Washington University in St. Louis

Washington University Open Scholarship

All Computer Science and Engineering

Research Computer Science and Engineering

Report Number: WUCSE-2004-40

2004-07-28

Models, Algorithms, and Architectures for Scalable Packet
Classification

David Edward Taylor and Jonathan S. Turner

The growth and diversification of the Internet imposes increasing demands on the performance
and functionality of network infrastructure. Routers, the devices responsible for the switch-ing
and directing of traffic in the Internet, are being called upon to not only handle increased
volumes of traffic at higher speeds, but also impose tighter security policies and provide
support for a richer set of network services. This dissertation addresses the searching tasks
performed by Internet routers in order to forward packets and apply network services to packets
belonging to defined traffic flows. As these searching tasks must be performed for each
packet... Read complete abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

Recommended Citation

Taylor, David Edward and Turner, Jonathan S., "Models, Algorithms, and Architectures for Scalable Packet
Classification" Report Number: WUCSE-2004-40 (2004). All Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/1014

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1014&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1014&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1014&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1014&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1014&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/1014?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1014&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/1014

Models, Algorithms, and Architectures for Scalable Packet Classification

David Edward Taylor and Jonathan S. Turner

Complete Abstract:

The growth and diversification of the Internet imposes increasing demands on the performance and
functionality of network infrastructure. Routers, the devices responsible for the switch-ing and directing of
traffic in the Internet, are being called upon to not only handle increased volumes of traffic at higher
speeds, but also impose tighter security policies and provide support for a richer set of network services.
This dissertation addresses the searching tasks performed by Internet routers in order to forward packets
and apply network services to packets belonging to defined traffic flows. As these searching tasks must
be performed for each packet traversing the router, the speed and scalability of the solutions to the route
lookup and packet classification problems largely determine the realizable performance of the router, and
hence the Internet as a whole. Despite the energetic attention of the academic and corporate research
communities, there remains a need for search engines that scale to support faster communication links,
larger route tables and filter sets and increasingly complex filters. The major contributions of this work
include the design and analysis of a scalable hardware implementation of a Longest Prefix Matching
(LPM) search engine for route lookup, a survey and taxonomy of packet classification techniques, a
thorough analysis of packet classification filter sets, the design and analysis of a suite of performance
evaluation tools for packet classification algorithms and devices, and a new packet classification
algorithm that scales to support high-speed links and large filter sets classifying on additional packet
fields.

https://openscholarship.wustl.edu/cse_research/1014?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1014&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/1014?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1014&utm_medium=PDF&utm_campaign=PDFCoverPages

Washington
University in St.Louis

SCHOOL OF ENGINEERING
Department of Computer Science & Engineering & APPLIED SCIENCE

2004-40

Models, Algorithms, and Architectures for Scalable Packet Classification,
Doctoral Dissertation, August 2004

Authors: Taylor, David E.

July 28, 2004

Abstract: The growth and diversification of the Internet imposes increasing demands on the performance and
functionality of network infrastructure. Routers, the devices responsible for the switching and directing of traffic in
the Internet, are being called upon to not only handle increased volumes of traffic at higher speeds, but also
impose tighter security policies and provide support for a richer set of network services. This dissertation
addresses the searching tasks performed by Internet routers in order to forward packets and apply network
services to packets belonging to defined

traffic flows. As these searching tasks must be performed for each packet traversing the router, the speed and
scalability of the solutions to the route lookup and packet classification problems largely determine the realizable
performance of the router, and hence the Internet as a whole. Despite the energetic attention of the academic
and corporate research communities, there remains a need for search engines that scale to support faster
communication links, larger route tables and filter sets, and increasingly complex filters. The major contributions
of this work include the design and analysis of a scalable hardware implementation of a Longest Prefix Matching
(LPM) search engine for route lookup, a survey and taxonomy of packet classification techniques, a thorough
analysis of

packet classification filter sets, the design and analysis of a suite of performance evaluation tools for packet
rlaccifiratinn alnnrithme and devicree and a new narket rlaccificratinn alnnrithm that eralec tn ciinnnrt hinh-eneed

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160

WASHINGTON UNIVERSITY
SEVER INSTITUTE OF TECHNOLOGY
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

MODELS, ALGORITHMS, AND ARCHITECTURES FOR
SCALABLE PACKET CLASSIFICATION
by
David Edward Taylor, M.S.Co.E., M.S.E.E., B.S.Co.E., B.S.E.E.

Prepared under the direction of Dr. Jonathan S. Turner

A dissertation presented to the Sever Institute of
Washington University in partial fulfillment
of the requirements for the degree of

Doctor of Science
August, 2004

Saint Louis, Missouri

WASHINGTON UNIVERSITY
SEVER INSTITUTE OF TECHNOLOGY
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

ABSTRACT

MODELS, ALGORITHMS, AND ARCHITECTURES FOR
SCALABLE PACKET CLASSIFICATION

by David Edward Taylor

ADVISOR: Dr. Jonathan S. Turner

August, 2004

Saint Louis, Missouri

The growth and diversification of the Internet imposes increasing demands on the perfo
mance and functionality of network infrastructure. Routers, the devices responsible fwithh-
ing and directing of traffic in the Internet, are being called upon to not only handieaised vol-
umes of traffic at higher speeds, but also impose tighter security policies and psapidert for a
richer set of network services. This dissertation addresses the searching tasks perfornted by In
net routers in order to forward packets and apply network services to packetgihgltmdefined
traffic flows. As these searching tasks must be performed for each packet traversingehetie
speed and scalability of the solutions to the route lookup and packet classificatiommsdéatgely
determine the realizable performance of the router, and hence the Internet akea béspite the
energetic attention of the academic and corporate research communities, thenes emaed for

search engines that scale to support faster communication links, larger routeatadbliiiter sets,

and increasingly complex filters. The major contributions of this work include the desdyarel-
ysis of a scalable hardware implementation of a Longest Prefix Matching (LPM) search engine fo
route lookup, a survey and taxonomy of packet classification techniques, adhoaoalysis of
packet classification filter sets, the design and analysis of a suite of performance endah@tidor
packet classification algorithms and devices, and a new packet classification algbadthsoales

to support high-speed links and large filter sets classifying on additional packet fields.

copyright by
David Edward Taylor
2004

SoLl DEo GLORIA

to God alone be the glory

Contents

Listof Tables e iX
Listof Figures e Xi
Acknowledgments L XVii
Preface e XX
1 Introduction e 1
1.1 Stateofthelnternet
1.2 The“NextGeneration”Internet. 5
1.3 The Packet Classification Problem
1.3.1 Constraints e
1.4 Organization of the Dissertation
2 Single-Field Search Techniques 12
21 ExactMatching e
211 B-Trees o e e e
2.1.2 Hashing e
213 BloomFilters e
2.2 Longest Prefix Matching (LPM)
221 LinearSearch e
2.2.2 Content Addressable Memory (CAM)
223 TrieBasedSchemes
2.2.4 Multiway and Multicolumn Search
2.2.5 Binary SearchonPrefixLengths
2.2.6 Longest Prefix Matching using Bloom Filters
2.3 AllPrefix Matching (APM)
24 RangeMatching e
241 SegmentTree
242 IntervalTree

2.4.3 RangetoPrefixConversion 29

2.4.4 Range Matching Circuits 30
3 FastInternet Protocol Lookup (FIPL), 31
3.1 Introduction 31
3.2 TreeBitmap Algorithm 33
3.2.1 Split-Trie Optimization it 36
3.3 Hardware Design and Implementation 37
3.3.1 FIPLENgine e 38
3.3.2 FIPLENngineController 40
3.3.3 ImplementationPlatform 41
3.3.4 Memory Configuration e 42
3.3.5 Worst-Case Performance 42
3.3.6 Hardware ResourceUsage 42
3.4 System Management and Control Components 43.
341 NCHARGE s e 43
3.4.2 FIPLMemory Manager 43
3.4.3 SocketsiInterfaces 45
3.44 RemoteUserinterface 45
345 CommandFlow e 45
3.5 Performance Measurements. 47
3.5.1 Memory Utilization. 48
3,52 LookupRate 48
3.6 Towards Better Performance 50
3.6.1 Implementation Optimizations 51
3.6.2 RootNode Extension& Caching. 51
3.7 RelatedWork e 53
3.8 DISCUSSION ot 55
4 Multiple Field Search Techniques 56
4.1 TaxOnNOMY o o o e e e e e e e e e e 75
4.2 ExhaustiveSearch. 58
421 LinearSearch 60
4.2.2 Ternary Content Addressable Memory (TCAM) 60
4.3 DecisionTree e 62
4.3.1 Grid-of-Tries e 64
4.3.2 Extended Grid-of-Tries (EGT) i 67
4.3.3 Hierarchical Intelligent Cuttings (HiCuts) 69
4.3.4 Modular Packet Classification 70

vi

435 HyperCuts e e 73

4.3.6 Extended TCAM (E-TCAM) i ittt 74
4.3.7 Fatinverted Segment (FIS) Trees 75
4.4 Decomposition 78
4.4.1 Parallel Bit-Vectors (BV) 78
4.4.2 Aggregated Bit-Vector (ABV) 80
4.4.3 Crossproducting e e e 82
4.4.4 Recursive Flow Classification (RFC) 82
4.4.5 Parallel Packet ClassificatioRYC) 84
4.4.6 Distributed Crossproducting of Field Labels (DCFL) 87
45 TupleSpace e 90
45.1 Tuple Space Search& TuplePruning 92
452 RectangleSearch 94
45.3 Conflict-Free Rectangle Search 95
46 Caching 95
4.7 DISCUSSION e 96
Analysis of Real FilterSets. 98
5.1 Understanding Filter Composition 99
5.2 PreviousObservations 99
5.3 Application Specifications L 101
5.3.1 Protocol 101
532 PortRanges 102
533 PortPairClass 103
5.4 AddressPrefix Pairs 105
5.5 Scope . .. e 112
5.6 FilterOverlap 114
5.7 FieldValueOverlap e 116
5.8 Additional Fields 117
5.9 Impactof IPv6 Migration e e e 119
5.9.1 Address Architecture 119
5.9.2 Address Allocation & Assignment 120
ClassBench: A Packet Classification Benchmark. 122
6.1 Motivation. 122
6.2 Related Work e 125
6.3 ParameterFiles 126
6.4 Synthetic Filter SetGeneration, 129
6.4.1 Smoothing Adjustment 133

6.4.2 ScopeAdjustment e 135

6.4.3 Filter Redundancy & Priority 141
6.5 Trace Generation 314
6.6 Benchmarking with ClassBench 514

7 Scalable Packet Classification using Distributed Crossproducting of Field Labels. 148

7.1 Descriptionof DCFL e e 149
7.2 Aggregation Network 415
7.3 FieldSplitting e 156
7.4 AggregationNodes 591
7.4.1 BloomFilter Arrays 159
7.4.2 Meta-Labellndexing 161
7.5 FieldSearchEngines 163
751 PrefixMatching. e 163
7.5.2 RangeMatching 164
753 ExactMatching e 165
7.6 DynamicUpdates 651
7.7 Performance Evaluation. 167
7.8 Related Work e 175
7.9 DISCUSSION o i 178
8 Summary e 179
8.1 Contributions 179
8.2 FutureDirections 181
Appendix A Additional Data from Real FilterSets 183
References e 190
Vita . e e 198

viii

List of Tables

11

3.1

3.2

4.1
4.2
4.3

51

5.2

5.3

5.4
5.5

5.6
5.7

5.8

59

Example filter set of 16 filters classifying on four fields; each filter has an associated
flow identifier Flow ID) and priority tag PT) wheret denotes a non-exclusive filter;
wildcard fields aredenotedwith 8

Memory usage for théree Bitmapdata structure and next hop information using a
snapshot of the Mae-West database from March 15, 2002 consisting of 27,609 rdites. 4
Memory usage for root node array optimization. 3 5

Example filter set; port numbers are restricted to be an exact value or wildcard. 65 .
Example filter set; address field is 4-bits and port ranges cover 4-bit port numbeg$.
Example filter set; address fields are 4-bits and port ranges cover 4-bit porensumBl

Observed protocols and filter distribution; values given as percentage (%) of filters

inthefilterset. 102
Distribution of filters over the five port classes for source and destination port range
specifications; values given as percentage (%) of filters in the filterset. 103
Number of unique specifications in the Arbitrary Range (AR) and Exact Match

(EM) port classes for source and destination portranges. 104
Number of entries required to store filter set in a standard TCAM. 106
Number of unique address prefix lengths for source address (SA), destination ad-
dress (DA), and source/destination address pairs (SA/DA). 106
5-tuple scope measurements, averagg,(.) and standard deviatiow (.ope). . . . 114

Maximum number of filters matching any packet; partial matches for eactirfield
the 5-tuple, source/destination address prefix pair (SA-DA), and application specifi-
cation (SP-DP-PR); full matches on all fields (All); matches; data from 12 real filter

SelS. . L e e e e 116
Number of unique field values and combinations of field values specifiétidrg
inl12realfiltersets. 118
Maximum number of unique field values and combinations of field valueshing

a packet; datafrom 12 realfiltersets. 118

iX

7.1 Sets of unique specifications for each field in the sample filter set.

List of Figures

1.1 Simple diagram of Internet architecture. L. 3
1.2 Format of Internet Protocol Version 4 (IPv4) packet headers with appendeddra
protocol header fields. 4
1.3 Internet Protocol Version 4 (IPv4) address space allocation. 4
1.4 Example of Longest Prefix Matching for a 12-bit search key; all shaded prefixes
match the key, but000000011x is the longest matching prefix. 7
2.1 Example of a B-Tree storing multiples of three, whete3. 14
2.2 Example of hashing with chaining using the four low-order bits as a hash index.15
2.3 Example of inserting two keys,andy, into a Bloom filter. 15
2.4 Example of querying a Bloom filtery is a non-membet; is a correct match; is
afalse positivematch. L e 16

2.5 Example of Longest Prefix Matching for a 12-bit address using linear search; pre-
fixes are sorted in decreasing order of prefix length; the first matching prefix is the

longest. 18
2.6 Example of Longest Prefix Matching using a binary trie. 20
2.7 Example of a direct lookup array for the first three bits. 22
2.8 Basic configuration of Longest Prefix Matching using Bloom filteB&2(). 24
2.9 Nesting tredechnique for finding all matching prefixes for a given longest matching
prefix. . . . e 26

2.10 Example of projecting endpoints of intervals to form non-overlapping segments
the real line, and using thieat Inverted Segmer(FIS) Treeto search the set of

SEgMENTS. e e e e e e e e 27
2.11 Example of amnterval Treewhere each node stores the maximum endpoint value
forallintervalsinitssubtree. 29

3.1 IP lookup table of next hops. Next hops for IP packets are found usingriigedb

matching prefix in the table for the IP destination address of the packet. 33
3.2 IP lookup table represented as a binary trie. Stored prefixes are denoted by shaded
nodes. Next hops are found by traversing thetrie. 34

Xi

3.3 IP lookup table represented as a multibit trie. A stride, 4-bits, of the unicast desti-
nation address of the IP packet are compared at once, speeding up thepootess. 35

3.4 Bitmap coding of a multibit trie node. The internal bitmap represents the stored
prefixes in the node while the extending paths bitmap represents the child nodes of
thecurrentnode. L 35

3.5 IP lookup table represented as a Tree Bitmap. Child nodes are stored contiguously
so that a single pointer and an index may be used to locate any child node in the the

datastructure. e 36
3.6 Split-trie optimization of th@ree Bitmapdata structure. 37
3.7 Block diagram of router with multi-engine FIPL configuration; detail of FIPL sys-

tem components in the Port Processor (PP). 38

3.8 FIPL engine dataflow; multi-cycle path from input data flops to output address flops

can be scaled according to target device speed; all multiplexor select linéigpand

flop enables implicitly driven by finite-state machine outputs. 39
3.9 FIPL engine state transition diagram. 41
3.10 Control of the Field-programmable Port eXtender (FPX) via NCHARGE software.

Each FPX is controlled by an instance of NCHARGE which provides an API for

FPX control via remote software process., 44
3.11 Command flow for control of FIPL viaaremotehost. 46
3.12 FPX Web Interface for FIPL routeupdates. 46
3.13 Block diagram of FIPL evaluation environment. 47

3.14 FIPL performance: measurements used a shapshot of the Mae-West database from
March 15, 2002 consisting of 27,609 routes. Input IPv4 destination addresses were
created by randomly selecting 16,384 prefixes from the Mae-West database. 49

3.15 FIPL performance under update load: measurements used a snapshot oéthe Ma
West database from March 15, 2002 consisting of 27,609 routes. Input IPv4 desti-
nation addresses were created by randomly selecting 16,384 prefixes from the Mae-
West database. Updates consisted of alternating addition and deletion of a 24-bit
prefiX. . .. 50

3.16 FIPL Split-Trie performance under update load: measurements used a snapshot of
the Mae-West database from March 15, 2002 consisting of 27,609 routes. Input
IPv4 destination addresses were created by randomly selecting 16,384 prefixes from
the Mae-West database. Updates consisted of alternating addition and deletion of a
24-bitprefix. e e 51

3.17 Root node extension using an on-chip array and multiple sub-tries. 52.

4.1 Taxonomy of multiple field search techniques for packet classification; atljace
techniques are related; hybrid techniques overlap quadrant boundadiesotes a
seminal technique. 57

4.2 Example of encoding filters by unique field values to reduce storage requiremerés.
4.3 Circuit diagram of a standard TCAM cell; the stored value (0, 1, Don’t Care) is

encoded usingtwo registeadanda2. oL, 61
4.4 Example of a rf@e construction of a decision tree for packet classification on three

fields; all filter fields are converted to bit vectors with arbitrary bit masks. 63
4.5 Example of set pruning trees a@dlid-of-Tries classifying on the destination and

source address prefixes for the example filter setin Table4.1. 66
4.6 Example of 5-tuple packet classification usigd-of-Tries pre-filtering on proto-

col and port number classes, for the example filter setin Table 4.1. Q7.
4.7 Example of 5-tuple packet classification uskExtended Grid-of-Trie¢EGT) for

the example filter setin Table4.1. 68
4.8 Geometric representation of the example filter set shown in Table 4.2. 70.
4.9 ExampleHiCutsdata structure for example filter setin Table4.2. 71
4.10 Geometric representation of partitioning create¢itiyuts data structure shown in

Figure 4.9. 72
4.11 Modular packet classification using ternary strings and a three-stage search archi-

tecture. e e 73
4.12 Example of searching the filter setin Table 4.2 usingx@ended TCANE-TCAM)

using a two-stage search and a filter block size offour. 75
4.13 Example of partitioning the filter setin Table 4.2 foltatiended TCAME-TCAM)

with a two-stage search and a filter block size of four. 76
4.14 Example ofat Inverted SegmelfElS) Treesfor the filter setin Table 4.2. 77
4.15 Example of bit-vector construction for tRarallel Bit-Vectorstechnigue using the

filter setshownin Table4.2. 79
4.16 Example of bit-vector and aggregate bit-vector construction fokgigeegated Bit-

Vectorstechnique using the filter set shownin Table4.2. 81
4.17 Example o€rossproductingechnique for filter set with three fields; full crossprod-

uct table is not shown due to space constraints. 83
4.18 Example oRecursive Flow ClassificatiofiRFC) using the filter setin Table 4.2. . 85
4.19 Example oParallel Packet ClassificatioriP2C) using the most update-efficient

encoding style for the port ranges defined in the filter setin Table4.2. 86

4.20 Example of encoding filters with field labeldistributed Crossproducting of Field
Labels(DCFL) using same filter table as Figure 4.17; count values support dynamic
updates. e 89

4.21 Example of search usimystributed Crossproducting of Field LabglBCFL) . . . 90

4.22 Example of assigning tuple values for ranges basédesting LevendRange ID 91

Xiii

4.23 Example offuple Pruningto narrow the scope of tHeuple Space Seargthe set of
pruned tupless the intersection of the sets of tuples found along the search paths
foreachfield. 93
4.24 Example oRectangle Searabn source and destination prefixes of filters in Table 4.3. 94

5.1 Example of overlaps formed by fully-specified and partially-specified address prefix

PAIrS. . . . o e e e e e e e e 101
5.2 Port Pair Matrices for two filtersets. 105
5.3 Prefix length distribution for address prefix pairs. 108
5.4 Example of complete statistical characterization of address prefixes. | 09. 1

5.5 Example of skew computation for the first four levels of an address trie; shaded
nodes denote a prefix specified by a single filter; subtrees denoted by triangles with

associatedweight. 109
5.6 Source address branching probability and skew for filter setacls. 110.
5.7 Destination address branching probability and skew for filter setacl5. 11. 1
5.8 Address prefix correlation; probability that address prefixes of a filter continue to be

the same ata given prefixlength. L. 113
5.9 Distribution of 5-tuple scope for filters in filter setsacl2andacls5. 115
5.10 Combined prefix length distribution for IPv6 BGP route table snapshots. 120

6.1 Block diagram of th&lassBencttools suite. The synthetiEilter Set Generator
has size, smoothing, and scope adjustments which provide high-level, systematic
mechanisms for altering the size and composition of synthetic filter sets. The set of
benchmarlparameter filesnodel real filter sets and may be refined over time. The
Trace Generatoprovides adjustments for trace size and locality of reference. . . . 124
6.2 Parameter filegepresent prefix pair length distributions using a combination of a
total prefix length distribution and source prefix length distributions for each non-

zerototallength. 128
6.3 Pseudocode fdfilter SetGeneratar. L. 131
6.4 Prefix pair length distribution for a synthetic filter set of 64000 filters generated with

aparameter filespecifying 16-bit prefix lengths for all addresses. 134

6.5 Prefix pair length distributions for a synthetic filter set of 64000 filters generated
with a parameter filespecifying 16-bit prefix lengths for all addresses and various

values of smoothing parameter. 136
6.6 Prefix pair length distribution for a synthetic filter set of 64000 filters generated with
the ipclparameter filanvith smoothing parameters=0andr =4. 137

6.7 Average scope of synthetic filter sets consisting of 16000 filters generated with pa-
rameter files extracted from filter setsl3, fw5, andipcl, and various values of the

6.8 Example of sampling from a cumulative distribution using a random variable. Dis-
tribution is for the total prefix pair length associated with the WC-WC port pair
class of the acl2 filter set. A random variable equal to 0.5 chooses 44 as the total
prefix pairlength. 138

6.9 Scope applies a biasing function to a uniform random variable. 40. 1

6.10 Example of sampling from a cumulative distribution using a random variable. Dis-
tribution is for the total prefix pair length associated with the WC-WC port pair
class of the acl2 filter set. A random variable equal to 0.5 chooses 44 as the total
prefix pairlength. 141

6.11 Average scope of synthetic filter sets consisting of 16000 filters generated with pa-
rameter files extracted from filter setsl3, fw5, andipcl, and various values of the

SCOpe parameters. e e e e e e e e e e e 142
6.12 Pseudocode fdirace Generatar. 144
6.13 Generic model of a packetclassifier. 146

7.1 Example configuration dDistributed Crossproducting of Field Labe(®CFL);
field search engines operate in parallel and may be locally optimized; aggregation
nodes also operate in parallel; aggregation network may be constructed in a variety

of Ways. o 151
7.2 Example aggregation node for source and destination address fields. 153 .
7.3 Example of variable aggregation network cost for different aggregation rietwo

constructions for packet classification onthree fields. 155
7.4 Generalized DCFL aggregation network for a searctifoelds. 156
7.5 An example of splitting a 6-bit address field; maximum number of matchingslabe

per field is reduced from fivetothree. 158
7.6 Example of an aggregation node usirBl@om Filter Arrayto aggregate field label

setF;(z) with label setF'y ;—i(a,...,w). 160
7.7 Example of an aggregation node usivigta-Label Indexindo aggregate field label

setF;(z) with meta-label sef’ ;_1(a,...,w). 162
7.8 Block diagram of range matching using parallel search engines for eaatigssit 164
7.9 Pseudocode f@CFLupdate (add). 166
7.10 Pseudocode f@CFL update (delete). 166

7.11 Performance results for 12 real filter sets; left-column shows worst-case sequential
memory accesses (SMA), average SMA, and memory requirements in bytes per
filter (BpF) for aggregation network optimized for worst-case SMA; right-column
shows same results for aggregation network optimized for average-case SMA,; call-
outs highlight three specific filter sets of various sizes and types (filter set size given
inparentheses). e 169

XV

7.12 Performance results for synthetic filter sets containing 10k, 20k, and 50k filters,
generated with parameter files from filter sett5 andfw5; call-outs highlight most
pronounced effects (number of filters given in parentheses). 170.

7.13 Performance results for synthetic filter sets containing 16k filters, generated with
theipcl parameter filawith scope parameters{-1,0,1}; call-outs highlight most
pronounced effects (scope parameter given in parentheses); note that thesésfilter se
are used in the evaluation of tii#assBencliools suite in Figure 6.4.2. 172

7.14 Performance results for real filter seisl? andfwl) using theField-Splittingopti-
mization; call-outs highlight most pronounced effects (field overlap threshold given
inparentheses). e 173

7.15 Performance results for synthetic filter sets containing 16k filters, generated with
parameter file from filter sedcl5 with extra filter fields; call-outs highlight most
pronounced effects (number of filter fields given in parentheses). 174

7.16 Contrast between unique field value labelBistributed Crossproducting of Field
Labels(DCFL) and equivalence class identifieesj(D9 in Recursive Flow Classi-
ficatior; example shows two fields ofdfield search. Squarés. . . [] represent the
unigue projections of two fields andy for all filters in a filter table. 177

8.1 Potential implementation architecture Bistributed Crossproducting of Field Labels32

A.1 Source address branching probability and skew for filter setipcl. 184
A.2 Destination address branching probability and skew for filter setipcl. 85
A.3 Source address branching probability and skew for filter setfw1. 86
A.4 Destination address branching probability and skew for filter set fwl.. 87
A.5 Distribution of 5-tuple scope for filters in filter sets acl4 and ipc1. 188
A.6 Distribution of 5-tuple scope for filters in filter setsfwland fw5. 189

XVi

Acknowledgments

I not only use all the brains that | have, but all that | can borrow.
Woodrow Wilson, 28th President of the United States of America

My humble measure of intelligence and creativity are not solely responsible for thel“catri-
butions to the body of knowledge” contained in this dissertation. | have been dless® times
over with loving and supportive family and friends, and a long line of dedicatethées and men-
tors. The fruit of this dissertation is a direct result of their selfless acts on my behalf. While it is
impossible (and overly tedious) to thank everyone, | will attempt to make mentiorosé timost
directly involved in my graduate education and those who kept me sane angthappghout this
adventure.

| would like to start by thanking those serving on my dissertation committee. Inexpressible
thanks go to my research advisor, Dr. Jonathan S. Turner, for his tremendmuceand diligent
mentorship. | sincerely appreciate the academic freedom he provided throughgtdadnate stud-
ies, especially early in my studies when | was a rathéveneesearcher. His consummate emphasis
on clarity and understanding nurtured and encouraged me to produce the higdlagtrgsearch
that | could. Were it not for my academic advisor, trusted friend, and savvyt,a@enWilliam
D. Richard, | most likely would not have become a graduate student at Waahibgiversity. |
will forever be thankful for his selfless actions to provide me with wonderful opportsrtitiéearn
and contribute. His valued advice always goes well beyond the realmsdémics and research;
he provides truly useful wisdom. | would like to thank Dr. John Lockwood for offevialyable
suggestions and insight, supporting a portion of my graduate studies, involving me arlhdes
velopment of the Field-programmable Port eXtender (FPX), and demonstrating a coemirginal
enthusiasm for making concepts “real” in hardware. | would like to thank Dr. R&eMorley
for serving on my proposal committee. | will always remember his engineerimgrapdthere’s
no such thing as magic”, and his probing question about the status of my desjgctqrtwould
you get on the airplane?” It has also been an honor to have Dr. Fred U. Rogenhs a professor
and member of my committee. | will always value his insight into fundamesiéets of digital
circuit design, healthy skepticism of performance claims (I highly recommend vidvisrigGallery
of Perpetual Motion”), and wise advice to employ due caution when desigmiyiing Finally, |
would like to thank Dr. Daniel R. Fuhrmann for serving on my committee and offérimgnsight
on short notice.

A number of other Washington University faculty and Applied Research Laborataffy
have generously provided their wisdom, encouragement, and assistance. Slyetiicald like

XVii

to thank John DeHart for his enthusiasm, patience, and invaluable assistance withati@mitnd
performance measurement of the Fast IP Lookup (FIPL) search engine. | am anawarbenefi-
ciary of his vast engineering talent. Many thanks go to Dave Zar for providing iabkdwassistance
with Mentor Graphics and Xilinx CAD tools, answering many VHDL questions, and gimie my
first research job, publishing opportunity, and conference presentation experience.

My graduate student experience was significantly enhanced by the wonderfulliethlen
group of graduate students in ARL. | would like to sincerely thank JeyashankhearRiatmam
for being an amiable office-mate and tolerating my numerous interruptions andtedoiehelp
with C++ code debugging. | would like to thank Ed Spitznagel for offering his inlaéuan-
sight to countless discussions on packet classification techniques, providing assistarfdeewith
set parsing, and being a willing and responsive test case faClagsBenctiools. Many thanks to
(Dr.) Tilman Wolf for participating in many lively discussions over coffee and fosteaimiprant
“culture” in the laboratory and department. Likewise, | would like to thank (Dr.) Dacd3per
and (Dr.) Ralph Keller for fostering @ery vibrant “culture” when they were at Washington Uni-
versity. Thanks to Anshul Kantawala and the rest of the lunchtime crowd for mdighteming
discussions/arguments. Finally, thanks to all the ARL “fools” (you know who you areh&king
graduate student life more fun than it ought to be.

| also would like to acknowledge William Eatherton and Zubin Dittia as the developers of th
Tree Bitmapmlgorithm. Their design efforts and analyses made a portion of this research possible. |
would like to acknowledge Todd Sproull as the developer of the control softwmareeb interfaces
for the FIPL search engine. | also would like to thank Tucker Evans and Ed Spitznagdkéiio
contributions to the FIPL Memory Manager software. | would like to thank Sarang Dharmapurik
and Praveen Krishnamurthy for introducing me to Bloom filters and inviting me to work with the
in developing the “Longest Prefix Matching using Bloom Filters” technique. | would like toktha
Venkatachary Srinivasan, William Eatherton, and others for making several real fitevsdable
for study.

| would also like to send my sincere thanks “across the pond” to Andreas Herkersdorf a
other members of the Network Processor Hardware team at the IBM Zurich Researcaitbabimr
a rewarding educational and cultural experience. | thoroughly enjoyed mymsuim Switzerland
and gained a new level of respect for my peers in the international researchuoagnm

On a more personal note, | would like to offer my most heartfelt thanks to my wife, Sara
Jane Taylor. Her love and companionship have brought me immeasurableejothe past three
years. It has been a tremendous blessing to have someone to empathize with nehallémges
of a doctoral program. | would like to thank my parents who have offered camstiensupport
and encouragement not only in my five years as a graduate student, bgtthubmy 24 years of
formal education. Itis impossible to list all that they have done for me, for like Gods so much
of it goes unnoticed and unacknowledged. So, | offer my thanks for #aegyl have forgotten
to thank them for, and specifically: helping me with countless homeworks, laudingchigve-
ments, offering consolation in my defeats, sending me to college, and being shiaimgples of
loving parents. | also offer heartfelt thanks to my dear friends who have beessantial source of
inspiration, support, refreshment, and guidance.

Xviii

Our scientific power has outrun our spiritual power. We have guided missiles and
misguided men.
Martin Luther King Jr.

| offer my eternal thanks and praise to the Lord Jesus Christ for the saving love andthedrele
demonstrates every day of my life. He has redeemed my life from countless pits, esrttirfteely
extend His grace to me, and showers me with undeserved blessings. All of the d@nstand
novel ideas in this dissertation are products of His grace in response to my prayerkreaemned
the end of my natural ability. | also would like to thank my brothers and sisters in Christvat N
City Fellowship of St. Louis for their companionship, discipleship, and prayers.

David Edward Taylor

Washington University in Saint Louis
August 2004

XiX

Preface

The Internet - a conglomeration of military, academic, and commercial compoit@munication
networks - is arguably the most pervasive technology in recent history. Startedeapexrimental
project by the Defense Advanced Research Projects Agency (DARPA) of thall&tédtes Depart-
ment of Defense in 1973, the Internet continues to expand and diversify [1]. ®pe etits use has
moved beyond ubiquitous communication and dissemination of information to encles com-
mercial, academic, and private-sector services. Originally the brainchild of the tresearmunity
and a novelty for the technology hobbyist, the Internet has radically transformedyhihevworld
communicates. It has become essential infrastructure for the global economgckattétself in
the cultures of industrialized nations, and penetrated the most remote locations on earth

While statistics regarding Internet size and use are notoriously difficult to pin down, even the
rough estimates are staggering. As of January 2004, there were approximatelijl@83 mernet
hosts [2]. A host refers to any device communicating over the Internet: personputens) work-
stations, servers, Personal Digital Assistants (PDAS), etc. At that time, the United States atcounte
for 144 million hosts with over seven thousand Internet Service Providers (ISPs). Roughmhl945
lion people use the Internet world-wide, and the number of users is projected &meixdebillion in
2005 [3]. Spending for online content increased to $1.56 billion in 2003 [4], ansutoers trans-
acted over $2.2 billion over the Internet in the one week period following the Hgérikg holiday
in 2003 [5]. These figures could easily double in the next few years as the Intermdtates the
two most populous countries in the world - India and China.

The growth and diversification of the Internet imposes increasing demands on the perfo
mance and functionality of network infrastructure. The Internet may be thought afghabal
postal system for delivering digital letters, or packets; thus, the task of packet forgygdikin to
sorting mail. In the context of the Internet, the challenge is that packets are transrhitbedlay
the speed of light and arrive at rates exceeding a hundred million packetspadsé&urthermore,
routers, the devices responsible for the switching and directing of traffic in the Interneherdy
to sort packets into thousands of different “bins” by consulting a complex directmtainiing tens
of thousands of entries. Routers are being called upon to not only handle intredsmes of
traffic at higher speeds, but also impose tighter security policies and provide suppanti¢dber
set of network services. A critical issue in realizing the latter set of goals is identifying tlfie traf
belonging to a particular flow or set of flows. A flow may be thought of as the camwation traffic

XX

generated by a specific application traveling between a specific set of hosts or sarkeet@ow
identification is computationally intensive and the task is complicated by the contimzigasing
volume and speed of traffic traversing routers.

In this dissertation, we address the packet forwarding and flow identification problems, more
commonly known as route lookup and packet classification. Due to their fumdahmele in the
functionality and performance of Internet routers, both problems are well-studied. Dibgpéteer-
getic attention of a broad community of researchers in industry and academia, thanesa need
for good solutions. In this context, a solution’s “goodness” is evaluated along tb&iazlhengi-
neering criteria of performance, size, cost, and power consumption. The contribotithns work
include a high-performance implementation of a route lookup search engine, aptmsiudy of
the filter sets used to classify packets, a suite of performance evaluation tools, and aaréthnalg
for packet classification that scales to larger filter sets and more complex filters.

The value of this work goes beyond prototypes, research tools, and algorithnesdehzic
interest. A number of companies are beginning to offer packet classification smagutes as
products, and the industry is also gaining interest and investing in algorithmic solutions sxiet p
classification problem. According to a leading market analyst, the search engine aevket grew
14% from $83 million in 2002 to $95 million in 2003 [6]. More profound than the total market
growth is that the leading company offering algorithmic search engines gainednhbtRét share
while the leading TCAM vendor lost 18% market share. Ternary Content Addredgainhery
(TCAM) is a memory technology that searches all entries in the filter set in a single cyde. Th
strategy results in fast packet classification, but the devices are extremely expamipewer
hungry.

XXi

Chapter 1

Introduction

Computer Science is no more about computers than astronomy is abcediEhs.
Edsger W. Dijkstra

The world is in the midst of a major paradigm shift in the role and importance of comazunic
tions technology. Many contemporary historians have already dubbed this thertaifon Age”.
Codified by the protocols produced by the DARPA Internet Architecture projectrbeg1973,
the Internet has emerged as a global communications service of ever ingreagortance. The
expanding scope of Internet users and applications requires network infrastructareyttamer
volumes of traffic, tightening already challenging performance constraints. This dissegdtio
dresses the searching tasks performed by Internet routers in order to forward packapplgnd
network services to packets belonging to a particular traffic flows. As these searchmgiastibe
performed for each packet traversing the router, the speed and scalability of thersolatitbese
problems largely determine the realizable performance of the router, and henceedinet as a
whole.

1.1 State of the Internet

The Internet refers to the global “network of networks” that utilizes the suite of interinkitvgp
protocols developed by the DARPA Internet Architecture project initiated in 197& ofiginal
aim of this project was to enable communication across the original ARPANET andRirA
packet radio network, but the original architects were tasked with developingcpl®tio enable
communication across a wide variety of heterogeneous networks [1]. Due tatine obthe ARPA
packet radio network and the set of foreseeable applications, the protocols etafdgyams, or
packets, as the fundamental unit of communication, and thus the Internetieeotion-less packet-
switched network. The use of datagrams endowed the protocols with a simplicity abdifiethat

is largely responsible for the tremendous growth and development that the Irtasnetjoyed.

2

The building blocks of the Internet are essentially networks, each consisting of cembina
tions of possibly heterogeneous hosts, links, and routers. Figure 1.1 provides a siampjaerf
the Internet architecture. Hosts produce and consume packets, or datagrarhg;ombédin chunks
of data - a piece of afile, a digitized voice sample, etc. Hosts may be personaliers) worksta-
tions, servers, Personal Digital Assistants (PDAs), IP-enabled mobile phones, or satellites. Packets
indicate the sender and receiver of the data similar to a letter in the postal system chmmiet
hosts to routers, and routers to routers. Links may be twisted-pair copper wire, fiber dyic ca
or a variety of wireless link technologies such as radio, microwave, or infrared. @regevariety
of strategies for allocating links in a network. These strategies often take into considegatmn b
width and latency requirements of applications, geographical location, depitdysnd operating
costs. The fundamental role of routers is to switch packets from incoming links to thepapgeo
outgoing links depending on the destination of the packets. Note that a paakdtaverse many
links, often called hops, in order to reach its destination. Due to the transient naturevoflne
links (failure, congestion, additions, removals), routing protocols allow the routers tmaaity
exchange information about the state of the network. Based on this informatiorrsrdetgde on
which link to forward packets destined for a particular host, network, or subnetwaiie. tNat the
dynamic nature of the routing protocols allows packets from a single host addresseononan
destination to follow different paths through the network.

The original Internet protocol suite was comprised of two protocols: the Internet Protocol
(IP) and the Transmission Control Protocol (TCP). The primary function of the Internet Protocol
(IP) is to provide an end-to-end packet delivery service. This task is accomplished!bdginy
information regarding the sender and receiver with each packet transmitted thheugbtwork,
much like the forwarding and return addresses on a letter. IP specifies the format of thisaitido
which is prepended to the content of each packet. The information prepenaedt protocol is
referred to as a packet header and the data content of the packet is refesrtitbtpayload. In order
to uniquely identify Internet hosts, each host is assigned an Internet Protocol (IP) addimesst|{;
the vast majority of Internet traffic utilizes Internet Protocol Version 4 (IPv4) which assighd# 32
addresses to Internet hosts. As shown in Figure 1.2, the IPv4 header prependéets ipatudes
the IP address of the source and destination host. For the purpose of our discussitmertiev4
header field of interest is thgrotocolfield which identifies the type of transport protocol used by the
sending application. The type of transport protocol determines the format of thedrapsmocol
header following the IP header in the packet.

Rather than individually assign addresses to every host, IPv4 addresses were allocated to
organizations in contiguous blocks with the intention that all hosts in the same rkettvare a
common set of initial bits. This common set of initial bits is referred to as the network ssldre
or prefix; the remaining set of bits is called the host address. This allocation strategyeprovid
decentralized control of address allocation; each organization was free taalftadation decisions
for the addresses within its assigned block. As shown in Figure 1.3, IPv4 addresses weadyrig

3

Residential Customers

Hosts Internet Service Provider (ISP)
7
Enterprise Local —
== Area Network
s (LAN)
Internet
== Links Backbone
= (] I Operator
mo 17 Edge Routers
School of

Academic Network(~ Engineering

College of Arts
& Sciences School of

Medicine Core Routers

Internet Service Provider (ISP)

School of Law

Figure 1.1: Simple diagram of Internet architecture.

assigned in blocks of three sizes: Class A (16 million hosts), Class B (64 thousand hosts),sand Cla
C (254 hosts). Note that there are also blocks of Class D addresses for multicast (ong+to-man
transmission) and reserved Class E addresses. Most organizations which requiredaa thneges
space than Class C were allocated a block of Class B addresses, even thoughvbeircensumed
only a fraction of the addresses. This waste of available address space combined esxihldbie
growth of the Internet prompted concerns over the impending shortage of ureabityaddresses.
Classless Inter-Domain Routing (CIDR) was introduced in order to prolong the life of IPv4 [7].
CIDR essentially allows a network address to be an arbitrary length prefix of the IP address, thu
network’s address space may span multiple Class C networks. CIDR also allows routoup|sto
aggregate network addresses in order to reduce the amount of packet forviafiolimgtion stored
by each router. The wide adoption of CIDR by the Internet community has sloweateffioyment
of a more permanent solution, Internet Protocol Version 6 (IPv6) [8]. Among other isthiges,
designers of IPv6 addressed the address space issue via the use of 128-bit addresgegh®esp
relief provided by CIDR, adoption of IPv6 is probable given the continued incieabe number
of Internet hosts and deployment initiatives by influential research and comhuraui@s [9].

The second protocol produced by the original Internet Architecture project, theriiisn
sion Control Protocol (TCP), provides a reliable transmission service for IP packets. Through the

31 30 29 28 27 26 25 24 23 2221 20 1918 1716 1514 13121110 9 8 7 6 5 4 3 2 1 0

IP Options (if present)

Version| H-length TOS Total length
IP Header

[[] [[] T Y [[] I Y I

Identification flags Fragment Offset
I B T Y [[] T I
TTL Protocol Header checksum
Y I O I Y I O Y I
Source address
N o e |
Destination address

I e e e ey ey

IP Options

Source Port
N I

Destination Port
N I

Transport Port:

(Remaining Transport Header Fields)
I e e e e

Payload

Figure 1.2: Format of Internet Protocol Version 4 (IPv4) packet headers with épgdransport

protocol header fields.

Class 313029 28 27 26 25 24 232221201918 17 16 151413121110 9 8 7 6 5 4 3 2 1 0

A 0 Network Host
I | S)) A

B 10 Network Host

| [[I T A
C 110 Network Host

[[| I N O A N T T
D 1110 Multicast Address

[| N S S S e O I
E 11110 Reserved

Figure 1.3: Internet Protocol Version 4 (IPv4) address space allocation.

use of small acknowledgment packets transmitted from the destination host to thetsmirGeCP
detects packet loss and paces the transmission of packets in order to adjust & oetwgestion.
When the source host detects packet loss, it retransmits the lost packet or patkbesddstina-
tion host, TCP provides in-order delivery of packets to higher level protocolgmications. After

5
initial development of TCP, a third protocol, the User Datagram Protocol (UDP), veBesdad the
original suite in order to provide additional flexibility. UDP essentially allows applicatiohsyher
level protocols to dictate transmission behavior. For example, a streaming vidézatapp may
wish to ignore transient packet losses in order to prevent large breaks in the video citesed by
packet retransmissions.

Typically, the TCP and UDP transport protocols identify applications using 16-bit port n
bers carried in the transport header as shown in Figure 1.2. In order to provide strvio&aown
hosts, servers must have static “contact ports” for each application. Port numbeiddty-used
applications fall in the range of well-knowsystemports which are assigned by the Internet As-
signed Numbers Authority (IANA). Prior to 1993, the well-known port numbers were inahge
[0...255] while port number$256 . . . 1023] were used in Unix systems for Unix-specific services.
Since 1993, port numbers in the ran@e .. 1023] form the set of well-knowrsystermport num-
bers managed by IANA. A “living document” cfystemport number assignments is available at
http://www.iana.org/assignments/port-numbers . For applications where either
TCP or UDP may be used, port number assignments are typically identical. Unlilsatents
only need to guarantee that running applications use free port numbers. The frangenombers
that may be freely assigned by clients are referred to as ephenseralorts due to their short-lived
and unmanaged nature. The setisérport numbers span the ranfj®24 . .. 65535]. IANA does
maintain a list ofegistereduser port numbers in the ranfg®24 . . . 49151] for popular applications
which do not have an assignsgstenport.

1.2 The “Next Generation” Internet

While the protocols produced by the Internet Architecture project achieved theabrggials set
forth by DARPA and the pioneering group of researchers, the use of datagrams aksatphal-
lenges for those striving to deploy the next-generation of Internet services, particukdrtinte

services such as Internet telephony and video conferencing. It is important tthabtbe choice
of datagrams and packet-switching represents a significant departure from the circuiedwigth
works originally developed and deployed by the telecommunications industrite ¥kl Internet
protocols simplify the task of combining heterogeneous networks, the use of pactattisgicom-

plicates the provision of bandwidth and quality of service guarantees. As mensiboed, packets
flowing between a fixed set of hosts may take different paths through the netwark.toCthe

heterogeneous nature of the Internet, packets following different paths will lixplgrience dif-

ferent hop counts and congestion resulting in unpredictable latency and bottlereckpacity.

Circuit-switched networks allow data to flow along a fixed path, offering predictable peaxfaen
The major drawback of circuit-switching is the need to negotiate an end-to-end patigtiice

network. In the case of the Internet, this would require coordination across manydgesteons
networks operated by independent parties with potentially competing interests.

6

Enabling quality of service and real-time performance guarantees are just a coupge of th
challenges facing the community architecting the “next-generation” Internet. éAmtarnet be-
comes increasingly essential infrastructure for the global economy, security is a oragert. Due
to their roots in academic research, many network protocols were developed@acthented with
little if any consideration of security issues. As a result, many academic and commestiations
have suffered from destructive network intrusions by hackers, viruses, and worms. TDidiag h
a vested interest in the security of the Internet now find themselves in a perpetual “aethwith
nefarious programmers. Furthermore, IP has essentially become a victim of its owarjippu
The amount of investment in the IP infrastructure by Internet Service Providers (ISPs) had yielde
significant resistance to changing the architecture. This hardening of the Internetcanchitdso
presents a significant challenge to realizing the “next-generation” Internet.

