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Abstract—Source routing (SR) is a prominent alternative to
table-based routing for reducing the number of network states.
However, traditional SR approaches, based on Port Switching,
still maintain a state in the packet by using a header rewrite
operation. The residue number system (RNS) is a promising way
of executing fully stateless SR, in which forwarding decisions
at core nodes rely on a simple modulo operation over a route
label. Nevertheless, such operation over integer arithmetic is
not natively supported by commodity network hardware. Thus,
we propose a novel RNS-based SR scheme, named PolKA, that
explores binary polynomial arithmetic using Galois field (GF) of
order 2. We evaluate PolKA in comparison to Port Switching
by implementing emulated and hardware prototypes using P4
architecture. Results show that PolKA can achieve equivalent
performance, while providing advanced routing features, such as
fast failure reaction and agile path migration.

Index Terms—source routing, network fabrics, residue number
system, software defined networks, Chinese remainder theorem.

I. INTRODUCTION
In recent years, we have seen a widespread interest in

software defined networking (SDN) as a driver of network
architectures evolution. In this sense, an emerging architecture
for software-defined data centers (DCs) and WANs is the
network fabric [1], where complex functions are pushed to
the edge, while the core provides a simple and efficient data
delivery abstraction. One of the main problems is how to select
routing paths in the core fabric and load-balance between them
in order to adapt to highly variable traffic patterns.

This is far from a trivial challenge due to the scale, dynam-
ics, and high performance requirements of modern networks.
A common approach to this challenge is to encode multiple
paths in core nodes in the form of forwarding table entries,
and then allow the edge to select among the existent paths.
However, the resulting designs require large numbers of table
entries [2], are constrained by the limited capacity of switch
forwarding tables [3], and still restrict path selection [4].

The decoupling of forwarding from other network functions
opens the opportunity to rethink the fabric design towards an
stateless core network. In this direction, Source routing (SR)
schemes, where an edge node1 adds a route label in the packet

1The edge node may be a virtual switch in a server, a hypervisor, a top-
of-rack (ToR) switch, or a ingress domain gateway.

header to specify an end-to-end path, have been attracting a lot
of attention [4], [5]. These schemes allow traffic engineering
to dynamically exploit all existing paths to achieve maximum
throughput [4]. Also, SR reduces the control signaling and
latency related to path setup convergence, as migrating paths is
only a matter of changing the state at the source [6]. Moreover,
it greatly simplifies the design of core switches [5].

The most traditional way of executing SR is Port Switching,
in which the route label represents a ordered list (or stack) of
output ports and the forwarding operation is a pop of the first
element [5]. Although this approach drastically reduces the
burden of managing network states by eliminating tables in
core nodes, it still needs to maintain a state in the packet by
using a route label rewrite operation in every node to update
the position in the list. This operation may be costly for packet
networks and difficult to implement in optical networks [7].

In addition, a classical problem in SR is how fast it reacts
to node or link failures [8]. When a failure is detected, the
source calculates a new route label, but this change takes a
long time leading to a loss of packets in transit. A solution
is to embed alternate paths in the nodes, but it increases the
number of network states. An alternative is to embed paths in
the packets, but the flat list encoding used by Port Switching
does not offer an implicit way of representing additional paths.

In this paper, we want to push to an extreme design
choice, and answer the following questions: (i) is it possible
to define a fully stateless SR approach (i.e., no state in the
core nodes, nor in the packet) in a network fabric that allows
agile path selection and fast failure reaction?; and (ii) how
to implement such approach in commodity network hardware
with equivalent performance to traditional Port Switching?

To this end, we propose a novel SR scheme, named PolKA
(Polynomial Key-based Architecture), which explores spe-
cial properties from the Residue Number System (RNS) with
polynomial arithmetic using Galois field (GF) of order 2 [9],
known as GF(2). These properties guarantee that the node
sequence is irrelevant to derive the route label, which remains
unchanged throughout all the path [7], [10]. In this scheme,
at any core node, the output port is given by the remainder
of the binary polynomial division (i.e., a mod operation) of
the route identifier of the packet by the node identifier.978-1-7281-5684-2/20/$31.00 ©2020 IEEE
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Figure 1: Example of Port Switching SR for a SDN fabric.

In summary, the contributions of this work are: (i) we
propose PolKA, a fully stateless RNS-based SR scheme for
network fabrics that is compatible with binary polynomial
arithmetic; (ii) we propose a technique to enable the imple-
mentation of the polynomial mod operation in P4-enabled
programmable switches [11] by reusing Cyclic Redundancy
Check (CRC) hardware; (iii) we implement emulated and
hardware prototypes to demonstrate that PolKA can achieve
similar performance to Port Switching; and (iv) we demon-
strate how PolKA can use intrinsic properties from the RNS
to enable advanced routing features, like agile path migration,
fast failure reaction, and service function chaining (SFC).

This paper is structured as follows. Section II discusses
related works. Section III presents the mathematical back-
ground of PolKA. Section IV presents PolKA, and performs
a scalability analysis. Section V studies how to implement
PolKA and Port Switching according to P4 architecture,
followed by the implementation and evaluation of proof-of-
concept prototypes in Sections VI and VII. Finally, Section
VIII discusses conclusions and future works.

