clone3
primitive action (P4_16) to enable the multipath feature. The
number of clone session IDs is limited to 65535 in the bmv2
simple_switch. It is important to highlight that this soft-
ware switch is a user-space implementation focusing on feature
testing. There are other high performance implementations of
P4 software switches and compilers (e.g., PISCES6, P4ELTE7,
and MACSAD8), but they do not yet cover all the features
required by M-PolKA. As these implementations arise, it will
be possible to test our prototype with higher loads. For the
time being, the solution was to limit the link rates to 10Mbps
in our emulated prototype to avoid reaching the processing
capacity limits of bmv2 simple_switch.

5https://www.netronome.com/
6http://pisces.cs.princeton.edu/
7http://p4.elte.hu/
8https://github.com/intrig-unicamp/macsad/

https://p4.org/p4-spec/docs/PSA.html
https://github.com/p4lang/p4c/blob/master/p4include/v1model.p4
https://github.com/p4lang/behavioral-model
https://www.netronome.com/
http://pisces.cs.princeton.edu/
http://p4.elte.hu/
https://github.com/intrig-unicamp/macsad/

8 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. XX, NO. X, MONTH 202X

core.p4

SmartNICs

Server S1

namespace ns1

namespace ns0

edge.p4

TX

RX

P0

P1

V0

V1

*tsout

*tsin

Server S0

Figure 8: SmartNIC setup.

2) Setup description: The setup consists of one server Dell
PowerEdge T430, with one Intel Xeon E5-2620 v3 2.40 GHz
processor and 64 GB of RAM. To build our emulated environ-
ment, we used Mininet-WiFi [32] with P4, which becomes a
tool that augments the Mininet emulator by including virtual
wireless stations (STA) and access points (AP).

3) Control plane implementation: It has two main function-
alities: (i) for the core: compute nodeIDs, and configure core
switches; and (ii) for the edge: compute routing paths for the
traffic flows, calculate routeIDs for these paths, and configure
table entries in edge switches. For the RNS computation
of nodeIDs and routeIDs, we developed a Python library9

and application that uses the package galoistools of
the sympy library10 for GF(2) arithmetic operations. We
also developed a control plane application in Python that
communicates with the switches using the CLI provided by
the bmv2 simple_switch and connects to a Thrift RPC
server running in each switching process.

4) Header size: The bmv2 simple_switch supports
the specification of CRC polynomials of 16 and 32 bits.
Therefore, although our tests could use much smaller degrees,
our PoC must adopt polynomials of degree 16. As the diam-
eters of our test topologies are smaller than 10, the size of
the M-PolKA header was defined as 160 bits. To a fairness
comparison, we defined the LB-SR header as 16 bits (bos and
port); therefore, for 10 hops, the array of headers has 160 bits.

B. Hardware prototype with SmartNICs
In the emulated prototype, the CRC operation is executed in

software using CRC tables. However, the main benefit of using
CRC is the execution of the mod operation in hardware with
better performance. To this end, we built a hardware prototype.

1) Setup description: The setup is illustrated by Fig. 8 and
consists of two servers: (i) S1: a device under test (DUT),
running the core functionalities; and (ii) S0: a traffic generator
(TG), running the edge functionalities, and transmitter (TX)
and receiver (RX) functionalities in separate network names-
paces. Both servers are Dell PowerEdge T430, with one Intel
Xeon E5-2620 v3 2.40 GHz processor, 16 GB of RAM, and
one Netronome Agilio CX 2x10GbE SmartNIC.

2) SmartNICs features: Netronome SmartNICs give access
to hardware timestamps into the P4 programs.They partially
implement the functionalities of v1model for P4 16, but it
currently supports only a small set of fixed CRC polynomials,
which restricts the use of its CRC hardware in M-PolKA.
Nevertheless, we could use them for measuring forwarding
latency in one core node, as proposed in the next section.

9https://pypi.org/project/polka-routing/
10https://www.sympy.org/

3) P4 programs: The P4 programs are adaptations of the
codes used in the emulated prototype. The new edge code
encapsulates both SR headers and a timestamp header for
executing latency measurements, which is composed of two
timestamps: CB>DC and CB8= (see Fig. 8).