Despite concerns over security and ossification of the Internet protocols, many in the re-
search community have put forth grand visions of the “next-generation” Interneie Bfecifics
invariably differ, common goals include: retaining the flexibility provided by IP whilal#ing the
performance guarantees made available by circuit-switching, providing a levelwitgehat war-
rants greater economic reliance, and enabling more rapid development@oyhadent of services.
Some go so far as to set forth the goal that the Internet become reliable enougpaa soup air
traffic control system [10].

1.3 The Packet Classifi cation Problem

In a circuit-switched network, the task of identifying the traffic associated with a particuléir app
cation session between two hosts or subnetworks is trivial from the router’s perspécsiveple,
fixed-length flow identifier can be prepended to each unit of data that identifiesttidighed end-
to-end connection. For each unit of data, a router simply performs an extott sgarch over atable
containing the flow identifiers for established connections. The table entries for each diutiv id
fier contain the output link on which to forward the data and may also specify qualitynd€se
guarantees or special processing the router should perform.

The flow identification task in a packet-switched network is significantly more challenging.
The primary task of routers is to forward packets from input links to the appropriate outksit lin
In order to do this, Internet routers must consuibate tablecontaining a set of network addresses
and the output link onext hopfor packets destined for each network. Entries in the route tables
change dynamically according to the state of the network and the informationngexhhy routing
protocols. The task of resolving the next hop from the destination IP address is comnfenigde
to asroute lookupor IP lookup Finding the network address given a packet’s destination address
would not be overly difficult if the Internet Protocol (IP) address hierarchy were strictlytenaed.
A simple lookup in three tables, one for each Class of networks, would be sufficientwidike
adoption of CIDR allows the network addresses in route tables to be any size. Perforseimgia

Search Key: Prefix
1000 0000 111% [109000000*

10*
110*
10000000001
100001*
0001*
01011*
10001*

*

00110*
01*
Longest MatchL.{ 1900000011

1011*

Figure 1.4: Example of Longest Prefix Matching for a 12-bit search key; all shadedegraiatch
the key, butt000000011:x is the longest matching prefix.

in 32 tables, one for each possible network address length, for every packet trgtieesiouter is
not a viable option. If we store all the variable-length network addresses in a singleaabige
lookup requires finding the longest matching prefix (network address) in the table foivére g
destination address.

Stated formally, a prefix is a subset of initial bits of a key value, the IP destination address
in the case of route lookups. By definition, key values that share a common predixHesame
contiguous subset of bits starting at the most significant bit. Given a search ddegize b bits,
Longest Prefix Matching (LPM) is a search technique which selects the préfixhe set of prefixes
P, such thap; matches: andp; has the most specified bits. Each prefjxcan be thought of as the
combination of &-bit key and a correspondirigbit mask which identifies the valid bits in the key.
By definition, the mask is contiguous in LPM; i.e. the most significant invalid bit in the mast m
be succeeded by invalid bits. Prefixes can be succinctly represented by simply usirupénacter
to denote the end of the valid bits in the prefix. An example of Longest Prefix Matching (LRM) fo
a 12-bit search key is provided in Figure 1.4. Note that the four shaded prefixds thnatsearch
key, but1000000011x is the longest matching prefix. The throughput of an Internet router largely
depends upon the speed at which it can perform Longest Prefix Matching (LPM).

If an Internet router is to provide more advanced services than packet forwaitdimgst
perform finer grained flow identification. In the Internet context, the process of identifyingack-
ets belonging to a specific application session or group of sessions between a sodestiaation

8

Table 1.1: Example filter set of 16 filters classifying on four fields; each filter has an assbiboav
identifier Flow ID) and priority tag PT) wheret denotes a non-exclusive filter; wildcard fields are

denoted withk.

Filter Action
SA DA Prot DP FlowID | PT
11010010| * TCP |[3:15] || O 3
10011100 * * [1:1] 1 5
101101* | 001110* | * [0:15] || 2 8t
10011100{ 01101010 UDP | [5:5] 3 2
* * ICMP | [0:15] || 4 ot
100111* | 011010* | * [3:15] || 5 6t
10010011 * TCP |[3:15] || 6 3
* * UDP | [3:15] || 7 ot
11101100| 01111010] * [0:15] || 8 2
111010* | 01011000{ UDP | [6:6] 9 2
100110* | 11011000{ UDP | [0:15] || 10 2
010110* | 11011000{ UDP | [0:15] | 11 2
01110010 * TCP | [3:15] || 12 47
10011100 01101010 TCP | [0:1] 13 3
01110010| * * [3:3] || 14 3
100111* | 011010* | UDP | [1:1] 15 4

host or subnetwork is typically referred to as the packet classification problem. Notkahaute
lookup problem may be viewed as a sub-problem of the more general padsiicdion problem.
Applications for Quality of Service, security, monitoring, and multimedia communicsitigpically
operate on flows, thus each packet traversing a router must be classified in order tadksign
identifier,FlowlID. Packet classification entails searching a table of filters for the highest priority fil-
ter or set of filters which match the packet. Filters bind a flow or set of flows-lowalD. Note that
filters are also referred to as rules in some of the packet classification literature. At minimum, filters
contain multiple field values that specify an exact packet header or setadisesnd the associated
FlowlID for packets matching all the field values. The type of field values are typically prédixes
IP address fields, an exact value or wildcard for the transport protocol numb#agsdand ranges
for port numbers. An example filter set is shown in Table 1.1. In this simple examples &itiatain
field values for four packet headers fields: 8-bit source and destination addressgsrtrarotocol,
and a 4-bit destination port number. The packet fields most commonly usedkatgassification
are referred to as the IP 5-tuple and include the 8-bit protocol, 32-bit source addreS2-bmd
destination address in the IPv4 header as well as the 16-bit source port and 1€ibdataen port
in the TCP and UDP transport protocol headers.

Note that the filters in Table 1.1 also contain an explicit priorityRdgand a non-exclusive
flag denoted by. Priority tags allow filter priority to be independent of filter ordering, providing for
simple and efficient dynamic updates. Non-exclusive flags allow filters to be desigmatsther

9
exclusive or non-exclusive. A search returns the single highest-priority exclusivediltawing
Quiality of Service and security applications to specify a single action for the packdetPatay
also match several non-exclusive filters, providing support for transparent monitodngsage-
based accounting applications. Note that a parameter may control the nufrimar-exclusive
filters, r, returned by the packet classifier. Like exclusive filters, the priority tag is used to select
ther highest priority non-exclusive filters. We argue that packet classifiers should sups@t the
additional filter values and point out that many existing algorithms preclude tbeirThe packet
classification problem may be stated formally as follows:

Given a packef containing fieldsP’ and a collection of filterd” with each filterF;
containing fieldsFij, select the highest priority exclusive filter andhighest priority
non-exclusive filters where for each filtéj : F/ matchesP.

Consider the example of searching Table 1.1 for the highest-priority exclusive filtesiagle
highest-priority non-exclusive filtef; = 1), for a packet with the following header field values:

e SA 1001 1100
e DA: 01101010
e Prot: UDP

e DP:5

The exclusive filters withrlowIDs 3 and 15 match the packet, eiowID 3 is the highest priority
filter (minimum PT value). The non-exclusive filters witlowIDs 5 and 7 match the packet, but
FlowlID 5 is the highest priority filter. The search would retiowlDs 3 and 5.

1.3.1 Constraints

Computational complexity is not the only challenging aspect of the packsifitation problem.
Increasingly, traffic in large ISP networks and the Internet backbone travels ovewlithikiransmis-
sion rates in excess of one billion bits per second (1 Gb/s). Current generation fibdindstizan
operate at over 40 Gb/s. The combination of transmission rate and packet size dectatetigh-
put, the number of packets per second, routers must support. A majority of iniexffie utilizes
the Transmission Control Protocol which transmits 40 byte acknowledgment packéie. viorst
case, a router could receive a long stream of TCP acknowledgments, therefeeevative router
architects set the throughput target based on the input link rate and 40 byt fmakhs. For
example, supporting 10 Gb/s links requires a throughput of 31 million packesepend per port.
Modern Internet routers contain tens to thousands of ports. In such high-performaters, naute
lookup and packet classification is performed on a per-port basis.
Many algorithmic solutions to the route lookup and packet classification problems provide

sufficient performance on average. Most techniques suffer from poor perforiieaageathological

10
search. For example, a technique might employ a decision tree where mostipatigh the tree
are short, however one path is significantly long. If a sufficiently long sequenceckétgathat
follows the longest path through the tree arrives at the input port of the routethiénroughput
is determined by the worst-case search performance. It is this set of worst-case assumgttions th
imposes the so-called “wire speed requirement” for route lookup and packet clasgifsztitions.
In essence, solutions to these search problems are almost always evaluated bizsécerit takes
to perform a pathological search. In the context of networks that provide perfoengararantees,
engineering for the worst case logically follows. In the context of the Internet, the pistmake no
performance guarantees and provide “best-effort” service to all traffic. Furthermosayitiching
technology at the core of routers cannot handle pathological traffic. Imagsuéfiaiently long
sequence of packets in which all the packets arriving at the input ports areedefstinthe same
output port. When the buffers in the router ports fill up, it will begin dropping pckéhus, the
“wire speed requirement” for Internet routers does not logically follow from the highH{eetocols
or the underlying switching technology; it is largely driven by network managemnd marketing
concerns. Quite simply, it is easier to manage a network with one less source of lpasks and
it is easier to sell an expensive piece of network equipment when you davet to explain the
conditions under which the search engines in the router ports will begin baakipduis for these
reasons that solutions to the route lookup and packet classification problems aréytgpelaated
by their worst-case performance.

Achieving tens of millions of lookups per second is not the only challenge taerookup
and packet classification search engines. Due to the explosive growth of the Inbaidipne
route tables have swelled to over 100k entries. Likewise, the constant increase imtber rof
security filters and network service applications causes packet classification filter sets aséncre
in size. Currently, the largest filter sets contain a few thousand filters, however dynamicoe
reservation protocols could cause filter sets to swell into the tens of thousands. Scalabiligerto la
table sizes is a crucial property of route lookup and packet classification solutionssd #scitical
concern for search techniques whose performance depends upon the ntiettiges in the tables.

As routers achieve aggregate throughputs of trillions of bits per second, pomgraption
becomes an increasingly critical concern. Both the power consumed by the itealieand the
infrastructure to dissipate the tremendous heat generated by the router componéfitargign
contribute to the operating costs. Given that each port of high-performance routsr&onmtain
route lookup and packet classification devices, the power consumed by segiredtséa becoming
an increasingly important evaluation parameter. While we do not provide an iexgduation
of power consumption in this dissertation, we present solutions to the route lookupaeket p
classification techniques that employ low-power memory technologies.

11
1.4 Organization of the Dissertation

The remainder of the dissertation is organized as follows. The next chapter pravidegrview

of single field search techniques, including Longest Prefix Matching (LPM) techniques spigcifica
developed in response to the route lookup problem. The other types of searebexida Chap-

ter 2 have relevance for the types of searches dictated by the packet classificalti@m. In order

to demonstrate the level of performance and efficiency achievable via high-parfoermplemen-
tations of algorithms, Chapter 3 provides a description of the Fast Internet Protodalp_@elPL)
search engine. Targeted to open-platform research systems designed and deaxeldpshing-
ton University, FIPL is a high-performance hardware implementation of the Tree Bitmaxitiaig
developed by Eatherton and Dittia [11].

Chapter 4 presents a survey of solutions to the packet classification problem using-a taxo
omy that frames each solution according to its high-level approach to the probletivatdd by
recent packet classification algorithms that leverage properties of real filter setsritcoadieve
better performance, Chapter 5 contains a detailed analysis of 12 real filter setteciifern fellow
researchers, Internet Service Providers (ISPs), and a network equipment vendor. el thf
computer architecture, there are no standard filter sets or performance evaluatidiabpisvide
a uniform scale for comparing competing packet classification solutions. In responseyeleped
a suite of benchmarking tools that includeSymthetic Filter Set GeneratoA description and anal-
ysis of theClassBenchools is contained in Chapter 6. Based on the results of the analysis presented
in Chapter 5, we developed a new packet classification algorithm that leveragstauttture of real
filter sets and the capabilities of modern hardware technology. Chapter 7 preskgsrigtion
and performance analysis of the new technidpistributed Crossproducting of Field Labelshich
provides favorable scaling properties for larger filter sets and more complex filtersrowidepa
summary of the contributions in this dissertation and discussion of future work in Chapter 8.

12

Chapter 2

Single-Field Search Techniques

Computers are useless. They can only give you answers.
Pablo Picasso

A variety of searching problems naturally arise in packet classification due to the strugbaicket
filters. As discussed in Chapter 1, filter fields specify one of three different match cosdition
the corresponding packet header fields): a fully specified value, or exact matchin@,) partially
specified value, or prefix matching}) a range of values, or range matching. In this chapter, we
provide a survey of the prominent solutions to these three types of search problams)dam the
most frequently used solutions and those solutions specifically tailored to networking apptica
We begin with a survey of solutions for exact matching in Section 2.1, followed liscagsion of
Longest Prefix Matching (LPM) techniques in Section 2.2. LPM has been the focus of ietensiv
study in recent years due to the fundamental role it plays in IP address lookupket forward-

ing. Note that LPM is a special case of the more general All Prefix Matching (APM) problem
discussed in Section 2.3. Various packet classification techniques require an estitigion to the
APM problem. Finally, we address the more challenging problem of range matchirtgnéately,
range matching is a problem that arises in many contexts. We provide a survey efmaich-

ing solutions drawn from the fields of computational geometry, database desigmetawaiking in
Section 2.4.

2.1 Exact Matching

The simplest form of exact matching is the set membership query: determinesifidedgngs to the
set of keysX . Often we wish to store associated information with eachakey X such as unique
identifiers or processing directives. In such cases, a search wher& returns not only a “yes”
for the membership query, but also the information associated with the matching entynizateh
search problems naturally arise in packet classification when filters examine packesdiethdss
the transport protocol identifier. Due to the constraints on exact match searchesavtioeking

13
context, namely the size of the key sets and the speed at which the search mer$bbeqn, non-
trivial data structures must be used for this task. We provide a brief introduction to two alassic
data structures that seek to minimize the number of memory accesses per seareh,@Bdrbash
tables. Both data structures are capable of supporting set membership queries assiihg
additional information with each key. We also provide a brief introduction to Bloom filtellata
structure designed to efficiently represent a set of keys. The space efficiency ¢dheeprice of
allowing false positive matches, as well as not storing any additional information veitketys in
the set.

2.1.1 B-Trees

B-Trees were originally designed to limit the number of accesses to direct access staitaguch
as disks and drums [12, 13]. The reduction in I/O operations is achieved by argpkéys in a
tree data structure where the nodes of the tree may have many children. The maximmiver of
children a node may have is typically referred to asitbgreeof the tree. The number keys stored in
any tree node (except the root node) is bounded byrtindnum degreef the B-Tree. Specifically,
each node in the tree must contain at lédst- 1) keys and at mos2B — 1) keys, whereB > 2.

An example of a B-Tree storing the integer multiples of three is shown in Figure 2.1. Note
that the keys stored in a hode are arranged in non-decreasing order. Each iridenalso stores
a set of pointers interspersed with the keys. Each pointer points to a child node stosrgyéater
than the key to the “left” of the pointer and less than or equal to the key to the “mltie pointer.
Note that each node may also store additional information for eachFieglly, the height: of a
B-Tree containing: keys is bounded by:

1
hgloanJr

2.1)

Thus, given a maximum table size the valudofan be selected to meet a given access budget. Note
that we assume a pointer to additional data may be stored along with each kdfieAc@mmon
B-Tree organization stores all pointers to additional data in the leaves and onlykstgsesnd child
pointers in the internal nodes in order to maximize the branching factor of theahterdes.

2.1.2 Hashing

Hashing is a technique that can provide excellent average performance veheuntiber of keys,

n, in the setX is much less than the number of ke}g|, in the universe of possible key valués,

For example, assume that contains 100 keys where the keys may take on any value in the range
[0 : 65535], i.e. a 16-bit unsigned integer. We could simply allocate a table with 65,536 entries
and use the value of the kayas an index into the table, but obviously this is very wasteful. This

'Each B-Tree node could also store a pointer to a table of information that could bedruetiee matching key’s
position in the node.

14

9 18

36 12 15 21 24 27 60 63

Figure 2.1: Example of a B-Tree storing multiples of three, whete3.

techniquegdirect addressingis only viable when the number of keysn the setX approaches the
number of possible key valugs|.

The classical solution to this problem is to map the key valteea narrower range of values
that can be used to index a smaller table. In order to perform the mapping fundtiash éunction
h(z), is computed on the key value. The resulting value is used as an indexiiaghdableof size
[0 : m — 1] wherem < |U]|. ldeally, the hash function uniformly distributes alkeys across the
m slots in the hash table. This search method, cdiegshing has been extensively studied and is
given thorough treatment by a number of computer science textbooks3JL2, 1

There is a variety of methods for constructing hash functions. Often, the low-order bits
of key values are sufficiently uniform in distribution such that ki@sh indexnay be constructed
by selecting low order bits of the key. Such hash functions are trivial to constructduvaee.
Figure 2.2 shows an example of using the four low-order bits of the key as a hasifindhe same
integer multiples of three used in the B-Tree example in Figure 2.1. Note thatwikereater than
m and/or the distribution of keys across the hash table is not uniform ablésionsoccur. In our
example, we use a common collision resolution technique callathing where keys that map to
the samérash indexXorm a linked list. The ratio of keys to hash table slots is referred to ade#ue
factor, = -, which specifies the average number of keys in a chain. Thus, the average searc
time for a hash table where chaining is used for collision resoluti®(is+ «). There is a variety
of much more sophisticated hash functions and collision resolution techniques. We eafeadier
to the previously mentioned textbooks for a more complete discussion [12, 13].

2.1.3 Bloom Filters

A Bloom filter is a data structure used for efficiently representing a set of keys. Via implicé-rep
sentations of the keys in the set, the data structure supports membership queries tocé = ble
of storing additional information for each stored key. This technique was formulat@&litign

H. Bloom in 1970 [14], and has received renewed attention in the research cotyfion various
applications such as web caching, intrusion detection, and content based [@&{ing Bloom
filter is essentially a bit-vector of length where a keyr is represented by a subset of thebits.

000q 48
0001 33
001q 18

» 0011 3 P 51
0104 36
0101 21
011 6 | 54
o1 @ 0111 39
1004 24

1001 9 || 57

101q 42

1011 27
1104 12 | 60
1101 45

1119 30

1111 15 p| 63

Figure 2.2: Example of hashing with chaining using the four low-order bits as a hash ind

k hash functions T
@ G GO
oTeTo o o[oo T o] CLleae o]]

Figure 2.3: Example of inserting two keysandy, into a Bloom filter.

Given a set of keys{ with n members, we insert a key; € X into the Bloom filter as follow&

We computek hash functions om;, producingk values in the rang® : m — 1]. Each of these

values addresses a single bit in thebit vector, hence each kay causes: bits in them-bit vector

to be set to 1. Figure 2.3 provides an example of inserting two keys into a Bloom fititer.th\at if

one of thek hash values addresses a bit that is already set to 1, that bit is not changed.
Querying the filter in order to determine if a given keybelongs to the sek is similar

to the insertion process. Given key we generaté hash indices using the same hash functions

2Inserting a key into a Bloom fi lter is also referred to as ‘programming”the fi lter in the literature.

non-member member member
false positive

Figure 2.4: Example of querying a Bloom filter; is a non-membery is a correct matchz is a
false positive match.

used to insert keys into the filter. We check the bit locations corresponding iotiash indices

in the m-bit vector. If at least one of thk bits is 0, then we declare the key to be a non-member
of the set. If all the bits are found to be 1, then we claim that the key belongs to thétlset
certain probability. If we find alk bits to be 1 and: is not a member o, then it is said to be a
false positive match. This ambiguity in membership comes from the fact thatthe in them-bit
vector can be set by any of tmemembers ofX. Thus, finding a bit set to 1 does not necessarily
imply that it was set by the particular key being queried. However, finding adetinly implies
that the key does not belong to the set, since if it were a member theerbal would have been set
to 1 when the key was inserted into the Bloom filter. Examples of a non-match, coraét, and
false positive match are shown in Figure 2.4.

The following is a derivation of the probability of a false positive matthThe probability
that a random bit of the:-bit vector is set to 1 by a hash function is simp};ly The probability that
itis not setisl — -L. The probability that it is not set by any of themembers ofX is (1 —)",
Hence, the probability that this bit is found to be 1lis- (1 — %)”’“. For a key to be declared a
possible member of the set, &llbit locations generated by the hash functions need to be 1. The
probability that this happeng, is given by

1 nk\ F
(- (-5 ez
m
for large values ofn the above equation reduces to

f= (1 — e_Tnk)k (2.3)

17
Since this probability is independent of the input key, it is termeddtse positivgprobability. The
false positive probability can be reduced by choosing appropriate values &d k& for a given
size of the member set, For a given ratio of’”, the false positive probability can be reduced by
adjusting the number of hash functiors, In the optimal case, when false positive probability is
minimized with respect té&, we get the following relationship

k= H%anJ , [%m” (2.4)

The false positive probability at this optimal point is given by

1\ k
1= (3) (25)

It should be noted that if the false positive probability is to be fixed, then the size of thierfilte

needs to scale linearly with the size of the key set,

One property of Bloom filters is that it is not possible to delete a key stored in the filter.
Deleting a particular entry requires that the correspondihgshed bits in the bit vector be set to
zero, which would disturb other keys programmed into the filter which hash to anesé thits.

In order to solve this problem the idea of tl®unting Bloom Filterwas proposed by Fan, et.
al. [16]. A Counting Bloom Filter maintains a vector of counters corresponding to leiam the
bit-vector. Whenever a key is added to or deleted from the filter, the counterspomnng to the
k hash values are incremented or decremented, respectively. When a chamges from zero to
one, the corresponding bit in the bit-vector is set. When a counter changes feota rero, the
corresponding bit in the bit-vector is cleared. Note that maintaining counters sigtlifizameases
the storage requirements. If updates to the set of stored keys arrive at a reasonatiteméatee
counters may be stored in slower, cheaper memory technology such as DRAM.

2.2 Longest Prefix Matching (LPM)

Longest Prefix Matching (LPM) has received significant attention in the literature over themast te
years. This is due to the fundamental role it plays in the performance of Internet roDterdo

the explosive growth of the Internet, Classless Inter-Domain Routing (CIDR) was wideptet

to prolong the life of Internet Protocol Version 4 (IPv4) [7]. Use of this protocol requires ktern
routers to search variable-length address prefixes in order to find the longest matcfiingfphe

IP destination address and retrieve the corresponding forwarding information, or ‘o@Extfor

each packet traversing the router. This computationally intensive task, commfarhedeto as IP
Lookup, is often the performance bottleneck in high-performance Internet routers.ilMisevP
lookup as the example application for Longest Prefix Matching for the remainderséttion. The

18

Address: Prefix ~ Next Hop
1000 0000 1111 10000000001 12
First Match ~| 10000000111 7 Noxt Hom

10000000* | 54
100001* 33
10001* 6
00110* 3
01011* 51
1011* 1
0001* 68
110 9
01* 21
10* 7
* 35

Figure 2.5: Example of Longest Prefix Matching for a 12-bit address using linear seezfikep
are sorted in decreasing order of prefix length; the first matching prefix is the longest.

following sections discuss the major developments in LPM techniques for IP lookiggocaed
by their general approach to the problem.

2.2.1 Linear Search

If the set of prefixes is small, a linear search through a list of the prefixes sorted in odgereésing
length is sufficient. The sorting step guarantees that the first matching prefix in the list is testlong
matching prefix for the given search key. An example of Longest Prefix Matching (LPMJj usin
linear search is shown in Figure 2.5. Linear search is commonly touted as the mastynedfimient

of all LPM techniques in that the memory requirements{8’) whereN is the number of prefixes

in the table. Note that the search time is al@V), thus linear search is not a viable approach for
IP lookup when the set of prefixes grows beyond a few dozen prefixes.

2.2.2 Content Addressable Memory (CAM)

Many commercial router designers have chosen to use Content Addressable Me&d)foCIP
address lookups in order to keep pace with optical link speeds despite theirdemgecost, and
power consumption relative to Static Random Access Memory (SRAM). CAMs minimize the nu
ber of memory accesses required to locate an entry by comparing the inputdiegtadl memory
words in parallel; hence, a lookup effectively requires one clock cycle. Whiteyp CAMs perform

19
well for exact match operations and can be used for route lookups in strictly hiesdratidress-
ing schemes [17], the wide use of address aggregation techniques like CIDR retoiineg and
searching entries with arbitrary prefix lengths. In response, Ternary Content Addressaliedgem
(TCAMSs) were developed with the ability to store an additional “Don’t Care” state themdiyliag
them to retain single clock cycle lookups for arbitrary prefix lengths. We believe thatithige*
force” approach is no longer necessary for IP lookup due to the significant avéirat have been
made in algorithmic LPM techniques. TCAMs remain competitive choices for paclesifotation
on multiple fields; therefore, we provide a more detailed analysis of these devices imS3e2tih

2.2.3 Trie Based Schemes

Search techniques which build decision trees using the bits of prefixes to makeibgaetisions

allow the worst-case search time to be independent of the number of prefixes in thie sgample

of a binary tri€ constructed from the set of prefixes in Figure 1.4 is shown in Figure 2.6. Shaded
nodes denote a stored prefix; the corresponding next hop is shown adjacenhtaléheA search

is conducted by traversing the trie using the bits of the address, starting with the most significant
bit. As in the previous examples, the best matching prefid0#000011+ and the corresponding

next hop is seven. Note that the worst-case search time ighél%), wherelV is the length of the
address and maximum prefix size in bits.

One of the first IP lookup techniques to emplimies is Sklower’'s implementation of a
Patricia trie in the BSD kernel [18]. The Patricia trie is a binary radix tree that compresses paths
with one-way branching into a single node. The BSD kernel implementation was déddigte
general enough to support any hierarchical routing scheme or link layer adidmesiation such as
the Address Resolution Protocol (ARP). It assumes contiguous masks and boundsshease
lookup time toO(WW'). While paths may be compressed, only one bit of the address is examined
at a time during a search resulting in search rates that do not meet the needs darfogimgnce
routers.

In order to speed up the lookup process, multi-bit trie schemes were developed which p
form a search using multiple bits of the address at a time. Srinivasan and Vargheseciedrodu
two important techniques for multi-bit trie search€qntrolled Prefix Expansio(CPE) and_eaf
Pushing[19]. Controlled Prefix Expansiorestricts the set of distinct prefix lengths by “expanding”
prefixes shorter than the next distinct length into multiple prefixes. This allows the lookurp-to
ceed as a direct index lookup into tables corresponding to the distinct prefix lengthide length,
until the longest match is found. The techniqud.e&f Pushingeduces the amount of information
stored in each table entry by “pushing” information about the best matching prefixthlepaths to
leaf nodes. As a result each leaf node need only store a pointer or next higpatitm. While this
technique reduces memory usage, it also increases incremental update civé&tieauthors also

3A trie is an ordered tree in which the key stored at each node is specifi ed by its positiertrieeth

20

Address: 1000 0000 1111

P

Figure 2.6: Example of Longest Prefix Matching using a binary trie.

discuss variable length stride lengths, optimal selection of stride lengths, and dynaménpmagg
techniques.

Gupta, Lin, and McKeown simultaneously developed a special case of CPE specifically
targeted to hardware implementation [20]. Arguing that DRAM is such a plentifulrengbensive
resource, their technique sacrifices large amounts of memory in order to boumahtiber of off-
chip memory accesses to two or three. Their basic scheme is a two level “expéameledth an
initial stride length of 24 and second level tables of stride length eight. Given trddmaaccesses
to DRAM may require up to eight clock cycles and current DRAMs operate at leashidilathe
speed of SRAMS, this technique can be out-performed by techniques utilizing SRAMa@udng
fewer than 10 memory accesses.

Other techniques such &silea[21] and Eatherton and Dittiasree Bitmap[11] employ
multi-bit tries with compressed nodes. In Chapter 3 we provide a detailed descriptionapsis
of a scalable hardware implementatioriloée Bitmap We also provide an introduction to multi-bit
tries, a complete description of tAeee Bitmapalgorithm, and a comparison betwegme Bitmap
and other approaches suchlagdea ThelLuleascheme essentially compresses an expanded, leaf-
pushed trie with stride lengths 16, 8, and 8. In the worst case, the scheme requirem@8/me
accesses; however, the data structure only requires a few bytes per entry. Whiteebxt@mpact,

21
the Lulea scheme’s update performance suffers from its implicit use of leaf pushing. Tigee
Bitmaptechnique avoids leaf pushing by maintaining compressed representations offtkespre
stored in each multi-bit node. It also employs a clever indexing scheme to redintergborage
to two pointers per multi-bit node. Storage requirementsTfee Bitmapare on the order of six
to eight bytes per address prefix, worst-case memory accesses can be held to legghthaith
optimizations, and updates require modifications to a few memory words resulting ikeakce
incremental update performance [22].

The fundamental issue with trie-based techniques is that performance and scalability are
fundamentally tied to address length. As many in the Internet community are pushiideiy
adopt IPv6, it is not clear that trie-based solutions will be capable of meeting parfoendemands.

In the following sections, we discuss LPM algorithms that avoid this linear relationship withssddre
length.

2.2.4 Multiway and Multicolumn Search

Several other algorithms exist with attractive properties that are not based on triesultiveay

and Multicolumn Searctechniques presented by Lampson, Srinivasan, and Varghese are designed
to optimize performance for software implementations on general purpose proceskorsiE28ri-

mary contribution of this work is mapping the longest matching prefix problem to a bseangh

over the fixed-length endpoints of the ranges defined by the prefixes. By spedafgieigof con-
tiguous initial bits, prefixes define ranges of values. For example)«ifis a prefix for a four bit

field, then it defines the rand€000 : 1011]. Prefixes never define overlapping ranges, only nested
ranges. For examplé) : 3] and[2 : 4] are overlapping ranges, wherd@s 3] and[1 : 2] are nested
ranges. The authors use this property to develop a binary search technique owelpihiats of the
ranges defined by the prefixes.

The authors also used a popular optimization, a precomputed index array. Aplexaira
precomputed index arr&yor the first three bits of our example prefix set is shown in Figure 2.7. We
begin by storing the prefixes in a binary trie, then perform Controlled Prefix Expansion (CPE) for
a stride length equal to three [19]. The next hop associated with each node atleedbtivritten
to the array slot addressed by the bits labeling the path from the root to the node. If theasd
children, then a pointer to a binary trie containing the children is stored. The structure isexkarc
by using the first three bits of the address to index into the array. If no pointer is storedhé¢hen
next hop at the array index is returned as the next hop. If a pointer is storedhé&eext hop at the
array index is remembered as the best match thus far and the search contingéisaukinary trie
identified by the pointer. Note that this data structure requites ¢ bits of memory where is the
number of bits used to index the array anid the number of bits required for next hop and pointer
storage.

“Precomputed index arrays are also called ‘initial arrays”and ‘direct lookup arrays Iitetature

22
Address: 1000 0000 1111

000 001 010 011 100 101 110 111
35|35 21| 21| 7 7 135 9

}g\

s 0

12 7

Figure 2.7: Example of a direct lookup array for the first three bits.

Finally, the authors optimize their algorithm based on the memory hierarchy of modern
general purpose processors. The data structures are dimensioned to take advathagadie
line size of the target processor. Even though it is geared to software implementatiy, itot
be viable for current generation network processors that do not contain full méreoaychies. In
general, the approach requi@$V + log N) time andO(2N) memory, whereV is the number
of prefixes and¥V is the length of the address. Again, the primary issue with this algorithm is its
linearly scaling relative to address length.

2.2.5 Binary Search on Prefix Lengths

The most efficient lookup algorithm known, from a theoretical perspectivBjriary Search on
Prefix Lengthsvhich was introduced by Waldvogel, et. al. [24]. The number of steps required by
this algorithm grows logarithmically in the length of the address, making it particularly atacti
for IPv6, where address lengths increase to 128 bits. However, the algorithm is heledinglex
to implement, making it more suitable for software implementation than hardware impkgioan
It also does not readily support incremental updates.

This technigue bounds the number of memory accesses via significant preatiorpof the
route table. First, the prefixes are sorted into sets based on prefix length, resulting in a makimum o
W sets to examine for the best matching prefix. A hash table is built for each set, ansstiised

23

that examination of a set requires one hash probe. The basic scheme selectsdheesefisets to
probe using a binary search on the sets beginning with the median length set. FpteeXaman
IPv4 database with prefixes of all 32 lengths, the search begins by probing the setngtth 16
prefixes. Prefixes of longer lengths direct the search to its set by placing “markers”shdtter
sets along the binary search path. Going back to our example, a length 24 prefik veve a
“marker” in the length 16 set. Therefore, at each set the search selects the longetirgebimary
search path if there is a matching marker directing it lower. If there is no matching prefiarker,
then the search continues at the shorter set on the binary search path.

Use of markers introduces the problem of “backtracking”: having to search tier balf
of the trie because the search followed a marker for which there is no matching preloniea set
for the given address. In order to prevent this, the best-matching prefix for the mackenpsited
and stored with the marker. If a search terminates without finding a match, the besingatetix
stored with the most recent marker is used to make the routing decision. The authom®ptsep
methods of optimizing the data structure based on the statistical characteristics of thebigute ta
For all versions of the algorithm, the worst case bound&xteg W ;) time andO(N x log Wy;s:)
space wheréVy;,; is the number of unique prefix lengths. Empirical measurements using an IPv4
route table resulted in memory requirement of about 42 bytes per entry.

2.2.6 Longest Prefi x Matching using Bloom Filters

Dharmapurikar, Krishnamurthy, and Taylor introduced the first algorithmic Longest Riafoh-
ing (LPM) technique to employ Bloom filters [25]. This approach, which we will refer tBlasm
filter-based IP LookugBIPL), is a hardware-based IP lookup solution wétverageperformance
superior to TCAMs. Mitigating worst-case performance requires an initial index arragand
trolled Prefix ExpansioifCPE) which causeBIPL to become less memory and update efficient.
The performance bottleneck in any longest prefix matching technique is the nofrdeuential
memory accesses required per lookup. The key featuBdRit is that the performance, as deter-
mined by the expected number of sequential memory accesses requiredko@r, lam be held to a
constant regardless of address length and number of unique prefix lengths precas equally
attractive for Internet Protocol Version 6 (IPv6) which uses 128-bit destination addressdsnis
longer than IPv4.

A basic configuration oBIPL is shown in Figure 2.8. It begins by sorting the set of prefixes
into sets according to prefix length. The system employs a 9ét obunting Bloom filters, where
W is the maximum number of unique prefix lengths in the prefix set, and associatesoome B
filter with each unique prefix length. Each filter is “programmed” with the associated petfofes
according to the previously procedure described in Section 2.1.3. It is importartetthad while
the bit-vectors associated with each Bloom filter must be stored on-chip, the counteiatadsoc
with each filter can be maintained by a separate control processor responsible forpdatesu
Separate control processors with ample memory are typical features of high-perferroaters.

24
IP address Route Updates

'
Bloom filter
[a] 2f g - [wl counters

C@) C(2) C(3) Cc(w)
Hash Table Manager
‘ B

Update Interface

Match Vectori

‘ Priority Encoder ‘

3 |

Hash Table Interface

Next Hop

Prefix Next Hop

Off-chip Hash Tables

Figure 2.8: Basic configuration of Longest Prefix Matching using Bloom filt&i$L().

A hash table is also constructed for each distinct prefix length. Each hash table is initialized w
the set of corresponding prefixes, where each hash entrypigfx(next hop pair. The set of hash
tables is stored in off-chip memory. Given that the problem of constructing hash talolésimize
collisions with reasonable amounts of memory is well-studied, the authors assume that) f@o
hash table stored in off-chip memory requires one memory access [24].

A search proceeds as follows. The input IP address is used to probe thé/Babroichip
Bloom filters in parallel. The first bit of the address is used to probe the filter associated with length
one prefixes, the first and second bits of the address are used to probe the filter assattiated w
length two prefixes, etc. Each filter simply indicates match or no match. By examim@raythuts
of all filters, we compose a vector of potentially matching prefix lengths for the gadeiness,
the match vector Consider an IPv4 example where the input address produces matches in the
Bloom filters associated with prefix lengths 8, 17, 23, and 30; the resultaigh vectomwould be
[8,17,23,30]. Remember that Bloom filters may produce false positives, bat peoduce false
negatives; therefore, if a matching prefix exists in the route table, it will be represertedniratch
vector. Note that the number of unique prefix lengths represented in the routdtahle may be

25

less thard¥/. In this case, the Bloom filters representing empty sets will never contribute a match to
thematch vectorvalid or false positive. The search proceeds until a match is found or the vector is
exhausted.

The probability of a false positive is dependent upon the number of prefixes siaéitter,
the size of the filter, and the number of hash functions used to probe the filter. Thesaahbw that
with a modest amount of on-chip resources for Bloom filters, the average numbasloforobes
per lookup approaches one; therefore, this approach can achieve loogsiggaivalent to those
offered by TCAMs. Given that commodity SRAM devices are denser and chiteref CAMs, this
approach potentially offers lower cost and more power efficient solution. Therawalso introduce
asymmetric Bloom filters which dimension filters according to prefix length distribution. A system
configured to support 200,000 IPv4 prefixes with an average number of 1fB6Bip memory
accesses per lookup, requires 4Mb of on-chip memory and is capable of 33Zrdbicups per
second using a commodity SRAM device operating at 333 MHz.

2.3 All Prefix Matching (APM)

Longest Prefix Matching (LPM) is a special case of the general All Prefix Matching (APM) problem.
Instead of returning just the longest matching prefix, the APM problem requires thattahinta
prefixes be returned. This problem arises when multi-field search techniques are deednmo
several instances of single-field search techniques. We provide a survey of multi-fiehl teefirc
niques in Chapter 4.

Note that most trie-based algorithms easily map to the APM problem. The algorithm can
simply return all matching prefixes along the path to the longest matching prefix. Similaly, th
Bloom filter technique can also be easily adapted to perform APM. Referring back to Figuitec?.
Priority Encoder can be removed and the Hash Interface simply queries every hasistaluiated
with matching prefix lengths in thematch vector This does increase the number of hash probes
per lookup; however, as discussed in Chapter 5 the number of prefixes in nidlsdarch tables
which match an address is typically less than six.

While the trie-based and Bloom filter-based LPM algorithms easily map to APM, it is im-
portant to note that thBinary Search on Prefix Lengtted Multiway and Multicolumn Search
techniques do not readily support APM. The use of markeBimary Search on Prefix Lengths
naturally directs searches to longer prefixes before examining shorter length prefixesarha
consequence is experienced by Megltiway and Multicolumn Searctiue to the binary search over
range endpoints. In order to support APM searches using these techniques, we naugéneel
technique that allows any LPM algorithm to perform APM. The idea is to perform an LPM search
where stored prefixes contain a pointer to a node liresting treg a separate tree of prefixes de-
fined by parent pointers. Figure 2.9 shows an examplenafséing tredor the prefixes used in the
LPM example of Figure 1.4. All matching prefixes for a given longest matching paedixound

26

Figure 2.9:Nesting treetechnique for finding all matching prefixes for a given longest matching
prefix.

by simply following parent pointers until the root node is reached. This generalitgzhcan be
made memory and update efficient, but does require additional memory actefisd all match-

ing prefixes. A second technique may be used that does not require additionatyreccesses but
sacrifices memory and update efficiency. The idea is to precompute all matchimggessociated
with each prefix in the set. The list of all matching prefixes is stored with each prefix in the LPM
data structure, thus locating the longest matching prefix returns the list of all matchinggre
Note that this suffers from memory and update inefficiency as many prefixes arersuedantly

in lists and updating an entry in the prefix set may require many updates to lists of allimgatch
prefixes.

2.4 Range Matching

Range matching problems naturally arise in many searching problems in the aresawardking,
computational geometry, and database design, and there are several forngeahedohing prob-
lems. In this section we provide a brief survey of approaches to address the followbigrprhat
arises in packet classification: Given a Zeof closed interval$i, j| and a poinp, find all the inter-

vals in X that contairp. This task is an essential part of packet classification, as packet filters may
specify ranges for the source and destination port numbers in packet headermr itoddentify a

set of applications. Solutions to this problem typically employ a variant of one oflagsical data
structures, the Segment Tree and the Interval Tree [26, 27]. Another option is &rceash closed
intervall[i, 7] into a set of prefixes, then employ one of the fast Longest Prefix Matching (LPM) algo-
rithms discussed in the previous section [28, 29]. Finally, we describe a recently proposedie
solution for range matching.

27

p=4
(a :
b—
c :
segments < q !
e
_f g ; h i
elementary { 0i1 2i3i4i5 7igig 131314 18
intervals
Y /[0:0] [1:2] [3:3] [4:4] [5:7] [8:8] [9:12] [13:13] [14:15]
ft {4 {d {dgd { {h} { {i} {
o)
FIS Tree -
N R [9:15]
[0:15] p=4
\ {a} S={d,g,b,e,&

Figure 2.10: Example of projecting endpoints of intervals to form non-overlappimgesgg on the
real line, and using thEat Inverted SegmefEIS) Treeto search the set of segments.

2.4.1 Segment Tree

Extensively used in computational geometry, a Segment Tree is a data structurerdst et of
segments on the real line [30]. For the purpose of our discussion, a set of segnaesesas closed
intervals X. Segment Trees typically utilize some form of a binary search tree as an underlying
data structure. In order to use such data structures, the endpoints of the segmentspmjettzs

onto the real line in order to form non-overlappigelgmentary intervalsGiven a set of segmenfs
containing| X | segments, the séf of elementary intervalsontains at mosf2| X | — 1) segments.

An example is shown in Figure 2.10.

Balanced binary search trees or splay trees can be used in order to limit the height of
binary search tree [31]. When used to store elementary intervals, a Segment Tree caa seturn
of matching segmentS§ for a given pointp in O(log |Y|) time, wherev¥[i,j] € S,i < p < j.
Balanced binary search trees enforce a balance condition, such that updatesiatatistructure
do not cause the balance condition to be violated. Red-black trees are ondexém balanced
binary tree that ensures that every path from the root node to a leaf node is no tlegdwice
the shortest path from the root node to a leaf node [31, 13]. Splay trees do not explidifge a
balance or height condition; rather, they employ a set of heuristics that presseiies of recursive
restructuring operations each time the splay tree is accessed or updated. These heawgstiesih
shown to maintain data structure balance and provide logarithmic amortized search {invétéa

28
fascinating from a theoretical perspective and useful in other problem domaing/ierelthat the
real time constraints for packet classification searches preclude the use of splay &dedit
restructuring operations performed during accesses.

Note that we could precompute the intervals that overlap each segment andistoroth
mation in the segment tree. While efficient for searching, the update ti®¢|15|) in the worst
case; consider adding or removing interwal In order to improve the update and search perfor-
mance, Feldman and Muthukrishnan proposedrdttenverted SegmedFIS) Tree[27]. TheFIS
Treeis a balanced-ary tree withl levels, where = (|Y'|)'/!. An example of arfFIS Treeis shown in
Figure 2.10. Each noderepresents an interva(v) which is the union of the intervals represented
by its children. Leaf nodes represent tlementary intervals-or the purpose of our discussion, the
salient features of thElS Treeare: (1) the height of the tree can be limited by choosing a sufficient
branching parametey (2) each node only stores an interval if 1(v) C z andz C I(parent(v)).
Note that the choice of affects the complexity of the branching decision at each internal™mode
The set of segmentS overlapping a given elementary interyakcan by found by traversing the
path from the leaf representingto the root of the tree, i.e. the “inverse” path, and appending the
set of segments stored at each node S. An example is shown in Figure 2.10 fpr= 4. Letting
M = (2|X]| + 1), theFIS TreerequiresO(log, M) search timeQ(M log, M) update time, and
O(M log, M) space.

2.4.2 Interval Tree

An Interval Tree stores a set of closed interv&lausing a balanced binary tree as the underlying
data structure [13]. Its primary distinction from the Segment Tree is that the Interval Tree does
not useelementary intervalseach node in the tree stores an intetwat X. The low endpoint of
the interval is used as the key for the node in the balanced binary search tree.rltodedbditate
faster searches, tree nodes typically store additional variables such as the maxataarofvall
the endpoints of the ranges stored in their subtree. An example of an Interval Bleewn in
Figure 2.11.

Searching for one matching interval for a given pgii straight-forward. Returning the set
S of all matching intervals fop requires a few extra steps. We first locate the matching interval for
p that is stored at the leftmost node in the frelerom this node, we perform an in-order walk of the
tree nodes, stopping when we arrive at the last node in the tree or a node whisgtaater than
p. An example search fgr = 4 is shown in Figure 2.11. Lettings| be the number of matching
intervals, the search requiréXlg | X | + |S|) time. The Interval Tree require€s(lg | X |) amortized
update time and (| X |) space.

SFeldman and Muthukrishnan propose usiii§ Treesfor a multi-fi eld search; thus the search begins from the leaves
and involves more intermediate steps to support multiple fi elds.
5This can be facilitated by storing the minimum endpoint value in the subtree rootechat@de.

29

v | 1415

Figure 2.11: Example of aimterval Treewhere each node stores the maximum endpoint value for
all intervals in its subtree.

2.4.3 Range to Prefix Conversion

Prefixes define exactly one range on the real number line. The low and highienofgibe range
defined by a prefix are the minimum and maximum points covered by the prefix.irféoy mum-
bers, this translates to replacing the masked bits of the prefix with zeros and ones,velspé&ai
example, the four bit prefix1x defines the rangg 100 : 1111] or [12 : 15]. This transform op-
eration is not symmetric, as an arbitrary range may specify multiple prefixes. Specificaligea ra
defined on the set @fbit numbers will specify at mos2 x (b — 1)] prefixes.