II. RELATED WORK

Many works investigated the benefits of SR over traditional
table-based routing, such as massive reduction of network
states, and optimal use of network capacity [5] [4] [6].
However, most of them use Port Switching, and, therefore,
present the previously discussed limitations regarding the need
to update the forwarding state in the packet and the difficult
to embed alternate paths. Fig. 1 illustrates Port Switching SR
for a SDN fabric [5]. When a packet arrives, the edge node
communicates with a controller, which calculates a route label
that represents an ordered list of ports. In this figure, the list
{1, 1, 0} maps a path specified by nodes {s1, s2, s3} and their
respective output ports. Then, each core node pops the first
element of this list, modifying the route label of the packet.

In contrast to Port Switching, in an integer RNS-based SR
scheme, the controller calculates the route label (routeID) as an
integer number, which remains the same along the path [10].
It is also responsible for assigning node identifiers to core
nodes (nodeIDs), which must be pairwise co-prime numbers.
For example, if we apply this scheme to the scenario of Fig.
1 and assign nodeIDs 4, 3, 5, 7 to nodes s1, s2, s3, and s4,
respectively, the routeID calculated according to RNS is 25. In
this way, the output ports for s1, s2, and s3 are, respectively:
(25 mod 4) = 1, (25 mod 3) = 1, and (25 mod 5) = 0.

Table I: Comparison of routing methods
Routing
method

State at
core fabric

Forwarding
operation

Commodity
network hardware?

Table-based
Routing table lookup �

Port
Switching SR packet pop �

Integer
RNS-based SR - integer

mod ×
PolKA

RNS-based SR - polynomial
mod �

Related works on RNS-based SR integrated this scheme
with SDN [10], developed fast failure reaction mechanisms
[8], investigated techniques to improve the scalability of the
routeID [12], evaluated latency constraints for multicast in data
centers (DCs) [13] [14], and applied the scheme to enable SFC
[15]. However, all these works rely on integer RNS arithmetic,
and the integer mod operation cannot be implemented in
current commodity network hardware. Therefore, they either
use software switches implementations [10], [15], or depend
on synthesizing integer division to ASICs or NetFPGAs [14].

PolKA differs from previous RNS-based SR works by
bringing a broader SR expressiveness that is closer to elemen-
tary binary polynomial operations, introducing a new interpre-
tation over the classical RNS integer arithmetic [7], [10], as
Section IV will explain in details. The immediate benefit is to
enable the reuse of commodity embedded network functions
that are based on polynomial arithmetic. For instance, CRC
hardware ordinarily provides wire-speed implementations of
a mod operation with a fixed polynomial base [16], and is
evolving for supporting configurable polynomials [17], [18].
Furthermore, we envision that the expressiveness of our poly-
nomial scheme can be extended using GFs of higher orders to
enable innovative solutions for modern routing challenges, like
network on a chip, network slicing, and multilayer networks.

Other works explored polynomial RNS [9] [19], but haven’t
applied these concepts to routing. To the best of our knowl-
edge, PolKA is the first work to combine RNS with GF(2)
polynomials to solve SR problems, and to propose a technique
that allows the reuse of CRC hardware for routing purposes.

Table I summarizes a comparison between routing methods,
considering where the forwarding state is stored in the core
network, what is the forwarding operation, and whether this
operation can be implemented in commodity network hard-
ware. Note that RNS-based SR methods are the only to offer
fully stateless routing, because they do not update any state in
the route label or in core nodes.

III. MATHEMATICAL BACKGROUND

This section describes the mathematical formulation that
supports the proposal of PolKA. More information about finite
fields and polynomials rings can be found in [9], [20].

Polynomial Ring over GF(2): Let GF(2) = {0, 1} be the
Galois Field of order 2, whose elements are residue classes
modulo 2. The arithmetic operations of addition and mul-
tiplication in GF(2) are defined modulo 2. The set of all
polynomials in one variable t with coefficients in GF(2),
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called polynomials over GF(2), is a ring considering the
arithmetic operations of addition and multiplication modulo
2. If f(t) = ant

n+an−1t
n−1+ . . .+a1t+a0 is a polynomial

over GF(2), where an �= 0, n is defined as the degree of f(t),
denoted by deg(f). The length of f(t), denoted by len(f), is
defined by len(f) = deg(f) + 1.

Euclidean Division Theorem for Polynomials: Let f(t) and
g(t) be polynomials over GF(2) , where g(t) �= 0. There exist
unique polynomials q(t) and r(t) over GF(2) such that f(t) =
g(t).q(t) + r(t), where either r(t) = 0 or deg(r) < deg(g).
The polynomial r(t) is called the remainder of the division of
f(t) by g(t), and will be denoted by < f(t) >g(t).

Polynomial congruence: Given f(t), g(t), and h(t) polyno-
mials over GF(2), we say that f(t) is congruent to h(t) modulo
g(t), and write f(t) ≡ h(t) mod g(t), if h(t) =< f(t) >g(t).

Irreducible Polynomials: A non-zero polynomial g(t), is
called a divisor of f(t) over GF(2) if f(t) = a(t).g(t), for
some polynomial a(t) over GF(2). Two polynomials f(t) and
g(t) over GF(2) are coprime if their only common divisor
is 1. A non-constant polynomial f(t) over GF(2) is called
irreducible over GF(2) if its only divisors are possibly a
constant polynomial and itself.