At server S0, packets are generated at TX and forwarded to
the SmartNIC, where the edge adds SR (M-PolKA or LB-SR)
and timestamp headers. When the packet leaves the edge, the
hardware timestamp is assigned to CB>DC . Then, it is transmitted
to server S1 and processed by the core code at the SmartNIC,
which is responsible for parsing the SR header and computing
the output port. Since it is impossible to configure customized
CRC polynomials in the SmartNICs, we use a standard CRC
operation with a fixed CRC-16 polynomial. In this way, we
execute all the M-PolKA pipeline steps (including the CRC
operation) to measure their contribution to the total latency,
As a result, the packet is delivered back to server S0, where
the edge code assigns the value of the hardware timestamp
to CB8=, removes the SR header, and delivers the packet to
RX. Finally, all packets are captured with tcpdump tool, and
parsed offline to extract the core forwarding latency for each
packet using CB8= − CB>DC .

VI. EVALUATION

The first part of this section explores a software defined
wireless network as a use case to demonstrate how M-PolKA
can exploit path diversity for enabling reliable communication.
To this end, three experiments showcase the following func-
tionalities in our emulated prototype: seamless mobility, packet
duplication for failure protection, and agile path migration
for failure reaction and QoS. Then, we evaluate M-PolKA
in comparison with the simplified version of LB-SR, (see
Section IV-C) in the emulated and hardware prototypes.

A. Emulated Prototype: Path diversity for reliability

Figure 9 shows the experiment scenarios with three network
domains: cloud, core, and wireless. The cloud composes
a virtualized environment responsible for providing service
functions (SFs) to a specific mobile device group. In the core
network, there are 9 switches (S=), running core functionalities
and five access points (APs) (AP8) running edge function-
alities. The wireless environment includes mobile elements
(station - STA8), where each STA has two wireless interfaces
in order to provide multi-connectivity from different APs.

1) Seamless mobility: Figure 9(a) shows an example sce-
nario to provide reliable communication between SF1 and
STA1, when STA1 migrates from AP1 to AP2. The list of
switches for the segment (SF1→STA1) that is used for
providing the multipath scheme is: S = {(1, (2, (3, (4, (7, (8}.

In this experiment, we deployed a VNF-based solution
at the STA1 as proposed by [7], which performs flow de-
duplication before delivering packets to the application layer.
To detect the handover, we developed a wireless orchestrator
that monitors the signal-to-noise ratio of the STAs and informs
the Controller, which modifies a single flow entry at edge node
to configure the routeIDs accordingly. A routeID carries the
set of core nodes and the transmission states of each node to
define a specific multipath.

https://www.sympy.org/

GUIMARÃES et al.: M-POLKA: MULTIPATH POLYNOMIAL KEY-BASED SOURCE ROUTING FOR RELIABLE COMMUNICATIONS 9

SF1

Edge
node

R1

s3

s6

s9

STA1

Core Network

s5

s10Cloud Wireless

AP3

AP0

AP4

s7 AP1

s1 s2 s4 s8 AP2

(a) Seamless mobility

SF1

Edge
node

R2 s2 s4

s3

s6

s9

s7

s8 AP2

AP1

s1

Core Network

s5

s10Cloud Wireless

AP3

AP0

AP4

STA1

(b) Packet duplication for failure protection

SF1

Edge
node

R3 s2

s3

s6

s9

s8 AP2s1

STA1

Core Network

s5

s10Cloud Wireless

AP3

AP0

STA2

AP4

eth1

eth1
eth2

s4

s7 AP1

(c) Agile path migration for failure reaction and QoS

Figure 9: Path diversity experiment scenarios.

0 10 20 30 40 50 60 70 80
Time(s)

0

2

4

6

8

10

12

Th
ro

ug
hp

ut
 (M

bp
s)

start stop

AP1

AP2

STA1

(a) Seamless mobility

0 10 20 30 40 50 60
Time(s)

0

2

4

6

8

10

12

Th
ro

ug
hp

ut
 (M

bp
s) STA1

SF1

S2 S3

S2 S4

(b) Packet duplication for failure protection

0 10 20 30 40 50 60
Time(s)

0

2

4

6

8

10

12

Th
ro

ug
hp

ut
 (M

bp
s) S2 S4

STA1

S4 eth1
S7 eth1

(c) Agile path migration for failure reaction

Figure 10: Path diversity experiment results: Throughput at the destination (STA1).

The experiment involves modifying the routeID three times
while STA1 moves: (i) STA1 is connected to AP1 and the con-
trol plane sets the routeID to the green path ({(1, (2, (3, (7}),
(ii) STA1 starts to move towards AP2 and, during the handover
process, the control plane sets the routeID to the blue multipath
({(1, (2, (3, (7} and {(1, (2, (4, (8}); and (iii) when the link
becomes stable between STA1 and AP2, the control plane sets
the routeID to the red path ({(1, (2, (4, (8})).