For a single-field search on a reasonable number of ranges, this expansion faxibr is
prohibitive. As a result, several packet classification techniques use the range ta@pnefixsion
technique to solve the range matching subproblem of the general packet clasrificakiem [28,
29]. As discussed in Chapter 4, this conversion can become problematic for multiglseeches
due to the compounding effect on the expansion factor. Specifically, for a tetfitgtd filter with
a fields specifying ranges on the setiebit numbers, converting the range fields into prefix fields
results in up td2x (b—1)]* filters. Finally, we note that Feldman and Muthukrishnan provide a range
to prefix conversion technigue for the special case of sear@iergentary intervaldy converting
them into prefixes. They show that a set(ef— 1) elementary intervalsan be converted into a
set prefixes containing at moxt prefixes, where an LPM search is used to selecetamentary
interval containing a given poin.

30
2.4.4 Range Matching Circuits

In order to eliminate the aforementioned expansion factor when using Ternaryn€CAdtressable
Memory (TCAM) devices, range matching can be performed directly in hardware [32].n Whe
implemented in standard CMOS technology, a range matching circuit regdirésnsistors where

b is the number of bits required to specify a point in the range. This is considerably naoréhth

16 transistors per bit required for prefix matching; however, the total hardware res@aneed by
eliminating the expansion factor for typical packet filter sets far outweighs ttiéiathl cost per

bit for hardware range matching.

31

Chapter 3

Fast Internet Protocol Lookup (FIPL)

Where a calculator on the ENIAC is equipped with 18,000 vacuum tubes antsweig
30 tons, computers in the future may have only 1,000 vacuum tubes armppavhigh
1.5 tons.

Popular Mechanics, March 1949

In this chapter we provide a detailed description of the design, implementationnahgia of a
Longest Prefix Matching (LPM) search engine using a compressed multi-bit trie algorithm. This
work provides concrete evidence that high-performance implementations ef elgorithms can
achieve the required search and update rates with efficient use of hardwareryrreardgower. It

is important to note that the value of this work reaches beyond the problem ofdhRnatocol (1P)
address lookups. As demonstrated in Chapter 7, packet classification techraguealke use of
optimized single-field search engines.

3.1 Introduction

Forwarding of Internet Protocol (IP) packets is the primary purpose of Internet routerspébd
at which forwarding decisions are made at each router or “hop” places amamdal limit on the
performance of the network. For Internet Protocol Version 4 (IPv4), the forwarding dedssio
based on a 32-bit destination address carried in each packet’s header. TheClesslefss Inter-
Domain Routing (CIDR) complicates the lookup process, requiring a lookup engieatch a route
table containing variable-length address prefixes in order to find the longest matoiimgqr the
destination address in each packet header and retrieve the corresponding farwdodmation [7].
In high-performance routers, each port employs a separate LPM search engine. \dfe anmore
complete introduction to the IP lookup problem in Chapter 1.

As physical link speeds grow and the number of ports in high-performance roatgnsues
to increase, there is a growing need for efficient lookup algorithms and effectplermantations
of those algorithms. Next generation routers must be able to support thousandicaf logks

32
each operating at 10 Gb/s (OC-192) or more. Lookup techniques that careffddémtly to high
speeds and large lookup table sizes are essential for meeting the growing perfodearands,
while maintaining acceptable per-port costs.

Many techniques are available to perform IP address lookups. Perhaps the mosticommo
approach in high-performance systems is to use Ternary Content Addressable Memoiy)(TCA
devices. While this approach can provide excellent performance, the perfamames at a fairly
high price due to the exorbitant power consumption and high cost per bit of Ttekdve to com-
modity memory devices. We provide an overview of LPM algorithms and devices tioB&c2.

The Fast Internet Protocol Lookup (FIPL) search engine [22], developed at Washington
University in Saint Louis, is an experimental implementation of Eatherton and DittieésBitmap
algorithm [11] using reconfigurable hardware and Random Access Memory (RAMgt&drp an
open-platform research router, FIPL is designed to strike a favorable balance amomg éoak
update performance, memory efficiency, and hardware usage. Employing aWitiex 1000E-7
Field Programmable Gate Array (FPGA) operating at 100MHz and a single Micron 1MB Zero-
Bus Turnaround (ZBT) Synchronous Random-Access Memory (SRAMsingle FIPL lookup
engine has a guaranteed worst case performance of 1,136,363 lookugecped. Interleaving
memory accesses of eight FIPL engines over a single 36 bit wide SRAM interfaaastsithe
available memory bandwidth and yields a guaranteed worst case performan@@®909 lookups
per second.

Performance evaluations using a snapshot of the Mae-West routing table resulted in over
11 million lookups per second for an optimized eight FIPL engine configuratiomageememory
usage per entry was 6.3 bytes, which is comparable to the amount of memuoingdety explicitly
represent an individual prefix. In addition to space efficiency, the data structurdoygd@L is
straightforward to update, and can support up to 100,000 updates per secorahhyitn 7.2%
degradation in lookup throughput. Each FIPL engine utilizes less than 1% of the &védgic
resources on the target FPGA. While this search engine currently achieves 500 Ntk rafffic
per 1% of logic resources, still higher performance and efficiency is possible withrhigdraory
bandwidths. Ongoing research seeks to exploit new FPGA devices and moreetiZkD tools
in order to double the clock frequency and, therefore, double the lookup perfoem#/e also are
investigating optimizations to reduce the number of off-chip memory accesses. ehmesiearch
effort leverages the insights and components produced by the FIPL implementationefficient
route lookup and packet classification engine for an open-platform dynamicalhséleresearch
router [33]. Finally, we provide a brief discussion of lookup techniques closely relatétet
Bitmap in Section 3.7.

IMicron ZBT SRAMs allow a new read/write operation on every clock cycle. In our research syseeBRAMSs are
driven by the same 100MHz clock used for the FPGASs; thus, at 10ns per cycle wiitih 3@mory words, the SRAMs
provide a random-access throughput of 3.6 billion bits per second (Gb/s).

33
3.2 Tree Bitmap Algorithm

Eatherton and Dittia’'dree Bitmapalgorithm is a hardware-based approach that employs a com-
pressed multibit trie data structure to perform Longest Prefix Matching (LPM) at high rates with ef-
ficient use of memory [11]. Due to the use of CIDR, IP route lookups consist of findinigiiyest
matching prefix stored in the forwarding table for a given 32-bit IPv4 destination addrésg-an
trieving the associated forwarding information. As shown in Figure 3.1, the destinationi&sadd

is compared to the stored prefixes starting with the most significant bit. Note that this is the same
example set of prefixes used in the survey of Longest Prefix Matching techniques imSe2tio

In this example, a packet is bound for a workstation at Washington University in [Saug. A

linear search through the table results in three matching prefixes: *, 10*, and IWIAG0 The

third prefix is the longest match, hence its associated forwarding information, dendtekbilop

7 in the example, is retrieved. Using this forwarding information, the packet is forwaoddm
specified next hop by modifying the packet header.

Prefix ~ Next Hop

* 35
10* 7

01* 21
110*

1011~

0001* 68
01011* 51
00110*

10001~

100001~ 33
10000000007 12
1000000011% 7

32-bit IP Address

128.252.153.160
1000 0000 1111 1100 ... 1010 0C

Next Hop
-

Figure 3.1: IP lookup table of next hops. Next hops for IP packets are found tisnlongest
matching prefix in the table for the IP destination address of the packet.

To efficiently perform this lookup function in hardware, thieee Bitmapalgorithm starts
by storing prefixes in a binary trie as shown in Figure 3.2. Shaded nodes denote a stfired\p
search is conducted by using the IP address bits to traverse the trie, starting with the mostrsignifica

34
bit of the address. To speed up this searching process, multiple bits of the destinatessatd
compared simultaneously. In order to do this, subtrees of the binary trie are combinsthgito
nodes producing a multibit trie; this reduces the number of memory accessksinegerform a
lookup. The depth of the subtrees combined to form a single multibit trie node is callsttittee
An example of a multibit trie using 4-bit strides is shown in Figure 3.3. In this case, 4-biesibb
of the destination address are used to traverse the multibit trie. AddNibbte(0) of the address,
100G, in the example, is used for the root node; Addrikisble(1) of the address, 0090n the
example, is used for the next node; etc.

32-bit destination address: 128.252.153.1¢
1000 0000 1111 1100 ... 1010 0000

&

Figure 3.2: IP lookup table represented as a binary trie. Stored prefixes are denotetiég sh
nodes. Next hops are found by traversing the trie.

The Tree Bitmapalgorithm codes information associated with each node of the multibit trie
using bitmaps. Thénternal Prefix Bitmapdentifies the stored prefixes in the binary sub-tree of the
multi-bit node. TheExtending Paths Bitmajaentifies the “exit points” of the multibit node that
correspond to child nodes. Figure 3.4 shows how the root node of the exampl&trdatare is
coded into bitmaps. The 4-bit stride example is shownBga Bitmaplata structure in Figure 3.5.
Note that a pointer to the head of the array of child nodes and a pointer to tHenseat bop values
corresponding to the set of prefixes in the node are stored along with the bitmapsHaroskec
By requiring that all child nodes of a single parent node be stored contiguouslyrnromethe
address of a child node can be calculated using a si@igliel Node Array Pointeland an index
into that array computed from the extending paths bitmap. The same technique te fiseldthe
associated next hop information for a stored prefix in the node NEx¢ Hop Table Pointepoints
to the beginning of the contiguous set of next hop values corresponding td thfestared prefixes

35

32-bit destination address: 128.252.153.160
1000 0000 1111 1100 ... 1010 0000

Figure 3.3: IP lookup table represented as a multibit trie. A stride, 4-bits, of the unicasttiestin
address of the IP packet are compared at once, speeding up the lookugsproce

in the node. Next hop information for a specific prefix may be fetched by indexingtfremointer
location.

0 1 010100 10010000

Extending Paths Bitmap: 0101 0100 1001 0000
Internal Prefix Bitmap: 1 00 0110 00000010

Figure 3.4: Bitmap coding of a multibit trie node. The internal bitmap represents the ptefecs
in the node while the extending paths bitmap represents the child nodes of the¢ noden

The index for theChild Node Array Pointeteverages a convenient property of the data
structure. Note that the numeric value of the nibble of the IP address is also the bit pokitien
extending path in th&xtending Paths Bitmag-or example, AddresNlibble(0) = 100Q@ = 8. Note
that the eighth bit position, counting from the most significant bit, ofEktending Paths Bitmap
shown in Figure 3.4 is the extending path bit corresponding to Addv@dsie(0) = 100Q. The
index of the child node is computed by counting the number of ones iBxttending Paths Bitmap
to the left of this bit position. In the example, the index would be three. This operdtammputing

100 0110 0000 0010
0101 0100 1001 000¢
Next Hop Table Ptr.

Child Node Array Ptr.

ol

P |

B

B

36

P |

1 00 0000 0000 0000

010 0000 0000 0000

0 01 0000 0000 0000

0 01 0100 0000 0000

1 00 0000 0000 0000

0000 0000 0000 0004

0000 0000 0000 000d

0000 0000 0000 00

(00000 0000 0000 000d

0000 0000 0000 000d

Next Hop Table Ptr.

Next Hop Table Ptr.

Next Hop Table Ptr.

Next Hop Table Ptr.

Next Hop Table Ptr.

Child Node Array Ptr.

Child Node Array Ptr.

Child Node Array Ptr.

Child Node Array Ptr.

Child Node Array Ptr.

"

0 00 1001 0000 0000
0000 0000 0000 000d
Next Hop Table Ptr.

Child Node Array Ptr.

Figure 3.5: IP lookup table represented as a Tree Bitmap. Child nodes are storedaasiticgo
that a single pointer and an index may be used to locate any child node in thedtstrdeture.

the number of ones to the left of a bit position in a bitmap will be referred ©aamtOnesand will
be used in later discussions.

When there are no valid extending paths, BEx¢ending Paths Bitmaig all zeros, the termi-
nal node has been reached andltiternal Prefix Bitmapf the node is fetched. A logic operation
called Tree Searclreturns the bit position of the longest matching prefix in thieernal Prefix
Bitmap CountOness then used to compute an index for tlext Hop Table Pointerand the next
hop information is fetched. If there are no matching prefixes iniernal Prefix Bitmapof the
terminal node, then thinternal Prefix Bitmapof the most recently visited node that contains a
matching prefix is fetched. This node is identified using a data structure optimization called th
Prefix Bit

The Prefix Bitof a node is set if its parent has any stored prefixes along the path to itself.
When searching the data structure, the address of the last node visited is rememibeesclrient
node’sPrefix Bitis set, then the address of the last node visited is stored as the best matching node.
Setting of thePrefix Bitin the example data structure of Figure 3.3 and Figure 3.5 is denoted by a
“P”.

3.2.1 Split-Trie Optimization

Let s be the stride of thdree Bitmapdata structure and lét < ¢ < % be an integer. In the
basic configuration described above (which we will refer to as the “single-trie” confignyatie
Tree Bitmapdata structure stores prefixes of lengtk s in nodes at deptlhh + 1. For example,

37

Erefb;h AO/C>\1~
en S
e/ /

58/ N/ N/ N/

Figure 3.6: Split-trie optimization of th&ee Bitmapdata structure.

a 24-bit prefix would be stored at level 7 in a data structure with a stride of 4. Examination of
publicly available route table statistics show that a large percentage of the prefixestablie
are, in fact, multiples of four. For example, in the Mae-West database used in Sa&idor
performance testing “multiple of four” prefixes comprise over 66% of the total prefithen@ften
these prefixes are leaf nodes in the data structure, represented as a multibit node \glthaefix
stored at the root in the “single-trie” configuration. Such nodes carry very little informatidn an
make poor use of the memory they consume.

The “split-trie” optimization seeks to speed up lookup performance and reduce memory
usage for typical databases by shifting “multiple of four” prefixes up one level inateesdructure.
This can easily be achieved by splitting the multibit trie into two multibit-tries with a root node
having a stride of 1 as shown in Figure 3.6. Implementation of this optimization requices tw
pointers, one to each new multibit root node, and a next hop value for theadet(default route).
Searches begin by using the most significant bit of the destination address to decidehficim
multibit root node to perform the search. For most lookups on typical databasesptiniszation
saves one memory access per lookup and reduces the memory space pesquatxl for thelree
Bitmapdata structure. The lookup performance and memory utilization of both the “single-trie”
and “split-trie” configurations of the FIPL architecture are evaluated in Section 3.5.

3.3 Hardware Design and Implementation

Modular design techniques are employed throughout the FIPL hardware design ittepgoala-

bility for various system configurations. Figure 3.7 details the components required tarienile

FIPL in the Port Processor (PP) of a router. Other components of the router include temiBran

sion Interfaces (TI), Switch Fabric, and Control Processor (CP). Providing the foundation of the
FIPL design, the FIPL engine implements a single instanceloéa Bitmapsearch. The FIPL En-

gine Controller may be configured to instantiate multiple FIPL engines in order to scale kiu@ loo
throughput with system demands. The FIPL Wrapper extracts the IP addresses from incoming
packets and writes them to an address FIFO read by the FIPL Engine Controller. Lookup results
are written to a FIFO read by the FIPL Wrapper which accordingly modifies the packegrhead
The FIPL Wrapper also handles standard IP processing functions such as checksuraadard

38

SRAM Interface
i t
[<~| FIPL Engine Controller "] Control
H Processor
Switch Fabric
- Packet I
e)lee]
IR FIPL Wrapper
* Packet I/%
Physical Links L)

Figure 3.7: Block diagram of router with multi-engine FIPL configuration; detail of FIPL system
components in the Port Processor (PP).

field updates. Specifics of the FIPL Wrapper will vary depending upon the type of swgtcore
and transmission format. An on-chip Control Processor receives and processes mpdaigy u
commands on a dedicated control channel. Memory updates are the resultechddy delete, or
modify commands and are sent from the System Management and Control corntgpdvete that
the off-chip memory is assumed to be a single port device; hence, an SRAM Interfatates
access between the FIPL Engine Controller and Control Processor.

3.3.1 FIPL Engine

Consisting of a few address registers, a simple Finite-State Machine (FSM), and combinational
logic, the FIPL Engine is a compact, efficiehtee Bitmapsearch engine. Implementation of the
FIPL Engine requires only 450 lines of VHDL code. A dataflow diagram of the FIPL Engine
is shown in Figure 3.8. Data arriving from memory is latched into the DAVAREG register
n clock cycles after issuing a memory read. The valuen @ determined by the read latency
of the memory device plus 2 clock cycles for latching the address out of andatheinto the
implementation device. The next address issued to memory is latched into the ARORREGK
clock cycles after data arrives from memory. The valukisfdetermined by the speed at which the
implementation device can compute thexthop.addr which is the critical path in the logic. Two
countersmemcountandsearchcount are used to count the number of clock cycles for memory
access and address calculation, respectively. Use of multi-cycle paths allows therfgiiRk to
scale with implementation device and memory device speeds by simply changipgueovalues
in the finite-state machine logic.

In order to generateexthop.addr.

e TREE.SEARCH generategrefixindexwhich is the bit position of the best-matching prefix
stored in thdnternal Prefixes Bitmap

39
ip_addr_valid_| ip_addr_in[31:0]

y

| BESTMATCH_STRIDE_REG |

nx_stride[3:0] bestmatch_stride[3:0]

'~[IP_ADDR REG
ip_address[31:0] () fiol_data_in[35:0]

stride[3:0] IPJ?\\/IDUDXREsg
ip_addr_nibble[3:0] ‘ DATA_IN_REG

data_in[35:0]
[34] [17:0] [33:18] [17:0] [32:18] [15:0]

p_bit child_node_ptr[17:0] ext_bmp[15:0] nxt_hop_table_ptr[17:0] | int_bmp[14:0]
oD [ws @] o wa o
4 f NODE_COUNTONES

1 | child_node_index(3:0] nxt_hop[15:0

prefix_index[3:0]
CHILD_NODE_PTR +
CAR’RY‘_MUX PREFIX_COUNTONE

next_hop_index[3:0]

root_node_ptr_in[17:0] NEXT HOP PTR %
CARRY. MUX §+>
child_node_addr{17:0] [EE

next_hop_addr[17:0]

curr_node_prefixes_addr[17:0] i

bestmatch_prefixes_addr[17:0] ADDR_OUT_MUX
addr_out[17:0]

BESTMATCH_PREFIXES_ADDR_REG | | | PREFIXES_ADDR_REG | [ADDR_OUT_REG |

addr_ff_out[17:0]

prev_node_prefixes_addr[17:0] 1 (state)
(+)

Y

fipl_addr_out[17:0] done_|

Figure 3.8: FIPL engine dataflow; multi-cycle path from input data flops to output aditivpss
can be scaled according to target device speed; all multiplexor select lindfpaftop enables
implicitly driven by finite-state machine outputs.

e PREFIX.COUNTONES generatasexthop.indexwhich is the number of 1's to the left of
prefixindexin thelnternal Prefixes Bitmap

e nexthop.indexis added to the lower four bits of thidext Hop Table Pointer

40
e The carryout of the previous addition is used to select the upper bits dfakeHop Table
Pointeror the pre-computed value of the upper bits plus 1

The NODECOUNTONES and identical fast addition blocks generatecttiel_nodeaddr, but re-
quire less time as the TREEEARCH block is not in the path. The ADDRUT_MUX selects
the next address issued to memory among the addresses for the next rootExbeleding Paths
BitmapandChild Node Array Pointefroot_nodeptr), the next child node’&xtending Paths Bitmap
andChild Node Array Pointe(child_nodeaddr), the current node’Biternal Prefix Bitma@ndNext
Hop Table Pointefcurr_node prefixesaddr), the forwarding information for the best-matching pre-
fix (nexthop.addr), and the best-matching previous nodkiternal Prefix Bitmapand Next Hop
Table Pointer(bestmatclprefixesaddr). Selection is made based upon the current state.

VALID _CHILD examines thé&xtending Paths Bitmagnd determines if a child node exists
for the current node based on the current nibble of the IP address. The outpul i} VAHILD,
prefixindex memcount andsearchcountdetermine state transitions as shown in Figure 3.9. The
current state and the value of theBPT determine the register enables for the
BESTMATCH_PREFIXESADDR_REG and the BESTMATCESTRIDE REG which store the ad-
dress of thelnternal Prefixes Bitmamnd Next Hop Table Pointepf the node containing best-
matching prefixes and the associated stride of the IP address, respectively.

3.3.2 FIPL Engine Controller

Leveraging the uniform memory access period of the FIPL Engine, the FIPL Engine Controller
interleaves memory accesses of the necessary number of parallel FIPL Engines fodagie
throughput in order to meet system throughput demands. The scheme centedsstiouing wheel

with a number of slots equal to the FIPL Engine memory access period. When assaiddread

from the input FIFO, the next available FIPL Engine is started at the next available time slot. The
next available time slot is determined by indexing the current slot time by the knowtustatency

of a FIPL Engine. For example, assume an access period of 8 clock cycles; therti@ing wheel

has 8 slots numbered 0 through 7. Assume three FIPL Engines are currently performingslooku
occupying slots 1, 3, and 4. Furthermore, assume that from the time the IP address isasbeed
FIPL Engine to the time the FIPL Engine issues its first memory read is 2 clock cycles; hence, the
startup latency is 2 slots. When a new IP address arrives, the next lookup may notdzkattalot

times 7, 1, or 2 because the first memory read would be issued at slot time 1, 3, spektiely
which would interfere with ongoing lookups. Assume the current slot time is 3; thereferageitt

FIPL engine is started and slot 5 is marked as occupied.

As previously mentioned, input IP addresses and output forwarding informationssedpa
between the FIPL Engine Controller and the FIPL Wrapper via FIFO interfaces. This design sim-
plifies the design of the FIPL Wrapper by placing the burden of in-order delivery dtsesuthe
FIPL Engine Controller. While individual input and output FIFOs could be used fdr eagine

41

@ else
— |
ip_add_valid_|=0

CFETCH ROOT>

WAIT_ROOT

else

mem_count = n

valid_child = 1 & search_count = k valid_child = 0 & search_count = k

FETCH_CURR_NODE_PREFIXES

else
WAIT_PREFIXES

else
WAIT_NEXT_NODE
i mem_count = n
LATCH_NEXT_NODE

mem_count = n

FETCH_BEST _PREV_NODE_PREFIX

else A

LATCH_PREFIXES

PREFIX_SEARCH

prefix_index = 15 & search_count =

prefix_index /= 15 & search_count j k

FETCH_NXT_HOP_INFO

else
WAIT_NEXT_HOP_INFO

mem_count =n

LATCH_NXT_HOP_INFO

Figure 3.9: FIPL engine state transition diagram.

to prevent head-of-the-line blocking, network designers will usually choose to comfigel FIPL
Engine Controller assuming worst-case lookups. Also, the performance numbers reparserdbin
sequent section show that average lookup latency per FIPL Engine increases bgrie%tlor an
8-engine configuration; therefore, lookup engine “dead-time” is negligible.

3.3.3 Implementation Platform

FIPL is implemented on open-platform research systems designed and built at Washiniytem U
sity in Saint Louis [34]. The WUGS 20, an 8-port ATM switch providing 20 Gb/s of aggregate
throughput, provides a high-performance switching fabric [35]. This switching coresélhgon

a multi-stage Benes topology, supports up to 2.4 Gb/s link rates, and scales up tpof3ofor

an aggregate throughput of 9.8 Tb/s [36]. Each port of the WUGS 20 can be fittea Wwield-
programmable Port eXtender (FPX), a port card of the same form factor as the WU&Sission

42
interface cards [37]. Each FPX contains two FPGAS, one acting as the Network Intedaioe D
(NID) and the other as the Reprogrammable Application Device (RAD).

The RAD FPGA has access to two 1MB Zero Bus Turnaround (ZBT) SRAMs and two
64MB SDRAM modules providing a flexible platform for implementing high-performande ne
working applications [38]. To allow for packet reassembly and other processintidiusicequiring
memory resources, the FIPL has access to one of the 1IMB ZBT SRAMSs which require 18-bit ad
dresses and provide a 36-bit data path with a 2-clock cycle latency. Since this nmisrfaifchip”
both the address and data lines must be latched at the pads of the FPGA, providitmdblatency
to memory of n = 4 clock cycles.

3.3.4 Memory Configuration

Utilizing a 4-bit stride theExtending Paths Bitmajs 16-bits long, occupying less than a half-word
of memory. The remaining 20-bits of the word are used forRhefix Bitand Child Node Array
Pointer, hence, only one memory access is required per node when searching fortimateode.
Likewise, thelnternal Prefix BitmapndNext Hop Table Pointemay be stored in a single 36-bit
word; hence, a single node of thieee Bitmapequires two words of memory space. 131,072 nodes
may be stored in one of the 1IMB SRAMSs providing a maximum of 1,966,080 storedsrdutde
that the memory usage per route entry is dependent upon the distribution of preftkesdata
structure. Memory usage for the experimental data structure is reported in the Section 3.5.

3.3.5 Worst-Case Performance

In this configuration, the pathological lookup requires 11 memory accesses: 8rynarsesses to
reach the terminal node, 1 memory access to search the sub-tree of the termind neeory
access to search the sub-tree of the most recent node containing a match, andr{ aceess to
fetch the forwarding information associated with the best-matching prefix. Since the FPGAs and
SRAMSs run on a synchronous 100MHz clock, all single cycle calculations mustrbpleted in
less than 10ns. The critical path in the FIPL design, resolvinghéhehop.addr, requires more
than 20 ns when targeted to the RAD FPGA of the FPX, a Xilinx XCV1000E-7; hénteset
to 3. This provides a total memory access period of 80 ns and requires 8 FIPL emmgoreer
to fully utilize the available memory bandwidth. Theoretical worst-case performanceopkilge
requiring 11 memory accesses, ranges from 1,136,363 lookups per secorsihiied=IPL engine
to 9,090,909 lookups per second for eight FIPL engines in this implementationement.

3.3.6 Hardware Resource Usage

As the WUGS 20 supports a maximum line speed of 2.4 Gb/s, a 4-engine configusaiged in
the Washington University system. Due to the ATM switching core, the FIPL Wrapper supports
AALS5 encapsulation of IP packets inside of ATM cells [39]. Relative to the Xilinx Virte@QB

43
FPGA used in the FPX, each FIPL Engine utilizes less than 1% of the available logic resources
Configured with 4 FIPL Engines, FIPL Engine Controller utilizes approximately 6% of the logic
resources while the FIPL Wrapper utilizes another 2% of the logic resources and &P th%
on-chip memory resources. This results in an 8% total logic resource consumption by FIPL. The
SRAM Interface and Control Processor which parses control cells and executesyremmands
for route updates utilize another 8% of the available logic resources and 2% of-ttépmemory
resources. Therefore, all input IP forwarding functions occupy 16% of the logic resol@aving
the remaining 84% of the device available for other packet processing functionality

3.4 System Management and Control Components

System management and control of FIPL in the Washington University system is perfoymed b
several distributed components. All components were developed to facilitate frelearch using

the open-platform system. The software components described in this section were etbbsiop
Todd Sproull, and their description is included here for completeness.

3.4.1 NCHARGE

NCHARGE is the software component that controls reprogrammable hardware dtch Bl0].
Figure 3.10 shows the role of NCHARGE in conjunction with multiple FPX devices withintalsw
The software provides connectivity between each FPX and multiple remote softwaregeeué
TCP sockets that listen on a well-defined port. Through this port, other software cortpanen
able to communicate to the FPX using its specified API. Because each FPX is controlled tg-an in
pendent NCHARGE software process, distributed management of entire systenespeafobmed

by collecting data from multiple NCHARGE elements. [41].

3.4.2 FIPL Memory Manager

The FIPL Memory Manager is a stand alone C++ application that accepts commandsdelate,

and update routing entries for a hardware-based Internet router. The program reahmginevi-
ously discussedree Bitmapdata structure in a shared memory between hardware and software .
When a user enters route updates, the FIPL Memory Manager Software returns the conmngspond
memory updates needed to perform that operation in the FPX hardware.

Command options:
[Alad
[Dlelete
[Clhange

2If targeted to the low-cost Xilinx Spartan-3 family of FPGAs (less than $12 USD for a one miliittndevice), each
engine would cost approximately $0.12 USD.

44
TCP Sockets TCP Sockets

Software Controller

NCHARGE
0.0

VCI 76 (NID), VCI 100 (RAD)
VCI 115 (NID), VCI 123 (RAD)

OC-3 Link
—\ (up to 32 VCIs)

NID NID
1FPGA g = B FPGA @ =
2 i E 2 i E
%y [RAD [25 Zy [RAD T2 5
i FreA] s |FPGA
FPX FPX

Washington University Gigabit Switch (WUGS)

Figure 3.10: Control of the Field-programmable Port eXtender (FPX) via NCHARGE geftwa
Each FPX is controlled by an instance of NCHARGE which provides an API for FPX cori&ol
remote software process.

[P]rint
[M]emoryDump
[Q]uit

Enter command (h for help): A
You entered add

Enter prefix x.X.x.x/s
(x = 0-255, s is significant bits 0-32) :
192.128.1.1/8

Enter Next Hop value: 4

*kkkkk

Memory Update Commands:

w36 0 4 2 000000000 100000006
w36 0 2 2 200000004 000000000
w36 0 0 2 000200002 000000000

45
In the example shown here a single add route command requires three 36-bit maitry w
commands, each consisting of 2 consecutive locations in memory at addre2sasd 0, respec-
tively.

3.4.3 Sockets Interfaces

In order to access the FIPL Memory Manager as a daemon process, support softwart rieed
in place to handle standard input and output. Socket software was developeattite imzoming
route updates to pass along to the FIPL Memory Manager. A socket interface wasvalepedd to
send the resulting output of a memory update to the NCHARGE software. These softwarssgio
handling input and output are called Wridp and Read-ip, respectively. Writd=ip is constantly
listening on a well known port for incoming route update commands. Once a&ctom is estab-
lished the update command is sent as an ASCII character string to_Wipitelhis software prints
the string as standard output which is redirected to the standard input of FIPL Memory Manage
The memory update commands needed by NCHARGE software to perform the raiate ape
issued at the output of FIPL Memory Manager. Réagl receives these commands as standard
input and sends all of the memory updates associated with one route updateT@Brsocket to
the NCHARGE software.

3.4.4 Remote User Interface

The current interface for performing route updates is via a web page that prowiegla interface
for user interaction. The user is able to submit single route updates or a batch joliipfamautes
in a file. Another option available to users is the ability to define unique control cells. Tdhimes
through the use of software modules that are loaded into the NCHARGE system.

In the current FIPL Module, a web page has been designed to provide a simple interface
for issuing FIPL control commands, such as changingRbet Node PointerThe web page also
provides access to a vast database of sample route table entries taken from thePetéoneiance
Measurement and Analysis project’s website [42]. This website provides daily snapkimbésraet
backbone routing tables including traditional Class A, B, and C addresses. Seleetdmhload
option from the FIPL web page executes a Perl script to fetch the router snapshots frotabizesea
The Perl script then parses the files and generates an output file that is readableasy lRe_Bokup
Memory Manager.

3.4.5 Command Flow

The overall flow of data with FIPL and NCHARGE is shown in Figure 3.11. Suppose a igdew
to add a route to the database. The user first submits either a single command or submits a file
containing multiple route updates. Data submitted from the web page, Figure 3.1%sixpa

46
Remote Host FPX Control Processor

FIPL
httpd || write_fip |<| Memory |< | read_fip :: FPX
Manager

Figure 3.11: Command flow for control of FIPL via a remote host.

FAST IP LOOKUP

Port Numberl9 ¥ Stack Leva? 7]

« © Route Add IP Address|192.168.1.1 Net Mask 16 Next Hop/[53
« C Route Delete P Address| Net Mask|

« C Route Modify |P Address| Net Mask] NextHop|
« C Submit RoutesFilename: |

Execute Command “

Figure 3.12: FPX Web Interface for FIPL route updates.

to the Web Server as a form. Local scripts process the form and generate an Add &uaute ¢
mand that the software understands. These commands are ASCII strings in the form “fadd rou
Aq.As5.A3. Ag/netmask nexthop”. The script then sets up a TCP Socket and transmits each com-
mand to the WriteFip software process. As mentioned before Wfigelistens on a TCP port and
relays messages to standard output in order to communicate with the FIPL Memory M&iRger
Memory Manager takes the standard input and processes the route command o gefegrate
memory updates for an FPX board. Each memory update is then passed as statpidrtb dne
ReadFip process.

After this process collects memory updates it establishes a TCP connection with NEEHAR
to transmit the commands. Re&t) is able to detect individual route commands and issues the set
of memory updates associated with each. This prevents_Rigaftlom creating a socket for every
memory update. From here memory updates are sent to NCHARGE software procegaitdkdéd
into control cells to send to the FPX. NCHARGE packs as many memory commarnitgan
fit into a 53 byte ATM cell while preserving order between commands. NCHARGEsstrde
control cells using a stop-and-wait protocol to ensure correctness, then issues a resgasagEmM
to the user.

47

root_node_ptr root_node_ptr FIPL
_ ¢ fipl_data_in - engine_enables| Evaluation
_ fipl_addr_out - . Wrapper
done | FIPL Iingine< ip_addr_in read_addr
- _ ip_addr_valid : g
‘ ‘ - ‘ | [p_address IP Address
| ‘ | empty Generator
! | | <
: | |
| : : write_time
|
\ | | write_data Latency
| : | B full " |Timer FIFO
| =
| |
: : o) throughput_timer
_ fipl_addr_out - f|'pl_data_|.n o
tone | | FIPL Enginel ip_addr_in
one_| 8 L ip_addr_VaIid cells in
. Control Cell cells_out
FIPL Engine Controller Processor I—
= — =
Hllg ﬁ £ Hllg 2135
Sl o 5 © El o 3ol s
S| o st T gl o Y cwS
° 7y © © S 7y y°VoY°

SRAM Interface

Figure 3.13: Block diagram of FIPL evaluation environment.

3.5 Performance Measurements

While the worst-case performance of FIPL is deterministic, an evaluation environmenewels d
oped in order to benchmark average FIPL performance on actual router datafasevaluation
environment was used to extract lookup and update performance as therrfrpbeallel FIPL
Engines was scaled up, as well as determine the performance gain of the split-trie afximiz

As shown in Figure 3.13, the evaluation environment includes a modified FIPL EngimteoCer,

8 FIPL Engines, and a FIPL Evaluation Wrapper. The FIPL Evaluation Wrapper includes an IP
Address Generator which uses on-chip BlockRAMs in the Xilinx FPGA to implement stéoage
16,384 IPv4 destination addresses. The IP Address Generator interfaces to the FIPL Bngine c
troller like a FIFO. When a test run is initiated, an empty flag is driven to FALSE until all 46,38
addresses are read.

Control cells sent to the FIPL Evaluation Wrapper initiate test runs of 16,384 lookadps an
specify how many FIPL Engines should be used during the test run. The FIPL Engine Controller
contains a latency timer for each FIPL Engine and a throughput timer that measuresinber of
clock cycles required to complete each lookup and the test run of 16,384sadgre@espectively.
Latency timer values are written to a FIFO upon completion of each lookup. The FIPL Egalua
Wrapper packs latency timer values into control cells which are sent back to stesrsgontrol

Table 3.1: Memory usage for thEree Bitmapdata structure and next hop information using a

48

snapshot of the Mae-West database from March 15, 2002 consisting of 27,609 routes.

Type Total Total Next Hop| Next Hop Tree Bitmap| Tree Bitmap
(bytes) | (bytes/prefix)| (bytes) (bytes/prefix)| (bytes) (bytes/prefix)

Single-Trie || 409,937| 14.8 124,241 | 45 285,696 10.3

Split-Trie 298,822| 10.8 124,241 | 4.5 174,582 6.3

software where the contents are dumped to a file. The throughput timer value is dhitidde final
control cell.

A snapshot of the Mae-West database from March 15, 2002 consisting of 27,609 routes
was used for all tests. The on-chip memory read by the IP Address Generator was iditidtlze
16,384 IPv4 destination addresses created via random selections from the route tati®tsnap
Two evaluation environments were synthesized, one including “single-trie” FIPL engimeone
including “split-trie” FIPL engines. Each evaluation environment was downloaded t&Ai2
FPGA of the FPX and subjected to a series of test vectors.

3.5.1 Memory Utilization

Two Tree Bitmapdata structures were generated from the Mae-West snapshot, one for the “single-
trie” FIPL engines and one for the “split-trie” FIPL engines. As previously mentioned, qarex
mental implementation allocated an entire 36-bit memory word for next hop informatgshown

in Table 3.1, the total memory utilization for each variation of the data-structure isrbaxken

into usage for th@ree Bitmapand next hop information. Note that the size of Tiee Bitmapdata
structure is reduced by approximately 30% via the split-trie optimization.

3.5.2 Lookup Rate

The “single-trie” and “split-trie” evaluation environments were downloaded to the RAD FBIGA
the FPX and subjected to a series of test vectors. Prior to each test rlired¢tigitmaypata structure
generated from the Mae-West database of 27,609 routes was loaded into the &Rekih The
on-chip memory read by the IP Address Generator was initialized with 16,384 IPv4aligstin
addresses created via random selections from the route table snapshot. Test runs weik initia
using configurations of 1 through 8 engines.

Each evaluation environment was first tested with no intervening updates. Figurdd@sl4 p
the number of lookups per second versus the number of parallel FIPL engirties fingle-trie and
split-trie versions. The theoretical worst-case performance is also included for reference. With no
intervening update traffic, lookup throughput for the “single-trie” configuration rarigenm 1.46
million lookups per second for a single FIPL engine to 10.09 million lookups per defoor
FIPL engines; an 11% increase in performance over the theoretical worst-case. Undmald

49

12

1 | Mae-West Throughput (Split Tree)
-10
c
3 9 t
3 8 Mae-West Throughput /
@
27 -
S6 "
=
s prd /{
B 4
g 4 //://‘/l Theoretical Worst-case Throughput
S 3
32 e

1

o T T T T T T

1 2 3 4 5 6 7 8

of FIPL engines

Figure 3.14: FIPL performance: measurements used a snapshot of the Mae-Westedataba
March 15, 2002 consisting of 27,609 routes. Input IPv4 destination addresses wedeel drga
randomly selecting 16,384 prefixes from the Mae-West database.

conditions, lookup throughput for the “split-trie” configuration ranged from 1.58 milliaxklgps

per second for a single FIPL engine to 11 million lookups per second for 8 FIPL engi®8s; a
increase in performance over the “single-trie” configuration. Average lookup lafentgingle-

trie” FIPL engines ranged from 656 ns for a single FIPL engine to 674 ns for 8 FIPL engines.
Average lookup latency for “split-trie” FIPL engines ranged from 603 ns for a single FIPineng

to 619 ns for 8 FIPL engines.

In order to evaluate performance under update load, updates were transmitteeMaltiae
tion environment at various rates during test runs. Update traffic consisted of antaitppetern
of a 24-bit prefix and a 24-bit prefix delete. For the the “single-trie” configuration,4Ha&tZrefix
add required 25 memory write operations which were packed into 4 control cells 4Hbie @efix
delete required 14 memory write operations which were packed into 3 control celghd-the
“split-trie” configuration, the 24-bit prefix add required 21 memory write operations white w
packed into 4 control cells. The 24-bit prefix delete required 12 memory write operattiok
were packed into 2 control cells. Test runs were executed for both configuratitnsipdates
rates ranging from 1,000 updates per second to 1,000,000 updates pet.9dote that the upper
end of the range, one update per microsecond, represents a highly unrealisticrséigatiodate
frequencies rarely exceed 1,000 updates per second.

Results of test runs of the “single-trie” FIPL configuration with intervening update traffic
are shown in Figure 3.15. Results of test runs of the “split-trie” FIPL configuration with inter-
vening update traffic are shown in Figure 3.16. For both configurations, updatefiicgs up to
10,000 updates per second had no noticeable effect on lookup thrdymgrfarmance. For an up-
date frequency of 100,000 updates per second, the “single-trie” configuratidnited a maximum

50

No updateﬂ

—

100,000 updates per second

Millions of lookups per second

1,000,000 updates per second |

0 T T T T T T

1 2 3 4 5 6 7 8
of FIPL engines

Figure 3.15: FIPL performance under update load: measurements used a snipshbtae-West
database from March 15, 2002 consisting of 27,609 routes. Input IPv4 destinatiosssdoneere
created by randomly selecting 16,384 prefixes from the Mae-West database. Umdtesieted of
alternating addition and deletion of a 24-bit prefix.

performance degradation of 6.5% while the “split-trie” throughput was reduced29y. 7For an
update frequency of 1,000,000 updates per second, the “single-trie” aatfiguexhibited a max-
imum performance degradation of 56% while the “split-trie” throughput was redugéB9%.
FIPL not only demonstrates no noticeable performance degradation under npdate loads, but
it also remains robust under excessive update loads.

Based on the test results, a FIPL configuration employing four parallel search engines was
synthesized for the WUGS/FPX research platform in order to support 2 Gb/s links. Utilizing custom
traffic generators and bandwidth monitoring software, throughput for minimum leagites was
measured at 1.988 Gb/s. Note that the total system throughput is limited by the 3RMGISMWPX
interface operating at 62.5 MHz. Additional tests injected route updates to measlate perfor-
mance while maintaining 2 Gb/s of offered lookup traffic. The FIPL configuration expeieonly
12% performance degradation at update rates of 200,000 updates pat.secon

3.6 Towards Better Performance

Ongoing research efforts seek to leverage the components and insights gained fitemanting

Fast IP Lookup (FIPL) on the open research platforms developed at Washington Univegsipnt
Louis [33, 43]. In this section we discuss two optimizations that can significantly improve the
performance of the FIPL engine. In Section 3.6.1 we discuss design and device afitinszo
reduce the critical path delay in the FIPL engine. In Section 3.6.2 we apply a codatestructure
optimization to reduce the worst case number of off-chip memory accesses.

51

Jany
N

[
[N

=
o
!

9| //
8

<

7
100,000 updates per second |7
5

1,000,000 updates per second

Millions of lookups per second
(o]

1 2 3 4 5 6 7 8
of FIPL engines

Figure 3.16: FIPL Split-Trie performance under update load: measurements used aotspapsh
the Mae-West database from March 15, 2002 consisting of 27,609 routes. Input IPvAti@stin
addresses were created by randomly selecting 16,384 prefixes from the Mae-Wesaldtidulates
consisted of alternating addition and deletion of a 24-bit prefix.

3.6.1 Implementation Optimizations

Coupled with advances in FPGA device technology, implementation optimizati@nsical paths

in the FIPL engine circuit hold promise of increasing the system clock frequency in orddeeto ta
full advantage of the memory bandwidth offered by modern SRAMs. Existing SRAMs are ca
pable of operating at 200 MHz or faster; note that modern FPGAs are capablenaiguat this
frequency [44] and no throughput is gained via an ASIC implementation since ipfSé&AM ac-
cesses are the performance bottleneck. Doubling of the clock frequency of FIPlydir@cslates

to a factor of two increase in lookup performance to a guaranteed worst case pubafbver 18.2
million lookups per second. DDR SRAMs essentially double the size of the memory eoedsed
per clock cycle; this provides the opportunity for further optimizations by allowspwouble the
amount of information stored in node. We can take advantage of this by exgeheistride length

of nodes and/or performing path compression.

3.6.2 Root Node Extension & Caching

By caching the root node in on-chip memory and extending its stride length, theemaioff-chip
memory accesses can be reduced. Extending the stride length of the root nogledsthe number
of bits required for the extending paths and internal prefix bitmaps. The increase inntemnof
extending paths also requires a larger chunk of contiguous memory for storisgdabed level of
multibit nodes in the child node array. In general, the size of the bitmap required for @ afrid

52
Destination Address [31:i]

Next Hop| Next Hop Next Hop ~~~--~--~--~-------- | Next Hop

!) I ¢

aNZaN

Figure 3.17: Root node extension using an on-chip array and multiple sub-tries.

lengthn is 27+ — 1 bits. The maximum number of contiguous memory spaces needed for the child
node array iQ".

Selecting the stride length for the cached root node mainly depends upon thatarhou
available on-chip memory and logic. In the case of ample on-chip memory, oule wiill want
to bound the stride length to prevent the amount of contiguous memory spasssawy for the
child node array from becoming too large. Selection of a stride length which is a fafctour
plus one (i.e. 5, 9, 13, ...) provides the favorable property of implementatniltiple-of-stride”
case efficiently. Selecting a root node stride length of eight requires extendingapathsternal
prefix bitmap lengths of 8192 and 8191 bits, respectively. Given that curreata@ns of FPGAs
implement 16kb blocks of memory, the bitmap storage requirement does motpsehibitively
high. However, th&€ountOnesandTree SearcHiunctions consume exorbitant amounts of logic for
such large bitmaps.

Another approach is to simply represent the root node as an on-chip array irtmexsel
firsts bits of the destination address, wheig determined by the stride length of the root node. This
technique was formally introduced by Lampson, Srinivasan, and Varghese [28] discussed in
Section 2.2.4. As shown in 3.17, each array entry stores the next hop informatitre fbest-
matching prefix in the:-bit path represented by the index, as well as a pointer to an extending path
sub-tree. Searches simply examine the extending path sub-tree pointer to see if a sxibttréare
the given address. This may be done by designating a null pointer value or usfid extending
path bit. If no extending path sub-tree exists, the next hop information stored in the oarcyp
entry is applied to the packet. If an extending path sub-tree exists, the extending lpdteesu
pointer is used to fetch the “root node” of the extending path sub-tree and the seataiues
in the normal Tree Bitmap fashion. If no matching prefix is found in the sub-tree, thehnpx
information stored in the on-chip array entry is applied to the packet.

Obviously, the performance gain comes at the cost of on-chip resource usagpdate
speed, as a single update may require updates to several array slots. Table 3hstiolaving:

e Array Size (AS)number of array slots.

Table 3.2: Memory usage for root node array optimization.