Chinese Remainder Theorem (CRT) for polynomials: Let
s1(t), s2(t), . . . , sN (t) be monic pairwise coprime polynomi-
als over GF(2) and let M(t) =

�N
i=1 si(t). There exists a

unique polynomial R(t) over GF(2) with deg(R) < deg(M),
satisfying R(t) ≡ oi(t) mod si(t), for i = 1, 2, ..., N , where:

R(t) = < R̃(t) >M(t) (1)

R̃(t) =

N�

i=1

oi(t) ·mi(t) · ni(t) (2)

mi(t) = M(t)/si(t) (3)
ni(t) ·mi(t) ≡ 1 mod si(t) (4)

The computation of ni(t) can be implemented using the
Extended Euclidean Algorithm, which basically consists in
applying the Euclidean Division Theorem several times. The
algorithm complexity for computing R(t) is O

�
len(M)2

�
[9].

IV. POLKA PROPOSAL

This section proposes PolKA, a polynomial RNS-based SR
scheme for network fabrics that explores the polynomial CRT.
It also provides an usage example and a scalability analysis.
A. Source routing scheme

PolKA architecture is composed of three elements: (i) edge
nodes that embed the route labels into the packets, (ii) core
nodes that execute basic packet transport, and (iii) a logically
centralized SDN Controller that selects routing paths and
configures the nodes. In this architecture, the SR relies on
three polynomial identifiers over GF(2): (i) routeID: a route
identifier, calculated by the controller using the polynomial
CRT and embedded into the packet by the edge nodes; (ii)
nodeID: an identifier previously assigned to core nodes by the
controller in a network configuration phase; and (iii) portID:
an identifier assigned to the output ports of each core node.

S1 S2 S3
0 1

3

0

1

2 0

1 2

4

3

6

7
5

o1 = (1)dec = (1)bin o2 = (2)dec = (10)bin o3 = (6)dec = (110)bin

Figure 2: Example of PolKA SR.

In this paper, all polynomials will be considered as poly-
nomials over GF(2). Note that a polynomial f(t) = ant

n +
an−1t

n−1 + . . . + a1t
1 + a0t

0 can be represented by the bit
string anan−1 . . . a1a0. Thus, an identifier is represented by a
bit string formed by the coefficients of a polynomial, which
are either 0 or 1. Also, the bit length of the identifier is len(f).

Consider a packet should be routed via a selected path,
represented by N core nodes and their respective output ports.

Let S = {s1(t), s2(t), . . . , sN (t)} be the multiset of the
polynomials representing the nodeIDs of the nodes in this path.
The set S must be composed of pairwise co-prime polynomi-
als, and satisfy the condition deg(si(t)) ≥ �log2(nports)�,
where nports denotes the number of ports in the node. In this
paper, we assume that si(t) are irreducible polynomials.

Let O = {o1(t), o2(t), . . . , oN (t)} be the multiset of N
polynomials, where oi(t) represents the output port for the
packet at the core node si(t), for i = 1, 2, . . . N , satisfying the
condition that deg(si) > deg(oi). For instance, if the output
port polynomial is oi(t) = 1 · t2 + 1 · t, it maps the port 110
and the packet is forwarded to port label 6 at node si(t).

Based on the definition of the path represented by S and
O, the Controller calculates the routeID using the polynomial
CRT (see Section III) as the polynomial R(t) that satisfies:

R(t) ≡ oi(t) mod si(t), for i = 1, 2, . . . N (5)

The routeID is embedded in the packet by the edge element,
and the forwarding operation in each core node calculates the
output port as the remainder of the euclidean division of the
routeID in the packet by its nodeID: oi(t) = < R(t) >si(t)

The Controller may proactively compute R(t) or calculate
it when the first packet of a flow arrives. On the other hand,
core nodes only execute a simple mod operation per packet.

B. Usage example

Fig. 2 shows a usage example in a topology composed of
three core nodes. The degrees of the polynomials of nodeIDs
s1, s2, and s3 must be equal or greater than 1, 2, and 3, in order
to encode 2, 22, and 23 ports, respectively. Let the following
irreducible polynomials be assigned to si:

s1(t) = t+ 1 = 11

s2(t) = t2 + t+ 1 = 111

s3(t) = t3 + t+ 1 = 1011

Considering the path defined in Fig. 2 (s1 → s2 → s3), the
output port set O is composed by the polynomials:

o1(t) = 1, o2(t) = t = 10, o3(t) = t2 + t = 110
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Algorithm 1 Computation of the maximum len(R).
1: function MAXLEN(nports, diameter, size)
2: mindeg ← �log2(nports)�
3: nodelist ← generate irred poly list(mindeg, size)
4: pathlist ← get last itens(nodelist, diameter)
5: length ← 0
6: for elem ∈ pathlist do
7: length ← length+ deg(elem);
8: return length � Maximum len(R)

Thus, R(t) must satisfy the conditions of Eq. (5):
R(t) ≡ 1 mod (t+ 1)

R(t) ≡ t mod (t2 + t+ 1)

R(t) ≡ (t2 + t) mod (t3 + t+ 1)