Figure 10(a) shows throughput measurements using the
bwm-ng tool at STA1, AP1, AP2. At 10 s, we start a 10
Mbps UDP traffic from SF1 to STA1 passing through AP1.
At 40 s, the transmission state on node S2 is initated to
pass through (3 − (7−AP1 and (4 − (8−AP2. At STA1, the
traffic constantly perceives about 10 Mbps as the VNF discards
duplicated packets before sending to the application.

Although there is a high probability of losses during the
handover processes (i.e., the mobility interruption time), there
was no perceived throughput degradation during the migration
between APs. Therefore, our scheme could increase reliability
of the system, since M-PolKA allows to dynamically change
the paths and deliver the packets to both endpoints during the
handover. Besides, there is no need to maintain the state in the
whole path, because all the transmission states are included
in the routeID and changing the routeID is just a matter of
modifying a single flow entry in the edge node.

2) Packet duplication for failure protection: This experi-
ment aims at demonstrating how the packet duplication feature
can increase the reliability by exploring the path diversity,
especially in the condition of multiple failures. As shown
in Figure 9(b), the traffic between SF1 and STA1 can be
steered via S3, S4 and S5. Thus, we steer one packet to
the path {(1, (2, (5, (8} and two cloned packets to the paths
{(1, (2, (4, (8} and {(1, (2, (3, (7}.

Figure 10(b) shows the throughput measurements using the

bwm-ng tool to expose the traffic perceived at STA1. At 0s,
SF1 sends a 3Mbps UDP traffic, using the iperf tool, and
the throughput at STA1 is approximately 9 Mbps. Indeed, it is
because of the traffic duplication across the three paths. At 31s,
there is a failure between S2 and S3. Therefore, we observe a
throughput of approximately 6 Mbps at STA1. Then, at 51s,
there is another failure between S2 and S4, and the throughput
perceived at STA1 is approximately 3 Mbps.

M-PolKA is capable of exploring path diversity by express-
ing in a single routeID a set of paths to steer the traffic. In
this way, we can increase the communication reliability and
the protection in case of successive events of failure.

3) Agile path migration for failure reaction and QoS:
This experiment shows how the traffic can be steered using
multipath SR with an agile path migration feature in the
scenario of Figure 9(c). This feature can be used for improving
reliability when the orchestrator identifies that a path migration
can bypass failures or provide better performance.

In the first part of this experiment, SF1 distributes a UDP
traffic, using the iperf tool, to AP0, to AP1, and to AP3. To
this end, the Controller calculates a routeID for the multipath
tree showed in blue in Figure 9(c), which comprises the nodes
S = {(1, (2, (3, (4, (6, (7, (9} and their respective transmitting
ports. Initially, the flow from SF1 →STA1 is allocated to the
path ((1−(2−(4−(7−�%1). Figure 10(c) shows the throughput
measurements at STA1, using the bwm-ng tool. At 30s, the
Controller detects a link failure at link (2 − (4, and triggers a
path migration to replace the branch (2 − (4 − (7 − �%1 with
the branch (2 − (3 − (7 − �%1. To perform path migration, the
Controller only has to modify a single flow entry at the edge
node to set a routeID to steer the traffic through the red path.
Then, once this single operation is executed, all the packets
of the flow that leaves SF1 are tagged with the routeID of the
new path, and a small packet loss is detected at the destination.

10 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. XX, NO. X, MONTH 202X

0 5 10 15 20 25 30
Time(s)

0

500

1000

1500

La
ten

cy
 (m

s) Migration

(a) Latency at STA2.

0 5 10 15 20 25 30
Time(s)

0
2
4
6
8

10
12

Th
ro

ug
hp

ut
 (M

bp
s)

TCP

UDP

STA1

STA2

Migration

(b) Throughput at STA2.

Figure 11: Agile path migration for QoS.

E1

E10

H10

E2

H2

E3

H3

S1 S10S2 S3

H11

H1

Figure 12: Analysis of the impact of the path length.

In the second part of this experiment, we show two exam-
ples of how M-PolKA can avoid latency and throughput degra-
dation, by providing agile path reconfiguration. To demonstrate
this feature, we include a concurrent traffic in green (from SF1
to STA2) in the scenario of Fig. 9(c). Consider the link between
S1 and S2 has a bandwidth of 100 Mbps, while the links in
the core network have a bandwidth of 10 Mbps.