Stride (i) | As On-CM (bits) | WC Off-CMA| WC Tp (10ns,5ns
4 16 512 10 10, 20

5 32 1024 10 10, 20

8 256 | 8,192 9 11.1,22.2

9 512 | 16,384 9 11.1,22.2

12 4096 | 131,072 8 12.5,25

13 8192 | 262,144 8 125,25

e On-chip Memory (On-CM)the amount of on-chip memory needed in order to allocate the
root node array.

e Worst Case Off-chip Memory Accesses (WC Off-CMi#8 amount of off-chip memory re-
quired to store sub-trees.

e Worst Case Throughput (WC Tphillions of lookups per second assuming a 100MHz clock
(T=10ns) and 200MHz clock (T=5ns).

We assume that all sub-tree pointers and next hop information are 16-bits each. Herotep
information is required, the on-chip memory may be scaled accordingly or the informmatip be
stored off-chip and the 16-bit field used as a pointer. Note that extending the ceostmimle to 9 still
allows the initial array to fit in a single 18kb BlockRAM in the current generation of FPGAE [4

3.7 Related Work

One way to accelerate IP packet forwarding is to avoid performing IP lookups. Prosocbiss IP-
Switching and MPLS/Tag-Switching attempt to avoid lookups in the network core by establéshing
path between ingress and egress routers [45, 46, 47, 48]. In all cases, the dédsm@rauters is
simplified to an indexed or exact match lookup on a table of ATM virtual circuit idergjfiéags”,

or “labels” depending on the protocol in use. While these protocols have erljayieetl success,

two major issues prevent them from obviating longest prefix match lookups. First, the ingress
egress routers are still required to perform a full IP lookup in order to make a routing decision.
Even if ingress and egress routers are restricted to network edges, increasing bandwatidsle
require high performance IP lookup techniques. The second major issue is coordietiaen
multiple Autonomous Systems (AS). Due to issues like security, trust, resource allocations, and
differing views of the network, end-to-end coordination in the Internet is difficult. Treatimg and
re-establishing connections at AS boundaries requires full routing decisions byA8acuter at

the boundary.

54

Numerous research and commercial IP lookup techniques exist. On the contiftentja
several companies have developed high speed lookup techniques usiagy Teomtent Address-
able Memory (TCAM) and Application Specific Integrated Circuit (ASIC) technologies. Some cu
rent products, targeting OC-768 (40 Gb/s) and quad OC-192 (10 Gb/s) link configstatiaim
throughputs of over 100 million lookups per second and storage for 100 millivie®{49]. How-
ever, the advertised performance comes at an extreme cost. 16 ASICs contaibedged TCAMs
must be cascaded in order to achieve the advertised throughput and supparteireatistic stor-
age capacity of one million table entries. We provide a more detailed analysis of themizer
consumption, and cost of TCAM devices in Section 4.2.2.

An overview of the most prominent Longest Prefix Matching algorithms is provided in
Section 2.2. The.uleaalgorithm is the most similar of published algorithms to #ree Bitmap
algorithm used in our FIPL engine [21]. LiKeree BitmaptheLuleaalgorithm uses a type of com-
pressed trie to limit the number of memory accesses required to traverse the data structiere. Wh
similar at a high level, the two algorithms differ in a variety of specifics, that alloee Bitmapto
offer comparable lookup performance with more efficient support of dynamiernmental updates.
Due to its relative simplicityTree Bitmapis also more amenable to hardware implementation. A
detailed comparison of thEree Bitmapalgorithm to other published lookup techniques is provided
in [11]; but, we highlight the most important distinctions here.

The design focus of theulea algorithm is to provide high lookup rates using a software
implementation on a general purpose processor or network processor. In ordeorgpash this,
the algorithm employs compression techniques that allow the forwarding table to fit inespon’s
cache and limit computations to simple indexing operations. The lack of suppoytrfanic incre-
mental updates is a byproduct of the focus on extremely compact table difiem#ad number of
memory accesses. Theleaalgorithm begins by constructing a three level multibit trie with strides
of 16, 8, and 8. Searching each level of thdeadata structure may require up to four memory
accesses, hence the worst case number of memory accesses is 12. Reaadlithpleonentation
of Tree Bitmags an eight level multibit trie with a constant stride of 4 requiring at most 11 memory
accesses. Note that tiieee Bitmapalgorithm does not preclude the use of variable strides, and as
we show in Section 3.6.2 the worst case number of memory accesses can el reiduitirther
optimization.

The Lulea encoding requires that the trie kemplete thus every node must have two or
no children. This requirement yields the following property: every prefix is stored in aatehf
every leaf stores a prefix. The algorithm then employs an implicit forheaff pushing[19] that
removes redundant entries from the set of stored values. In essence, the bestgnatdiror
pointer to the next multibit node is pre-computed for each possible path throulgimedtthit node.

For each multibit node, this information is encoded using array®dé wordsandbase indices
A precomputed table of indices is used to compute the pointer to the next hop atifmnnor next
multibit node along the search path.

55

In contrast, th@ree Bitmapalgorithm avoids pre-computation by computing pointer indices
“on-the-fly” using theCountOne®peration. It also avoids pre-computation in the forrteaf push-
ing by explicitly representing the set of prefixes stored in each multibit node via bitmapiagco
These design choices allolvee Bitmapto remain competitively memory efficient while support-
ing dynamic incremental updates. While the requirement that all child nodepareat node be
stored contiguously slightly complicates the memory management, updates to thedfogiable
typically require reads or writes to only a few memory words. In sumnitige Bitmapoffers
equal or better lookup performance with comparable memory requirements. @lementation
provides concrete evidence thetee Bitmapis a viable option for high-performance systems and
can supporting dynamic incremental updates at rates far exceeding thet coaxémum update
rates observed in the Internet.

3.8 Discussion

IP address lookup is one of the primary functions of the router and often is a signiferdmtmance
bottleneck. In response, we have presented the Fast Internet Protocol Lookup (FIPh esegme
which utilizes Eatherton and DittiaBree Bitmapalgorithm. Striking a favorable balance between
lookup and update performance, memory efficiency, and hardware resougeceseh FIPL engine
supports over 500 Mb/s of link traffic while consuming less than 1% of available logianesoand
approximately 10 bytes of memory per entry. Utilizing only a fraction of a reconfigeitagic de-
vice and a single commodity SRAM, FIPL offers an attractive alternative to expensiveaerxial
solutions employing multiple Content Addressable Memory (CAM) devices and Applic8pe-

cific Integrated Circuits (ASICs). By providing high-performance with low resource consumption
FIPL is a prime candidate for a System-On-Chip (SoC) route lookup solution or an LPM engine in
a packet classification device.

56

Chapter 4

Multiple Field Search Technigues

If we knew what it was we were doing, it would not be called researchidwdu
Albert Einstein

In this chapter we provide a survey and taxonomy of the major advances in lediilol search
techniques for packet classification. Due to the complexity of the search, pdaksification is
often a performance bottleneck in network infrastructure; therefore, it has receiddattiention
in the research community. In general, there have been two major threads ofiesidrasssing this
problem: algorithmic and architectural. A few pioneering groups of researchers fhasgehblem,
provided complexity bounds, and offered a collection of algorithmic solutions [b053, 53].
Subsequently, the design space has been vigorously explored by many offeviatyndthms and
improvements upon existing algorithms [54, 27, 29]. Given the inability of earlyridhgos to meet
performance constraints imposed by high speed links, researchers in industry andiackésed
architectural solutions to the problem. This thread of research produced the mostugddlgacket
classification device technology, Ternary Content Addressable Memory (TCAM) [5%7567].

Some of the most promising algorithmic research embraces the practice of leveraging the
statistical structure of filter sets to improve average performance [50, 54, 58, 51, 58jalSdyo-
rithms in this class are amenable to high-performance hardware implementation. Ves diseze
observations in more detail and provide motivation for packet classification orr lauggbers of
fields in Chapter 5. New architectural research combines intelligent algorithmsoaedamnchitec-
tures to eliminate many of the unfavorable characteristics of current TCAMSs [32]. ¥énabthat
the community appears to be converging on a combined algorithmic and aretdteapproach to
the problem [32, 60, 28]. In order to lend structure to our discussion, we developraotayxan
Section 4.1 that frames each technique according to its high-level approaciptolbem. The pre-
sentation of this taxonomy is followed by a survey of the seminal and recent soltditrespacket
classification problem. Throughout our presentation we attempt to use a minimal senofgu
examples to provide continuity to the presentation and highlight the distinctions ahmwrgrious
solutions.

57

Exhaustive Search Decomposition

Crossproducting*
=

Parallel
BV*
Conflict-Free

Pruned
Tuple Spacg
Rectangle
Search

N —
Y Modular ¥
P. Clas
Grid-of-Tries

Decision Tree Tuple Space

Tuple Space

Rectangle
Search

Figure 4.1. Taxonomy of multiple field search techniques for packet classificatifateat tech-
nigues are related; hybrid techniques overlap quadrant boundadegptes a seminal technique.

4.1 Taxonomy

Given the subtle differences in formalizing the problem and the enormous neeabfbisglutions,
numerous algorithms and architectures for packet classification have been propagker than
categorize techniques based on their performance, memory requirements, @ gagierties, we
present a taxonomy that breaks the design space into four regions based omiteedligpproach
to the problem. We feel that such a taxonomy is useful, as a number of the sadienmefeand
properties of a packet classification technique are consequences of the highpleneach. We
frame each technique as employing one or a blend of the following high-lepsdaghes to finding
the best matching filter or filters for a given packet:

e Exhaustive Search examine all entries in the filter set

fields to traverse the decision tree

perform independent searches on each packet field, then combine the results

probe the partitions or a subset of the partitions using simple exact match searches

Figure 4.1 presents a visualization of our taxonomy. Several techniques, inchuidiwgpf the most
promising ones, employ more than one approach. This is reflected in Figure 4.1ipppirg
qguadrant boundaries. Relationships among techniques are reflected by proximity.

Decision Tree construct a decision tree from the filters in the filter set and use the packet

Decomposition decompose the multiple field search into instances of single field searches,

Tuple Space partition the filter set according to the number of specified bits in the filters,

58
In the following sections, we discuss each high-level approach in more detail along with

the performance consequences of each. We also present a survey of the spbeifiuts using
each approach. We note that the choice of high-level approach largeljedittie optimal archi-
tecture for high-performance implementation and a number of the scaling properigsndnly,
papers introducing new search techniques focus on clearly describing the algeritranting scal-
ing properties, and presenting some form of simulation results to reinforce baseline performance
claims. Seldom is paper “real estate” devoted to flushing out the details of a highrpanize im-
plementation; thus, our taxonomy provides valuable insight into the potentia¢sé tiechniques.
In general, the choice of high-level approach does not preclude a tectiroguéaking advantage
of the statistical structure of the filter set; thus, we address this aspect of each techdijdaatly.

4.2 Exhaustive Search

The most rudimentary solution to any searching problem is simply to search through all entries
in the set. For the purpose of our discussion, assume that the set may be dividedhumbber
of subsets to be searched independently. The two most common embodimergserh#ustive
search approach for packet classification are a linear search through a list of filtersaesiaeaty
parallel search over the set of filters. Interestingly, these two solutions represent the sxif¢mee
performance spectrum, where the lowest performance option, linear searchptidedde the set
into subsets and the highest performance option, Ternary Content Addressable ME@any),
completely divides the set such that each subset contains only one entry. Wesdisth of these
solutions in more detail below. The intermediate option of exhaustively searchindsobstining
more than one entry is not a common solution, thus we do not discuss it directly. fpastant to
note that a number of recent solutions using the decision tree approach use adexesrover a
bounded subset of filters as the final step. These solutions are discussed in Section 4.3.

Computational resource requirements for exhaustive search generally scale lingathew
degree of parallelism. Likewise, the realized throughput of the solution is proporticiha tiegree
of parallelism. Linear search requires the minimum amount of computation resounite3 @AMs
require the maximum, thus linear search and TCAM provide the lowest and high&sipence
exhaustive search techniques, respectively.

Given that each filter is explicitly stored once, exhaustive search techniquesaefajeor-
able linear memory requiremer®)(N), where N is the number of filters in the filter set. Here
we seek to challenge a commonly held view that@hgV) storage requirement enjoyed by these
techniques is optimal. We address this issue by considering the redundancy ampofiglfikeand
the number of fields in a filter. These are vital parameters when considering a thirdscimen
scaling: filter size. By filter size we mean the number of bits required to specify a filter. A filter
using the standard IPv4 5-tuple requires about 168 bits to specify explicitly. With thatemwhb

59
bits, we can specif@!®® distinct filters. Typical filter sets contain fewer th2#? filters, suggesting
that there is potential for a factor of eight savings in memory.

Here we illustrate a simple encoding scheme that represents filters in a filter set more ef-
ficiently than explicitly storing them. Let a filter be defined by fielfls . . f; where each field;
requiresh; bits to specify. For example, a filter may be defined by a source address prefix requiring
64 bits', a destination address prefix requiring 64 bits, a protocol number requiring 8 bits, etc. By
this definition, the memory requirement for the exhaustive search approach is

NY b (4.1)

Now letu; ... uq be the number of unique field values in the filter set for each filter fieltleach
filter in the filter set contained a unique value in each field, then exhaustive seantth vewe an
optimal storage requirement. Note that in order for a filter to be unique, it only mdist &idm
each filter in the filter set by one bit. As we discuss in Chapter 5, there is significanideauyn
among filter fields. Through efficient encoding, the storage requirement can loededom linear
in the number of filters to logarithmic in the number of unique fields. Consider thep&ahown
in Figure 4.2. Note that all 8 filters are unique, however there are only two uniduesvior each
field for all filters in the filter set. In order to represent the filter set, we only need to store the
unique values for each field once. As shown in Figure 4.2, we assign a locallyeuaiggl to each
unique field value. The number of bits required for each lablg|(is;), only one bit in our example.
Note that each filter in the filter set can now be represented using the labels for its conh§ittds.
Using this encoding technique, the memory requirement becomes

d

d
=1 i=1

7

The first term accounts for the storage of unique fields and the second term accotimsstorage
of the encoded filters. The savings factor for a given filter set is simply the ratio of Eqdati@and
Equation 4.2. For simplicity, let; = bVi and letu; = uVi ; the savings factor is:

Nb
_ 4.3
ub+ Nlgu (4.3)
In order for the savings factor to be greater than one, the following relationship widst h
u lgu
—+ =<1 4.4
Nty S (44)

We are assuming a 32-bit address where an additional 32 bits are used to specify Thneaskare more effi cient
ways to represent a prefi x, but this is tangential to our argument.

60

SA DA | Prot SA DA Prot filters
11* | 001*| TCP al 11* || a| 001*|| a| TCP (a,a,a)
11* | 001*| UDP b| 111*|| b| 101*(| b| UDP (a,a,b)
11* | 101*| TCP (a,b,a)
11* | 101*| UDP (a,b,b)
111*|] 001*| TCP (b,a,a)
111*] 001*| UDP (b,a,b)
111*| 101*| TCP (b,b,a)
111*| 101*| UDP (b,b,b)

Figure 4.2: Example of encoding filters by unique field values to reduce storage requotse

Note thatu < 2° andu < N. Thus, the savings factor increases as the number of filters in the filter
set and the size (number of bits) of filter fields increases relative to the number oéditier fields.

For our simple example in Figure 4.2, this encoding technigue reduces the segagement from
1088 bits to 296 bits, or a factor of 3.7. As discussed in Section 5.8, we anticipafetire filter

sets will include filters with more fields. It is also likely that the additional fields will contain a
handful of unique values. As this occurs, the linear memory requirement ofitees explicitly
storing the filter set will become increasingly sub-optimal.

4.2.1 Linear Search

Performing a linear search through a list of filters Ii¥SV) storage requirements, but it also re-
quiresO(NN) memory accesses per lookup. For even modest sized filter sets, linear searakdeco
prohibitively slow. It is possible to reduce the number of memory accesses peplogka small
constant factor by partitioning the list into sub-lists and pipelining the search where egeh sta
searches a sub-list. ifis the number of pipeline stages, then the number of memory accesses per
lookup is reduced t@(%) but the computational resource requirement increases by a fagtor of
While one could argue that a hardware device with many small embeddedrgnblacks could
provide reasonable performance and capacity, latency increasingly beconsssemwith deeper
pipelines and higher link rates. Linear search is a popular solution for the final stageakup

when the set of possible matching filters has been reduced to a bounded coristaa; £9].

4.2.2 Ternary Content Addressable Memory (TCAM)

Taking a cue from fully-associative cache memories, Ternary Content Addressabtay{@GAM)
devices perform a parallel search over all filters in the filter set [57]. TCAMs were dedalafte
the ability to store a “Don’t Care” state in addition to a binary digit. Input keys are cord@yainst
every TCAM entry, thereby enabling them to retain single clock cycle lookups for asbitittmask

61

key key
match line
_ _write enable _ _T_ _.L
value al a2 o 3 3
Don'tCare|0 O "—| |—"
1 0 1 al a2
0 10 I H
undefined |1 1
mz;tch
logic

Figure 4.3: Circuit diagram of a standard TCAM cell; the stored value (0, 1, Don') Gaeacoded
using two registeral anda2.

matches. TCAMs do suffer from four primary deficienci¢s$) high cost per bit relative to other
memory technologieg?) storage inefficiency3) high power consumptiori4) limited scalability
to long input keys. With respect to cost, a current price check revealed that TCA#lsl aoout 30
times more per bit of storage than DDR SRAM. While it is likely that TCAM prices will fall ia th
future, it is unlikely that they will be able to leverage the economy of scale enjoy&RAM and
DRAM technology.
The storage inefficiency comes from two sources. First, arbitrary ranges must be converted
into prefixes. In the worst case, a range covetingit port numbers may requiw — 1) prefixes.
Note that a single filter including two port ranges could reqgire — 1)? entries, or 900 entries
for 16-bit port numbers. As discussed in Section 5.3.3, we performed an analyggexdlfilter
sets and found that tHexpansion Factaror ratio of the number of required TCAM entries to the
number of filters, ranged from 1.0 to 6.2 with an average of 2.32. This suggedie$igners should
budget at least seven TCAM entries per filter, compounding the hardware aed jpefficiencies
described below. The second source of storage inefficiency stems from the additichahte
required to implement the third “Don’t Care” state. In addition to the six transistors required for
binary digit storage, a typical TCAM cell requires an additional six transistors to store thebihask
and four transistors for the match logic, resulting in a total of 16 transistors and a cell 2s7anger
than a standard SRAM cell [57]. A circuit diagram of a standard TCAM cell is shown in Fig8re
Some proprietary architectures allow TCAM cells to require as few as 14 transistors [55] [56].
The massive parallelism inherent in TCAM architecture is the source of high power con-
sumption. Each “bit” of TCAM match logic must drive a match word line which signalsatcm
for the given key. The extra logic and capacitive loading result in access tipesxapately three
times longer than SRAM [61]. Additionally, power consumption per bit of storage th® order of
3 micro-Watts per “bit” [62] compared to 20 to 30 nano-Watts per bit for SRAM [63]. mreary,
TCAMs consume 150 times more power per bit than SRAM.

62

Spitznagel, Taylor, and Turner recently introduéedended TCAME-TCAM) which im-
plements range matching directly in hardware and reduces power consumptioer 0% relative
to standard TCAM [32]. We discuss E-TCAM in more detail in Section 4.3.6. While this represents
promising new work in the architectural thread of research, it does not address ltheokigper
bit or scalability issues inherent in TCAMs for longer search keys. TCAM suffers from limited
scalability to longer search keys due to its use of the exhaustive search appraaphevidusly
discussed, the explicit storage of each filter becomes more inefficient as filter sizmsmand the
number of unique field values remains limited. If the additional filter fields requiresrarajches,
this effect is compounded due to the previously described inefficiency of ngapgiitrary ranges
to prefixes.

4.3 Decision Tree

Another popular approach to packet classification on multiple fields is to constrecisiah tree
where the leaves of the tree contain filters or subsets of filters. In order to perform a seagch usin
a decision tree, we construct a search key from the packet header fields. We traeetseision
tree by using individual bits or subsets of bits from the search key to make branatrsipds at
each node of the tree. The search continues until we reach a leaf node storirggtinealbching
filter or subset of filters. Decision tree construction is complicated by the fact that a filier ma
specify several different types of searches. The mix of Longest Prefix Match, arbitragymeatch,
and exact match filter fields significantly complicates the branching decisionshahede of the
decision tree. A common solution to this problem is to convert filter fields to a single typatohm
Several techniques convert all filter fields to bit vectors with arbitrary bit masks, i.ezettibrs
where each bit may be a 1, 0, 9(“Don’t Care”). Recall that filters containing arbitrary ranges do
not readily map to arbitrary bit masks; therefore, this conversion process results in filtertreplica
Likewise, the use of wildcards may cause a filter to be stored at many leaves of isierd&ee.

To better illustrate these issues, we provide an example diva canstruction of a decision
tree in Figure 4.4. The five filters in the example set contain three fields: 3-bit address gmefix,
arbitrary range covering 3-bit port numbers, and an exact 2-bit value or wilde&dirst convert
the five filters into bit vectors with arbitrary bit masks which increases the number of filteighb
Viewing the construction process as progressing in a depth-first manner, a decisionthrég pa
expanded until the node covers only one filter or the bit vector is exhaustetbshat the last level
may cover more than one filter if filters overlap. We assume that leaf nodes corgaotitn to
be applied to packets matching the filter or subset of filters covered by the nodéo he size of
the full decision tree, we show a portion of the data structure in Figure 4.4. If we evalisatiath
structure by its ability to distinguish between potentially matching filters for a given packeteey
that this ndéve construction is not highly effective. As the reader has most likely observeatigre
there are numerous optimizations that could allow a decision tree to more effectistihgdish

63

=

10¢ | [0:2] | o1 Q o
0% [3:7] | 01 1 @ o °
111 | [0:7] | * 0 1 @ c
11* | [0:2] | 10 !
- [07] ::vaert to @ 9 @ : g
1
arbitrary mask @
bit vector 1 3 0 °
0 (ah)
a 10* | 00* | 01 0 @ 1 °
b 10* | 010 | 01 0 o
c o= | 011 | 01 1 0
DS
T o [o o
o | 111 | == | = (c.dh) 1 o ©
f 11* | 00* | 10 0 a »(h)
g |11* | 010 | 10 D O o (h)
11* |owo |10 | © 1 . 1 @ °
0 1
0p(d)
C.an) ean) o w(ah) O
3 ol
0 « 1 0 0
0 A
o S
e,f,o,h 0 °
1 o.¥ 1 0 (an) °
ot
bahd, 1 0 0
1 A @ °

Figure 4.4: Example of a e construction of a decision tree for packet classification on three
fields; all filter fields are converted to bit vectors with arbitrary bit masks.

between potentially matching filters. The algorithms and architectures discussed in the fpllowin
subsections explore these optimizations.

64

Several of the algorithms that we classify as using a decision tree approach are mere com
monly referred to as “cutting” algorithms. These algorithms view filters wiffelds as defining
d-dimensional rectangles ifrdimensional space; thus, a “cut” in multi-dimensional space is iso-
morphic to a branch in a decision tree. The branching decision in a cutting algorithm iallypic
more complex than examining a single bitin a bit vector. Note that the E-TCAM agipobscussed
in Section 4.3.6 employs a variant on the cutting algorithms that may be vieveepaaallel search
of several decision trees containing different parts of the filter set. Thus, we view sgtimg c
algorithms as relaxing the constraints on classical decision trees.

Due to the many degrees of freedom in decision tree approaches, the performarsee c
teristics and resource requirements vary significantly among algorithms. In general, tookug
O(W), whereW is the number of bits used to specify the filter. Given that filters classifying on
the standard 5-tuple require a minimum of 104 bits, viable approaches must emplopgtimiza-
tions in order to meet throughput constraints. The memory requirement for tu& c@nstruction
is O(2"+1). In general, memory requirements vary widely depending upon the complexitg of
branching decisions employed by the data structure. One common feature of aigaitiploying
the decision tree approach is memory access dependency. Stated anothineveigision tree
searches are inherently serial; a matching filter is found by traversing the tree from root ihieaf.
serial nature of the decision tree approach precludes fully parallel implementationsldfosithm
places a bound on the depth of the decision tree, then implementing the algorithpipeliaed
architecture can yield high throughput. This does require an independent mettesfsices for
each pipeline stage.

4.3.1 Grid-of-Tries

Srinivasan, Varghese, Suri, and Waldvogel introduced the se@iiddof-TriesandCrossproduct-
ing algorithms for packet classification [53]. In this section we focu&ad-of-Trieswhich applies

a decision tree approach to the problem of packet classification on source and destddtiess
prefixes.Crossproductingvas one of the first techniques to employ decomposition and we discuss
it in Section 4.4.3. For filters defined by source and destination prefied;of-Triesimproves
upon the directed acyclic graph (DAG) technique introduced by Decasper, Bidrajkar, and
Plattner [64]. This technique is also called set pruning trees because redundantsscidtrde
“pruned” from the tree by allowing multiple incoming edges at a node. While this ggation
does eliminate redundant subtrees, it does not completely eliminate replication rasnfitte be
stored at multiple nodes in the tre@rid-of-Trieseliminates this replication by storing filters at a
single node and usingwitch pointerdo direct searches to potentially matching filters.

Figure 4.5 highlights the differences between set pruning treeSadebf-Triesusing the
example filter set shown in Table 4.1. Note that we have restricted the classification toltisp fie
destination address prefix followed by source address prefix. Assume we are searchiadpéstth
matching filter for a packet with destination and source addresses equal to 00 EIGhutof-Tries

65

Table 4.1: Example filter set; port numbers are restricted to be an exact value ardildc
Filter | DA | SA | DP | SP | PR
Fi 0= 10% | * 80 | TCP
Fy 0% 0lx | * 80 | TCP
F3 0% 1% 17 | 17 | UDP
Fy 00x% 1x * * *

Fy 00 11 | * * TCP
Fy 10x 1x 17 | 17 | UDP
F * 00% | % * *

Fg 0 10x | * 100 | TCP
Fy 0% 1% 17 | 44 | UDP
Fig 0= 10« | 80 | * TCP
Fiq 111 | 000% | * 44 | UDP

structure, we find the longest matching destination address fefiand follow the pointer to the
source address tree. Since there is no 0 branch at the root node, we follewititte pointerto the
0+ node in the source address tree for destination address prefbince there is no branch fo0x
in this tree, we follow theswitch pointerto the00« node in the source address tree for destination
address prefix. Here we find a stored filtel’; which is the best matching filter for the packet.

Grid-of-Triesbounds memory usage @(NW) while achieving a search time 61(1V),
where N is the number of filters antd” is the maximum number of bits specified in the source or
destination fields. For the case of searching on IPv4 source and destination address, ihefixe
measured implementation used multi-bit tries sampling 8 bits at a time for the destinationdhie; ea
of the source tries started with a 12 bit node, followed by 5 bit trie nodes. This yields acasest
of 9 memory accesses; the authors claim that this could be reduced to 8 with asénaretorage.
Memory requirements for 20k filters was around 2MB.

While Grid-of-Triesis an efficient technique for classifying on address prefix pairs, it does
not directly extend to searches with additional filter fields. Consider searching the filterTset
ble 4.1 using the following header fields: destination address 0000, source addresdektination
port 17, source port 17, protocol UDP. Using tBed-of-Triesstructure in Figure 4.5, we find the
longest matching prefix for the destination addré8s, followed by the longest matching prefix for
the source address] . Filter F5 is stored at this node and there aresmatch pointergo continue
the search. Since the remaining three fieldspfmatch the packet header, we declakds the best
matching filter. Note that3s, Fy, and Fy also match.F3 and Fy also have more specific matches
on the port number fields. Clearl@rid-of-Triesdoes not directly extend to multiple field searches
beyond address prefix matching.

The authors do propose a technique using multiple instances @rttleof-Triesstructure
for packet classification on the standard 5-tuple. The general approach is to partitforethsst
into classes based on the tuple defined by the port number fields and protocol fieldgahple

Set Pruning Tree

Grid-of-Tries
with switch pointers

Figure 4.5: Example of set pruning trees &id-of-Triesclassifying on the destination and source
address prefixes for the example filter set in Table 4.1.

is shown in Figure 4.6. Operating under the restriction that port numbers must eitherdxact

TCP

** DP* *SP
*,80

F

11

Figure 4.6: Example of 5-tuple packet classification ussrgl-of-Tries pre-filtering on protocol
and port number classes, for the example filter set in Table 4.1.

port number or wildcarg] we first partition the filter set into three classes according to protocol:
TCP, UDP, and “other”. Filters with a wildcard are replicated and placed into each desthen
partition the filters in the “other” class into sub-classes by protocol specification. For ethen™
sub-class, we constructGrid-of-Tries The construction for the TCP and UDP classes are slightly
different due to the use of port numbers. For both the UDP and TCP classes, we p#ngtion
constituent filters into four sub-classes according to the port number tuple: both paifsedpe
destination port specified, source port wildcard; destination port wildcard, source poifiexl

both ports wildcard. For each sub-class, we construct a hash table storing the umidpieatimns

of port number specifications. Each entry contains a pointeGogof-Triesconstructed from the
constituent filters. Ignoring the draconian restriction on port number specifications, thtmelpp
may requireO(N) separate data-structures and filters with a wildcard protocol specification are
replicated across many of them. It is generally agreed that the great value Gfithef-Tries
technique lies in its ability to efficiently handle filters classifying on address prefixes.

4.3.2 Extended Grid-of-Tries (EGT)

Baboescu, Singh, and Varghese propoEetended Grid-of-TriegEGT) that supports multiple
fields searches without the need for many instances of the data structure [58]. EGflaligsen
alters theswitch pointerd¢o bejump pointerghat direct the search to all possible matching filters,

2Note that this restriction can be prohibitive for fi lter sets specifying arbitrary ranges. Whilksfttiald be replicated,
typical ranges cover thousands of port numbers which induces an ugeadia expansion in the size of the fi lter set.

68

y
* * % * % ’ =~ N N
Fa TCPFs ! Y | 17 17 UDPF \
\ 4 h | A | \
*80 TCPF, ||*80TCPF, | (17 17 UDPF, Y
*
*100 TCPFy | |17 44 UDPF, 44 TCPFu

80 * TCPF,,

Figure 4.7: Example of 5-tuple packet classification udtixgended Grid-of-Trie$EGT) for the
example filter set in Table 4.1.

rather than the filters with the longest matching destination and source address prefighewAs

in Figure 4.7, EGT begins by constructing a standaridi-of-Triesusing the destination and source
address prefixes of all the filters in the filters set. Rather than storing matching filters at source
address prefix nodes, EGT stores a pointer to a list of filters that specify the destination i@ed sou
address prefixes, along with the remaining three fields of the filters. The authors obsethe that
size of these lists is small for typicabre routerfilter sets$, thus a linear search through the list of
filters is a viable option. Note that themp pointersbetween source tries direct the search to all
possible matching filters. In the worst case, EGT requi?€8/?) memory accesses Whelg is

the address length. Simulated results with core router filter sets show that EGT requires 84 to 13
memory accesses per lookup for filter sets ranging in size from 85 to 2799 filters. Simulated resu
with synthetically generated filter sets resulted in 121 to 213 memory accesses for filter gieig ran

in size from 5k to 10k filters. Memory requirements ranged from 33 bytes per filter to 57 keptes p
filter.

3This property does not necessarily hold for filter sets in other application environswaitsas fi rewalls and edge
routers.

69

Table 4.2: Example filter set; address field is 4-bits and port ranges cover 4-biupadvers.

Filter | Address| Port
a 1010 2:2
b 1100 5:5
c 0101 8:8
d * 6:6
e 111 0:15
f 001% 9:15
g 00 0:4
h 0 0:3
i 0110 0:15
j 1x 7:15
k 0% 11:11

4.3.3 Hierarchical Intelligent Cuttings (HiCuts)

Gupta and McKeown introduced a seminal technique cafliedarchical Intelligent CuttinggHi-

Cutg [51]. The concept of “cutting” comes from viewing the packet classification prolgeo-
metrically. Each filter in the filter set definesdadimensional rectangle id-dimensional space,
whered is the number of fields in the filter. Selecting a decision criteria is analogous to choosing
a partitioning, or “cutting”, of the space. Consider the example filter set in TaBlechsisting of
filters with two fields: a 4-bit address prefix and a port range covering 4-bit port numbeésdil{Ein

set is shown geometrically in Figure 4.8.

HiCuts preprocesses the filter set in order to build a decision tree with leaves containing
a small number of filters bounded by a threshold. Packet header fields are usadetse the
decision tree until a leaf is reached. The filters stored in that leaf are then linearly sefimched
match.HiCutsconverts all filter fields to arbitrary ranges, avoiding filter replication. The algorithm
uses various heuristics to select decision criteria at each node that minimizes thefdepttree
while controlling the amount of memory used.

A HiCutsdata structure for the example filter set in Table 4.2 is shown in Figure 4.9. Each
tree node covers a portion of tlledimensional space and the root node covers the entire space.
In order to keep the decisions at each node simple, each node is cut intosempthpartitions
along a single dimension. For example, the root node in Figure 4.9 is cut intodditigns along
the Addressdimension. In this example, we have set the thresholds such that a leaf contains at
most two filters and a node may contain at most four children. A geometric represerabtie
partitions created by the search tree are shown in Figure 4.10. The authors describgea ofum
more sophisticated heuristics and optimizations for minimizing the depth of the tree andriay
resource requirement.

Experimental results in the two-dimensional case show that a filter set of 20k filters re-
quires 1.3MB with a tree depth of 4 in the worst case and 2.3 on average. Experinignts

70

15
14
13

Port
=l Bl s
Oll—‘ll\)lwbmm\llooltolol—‘ml

o|1|2|3| 4| 5|6 7| 8 o tpr 113 14 15

Address

Figure 4.8: Geometric representation of the example filter set shown in Table 4.2.

four-dimensional classifiers used filter sets ranging in size from approximately 100 to 2000 fil-
ters. Memory consumption ranged from less than 10KB to 1MB, with associated worst case tree
depths of 12 (20 memory accesses). Due to the considerable preprocessing reqaisathetime

does not readily support incremental updates. Measured update times rangetham7Dms.

4.3.4 Modular Packet Classifi cation

Woo independently applied the same approacHigits and introduced a flexible framework for
packet classification based on a multi-stage search over ternary strings representing thedfjlters [2
The framework contains three stages: an index jump table, search trees, and filtds.buake
example data structure for the filter set in Table 4.2 is shown in Figure 4.11. A seaiiok bgg
using selected bits of the input packet fields to address the index jump table. Iftthe@ntains

a valid pointer to a search tree, the search continues starting at the root of the searElntiies
without a search tree pointer store the action to apply to matching packets. Each seamidé&e
specifies the bits of the input packet fields to use in order to make a branching dedMien a

filter bucket is reached, the matching filter is selected from the set in the bucket \da die@rch,

71

[0:15] [0:15]
4-cuts
Address

[0:3] [0:15]
4-cuts
Port

[4:7] [0:15] [8:11] [0:15] [12:15][0:15]
4-cuts 4-cuts 1-cut
Port Port Address

d - a d j [[[12:13][0:15] [14:15][0:15]
i j 4-cuts 4-cuts
Port L Port)
[4:7] [8:11]
1-cut
Port
c K [12:13][4:7] [14:15] [4:7]
i i 1-cut 1-cut
Port Port

Figure 4.9: ExampléliCutsdata structure for example filter set in Table 4.2.

binary search, or CAM. A key assumption is that every filter can be expressed asrg ttrimg

of 1's, 0’s, and«’s which represent “don’t care” bits. A filter containing prefix matches on each
field is easily expressed as a ternary string by concatenating the fields of the filter; haniter
containing arbitrary ranges may require replication. Recall that standard 5-tuple fillgontain
arbitrary ranges for each of the two 16-bit transport port numbers; hence, a singlméitgrield

900 filter strings in the worst case.

The first step in constructing the data structures is to convert the filters in the filter into
ternary strings and organize them inarnx m array where the number of rowsis equal to the
number of ternary strings and the number of columnis equal to the number of bits in each string.
Each string has an associated weightwhich is proportional to its frequency of use relative to the
other strings; more frequently matching filter strings will have a larger weight. Next,jtheaded
to address the index jump table are selected. For our example in Figure 4.11,ate a1@ bit
index concatenate from bits 7, 3, and 2 of the ternary search strings. Typically, theséitsor
the jump table address are selected such that every filter specifies those bits. When filggns con
“don’t cares” in jump table address bits, it must be stored in all search trees associatedewith
addresses covered by the jump index. For each entry in the index jump tableatdtessed by at
least one filter, a search tree is constructed. In the general framework, the searctayregamine

72

15 !
I | | |
— I | |
13 | I |
12 | IR I N
11 I « | |
10 f il '
9 | i - | |
— | |
A N Ny s S R R
7 | | |
6 I d | | |
c]] ol |
| I
4 g
R R —
3 | I |
2 | N afl i | ¢©
1 | | I
0 | | |
o|1|2|3|4|s|s6| 7| 8 o p1 113 14 15

Address

Figure 4.10: Geometric representation of partitioning createtli@uts data structure shown in
Figure 4.9.

any number of bits at each node in order to make a branching decision. Seleichits is made
based on a weighted average of the search path length where weights are fiterivélde filter
weightsWW;. This attempts to balance the search tree while placing more frequently accessed filter
buckets nearer to the root of the search tree. Note that our example in Figurdoéd hot reflect
this weighting scheme. Search tree construction is performed recursively until themafrfilhers
at each node falls below a threshold for filter bucket size, usually 128 filters or lessettiee
threshold to two filters in our example. The construction algorithm is “greedy” in that it qpesfo
local optimizations.

Simulation results with synthetically generated filter sets show that memory scales linearly
with the number of filters. For 512k filters and a filter bucket size of 16, the deptheddaarch
tree ranged from 11 levels to 35 levels and the number of filter buckets ranged &toto 350k
depending on the size of the index jump table. Note that larger index jump t@édesase tree
depth at the cost of increasing the number of filter buckets due to filter replication.

73

Filter B(7:0) B(7) & B(3) & B(2)

a 1010 0010 000 001 010 011 100 101 110 111

b 1100 0101

c 0101 1000 ¥ \
-

T O SO NIE

f1 001* 1001 ghl i 9i2

f2 001* 101*

f3 001* 11%*

ol 00** 00** |

g2 00** 0100 Py pi

h O*** 0O** IC ; 'I<

i 0110 ****

i1 1%+ 0111

2 .

k 0% 1011

Figure 4.11: Modular packet classification using ternary strings and a three-stage selaitel-arc
ture.

4.3.5 HyperCuts

Introduced by Singh, Baboescu, Varghese, and WandyiperCutsalgorithm [59] improves upon
the HiCuts algorithm developed by Gupta and McKeown [51] and also shares similarities with
the Modular Packet Classificatioalgorithms introduced by Woo [29]. In essentlyperCutsis a
decision tree algorithm that attempts to minimize the depth of the tree by seleutitigle “cuts”
in multi-dimensional space that partition the filter set into lists of bounded size. By forcisg cu
to create uniform regiongjyperCutsefficiently encodes pointers using indexing, which allows the
data structure to make multiple cuts in multiple dimensions without a significant memaaitypen
According to reported simulation results, traversing ithgerCutsdecision tree required
between 8 and 32 memory accesses for real filter sets ranging in size from 85 to 4740d8mes;
tively. Memory requirements for the decision tree ranged from 5.4 bytes per filter 18 yites per
filter. For synthetic filter sets ranging in size from 5000 to 20000 filters, traversingyperCuts
decision tree required between 8 and 35 memory accesses, while memory requifernibatdeci-
sion tree ranged from 11.8 to 30.1 bytes per filter. The number of filters and egaddiiters in the
final lists are not provided; hence, it is difficult to assess the additional time andrggateements

74
for searching the lists at the leaves of the decision tigerCuts support for incremental updates
are not specifically addressed. While it is conceivable that the data structure carseppityt a
moderate rate of randomized updates, it appears that an adversarial worst-caseftrpdates
can either create an arbitrarily deep decision tree or force a significant restructuring oéthe tre

4.3.6 Extended TCAM (E-TCAM)

Spitznagel, Taylor, and Turner recently introduéedended TCAME-TCAM) to address two of
the primary inefficiencies of Ternary Content-Addressable Memory (TCAM): power cgstgmm
and storage inefficiency. Recall that in standard TCAM, a single filter including two payésare-
quires up t@(w — 1)2 entries wherev is the number of bits required to specify a point in the range.
Thus, a single filter with two fields specifying ranges on 16-bit port numbers requires8@seén

the worst case. The authors found that storage efficiency of TCAMs for real filter setsraom
16% to 53%; thus, the average filter occupies between 1.8 and 6.2 TCAM entrigspBynenting
range matching directly in hardware, E-TCAM avoids this storage inefficiency at thefastnall
increase in hardware resources. When implemented in standard CMOS technologg anatch-
ing circuit requires 44 transistors. This is considerably more than the 1&nsistors required for
prefix matching; however, the total hardware resources saved by eliminatingpesén factor
for typical packet filter sets far outweighs the additional cost per bit for haelveenge matching.
Storing a filter for the standard IPv4 5-tuple requires approximately 18% more transistors per entry
This is a small increase relative to the 180% to 620% incurred by filter replication.

Given a query word, TCAMs compare the query word against every entry word irethe d
vice. This massively parallel operation results in high power consumption. E-TCAMesgagver
consumption by limiting the number of active regions of the device during a se@fah second
architectural extension of E-TCAM is to partition the device into blocks that may be émdiemtly
activated during a query. Realistic implementations would partition the device intksbtapable
of storing hundreds of filters. In order to group filters into blocks, E-TCAM uses a multi-phase
partitioning algorithm similar to the previously discussed “cutting” algorithms. The key diffesenc
in E-TCAM are that the depth of the “decision tree” used for the search is strictly limited by the
hardware architecture and a query may search several “branches” of the decisionpeagallel.
Figure 4.12 shows an example of an E-TCAM architecture and search using the ekiftermdet
in Table 4.2.

In this simple example, filter blocks may store up to four filters and the “decision tree” depth
is limited to two levels. The first stage of the search queriegithex blockwhich contains one entry
for each group created by the partitioning algorithm. For each phase of the parttegorithm
except the last phase, a group is defined which completely contains ab fiitests whereb is the
block size. Filters “overlapping” the group boundaries are not included in the gitvgfinal phase
of the algorithm includes such “overlapping” filters in the group. The number cfgshdetermines
the number ofndexentries that may match a query, and hence the number of filter blocks tttht nee

75

—»| 1010, [2:2],a

1100, [5:5],b
00**, [0:4], g
0%+ [0:3], h
Index Block 0101, [8:8].c
query ****’ 05
0110, 11 [0:5] 001*, [9:15],f
*xxk [7:15] 1% [7:15], |
*o%, [0:15
[] 0***, [11:11], k

—P hkkk [6:6], d
111*, [0:15],e
0110, [0:15]

Figure 4.12: Example of searching the filter set in Table 4.2 usingxdended TCAME-TCAM)
using a two-stage search and a filter block size of four.

to be searched. A geometric representation of the groupings created for ounexisustown in
Figure 4.13. Returning to our example in Figure 4.12, the matching entriesiitdsebloclactivate

the associated filter blocks for the next stage of the search. In this case, two filter énledcive.

Note that all active filter blocks are searched in parallel; thus, with a pipelined imptatita
E-TCAM can retain single-cycle lookups. Simulations show that E-TCAM requires less than five
percent of the power required by regular TCAM. Also note that multi-siadex blocksan be used

to further reduce power consumption and provide finer partitioning of the filter set.

4.3.7 FatInverted Segment (FIS) Trees

Feldman and Muthukrishnan introduced another framework for packet classificatignndspen-

dent field searches dfat Inverted Segme(iE1S) Treeq27]. Like the previously discussed “cutting”
algorithms,FIS Treesutilize a geometric view of the filter set and map filters idtdimensional
space. As shown in Figure 4.14, projections from the “edges” ofthienensional rectangles spec-
ified by the filters define elementary intervals on the axes; in this case, we form elemetaaugiin

on theAddressaxis. Note that we are using the example filter set shown in Table 4.2 where filters
contain two fields: a 4-bit address prefix and a range covering 4-bit port numiefitters will
define a maximum of = (2N + 1) elementary intervals on each axis. KiS Treeis a balanced
t-ary tree with! levels that stores a set of segments, or ranges. Noteé ha2/ + 1)/ is the max-
imum number of children a node may have. The leaf nodes of the tree cordespibie elementary

76

15
14
13

Port
PP |
oll—\lwlw.bmovxlloo|©|0l—‘r\>|

o|1|2|3 4| 5| 6| 7| 8 9 1b11| 1[213 14 15

Address

Figure 4.13: Example of partitioning the filter set in Table 4.2 folExtended TCAME-TCAM)
with a two-stage search and a filter block size of four.

intervals on the axis. Each node in the tree stores a canonical set of ranges sticé thabon of
the canonical sets at the nodes visited on the path from the leaf node associated efigmténtary
interval covering a poinp to the root node is the set of ranges containing
As shown in Figure 4.14, the framework starts by buildingFd& Treeon one axis. For
each node with a non-empty canonical set of filters, we construEi@ireefor the elementary
intervals formed by the projections of the filters in the canonical set on the next axisfigilt® in
the search. Note that &S Treeis not necessary for the last packet field. In this case, we only
need to store the left-endpoints of the elementary intervals and the highest priority filegmcov
the elementary interval. The authors propose a method to usegest Prefix Matchingechnique
to locate the elementary interval covering a given point. This method requirest® frparefixes.
Figure 4.14 also provides an example search for a packet with address 2, andrpbgr
11. A search begins by locating the elementary interval covering the first packetrfietgtal [2 : 3]
on theAddressaxis in our example. The search proceeds by following the parent pointershiShe
Treefrom leaf to root node. Along the path, we follow pointers to the sets of elementaryatgerv
formed by thePort projections and search for the covering interval. Throughout the search, we

77

Port

Figure 4.14: Example dfat Inverted SegmerEIS) Treesfor the filter set in Table 4.2.

remember the highest priority matching filter. Note that the basic framework requiresfacaign
amount of precomputation due to its use of elementary intervals. This property ooe=adily
support dynamic updates at high rates. The authors propose several data strugrngstations
to allow dynamic updates. We do not discuss these sophisticated augmentationspbiritcbut
that they incur a performance penalty. The authors performed simulations with cegyimetic

78
filter sets containing filters classifying on source and destination address prefixes. For filter sets
ranging in size from 1k to 1M filters, memory requirements ranged from 100 to 60 bytes ger filte
Lookups required between 10 and 21 cache-line accesses which amounts168Ward accesses,
assuming 8 words per cache line.