As in CRT for polynomials (Section III), we have:
M(t) = (t+ 1) · (t2 + t+ 1) · (t3 + t+ 1)

m1(t) = s2(t) · s3(t) = (t2 + t+ 1) · (t3 + t+ 1)

m2(t) = s1(t) · s3(t) = (t+ 1) · (t3 + t+ 1)

m3(t) = s1(t) · s2(t) = (t+ 1) · (t2 + t+ 1)

And solving Eq. (4), we find the polynomials ni(t):
n1(t) = 1, n2(t) = 1, n3(t) = t2 + 1

Finally, we can calculate R(t) according to Eq. (1):

R̃(t) = (t2 + t+ 1)(t3 + t+ 1) + t(t+ 1)(t3 + t+ 1)+

(t2 + t)(t+ 1)(t2 + t+ 1)(t2 + 1) = t7 + t6 + t5 + t2 + 1

R(t) =< R̃(t) >M(t)= t4 = 10000

Therefore, packets should embed the routeID 10000, so each
node can calculate its portID by dividing this routeID by its
own nodeID. For example, the remainder of R(t) = 10000
divided by s3(t) = 1011 is o3(t) = 110 (port label 6).

C. Scalability analysis of the routeID

The goal of this section is to investigate the overhead of
our new scheme in the bit length of routeID in comparison
to the Port Switching and integer RNS-based approaches. The
bit length of R(t), len(R), in PolKA is given by the equation:

len(R) = len(< R̃(t) >M(t)) ≤
N�

i=1

deg(si) (6)

Algorithm 1 shows a pseudo-code for computing the max-
imum len(R), given: the number of ports in each node
(nports), the number of nodes (size), and the topology
diameter (diameter). For the sake of simplicity, we consider
all nodes have the same number of ports. A list of nodeID
polynomials (nodelist) is generated, which consists of size
irreducible polynomials with degree greater than or equal to
the minimum degree (mindeg). Note that we select polynomi-
als with the lowest possible degree (e.g., if mindeg = 5, we
start assigning one of the 6 existing irreducible polynomials
of degree 5 to nodes, and, if necessary, we use the 9 existing
irreducible polynomials of degree 6, and so forth). Thus,
nodelist is already ordered by degree. Finally, we select the

Table II: Maximum len(R) for example topologies.

Topology nports diam. size
Bits for
PolKA

Bits for
Port Swit.

Two-tier S16 L16* 24 3 32 21 15
Fat-tree 16 pods 16 5 320 55 20
ARPANET 4 7 20 42 14
GEANT2 8 7 30 49 21

* Two-tier topology with 16 spine switches and 16 leaf switches.

very worst case scenario in which the polynomials in nodelist
with the greatest degrees assigned to the nodes in the longest
possible path (i.e., the diameter). To this end, we pick the x
last elements of nodelist, where x = diameter, and calculate
the maximum len(R) according to Eq.(6).

Table II compares the scalability of PolKA and Port Switch-
ing for two common DC topologies (fat-tree and two-tier),
and two continental backbone topologies [21] (ARPANET and
GEANT2). This topology set covers diverse properties for
number of ports, diameter and size. For backbone topologies,
as the number of ports varies per node, we considered nports
as the maximum number of ports of any node.

The results for the integer RNS-based approach were omit-
ted, because they are very close to PolKA. This means that
using PolKA instead of the integer version does not incur in
reserving extra bits for the routeID header. The Port Switching
method consumes less bits for representing the routeID than
RNS-based SR approaches, specially in the cases where the
size of the topology is high (e.g., fat-tree). These cases demand
a large number of irreducible polynomials for PolKA, causing
the selection of polynomials of high degree or large integer
numbers even when the node does not demand many ports.

For the topologies under worst case analysis in Table 1,
the maximum len(R) results show that PolKA fits existing
packet headers (e.g., 96 bits of Ethernet source and destination
addresses, or a stack of MPLS labels with 20 bits per label).
When deploying RNS-based SR, the cost to exploit RNS
features may be to reserve more bits in the packet header
for representing the routeID. Nevertheless, there are known
techniques that make optimal assignment of nodeIDs (avoiding
the worst case scenario), and reduce routeID length [12], [14].

V. IMPLEMENTATION DESIGN

This section studies how to implement PolKA and Port
Switching according to P4 architecture [11]. From now on, we
will refer to Port Switching as Sourcey [5], as it is a prominent
example of the method. Design choices may change according
to application requirements and target platform features. For
example, the routeID can be added in a new or existing header,
while the size of headers depend on the network topology.

A. Sourcey pipeline

Our implementation of Sourcey creates a new header that
includes the port stack after the Ethernet header, as shown in
Fig. 3(a). Each item of the stack has a bos (bottom of stack)
bit and a port number. The bos bit is 1 only for the last entry.

When the packet reaches an edge switch from an
end-host, the etherType in the Ethernet header is
TYPE IPv4=0x800. Thus, the switch must parse the
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portEthernet IP databos portbosportbos ...

(a) Sourcey header with variable length

routeIDEthernet IP data

(b) PolKA header with fixed length

Figure 3: Sourcey and PolKA headers.

IPv4 header, encapsulate the SR header, and change the
etherType to TYPE SR=0x1234.