Fig. 11(a) shows the results of a latency experiment, using
the ping tool. We concurrently start a 10 Mbps UDP traffic in
the blue path (SF1 →STA1) and a ICMP traffic in the green
path (SF1 →STA2), as shown in Fig. 9(c). At 10 s, there
is a huge latency between SF1 and STA2 (about 1600ms).
In this experiment, the bottleneck is caused by the traffic
concurrency in the link between (2 and (4 (10 Mbps). At 11 s,
the control plane sets a different routeID for the UDP traffic,
which implies to steer the UDP traffic to the red path (S1-S2-
S3-S7). The ICMP traffic keeps using the same path (S1-S2-
S4-S8). After migrating the UDP traffic, the Fig. 11(a) shows
an abrupt drop to 15 ms in the latency at STA2. Therefore, our
scheme could fast react to performance degradation events by
only modifying the routeID for a specific flow.

The last experiment explores the multiple links available in a
given E2E communication to optimize the throughput between
SF1 and STA2, as shown in Fig. 9(c). The measurements are
carried out by using the iperf tool at SF1. At 0s, as shown
in Fig. 11(b), we start a 4Mbps UDP traffic (blue multipath:
SF1-S1-S2-S4-S7-AP1) and a TCP traffic to STA2 (green path:
SF1-S1-S2-S4-S8-AP2). From 0s to 11s, the TCP traffic is
competing with the 4 Mbps UDP traffic, as both flows are
passing through the link S2-S4. Thus, the maximum throughput
achieved by the TCP traffic is about 6 Mbps, limited by the
10 Mbps link limit between S2 and S4. At 11s, the controller
decides to migrate the UDP traffic to a different path (SF1-S1-
S2-S3-S7-STA1), as shown in Fig. 11(b). After this migration,
when the controller applies a different routeID, the experiment
shows the throughput of the TCP traffic increases to more than
9 Mbps. With the multipath expressiveness of M-PolKA and
the agile migration of SR, the traffic engineering can define
diverse policies, such as link workload and flow priorities.

B. Comparison of M-PolKA vs. simplified LB-SR

These experiments evaluate M-PolKA and the simplified
LB-SR (see Section IV-C) for: (i) E2E tests in the emulated
prototype, and (ii) a single-hop latency test in the hardware
prototype. We considered Ethernet frames of 98 Bytes as small
packets and frames of 1242 Bytes as big packets. The average
and standard deviation are presented in all results.

1) E2E tests in the emulated prototype: The test uses the
fabric topology of Fig. 12 to compare M-PolKA and LB-SR as
the number of hops increases in the core network (e.g., from
0 for path �1 → �11 to 9 for path �1 → �10). The following
experiments were executed: (i) round trip time (RTT): host �1
sends 1 ICMP packet/s during 60 s to each of the other hosts
using ping tool; (ii) jitter: host �1 sends a UDP traffic of 5
Mbps (half of the link capacity) with big packets to each of the
other hosts during 60 s using the iperf tool; and (iii) flow
completion time (FCT): host �1 transmits a file of 100 Mb
with big packets over a TCP connection to each of the other
hosts using the iperf tool (3 repetitions). Fig. 13 shows the
comparison between M-PolKA and LB-SR solutions.

In the RTT experiment results, shown in the Fig. 13(a)
and Fig. 13(b), it is possible to observe that the RTT grows
linearly with the increase of the number of hops for both
solutions. The LB-SR solution presents better RTT perfor-
mance than M-PolKA solution, and for both solutions the
standard deviation is small and in the same order of magnitude.
Besides, there is no significant difference in the results for
different packet sizes in the RTT experiments. This is because
Mininet-WiFi+P4 does not consider the transmission time
in the emulation. In addition, the jitter (Fig. 13(c)) is small
and equivalent for both solutions. Finally, Fig. 13(d) shows
that both solutions require approximately the same time to
transfer the file and the standard deviation is small.

As discussed in Section IV-C, a topology-agnostic multipath
LB-SR solution would be worse in terms of performance than
this simplified LB-SR, which only works in a linear branch.
Thus, we use this simplified version as a worst-case baseline
for comparing the performance of M-PolKA, which offers a
multipath SR solution that works for any topology. Therefore,
we demonstrated that the <>3 operation over a fixed header
can be executed with similar performance to the pop operation
of list-based approaches. Nevertheless, the small difference
between the two solutions can decrease if the CRC operation
is performed in hardware, as shown in the next test.