4.4 Decomposition

Given the wealth of efficient single field search techniques, decomposing a multiglederch
problem into several instances of a single field search problem is a viable approachloyiggp
this high-level approach has several advantages. First, each single field searehopayetes
independently, thus we have the opportunity to leverage the parallelism offereadgymhardware.
Performing each search independently also offers more degrees of freedom in ogtaizmtype
of search on the packet fields. While these are compelling advantages, decargosilti-field
search problem raises subtle issues.

The primary challenge in taking this high-level approach lies in efficiently aggregiuing
results of the single field searches. Many of the techniques discussed in this section usmElargen
of the filters to facilitate result aggregation. Due to the freedom in choosing single field seaneh
nigues and filter encodings, the resource requirements and achievable perfoxagndrastically
among the constituent techniques — even more so than with decision tree techhimit#sg and
managing the number of intermediate results returned by single field search engisesisracial
design issue for decomposition techniques. Single field search engines often must retutimamo
one result because packets may match more than one filter. As was highlightteel fevious
discussion of usingsrid-of-Triesfor filters with additional port and protocol fields, it is not suffi-
cient for single field search engines to simply return the longest matching prefix forrafgiee
field. The best matching filter may contain a field which is not necessarily the longegtingatc
prefix relative to other filters; it may be more specific or higher priority in other fields. As #,resu
techniques employing decomposition tend to leverage filter set characteristics thathalio to
limit the number of intermediate results. In general, solutions using decomposition tenatto p
vide the high throughput due to their amenability to parallel hardware implemergafldre high
level of lookup performance often comes at the cost of memory inefficiendyrence, capacity
constraints.

4.4.1 Parallel Bit-Vectors (BV)

Lakshman and Stiliadis introduced one of the first multiple field packet classification algotéghms
geted to a hardware implementation. Their seminal technique is commonly refersstthéolaicent
bit-vector scheme dParallel Bit-Vectors(BV) [52]. The authors make the initial assumption that
the filters may be sorted according to priority. Like the previously discussed “cutting” algorithms,
Parallel BV utilizes a geometric view of the filter set and maps filters idimensional space. As

79

Port Bit Vectors
abc defg hijk

15

14

13

000 0110 0110 12

000 0110011111

10

— f

000 01100110 9 i

001 0100 0110 c
—— - — ___I. —

000 0100 0110

7
00011000100 6
010 0100 0100 5

4

=
-_— e e e - e - -

—_— =

Oley _ L1 Jd_1-L
|
|
I 1
-
|
QD

o

000 0101 0100
000 0101 1100
00001011100 3
100 0101 1100 2

«
|
|
—
—I
|
|
|
|

|
L

|
N A B A e e I e

|

=

000 0101 1100 L |
0

o

000 1001 1001+~

_&H |
w
[EEN
N |
el

000 1000 0010

_% 3
0oy _

001 1000 1001¢n
100 1000 0010, _,

_—— o o] ——
000 1000 0010~

000 1011 1001
000 1000 10
"000 1000 1101,
000 1000 1001,
000 1000 00
S — .
010 1000 0010
000 1100 0010

Address Bit Vectors
abc defg hijk

Figure 4.15: Example of bit-vector construction for tRarallel Bit-Vectorstechnique using the
filter set shown in Table 4.2.

shown in Figure 4.15, projections from the “edges” of théimensional rectangles specified by the
filters define elementary intervals on the axes. Note that we are using the example fiteovset
in Table 4.2 where filters contain two fields: a 4-bit address prefix and a range covdringott
numbers.N filters will define a maximum of2N + 1) elementary intervals on each axis.

For each elementary interval on each axis, we defind& drit bit-vector. Each bit position
corresponds to a filter in the filter set, sorted by priority. All bit-vectors are initialized to all ‘Ots. Fo
each bit-vector, we set the bits corresponding to the filters that overlap the associatedtaig
interval. Consider the interval2 : 15] on thePort axis in Figure 4.15. Assume that sorting the
filters according to priority places them in alphabetical order. Filterg, 7, andj overlap this
elementary interval; therefore, the bit-vector for that elementary inter¢abigl 100110 where the

80
bits correspond to filterg throughk in alphabetical order. For each dimensignve construct an
independent data structure that locates the elementary interval covering ggimerthen returns
the bit-vector associated with that interval. The authors utilize binary search, but @ioaation
algorithm is suitable.

Once we compute all the bit-vectors and constructdio@ata structures, searches are rela-
tively simple. We search thé data structures with the corresponding packet fields independently.
Once we have all bit vectors from the field searches, we simply perform the bit-wis® of all
the vectors. The most significant ‘1’ bit in the result denotes the highest priority matchimg filte
Multiple matches are easily supported by examining the most significant set of bits in thimgesu
bit vector.

The authors implemented a five field version in an FPGA operating at 33MHz with five
128Kbyte SRAMSs. This configuration supports 512 filters and performs one million loolarps p
second. Assuming a binary search technique over the elementary intervals, thel Baredlel
BV approach ha®)(lg NV) search time and a rather unfavorabléN?) memory requirement. The
authors propose an algorithm to reduce the memory requireméntXdog V) using incremental
reads. The main idea behind this approach is to store a single bit vector for eaclsidmamnd a
set of N pointers of sizdog N that record the bits that change between elementary intervals. This
technique increases the number of memory accessé¥ bylog V). The authors also propose a
technique optimized for classification on source and destination address prefixestociyywe do
not discuss here.

4.4.2 Aggregated Bit-Vector (ABV)

Baboescu and Varghese introduced #wggregated Bit-Vecto(ABV') algorithm which seeks to
improve the performance of tHearallel BVtechnique by leveraging statistical observations of real
filter sets [54].ABV converts all filter fields to prefixes, hence it incurs the same replication penalty
as TCAMs which we described in Section 4.2.2. ConceptudlBYV starts withd sets of N-bit
vectors constructed in the same manner aarallel BV. The authors leverage the widely known
property that the maximum number of filters matching a packet is inherently limitedhirilter

sets. This property causes thebit vectors to be sparse. In order to reduce the number of memory
accessesABYV essentially partitions thév-bit vectors intoA chunks and only retrieves chunks
containing ‘1’ bits. Each chunk isX | bits in size. Each chunk has an associated bit iriabit
aggregate bit-vector. If any of the bits in the chunk are set to ‘1", then the corréspdritlin the
aggregate bit-vector is set to ‘1. Figure 4.16 provides an example using the filter satledr2.

Each independent search on th@acket fields returns aA-bit aggregate bit-vector. We
perform the bit-wiseAND on the aggregate bit-vectors. For each ‘1’ bit in the resulting bit-vector,
we retrieve thel chunks of the originalN -bit bit-vectors from memory and perform a bit-wiaaID.

Each ‘1’ bit in the resulting bit-vector denotes a matching filter for the packBV also removes
the strict priority ordering of filters by storing each filter’s priority in an array. This allows us to

81
Port Bit Vectors

abc defg hijk
15 |
14 |
— |
ABY 1] .
011 000 0110 0110 12 I
011 000 0110 0111 11 k1
10 | j
011 000 0110 0110 9 I i
111 001 0100 0110 8 c
e [[|
011 000 0100 0110 7 L1
011 000 11000100 6 I dl | I
011 010 0100 0100 5 | I 1 | b
011 000 0101 0100 4 gl ' T
011 000 0101 1100 3 N - ol
—_——em e e = = e =] === = 1 1
111 100 0101 1100 2 L. 4hj | al | e
011 000 0101 1100 1 I I I I
0 | | I 1 1 1
o o|1r2|3 4—|5 6| 7 8|§|1F11| 1F13 14 18
5 = I =R = otolaololo o
~ o ololololo glalalals =
8 S S 6.6 4 6 O ©'9 9 O o
SE1 1 daiZiZigiZe Sisigisise S
bﬁgl 31 S181818181 8181818181 21
8§31 o1 olol=lalal olojalalal ol
53 S s'a'o'e'e S alo =18 S
b | e Sl e el el e | C171°1°1°1 |
> — — — — — — — — — — — —
m — — — — — — — — — — — —
< o o o — o o o — o — o o

Figure 4.16: Example of bit-vector and aggregate bit-vector construction fokghgeegated Bit-
Vectorstechnigue using the filter set shown in Table 4.2.

reorder the filters in order to cluster ‘1’ bits in the bit-vectors. This in turn reduces the nuhber
memory accesses. Simulations with real filter sets showABatreduced the number of memory
accesses relative teéarallel BV by a factor of a four. Simulations with synthetic filter sets show
more dramatic reductions of a factor of 20 or more when the filter sets do notrcantawildcards.

As wildcards increase, the reductions become much more modest.

82
4.4.3 Crossproducting

In addition to the previously describe@rid-of-Tries algorithm, Srinivasan, Varghese, Suri, and
Waldvogel also introduced the semir@ossproductingechnique [53]. Motivated by the observa-
tion that the number of unique field specifications is significantly less than the nurinfiégrs in

the filter setCrossproductingutilizes independent field searches then combines the results in a sin-
gle step. For example, a filter set containing 100 filters may contain only 22 uniqueesaddress
prefixes, 17 unique destination address prefixes, 11 unique source port rang€sossproduct-

ing begins by constructing sets of unique field specifications. For example, all of the destination
address prefixes from all the filters in the filter set comprise a set, all the source address prefixes
comprise a set, etc. Next, we construct independent data structures for eachrettitha single

best matching entry for a given packet field. In order to resolve the best matchinfpfiltiee given
packet from the set of best matching entries for each field, we construct a tablesspducts.

In essence, we precompute the best matching filter for every possible combinaticults fieom

the d field searches. We locate the best matching filter for a given packet by using tbeteson
nation of results from the independent lookups as a hash probe into the crosspatdizicthus,
5-tuple classification only requires five independent field searches and a single peotable of
crossproducts. We provide a simple example for a filter set with three fields in Figure 4.i&7. No
that the full crossproduct table is nhot shown due to space constraints.

Given a parallel implementatio&rossproductingan provide high throughput, however it
suffers from exponential memory requirements. For a séX difters containing/ fields each, the
size of the crossproduct table can gronQ0N?). To keep a bound on the table size, the authors
proposeOn-demand Crossproductivghich places a limit on the size of the crossproduct table and
treats it like a cache. If the field lookups produce a result without an entry in the crdssptable
of limited size, then we compute the crossproduct from the filter set and store it in thé tabke
performance of this scheme largely depends upon locality of reference.

Finally the authors propose a combined scheme that seeks to leverage the strebgths of
Grid-of-Triesand Crossproducting The scheme utilize&rid-of-Triesto perform the destination
then source prefix matches aBGdossproductindor ports and flags. The search terminates as soon
as a matching filter is found. This assumes that the most specific filters are the highest priority
and that a non-overlapping filter set can be constructed. Using optimistic assumptiardimgg
caching, the authors claim that a full filter match requires a worst case of 12 meouaigsas.

4.4.4 Recursive Flow Classifi cation (RFC)

Leveraging many of the same observations, Gupta and McKeown introRezrdsive Flow Clas-
sification(RFC) which provides high lookup rates at the cost of memory inefficiency [50]. The au
thors introduced a unique high-level view of the packet classification problem. Edigeptaket

4Cache entry replacement algorithms can be used to decide which entry to overwréeim-demand crossproduct
table.

83

Filter Set Field Sets

Filter Address | Port Protocol Address Port Protocol

a 000* [0:1] | TCP 000* [0:1] TCP

b 001~ [0:1] [TCP 001* [1:1] UDP

c 1101 [1:1] UbDP 1101 [5:15] *

d 10* [5:15] | uDbP 10* [0:15]

e 001* [5:15] | UDP 111*

f 111* [0:15] UDP *

g 000* [5:15] | UDP J\ /L

h 107 [0:4] Tep Table of Crossproducts

i 001* [1:1] | TCP
Address | Port Protocol | Best

i * [0:15] UDP Match

k " [0:15] | * 000+ | [0:1] | TcP a
000* [0:1] | uDP j
000* 0:1] | * k
000* [1:1] | TCP a
000* [1:1] UDP j
000* [1:1] * k
111* [5:15] | TCP k
111* [5:15] | UDP i
111* [5:15] | * k
* [0:15] | * k

Figure 4.17: Example d€rossproductindechnique for filter set with three fields; full crossproduct
table is not shown due to space constraints.

classification can be viewed as tteeluctionof anm-bit string defined by the packet fields t& it
string specifying the set of matching filters for the packet or action to apply to thetp&ckeclas-
sification on the IPv4 5-tuplen is 104 bits and is typically on the order of 10 bits. The authors
also performed a rather comprehensive and widely cited study of real filter setsteaudaxkseveral
useful properties. Specifically, they noted that filter overlap and the associated nofnolisimct

84
regions created in multi-dimensional space is much smaller than the worst c@4e®©f For a
filter set with 1734 filters the number of distinct overlapping regions in four-dimensipaale was
found to be 4316, as compared to the worst case which is approximately

Similar to theCrossproductingechnique RFC performs independent, parallel searches on
“chunks” of the packet header, where “chunks” may or may not correspmpacket header fields.
The results of the “chunk” searches are combined in multiple phases, rather thateatpas in
CrossproductingThe result of each “chunk” lookup and aggregation steRfCis an equivalence
class identifiereqlD, that represents the set of potentially matching filters for the packet. The
number ofeqlDsin RFCdepends upon the number of distinct sets of filters that can be matched by
a packet. The number efjIDsin an aggregation step scales with the number of unique overlapping
regions formed by filter projections. An example of assigreagDsis shown in Figure 4.18. In
this example, the rectangles. .., k are defined by the two fields of the filters in our running
example filter set in Table 4.2. In general, these could be rectangles defined projibetions
of two “chunks” of the filters in the filter set. Note that the fields create nine equivalelasses
in the port field and eight equivalence classes in #ugresdield requiring 4-bit and 3-bieqlDs
respectively.

RFC lookups in “chunk” and aggregation tables utilize indexing; the address for bhe ta
lookup is formed by concatenating teglDsfrom the previous stages. The resulte@Dis smaller
(fewer number of bits) than the address; tHREC performs a multi-stageeductionto a finaleqlD
that specifies the action to apply to the packet. The use of indexing simplifies the lpaagss at
each stage and allov®FCto provide high throughput. This simplicity and performance comes at
the cost of memory inefficiency. Memory usage for less than 1000 filters ranged frowharfered
kilobytes to over one gigabyte of memory depending on the number of stlgeswuthors discuss
a hardware architecture using two 64MB SDRAMs and two 4Mb SRAMSs that could perform 30
million lookups per second when operating at 125MHz. The index tables usegdiagation also
require significant precomputation in order to assign the prepéd for the combination of the
eqlDs of the previous phases. Such extensive precomputation precludes dyndatiesugt high
rates.

4.45 Parallel Packet Classifi cation f2C)

The Parallel Packet Classificatio(P?C) scheme introduced by van Lunteren and Engbersen also
falls into the class of techniques using decomposition [28]. The key noveltiéd@fare its encod-

ing and aggregation of intermediate results. Similar toRaellel Bit-VectorandRFCtechniques,
P?C performs parallel searches in order to identify the elementary interval covering aekét p
field. The authors introduce three techniques for encoding the elementary intermaésifoy the
projections of filter fields. These techniques explore the design tradeoffs betwestie speed,
space efficiency, and lookup complexity. For each field of each fité€; computes the common

85

Port
RFC gl D
15 |
— I
14
— I
13 I
0000 efij 12 ,
0001 ef,ijk 11 k1
10 | j
A f l .
0000 efij 9 |
0010 c,e,i 8. L 1 C
0011 eij 7 1 1 1
0100 dei 6 I dl | I
0101 b,ei 5 | I 1 | b
0110 egi 4 g! j T .
_=——— | 1
0111 e, g,h,i 3
g 1 T (RN IR NN [S E Ep 1
1000 a.e.9.hi 2 N _ L ol B e
1] I I T
0111 eghi 0 AN ! L _
o|1r2|3 4—|5 6|l 7 8|§|1F11I 1F13 14|1é
S0 ZIZEEEEEEL SISISISIsE S
g1 1 21C1ZI51°] 1 1°1 1 °l
%8' ol alolalslsl olalololol |
<gp 81 8131819131 SIS 1S9 9

Figure 4.18: Example dRecursive Flow ClassificatiofiRFC) using the filter set in Table 4.2.

bits of all the encodings for the elementary intervals covered by the given filter fldls com-
putation produces a ternary search string for each filter field. The ternary strings for eaendield
concatenated and stored in a TCAM according to the filter priority.

Figure 4.19 shows an example of the first, and most update effi¢iit,encoding tech-
nique for theport fields of the filters in Table 4.2. In this encoding technique, we organize the
ranges defined by the filters in the filter set into a multi-layer hierarchy such that the eregeh
layer are non-overlapping and the number of layers is minimized. Note thatithiear of layers is
equal to the maximum number of overlapping ranges for any port numbeach layer, we assign
a unique label to the ranges using the minimum number of bits. Within each lagemsenot
covered by a range may share the same label. Next, we compute an intermediatédsifar each
elementary intervalXy, ..., Xy, defined by the filter fields. We form an intermediate bit-vector

86
Layer, [vector bits]

3,[6:5] 4 21 : 00 : iO: 00
2,143 | ot = ;
1,[2:0] 000 :0;)]: 000 | gllO 31:1 0(?001:00 f 101 :

o|1|2|3|4|5]6| 7|8 o 1pra] 1p1al 14 19

Elementary | Intermediate Filter Ternary Match

Interval Vector[6:0] Condition

X, 0101000 a 0101001

5 0101001 b 0000010

X5 0101000 c 0000100

X, 0001000 d 0000011

X 0000010 e rkdk

X5 0000011 f 0*11101

X, 0011000 g 0*0100*

Xg 0011100 h 010100*

Xy 0011101 i ko

Xy0 1011101 j 0*11*0*

X1 0011101 k 1011101

Figure 4.19: Example dParallel Packet ClassificatioiP2C) using the most update-efficient en-
coding style for the port ranges defined in the filter set in Table 4.2.

by concatenating the labels for the covering ranges in each layer. Consichengdey intervalX,
which is covered by rangk(01) in layer 3,¢(01) in layer 2, andz(001) in layer 1; its intermediate
bit vector is0101001. Finally, we compute the ternary match condition for each filter by computing
the common bits of the intermediate bit-vectors for the set of elementary intervaleddweeach
filter. For each bit position in the intermediate bit-vectors, if all elementary intervals sleasaitine
bit value, then we assign that bit value to the corresponding bit position of the teragek siring;
otherwise, we assign a “don’t care’, to the bit position in the ternary match string. Consider filter
g which covers elementary intervals;, X5, X3, andX,. For all bit-vectors, the most significant
bit is ‘0’ but they differ in the next bit position; thus, the ternary match stringsfbegins with0x.
Once we construct the table of ternary match strings for each filter field, we contestiena
field strings associated with each filter and store it in a TCAM. Strings are stored in order of filter

87
priority. We also construct a data structure for each filter field which returns the intermediate bit-
vector for the elementary interval covering the given packet field. A searctebottee best-matching
filter for a packet by searching these data structures in parallel, concatenating thedistenit-
vectors to form a search key, and querying the TCAM with the search key. For the féidle
searches, the authors employ BBARTstechnique which restricts independent field searches to
be either prefix or exact match [65]. Arbitrary ranges must be converted to prefixesasing
the number of unique field specifications. The primary deficiencif is its use of elementary
intervals, as a single filter update may add or remove several elementary intervadsHoliedd.
When using the most space efficient encoding techniques, it is possible for one diltate Lo
require updates to every primitive range encoding. Using the most update efnmrding, the
number and size of intermediate results grows super-linearly with the number of filtersa Fo
sample filter set of 1733 filters?2C required 2k bytes of SRAM and 5.1k bytes of TCAM. The
same filter set requires 24k bytes using a standard TCAM exclusively,RhGsreduced TCAM
storage requirements by a factor of 4.7 and required only 1.2 bytes of SRANt@er

4.4.6 Distributed Crossproducting of Field Labels (DCFL)

Distributed Crossproducting of Field Label®CFL) leverages filter set characteristics, decomposi-
tion, and a novel labeling technique to construct a packet classification techaige&ed to high-
performance hardware implementation. We provide a complete description of DCHiajt&t 7,
but include a brief introduction to the algorithm here in order to place it in context wathaly of
related work. Two observations motivated the development of DCFL.: the structrealdiiter sets
and advancements in integrated circuit technology. As we discuss in Chapterféund that the
number of unique filter field values matching a given packet are inherently limiteal filter sets.
Likewise, the number of combinations of unique filter field values matching a gigeket are also
limited. As we discuss in Section 4.7, modern Application Specific Integrated Circuits (ASiGs) a
Field-Programmable Gate Arrays (FPGAs) provide millions of logic gates and hundredgef la
multi-port embedded memory blocks in a single device. Using a high degree défisma DCFL
employs independent search engines for each filter field and aggregates tteeafesach field
search in a distributed fashion; thus, DCFL avoids the exponential increase in timecerispa
curred when performing this operation in a single step as in the oriGimaisproductingechnique
discussed in Section 4.4.3.

The first key concept in DCFL is labeling unique field values with locally unique labels. In
Figure 4.20, we show the labeling step for the same example filter set used in Figuré\d.i7.
CrossproductingDCFL begins by creating sets of unique filter field values. Note that DCFL assigns
a locally unigue label to each field value and records the number of filters spedifgfigld value
in the “count” value. The count values are incremented and decremented rassfileeifying the
corresponding fields are added and removed from the filter set. A data structure in a fielid searc
engine or aggregation node only needs to be updated when the “count’ alzimges from 0 to

88

1 or 1to 0. Given the sets of labels for each field, we can construct a uniquddakeach filter
by simply concatenating the labels for each field value in the filter. For example jfittety be
uniquely labeled by5, 3, 1), where the order of field labels i8ddress, Port, Protocdl The use of
labels allows DCFL to aggregate the results from independent field searches usingnéetrsip
data structures that only store labels corresponding to field values and combinafiets ailues
present in the filter table. As shown in tRert-Protocol Label Sein the first aggregation node in
Figure 4.21, we represent the unique combinations of port and protocol waleeified by filters in
the filter set by concatenating the labels for the individual field v&lues

We provide an example of a DCFL search in Figure 4.21 using the filter set and labeling
shown in Figure 4.20 and a packet with the following header fields: address 0611, mnd
protocol TCP. We begin by performing parallel searches on the individual piéelkls and returning
all matching results. In Figure 4.21 we employ a range tree for the port ranges, a dikegi table
for the protocol fields, and a binary trie for the address prefixes. Note that varioussoptishfor
each type of search and DCFL allows each search engine to apply local optimsz&iGFL allows
intermediate result aggregation to occur in any order. In our example, we firsgatgtke results
from the port and protocol field searches. We form the set of all possible matching pogproto
pairs, Fyuery (y, 2), by computing the crossproduct of the results from the field searches. Since the
field searches returned three port range labels and two protocol field l&hgls,(y, z) contains
six port-protocol labels. For each labelify,.,(y, z), we perform a set membership query in the
Port-Protocol Label SetLabels that are members of the set are passed on to the next aggregation
node. DCFL utilizes several efficient data structures for performing set membership queries in
aggregation nodes. Note that three port-protocol labels are passed on to the gregdtan
node. We perform the same steps to form the set of possible matching filter [Bhgls,(z, y, 2),
and probe thd-ilter Label Set In this example, three filters match the packet. The labels for the
matching filters are passed on to a final priority resolution stage that selects the highest priority filter
or set of filters.

In addition to the labeling concepts and efficient set membership data structures, we also
introduce the concept d¥leta-Labelingwhich reduces the memory requirements for aggregation
nodes. They also provide techniques for minimizing the number of set membetshipsjat each
aggregation node by computing the optimal ordering of aggregation noddisntittty the number
of labels returned by field search engines. The latter is achieved by a novel teziocaitpdField
Splitting which we do not discuss in this survey. Using a collection of 12 real filter sets and the
ClassBenchools suite, we provide analyses DCFL performance and resource requirements on
filter sets of various sizes and compositions in Section 7.7. For the 12 real filter setspwe sh
that the worst-case number of sequential memory accesses is at most ten argl ,egoicements
are at most 40 bytes per filter. Based on these results, an optimized implementddGflotan

®Count values are maintained for the sets of unique fi eld value combinations, lisetshef unique fi eld values shown
in Figure 4.20. We do not show the count values in the example in Figure 4.21.

89

Filter Set

Filter | Address | Port Protocol | Label

a 000* [0:1] TCP (0,0,0)
b 001* [0:1] TCP (1,0,0)
c 1101 [1:1] | UDP (2,1,1)
d 10* [5:15] | UDP (3.2,1)
e 001* [5:15] | UDP (1,2,1)
f 111~ [0:15] UDP 4,3,1)
g 000* [5:15] | UDP (0,2,1)
h 10* [0:1] TCP (3,0,0)
i 001* [1:1] | TCcP (1,1,0)
j * [0:15] | UDP (5,3,1)
k * [0:15] | * (5,.3,2)

e

Address | Label | Count Port Label Count
000* 0 2 [0:1] 0 3
001* 1 3 [1:1] 1 2
1101 2 1 [6:15] | 2 3
10* 3 2 [0:15] | 3 3
111~ 4 1

Protocol | Label | Count
* 5 2

TCP 0 4

UDP 1 6

* 2 1

Figure 4.20: Example of encoding filters with field labeldirstributed Crossproducting of Field
Labels(DCFL) using same filter table as Figure 4.17; count values support dynamic updates.

provide over 100 million searches per second and storage for over 200 thdilieasdvith current
generation hardware technology. Like several other packet classification teetrfLiFL provides
the freedom to trade off memory for higher throughput. We also show that addiadditional

aggregation node increases memory requirements by a modest 12.5 bytesrpd@dta on this
observation, we assert that DCFL demonstrates scalability to additional filter fields.

packet| 0011 | 1 | TCP | payload
R S
S VT A
[0:15] 5
3 B TCP | 0,2
UDP | 1,2
[0:1] [5:15]
0 2 Matching
Protocol
[1:1] Labels
1 0,2
: Matching
Pl\gztfgggs Address Labels 2
0,13 L5
Matching
FauentY:2) Port-Protocol Fouen(X:Y,Z
(0,0) (0,2) Labels (1,0,0) (5,0,0) (1,1,0)
(1,0) (1,2) (0,0) (5,1,0) (1,3,2) (5,3,2)
(3.0) (3.2) (1,0)
(3.2) ¢

!

Port-Protocol
Label Set
(0,0) (1,1) (2,2)
(3,1) (1,0) (3,2)

Aggregation Node

Filter Label Set
(0,0,0) (1,0,0) (2,1,2)
(3,2,1) (1,2,1) (4,3,1)
(0,2,1) (3,0,0) (1,1,0)

(5,3,1) (5,3,2)

Aggregation Node

90

Matching
Filter Labels
(1,0,0)b
(1,1,0)i
(5,3,2)k

Figure 4.21: Example of search usiDgstributed Crossproducting of Field Labgl®CFL)

4.5 Tuple Space

We have discussed three high-level approaches to the packet classification praisiésm thhe last
high-level approach in our taxonomy attempts to quickly narrow the scope oftiplmtield search
by partitioning the filter set by “tuples”. A tuple defines the number of specified bitsdn fld

of the filter. Motivated by the observation that the number of distinct tuples is msstthan the
number of filters in the filter set, Srinivasan, Suri, and Varghese introduced the tupdeegymoach
and a collection offuple Space Searcigorithms in a seminal paper [66].

91

Table 4.3: Example filter set; address fields are 4-bits and port ranges cover 4t biipders.

Filter | SA DA | SP DP Prot Tuple

a 0x 001 [2:2 |0:15 | TCP [1,3,2,0,1]

b 01« | Ox 0:15{0:4 |UDP | [2,1,0,1,1]

c 0110 | 0011 | 0:4 | 5:15 | TCP [4,4,1,1,1]

d 1100 | = 5:1512:2 | UDP | [4,0,1,2,1]

e 1x 110« [2:2 [0:15 | UDP | [1,3,2,0,1]

f 10% | 1x 0:1510:4 | TCP [2,1,0,1,1]

g 1001 | 1100 |0:4 | 5:15 | UDP | [4,4,1,1,1]

h 0011 | = 5:1512:2 | TCP [4,0,1,2,1]

] 0 110« {2:2 [0:15 | UDP | [1,3,2,0,1]

J 10% | Ox 2:2 |2:2 |TCP 2,1,2,2,1]

k 0110 | 1100 | 0:15 | 0:15 | ICMP || [4,4,0,0,1]

l 1110 | = 2:2 | 0:15 | % [4,0,2,0,0]
Nesting Level Range D

0 0 :

1 0 : L :

2 0

[olsfz]af4]s[6] 7] 8] of 1pay sp13f 14 19

Figure 4.22: Example of assigning tuple values for ranges basbigsing LeveandRange ID

In order to illustrate the concept of tuples, we provide an example filter set of filters clas-
sifying on five fields in Table 4.3. Address prefixes cover 4-bit addresses and pgesraover
4-bit port numbers. For address prefix fields, the number of specified bits is simply rifgenu
of non-wildcard bits in the prefix. For the protocol field, the value is simply a Bool&nf a
protocol is specified, ‘0’ if the wildcard is specified. The number of specified bits inrtaraoge
is not as straightforward to define. The authors introduce the concepissting LevendRange
ID to define the tuple values for port ranges. Similar to ¥ encoding technique discussed in
Section 4.4.5, all ranges on a given port field are placed into a non-overlagpiagchy. TheNest-
ing Levelspecifies the “layer” of the hierarchy and tRange IDuniquely labels the range within
its “layer”. In this way, we convert all port ranges toMgsting Level, Range)pair. TheNesting
Levelis used as the tuple value for the range, andRlarge IDis used to identify the specific range
within the tuple. We show an example of assigniesting LeveandRange IDfor the source port
ranges of Table 4.3 in Figure 4.22. Given these definitions of tuple values, weelistgle of each
filter in Table 4.3 in the last column.

Since the tuple specifies the valid bits of its constituent filters, we can probe tuples for
matching filters using a fast exact match technique like hashing. We probe a tuplentatiching

92
filter by using the bits of the packet field specified by the tuple as the search keydrople, we
construct a search key for the tuple 3, 2, 0, 1] by concatenating the first bit of the packet source
address, the first three bits of the packet destination addredRatige 1Dof the source port range
at Nesting LevePR covering the packet source port number, Range IDof the destination port
range alNesting LeveD covering the packet destination port number, and the protocol field.

All algorithms using the tuple space approach involve a search of the tuple spasghsed
of the tuples in the space. Probes to separate tuples may be performed indepgetidentlyple
space technigues can take advantage of parallelism. The challenge in desigaradiel imple-
mentation lies in the unpredictability of the size of the tuple space or subset to be skeaksha
result the realizable lookup performance for tuple space techniques varies widglgtlentations
of tuple space techniques can also be made memory efficient due to the eftectipression of the
filters. The masks or specification of valid bits for filters in the same tuple only needs to be stored
once; likewise, only the valid bits of those filters need to be stored in memory. For filterisets
many fields and many wildcards within fields, tuple space techniques can be moeeesipeient
than theO (V) exhaustive techniques discussed in Section 4.2.

4.5.1 Tuple Space Search & Tuple Pruning

The basicTuple Space Seardkchnigue introduced by Srinivasan, Suri, and Varghese performs an
exhaustive search of the tuple space [66]. For our example filter set in Table gedych would
have to probe seven tuples instead of searching all 12 filters. Using a modest set fifereal
sets, the authors found thatiple Space Searaleduced the number of searches by a factor of four
to seven relative to an exhaustive search over the set of filtdiise basic technique can provide
adequate performance for large filter sets given favorable filter set propertiesmsdiaely parallel
implementation.

Motivated by the observation that no address has more than six matching prefixeg-in ba
bone route tables, the authors introduced techniques to limit the number of tugtiesédd to be
searched exhaustivelyeruned Tuple Space Searobduces the scope of the exhaustive search by
performing searches on individual filter fields to find a subset of candidate tuples. &wifesld
or combinations of fields may be used for pruning, the authors found that pranitige source
and destination address strikes a favorable balance between the reduction imteangiths and
overhead for the pruning steps. We provide an example of pruning on the sodrdestmation
addresses in Figure 4.23. In this case, we begin by constructing tries for the sourestimatidn
address prefixes in the filter set in Table 4.3. Nodes representing valid prefixes stord tufitd®
containing filters that specify the prefixWe begin aPruned Tuple Space Searbly performing
independent searches of the source and destination tries. The result of each sadisthoisall

5We make a simplifying assumption that a probe to a tuple is equivalent to examinénfilter in an exhaustive
search.
"Note that the list of tuples may also be represented as a bitmap asRartikel BVtechnique.

93
Source Address Pruning Trie

[1,3,2,0,1 [1,3,2,0,1]

2.1011] 6
210.L1] [2,1,221]

40,1,2,1
| E’j'é'cl)’ﬂ [441,11] [40121] [4,0200]
Destination Addre[&Asr ngnzinﬁ Trie Example
W, 1,2, SA: 1001
[4,0,2,0,0] DA: 1101
[2,1.2,;,1] 00 Pruned Tuples:
212210 [2,1,0,1,1]
) [1,3,2,0,1]

[1,3,2,0,1]

[4,4,1,1,1]
[4,4,0,0,1]

Figure 4.23. Example ofuple Pruningto narrow the scope of thEuple Space Searclhe set of
pruned tupless the intersection of the sets of tuples found along the search paths for each field.

possible candidate tuples for each field. In order to construct the list of candidate topthe
packet, we compute the intersection of the tuple lists returned by each search. Ndtestisavery
similar to theParallel Bit-Vectortechnique discussed in Section 4.4.1. The key difference is that
Pruned Tuple Space Searcbmputes the candidatigplesrather than the overlappirfiters. In our
example in Figure 4.23, we demonstrate pruning for a packet with source add@dsariDdesti-
nation address 1101. In this case, we only have to probe two tuples instead ofrséwveiasic
search. Using a modest set of real filter sets, the authors founéthaéd Tuple Space Search
reduced the number of searches by a factor of three to five relative to theTbacSpace Search
and a factor of 13 to 26 relative to an exhaustive search over the set of filters.

Srinivasan expanded this set of algorithms wiihtry Pruned Tuple SeardfEPTS [67].
This technique seeks to optimize tReuned Tuple Searchlgorithm by eliminating the need to
store a search data structure for each dimension by storing pruning informatiomatithesn the

94

SA
1 2 3 4
b f
1 .
J
2 T
DA
3 ae
i
4 cg
k

Figure 4.24: Example dRectangle Searcbn source and destination prefixes of filters in Table 4.3.

tuples. The tuple pruning information is stored with each filter in the form of a bitmap of tuples
containing non-conflicting filters. These bitmaps may be precomputed for each filtefiltethset.

The author presents an algorithm to compute the tuple bitmaP$1hV), whereT is the number

of tuples andV is the number of filters.

4.5.2 Rectangle Search

In their seminal paper, Srinivasan, Suri, and Varghese also presdrethangle Searchlgorithm
that provides theoretically optimal performance for packet classification on two fiéhisuymak-
ing assumptions about the structure of the filter Beictangle Searobmploys the concepts ofark-
ers and precomputatiorintroduced by theéBinary Search on Prefix Lengthiechnique for longest
prefix matching [24]. As shown in Figure 4.24, the tuple space for filters with two prefix fiedgls m
be viewed as a grid of rectangles where each rectangle is a tuple. For thidexampse the source
and destination addresses of the filters in the example filter set shown in TahlérpBementing
an exhaustive search over the grid of tuples requi¥@sprobes in the worst case.

The strategy oRectangle Searcls to leverage precomputation and markers to limit the
number of probes to at mo&21W — 1) whereW is the address length. Each filter mapping to a
tuple [i, j] leaves amarkerin each tuple to its left in its row. For example, a filt@rl0«,0111)
stored in tupld3, 4] leavesmarkers(11x,0111) in [2,4] and(1x,0111) in [1, 4]. For all filters and
markers in a tupléi, j], we canprecomputehe best matching filter from among the filters stored
in less specific tuples. Consider tupie 2|, labeledT in Figure 4.24. Graphically, less specific
tuples are those in the shaded quadrant above and l&ftroFigure 4.24. For example, if a marker
[01x, 00«] were stored iff", then we wouldprecomputehe best matching filte and store it with
the marker irf".

8Note that fi lters containing a wildcard are not included; these fi lters may be sedmghsmintaining separate search
tries.

95

Rectangle Searchegins at tuplél, 17], the bottom-left tuple. If a matching filter is found,
then we need not search any tuples above and left of this tuple due to praatiompuThe search
moves one tuple to the right to the next tuple in the row. If no matching filter is founceituttie,
then we need not search search any tuples below and right of this tuple due trsndithe search
moves one tuple up to the next tuple in the column. Note that the worst-case seidr¢bllpavs
a staircase pattern from tugle, 1] to tuple [V, 1] probing a total of 21 — 1) tuples.Rectangle
SearchrequiresO(NTWW) memory as each filter may leave a marker in at nigsuples to its left in
its row. The authors proved thé2Il" — 1) probes is the theoretical lower bound for two fields and
extend this bound to show that fdifields the lower bound is:

wd=1)
d!

(4.5)

4.5.3 Conflict-Free Rectangle Search

Warkhede, Suri, and Varghese provide an optimized versidReatangle Searcfor the special
case of packet classification orcanflict-freefilter set [68]. A filter set is defined to beonflict-free
if there is no pair of overlapping filters in the filter set such that one filter is more specific than
the other in one field and less specific in another field. The authors observe that in neakfgte
conflicts are rare; furthermore, techniques exist to resolve filter conflicts by inserting a sheéll se
resolving filtersthat resolve filter conflicts [69].

Conflict-Free Rectangle Searblegins by mapping the filter set to thié x W tuple space.
Using precomputation and markers, the authors prove that a binary search cafobegukon the
columns of the grid due to treonflict-freenature of the filter set. This provides @tlog? w) bound
on the number of tuple probes and@ log? w) bound on memory.

4.6 Caching

Finally, we briefly discuss caching, a general technique that can be combineahnyitiearch tech-
nigue to improve average performance. A cache is a fast storage buffer forardynreferenced
data. If data requests contain sufficient locality, the average time to access dat#isasity re-
duced when the time to access the cache is significantly less than the time to accestmbe
media [70]. In the context of packet classification, the lookup time is significantly eedifiche
time to perform a cache query is significantly less than the time to perform a full lookup. The
efficacy of caching schemes largely depends on the data request pattéraspplication.
Caching techniques have met with much skepticism from the research communitytdee
“wire-speed requirement” discussed in Section 1.3.1. In short, improving averagescisenpnce
is irrelevant if we we evaluate packet classification techniques based on worst-dasmaece.
Another argument against caching is the perception that packet flows lorsiéged links lack lo-
cality of reference. As link speeds have increased, caching schemes havestigithmincreasing

96
skepticism due to the question of sufficient temporal locality. This question arises duefastthe
that the bandwidth requirement of the average packet flow has not incrédeedsame rate as link
capacity. To put it simply: as link bandwidth increases, the number of flows shifwgnink also
increases. In order for a caching scheme to retain its effectiveness, we must scale thfettsiz
cache with the link speed. Consider the example of a 10 Gb/s link supporting aiviows with
peak rates of at most 1 Mb/s. The packet of a given flow will appear at mostinnen thousand
packets, thus the cache must have a minimum capacity of ten thousand entries.

Despite the skepticism, a number of cache designs for packet classification hengeedm
[71, 72, 73]. One intriguing design utilizes Bloom filters and allows for a small probability o
misclassification [71]. Holding the misclassification probability to approximately one in a billion,
the authors measured an average cache hit-rate of approximately 95 percedBioignemory
and real packet traces collected from an OC-3 link; thus, only five percent tifatffie required a
full classification lookup. While these results are compelling for low-speed links, the viability of
caching for OC-192 (10 Gb/s) links remains an open question. It is a difficult omesteea due to
the technical challenges of collecting packet traces from such high-speed limkes simply scale
the size of the cache with link speed, this Bloom filter approach would require 25é& bf/cache
memory which may be prohibitively large in some applications.

4.7 Discussion

We have presented a survey of packet classification techniques. Using a taxoasedydn the
high-level approach to the problem and a minimal set of running examples, wep#gteto provide
the reader with a deeper understanding of the seminal and recent algorithrmchitelctures, as
well as a useful framework for discerning the relationships and distinctions. While we meghtio
the simulation results reported by the authors of the literature introducing each techmégcen-
sciously avoided a direct comparison of the techniques based on throughputymegquirements,
or update performance. Given the various implementation options and variabgityitation pa-
rameters, a fair comparison using those metrics is difficult. We believe that future higinrpenfoe
packet classifiers will invariably be implementations of hybrid techniques that badesas from a
number of the previously described techniques. In closing, we would like to brieflyidtigithe
implementation platforms for current and future packet classifiers.

Thanks to the endurance of Moore’s Law, integrated circuits continue to provide pette
formance at lower cost. Application Specific Integrated Circuits (ASICs) and Field-Progrdemmab
Gate Arrays (FPGASs) provide millions of logic gates and millions of bits of memory distributed
across many multi-port embedded memory blocks. For example, a currenagem&ilinx FPGA
operates at over 400 MHz and contains 556 dual-port embedded memokg,H&Kb each with
36-bit wide data paths for a total of over 10Mb of embedded memory [44]. QUASIC standard

97
cell libraries offer dual- and quad-port embedded SRAMs operating at 625MHz [i7é stan-
dard practice to utilize several embedded memories in parallel in order to achievelatapaths.
Dual Data Rate (DDR) and Quad Data Rate (QDR) SRAM technologies providebhigiwidth
interfaces to several mega-bytes of off-chip memory [63, 75]. Network procedsorpravide a
flexible platform for implementing packet classification techniques [76, 77, 78]. Aseuf cur-
rent generation processors provide hardware assists for packet classification, interfe€éd/,
and/or special instructions for search applications such as hash functions.

98

Chapter 5

Analysis of Real Filter Sets

There are three kinds of lies: lies, damned lies, and statistics.
Benjamin Disraeli, British Prime Minister (1868, 1874-1878)

Recent efforts to identify better packet classification techniques have focusecoagiag
the characteristics of real filter sets for faster searches. While lower bounds for #ralganlti-
field searching problem have been established, observations made in recentcjasdiBcation
work offer enticing new possibilities to provide significantly better performance. In thjgtehave
summarize the observations made in the literature and report the results of our additimigaés.
We also seek to identify and understand the impetus for the observed structure of filter spttto re
other potentially useful characteristics for increasing the performance of packet dlassifié to
develop metrics and characterizations of filter set structure that aid in generatindisyfiitbesets.

We performed a battery of analyses on 12 real filter sets provided by Internet Service
Providers (ISPs), a network equipment vendor, and other researchers working in theTfield
filter sets range in size from 68 to 4557 entries and utilize one of the following formats:

e Access Control List (ACL) - standard format for security, VPN, and NAT filters for firewalls
and routers (enterprise, edge, and backbone)

e Firewall (FW) - proprietary format for specifying security filters for firewalls

e |IP Chain (IPC) - decision tree format for security, VPN, and NAT filters for software-based
systems

Due to confidentiality concerns, the filter sets were provided without supporting infornration
garding the types of systems and environments in which they are used. We aletoraimment

on “where” in the network architecture the filter sets are used: enterprise core routers, P edg
routers, backbone core routers, enterprise firewalls, etc. Nonetheless, the following giralysis
vide invaluable insight into the structure of real filter sets. We observe that various usgfartes

hold regardless of filter set size or format. The results of these analyses provide thetitobunda

99
for the benchmarking tools described in Chapter 6 and the basis for the nevt pdsification
techniqueDistributed Crossproducting of Field Labgl®CFL), described in Chapter 7.

5.1 Understanding Filter Composition

Many of the observed characteristics of filter sets arise due to the administrative policiésviat
their construction. The most complex packet filters typically appear in firewall agd exuter

filter sets due to the heterogeneous set of applications supported in these envisorfarewalls

and edge routers typically implement security filters and network address translation (NAT), a
they may support additional applications such as Virtual Private Networks (VPNs)eandrce
reservation. Typically, these filter sets are created manually by a system administrator using a
standard management tool such as CiscoWorks VPN/Security Management Solution [R8YS)
and Lucent Security Management Server (LSMS) [80]. Such tools conform to a model of filter
construction which views a filter as specifying the communicating subnets and thieatipp or

set of applications. Hence, we can view each filter as having two major canisoran address
prefix pair and an application specification. The address prefix pair identifies the cocatng
subnets by specifying a source address prefix and a destination address prefix. Trai@pplic
specification identifies a specific application session by specifying the transport protocok sourc
port number, and destination port number. A set of applications may be idériifispecifying
ranges for the source and destination port numbers.

5.2 Previous Observations

Gupta and McKeown published a number of observations regarding the charasterfiséal filter
sets which have been widely cited [50]. Others have performed analyses on rea€fitteand
published their observations [58, 54, 28, 29, 77]. The following is a distillation of catsens
relevant to our discussion:

e Current filter set sizes are small, ranging from tens of filters to less than 5000 filters. It
is unclear if the size limitation is “natural” or a result of the limited performance and high
expense of existing packet classification solutions.

e The protocol field is restricted to a small set of values. In most filter sets, TCP, UDP, and
the wildcard are the most common specifications; other specifications include ICMP, IGMP,
(E)IGRP, GRE and IPINIP.

e Transport-layer specifications vary widely. Common range specifications for potieram
such as ‘gt 1023’ (greater than 1023) suggest that the use of range to prefxsionwtech-
niques may be inefficient.

100
e The number of unique address prefixes matching a given address is typicadly libgs.

e Most prefixes have either a length of 0 or 32; there are some prefixes with lengthsa#,2
24 and 30.

e The number of filters matching a given packet is typically five or less.
¢ Different filters often share a number of the same field values.