Each edge switch has a table, which is populated by the
controller and maps destination IP address to their routing
paths, represented by a port list. The result of this table lookup
is an action that sets the output port to the directly connected
core switch and encapsulates n SR headers, where n is the
number of core switches in the path. At core switches, the
pipeline of Fig. 4(a) is executed. Firstly, the Ethernet header
is parsed to check if the etherType is TYPE SR. Then, the
switch parses the first SR header, gets the output port, and
pops this header from the stack. If the bos bit is one, it is
the last hop and the etherType is changed to TYPE IPv4.
Another possible implementation for progressing in the list is
to increment an index of the current position in each hop.

B. PolKA pipeline

The PolKA header contains a routeID, whose maximum
length depends on the network topology, as explained in
Section IV-C. Fig. 3(b) shows the format of PolKA header with
a fixed length field for storing the routeID, after the Ethernet
header. At edge switches, PolKA pipeline for encapsulating
the SR header is similar to Sourcey, but the result of the table
lookup is an action that sets the output port to the directly
connected core switch and encapsulates a single routeID.

At core switches, the pipeline of Fig. 4(b) is executed. When
etherType is TYPE SR, as PolKA only needs read access
to packet headers, it uses the lookahead method of P4
language that evaluates a set of bits from the input packet
without advancing the packet index pointer. To discover the
output port, the switch has to perform a mod operation
between the routeID in the packet and its own nodeID.

Besides, in PolKA, there is no information in the header to
identify the last hop. This is not a problem in fabric networks,
because the packet delivery to an edge switch represents the
end of the SR path. At the edge switch, the SR header is
removed and the etherType is changed to TYPE IPv4.

C. Comparison between Sourcey and PolKA pipelines.

• Sourcey header has variable size, depending on the num-
ber of remaining hops in the path. On the other hand,
PolKA has a fixed length header to store the routeID;

• In P4, Sourcey needs to create one encapsulating ac-
tion for each stack size (e.g., add_header_1hop,
add_header_2hops, ...), which increases the number
of code lines and memory for deploying the edge code;

• In Sourcey, each core switch performs a header rewrite
to update the stack when performing the pop operation

extract 
ethernet header

etherType==
TYPE_SR?

extract SR header
& get port

set output port
 & emit packet

start

end

T

pop header

drop packet
F

(a) Sourcey

lookahead
ethernet header

etherType==
TYPE_SR?

lookahead
routeID

set output port
 & emit packet

start

end

T

port = routeID
mod nodeID

drop packet
F

(b) PolKA

Figure 4: P4 pipelines for core switches.

(yellow in Fig. 4(a)). On the other hand, in PolKA
(Fig. 4(b)), the packet remains unchanged along the path;

• In Sourcey, the output port is directly available in the
SR header, while PolKA requires an arithmetic operation
over the routeID to calculate the output port.

Thus, if we can perform the mod operation of PolKA
with equivalent latency to the rewrite operation of Sourcey, we
could take advantage of RNS properties without compromising
performance, when compared to Port Switching.

D. Reuse of CRC for implementing mod operation in P4

Polynomial or integer mod operations with non-constant
operands are not natively supported by commodity network
hardware and are not available in P4 language. Thus, as stated
before, one of the main contributions of this work is to develop
a technique that allows the execution of the polynomial mod
in hardware by reusing common CRC operations.

In CRC operations, sender and receiver agree on a generator
polynomial (G), which is a r + 1 bit pattern used for error-
detection. For data D with d bits, the sender calculates
additional r bits (R), and appends them to D in such a way
that the result is a polynomial with d+ r bits that is divisible
by G using modulo-2 arithmetic [16]. Thus, the CRC code
is the remainder of D shifted left by r bits, divided by G:
R =< D ·2r >G. Therefore, we could try to map the routeID
as D, and the nodeID as G. However, PolKA does not perform
a shift operation over the routeID as done in the CRC strategy.

As the degree of G is r, this problem can be solved if
we separate the routeID in two parts: routeID = D ∗ 2r +
dif , where dif is the r least significant bits of the routeID.
Firstly, we shift right the routeID by r bits to produce the
data D, which will be the input of the CRC function. Then,
the bits that were lost with the shift right operation (dif ) can
be added back to the calculated CRC remainder in the end of
the computation to produce the output port. Since the degree
of the portID obtained is less than r, the unicity property in
division algorithm for polynomials assures that the outcome
polynomial coincides with the remainder obtained by direct

330Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on October 03,2020 at 14:44:07 UTC from IEEE Xplore.  Restrictions apply. 



division of routeID by the nodeID. Also, in binary arithmetic,
both the addition and subtraction operations are identical to the
logical XOR operation. These steps are described as follows:

1) G = nodeID, r = degree(G)
2) D = routeID ÷ 2r (SHIFT RIGHT)
3) dif = routeID −D ∗ 2r (SHIFT LEFT, XOR)
4) R =< D ∗ 2r >G (CRC)
5) portID = dif +R (XOR)
Therefore, the switch calculates the output port by using

two SHIFT, one CRC, and two XOR operations, which is more
computationally efficient than executing a division.

With the use of this technique, PolKA can be deployed in P4
targets that allow the configuration of generator polynomials.
Since P4 supports CRC operations through the use of external
libraries [11], the support for customized polynomials depends
on the architecture models and how specific targets implement
them. The PSA2 and v1model3 architectures support cus-
tomized polynomials of 16 and 32 bits. In terms of targets,
the software switch bmv24 and the hardware switch Tofino
from Barefoot support customized CRC polynomials, while
Netronome SmartNICs only support fixed CRC polynomials.