2) Core latency tests in the hardware prototype: The goal
of this experiment is to measure the core forwarding latency
in M-PolKA and the simplified LB-SR when the path length
increases. Since it is not possible to configure customized
CRC polynomials in the SmartNICs (i.e., we can only use
one nodeID), in each run, we execute a single hop forwarding
in the core node, and vary the number of nodes included
in the SR header to represent the path length. For each
test execution, the traffic generator tool at TX varies the IP
destination address. The last digit of the IP destination address
represents the number of core nodes (e.g., if the IP destination
is 10.0.100.1, the number of hops to the destination is 1, while
IP destination 10.0.100.5 represents 5 hops to the destination).

GUIMARÃES et al.: M-POLKA: MULTIPATH POLYNOMIAL KEY-BASED SOURCE ROUTING FOR RELIABLE COMMUNICATIONS 11

0 1 2 3 4 5 6 7 8 9
Number of core hops

0

2

4

6

8
RT

T
(m

s)

LB-SR
M-PolKA

(a) RTT small packet

0 1 2 3 4 5 6 7 8 9
Number of core hops

0

2

4

6

8

RT
T

(m
s)

LB-SR
M-PolKA

(b) RTT big packet

0 1 2 3 4 5 6 7 8 9
Number of core hops

0.00

0.05

0.10

0.15

0.20

Jit
ter

 (m
s)

LB-SR
M-PolKA

(c) Jitter

0 1 2 3 4 5 6 7 8 9
Number of core hops

0
25
50
75

100
125
150

FC
T

(s)

LB-SR
M-PolKA

(d) FCT

Figure 13: Emulated prototype: Performance comparison between LB-SR and M-PolKA when the path length increases.

1 2 3 4 5
Path length

10

12

14

Av
g

lat
en

cy
 (u

s) LB-SR
M-PolKA

(a) Low throughput, small packets

1 2 3 4 5
Path length

10

12

14
Av

g
lat

en
cy

 (u
s) LB-SR

M-PolKA

(b) Low throughput, big packets

1 2 3 4 5
Path length

10

12

14

Av
g

lat
en

cy
 (u

s) LB-SR
M-PolKA

(c) High throughput, small packets

1 2 3 4 5
Path length

10

12

14

Av
g

lat
en

cy
 (u

s) LB-SR
M-PolKA

(d) High throughput, big packets

Figure 14: Hardware prototype: Comparison of the average core latency when the path length increases.

Depending on the number of hops, the edge encapsulates the
appropriate SR headers (e.g., 5 hops, 5 SR headers in LB-SR).

The following experiments were executed for small and big
packets: (i) low throughput: one ICMP pps, 100 packets in
total, generated with ping tool; and (ii) high throughput:
1Gbps UDP packets, 1000 packets in total, generated with
pktgen tool. Figure 14 compares the test cases for LB-
SR and M-PolKA. In each test, the average latency and
standard deviation in M-PolKA are small when the path length
increases, while in an LB-SR, the average latency grows linear
when the path length increases. This linear increase in latency
measurements for an LB-SR is emphasized in the test case
with high pps values (Fig. 14(c)) when the standard deviation
is a bit higher for both M-PolKA and LB-SR due to the
stress in edge and core elements. More investigation needs
to be carried out in a hardware prototype that allows multi-
hop tests, such as switches with Intel Tofino Architecture11.
Despite this, the results collected so far indicate that M-PolKA
implementation using CRC hardware is promising and can
offer equivalent RTT and jitter performance to LB-SR.

VII. CONCLUSION
Herein, a binary polynomial representation of a fully state-

less multipath SR approach, called M-PolKA, was proposed,
implemented, and evaluated. The proposed architecture pro-
vides intrinsic reliability functionalities in the network fabric
for any topology by exploring multipath routing and RNS
properties. Moreover, our P4-based emulated and hardware
prototypes demonstrated that is feasible to deploy RNS-
based SR in commodity network equipment by reusing CRC
hardware, with performance equivalent to traditional routing
approaches. Reliability improvements and fast failover were
validated using M-PolKA in a software-defined wireless net-
working scenario, demonstrating the potential to enable a new
range of complex network applications.

Future works include the development of the algorithms
for path computation and traffic splitting. Extensions of our

11https://www.intel.com/content/www/us/en/products/network-
io/programmable-ethernet-switch/tofino-series.html

hardware prototype for several scenarios using the Intel Tofino
Architecture switches will also be evaluated. Moreover, the
polynomial arithmetic of M-PolKA in hardware description
languages has the potential to synthesize RNS-based SR in
smaller chip areas and reduced clock cycles. Finally, we plan
to extend our polynomial scheme using GFs of higher orders.