The final observation has been a source of deeper insight and a springboara:fal sssent con-
tributions in the area. We thoroughly explore the implications of this observation in Séction
Kounavis, et. al. performed a thorough analysis of four ACLs and proposed safene
framework for packet classification in network processors [77]. The authors made @&mafnb
interesting observations and assertions. Specifically, they observed a dependerentibansize
of the ACL and the number of filters that have a wildcard in the source or destinatimediess.
The authors refer to filters that contain a wildcard in either the source or destination aasiress
“partially specified”. They found that partially specified filters comprise a smaller proportion of
the filter set as the number of filters increases. Specifically, 83% of the filters in the smallest AC
were partially specified while only 10% of the filters in the largest ACL were partially specified.
The authors also observed trends in the composition of partially specified filters. The smallest ACL
from an enterprise firewall had large numbers of partially specified filters with destinatiorsaddre
wildcards, while the largest ACL from an ISP had large numbers of partially specified filigrs w
source address wildcards. The authors suggest that these characteristics are a resldtafitre
of the ACL in the Internet. Small ACLs are “closer” to client subnets, therefore filters are used to
block traffic flows from a number of specific subnets. Large ACLs are “closer” to the Iterne
backbone, thus filters are used to control access to a number of important serversarks.
Kounavis, et. al. also found that the number of filters matching a packet is typioally
with a maximum of seven. Inspired by the previously described model of filter construtiiey
also investigated the possibility of first classifying a packet on the address prefix pair. Thesauth
performed an analysis of the overlap properties of address prefix pairs specified by treefilte
Address prefix pairs overlap if they cover a common address pair or set of apdiessg\n example
is shown in Figure 5.1. They found that a majority of the overlaps are caused by papiedified
filters, but the number of overlaps is orders of magnitude less than the theoreteal hgund.
Based on these results, the authors argue that such overlaps may be eliminateding msenall
number of filters that cover the overlaps caused by partially specified filters. This is dfsentia
independent verification of the findings of Hari, et. al. [69] and a similar apprieittat employed
by Warkhede, et. al. [68]. Finally, Kounavis, et. al. found that the number igiuenapplication
specifications (combination of transport protocol and port ranges) is small due to itieel imamber
of popular applications in the Internet.

101

7 Overlapplng
o 6 d Partlally-SpeC|f|
0 Address Prefix Pai
2 5
©
©
< 4 e c 5
O —
(8]
5 3
3 —
P 2 Overlapplng
1 a | FuIIy—Specmed
— —— Address Prefix Pair
0
O|1|2(3]| 4] 5| 67

Destination Address
Figure 5.1: Example of overlaps formed by fully-specified and partially-specified addwesfss p

pairs.

5.3 Application Specifi cations

We analyzed the application specifications in the 12 filter sets in order to corroborateuprev
observations as well as extract new, potentially useful characteristics.

5.3.1 Protocol

For each of the filter sets, we examined the unique protocol specifications angttiteitdion of
filters over the set of unique values. As shown in Table 5.1, filters specified oneegbraitocols or
the wildcard. Note that two filter sets, fw2 and fw4, contain anonymized protocobarsnthere-
fore, we did not include them in our analysis. We observed the following protocoifispdons,
listed in order of frequency of occurrence:

e Transmission Control Protocol (TCP), RFC793 [81]

User Datagram Protocol (UDP), RFC768 [82]

Wildcard

Internet Control Message Protocol (ICMP), RFC792 [83]

General Routing Encapsulation (GRE), RFC2784 [84]

Open Shortest Path First (OSPF) Interior Gateway Protocol (IGP), RFC2178 [85]

Enhanced Interior Gateway Routing Protocol (EIGRP), Cisco [86]

IP Encapsulating Security Payload (ESP) for IPv6, RFC2406 [87]

102

Table 5.1: Observed protocols and filter distribution; values given as percdptagéfilters in the
filter set.

Set x| ICMP | IPE| TCP| UDP | GRE| ESP| AH | EIGRP | OSPF
IGP
acll 8.46| 3.14|0.00| 87.31| 1.09| 0.00| 0.00| 0.00 0.00| 0.00
acl2 || 46.39| 0.96| 0.00| 44.94| 6.74| 0.00| 0.00| 0.00 0.96| 0.00
acl3 492| 4.17|0.00| 65.00| 25.87| 0.00| 0.00 | 0.00 0.00| 0.04
acl4 408| 3.99|0.10| 65.76| 25.87| 0.16| 0.00 | 0.00 0.00| 0.03
acl5 0.00| 28.59| 0.00| 28.22| 41.78| 0.00| 0.00 | 0.00 0.00| 1.40
fwl 1.06| 3.89|0.00| 57.24| 32.16| 5.65| 0.00 | 0.00 0.00| 0.00
fw3 1.63| 5.98| 0.00| 55.98| 36.41| 0.00| 0.00 | 0.00 0.00| 0.00
fws 1.88| 6.87|0.00| 51.88| 39.38| 0.00| 0.00 | 0.00 0.00| 0.00
ipcl || 34.49| 1.12| 0.00| 26.15| 37.72| 0.29| 0.12| 0.12 0.00| 0.00
ipc2 || 27.08| 36.46| 0.00 | 10.42| 26.04| 0.00 | 0.00 | 0.00 0.00| 0.00
AVG | 13.00] 9.52|0.01|49.29| 27.31| 0.61| 0.01| 0.01 0.10| 0.15

¢ |P Authentication Header (AH) for IPv6, RFC2402 [88]
¢ |P Encapsulation within IP (IPE), RFC2003 [89]

Like previous studies, the most common protocol specification is TCP. On averages $Q&t-
ified by twice as many filters as the next most common protocol, UDP. The wildcard ihitd

most common specification. All filter sets contain a small number of filters specifying ICMP.
remaining six protocols are only specified by a few filters in a few of the filter sets.

5.3.2 Port Ranges

Next, we examined the port ranges specified by filters in the filter sets and the distribufilter ®f
over the unique values. In order to observe trends among the various filter setfinedide classes
of port ranges:

e WC, wildcard

e HI, ephemeral user port ran§24 : 65535
e LO, well-known system port randge : 1023]
e AR, arbitrary range

e EM, exact match

Motivated by the allocation of port numbers, the first three classes represent comruificajens
for a port range. The last two classes may be viewed as partitioning the remaining afiensic
based on whether or not an exact port number is specified. Table 5.2 #hewlgstribution of

103

Table 5.2: Distribution of filters over the five port classes for source and destinatiomapget
specifications; values given as percentage (%) of filters in the filter set.

Set Source Port Destination Port

WC | HI LO AR | EM wC | HI LO | AR EM

acll || 100.0| 0.00 | 0.00 | 0.00| 0.00 | 30.42| 0.00 | 0.00| 11.60| 57.98
acl2 || 100.0| 0.00 | 0.00 | 0.00| 0.00 | 69.34| 0.64 | 0.00| 7.06 | 22.95
acl3 || 99.92| 0.00 | 0.00 | 0.00| 0.08 | 9.25 | 13.96| 0.00| 11.04 | 65.75
acl4 | 99.93| 0.00 | 0.00 | 0.00| 0.07 | 8.56 | 12.15|0.00| 11.21| 68.08
acl5 || 100.0| 0.00 | 0.00 | 0.00| 0.00 | 30.00| 4.08 | 0.00|5.20 | 60.72
fwl || 77.74| 8.13 | 0.00 | 0.35| 13.78| 31.10| 8.13 | 0.00| 0.35 | 60.42
fw2 || 38.24| 17.65| 0.00 | 0.00| 44.12| 100.0| 0.00 | 0.00| 0.00 | 0.00
fw3 || 77.72| 5.98 | 0.00 | 0.54| 15.76| 27.72| 5.98 | 0.00 | 0.54 | 65.76
fw4 10.98| 42.05| 10.98| 1.52 | 34.47| 13.26| 18.94| 0.76 | 1.14 | 65.91
fws | 75.62| 5.00 | 0.00 | 0.62| 18.75| 35.62| 3.75 | 0.00| 1.25 | 59.38
ipcl || 82.84| 0.35 | 0.00 | 2.00| 14.81| 55.46| 6.52 | 0.00| 2.53 | 35.49
ipc2 || 73.96| 0.00 | 0.00 | 0.00| 26.04| 73.96| 0.00 | 0.00| 0.00 | 26.04
AVG | 78.08| 6.60 | 0.92 | 0.42| 13.99| 40.39| 6.18 | 0.06 | 4.33 | 49.04

filters over the five port classes for both source and destination ports. We observe soestimngte
trends in the data. With rare exception, the filters in the ACL filter sets specify the wildcardefor th
source port. A majority of filters in the ACL filters specify an exact port number for the deistin

port. Source port specifications in the other filter sets are also dominated by the wildaaed, b
considerable portion of the filters specify an exact port number. Destination poificgiems in

the other filter sets share the same trend, however the distribution between the wildtardean
match is a bit more even. After the wildcard and exact match, the HI port classiisast common
specification. A small portion of the filters specify an arbitrary range, 4% on averagd amabt
12%. Only one filter set contained filters specifying the LO port class for either the source or
destination port range.

In the interest of designing efficient data structures, we now examine the numbegqoéu
specifications in the AR and EM classes. Checking for matches in the first three classeslis trivia
As shown in Table 5.3, the number of unique specifications in the AR class is shatlle¢o the
size of the filter set. Consisting of 50 ranges, the largest set of arbitrary ranges mdigibatif
searched using a simple interval tree. Likewise the number of specifications in the EM absss is
small, thus a simple hash table would be sufficient to search this set of ranges.

5.3.3 Port Pair Class

As previously discussed, the structure of source and destination port range pairs is @rikey p
of interest for both modeling real filter sets and designing efficient search algorithmscawe
characterize this structure by definingart Pair Class(PPC) for every combination of source and

104

Table 5.3: Number of unique specifications in the Arbitrary Range (AR) and BMatth (EM)
port classes for source and destination port ranges.

Set | Size || Source Port| Destination Port
AR | EM AR | EM
acll|{ 733 |0 |O 34 | 73
acl2| 623 || O 0 1 24
acl3| 2400/ 0 |2 36 | 152
acl4 | 30610 |2 50 | 183
acl5| 4557| 0 |0 3 |35
fwl | 283 |1 |10 1 |40
fw2 | 68 0o |7 0 |0
fw3 [184 |1 |6 1 |36
fwd | 264 3 22 3 44
fws 160 |1 |8 2 |29
ipcl | 1702 5 27 7 45
ipc2 192 |0 |2 0 |2

destination port class. For example, WC-WC if both source and destination port spegify the
wildcard, AR-LO if the source port range specifies an arbitrary range and the destinaticange
specifies the set of well-known system ports. As shown in Figure 5.2, a conveniett wiayalize

the structure oPort Pair Classess to define aPort Pair Classmatrix where rows share the same
source port class and columns share the same destination port class. For each fileeesetnine

the PPC defined by filters specifying the same protocol. For all protocols except TAPDaNhd
the PPC is trivial — a single spike at WC/WC. Figure 5.2 highlights the uniqueness of PPGesatric
among different protocols and filter sets.

The combination of source and destination port range specifications has a signifieeint e
on several packet classification techniques. This is especially true of TCAM due todtidae
convert arbitrary range pairs into pairs of prefixes. See Section 4.2.2 for a discussioABISTC
and the need for range conversion. In order to assess the effect of this conweesammputed the
number of TCAM entries required to store each filter set. We refer t&#pansion Factoas the
ratio of TCAM entries to filter set size, which can be thought of as the average nwihbEAM
entries required by each filter in the filter set. As shown in Table 5.4, a filter set may réuatiee
TCAM provide more than six entries for every filter. On average, the filter sets requi¥edntries
per filter. While this is considerably less than the worst case of 900 entries per filtérgragins
a large source of inefficiency. The magnitude of Ergansion Factois not the only challenge.
Note the high variance in thExpansion Factoamong the filter sets; this presents a challenge in
designing systems, as the filter storage capacity varies widely with filter set composition.

105

=
o

,_
o N T T T

(b) acl1, UDP

o AR o AR
Destination Port EM Source Port Destination Port EM Source Port

(c) fw4, TCP (d) fw4, UDP

Figure 5.2: Port Pair Matrices for two filter sets.

5.4 Address Prefi x Pairs

A filter identifies communicating hosts or subnets by specifying a source and destinddi@ss
prefix, or address prefix pair. The speed and efficiency of several longest pr&ghimgsand packet
classification algorithms depend upon the number of unique prefix lengths anittiteution of
filters across those unique values. We begin our analysis by examining the ndrabiju prefix
lengths. In Table 5.5 we report the number of unique source address prefix lahggheations
address prefix lengths, and source/destination prefix pair lengths for the 12 filter sets.ridyroéjo
the filter sets have more unique source address prefix lengths than unique destinéldengths.
For all of the filter sets, the number of unique source/destination prefix pair lengthallgsiative
to the filter set size and the number of possible combinations, 1024.

106

Table 5.4: Number of entries required to store filter set in a standard TCAM.

Set | Size || TCAM | Expansion
Entries | Factor
acll | 733 || 997 1.3602
acl2 | 623 || 1259 | 2.0209
acl3 | 2400 | 4421 | 1.8421
acl4 | 3061 | 5368 | 1.7537
acl5 | 4557| 5726 | 1.2565
fwl | 283 | 998 3.5265
fw2 | 68 128 1.8824
fw3 | 184 | 554 3.0109
fwd | 264 || 1638 | 6.2045
fw5 | 160 | 420 2.6250
ipcl | 1702 | 2332 | 1.3702
ipc2 | 192 || 192 1.0000
Average 2.3211

Table 5.5: Number of unique address prefix lengths for source address (SA), tilmstattress
(DA), and source/destination address pairs (SA/DA).

Set | Size || SA| DA | SA/DA
acll | 733 || 6 |20 |31
acl2 | 623 | 13 | 13 | 50
acl3 | 2400| 22 | 12 | 89
acl4 | 3061 22 | 15 | 98

acl5 | 4557 11 | 3 31
fwl | 283 || 12 | 6 22
fw2 | 68 4 |3 8

fw3 184 |9 |3 13
fw4d | 264 |5 |6 12
fw5 | 160 || 10 | 4 17

ipcl | 1702 15 | 13 | 93
ipc2 | 192 || 4 |2 5

107

Next, we examine the distribution of filters over the unique address prefix pair lengths.
Note that this study is unique in that previous studies and models of filter sets utilizgubimdient
distributions for source and destination address prefixes. When constructing synthetic filter sets
test new packet classification algorithms, researchers often randomly select address fnafix
backbone route tables which are dominated by class C address prefixes (24-bikrzetdress) and
aggregates of class A, B, and C address prefixes. As shown in Figure 5.3, realtlteanseunique
prefix pair distributions that reflect the types of filters contained in the filter set. For éxaiulfy
specified source and destination addresses dominate the distribution for acl5 shown in Bigjre 5
There are very few filters specifying a 24-bit prefix for either the source or destination addsss.
consider the distribution for fwl shown in Figure 5.3(c). The most common prefix pair is a fully
specified destination address and a wildcard for the source address. This is due to thefnature
the filter set, a firewall limiting access to a key host. It is not possible to model the prefix pair
distribution using independent prefix length distributions, even if those distributions areftaiken
real filter sets. Finally, we observe that while the distributions are sufficiently different froln eac
other a majority of the filters in the filter sets specify prefix pair lengths around the “edges” o
the distribution. Note that there are not large “spikes” in or around the centers afkthbudions
in Figure 5.3. This implies that, typically, one of the address prefixes is either fully speoifie
wildcarded.

By considering the prefix pair distribution, we characterizedizeof the communicating
subnets specified by filters in the filter set. Next, we would like to characterize the relationships
among address prefixes and the amount of address space covered by the prefigefilter set.

Our primary motivation is to devise metrics to facilitate construction of synthetic filter sets that
accurately model real filter sets. Consider a binary tree constructed from the IP souressadd
prefixes of all filters in the filter set. From this tree, we could completely characterize the data
structure by determining a branching probability for each node. For example,@tsatran address
prefix is generated by traversing the tree starting at the root node. At each nodegigierdto take

to the 0 path or the 1 path exiting the node depends upon the branching prolathiigynode. For

a complete characterization of the tree, the branching probability at each nadgus.uAs shown

in Figure 5.4p{0|11} is the probability that the 1 path is chosen at level 2 given that the 1 path was
chosen at level 0 and the 1 path was chosen at level 1.

Such a characterization is infeasible, hence we employ suitable metrics that capture the
important characteristics while providing a convenient abstraction. We begin Isyrgoting two
binary tries from the source and destination prefixes in the filter set. Note that there is drie leve
the tree for each possible prefix length 0 through 32 for a total of 33 levels. For eatlinlehe
tree, we compute the probability that a node has one child or two children. Maitheso children
are excluded from the calculation. We refer to this distribution ag8theching Probability

For nodes with two children, we compus&ew which is relative measure of the weights
of the left and right subtrees of the node. Subtree weight is defined to be the mafrfideers

108

600
500 —
400 —]
300 T
200
—
100
0 -
SN 4 <
hd —
g o o st - Ao N
N oo, N SA Prefix : o SA Prefix
. DA Prefix L th
DA Prefix Length ® & Length refxLeng Length
(a) acl1 (b) acl5
160 450
140 400
120 350
100 300 |
80 250 ||
200 —
60 150
40 100 -
20 50 [
0 0 b "L =
- © D * ’ Iy, | ! ~
3 o ‘| BT S
- 7 ~ -
& . & ' SA Prefix ~ & QNRN
DA Prefix Length @ Length DA Prefix Length ® SAPrefix Length
(c) fwl (d) ipcl

Figure 5.3: Prefix length distribution for address prefix pairs.

specifying prefixes in the subtree, not the number of prefixes in the subtree. This defoifitio
weight accounts for “popular” prefixes that occur in many filters. keivy be the subtree with

the largest weight and Iétght be the subtree with equal or less weight. The following is a precise
definition of skew:

we'ight(light) (5.1)
weight(heavy)

Note that this definition of skew provides an anonymous measure of address prefinrstras it
does not preserve address prefix values. Consider the following example: gieee/awith two

children at leveln, assume that 10 filters specify prefixes in the 1-subtree of Rqdlee subtree

skew =1 —

109

Figure 5.4: Example of complete statistical characterization of address prefixes.

Figure 5.5: Example of skew computation for the first four levels of an address trieedshades
denote a prefix specified by a single filter; subtrees denoted by triangles with associatad weig

visited if the next bit of the address is 1) and 25 filters specify prefixes in the 0-subtred®k n
The 1-subtree is thEght subtree, the 0-subtree is theavy subtree, and the skew at noklés 0.6.

We compute the average skew for all nodes with two children atieyetcord it in the distribution,
and move on to levelm + 1). We provide and example of computing skew for the first four levels
of an address trie in Figure 5.5.

The result of this analysis is two distributions for each address theareching probability
distribution and askewdistribution. We plot these distributions for the source address prefixes in
filter set acl5 in Figure 5.6. In Figure 5.6(a), note that a significant portion of the notée®ls zero
through five have two children, but the amount generally decreases as weedmon the trie. The
increase at level 16 and 17 is a notable exception. This implies that there is astabkdamount
of branching near the “top” of the trie, but the paths generally remain contamaag move down
the trie. In Figure 5.6(b), we observe that skew for nodes with two children hoverstedbirthus
the one subtree tends to contain prefixes specified by twice as many filters as the latiieer. $lote
that skew is not defined at levels where all nodes have one child. Also notevbkst containing

110

M 2 Children O1 Child

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

Distribution

O N © © 0 O N © © 0 O N ¥ © 0w O
I H A 4 4 N N N N N ™M

Source Address Trie Depth

(a) Source address branching probability; average per level.

0.9 -
0.8 {1 - i
0.7 I - =
0.6 |- - B
0.5 - HH

o3 {HHHHHH (-1 BT
o2 {HHHHHE tH THEE WU
o.x {{HHMHHE tH THEE W
0 ‘EI‘

O U % © 3 O XD RO A DR D

Skew (nodes with 2 children)
I

Source Address Trie Depth

(b) Source address skew; average per level for nodes with two children.

Figure 5.6: Source address branching probability and skew for filter set acl5.

nodes with two children may have an average skew of zero (completely balsulatedes), but this
is rare.

We plot the branching probability and skew for the destination address prefixes specified
by filters in filter set acl5 in Figure 5.7. Note that there is considerably less branchingkst Zev
through 11 in the destination address trie; however, there is considerably moreibgsaiclower
levels with a majority of the nodes at level 26 having two children. Likewise, the skdwgh
(when it is defined) at levels 0 through 23, but significantly decreases at leviiso2gyh 31. Thus

111

M 2 Children O1 Child

100% -
90% -HHHHHHHHHHHHHHHHHHHHHE
so% -HHHHHHHHHHHHHHHHHHHHHE
70% - HHHHHHHHHHHHHHHHHHHHE
60% - HHHHHHHHHHHHHHHHHHHHE
50% {5 HHHHHHHHHHHHHHHHHHHE
20% - HHHHHHHHHHAHHHHHHHHHH
30% - HHHHHHHHHHHHHHHHHHHE

20% WHHHHHHHHHE HHHHHHH
10% -#-HHHHHHHHHH 1
0%7 T T T T T T T T T T T - T T T T T T T T T

O N © 00 O N ¥ © 00 O N ¥ © 0o O
= d " 4 4 N N N N N ™M

Distribution

Destination Address Trie Depth

(a) Destination address branching probability; average per level.

=

0.9 |
0.8 M .
0.7 {H -
0.6 | -

0.3 - s

ol N H;

S 1 Bb‘b@»’lx»&»@»‘b@{ﬂ/%b‘%b%‘b%Q

Skew (nodes with 2 children)
o
()]
I

o

Destination Address Trie Depth

(b) Destination address skew; average per level for nodes with two children.

Figure 5.7: Destination address branching probability and skew for filter set acl5.

destination address prefixes in acl5 will tend to be similar for the first 25 bits or so, thegeadive
Plots of branching probability and skew for additional filter sets may be found in Alppén
Branching probability and skew characterize the structure of the individual souwtaiean
tination address prefixes; however, it does not capture their interdepenttéapessible that some
filters in a filter set match flows contained within a single subnet, while others match flowsdretw
different subnets. In order to capture this characteristic of a seed filter set, we measamtbla-
tion” of source and destination prefixes. In this context, we define correlation to be thetpity
that the source and destination address prefixes continue to be the same for aafixdenqth.

112
This measure is only valid within the range of address bits specified by both addressspiéfinie
this measure is not particularly insightful for the purpose of crafting search algorithmssiatioe
us to accurately model real filter sets.

Consider the example of a filter set containing filters that all specify flows containeith with
the same class B network (16-bit network address); the correlation for levels 1 through.06 is
then falls off for levels 17 through 32 as the source and destination address pdaferge. From
the seed filter set, we simply generate a probability distribution over the range of possible prefix
lengths,[1...32]. For the filter sets we studied, the address prefix correlation varies widely. The
correlation for filter set acl5 is shown in Figure 5.8(a). Note that approximately 80% (iftdre
contain source and destination address prefixes with the same first bit. For those with thiestame
bit, they continue to be identical through the first 13 bits. Of those filters with source andatiestin
address prefixes with the same initial 13 bits, approximately 80% of those continuedodated
through bit 14, etc. Very few filters in acl5 contain address prefixes the remain corréiedegh
bit 19. The correlation for filter set ipcl is shown in Figure 5.8(b). Note that less thanfttak o
filters contain source and destination address prefixes with the same first bit. Likewise, very few
filters contain source and destination address prefixes that remain correlated throwgh bit 2

5.5 Scope

From a geometric perspective, a filter defines a regiehdimensional space whetlds the number

of fields specified by the filter. The volume of that region is the product of the onerdiional
“lengths” specified by the filter. For example, length in the source address dimesiespgonds

to the number of addresses covered by the source address prefix of the filter. Likenggejn the
destination port dimension corresponds to the number of port numbers covetlegl tgstination

port range. Points in thé-dimensional space correspond to packet headers; hence, the geometric
volume translates to the number of possible packet headers that match the filtad oigfeometric
lengths and volumes, we often refer to these filter properties in termsupfespecification. To be
specific, we define the filter 5-tuple as a vector containing the following fields:

e t[0], source address prefix lengfh,..32]
e t[1], destination address prefix lengi®...32]
e £[2], source port range width, the number of port numbers covered by the fangg?]

e (3], destination port range width, the number of port numbers covered by the fanggf|

t[4], protocol specification, Boolean value denoting whether or not a protocokisfigul,
[0,1]

The tuple essentially defines thpecificityof the filter. Filters that are more specific cover a small
set of possible packet headers while filters that are less specific cover a large aeiblgpacket

113

0.9 +—HHHHHHHHHHE A HHHHHHAEE

0.7 tHHHHHHHHHHHHH A
0.6 THHHHHHHEHHAHHAEE A
0.5 THHHHHHHHEHH A AT
0.4 THHHHHHHHAHHAHHAE— AT
0.3 THHHHHHHAHH AT
0.2 tHHHHHHHHHH AT
0.1 tHHHHHHHHHH AT
0 L Hlo L

YOO RRR DD PP DD

Correlation

Address Prefix Length

(a) acls.

1 _ -
0.9 - HHHTHL HHH |
0.8 - HHHOE T
0.7 IR IRIRIR R R R R IR IR IR IR =
0.6
0.5 HHEH R
o4 MR R
o3 R R
o2 MR R
o MR E L

0 . . L

AR I SV A A SRS N A R AN

Correlation

Address Prefix Length

(b) ipcl

Figure 5.8: Address prefix correlation; probability that address prefixes of a filter cendirne the
same at a given prefix length.

headers. To facilitate filter set measurement and modeling, we define a new swife,to be
the logarithmic measure of the number of possible packet headers coveredfiitgth&sing the
5-tuple definition above, we defirseopefor the 5-tuple as follows:

scope = 1g{ (2527100 5 (2%271) s t[2] ¢ 1[3] x (251}
= (32 —1[0]) + (32 — t[1]) + (Igt[2]) + (g [2]) + 8(1 — t[4]) (5.2)

114

Table 5.6: 5-tuple scope measurements, averagg,() and standard deviation {..p.).

Set Size Hscope O scope

acll || 733| 25.0146| 13.4585
acl2 || 623| 51.6869| 17.6880
acl3 || 2400 | 32.0168| 15.6699
acl4 || 3061 | 30.9481| 15.1367
acls || 4557 | 24.2274| 8.0554
fwl 283 | 51.1686| 15.6819
fw2 68 | 56.5842| 23.0965
fw3 184 | 54.3004| 14.8012
fwa 264 | 48.1127| 27.9439
fwb 160 | 55.7881| 16.9506
ipcl || 1702 | 39.7172| 19.4508
ipc2 | 192 | 47.0521| 27.7966

Scope translates the filter tuple into a measure of filter specificity on a scale from 0 to 104isScope
isomorphic to the logarithm of the geometric volume specified by the filter.

The average 5-tuple scope and standard deviation for the 12 filter sets is shown in.@able 5
The average 5-tuple scope ranges from 56 to 24. We note that filters in the ACL filter skts ten
to have narrower scope, while filters in the FW filter sets tend to have wider scope. While the
average scope of the filter sets does not vary drastically, the distributions of filter stopghibit
drastically different characteristics. Figure A.6 shows the 5-tuple scope distribution of filtetzet a
and acl5. The filters in acl2 are distributed among scope values between 16 and 8teuatigest
concentration at 48. The filters in acl5 are much more concentrated with most filter distribute
among scope values between 16 and 32. The largest concentration is at.§copaditional 5-
tuple scope distributions are provided in Appendix A.

5.6 Filter Overlap

Many previous studies have shown that the maximum number of filters that maaciet s small
for real filter sets, typically five to seven filters. Some recent studies have shown that<ineumma
number of filters that partially match a packet is also limited [77, 58]. For exammhsjder a filter
set specifying 1000 filters on the standard 5-tuple. The number of filters that match the and
destination address of a packet may be 20 or less; thus, an effective way to tizerseope of a
search is to first perform a match on the address prefix pair. This is precisely the apprescim tak
Extended Grid-of-TrieEGT) which we discussed in Section 4.3.2 [58].

The number of filters that match a packet for a partial or full match is often referresl to a
“filter overlap”. This stems from the geometric view of filters where a packet definemtipai-
dimensional space and filters which match the packet déftimensional polygons which contain

115

120

100

80

60

40

0 10 20 30 40 50 60 70 8 90 100
5-tuple scope

Number of filters

(@ acl2,u =51.7,0 =17.7

2000
1800
1600
1400
1200
1000
800
600
400

200
0 7_'_'_FII_IL-If~."PII.ﬂ|I. 1 1 T T T T T T T T T T T

0 10 20 30 40 50 60 70 80 90 100

5-tuple scope

Number of filters

(b) acl5,u =24.2,0 = 8.1

Figure 5.9: Distribution of 5-tuple scope for filters in filter sets acl2 and acl5.

the point. Filters which cover a set of common points in the space are said to oveld@pitthns

such as EGT strongly rely on the filter overlap properties to hold. This is part of the reason tha
Baboescu and Varghese restrict their performance claims for EGT to filtexmetouters as these

filter sets tend to have few wildcards and limited prefix nesting. We performed filter ovedbsas

in order to evaluate the efficacy of such approaches for our set of 12 real fikerlserable 5.7,

we report the maximum number of filters matching a packet when matching andivedual 5-

tuple fields (source address, destination address, etc.), the source/destination addresaimprefix p
the application specification, and all filter fields. The number of filters matching a tppatien

116

Table 5.7: Maximum number of filters matching any packet; partial matchesatdr #ld in the
5-tuple, source/destination address prefix pair (SA-DA), and application specification (SP-DP-PR);
full matches on all fields (All); matches; data from 12 real filter sets.

Set | Size | SA | DA | SP | DP | PR | SA-DA| SP-DP-PR| All
acll | 733 || 119|49 | 733 | 306 | 702 |21 283 5
acl2 | 623 | 159|110 | 623 | 489 | 569 | 38 465 8
acl3 | 2400 323 | 235| 2399 | 622 | 1678 | 44 412 7
acl4 | 3061 336 | 279 | 3060 | 743 | 2138 | 41 468 6
acl5 | 4557 | 309 | 354 | 4557 | 2344 | 1904 | 30 1303 2
fwl | 283 | 192 | 107 | 245 | 117 | 165 | 43 62 5
fw2 | 68 19 | 43 | 38 68 41 9 26 4
fw3 | 184 | 140| 92 | 156 | 66 106 | 50 26 4
fw4 | 264 || 172|116 | 169 | 89 184 | 61 43 5
fws | 160 | 113 |84 | 131 |72 86 42 36 5
ipcl | 1702 || 257 | 398 | 1472 | 1105| 1229 | 45 815 17
ipc2 | 192 || 121|36 | 172 | 172 | 122 |10 122 3

classifying on a single field is high. Likewise, we find that the number of filters matchingkaipa
when classifying on the address prefix pair is also high, up to 61 filters for filter set fw4. Clearly
techniques likeExtended Grid-of-Trie¢EGT) that depend on the limited filter overlap observed
in core router filter sets do not perform well for other types of filter sets. We also conitiatle
performing a partial classification on the application specification is not helpful, as theenurh
matching filters is even higher than for the address prefix pair. Previous studies repattéte
maximum number of filters matching a packet when classifying on all fields is typies$/than

five or six. Our results provide a few notable exceptions, as we observe three filtethsetstive
maximum numbers of matching filters is 7, 8, and 17.

5.7 Field Value Overlap

The observations made in previous studies and the model of filter construction distuSssd
tion 5.1 suggest that the number of unique filter field values and combinatiomsquie field values
that match a packet may be inherently limited. Previous studies observed that filrers@manon
field values; thus, the number of unique field values for a given filter field may beisagtly less
than the number of filters. Likewise, the number of unique field values that atpackehes must
be less than or equal to the number of filters that match the packet when usfigdlirethe match.
For example, consider matching on the source address only. Assume there filters00 the filter
set; half of the filters specify the wildcard in the source address and half of the filters hallye a
specified source address. The number of unique field values for the source addrésSfigltie
wildcard and 50 fully specified addresses. The number of overlapping filters for a paltke 50
or 51 depending on whether or not the packet's source address is specifiditby The number

117
of unique field values that match a packet will be 1 or 2 depending on whethet the packet’s
source address is specified by a filter.

Table 5.8 shows the number of unique filter field values and combinations ofifikeld for
the 12 real filter sets. Note that the number of unique fields are significantly less thamthem
of filters in the filter set. In several of the ACL filter sets, all source port fields are wildcardesd, th
there is only one unique field value. We performed an exhaustive analysis of irunanumber
of unique field values and unique combinations of field values which matchaoket. A summary
of the results for unique single fields, address prefix pairs, and application specificatigivearie
Table 5.9. Note that field overlap for address fields is more commonly referred tofixsnesting.
Another way to think about this measurement is that it specifies the maximumenurhprefixes
along any path from root to leaf in a trie defined by the unique address prefixes in thedilter
Also note that the number of unique field values is significantly less than the nuiinidésre and
the maximum number of unique field values matching any packet remainyeblatonstant for
various filter set sizes. We also performed the same analysis for every possible combihation o
fields (every possible combination of two fields, three fields, etc.). There are

d
> (C,l) (5.3)
i=1 \ ?

unique combinations of fields. For the standard 5-tuple, there are 31 unique combinations of
fields. We observed that the maximum number of uniqgue combinations of fielelsvatiich match

any packet is typically bounded by twice the maximum number of matchindesfiedd values,

and also remains relatively constant for various filter set sizes. Finally, Table 5.9 atstsriye
maximum number of unique field combinations that match a packet when clagsiiyAll fields.

This is identical to the measurement of the maximum number of filters that mataketpa

5.8 Additional Fields

An examination of real filter sets reveals that additional fields beyond the standapteZare rele-
vant. In 10 of the 12 filter sets that we studied, filters contain matches on TCP flags orty@MMP
numbers. In most filter sets, a small percentage of the filters specify a non-wildcard vaibe for
flags, typically less then two percent. There are notable exceptions, as approxinaéttig filters

in filter setipcl contain non-wildcard flags. We argue that new services and administrative poli-
cies will demand that packet classification techniques scale to support addititaskifie. more
“dimensions”) beyond the standard 5-tuple. It is not difficult to identify applicatioas ¢buld
benefit from packet classification on fields in higher level protocol headers. Coiisidfollow-

ing example: an ISP wants to deploy Voice over IP (VolP) service running over alUB¥RTP
stack for new IP-enabled handsets and mobile appliances. The ISP also wants tofivigke e$e

of expensive wireless links connecting Base Station Controllers (BSCs) to multiple Base Station

118

Table 5.8: Number of unique field values and combinations of field valuesfigakeby filters in 12
real filter sets.

Set | Size | SA | DA | SP| DP | PR | Flag | SA-DA| SP-DP-PR
acl1| 733 || 97 | 2051 | 1084 |3 426 112
acl2 | 623 || 182|207(1 |27 |5 |6 527 37
acl3 | 2400|431 |516(3 [190|5 |3 1588 | 202
acl4 | 3061 | 574|557 |3 |235|7 |3 2065 | 250
acl5|4557(169|80 (1 (40 |4 |2 1873 | 42
fwl | 283 || 57 |66 (13|43 |5 |11 128 612
fw2 | 68 31 |21 |9 |1 5 50 14
fw3 | 184 |31 |28 (9 |39 |4 |11 61 52
fwd | 264 || 30 (43 |28 49 |9 79 82
fws | 160 || 38 |35 (11|33 |4 |11 72 46
ipcl | 1702 152|128 |34 |54 |7 |11 941 96
ipc2 | 192 |29 |32 |3 |3 4 |8 122 5

Table 5.9: Maximum number of unique field values and combinations of fidlsesanatching a
packet; data from 12 real filter sets.

SA-DA| SP-DP-PR

>

Set | Size
acll | 733
acl2 | 623
acl3 | 2400
acl4 | 3061
acls | 4557
fwl | 283
fw2 | 68
fw3 | 184
fwd | 264
fws | 160
ipcl | 1702
ipc2 | 192

w
>
O
>
()]
U
O
U
Py
il
D
Q

N

NDNNNNMNNNEFENMNNDDNDND
o

NOTWWWwERrWwWhrNoS~O

WAhOWRAWDAWNOO G A
NUOBMDMWWANODMOON
NEWRWNWRNNPR R
WER N NDNWOW~N O
NODDBMDMWDAOWO®-NU O
WRUOMDMUINONO®U

119
Transceivers (BSTs); hence, the ISP would like to use a header compression protoRaldilst
Header Compression (ROHC). ROHC is a robust protocol that compresses peattetsfor effi-
cient use of wireless links with high loss rates [90]. In order to support this, the BSC musamain
a dynamic filter set which binds packets to ROHC contexts based on fields in thelP¥ and
RTP headers. A total of seven header fields (352 bits) must be examined in ortissifycsuch
packets.

Matches on ICMP type number, RTP Synchronization Source Identifier (SSRC), and other
higher-level header fields are likely to be exact matches; therefore, the nofumque field values
matching any packet are at most two, an exact value and the wildcard if présene may be other
types of matches that more naturally suit the application, such as arbitrary bit nmagk&oflags;
however, we do not foresee any reasons why the structure of filters with these adi€igicisawill
significantly deviate from the observed structure in current filter tables.

5.9 Impact of IPv6 Migration

While the current deployment of Internet Protocol Version 6 (IPv6) is extremely limitedt ob-
servers expect that migration to IPv6 from the current IPv4 protocol will eventuallyeimaf®).
Currently, no filter sets containing rules with IPv6 addresses are available for study. A $ense o
how IPv6 addresses will be managed and what impact these practices maynhtheestatistical
structure of filter sets may be garnered by examining IPv6 forwarding tables contaistingatien
address prefixes. In order to assess the current state of IPv6 forwarding tables, five IPv&bRBGP ta
snhapshots were collected from several sites [91]. Figure 5.10 shows the combined distfitoutio

a total of 1,550 entries. The individual tables are sufficiently small, so the combisigithution

was chosen to reflect the overall trend. A significant feature is that the total nufigigoe pre-

fix lengths in the combined distribution is 14. We now investigate IPv6 address architeature a
deployment policies to gain a sense of whether or not the number of unigfie lengths in for-
warding tables and filter sets is expected to grow significantly. The number of umefiselpngths

is of greater interest than the distribution of prefixes among the prefix lengths for pretikinga
techniques which are well-suited for IPv6 [24, 25]. Such techniques provide a stramtpton for
developing packet classification techniques that perform well with IPv6 address fields.

5.9.1 Address Architecture

The addressing architecture for IPv6 is detailed in RFC 3513 [92]. In terms of the nurnrefigf
lengths in forwarding tables, the important address type is the global unicast adthieesway
be aggregated [93]. RFC 3513 states that IPv6 unicast addresses may be aggritiyatditrary
prefix lengths like IPv4 addresses under CIDR. While this provides extensive flexib#itgowmot
foresee that this flexibility necessarily results in an explosion of unique prefix lengths. Tla glob
unicast address format has three fields: a global routing prefix, a subnet ID, angréacm ID.

120

600 B

N 3
o o
[s] [s]
T T
I I

Numner of prefixes
w
o
o
T
1

200 B

1 . . .
20 40 60 80 100 120
Prefix Length

Figure 5.10: Combined prefix length distribution for IPv6 BGP route table snapshots.

All global unicast addresses, other than those that begin with 000, must haveitar@érface ID
in the Modified EUI-64 format. These identifiers may be of global or local scope; hoywegeare
only interested in the structure they impose on filter sets. In such cases, the global routing prefix
and subnet ID fields must consume a total of 64 bits.

Global unicast addresses that begin with 000 do not have any restrictions oncetifa
size; however, these addresses are intended for special purposes such aedrithetiaddresses.
Embedded IPv4 addresses provide a mechanism for tunneling IPv6 packets overutvg ire
frastructure. We anticipate that this special class of global unicast addresses witintidbute
many unique prefix lengths to IPv6 routing tables and will not affect the structurer@ntuPv4
filter sets.

5.9.2 Address Allocation & Assignment

[94] In a June 26, 2002 memo entitled, “IPv6 Address Allocation and Assignment Pdtiey
Internet Assigned Numbers Authority (IANA) announced initial policies governinglisteibution
or “licensing” of IPv6 address space [94]. One of its stated goals is to distribute addreesrspa
hierarchical manner so as to “permit the aggregation of routing information by ISP tmdt the
expansion of Internet routing tables”. To that end, the distribution process is also hieahrtANA
has made initial distributions of /16 address blocks to existing Regional Internet Reg(RHRs).
The RIRs are responsible for allocating address blocks to National Internet Registries &NtRs)
Local Internet Registries (LIRs). The LIRs and NIRs are responsible for assigning addresses and
address blocks to end users and Internet Service Providers (ISPs).

The minimum allocation of address space to Internet Registries is in units of /32 blocks.
LIRs must meet several criteria in order to receive an address allocation, includangta provide

121

IPv6 connectivity by assigning /48 address blocks. During the assignment processcietdre
assigned when only one subnet ID is required and /128 addresses when onlyicedrderface is
required. While it is not clear how much aggregation will occur due to ISPs assigniltiple /48
blocks, the allocation and assignment policy does provide significant structure. Ipibleses are
followed, we anticipate that IPv6 routing tables and filter sets will not contain significartig m
unique prefix lengths than current IPv4 tables. It is also likely that the number of greafadehing a
given IPv6 address will be equal or less than the number of prefixes matchivendiv4 address.

122

Chapter 6

ClassBench: A Packet Classifi cation
Benchmark

The engineer is the key figure in the material progress of the world.
Sir Eric Ashby, Vice Chancellor of Cambridge University (1967-1969)

Due to the importance and complexity of the packet classification problem, a mydgboithms

and resulting implementations exist. The performance and capacity of many algoaitiothetas-
sification devices, including TCAMs, depend upon properties of the filter set and gateyns.
Unlike microprocessors in the field of computer architecture, there are no standard pederm
evaluation tools or techniques available to evaluate packet classification algoaitithpsoducts.
Network service providers are reluctant to distribute copies of real filter sets for securitpand
fidentiality reasons, hence realistic test vectors are a scarce commodity. The small subset of
research community who obtain real filter sets either limit performance evaluation todalesam-

ple space or employ ad hoc methods of modifying those filter sets. In response to tiésrpnak
presentClassBencha suite of tools for benchmarking packet classification algorithms and devices.

6.1 Motivation

Deployment of next generation network services hinges on the ability of Interimastructure

to provide flow identification at physical link speeds. A packet classifier must compgaeh
fields of every incoming packet against a set of filters in order to identify a flow. Th#ingsilow
identifier is used to apply security policies, application processing, and quality-of-serdi@tges

to packets belonging to the specified flow. Typical packet classification filter setddvamethan

a thousand filters and reside in enterprise firewalls or edge routers. As network servicaslaetd p
classifiers continue to migrate into the network core, it is anticipated that filter sets could swell
to tens of thousands of filters or more. A more complete introduction to packet classifica
provided in Chapter 1. The most common type of multiple field packet classificatemmiegs

123
only the packet header fields comprising the 5-tuple, possibly due to the lack aihfhsfficient
solutions that scale with the number of search fields. As we discuss in Section 5.8} filseis
often examine fields beyond the standard IP 5-tuple and we anticipate that filter setsniiLe
to scale to larger numbers of fields. For this reason, we desiGressBenclwith the capability
of generating additional filter fields such as TCP flags and ICMP type numbers. While #nis is
important feature, the primary contribution of our work is the accurate modeling stibeture of
the filter fields comprising the standard IP 5-tuple.

As reported in Chapter 5, it has been observed that real filter sets exhibit a cahkde
amount of structure. In response, several algorithmic techniques have beé&pddwehich ex-
ploit filter set structure to accelerate search time or reduce storage requirements [50, 5], 5
Consequently, the performance of these approaches are subject to the structurstiocakthar-
acteristics of the filter set. A more complete survey of multi-dimensional search algoritltims an
devices is provided in Chapter 4. As discussed in Section 4.2.2 and Sectiontbe3apacity
and efficiency of the most prominent packet classification solution, Ternary Gokdelnessable
Memories (TCAMS), is also subject to the characteristics of the filter set.

Despite the influence of filter set composition on the performance of packet classification
search techniques and devices, no publicly available benchmarking tools, filtepisétsmal
methodology exists for standardized performance evaluation. Due to security fideotality
issues, access to large, real filter sets for analysis and performance measuremewtslatsifi-
cation techniques has been limited to a small subset of the research communityreSearehers
in academia have gained access to filter sets through confidentiality agreemeats, tnable to
distribute those filter sets. Furthermore, performance evaluations using real filter sets are restricted
by the size and structure of the sample filter sets. Some researchers have proposedettidus; m
such as independently selecting address prefixes from backbone route tablestriactsgnthetic
filter sets or modify their composition. A survey of related work is provided in Section 6.2.

In order to facilitate future research and provide a foundation for a meaningful inamnkch
we presentClassBencha publicly available suite of tools for benchmarking packet classification
algorithms and devices. As shown in Figure 6lassBencltonsists of three tools: Eilter Set
Analyzer Filter Set Generatarand Trace Generatar The general approach @flassBenchs to
construct a set of benchmgokrameter fileshat specify the relevant characteristics of real filter sets,
generate a synthetic filter set from a chopamameter fileand a small set of high-level inputs, and
also provide the option to generate a sequence of packet headers to probéhtbticsiiiter set using
the Trace Generatar Parameter filescontain various statistics and probability distributions that
guide the generation of synthetic filter sets. Hiléer Setanalyzer tool extracts relevant statistics
from a seed filter set, constructs probability distributions to guide the generation of synthetic filter
sets, and generatearameter file This provides the capability to generate large synthetic filter
sets which model the structure of a seed filter set. In Section 6.3 we discuss the statistics and
probability distributions contained in thgarameter fileghat drive the synthetic filter generation

124

N
Filter Set Generator \/
Seed Filter Set i p| size smoothing scope Synthetic
H Filter Set Set
Parameter \l/
File
(acll) —
Trace Generato Ne—
Set of Benchmark scale locality Input
Parameter Files @ @ Header
T
(_face)

Figure 6.1: Block diagram of th€lassBenctiools suite. The synthetiEilter Set Generatohas
size, smoothing, and scope adjustments which provide high-level, systematic msathtor alter-
ing the size and composition of synthetic filter sets. The set of benchpaaskneter filesnodel
real filter sets and may be refined over time. Tihace Generatoprovides adjustments for trace
size and locality of reference.

process. Selection of the relevant statistics and distributions is based on our study dffilizarea
sets presented in Chapter 5, and several iterations ofitte Set Generatodesign. Note that
parameter filesnay also be hand-constructed from qualitative characterizations of a specific filter
set or class of filter sets such as backbone routers, edge routers, etc. We envisadrbarsettmark
parameter filegshat may be refined or expanded over time as the tools enjoy broader use.