VI. PROOF-OF-CONCEPT PROTOTYPES

Two proof-of-concept prototypes were implemented to eval-
uate the main functionalities of PolKA in comparison to
Sourcey: (i) an emulated setup to evaluate end-to-end scenar-
ios, and (ii) a physical setup that uses Netronome SmartNICs5

to evaluate forwarding in a single hop scenario.

A. Emulated prototype
1) P4 architecture and target: The software switch bmv2

simple_switch with the v1model architecture was se-
lected as the target for this prototype, because it supports all
the functionalities required by PolKA, such as the configura-
tion of CRC polynomials. It is important to highlight that this
software switch is a user space implementation with focus on
feature testing. There are other high performance implemen-
tations of P4 software switches and compilers (e.g., PISCES6,
P4ELTE7, and MACSAD8), but they do not yet cover all the
features required by PolKA. As these implementations evolve,
it will be possible to test our prototype with higher loads.
For the time being, the solution was to limit the link rates
to 10Mbps in our emulated prototype to avoid reaching the
processing capacity limits of bmv2 simple_switch.

2) Setup description: The setup consists of one server
Dell PowerEdge T430, with one Intel Xeon E5-2620 v3
2.40GHz processor, and 64GB of RAM. To build our emulated
environment, we used a branch of p4app9, which is a tool that
creates a container with an emulated network using Mininet

2https://p4.org/p4-spec/docs/PSA.html
3https://github.com/p4lang/p4c/blob/master/p4include/v1model.p4
4https://github.com/p4lang/behavioral-model
5https://www.netronome.com/
6http://pisces.cs.princeton.edu/
7http://p4.elte.hu/
8https://github.com/intrig-unicamp/macsad/
9https://github.com/p4lang/p4app/tree/rc-2.0.0/
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Figure 5: SmartNIC setup.

and allows to run different P4 programs on different switches.
This functionality is crucial to emulate fabric networks, which
require different P4 programs for edge and core elements.

3) Control plane implementation: It has two main func-
tionalities: (i) for core: compute nodeIDs, and configure core
switches with their respective identifiers; and (ii) for edge:
compute routing paths for the traffic flows, calculate routeIDs
for these paths, and configure table entries in edge switches
that will be responsible for encapsulating routeIDs. For the
RNS computation of nodeIDs and routeIDs, as described in
Section IV-A, we developed a Python application that uses the
package galoistools of the sympy library10 for GF(2)
arithmetic operations. For programming each core and edge
switch, we developed a control plane application in Python
that communicates with the switches using the CLI commands
provided by the bmv2 simple_switch. The format of the
control messages is defined by an API that connects to a Thrift
RPC server running in each switch process.

4) Header size: The bmv2 simple_switch only sup-
ports the specification of CRC polynomials of 16 and 32
bits. Therefore, although our tests could use much smaller
degrees, our PoC had to adopt polynomials of degree 16. As
the diameters of our test topologies are smaller than 10, the
size of the PolKA header was defined as 160 bits. To get a
fair comparison, we defined the Sourcey header as 16 bits (bos
and port), so, for 10 hops, the array of headers has 160 bits.

B. Hardware prototype with SmartNICs
In the emulated prototype, the CRC operation is executed in

software using CRC tables. However, the main benefit of using
CRC is the execution of the mod operation in hardware with
better performance. To this end, we built a hardware prototype.

1) Setup description: The setup is illustrated by Fig. 5 and
consists of two servers: (i) S0: a device under test (DUT),
running the core functionalities; and (ii) S1: a traffic generator
(TG), running the edge functionalities, and transmitter (TX)
and receiver (RX) functionalities in separate network names-
paces. Both servers are Dell PowerEdge T430, with one Intel
Xeon E5-2620 v3 2.40GHz processor, 16GB of RAM, and
one Netronome Agilio CX 2x10GbE SmartNIC.

2) SmartNICs features: Netronome SmartNICs give access
to hardware timestamps to P4 programs.They partially imple-
ment the functionalities of v1model for P4 16, but it currently
supports only a small set of fixed CRC polynomials, which
restricts the use of its CRC hardware in PolKA. Nevertheless,

10https://www.sympy.org/
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Figure 6: Linear fabric topology.

we could use them for measuring forwarding latency in one
core node, as proposed in the next section.

3) P4 programs: The P4 programs are adaptations of the
codes used in the emulated prototype. The new edge code
encapsulates both SR headers and a timestamp header for
executing latency measurements, which is composed of an
egress (tsout) and an ingress timestamp (tsin).

At server S0, packets are generated at TX and forwarded to
the SmartNIC, where the edge adds SR (PolKA or Sourcey)
and timestamp headers. When the packet leaves the edge, the
hardware timestamp is assigned to tsout. Then, it is transmitted
to server S1 and processed by the core code at the SmartNIC,
which is responsible for parsing the SR header and computing
the output port. Since it is not possible to configure customized
CRC polynomials in the SmartNICs, we use a standard CRC
operation with a fixed CRC-16 polynomial. In this way, we
execute all the PolKA pipeline steps (including the CRC
operation) to measure their contribution in the total latency,
and select a fixed output port. As a result, the packet is
delivered to server S0, where the edge code assigns the value
of the hardware timestamp to tsin, removes the SR header, and
delivers the packet to RX. Finally, all packets are captured
with tcpdump tool, and parsed offline to extract the core
forwarding latency for each packet as: tsin − tsout.