ANNEX I: MATHEMATICAL BACKGROUND

This section describes the mathematical formulation that
supports the proposal of M-PolKA. More information about
finite fields and polynomials rings can be found in [33] [13].

Polynomial Ring over GF(2): Let GF(2) = {0, 1} be the
Galois Field of order 2, whose elements are residue classes
modulo 2. The arithmetic operations of addition and mul-
tiplication in GF(2) are defined modulo 2. The set of all
polynomials in one variable C with coefficients in GF(2),
called polynomials over GF(2), is a ring considering the
arithmetic operations of addition and multiplication modulo
2. If 5 (C) = 0=C

= + 0=−1C
=−1 + . . . + 01C + 00 is a polynomial

over GF(2), where 0= ≠ 0, = is defined as the degree of 5 (C),
denoted by 346(5). The length of 5 (C), denoted by ;4=(5), is
defined by ;4=(5) = 346(5) + 1.

Euclidean Division Theorem for Polynomials: Let 5 (C) and
6(C) be polynomials over GF(2) , where 6(C) ≠ 0. There exist
unique polynomials @(C) and A (C) over GF(2) such that 5 (C) =
6(C).@(C) + A (C), where either A (C) = 0 or 346(A) < 346(6).
The polynomial A (C) is called the remainder of the division of
5 (C) by 6(C), and will be denoted by < 5 (C) >6 (C) .

Polynomial congruence: Given 5 (C), 6(C), and ℎ(C) polyno-
mials over GF(2), we say that 5 (C) is congruent to ℎ(C) modulo
6(C), and write 5 (C) ≡ ℎ(C) <>3 6(C), if ℎ(C) =< 5 (C) >6 (C) .

Irreducible Polynomials: A non-zero polynomial 6(C), is
called a divisor of 5 (C) over GF(2) if 5 (C) = 0(C).6(C), for
some polynomial 0(C) over GF(2). Two polynomials 5 (C) and
6(C) over GF(2) are coprime if their only common divisor
is 1. A non-constant polynomial 5 (C) over GF(2) is called
irreducible over GF(2) if its only divisors are possibly a
constant polynomial and itself.

12 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. XX, NO. X, MONTH 202X

Chinese Remainder Theorem (CRT) for polynomials: Let
B1 (C), B2 (C), . . . , B# (C) be monic pairwise coprime polynomials
over GF(2) and let " (C) = ∏#

8=1 B8 (C). There exists a unique
polynomial '(C) over GF(2) with 346(') < 346("), satisfy-
ing '(C) ≡ >8 (C) <>3 B8 (C), for 8 = 1, 2, ..., # , where:

'(C) = < '̃(C) >" (C) (3)

'̃(C) =

#∑
8=1

>8 (C) · <8 (C) · =8 (C) (4)

<8 (C) = " (C)/B8 (C) (5)
=8 (C) · <8 (C) ≡ 1 <>3 B8 (C) (6)

The computation of =8 (C) can be implemented using the
Extended Euclidean Algorithm, which basically consists in
applying the Euclidean Division Theorem several times. The
algorithm complexity for computing '(C) is O

(
;4=(")2

)
[13].

ACKNOWLEDGMENT

This study was a recipient of the 2021 Google Research
Scholar Award, and received funds from CAPES (Finance
Code 001), CNPq, FAPESP, FAPES, CTIC, and RNP.

REFERENCES

[1] The P4 Language Consortium, “P4 16 Language Specification.”
[Online]. Available: https://p4.org/p4-spec/docs/P4-16-v1.0.0-spec.html

[2] F. Z. Yousaf et al., “NFV and SDN-Key technology enablers for 5G
networks,” IEEE Journal on Selected Areas in Communications, vol. 35,
no. 11, pp. 2468–2478, nov 2017.

[3] I. F. Akyildiz et al., “SoftAir: A software defined networking architecture
for 5G wireless systems,” Computer Networks, vol. 85, pp. 1–18, 2015.

[4] M. Suer et al., “Multi-connectivity as an enabler for reliable low
latency communications—an overview,” IEEE Communications Surveys
Tutorials, vol. 22, no. 1, pp. 156–169, 2020.

[5] Q. Wang et al., “Implementation of multipath network virtualization
with sdn and nfv,” IEEE Access, vol. 6, pp. 32 460–32 470, 2018.

[6] P. Popovski, Č. et al., “Wireless access in ultra-reliable low-latency
communication (urllc),” IEEE Transactions on Communications, vol. 67,
no. 8, pp. 5783–5801, 2019.