The Filter Set Generatotakes as input @arameter fileand a few high-level parameters.
Along with specifying filter set size, the tool provides mechanisms for systematically altagng
composition of filters. Two adjustmentnoothingandscope provide high-level control over filter
set generation and an abstraction from the low-level statistics and distributions contained in th
parameter files The smoothingadjustment provides a structured mechanism for introducing new
address aggregates which is useful for modeling filter sets significantly larger than treefilised
to generate thparameter file The scopeadjustment provides a biasing mechanism to favor more
or less specific filters during the generation process. These adjustments and their affibets on
resulting filter sets are discussed in Section 6.4.1 and Section 6.4.2. FinallyatteeGenerator
tool examines the synthetic filter set, then generates a sequence of pacletheatkercise the
filter set. Like theFilter Set Generatarthe trace generator provides adjustments for scaling the
size of the trace as well as the locality of reference of headers in the trace. Theseadjs are
described in detail in Section 6.5.

We highlight previous performance evaluation efforts by the research communitglias
as related benchmarking activity of the IETF in Section 6.2. It is our hope that this initi-
ates a broader discussion which will lead to refinement of the tools, compilation ofdasdiaset
of parameter filesand codification of a meaningful benchmark. Its value will depend on its per-
ceived clarity and usefulness to the interested community. In the case of packet eltssifihis
community is comprised of at least the following groups:

125
e Researcherseeking to evaluate new classification algorithms relative to alternative approaches
and commercial products.

e Classification product vendoeeeking to market their products with convincing performance
claims over competing products.

¢ Classification product customesgeking to verify and compare classification product perfor-
mance on a uniform scale. This group can be sub-divided into two major sub-groupes: ro
vendors seeking to compare competing classification products during the desigssande
prior to selecting components, and router customers seeking to independently e€idiy p
mance claims of router vendors based on the components used in the router.

6.2 Related Work

Extensive work has been done in developing benchmarks for many applgatidrdata processing
devices. Benchmarks are used extensively in the field of computer architectwadutate micro-
processor performance. The effectiveness of these benchmarks to accuratejyidistine effects
of architectural improvements, fabrication advances, and compiler optimizaidebatable; yet,
there exists inherent value in providing a uniform scale for comparison.

In the field of computer communications, the Internet Engineering Task Force (IETF) has
several working groups exploring network performance measurement. Specificalli, Berfor-
mance Metrics (IPPM) working group was formed with the purpose of developing standaicsme
for Internet data delivery [95]. The Benchmarking Methodology Working Group (BN\&&&ks
to make measurement recommendations for various internetworking technq&®ji€3]. These
recommendations address metrics and performance characteristics as well @iscoliethodolo-
gies.

The BMWG specifically attacked the problem of measuring the performance of Forwarding
Information Base (FIB) routers [98][99]. Realizing that router throughput, latency, anfiass
rate depend on the structure of the Forwarding Information Base (FIB) or route table, thesSBMW
prescribes a testing methodology with accompanying terminology. The recomtioasdiescribe
testing at the router level, compounding the effects of system interfaces, contiawétching
fabric. While the suggested tests take into consideration table size and prefix distribution, they
lack specificity in how prefix distributions should be varied. The recommendations douoé&od
a methodology for determining the maximum FIB size and evaluating throughputveetatihe
table size. The BMWG also produced a methodology for benchmarking firewalls [1QD][IBe
methodology contains broad specifications such as: the firewall should contairstabriearule
for each host, tests should be run with various filter set sizes, and test traffic should cairespon
rules at the “end” of the filter set. This final specification provides for more accurdtEmpance

126
assessment of firewalls employing simple linear search algorithms. We ass@tageBencltom-
plements efforts by the IETF by providing the necessary tools for generating test veitkolnigh-
level control over filter set and input trace composition. The Network Processor KbiBR) has
also initiated a benchmarking effort [102]. Currently, the NPF has produced banchior switch
fabrics and route lookup engines. To our knowledge, there are no currents &fche IETF or the
NPF to provide a benchmark for multiple field filter matching.

In the absence of publicly available packet filter sets, researchers have exerteefforign
order to generate realistic performance tests for new algorithms. Several research btainesio
access to real filter sets through confidentiality agreements. Gupta and McKeowredlategess
to 40 real filter sets and extracted a number of useful statistics which have been eiteé!{50].
Gupta and McKeown also generated synthetic two-dimensional filter sets consisting a#-sourc
destination address prefix pairs by randomly selecting address prefixes from publicliglavailae
tables [51]. This technigue was also employed by Feldman and Muthukrishnan [2/§hé&tle,
Suri, and Varghese used this technique in a study of packet classification for twoscbmedn
“conflict-free” filters [68]. Baboescu and Varghese also generated synthetic two-dimainiio
ter sets by randomly selecting prefixes from publicly available route tables, but adihetnents
for controlling the number of zero-length prefixes (wildcards) and prefix nesting [34, AGim-
ple technique for appending randomly selected port ranges and protocols frofiteesets in
order to generate synthetic five-dimensional filter sets is also described [54]. Babondsdargh-
ese also introduced a simple scheme for using a sample filter set to generate a largeicsynthe
five-dimensional filter set [58]. This technique replicates filters by changing the IP mrefhxie
keeping the other fields unchanged. While these techniques address sonte efspeating filter
sets in size, they lack high-level mechanisms for adjusting filter set composition whititialdor
evaluating algorithms that exploit filter set characteristics.

Woo provided strong motivation for a packet classification benchmark and initiated-the
fort by providing an overview of filter characteristics for different environments (ISP RgRonter,
ISP Core Router, Enterprise Edge Router, etc.) [29]. Based on high-level characteffsticgen-
erated large synthetic filter sets, but provided few details about how the filter sets weteicted.
The technique also does not provide controls for varying the composition of filters hthiiiter
set. Nonetheless, his efforts provide a good starting point for constructing a benatapalite of
modeling various application environments for packet classification. SahasranachBuddhikot
used the characteristics compiled by Woo in a comparative evaluation of a feet ptadsification
techniques [104].

6.3 Parameter Files

Our technique for generating synthetic filter sets with five or more fields addresses thefissue
providing high-level control over the composition of synthetic filter sets and prowidesre flexible

127
foundation for a packet classification benchmark. Our technique uses real filtéo ggtserate
parameter filesvhich guide the-ilter Set Generatoand provide sufficient anonymity of addresses
in the original filter set. We have generated a set opatameter filesvhich are publicly available
along with theClassBenchools suite. There still exists a need for a large sample space of real
filter sets from various application environments in order to refingttiameter filesBy reducing
confidentiality concerns, we seek to remove the significant access barriers to realistictes ve
for researchers and promote the development of a meaningful benchmark.

Given a real filter set, thEilter Set Analyzegenerates parameter file¢hat contains statis-
tics and probability distributions that allow tidter Set Generatoto produce a synthetic filter set
that retains the relevant characteristics of the real filter set. We chose the statistics andidisdribu
to include in theparameter filebased on thorough analysis of 12 real filter sets and several itera-
tions of theFilter Set Generatodesign. Results of this analysis and a description of our metrics
are provided in Chapter 5. We discuss the entries in the parameter file below. Whsitg@gove
avoid discussing format details; interested readers and potential us€tassBenchmay find a
discussion of parameter file format in the documentation provided with the tools.

Protocols The Filter Set Analyzegenerates a list of the unique protocol specifications and the
distribution of filters over those values. We report the protocol distributions from 12 real filter se
and discuss observed trends in Section 5.3.1.

Port Pair Classes As we discussed in Section 5.3.3, we characterize the structure of source and
destination port range pairs by definin@art Pair Class(PPC). TheFilter Set Analyzegenerates a

PPC distribution for each unigue protocol specification in the filter set. This process cambghbttho

of as follows: sort the filters into sets by protocol specification; for each set compute the PPC
distribution and record it in thparameter file

Flags For each unique protocol specification in the filter set, Fiier Set Analyzelgenerates

a list of unique flag specifications and a distribution of filters over those values. As disénssed
Section 5.8, 10 out of the 12 filter sets that we studied contain matches on TCPrfl&jdhtype
numbers.

Arbitrary Ranges As reported in Section 5.3.2, filter sets typically contain a small number of
unique arbitrary range specifications. TH#er Set Analyzegenerates a list of unique arbitrary
range specifications and a distribution of filters over those values for both the souestindtion
port fields. Both distributions are recorded in frerameter file

Exact Port Numbers As reported in Section 5.3.2, a significant number of filters specify exact
port numbers in the source and destination port fields. Like the arbitrary range distributions, the

128

Prefix Pair Length Distributio

Total Prefix Length Distribution

1
250 o
200 06
0.4
150 04
100 0 T T T T T T 1 T T T T T T T 71
O 0 © N O o © <
— M < J © 3
Soh| = | 1 — 0 P . 3
... « I .
..... y y
O v
SA Length 0.4
32
DA Length 32 0.2
i 32
oI I || E—
o 00 © < N
_ -,

Source Prefix Length Distributions

Figure 6.2:Parameter filegepresent prefix pair length distributions using a combination of a total
prefix length distribution and source prefix length distributions for each non-zero total.length

Filter Set Analyzegenerates a list of unique exact port specifications and a distribution of filters
over those values for both the source and destination port fields. Both distributionsarkecein
the parameter file

Address Prefix Pair Lengths In Section 5.4 we demonstrated the importance of considering the
prefix pair length as opposed to independent distributions for the source and destatidiess

prefix lengths.Parameter filegepresent prefix pair length distributions using a combination of a
total prefix length distribution and source prefix length distributions for each specified tatiien

as shown in Figure 6.2. The total prefix length is simply the sum of the prefix lengths forutmeso

and destination address prefixes. As we will demonstrate in Section 6.4.2, modeliotathpeefix

length distribution allows us to easily bias the generation of more or less specific filters babed o
scopeinput parameter. The source prefix length distributions associated with each specified total
length allow us to model the prefix pair length distribution, as the destination prefix lergithgky

the difference of the total length and the source length.

Address Prefix Branching and Skew The branching probability and skew distributions defined
in Section 5.4 allow us to model the address space coverage and relationshipsnbatidesss

We do not need to store a source prefi x distribution for total prefi x lengths that areewift e by fi Iters in the fi lter
set.

129
prefixes specified in the filter set. TRéter Set Analyzecomputes branching probability and skew
distributions for both source and destination address prefixes. Both distributions are réadhded
parameter file

Address Prefix Correlation The address correlation distribution defined in Section 5.4 speci-
fies the relationship between source and destination address prefixes in each filtEilter iget
Analyzercomputes the address prefix correlation distribution and records it petfaeneter file

Prefix Nesting Thresholds As discussed in Section 5.7, the number of unique address prefixes
that match a given packet is an important property of real filter sets and is ofteredete as
prefix nesting We found that if theFilter Set Generatoiis ignorant of this property, it is likely

to create filter sets with significantly higher prefix nesting, especially when the synthetic filter set
is larger than the filter set used to generateghemeter file Given that prefix nesting remains
relatively constant for filter sets of various sizes, we place a limit on the prefix nestinggdurin
the filter generation process. THhiter Set Analyzelcomputes the maximum prefix nesting for
both the source and destination address prefixes in the filter set and records these statigtics in th
parameter file TheFilter Set Generatoretains these prefix nesting properties in the synthetic filter
set, regardless of size. We discuss the process of generating address prefixes ang pe&din
nesting properties in Section 6.4.

Scale TheFilter Set Analyzealso records the size of the real filter set in the genengaeameter

file. This statistic primarily serves as a reference point to users when selecting parameter files to use
to test a particular device or algorithm. It is also used when the user chooses to scalartiecand
destination address branching probability and skew distributions with filter set size. This igption
provided via a high-level command switch to thider Set GeneratarFor example, if a parameter

file from a firewall filter set of 100 filters is used to generate a synthetic filter set of 10000 filters the
user may want to allow the source and destination addresses to cover more of theciés appace

while retaining the prefix nesting and prefix pair length distributions.

6.4 Synthetic Filter Set Generation

TheFilter Set Generatois the cornerstone of thHelassBenchools suite. Perhaps the most succinct
way to describe the synthetic filter set generation process is to walk through the psiidboan

in Figure 6.3. The first step in the filter generation process is to read the statistics and distributions
from the parameter file Rather then list all of the distributions here, we will discuss them when
they are used in the process. Next, we get the four high-level input parameters:

e size target size for the synthetic filter set

e smoothing controls the number of new address aggregates (prefix lengths)

130
e port scope biases the tool to generate more or less specific port range pairs

e address scopebiases the tool to generate more or less specific address prefix pairs

We refer to thesizeparameter as a “target” size because the generated filter set may have fewer
filters. This is due to the fact that it is possible for fhi#ter Set Generatoto produce a filter set
containing redundant filters, thus the final step in the process removes the rediiltetantThe
generation of redundant filters stems from the way the tool assigns source and destiddtess
prefixes that preserve the properties specified irpdrameter file This process will be described

in more detail in a moment.

Before we begin the generation process, we applystheothingadjustment to the prefix
pair length distributior&lines 6 through 10). This adjustment provides a systematic, high-level
mechanism for injecting new prefix lengths into the filter set while retaining the genaralataris-
tics specified in thparameter file We discuss this adjustment and its effects on the generated filter
set in Section 6.4.1. Thearameter filespecifies a prefix pair length distribution for each Port Pair
Class. As described in Section 6.3, frerameter filaepresents each prefix pair length distribution
as a total prefix length distribution with a source prefix length distribution for each specified total
length. In order to apply themoothingadjustment, we must iterate over all Port Pair Classes (line
7), apply the adjustment to each total prefix length distribution (line 8) and iterate ovetall
prefix lengths (line 9), and apply the adjustment to each source prefix length distributiciatexso
with the total prefix length (line 10).

Prior to generating filters, we allocate a temporary array (line 11). The next set of steps
(lines 12 through 27) generatepartial filter for each entry in théilters array. Basically, we
assign all filter fields except the address prefix values. Note that the prefix lengthsH@ooce
and destination addresse assigned. The reason for this approach will become clear when we
discuss the assignment of address prefix values in a moment. The first step in gengatiieg a
filter is to select a protocol from therotocols distribution specified by thparameter filg(line
14). Note that this selection is performed with a uniform random variabléline 13). We chose to
select the protocol first because we found that the protocol specification dictates therstofithe
other filter fields. Next, we select the protocol flags fromRtegs distribution associated with the
chosen protocol (line 16). THelags distributions for all protocol specifications are given by the
parameter file Note that the protocol flags field is typically the wildcard unless the chosen protocol
is TCP or ICMP. This selection is also performed with a uniform random variable (line 15).

After choosing the protocol and flags, we select a Port Pair GR2§, from the Port Pair
Class matrix,PPCMatrix , associated with the chosen protocol (line 18). As discussed in Sec-
tion 5.3.3, Port Pair Classes specify the type of port range specified by the sourdessindtion
port fields (wildcard, arbitrary range, etc.). Note that the selection dP®€is performed with a
random variable that is biased by thart scopgarameter (line 17). This adjustment allows the user

2Note that thescopeadjustments do not add any new prefi x lengths to the distributions. It only chargéetthood
that longer or shorter prefi x lengths in the distribution are chosen.

131
FilterSetGenerator 0
/I Read input file and parameters
read (parameter filg
get (size
get (smoothing
get (port scopé
get (address scope
/I Apply smoothing to prefix pair length distributions

O wWN P

6 If smoothing> 0

7 For i:1to MaxPortPairClass

8 TotalLengths]i] —smooth (smoothing

9 For j:0to 64

10 SALengthsJi][j] —smooth (smoothing
/Il Allocate temporary filter array

11 FilterType Filters [sizg

I/l Generate filters
12 For i:1to size
/I Choose an application specification
13 rv = Random()

14 Filters[i].Prot = Protocols —choose(rv)

15 rv = Random()

16 Filters[i].Flags = Flags|Filters][i].Prot] —choose(rv)

17 rv = RandomBias (port scopé

18 PPC = PPCMatrix[Filters][i].Prot] —choose(rv)

19 rv = Random()

20 Filters[i].SP = SrcPorts[PPC.SPClass] —choose(rv)

21 rv = Random()

22 Filters[i].DP = DstPorts[PPC.DPClass] —choose(rv)
/I Choose an address prefix length pair

23 rv = RandomBias (address scope

24 TotalLength = TotalLengths[PPC] —choose(rv)

25 rv = Random()
26 Filters[i].SALength SrcLengths[PPC][TotalLength] —choose(rv)
27 Filters[i].DALength = TotalLength - Filters[i].SALength
/I Assign address prefix pairs
28 AssignSA(Filters)
29 AssignDA(Filters)
/I Remove redundant filters and prevent filter nesting
30 RemoveRedundantFilters(Filters)
31 OrderNestedFilters(Filters)
32 PrintFilters(Filters)

Figure 6.3: Pseudocode fbilter Set Generatar

132
to bias theFilter Set Generatoto produce a filter set with more or less specific Port Pair Classes
where WC-WC (both port ranges wildcarded) is the least specific and EM-EM (both porsrange
specify an exact match port number) is the most specific. We discuss this adjusthaésteffects
on the generated filter set in Section 6.4.2. Given the Port Pair Class, we can sekmirite and
destination port ranges from their respective port range distributions associated wikoeClass
(lines 20 and 22). Note that the distributions for Port Classes WC, Hl, and LO are triviatyas th
define single ranges; therefore, tharameter fileonly needs to specify arbitrary range (AR) and
exact match (EM) port number distributions for both the source and destination ports.|ddi®ee
of port ranges from a Port Class distribution is performed using a uniform random variable (lines
19 and 21).

Selecting the address prefix pair lengths is the last step in generapadial filter. We
select a total prefix pair length from the distribution associated with the chosen Port Pair Class
(line 24) using a random variable biased by #uglress scopparameter (line 23). We discuss this
adjustment and its effects on the generated filter set in Section 6.4.2. We selecta m@tdix
length from the distribution associated with the chosen Port Pair Class and total length (line 26)
using a uniform random variable (line 25). Note that we use an unbiased, uniform raadairie
for choosing the source address length. This allows us to retain the relationships bstwezn
and destination address prefix lengths. Finally, we calculate the destination address pgéfix le
using the chosen total length and source address prefix length (line 27).

After we generate all thpartial filters, we must assign the source and destination address
prefix values. We begin by assigning the source address prefix values (line 28\s3igaSA
routine constructs a binary trie using the set of source address prefix lendfitteia and the
source address branching probability and skew distributions specified pgrdmmeter file We start
by allocating a root node, constructing a list of filt&ifterList containing all the partial filters
in Filters , and passingrilterList and a node pointer to a recursive procé4sitNode
This process first examines all of the entrie&iterList . If an entry has a source prefix length
equal to the level of the nodeit assigns the node’s address to the entry and removes the entry
from FilterList . Once completedyisitNode recursively distributes the remaining filters
to child nodes according to the branching probability and skew for the nodels Mot that we
also keep track of the number of prefixes that have been assigned along & pattsing aNest
variable to the recursive process.Nést > SANestThresh - 1 , whereSANestThresh is
the source prefix nesting threshold specified byphemeter file thenVisitNode ignores the
branching probability and skew distributions. In this ca#sjtNode partitionsFilterList
into two lists, one containing filters with source address prefix lengths equal to the nexveke le
and one containing all the remaining filtefgisitNode then recursively passes the lists to two
child nodes. In doing so, we ensure that the nesting threshold is not exceeded.

3Node level is synonymous with tree depth.

133

Assigning destination address prefix values is symmetric to the process for source address
prefixes with one extension. In order to preserve the relationship between sourcestindtioa
address prefixes in each filter, thasignDA process (line 29) also considers the correlation dis-
tribution specified in thgparameter file In order to preserve the correlatiohssignDA employs
a two-phase process of constructing the destination address trie. The first phase recussively d
tributes filters according to the correlation distribution. When the address prefixes of alparticu
filter cease to be correlated, it stores the filter in a tempdauiplist associated with the current
tree node. The second phase recursively walks down the tree and completes thaasisigocess
in the same manner as tAssignSA process, with the exception that tBeubList is appended
to theFilterList passed to thAssignDA process prior to processing.

Note that we do not explicitly prevent thélter Set Generatofrom generating redundant
filters. Identicalpartial filters may be assigned the same source and destination address prefix
values by theAssignSA andAssignDA functions. In essence, this preserves the characteristics
specified by thegparameter filebecause the number of unique filter field values allowed by the
various distributions is inherently limited. Consider the example of attempting to geleiatge
filter set using garameter filefrom a small filter set. If we are forced to generate the number of
filters specified by thsizeparameter, we face two unfavorable results: (1) the resulting filter set
may not model th@arameter filebecause we are repeatedly forced to choose values from the tails
of the distributions in order to create unique filters, or (2)Fiteer Set Generatonever terminates
because it has exhausted the distributions and cannot create any more uniquiilettse current
design of the-ilter Set Generatara user can produce a larger filter set by simply increasingittee
target beyond the desired size. While this does introduce some variability in the sieesghthetic
filter set, we believe this is a tolerable trade-off to make for maintaining the characteristies in
parameter fileand achieving reasonable execution times forRifter Set Generatar

Thus, after generating a list sfzesynthetic filters, we remove any redundant filters from
the list via theRemoveRedundantFilters function (line 30). A n&ve implementation of this
function would requireD(N?) time, whereN is equal tosize. We discuss an efficient mechanism
for removing redundant filters from the set in Section 6.4.3. After removing redufitlars from
the filter set, we sort the filters in order of increasing scope (line 31). This allows the filter set
to be searched using a simple linear search technique, as nested filters will be seaarded in
of decreasing specificity. An efficient technique for performing this sorting step is als@ssiestu
in Section 6.4.3. Finally, we print the filter set to an output file (line 32). The following subsec
tions provide detailed descriptions and analyses of the smoothing and scope adfisistimevell as
efficient techniques for removing redundant filters and sorting the filters to pre\&inige

6.4.1 Smoothing Adjustment

As filter sets scale in size, we anticipate that new address prefix pair lengths will etherde
network address aggregation and segregation. In order to model this behayvjamowide for the

134

70000
60000 ™
50000]
40000

30000

Number of Filters

20000

10000

0

<
0 5 @
10 ©
15 o " .
20 25 J A DA Prefix Length 28 SA Prefix Length
DA Prefix Length 30 o & SA Prefix Length
(@r=0 (b) r = 0, top view

Figure 6.4: Prefix pair length distribution for a synthetic filter set of 64000 filters generatea with
parameter filespecifying 16-bit prefix lengths for all addresses.

introduction of new prefix lengths in a structured manner. Injecting purely randonessidrefix
pair lengths during the generation process neglects the structure of the filter set useeraigthe
parameter file Using scope as a measure of distance, we expect that new address aggvitigates
emerge “near” an existing address aggregate. Consider the address prefixgihidistribution
shown in Figure 6.4. In this example, all filters in the filter set have 16-bit source andadiestin
address prefixes; thus, the distribution is a single “spike”. When injecting new addressppiiefix
lengths into the distribution, we would like them to be clustered around the existing spike in the
distribution. This structured approach translates “spikes” in the distribution into smoother “hills”;
hence, we refer to the process as smoothing.

In order to control the injection of new prefix lengths, we definensothingparameter
which limits the maximum radius of deviation from the original prefix pair length, whedgisa
is measured in the number of bits specified by the prefix pair. Geometrically, this reeesu
may be viewed as the Manhattan distance from one prefix pair length to anotheprivenience,
let the smoothingparameter be equal ta We chose to model the clustering using a symmetric
binomial distribution. Given the parametera symmetric binomial distribution is defined on the
range[0 : 2r], and the probability at each poinin the range is given by:

i = < 2;’) <%)2r (6.1)

Note thatr is the median point in the range with probabilty, andr may assume values in the
range[0 : 64].

135

Once we generate the symmetric binomial distribution fromsitm@othingparameter, we
apply this distribution to each specified prefix pair length. The smoothing process ingoblewy
each “spike” in the distribution according to the median probabiljtyand binomially distributing
the residue to the prefix pair lengths within thdit radius. When prefix lengths are at the “edges”
of the distribution, we simply truncate the binomial distribution. This requires us to normadize th
prefix pair length distribution as the last step in the smoothing process. Note that we myshapp
smoothing adjustment to each prefix pair length distribution associated with each Portaair C
in the parameter file In order to demonstrate this process, we provide an example of smoothing
the prefix pair length distribution in Figure 6.4 using two different values. ofigure 6.5(a) and
Figure 6.5(b) show the prefix pair length distributions for a synthetic filter set generated with a
parameter filespecifying 16-bit prefix lengths for all addresses and a smoothing paramete:

With the exception of the fringe effects due to random number generation, the Sjilggeat 16-16
is binomially distributed to the prefix pair lengths within a Manhattan distance of 8. The dtaTie e
is shown in Figure 6.5(a) and Figure 6.5(b) for a smoothing paramete32.

In practice, we expect that ttsenoothingparameter will be limited to at most 8. In order to
demonstrate the effect of smoothing in a realistic context, we generated a synthetictfilgngea
smoothingparameter of 4. Figure 6.6(a) and Figure 6.6(b) show the prefix pair length distribution
for a synthetic filter set of 64000 filters generated using the ahmeter fileand smoothing
parameter- = 0. Figure 6.6(c) and Figure 6.6(d) show the prefix pair length distribution for a
synthetic filter set of 64000 filters generated using the jparameter fileand smoothing parameter
r = 4. Note that this synthetic filter set retains the structure of the original filter set while modeling
a realistic amount of address aggregation and segregation.

Recall that we choose to truncate and normalize to deal with the edge casesidéys ev
in Figure 6.6, many of the most common address prefix pair lengths occur atigkes ef the
distribution. As a result, applying the smoothing adjustment may affect the avergue afcthe
generated filter set. Consider the case of the spike at 32-32 (fully specified sourcestinatioa
addresses). Applying the smoothing adjustment to this point distributes some of the redahise to
specific prefix pair lengths, but the residue allocated to more specific prefix pair lengthecet e
as there are not any more specific prefix pair lengths. In order to assess the effectsatidrusnd
normalization on the resulting filter sets, we generated several filter sets of the same sizerasing th
differentparameter filesand various values of the smoothing parameter. The results are shown in
Figure 6.4.1. Note that as we increase the amount of smoothing applied to thepaiefizngth
distributions, the effect on the 5-tuple scope and address pair scope is minimal. \Weabskght
drift toward the median scope value due to the aforementioned truncation of the dististaititne
edges.

136

Number of Filters

24 4
DA Prefix Length SA Prefix Length

. 25 o N .
DA Prefix Length 30 g N SA Prefix Length

@r=28 (b) r = 8, top view

Number of Filters

2; 4
DA Prefix Length SA Prefix Length

. 25 o N
DA Prefix Length 30 o ™ SAPrefix Length

(c)r =32 (d) r = 32, top view

Figure 6.5: Prefix pair length distributions for a synthetic filter set of 64000 filters generéted w
a parameter filespecifying 16-bit prefix lengths for all addresses and various values of smoothing
parameter-.

6.4.2 Scope Adjustment

As filter sets scale in size and new applications emerge, it is likely that the avergge ofcihe
filter set will change. As the number of flow-specific filters in a filter sets increases, the specific
of the filter set increases and the average scope decreases. If the number fyebiolaked ports
for all packets in a firewall filter set increases, then the specificity of the filter set mayadeand
the average scope may increhstn order to explore the effect of filter scope on the performance

“We are assuming a common practice of specifying an exact match on the blarkedmber and wildcards for all
other fi lter fi elds

137

16000
14000
» 12000 |7
1] |
10000
— —
© 8000
[} —
£ 6000
=
Z 4000 L]
2000
Il] -
0 . ~3el,) L°
o . | '

o~
10 9 © -
15 i 8

20 o |

25 S)
DA Prefix Length 30 N SA Prefix Length

@r=0

32 i f 32 SA Prefix Length
DA Prefix Length 32 SA Prefix Length

c)r=4 (d) r = 4, top view

Figure 6.6: Prefix pair length distribution for a synthetic filter set of 64000 filters generatetheith
ipcl parameter filawith smoothing parameters= 0 andr = 4.

of algorithms and packet classification devices, we provide high-level adjustnfethis average
scope of the synthetic filter set. Two input parametadsiress scopandport scopeallow the user

to bias theFilter Set Generatoto create more or less specific address prefix pairs and port pairs,
respectively.

In order to illustrate the effects of scope adjustments, consider the standard method of sam
pling from a distribution using a uniformly distributed random variable. In Figure 6.8, we show
the cumulative distribution for the total prefix pair length associated with the WC-WC puort pa
class of the acl2 filter set. In order to sample from this distributionFthier Set Generatoselects

138

—#—acll ——fw5 —a—ipcl ——acl3 —e—fw5 —A—ipcl

100 - 60

3]
o

80

3]
Q
2 8
3 60 D 401
2 ——o—¢ * ——o—0o—0—¢ ks 4»,/—4—*—*—’—’_‘_‘_4)
o & 30
Q [%]
S 40 . a g
) —————a—a—a—N -,
2 W
20 10
0 ‘ ‘ ‘ ‘ ‘ ‘ ‘ 0 : : : : : : :
0 8 16 24 32 40 48 56 64 0 8 16 24 32 40 48 56 64
Smoothing Parameter (r) Smoothing Parameter (r)
(a) 5-tuple Scope (b) Address Prefix Pair Scope

Figure 6.7: Average scope of synthetic filter sets consisting of 16000 filters generatqzhveithe-
ter files extracted from filter set13, fw5, andipcl, and various values of the smoothing parameter
T.

a random number between zero and one using a uniform random numbertgeribes chooses
the total prefix pair length covering that number in the cumulative distribution. @alph this
amounts to projecting a horizontal line from the random number on the y-axis. Therditate
of the “step” which it intersects is the sampled total prefix pair length. In Figure 6.8, gwensan
example of sampling with a random variable equalto choose the total prefix pair length of
44,

Theaddress scopadjustment essentially biases the sampling process to select more or less
specific total prefix pair lengths. We can realize this in two ways: (1) apply the adjustontme
cumulative distribution, or (2) bias the random variable used to sample from the cwmualiatiribu-
tion. The first option requires that we recompute the cumulative density distribution tolomajes
or shorter prefix lengths more or less probable, as dictated bgdtieess scopparameter. The
second option provides a conceptually simpler alternative. Returning to the lexanfigure 6.8,
if we want to bias thd-ilter Set Generatoto produce more specific address prefix pairs, then we
want the random variable used to sample from the distribution to be biased to values clbser to
The reverse is true if we want less specific address prefix pairs. Thus, in order to apply the scop
adjustment we simply use a random number generator to choose a uniformly distrimdechra
variable,rv,.,;, apply a biasing function to generate a biased random variablg., and sample
from the cumulative distribution usingp;,s.

While there are many possible biasing functions, we limit ourselves to a particularly simple
class of functions. Our chosen biasing function may be viewed as applying aslap#e uniform
distribution as shown in Figure 6.9(a). When the slepe 0, the distribution is uniform. The biased
random variable corresponding to a uniform random variable on-eés is equal to the area of the

139

0.8
2>
c
o]
0O 0.6
) 0.5
T L L T
ks
>
2 0.4 |
IS I
3 |
0.2
I
1
O ‘ T T T T T :44 T T
0 8 16 24 32 40 48 56 64

Total Prefix Pair Length

Figure 6.8: Example of sampling from a cumulative distribution using a random variaiskeibD-
tion is for the total prefix pair length associated with the WC-WC port pair class of the act2 filte
set. A random variable equal to 0.5 chooses 44 as the total prefix pair length.

rectangle defined by the value and a line intersectingtaeis at one with a slope of zero. Thus, the
biased random variable is equal to the uniform random variable. As shown in Fig(ag &6 can
bias the random variable by altering the slope of the line. Note that in order for thegofasiztion

to be defined for random variables in the raf@e 1] and have a cumulative probability of 1 for a
random variable equal to 1, the slope adjustment must be in the fai2ge2]. Graphically, this
results in the line pivoting about the poiit5, 1). For convenience, we define the scope adjustments
to be in the rangé-1 : 1], thus the slope is equal to two times the scope adjustment. For non-zero
slope values, the biased random variable corresponding to a uniform random varitie:aaxis

is equal to the area of the trapezoidefined by the value and a line intersecting the p@ing, 1)

with a slope ofs. The expression for the biased random variablg;,,, given a uniform random
variable,rv,,;, and ascopeparameter in the rande-1 : 1] is:

TUbias = TUuni(SCOPE X TUyn; — scope + 1) (6.2)

Figure 6.9(b) shows a plot of the biasing function $oppevalues of 0, -1, and 1. We also provide
a graphical example of computing the biased random variable given a unifodomavariable of
0.5 and ascopeparameter of 1. In this case the;, is 0.25. Let us return to the example of
choosing the total address prefix length from the cumulative distribution. In Figure 6el§haw
examples of sampling the distribution using the unbiased uniform random varniahlg,= 0.5,

®Recall that the area of a trapezoid is one half the product of the height andrthefghe lengths of the parallel
edgesA = 1 x h x (i +12).

140

s=0 s=-1
1 1
s 0.75
0 0.5 1 0 0.5 1 0 0.5 1
Uniform RV Uniform RV Uniform RV

(a) Biased random variable is defi ned by area under line with
slopes = 2 x scope.

1

Uniform Random Variable

0 T : T T T
0 0.2 0.4 0.6 0.8 1

Biased Random Variable

(b) Plot of scope biasing function.

Figure 6.9: Scope applies a biasing function to a uniform random variable.

and the biased random variabtey,,; = 0.25, resulting from applying the biasing function with
scope = 1. Note that the biasing results in the selection of a less specific address prefix pair, a total
length of 35 as opposed to 44.

Positive values ofiddress scopbias theFilter Set Generatoto choose less specific address
prefix pairs, thus increasing the average scope of the filter set. Likewise, negativeofadddress
scopebias theFilter Set Generatoto choose more specific address prefix pairs, thus decreasing the
average scope of the filter set. The same effects are realized pgrtrecopeadjustment by biasing
the Filter Set Generatoto select more or less specific port range pairs. Note that the cumulative
distribution must be constructed in such a way that the distribution is computed oves salted
from least specific to most specific.

141

o o
)] (o]

rvun) =05)

©
N

Cummulative Density

0.2

0 3B 144

0 8 16 24 32 40 48 56 64
Total Prefix Pair Length

Figure 6.10: Example of sampling from a cumulative distribution using a random var[iskei-
bution is for the total prefix pair length associated with the WC-WC port pair class of théleer
set. A random variable equal to 0.5 chooses 44 as the total prefix pair length.

Finally, we report the results of tests assessing the effects adddtress scopand port
scopeparameters on the synthetic filter sets generated bFittee Set GeneratarEach data point
in the plots in Figure 6.4.2 is from a synthetic filter set containing 16000 filters generatecfrom
parameter fildrom filter sets acl3, fw5, oripcl. Figure 6.11(a) shows the effect chtltress scope
parameter on the average scope of the address prefix pairs in the resulting filter sés Quge of
values, theaddress scopalters the average address pair scope-byo +6. Figure 6.11(b) shows
the effect of thegport scopegparameter on the average scope of the port range pairs in the resulting
filter set. Over its range of values, tipert scopealters the average port pair scope ©y.5 to
+2.5. Note that the magnitude of change in average scope for both parametenoismpgely the
same relative to the range of possible scope values. Figure 6.11(c) shows thefdffattt scope
parameters on the average scope of the filters in the resulting filter set. For these tests,dg@mth sco
parameters were set to the same value. Over their range of values, the scopetgraralter the
average filter scope by6 to +7.5. We assert that these scope adjustments provide a convenient
high-level mechanism for exploring the effects of filter specificity on the performahpaaket
classification algorithms and devices.

6.4.3 Filter Redundancy & Priority

The final steps in synthetic filter set generation are removing redundant filters and orttiering
remaining filters in order of increasing scope. The removal of redundant filters maglized by
simply comparing each filter against all other filters in the set; however, tlive maplementation

142

——acl3 ——fw5 —a—ipcl ——acl3 ——fw5 —a—ipcl
60 -
g 50 -
o (]
o o
n 40 3
5 et
o — 5 3
@ — F
g =
5 20 o 10 4
3 a
<
5
' T T T —0 T T T T T T T —6 T T T T
-1 -08 -06 -04 -02 0 02 04 06 08 1 -1 -08 -06 -04 -02 0 02 04 06 08 1

Address Scope Parameter Port Scope Parameter

(a) Effect ofaddress scopadjustment on the ad- (b) Effect ofport scopeadjustment on the port pair
dress prefi x pair scope scope

——acl3 —e—fw5 —i—ipcl‘

100 +

30
86

60 -

}___‘___‘—__‘_—0——-0
<>/‘/k_‘—*:‘ a1

5-tuple Scope

»

n
D

D

-1 -08 -06 -04 -02 0 02 04 06 08 1
Address & Port Scope Parameters

(c) 5-d Scope

Figure 6.11: Average scope of synthetic filter sets consisting of 16000 filters genertit@aram-
eter files extracted from filter se&€l13, fw5, andipcl, and various values of the scope parameters.

requiresO(N?) time, whereN is equal tosize. Such an approach makes execution times of the
Filter Set Generatoprohibitively long for filter sets in excess of a few thousand filters. In order to
accelerate this process, we first sort the filters into sets according to their tuple specificatiog. Sortin
filters into tuple sets was introduced by Srinivasan, et. al. in the context diile Space Search
packet classification algorithm discussed in Section 4.5 [66].

We perform this sorting efficiently by constructing a binary search tree of tuple set pointers,
using the scope of the tuple as the key for the node. When adding a filter to a tuple setarch
the set for redundant filters. If no redundant filters exist in the set, then we add the filter to th
set. If a redundant filter exists in the set, we discard the filter. The time complexity of thisfsearc
technique depends on the number of tuples created by filters in the filter set afigttieition of
filters across the tuples. In practice, we find that this technique provides acceptdbienpace.

143
Generating a synthetic filter set of 10k filters requires approximately five seconds, \iilide set
of 100k filters requires approximately five minutes with a Sun Ultra 10 workstation.

In order to support the traditional linear search technique, filter priority is often inferred by
placement in an ordered list. In such cases, the first matching filter is the best matchingHiker.
arrangement could obviate a filtérif a less specific filterf; > f; occupies a higher position in the
list. To prevent this, we order the filters in the synthetic filter set according to scope, wheee filte
with minimum scope occur first. The binary search tree of tuple set pointers makes thisgrde
task simple. Recall that we use scope as the node key. Thus, we simply perform aarinalidof
the binary search tree, appending the filters in each tuple set to the output list of filters.

6.5 Trace Generation

When benchmarking a particular packet classification algorithm or device, nfiding metrics of
interest such as storage efficiency and maximum decision tree depth may be gasiegethe
synthetic filter sets generated by thdter Set Generatar In order to evaluate the throughput of
techniques employing caching or the power consumption of various dewtks load, we must
exercise the algorithm or device using a sequence of synthetic packet headersmaceh&enerator
produces a list of synthetic packet headers that probe filters in a given filter setthidbtee do
not want to generate random packet headers. Rather, we want to ensumeptiktet header is
covered by at least one filter in ti@lterSetin order to exercise the packet classifier and avoid
default filter matches. We experimented with a number of techniques to gesgnétetic headers.
One possibility is to compute all thédimensional polyhedra defined by the intersections of the
filters in the filter set, then choose a point in thdimensional space covered by the polyhedra. The
point defines a packet header. The best-matching filter for the packet higathaply the highest
priority filter associated with the polyhedra. If we generate at least one header cadiegpto each
polyhedra, we fully exercise the filter set. The number of polyhedra defined by filteseéct®ons
grows exponentially, and thus fully exercising the filter set quickly becomes inttactaba result,
we chose a method that partially exercises the filter set and allows the user to vary thadsize
composition of the headers in the trace using high-level input parameters. Theseteasarantrol
the scale of the header trace relative to the filter set, as well as the locality of refémetee
sequence of headers. As we did with théier Set Generatgrwe discuss thdrace Generator
using the pseudocode shown in Figure 6.12.

We begin by reading thEilterSetfrom an input file (line 1). Next, we get the input param-
etersscale ParetoA andParetoB(lines 2 through 4). Thecaleparameter is used to set a threshold
for the size of the list of headers relative to the size ofRierSet(line 5). In this contextscale
specifies the ratio of the number of headers in the trace to the number of filters in thedilter
After computing theThreshold , we allocate a list of headersleaders (line 6). The next set

144

TraceGenerator ()

/I Generate list of synthetic packet headers
read (FilterSe)

get (scalg

get (ParetoA

get (ParetoB

5 Threshold = scalex size (FilterSe)
6 HeaderList Headers()

7 While size(Headers) < Threshold

8

9

WN -

D

RandFilt = randint (O,size (FilterSe))
NewHeader = RandomCorner (RandFilt, FilterSe)

10 Copies = Pareto (ParetoAParetoB
11 For i:1to Copies
12 Headers —append(NewHeader)

13 Headers —print

Figure 6.12: Pseudocode férace Generatar

of steps continue to generate synthetic headers as long as the kiead#rs does not exceed the
Threshold

Each iteration of the header generation loop begins by selecting a random filteFitighe
Set(line 8). Next, we must choose a packet header covered by the filter. In the irtlee®stcising
priority resolution mechanisms and providing conservative performance estimatesdothahg
relying on filter overlap properties, we would like to choose headers matching a langgen of
filters. In the course of our analyses, we found the number of overlapping filters iddanggcket
headers representing the “corners” of filters. When we view a filter as definhtjraensional rect-
angle, the corners of this rectangle represent points id-tlienensional space which correspond to
packet headers. Each field of a filter covers a range of values. Choosing alpeadter correspond-
ing to a “corner” translates to choosing a value for each header field from one oftteme of the
range specified by each filter field. TRandomCorner function chooses a random “corner” of
the filter identified byRandFilt and stores the headeriNewHeader .

The last steps in the header generation loop append a variable number otbédfmesieader
to the trace. The number of copi€ppies , is chosen by sampling from a Pareto distribution con-
trolled by the input parameterBaretoAandParetoB(line 10). In doing so, we provide a simple
control point for the locality of reference in the header trace. The Pareto distribigione of the
heavy-tailed distributions commonly used to model the burst size of Internet traffic ffowslbas
the file size distribution for traffic using the TCP protocol [105]. For convenience,3etPareto A
andb = ParetoB. The probability density function for the Pareto distribution may be expressed

5The Pareto distribution, a power law distribution named after the Italian economist VilfredtmPa also known as
the Bradford distribution.

145

as: "
a
Ple) = o (6.3)
where the cumulative distribution is:
D) =1- (b> (6.4)
X
The Pareto distribution has a mean of; ;
a
p= (6.5)
a—1

Expressed in this way, is typically called the shape parameter and typically called the scale
parameter, as the distribution is defined on values in the intébyab). The following are some
examples of how the Pareto parameters are used to control locality of reference:

e Low locality of reference, short taila(= 10, b = 1) most headers will be inserted once

e Low locality of reference, long tail:a = 1, b = 1) many headers will be inserted once, but
some could be inserted over 20 times

e High locality of reference, short taila(= 10, b = 4) most headers will be inserted four times

Once the size of the trace exceeds the threshold, the header generation looptésrniote that
a large burst near the end of the process will cause the trace to be largdihtieshold . After
generating the list of headers, we write the trace to an output file (line 13).

6.6 Benchmarking with ClassBench

In order to provide value to the interested community, a packet classification bemkcmust pro-
vide meaningful measurements that cover the broad spectrum of applicatioonements. It is
with this in mind that we designed the suite@iissBenchools to be flexible while hiding the low-
level details of filter set structure. While it is unclear if real filter sets will vary as specifigtido
smoothing and scope parameters, we assert that the tool provides a useful meébramisasuring
the effects of filter set composition on classifier performance. It is our hope&thasBenclwill
enjoy broader use by researchers in need of realistic test vectors; it is also our intermitiate
and frame a broader discussion within the community that results in a largerEataoheter files
that model real filter sets as well as the formulation of a standard benchmarkingdoletyy.

Packet classification algorithms and devices range from purely conceptual, to saftware
plementations targeted to a variety of platforms, to state-of-the-art ASICs (Application Specific
Integrated Circuits). For the purpose of our discussion, we present a generic paskiiec model
as shown in Figure 6.13. In this model, the classifier consists of a search enginetedrinenem-
ory which stores the filter set and any other data structures required for the searcaclirpaeket
header passed to the classifier, the search engine queries the filter set and returndaadfioo

146
Database Updates

|

Packet Classifier

Database
\
y

Search Engine

i

Configuration Control

Input Stream
Packet Headers

Output Result

Flow Identifiers

Figure 6.13: Generic model of a packet classifier.

identifier or set of flow identifiers. Note that the set of possible flow identifiers is applicatpmmee
dent. Firewalls may only specify two types of flows, admissible and inadmissible, whetdassro
implementing per-flow queuing may specify thousands of unique flow identifiers. Tfigemtion
control is used to specify parameters such as the number of matching flow identifiexs hoared
the format of incoming packet headers. In order to model application envirtsmdere per-flow
filters are dynamically created and deleted, the model includes a mechanisrméonidyfilter set
updates.