VII. EVALUATION

This section evaluates PolKA and Sourcey for: (i) end-to-
end tests in the emulated prototype, and (ii) single hop latency
test in the hardware prototype. Also, it demonstrates path
migration and failure reaction features in PolKA. For the tests,
we considered Ethernet frames of 98 Bytes as small packets,
and frames of 1242 Bytes as big packets. The average and
standard deviation are presented in all the results.

A. Emulated prototype: End-to-end tests in PolKA vs. Sourcey

The test uses the linear fabric topology of Fig. 6 to compare
PolKA and Sourcey as the number of hops increases in the
core network (e.g., from 0 for path H1 → H11 to 9 for path
H1 → H10). The following experiments were executed: (i)
round trip time (RTT): host H1 sends 1 ICMP packet/s during
60s to each of the other hosts using ping tool; (ii) jitter: host
H1 sends an UDP traffic of 5Mbps (half of link capacity)
with big packets to each of the other hosts during 60s using
the iperf tool; and (iii) flow completion time (FCT): host
H1 transmits a file of 100Mb with big packets over a TCP
connection to each of the other hosts using the iperf tool
(3 repetitions). Fig. 7 shows the comparison between PolKA
and Sourcey solutions for RTT, jitter, and FCT experiments.

In the RTT experiments (Fig. 7(a) and Fig. 7(b)), it is
possible to observe that: the RTT grows linearly with the
increase of the number of hops for both solutions; (ii) Sourcey
solution presents better RTT performance than PolKA solu-
tion; and (iii) the standard deviation is small and in the same
order of magnitude for both solutions. Besides, there is no
significant difference in the results for different packet sizes
in the RTT experiments. This is because Mininet does not
consider transmission time in the emulation. In addition, jitter
(Fig. 7(c)) is small and equivalent for both solutions. Finally,
the FCT experiment (Fig. 7(d)) shows that both solutions
require approximately the same time to transfer the file and
the standard deviation is small.

The fact that Sourcey has a better RTT performance than
PolKA is related to two facts: Sourcey looses one SR header
per hop, so the average packet header size is smaller than
the fixed header used by PolKA; and the CRC operation for
PolKA in this emulated prototype is executed in software.
Nevertheless, the difference between the two solutions is
small and can decrease if the CRC operation is performed
in hardware, as we show in the next subsection.

B. Hardware prototype: Core latency in PolKA vs. Sourcey

The goal is to measure the core forwarding latency for
a single hop in PolKA and Sourcey when the path length
increases. We consider the path length as the number of core
nodes that must be included in the SR header to reach the
destination. For each test execution, the traffic generator tool
at TX varies the IP destination address. The last digit of the
IP destination address represents the number of core nodes
(e.g., if IP destination is 10.0.100.1, the number of hops to
the destination is 1, while IP destination 10.0.100.9 represents
9 hops to the destination). Depending on the number of hops,
the edge encapsulates the appropriate SR headers (e.g., for 5
hops, 5 SR headers in Sourcey). The following experiments
were executed for small and big packets: (i) low throughput:
one ICMP pps, 100 packets in total, generated with ping tool;
and (ii) high throughput: 1Gbps UDP packets, 1000 packets
in total, generated with pktgen tool.

Fig. 8 compares the test cases for Sourcey and PolKA.
Within each test, the average latency and standard deviation
in PolKA varies little when the path length increases, while
in Sourcey the average latency grows linear when the path
length increases. This linear increase in latency measurements
for Sourcey is emphasized in the test case with high pps values
(Fig. 8(c)), when the standard deviation is high for both PolKA
and Sourcey due to the stress in edge and core elements. More
investigation needs to be carried out in a hardware prototype
that allows multi-hop tests, but the results collected so far
indicate that PolKA implementation using CRC hardware is
promising and can offer at least equivalent RTT and jitter
performance to Sourcey.

C. Emulated prototype: Agile path migration in PolKA

This experiment shows how traffic engineering can benefit
from SR for bandwidth allocation with agile path migration.
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Figure 9: Agile path migration in two-tier topology.

Fig. 9(a) shows a two-tier data center, which contains 2 spine
switches (Sn) and 4 leaf switches (Li), all running core
functionalities. Each leaf switch is connected to one server,
which has an edge switch (Eij) to interconnect VMs (Hij).

At 10s, flow A (H11 → H21) and flow B (H12 → H31) start
TCP traffics with big packets using the iperf tool. Initially,
flow A is allocated to blue path (E11 −L1 − S1 −L2 −E21)
and flow B is allocated to red path (E12−L1−S1−L3−E31).
Thus, these flows compete for bandwidth at link L1−S1 in the
interval of 10s to 40s. The effects of TCP congestion control
for fair share of total bandwidth can be seen in Fig. 9(b) that
shows the throughput at the destination of flow A (H21). At
40s, the traffic engineering decides to exploit idle links and
migrates flow A from the blue path to the green path (E11 −
L1−S2−L2−E21). From this moment, there is no competition
with flow B, so flow A consumes all the link bandwidth.