[7] R. S. Guimaraes et al., “An sdn-nfv orchestration for reliable and
low latency mobility in off-the-shelf wifi,” in ICC 2020 - 2020 IEEE
International Conference on Communications (ICC), 2020, pp. 1–6.

[8] S. K. Singh et al., “A survey on internet multipath routing and provi-
sioning,” IEEE Communications Surveys Tutorials, vol. 17, no. 4, pp.
2157–2175, 2015.

[9] M. Shahbaz et al., “Elmo: Source routed multicast for public clouds,”
IEEE/ACM Transactions on Networking, pp. 1–14, 2020.

[10] I. Wijnands, E. C. Rosen, A. Dolganow, T. Przygienda, and S. Aldrin,
“Multicast Using Bit Index Explicit Replication (BIER),” RFC 8279,
"nov" 2017. [Online]. Available: https://rfc-editor.org/rfc/rfc8279.txt

[11] S. A. Jyothi et al., “Towards a flexible data center fabric with source
routing,” in Proceedings of the ACM SIGCOMM Symposium on SDN
Research. New York, NY, USA: ACM, 2015, pp. 10:1–10:8.

[12] C. Dominicini et al., “Polka: Polynomial key-based architecture for
source routing in network fabrics,” in 2020 6th IEEE Conference on
Network Softwarization (NetSoft), 2020, pp. 326–334.

[13] V. Shoup, A computational introduction to number theory and algebra.
Cambridge university press, 2009.

[14] M. Martinello et al., “KeyFlow: a prototype for evolving SDN toward
core network fabrics,” IEEE Network, vol. 28, no. 2, pp. 12–19, 2014.

[15] H. Wessing et al., “Novel scheme for packet forwarding without header
modifications in optical networks,” Journal of Lightwave Technology,
vol. 20, no. 8, pp. 1277–1283, Aug 2002.

[16] H. Nam et al., “Towards dynamic mptcp path control using sdn,” in 2016
IEEE NetSoft Conference and Workshops (NetSoft), 2016, pp. 286–294.

[17] M. J.F. Alenazi, “Evaluating multipath tcp resilience against link
failures,” The ISC International Journal of Information Security,
vol. 11, no. 3, pp. 113–122, 2019. [Online]. Available: http:
//www.isecure-journal.com/article_90849.html

[18] K. T. Dinh et al., “Msdn-te: Multipath based traffic engineering for sdn,”
in Intelligent Information and Database Systems. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2016, pp. 630–639.

[19] X. Jin et al., “Your data center switch is trying too hard,” in Proceedings
of the ACM SIGCOMM Symposium on SDN Research. New York, NY,
USA: ACM, 2016, pp. 12:1–12:6.

[20] M. Soliman et al., “Source routed forwarding with software defined con-
trol, considerations and implications,” in ACM Conference on CoNEXT
Student Workshop. New York, NY, USA: ACM, 2012, pp. 43–44.

[21] R. R. Gomes et al., “KAR: Key-for-any-route, a resilient routing
system,” in 2016 46th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks Workshop, June 2016, pp. 120–127.

[22] A. Liberato et al., “RDNA: Residue-Defined Networking Architecture
Enabling Ultra-Reliable Low-Latency Datacenters,” IEEE TNSM, 2018.

[23] Y. Ren et al., “Flowtable-free routing for data center networks: A
software-defined approach,” in GLOBECOM 2017 - 2017 IEEE Global
Communications Conference, Dec 2017, pp. 1–6.

[24] C. K. Dominicini et al., “KeySFC: Traffic steering using strict source
routing for dynamic and efficient network orchestration,” Computer
Networks, vol. 167, p. 106975, 2020.

[25] W. W. Peterson et al., “Cyclic codes for error detection,” Proceedings
of the IRE, vol. 49, no. 1, pp. 228–235, Jan 1961.

[26] M. Grymel et al., “A novel programmable parallel crc circuit,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 19,
no. 10, pp. 1898–1902, Oct 2011.

[27] Microchip, “32-bit programmable cyclic redundancy check (crc),”
http://ww1.microchip.com/downloads/en/DeviceDoc/dsPIC33_
PIC24-FRM,-32-Bit-Programmable-Cyclic-Redundancy-Check-(CRC)
-DS30009729C.pdf, 2018, Accessed: 2019-01-13.

[28] C. Dominicini et al., “Deploying polka source routing in p4 switches :
(invited paper),” in 2021 International Conference on Optical Network
Design and Modeling (ONDM), 2021, pp. 1–3.