To perform path migration, the SDN Controller only has
to modify a single flow entry at the edge switch E11 for
destination H21. The only field that has to be modified is
the routeID to embed the new route through green path. Once
this single operation is executed, all the packets of flow A that
leave H11 will be tagged with the routeID of the new path.

D. Emulated prototype: Use of RNS properties in PolKA

The goal of this experiment is to show an example of how
PolKA can take advantage of special RNS properties. More
specifically, it explores a property that states that the order
of the nodes in the path is irrelevant. Based on this property,
we integrate a fast failure reaction mechanism proposed by
KAR [8] to the SFC scheme proposed in KeySFC [15].
KAR proposes the concept of resilient forwarding path, called
protection path. The main idea is to proactively add redundant
nodes in the routeID that are not part of the original route.
When there is a link failure, packets are deviated from faulty
links with routing deflections and may occasionally reach these
redundant nodes, which are responsible to guide the packets
back to the original route. In this way, there is no need to
communicate with a controller (or the source) to compute an
alternative path, because, as soon as the core node detects a
failure, it randomly deflects packets to one of its healthy links.

Fig. 10(a) shows an example scenario for SFC VMS →
VNF→VMD. The path in the core switches for the first SFC
segment (VMS →VNF) is: nodes S = {S1, S2} and ports O =
{2, 1}. The path for the second SFC segment (VNF→VMD)
is: nodes S = {S2, S4, S6} and ports O = {4, 5, 1}. These
paths are called unprotected paths, because they do not add
any redundant node for failure protection. Therefore, if any
link of these paths fails, the packets will be dropped.

Applying the protection mechanism to generate the routeID
of the second SFC segment (VNF→VMD), we add the extra
nodes S3, S5, and S7 with ports 5, 3, and 4, respectively.
Thus, when link S4-S6 fails, S4 deflects packets to any of its
other links, and packets will be driven back to S6, as shown
in Fig. 10(b). Thus, the protected path is represented by nodes
S = {S2, S3, S4, S5, S6, S7} and ports O = {4, 5, 5, 3, 1, 4}.
As the protected path already contains redundant nodes, no
change in the routeID is needed when the failure happens.

To integrate KAR mechanism in our prototype, we de-

333Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on October 03,2020 at 14:44:07 UTC from IEEE Xplore.  Restrictions apply. 



S1

S2 S10

S3

S4

S5

S6

S7

S8

S9

E6

VMD

E1

VMS

E2

VNF

4

5
1

1

4

2

5

3

(a) Topology

S2

S4

S6

S5 S7

S3

(b) Protected Path

0 20 40 60

Time (s)

0

2

4

6

8

T
h
ro
u
gh

p
u
t
(M

b
p
s) Link failure

(c) Throughput at destination

0 20 40 60

Time (s)

0

2

4

6

8

T
h
ro
u
gh

p
u
t
(M

b
p
s) Link failure

(d) Throughput at S3

Figure 10: Fast failure reaction for failure of link S4-S6.

veloped a simple control plane application that causes link
failures and makes port failure information available to the
data plane by populating a table of faulty ports. In addition,
we modified the core pipeline to perform a lookup in this table
before sending the packet to the output port. If there is a hit, the
packet is randomly deflected to one of the other healthy ports.
Otherwise, the packet is transmitted normally. The generation
of a random value within an interval is provided by v1model
and could also be replaced by a hash function if the objective
is to always select the same port per flow. Failure detection
mechanisms are not in the scope of this work.

Fig. 10 shows throughput measurements using the bwm-ng
tool at VMD (Fig. 10(c)) and S3 (Fig. 10(d)). Results for S5

and S7 were omitted, because they are similar to Fig. 10(d) as
the traffic was uniformly deflected through S3, S5, and S7 after
the failure. At 10s, we start a 5Mbps UDP traffic from VMS

to VMD. At 40s, the link S4-S6 is disconnected. At VMD, the
traffic perceives a small loss until the failure is signalized by
the control plane and deflections start. Therefore, our scheme
was able to react to failures without any packet modification
as the redundant nodes were already included in the routeID.

VIII. CONCLUSION

Herein, a binary polynomial representation of a fully state-
less RNS-based SR mechanism, called PolKA, was proposed,
implemented, and evaluated. To the best of our knowledge, this
is the first work to apply the CRT theorem in conjunction with
finite fields polynomials to solve routing problems and it is one
of the main contributions of this paper. Moreover, our P4-based
emulated and hardware prototypes demonstrated that is feasi-
ble to deploy RNS-based SR in commodity network equipment
by reusing CRC hardware, with performance equivalent to
traditional Port Switching approaches. This achievement has
the potential to enable a new range of complex network
applications that explore RNS intrinsic features, such as fast
failure reaction and route authenticity.

Future works include extensions of our hardware prototype
for multi-hop scenarios using the Tofino switch, and imple-
mentation of a multicast solution. Moreover, the polynomial
arithmetic of PolKA in hardware description languages has
the potential to synthesize RNS-based SR in smaller chip
areas and reduced clock cycles. Finally, we plan to extend
our polynomial scheme using GFs of higher orders.
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