[29] W. Jia, “A scalable multicast source routing architecture for data center
networks,” IEEE Journal on Selected Areas in Communications, vol. 32,
no. 1, pp. 116–123, January 2014.

[30] G. Keller and M. M. T. Chakravarty, “Flattening trees,” in Euro-Par’98
Parallel Processing, D. Pritchard and J. Reeve, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1998, pp. 709–719.

[31] S. Routray et al., “Statistical model for link lengths in optical transport
networks,” J. Opt. Commun. Netw., vol. 5, no. 7, pp. 762–773, 2013.

[32] R. R. Fontes et al., “Mininet-wifi: Emulating software-defined wireless
networks,” in 2015 11th International Conference on Network and
Service Management (CNSM), 2015, pp. 384–389.

[33] I. Herstein, Topics in Algebra, 2nd ed. John Wiley & Sons, 1975.

Rafael S. Guimarães Currently holds an associate professor position in the
Department of Informatics (DI) at the Federal Intitute of Espírito Santo (IFES),
Campus Cachoeiro de Itapemirim, Brazil.
Cristina Dominicini Currently holds an associate professor position in the
Department of Informatics (DI) at the Federal Intitute of Espírito Santo (IFES),
Campus Serra, Brazil.
Victor M. G. Matinez is currently working towards a Ph.D. degree in
Electrical Engineering at the Federal University of Espírito Santo, cooperating
with the UFES’ SDN Research Group.
Bruno M. Xavier is a Ph.D. student in computer science at UFES and
associate professor at Federal Institute of Espírito Santo.
Diego R. Mafioletti is a Ph.D. student in computer science at UFES and
associate professor at Federal Institute of Espírito Santo.
Ana C. Locateli Currently holds an associate professor position in the
Department of Mathematics at the Federal University of Espírito Santo
(UFES), Brazil.
Rodolfo Villaca Currently holds an associate professor position in the
Department of Informatics (DI) at the Federal University of Espírito Santo
(UFES), Brazil. His main research interests are in Computer Networks.
Magnos Martinello Currently holds an associate professor position in the
Department of Informatics (DI) at the Federal University of Espírito Santo
(UFES), Brazil. His main research interests are in Computer Networks.
Moisés R. N. Ribeiro Currently holds an associate professor position in the
Department of Electrical Engineering of Federal University of Espírito Santo
(UFES), Brazil.

https://p4.org/p4-spec/docs/P4-16-v1.0.0-spec.html
https://rfc-editor.org/rfc/rfc8279.txt
http://www.isecure-journal.com/article_90849.html
http://www.isecure-journal.com/article_90849.html
http://ww1.microchip.com/downloads/en/DeviceDoc/dsPIC33_PIC24-FRM,-32-Bit-Programmable-Cyclic-Redundancy-Check-(CRC)-DS30009729C.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/dsPIC33_PIC24-FRM,-32-Bit-Programmable-Cyclic-Redundancy-Check-(CRC)-DS30009729C.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/dsPIC33_PIC24-FRM,-32-Bit-Programmable-Cyclic-Redundancy-Check-(CRC)-DS30009729C.pdf

	Introduction
	Problem statement and Related Work
	Problem definition
	Multipath routing and scope definition
	Source routing schemes
	Single path SR
	Multipath SR

	M-PolKA ForwardingM-POLKA SOURCE ROUTING SCHEME
	Multipath source routing scheme
	OperationUsage example
	Scalability analysis of the routeID

	M-PolKA Design and ImplementationImplementation Design
	M-PolKA Architecture
	Data plane layer
	Control and orchestration layer
	Service layer

	M-PolKA data plane implementationpipeline
	[id=r2]Comparison with list-based approaches

	Proof-of-concept Prototypes
	Emulated prototype
	P4 architecture and target
	Setup description
	Control plane implementation
	Header size

	Hardware prototype with SmartNICs
	Setup description
	SmartNICs features
	P4 programs

	EvaluationArchitecture Validation
	Emulated Prototype: Path diversity for reliability
	Seamless mobilityPacket duplication
	Packet duplication for failure protection
	Agile path migration for failure reaction and QoS

	Comparison of M-PolKA vs. [id=r2]simplified LB-SR
	E2E tests in the emulated prototype
	Core latency tests in the hardware prototype

	Conclusion
	References
	Biographies
	Rafael S. Guimarães
	Cristina Dominicini
	Victor M. G. Matinez
	Bruno M. Xavier
	Diego R. Mafioletti
	Ana C. Locateli
	Rodolfo Villaca
	Magnos Martinello
	Moisés R. N. Ribeiro