There are three primary metrics of interest for packet classification algorithms and devices:
lookup throughput, memory requirements, and power consumption. Updatenpanice is also a
consideration, but secondary to the other three metrics. For packet classificaticesdavfixed
implementations of algorithms, throughput can be directly measured using a synthetsefiked
associated header trace. Throughput measurements for software implementaatg@itdfms
are not as straight-forward. In this case, the metric most directly influencing throughpet is th
required number o$equentiamemory accesses. Using parallel and pipelined design techniques,
non-sequential memory accesses can be masked. A suitable benchmarkindategthshould
report both the total and sequential memory accesses in terms of average, wergedband best
observed. The second metric of vital interest is the amount of memory required to stfitetlset
and supplemental data structures. For classification techniques employing rarwiss memory,
garnering memory usage metrics is straight-forward using a synthetic filter set. For TCAM-based
devices, memory usage can be measured in terms of storage efficiency, whitihed te be the
ratio of the number of required TCAM slots and the number of filters in the filter set.Filtes
Set Generatoallows us to analyze the effect of filter set size, scope, and smoothness on fhubugh
and memory usage can be measured.

147

In the past, power consumption has not been a primary concern for those deyeiep/
packet classification techniques. As discussed in Section 4.2.2, TCAM-based classifiebehav
come the most popular solution for high performance routers, but they suffer fronpdigdr con-
sumption. A typical TCAM consumes more than 100 times the power of state-of-the-AMISR
and can account for a large fraction of the power budget on a router irdesémd. Recent devel-
opments in TCAM technology provide for partitioning the device such that only a sobsee
available slots are activated at one time. IP lookup and packet classification teehoan take ad-
vantage of this capability to lower power consumption [106, 32]. The effect aof $iétesize, scope,
and smoothness on standard TCAMs and algorithms employing partitioning in order tqlmmer
consumption can be measured usingRher Set Generatar

The Trace Generators useful for evaluating algorithms and devices under realistic operat-
ing conditions. By providing control over the locality of reference in the sequeinuaciet header
queries, we also provide a convenient tool for measuring the performance eft jgéasdsifiers em-
ploying caching.

With the desire to refine thélassBenchools suite and formalize a benchmarking method-
ology, we seek to initiate a broader discussion and solicit input from the community tgjtnielkp
the remainder of this work. To facilitate this discussion, we make the tools publicilalaleaat
the following site: http://www.arl.wustl.edu/"det3/ClassBench/ . Input garnered
from the community will be used to refine the tools suite, assemble a standargaetiofeter files
and formally specify a benchmarking methodology. While we have already GlassBenctio be
very useful in our own research, it is our hope to promote its broader use in the resgammunity.

148

Chapter 7

Scalable Packet Classifi cation using
Distributed Crossproducting of Field
Labels

Follow the path of the unsafe, independent thinker. Expose your ideas toriperdaf
controversy.
Thomas J. Watson, IBM

Due to the complexity of the search, packet classification is often a performance diktien
network infrastructure; therefore, it has received much attention in the research ndynend a
wide variety of algorithms and devices exist in the research literature and commeackatnThe
existing solutions explore various design tradeoffs to provide high search rates, povsgraae ef-
ficiency, fast incremental updates, and the ability to scale to large numbers of filters. fElmains

a need for techniques that achieve a favorable balance among thesefsradeodcale to support
classification on additional fields beyond the standard 5-tuple. We intrddistdbuted Crosspro-
ducting of Field Label{DCFL), a novel combination of new and existing packet classification
techniques that leverages key observations of the structure of real filter sets esmddakntage of
the capabilities of modern hardware technology. Using a collection of 12 real fiteasd the
ClassBenchools suite, we provide analyses DCFL performance and resource requirements on
filter sets of various sizes and compositions in Section 7.7. Based on these results, waahow
an optimized implementation @CFL can provide over 100 million searches per second and stor-
age for over 200 thousand filters with current generation hardware technologyctlarSe.8, we
discuss algorithms related to our approach and highlight the distinctions and aphsaofBCFL
relative to the state-of-the-art.

149
7.1 Description of DCFL

Distributed Crossproducting of Field Labe{®CFL) is a novel combination of new and existing
packet classification techniques that leverages key observations of filter set stamntuedkes ad-
vantage of the capabilities of modern hardware technology. We discuss theambsenicture of
real filter sets in detail and provide motivation for packet classification on largebensnof fields
in Chapter 5. Two key observations motivate our approach: the numbeiaqfaifield values for a
given field in the filter set is small relative to the number of filters in the filter set, and thberuh
unique field values matched by any packet is very small relative to the nurhfilézrs in the filter
set. We also draw from the encoding ideas highlighted in Section 4.2 in order to effigtardythe
filter set and intermediate search results.

Using a high degree of parallelismCFL employs optimized search engines for each filter
field and an efficient technique for aggregating the results of each field searclerBynuing this
aggregation in a distributed fashion, we avoid the exponential increase in the timecerispurred
when performing this operation in a single step. Given that search techniques fopsiokg fields
are well-studied, the primary focus of this chapter is the development and andlgsiaggregation
mechanism that can make use of the embedded multi-port memory blocks it generation
of ASICs and FPGAs. We introduce several new concepts including field labMetg-Labeling
unique field combinationsg;ield Splitting and optimized data structures suclBésom Filter Arrays
that minimize the number of memory accesses to perform set membership queriggesal,aur
technique provides fast lookup performance, efficient use of memory, suppdstnamic updates
at high rates, and scalability to filters with additional fields.

DCFL may be described at a high-level using the following notation:

¢ Partition the filters in the filter set into fields
¢ Partition each packet header into corresponding fields

e Let F; be the set of unique field values for filter fielthat appear in one or more filters in the
filter set

e Let F;(x) C F; be the subset of filter field values i) matched by a packet with the value
in header field

e Let F; ; be the set of unique filter field value pairs for fieldandj in the filter set; i.e. if
(u,v) € F; j there is some filter or filters in the set within field i andwv in field j

o LetF j(z,y) C F;; be the subset of filter field value pairs i3 ; matched by a packet with
the valuer in header field andy in header field

e This can be extended to higher-order combinations, such &5 sgand subset; ; 1. (x, y, 2),
etc.

150
The DCFL method can be structured in many different ways. In order to illustrate the lookup
process, assume that we are performing packet classification on four fields andraahnéeasewith
field values{w, z, y, z}. One possible configuration ofCFL search is shown in Figure 7.1 and
proceeds as follows:

e In parallel, find subsets’ (w), F»(x), F53(y), andFy(z)
e In parallel, find subset8’ »(w, x) andF3 4(y, z) as follows:

— Let Fuery(w, x) be the set of possible field value pairs formed from the crossproduct
of Fi(w) andFy(z)

— For each field value pair ithy,.-, (w, z), query for set membership i, , if the field
value pair is in sef’ 5 add it to setF; o(w, z)

— Perform the symmetric operations to find sub&ei(y, z)

e Find subsetF} 53 4(w, x,y, z) by querying setF 2 34 with the field value combinations
formed from the crossproduct & »(w, z) and F3 4(y, z)

e Select the highest priority exclusive filter andhighest priority non-exclusive filters in

Fipza(w,x,y,2)

Note that there are several variants which are not covered by this examplestaoci we could al-
ter the aggregation process to find the suldgets(w, x, y) by queryingF; 2 3 using the crossprod-
uct of 1 2(w, z) and F3(y). We can then find the subsét ;3 4(w, x,y, z) by queryingFi 2 3.4
using the crossproduct @ » 3(w, z,y) andFy(z). A primary focus of this chapter is determining
subsets £y »(w, z), F34(y, z), etc.) via optimized set membership data structures.

As shown in Figure 7.1DCFL employs three major components: a set of parallel search
engines, an aggregation network, and a priority resolution stage. Each search Enigicepen-
dently searches for all filter fields matching the given header field using an algorittwohitecture
optimized for the type of search. For example, the search engines for the IRafidids may em-
ploy compressed multi-bit tries while the search engine for the protocol and flag fields yde sim
hash tables. We provide a brief overview of options for performing the indepesdarnthes on
packet fields in Section 7.5. As previously discussed in Chapter 5 and shown irbTabdach set
of matching labels for each header field is typically less than five for real filter tablessets of
matching labels generated by each search engine are fed to the aggregatiok whialocomputes
the set of all matching filters for the given packet in a multi-stage, distributed fashioallyi-the
priority resolution stage selects the highest priority exclusive filter ana thighest priority non-
exclusive filters. The priority resolution stage may be realized by a number of efficiemitlaugs
and logic circuits; hence, we do not discuss it further.

The first key concept ilDCFL is labeling unique field values with locally unique labels;
thus, sets of matching field values can be represented as sets of labels. Tablevg.thehsets of

151

x|y | z| payload

Packet Field

W
Independent
Field Searche Fl F2 F3 F4
F,(W) |F(X) |Fs(y) |F.(2

FqueQ(W’X) Fquer>(yiz)
Fi2 Fs4
Aggregatio
?\IgetvsorII(< Fy A(W.x) Fs4Y.2)

Fquer>(W’X’y’3

Fi234AW.XY,2)

Priority
Resolution

v

Best Matching Filter(s)

Figure 7.1: Example configuration @fistributed Crossproducting of Field Labe{®CFL); field
search engines operate in parallel and may be locally optimized; aggregatiesmaled operate in
parallel; aggregation network may be constructed in a variety of ways.

unigue source and destination addresses specified by the filters in Table 1.1. Noaehhaigue

field value also has an associated “count” value which records the number of filiets specify

the field value. The “count” value is used to support dynamic updates; a data stinctufield
search engine or aggregation node only needs to be updated when the ‘@bua changes from

Oto 1 or1to 0. We identify unique combinations of field values by assigning eitharqdmposite

label formed by concatenating the labels for each field value in the combinatii#),anewmeta-
labelwhich uniquely identifies the combination in the set of unique combinatidvista-Labeling
essentially compresses the size of the label used to uniquely identify the field combitratiddi-

tion to reducing the memory requirements for explicitly storing composite labels, this ogtioniza
has another subtle benefitleta-Labelingcompresses the space addressed by the label, thus the

!Meta-labeling can be thought of as simply numbering the set of unique fi eld catitis

152

Table 7.1: Sets of unique specifications for each field in the sample filter set.

SA Label | Count
11010010| O 1
10011100| 1 1
101101* | 2 1 LDA I(_)abel (730unt
30011100 i ; 001110* || 1 1 _I;EP I6abel Z:ount
01101010 2 2
100111* || 5 2 011010* | 3 5 * 1 5
10010011| 6 1 01111010 4 1 UDP | 2 6
11101100} 7 1 ICMP || 3 1
01011000|| 5 1
111010* | 8 1 11011000| 6 2
100110* | 9 1
010110* || 10 1
01110010 11 2
DP Label | Count
[3:15] || O 5
[1:1] 1 2
[0:15] || 2 5
[5:5] 3 1
[6:6] 4 1
[0:1] |5 1
[3:3] 6 1

meta-labelmay be used as an index into a set membership data structure. The use of labels allows
us to use set membership data structures that only store labels corresponding to fieldwdlues
combinations of field values present in the filter table. While storage requirementsddepehe
structure of the filter set, they scale linearly with the number of filters in the database. Funtermo

at each aggregation node we need not perform set membership queries imtexoygoarder. This
property allows us to take advantage of hardware parallelism and multi-port endbedoheory
technology.

The second key concept ICFL is employing a network of aggregation nodes to compute
the set of matching filters for a given packet. The aggregation network consiststaffargercon-
nected aggregation nodes which perform set membership queries to the sets effigithualue
combinations}i 2, F3 4 5, €tc. By performing the aggregation in a multi-stage, distributed fashion,
the number of intermediate results operated on by each aggregation node remainonsider
the case of finding all matching address prefix pairs in the example filter set in Talibe 4 facket
with address paifz,y) = (10011100,01101010). As shown in Figure 7.2, an aggregation node
takes as input the sets of matching field labels generated by the source and dasttiGrigss search

153
X y
10011100 01101010

v v

Fsa Foa
FsA(X) Foay)
{1,4,5} {0,2,3}
Aggregation Node
Fauen(®Y) Fsapa
(1,0) (1,2) (1,3) P (0,0) (1,0) (2,2) (3,2)
(4,0) (4,2) (4,3) (4,0) (5,3) (6,0) (7,4)
(5,0) (5,2)(5,3) (8,5) (9,6) (10,6) (11,0)

l { FsapAXY)

(1,0), (4,0), (5.3)}

Figure 7.2: Example aggregation node for source and destination address fields.

engines,F'gp(z) and Fpa (y), respectively. Searching the tables of unique field values shown in
Table 7.1,Fgp(x) contains labelg1,4,5 and Fpa(y) contains labeld0,2,3}. The first step is

to form a query set,,.., of aggregate labels corresponding to potential address prefix pairs. The
guery set is formed from the crossproduct of the source and destination address labdestts.
each label inF,.,, is checked for membership in the set of labels stored at the aggregation node,
Fsp pa Note that the set of composite labels corresponds to unique address prefix pafisdspec
by filters in the example filter set shown in Table 1.1. Composite labels contained inttaeese
added to the matching label SESA,DA(%Z/) and passed to the next aggregation node. Since the
number of unique field values and field value combinations is limited in real filter setsjzé of

the crossproduct at each aggregation node remains manageable. By perfossproducting in

a distributed fashion across a network of aggregation nodes, we avoid an eti@oinerease in
search time that occurs when aggregating the results from all field search engines ile atsing
Note that the aggregation nodes only store unique combinations of fields pretenfilter table;
therefore, we also avoid the exponential blowup in memory requirements suffetbd byiginal
Crossproductingechnique [53] andRecursive Flow Classificatiofp0]. In Section 7.3, we intro-
duceField Splittingwhich limits the size ofFy,., at aggregation nodes, even when the number
matching labels generated by field search engines increases.

DCFL is amenable to various implementation platforms, and where possible, we will high-
light the various configurations of the technique that are most suitable for the nmdapeplat-
forms. In order to illustrate the value of our approach, we focus on the highest penfteroption
for the remainder of this paper. It is important to briefly describe this intended imptatien plat-
form here, as it will guide the selection of data structures for aggregation nodeptanizations in

154
the following sections. Specifically, it is our goal to make full use of the high-degrparaflelism
and numerous multi-port embedded memory blocks provided by the curregriagien of Applica-
tion Specific Integrated Circuit (ASIC) and Field-Programmable Gate Array (FPGA) technologies
discussed in Section 4.7. This requires that we maximize parallel computations ang sffira
ciency. In Section 7.7 we show that an optimiZe@FL implementation can support hundreds of
thousands of filters in a current generation device without the need for extermadmneénowever, a
limited number of high-performance off-chip memory devices such as Dual Data(RDR) and
Quad Data Rate (QDR) SRAMs could be employed to support even larger filter sets.

7.2 Aggregation Network

Since all aggregation nodes operate in parallel, the performance bottleneck in the sy/tte
aggregation node with the largest worst-case query set [dizg,,|. Query set size determines
the number of sequential memory accesses performed at the node. The sizryoseps vary
for different constructions of the aggregation network. We refer to the worst-case sptesize,

| Fquery|, @mong all aggregation nodek;, ..., F .4, as the cost for network constructio@;.
Selecting the most efficient arrangement of aggregation nodes into an aggregtiork is a key
issue. We want to select the minimum cost aggregation net@grk as follows:

Gumin = G : cost(G) = min {cost (G;) Vi} (7.1)

where
cost (G) = max {|Fyyery|VF1, ..., F1,. 4 € Gi} (7.2)

Consider an example for packet classification on three fields. Shown in Figure 7.3 aradingum
sizes for the sets of matching field labels for the three fields and the maximum size fotstloé se
matching labels for all possible field combinations. For example, labélisgtr, y) will contain at
most four labels for any values efandy. Also shown in Figure 7.3 are three possible aggregation
networks for @D CFL search; the cost varies between 3 and 6 depending on the construction.

In general, an aggregation node may operate on two or more input label seds.tk&v we
seek to minimizg F,.,,|, we limit the number of input label sets to two. The query set size for
aggregation nodes fed by field search engines is partly determined by the size aftthémfield
label sets, which we have found to be small for real filter sets. Alsd;igid Splittingoptimization
provides a control point for the size of the query set at the aggregation nodeg tleel field search
engines; thus, we restrict the network structure by requiring that at least one of thetmpath
aggregation node be a matching field label set from a field search engine. Figureows!ah
generic aggregation network for packet classification @ields. Aggregation nodé’, _; operates
on matching field label s€f;(z) and matching composite label 9ét ;1 (a, ..., w) generated by
upstream aggregation nodg _;_;. Note that the first aggregation node operates on label sets from

155
F.00I<3 Fxys4 Frodxyz)sl
IF,(y)l <2 IFi4(x,2) <2
IFs2)l<1 [Fay.z)<1

G, X y z
v v v
F F Fs

2
IF,(q)| = 3l|F2(y)| =2 bufferaaF ()| = 1

: IF1 (XY = 4-a IF1.4%Y.2) =1

IFquer)(X’y)I =6 IFCIuery(X’y:Z} =4
cost(G,) =6
G, X z y
v v ¥
F, F, F,
IF,(X)| = 3l|F3(z)| =1 buffe e |F,(y)| = 2
: IF1s(%2) = 2. IFiodxy.z)=1
IFquer)(X’Z) =3 IFquer)(X’y:Z} =4
cost(G,) = 4
G, Y z X
v v v
F, F, F,
IF()| = 2l|F3(z)| -1 buffertu:l(x)l _3
: :|F2’3(y,Z] = l-m |F1,2,3(X’y’z} =1
IFquer)(y,Z] =2 |Fquer);(x,y,z] =3
cost(G;) =3

Figure 7.3: Example of variable aggregation network cost for different aggregaisrork con-
structions for packet classification on three fields.

two field search engineg;; (a) and F»(b). We point out that this seemingly “serial” arrangement
of aggregation nodes does not prevBx@FL from starting a new search on every pipeline cycle.
As shown in Figure 7.4, delay buffers allow field search engines to perform a newplookevery
pipeline cycle. The matching field label sets are delayed by the appropriate nofrneeline
cycles such that they arrive at the aggregation node synchronous to the maatighset from the

156

a Z
Packet Fields ¢ ¢
Parallel
Field Searches F) Fq
F z}:
Fi(@) ol delay buffers
1,...d-2
Aggregation
Network |:1 Q(a 2)
. . Priority
Best Matching Filter(s) <€—] Resolution

Figure 7.4: Generalized DCFL aggregation network for a searchfighds.

upstream aggregation node. Search engine results experience a maximum délay2opipeline
cycles which is tolerable given that the pipeline cycle time is on the order of Mfth.such an
implementationDCFL throughput is inversely proportional to the pipeline cycle time.

In this case, the problem is to choose the ordering of aggregation nodes which rethéts in
minimum network cost. For example, do we first aggregate the source and destinédidetbids,
then aggregate the address pair labels with the protocol field labels? We can empigtaliyine
the optimal arrangement of aggregation nodes for a given filter set by compgbhgnmaximum
guery set size for each combination of field values in the filter set. While this compuisatiten-
ageable for real filter sets of moderate size, the computational complexity incexgmagentially
with filter set size. For our set of 12 real filter sets, the optimal network aggregated field ia the
order of decreasing maximum matching filter label set size with few exceptions. Té¢esvalion
can be used as a heuristic for constructing efficient aggregation networks for langeditteand
filter sets with large numbers of filter fields. As previously discussed, we do not expditehset
properties leveraged HYCFL to change. We do point out that a static arrangement of aggregation
nodes might be subject to degraded performance if the filter set characteristicsramagically
altered by a sequence of updates. Through the use of reconfigurable interdarthecaggrega-
tion network and extra memory for storing off-line aggregation tabl&CEL implementation can
minimize the time for restructuring the network for optimal performance. We defer thissdiscu
to future study.

7.3 Field Splitting

As discussed in Section 7.1, the size of the matching field label/5¢t;)|, affects the size of the
crossproduct|F,.. |, at the following aggregation node. While we observe tidatz)| remains
small for real filter sets, we would like to exert control over this value to both increasshsgzeed

157
for existing filter sets and maintain search speed for filter sets with increased address prefix nestin
and port range overlaps. Recall thai(z)| < 2 for all exact match fields such as the transport
protocol and protocol flags.

The number of address prefixes matching a given address can be redusgitting the
address prefixes into a set @f+ 1) shorter address prefixes, wheres the number of splits. An
example of splitting a 6-bit address field is shown in Figure 7.5. For the original 6-bitssltield,
A(5:0), the maximum number of field labels matching any address is five. In order toerdkiis
number, we split the 6-bit address field into a 2-bit address fg8.4), and a 4-bit address field,
A(3:0). Each original 6-bit prefix creates one entry in each of the new prefix fields as shbwn.
an original prefix is less than three bits in length, then the entry in A€Bd0) is the wildcard. We
assign a label to each of the unique prefixes in the new fields and create data stitocs@@sh
the new fields in parallel in separate search engines. In this example we use binary geaedess
of the data structure, the search engine must return all matching prefixes. The prefikeslprig
in A(5:0) are now identified by the unique combination of labels corresponding to their entries in
A(5:4)andA(3:0). For example, the prefid00« in A(5:0)is now identified by the label combination
(3,1). A search proceeds by searchiA(h:4) and A(3:0) with the first two bits and remaining 4
bits of the packet address, respectively. Note that the maximum number of beld lzturned
by the new search engines is three. We point out that the sets of matching labela(fct)
andA(3:0) may be aggregated in any order, with label sets from any other filter field; we oged n
aggregate the labels froA(5:4) andA(3:0)in the same aggregation node to ensure correctness. For
address prefixesield Splittingis similar to constructing a variable-stride multi-bit trie; however,
with Field Splittingwe only store one multi-bit node per stride. A matching prefix is denoted by the
combination of matching prefixes from the multi-bit nodes in each stride.

Given that the size of the matching field label sets is the property that most directtsaffe
DCFL performance, we would like to specify a maximum set size and split those fields thatlexce
the threshold. Given a field overlap threshold, there is a simple algorithm for determining the
number of splits required for an address prefix field. For a given address prefix feelubgin by
forming a list of all unique address prefixes in the filter set, sorted in non-decreasing Dpdefixo
length. We simply add each prefix in the list to a binary trie, keeping track of the nuwhpezfixes
encountered along the path using a nesting counter. If there is a split at the cuefenigmgth, we
reset the nesting counter. The splits for the trie may be stored in a list or an array indetked by
prefix length. If the number of prefixes along the path reaches the threshold,ate a@isplit at that
prefix length and reset the nesting counter. It is important to note that the nunditetiepends
upon the structure of the address trie. In the worst case, a threshold of two overlapsreai#d
a split at every prefix length. We argue that given the structure of real filter sets aswhedle
threshold values (four or five), thiteld Splittingprovides a highly useful control point for the size
of query sets in aggregation nodes.

158

A(5:0) Label| A(5:4) Label | A(3:0) Label
* 0 * 0 * 0
0* 1 0* 1 * 0
01* 2 01 2 * 0
000* 3 00 3 0* 1
0110* 4 01 2 10 2
1010* 5 10 4 10 2
10100* 6 10 4 100* 3
011010 7 01 2 1010 4

ST

4 f
Figure 7.5: An example of splitting a 6-bit address field; maximum number of mattdiels per
field is reduced from five to three.

Field Splitting for port ranges is much simpler. We simply compute the maximum field
overlap,m, for the given port field by adding the set of unique port ranges to a segmenGives
an overlap threshold, the number splits is simply= 2=2. We then creatéc + 1) bins in which
to sort the set of unique port ranges. For each port réhgg|, we identify the binp;, containing
the minimum number of overlapping ranges using a segment tree constructed fr@mges in the
bin. We insert : j] into bin b; and insert wildcards into the remaining bins. Once the sorting is
complete, we assign locally unique labels to the port ranges in each bin. Like afielaksplitting,
a range in the original filter field is now identified by a combination of labels corresppmaliits
matching entry in each bin. Again, label aggregation may occur in any olitdefakels from any
other field.

Finally, we point out thaField Splittingis a precomputed optimization. It is possible that
the addition of new filters to the filter set could cause one the overlap threshold to lesledda
a particular field, and thus degrade the performande@FL. While this is possible, our analysis
of real filter sets suggests that it is not probable. Currently most filter sets are manudidyuoed,
thus updates are exceedingly rare relative to searches. Furthermore, the comntorestfdiiters
in a filter set suggests that new filters will most likely be a new combination of fields alne iy
filter set. For example, a network administrator may add a filter matching all packejgdlication
A flowing between subnet8 andC, where specificationd, B, C already exist in the filter set.

159
7.4 Aggregation Nodes

Well-studied data structures such as hash tables and B-Trees are capable of effigessigting

a set [13]. We focus on three options that minimize the number of sequential mmeweesses,
SMA required to identify the composite labels,., which are members of the sé{ ;. The

first is a variant on the popular Bloom filter which has received renewed attentioe neskarch
literature [15]. The second and third options leverage the compression provided by figkl lab
and meta-labels to index into an array of lists containing the composite labels for thediaéd v
combinations inFy ;. These indexing schemes perform parallel comparisons in order to minimize
the requiredSMA thus, the performance of these schemes depends on the worgh Sife¢he
memory storing the data-structures. For all three options, we derive equations BkMikhand
number of memory word®’ required to store the data-structure.

7.4.1 Bloom Filter Arrays

A Bloom filter is an efficient data structure for set membership queries with tunable falgxeo
errors. In our context, a Bloom filter computéshash functions on a labdl to producek bit
positions in a bit vector ofn bits. If all & bit positions are set to 1, then the label is declared to
be a member of the set. Broder and Mitzenmacher provide a nice introductionam Bilters and
their use in recent work [15]. We provide a brief introduction to Bloom filters and a dienva
of the equations governing false positive probability in Section 2.1.3. False poaitswgers to
membership queries causes the matching label/set,;(a, . .., x), to contain labels that do not
correspond to field combinations in the filter set. These false positive errors can bet"catugh
downstream aggregation nodes using explicit representations of label sets. We wiscoggons
for such data-structures in the next section. This property does preclude use of Blommrfittes
last aggregation node in the network. As we discuss in Section 7.7, this doesurat performance
penalty in real filter sets.

Given that we want to minimize the number of sequential memory accessashahggre-
gation node, we want to avoid performing multiply memory accesses per set metipbguery. It
would be highly inefficient to perfornk separate memory accesses to check if a single bit is set
in the vector. In order to limit the number of memory accesses per membershiptqumne, we
propose the use of an array of Bloom filters as shown in Figure 7.&loAm Filter Arrayis a
set of Bloom filters indexed by the result of a pre-filter hash funcifd.). In order to perform
a set membership query for a labiel we read the Bloom filter addressed By L) from memory
and store it in a register. We then check the bit positions specified by the results of hetsbnfin
hi(L),...,ht(L). TheMatch Logicchecks if all bit positions are set to 1. If so, it adds labeb
the set of matching labels,; . ;(a,...,x).

Set membership queries for the labelgip.., need not be performed in any order and may
be performed in parallel. Using an embedded memory block Rigorts requires® copies of the

160

Fi(X)
{0,2,3}
Fooa@..w Bloom Filter Array
{1,4,5} | Aggregation Node m
Fagenf(Li--- %) d N
(1,0) (1,2) (1,3) 1| 1101001011 ... 010
(4,0) (4,2) (4,3)
(5,0) (5,2) (5,3) 2| 0101101001 ... 110

0011001010 ... 011

W| 1111001010 ... 001

0011001010 ... 011/«

v
— Match Logic >

{(1,0), (4,0), (5,3)}

Figure 7.6: Example of an aggregation node usijcm Filter Arrayto aggregate field label set
F;(x) with label setF ;_1(a,...,w).

logic for the hash functions andatch Logic Given the ease of implementing these functions in
hardware and the fact th&tis rarely more than four, the additional hardware cost is tolerable. The
number of sequential memory access®idlA required to perform set membership queries for all
labels inFyery is simply

o |Fquery|
SMA= 2 (7.3)
The false positive probability is
1 k
= (3) (7.)
when the following relationship holds
k="1n2 (7.5)
n

wheren is the number of label§F; ;| stored in the Bloom filter. Setting to four produces a
tolerable false positive probability ®£06. Assuming that we store one Bloom filter per memory
word, we can calculate the required memory resources given the memory word.sizg 1V be
the number of memory words. The hash functidL) uniformly distributes the labels i . ;
across thé? Bloom filters in theBloom Filter Array. Thus, the number of labels stored in each

161
Bloom filter is F
1,....%
S Ll 7.6
= (7.6)
Using Equation 7.5 we can compute the number of memory wafdstequired to maintain the

false positive probability given by Equation 7.4:

kx |Fy,.
m X In 2

W = [w (7.7)
The total memory requirementqis x W bits. Recent work has provided efficient mechanisms for
dynamically updating Bloom filters [16, 25].

7.4.2 Meta-Label Indexing

We can leverage the compression provided by meta-labels to construct aggregdtsriimat ex-
plicitly represent the set of field value combinatiofs, ;. The field value combinations if; _;
can be identified by a composite label which is the concatenation of the metdelathed combina-
tion of the first(; — 1) fields,L; . ,—1, and the label for field, L;. We sort these composite labels
into bins based on meta-labg| . ;_;. For each bin, we construct a list of the labgls where each
entry stored.; and the new meta-label for the combination @ields, L, . ;. We store these lists in
an arrayA; indexed by meta-labdl, . ;_; as shown in Figure 7.7.

Using L, .. ;—1 as anindex allows the total number of set membership queries to be limited
by the number of meta-labels received from the upstream aggregation|fgde; 1 (a, . .., w)|.
Note that the size of a list entry, is

s =1g|F;| + 1g|F1,. il (7.8)

and s is typically much smaller than the memory word size, In order to limit the number of
memory accesses per set membership query, we atdigt entries in each memory word, where
N = |Z]. This requiresN x |Fj(z)| way match logic to compare all of the field labels in the
memory word with the set of matching field labels from the field search endif{e,). Since
set membership queries may be performed independently, the total numbeuefigagnemory
accesseSMA depends on the size of the index meta-label|$&t, ;_1(q,...,w)|, the size of the
lists indexed by the labels ifi; . ;—1(a,...,w), and the number of memory pots In the worst
case, the labels index thé _;_1(a,...,w)| longest lists inA;. Let Length be an array storing
the lengths of the lists irl; in decreasing order. The worst-case sequential memory accesses is

F i—1(a,...,w en j
Eljzli”., 1()l [L %h(g)—‘

SMA= (7.9)

P

As with theBloom Filter Array, the use of multi-port memory blocks does require replication of the
multi-way match logic. Due to the limited number of memory ports, we argue that hiesents

162

X
4
F
F.(x)
{0,2,3}
Meta-Label Indexing
Fi ida...,w Aggregation Node
{1,4,5} 4 v
2 [4» Match 1 (o
3 Logic [
i 27 114
<>
N < maxF;(x)|
[Fy 1] 1 P 3
N J
Y
list sizesM >
F (&%)
{(1,0), (4,0), (5,3)}

Figure 7.7: Example of an aggregation node usitega-Label Indexingo aggregate field label set
F;(x) with meta-label sef’, _ ;_1(a,...,w).

a negligible increase in the resources required to imple@&ML. The number of memory words,
W, needed to store the data structure is

W= 3 - [%ﬂl@w (7.10)

The total memory requirement ia x W bits. Adding or removing a label frorf _; requires

an update to a single list entry. Packing multiple list entries on to a single memory word slightly

complicates the memory management; however, given that we seek to nartimizaumber of
memory words occupied by a list, the number of individual memory reads atebwer update is
small.

Finally, we point out that the data structure may be re-organized td uae the index. This
variant,Field Label Indexingis effective wherF, | approachesF; . |. When this is the case, the
number of composite labels; . ; containing label; is small and the length of the lists indexed
by F;(x) are short.

163
7.5 Field Search Engines

A primary advantage dDCFL is that it allows each filter field to be searched by a search engine
optimized for the particular type of search. We discuss a number of single field sectroigtees

in Chapter 2. While the focus of this chapter is the novel aggregation techmiguariefly discuss
single field search techniques suitable for use MiBFL in order to to highlight the potential
performance.

7.5.1 Prefix Matching

Due to its use of decompositioBCFL requires that the search engines for the IP source and desti-
nation addresses retuafi matching prefixes for the given addresses. As discussed in Section 2.3,
any longest prefix matching technique can support All Prefix Matching (APM), but someefio
ficiently than others. The most computationally efficient technique for longest prefohing is
Binary Search on Prefix Lengtti2g4]. When precomputation and marker optimizations are used,
the technique requires at most five hash probes per lookup for 32-bit IPv4 addésseported in
Section 5.4, real filter sets contain a relatively small number of unique prefix letigtissthe real-

ized performance should be better for real filter sets. Recall that markers directritietedanger
prefixes that potentially match, thus skipping shorter prefixes that may match. Intorsigpoport
APM, Binary Search on Prefix Lengtimust precompute all matching prefixes for each “leaf” in
the trie defined by the set of address prefixes. While computationally efficient for esathls
technique does present several challenges for hardware implementation. Ljkéeisgnificant

use of precomputation and markers degrades the dynamic update perforamaoe,pdate may
require many memory transactions.

As we demonstrated in Chapter 3, compressed multi-bit trie algorithms readily map to hard-
ware and provide excellent lookup and update performance with efficient rpema hardware uti-
lization. Specifically, our implementation of the Tree Bitmap technique requiressatifionemory
accesses per lookup and approximately six bytes of memory per prefix. Each segige con-
sumes less than 1% of the logic resources on a commodity FP@sAdiscussed in Section 3.6,
there are a number of optimizations to improve the performance of this particulamiepiation.

Use of an initial lookup array for the first 16 bits reduces the number of memorgsexeo at
most seven. Coupled with a simple two-stage pipeline, the number of sequentiatyrernesses
per lookup can be reduced to at most four. Trie-based LPM techniques sucledBitimap easily
support all prefix matching with trivial modifications to the search algorithm. For theoparpf
our discussion, we will assume an optimized Tree Bitmap implementation requiring afauost
memory accesses per lookup and six bytes per prefix of memory.

2If targeted to the low-cost Xilinx Spartan-3 family of FPGAs (less than $12 USD for a one miliittndevice), each
engine would cost approximately $0.12 USD.

Port(x) = 4501

164

* * Exact Port
. [69] 1
true @ false Arbitrary 0 323] 3
Ranges [4501] 4
[70:75] 5 [127] 6
Flag(WC) 1 Flag(LO). 0 Flag(HI): 1 [1123:1132] 7
Label(WC) 2 Label(LO) O Label(HI): 1 [454:457] 8
I l l
v
Matching Port Labels
{1,2,4}

Figure 7.8: Block diagram of range matching using parallel search engines fopedclass.

7.5.2 Range Matching

Searching for all arbitrary ranges that overlap a given point presents a grediengaahan prefix
matching. We discuss a number of range matching techniques in Section 2e#l @athe observa-
tions reported in Section 5.3.2, range matching can be made sufficiently fastlfilteeaets using

a set of parallel search engines, one for each port class, as shown in Figure Ga8.tlRe three
port classes, WC, HI, and LO, consist of a single range specification. The search emghe fo
first port class, wildcard (WC), simply consists of a flag specifying whether or not the wilikard
specified by any filters in the filter set and a register for the label assigned to this range atecific
Similarly, the search engines for the Hl and LO port classes also consist of flags speciftigew
or not the ranges are specified by any filters in the filter set and registers for the labelse@dssign
those range specifications. We also add logic to check if the port is less than 1024gttks tr a
match on the HI and LO port rangg$024 : 65535] and|0 : 1023], respectively.

For the 12 real filter sets we studied, the number of exact port numbers speyifiidris
was at most 183. The port ranges in the EM port class may be efficiently searchgdngisuf-
ficiently fast exact match data-structure. Entries in this data-structure are simply the podgrnumb
and the assigned label. A simple hash table could bound searches to at most twy mereeses.
Finally, the set of arbitrary ranges in the AR port class may be searched with any ratd@ng
technique. Fortunately, the set of arbitrary ranges tends to be small; the 12 realtfilspesdfied at
most 27 arbitrary ranges. A simple balanced interval tree data-structure requires (st)
accesses, whefeis the number of matching ranges and the number of ranges in the tree. Other
options for the AR search engine include ta Inverted Segment Trekiscussed in Section 2.4.1
and converting the arbitrary ranges to prefixes as discussed in Section 2.4.3 angiregrgahoall
prefix matching search engine. Given the limited number of arbitrary ranges, additigle pre-
fixes per range to the data-structure does not cause significant memory ineffisléticgufficient

165
optimization, we assume that range matching can be performed with at most foansakjmem-
ory accesses and the data-structures for the AR and EM port classes easily fit within a standard
embedded memory block of 18kb.

7.5.3 Exact Matching

The protocol and flag fields may be easily searched with a simple exact match dataessuctuas
a hash table. Given the small number of unique protocol and flag specificatitresrizal filter sets
(less than 9 unique protocols and 11 unique flags), the time per search and menceryespéred
is trivial. As we discuss in Section 5.8, we expect that additional filter fields will alsginegxact
match search engines. Given the ease of implementing hash functions in custmoanfijurable
logic, we do not foresee any performance bottlenecks for the search enginesstofigids.

7.6 Dynamic Updates

Another strength oDCFL is its support of incremental updates. Adding or deleting a filter from
the filter set requires approximately the same amount of time as a search operatiiweantbt
require that we flush the pipeline and update all data-structures in an atomic operatiapdéte
operation is treated as a search operation in that it propagates throug@ fhearchitecture in the
same manner. The query preceding the update in the pipeline operates on d#eestiror to
the update; the query following the update in the pipeline operates on data-strucliosemgthe
update.

Consider inserting a filter to the filter set. We partition the filter into fields (performing field
splits, if necessary) and insert each field into the appropriate input buffer of the fielti segines.
In parallel, each field search engine performs the update operation just as it wouldpssfoches
in parallel. As shown in Figure 7.9, an add operation entails a search of the data-stfocthee
given filter field. If the data-structure does not contain the field, then we add the field tath-
structure and assign the next free labdtinally, we increment the count value for the field entry.
Each field search engine returns the label for the filter field. At the next pipeline ¢ieldeld
search engines feed the update operation and field labels to the aggregation nebgmly, the
samelnsert operation is used by both field search engines and aggregation nodes, only the type
of itemandlabelis different for the two. Each aggregation node receives the “insert” commahd an
the labels from the upstream nodes. Tieenis the composite label formed from the labels from
the upstream nodes. Note that for an update operation, field search engineg@gaiign nodes
only pass on one label, thus each aggregation node only operates on gresiterabel oitem If
the composite label is not in the set, then the aggregation node adds it to the seéhaltielabel
returned by th&Search or Add operations may be a composite label or meta-label, depending on

3We assume that each data-structure keeps a simple list of free labels that is initialized avittilalile labels. When
labels are ‘freed”due to a delete operation, they are added to the end of the list.

166
Insert (item)

1 labek—Search (item)
2 If (label=NULL

3 labek—Add(item)
4 Count [label]++

5 return label

Figure 7.9: Pseudocode fBICFL update (add).

Remove(item)

labek—Search (item)

Count [label]l——

If (Count [labell = 0)
Delete (item)

return label

a b wNPE

Figure 7.10: Pseudocode fDICFL update (delete).

the type of aggregation nodes in use. Finally, the aggregation increments thefamotive label
and passes it on to the next aggregation node. The final aggregation nodetipalsdes on to the
priority resolution stage which adds the field label to its data-structure according to its priority tag.

Removing a filter from the filter set proceeds in the same way. Both field search engines
and aggregation nodes perform the same lodReahove operation shown in Figure 7.10. We first
find thelabel for the item, then decrement the count value for iteem A Delete operation is
performed if the count value for thtemis zero. Thelabel is passed on to the next node in the
DCFL structure. The final aggregation node passes the filter label to the priority resolution stage
which removes the field label from its data-structure.

Note thatAdd andDelete operations on field search engine and aggregation node data-
structures are only performed when count values change from zero to one atudzene, respec-
tively. The limited number of unique field values in real filter sets suggests significaiimnglwd
unique field values among filters. We expect typical updates to only changgple ¢eld search en-
gine data-structures and aggregation node data-structures. In the worst case, insermiogiogrea
filter produces an update tbfield search engine data-structures &d- 1) updates to aggregation
node data-structures, whetés the number of filter fields.

167
7.7 Performance Evaluation

In order to evaluate the performancel@EFL, we used 12 real filter sets and tB@&assBenchools

suite to perform simulations testing scalability and sensitivity to filter set properties. The real filter
sets were graciously provided from ISPs, a network equipment vendor, and othechiese@n the

field. The filter sets range in size from 68 to 4557 filters and we discuss their relevant projperties
Chapter 5. As described in Chapter 6, we construct€iasBench parameter fifer each filter

set and used these files to generate large synthetic filter sets that retain the structural prafpertie
the real filter sets. Th€lassBench Trace Generataas used to generate input traffic for both the
real filter sets and the synthetic filter sets used in the performance evaluation. For altisimyla
header trace size is at least an order of magnitude larger than filter set size. ffioe ofeénterest

for DCFL are the maximum number of sequential memory accesses per lookup atgregamn
node,SMA and the memory requirements. We choose to report the memory requirements in bytes
per filter,BpF, in order to better assess the scalability of our technique.

The type of embedded memory technology directly influences the achievabbenpence
and efficiency ofDCFL; thus, for each simulation run we compute tB®IA and total memory
words required for various memory word sizes. Standard embedded memory btoeldeB6-
bit memory word widths [107, 74]; therefore, we computed results for memory worsl 6fZ26,
72,144, 288, and 576 bits corresponding to using 1, 2, 4, 8, and 16 melnokg Iper aggregation
node. All results are reported relative to memory word size. The choice of memonrsizerallows
us to explore the tradeoff between memory efficiency and lookup speed. Wethas¢he use of
16 embedded memory blocks to achieve a memory word size of 576 bits is rbksgivan current
technology, but certainly near the practical limit. For simplicity, we assume all mebhtocks are
single-port,(P = 1). Given that all set membership queries are independengNh&for a given
implementation oDCFL may be reduced by a factor &f.

In order to demonstrate the achievable performancB@FL, each simulation performs
lookups on all possible aggregation network constructions. At the end of the simplagarom-
pute the optimal aggregation network by choosing the optimal network structurepéinthbnode
type for each aggregation node in the graph. The three node types are discussetibim 5é
along with the derivation of the equations f8MAand memory requirements for each tyBéoom
Filter Array, Meta-Label IndexingandField Label Indexing In the case that two node types pro-
duce the sam&8MAvalue, we choose the node type with the smaller memory requirements. Our
simulation also allows us to select the aggregation network structure and node typesritoord
optimize worst-case or average-case performance. Worst-case optimal aggregatwhansélect
the structure and node types such that the value of the maxi@M#Afor any aggregation node in
the network is minimized. Likewise, average-case optimal selects the structure angpesisuch
that the maximum value of the averag§®lAfor any aggregation node in the network is minimized.
Computing the optimal aggregation network at the end of the simulation allows bsé¢ove trends

168
in the optimal network structure and node type for filter sets of various type, structdrsizen We
observe that optimal network structure and node type largely depends on filter sttrstriVith
few exceptions, variables such as filter set size and memory word size do not afectiposition
of the optimal aggregation network. We observe thaBlw®m Filter Arraytechnique is commonly
selected as the optimal choice for the first one or two nodes in the aggregationknet\th rare
exceptionsMeta-Label Indexings chosen for aggregation nodes at the end of the aggregation net-
work. This is a convenient result, as the final aggregation node in the networstassatheBloom
Filter Array technique in order to ensure correctness. We find this result to be somewhat intuitive
since the size of a meta-label increases with the number of unique combinatioessiet tivhich
typically increases with the number of fields in the combination. When using meta-tatindex
into an array of lists, a larger meta-label addresses a larger space which in turn §5pineddbels
across a larger array and limits the length of the lists at each array index.

In the first set of tests we used the 12 real filter sets and generated header traces using the
ClassBench Trace Generatorhe number of headers in the trace was 50 times the number of filters
in the filter set. As shown in Figure 7.11(a), the worst-c@sAfor all 12 real filter sets is ten or
less for a worst-case optimal aggregation network using memory blocks with a word €188 of
bits. Also note that the largest filter sei;I5, of 4557 filters achieves the best performance with
a worst-casé&SMA of two for worst-case optimal aggregation network using memory blocks with
a word size of 144 bits. In order to translate these results into achievable lookup rates, assume
a current generation ASIC with dual-port memory blockB, = 2), operating at 500 MHz. The
worst-caseSMAfor all 12 filter sets is then five or less using a word size of 288 bits. Under these
assumptions, the pipeline cycle time can be 10ns allowindGEL implementation to achieve
100 million searches per second which is comparable to current TCAMs. Search pedercasn
be doubled by doubling the clock frequency or using quad-port memory bloois of which are
possible in current generation ASICs.

As shown in Figure 7.11(c), the averag§®Afor all filter sets falls to four or less using
a memory word size of 288 bits. Filter s&tl5 also achieves the best average performance with
an average&SMAoof 1.2 for a word size of 288. As in many other packet classification techniques,
average performance is significantly better than worst-case performance.

Worst-case optimal memory consumption is shown in Figure 7.11(e). Most filter sets re-
quired at most 40 bytes per filtedBpF) for all word sizes; thus, 1MB of embedded memory would
be sufficient to store 200k filters. There are two notable exceptions. The results for filaetlset
show a significant increase in memory requirements for larger word sizes. For memargizes
of 36, 72, and 144 bitsacll requires less than 11 bytes per filter; however, memory requirements
increase to 61 and 119 bytes per filter for word sizes 288 and 576, respectiveblséhote that
increasing the memory word size facll yields no appreciable reduction BMA all memory
word sizes yielded aBMAoof five or six. These two pieces of data suggest that in the aggregation
node data-structures, the size of the lists at each index entry are short; thus, increasiegtng m

169

N
o

p
w
o

4

;\';‘ \ [ipct (1702)

N
a1

=
ol

ipcl (1702)

N
o

fwl (283);:5 (4557) |

fwl (283) |;c|5 (4557) |

Worst-case Optimal, Worst-case SMA
1S

Avgerage Optimal, Worst-case SMA
= =
o (6]

o
o

36 108 180 252 324 396 468 540 36 108 180 252 324 396 468 540
Memory Word Size (bits) Memory Word Size (bits)
10
<
5t s ¢
) 0
[=)] (0]
:
© 6 -
£ g
5 £
3 * &
g o
g 2]
S <
0
36 108 180 252 324 396 468 540 36 108 180 252 324 396 468 540
Memory Word Size (bits) Memory Word Size (bits)
120 120
acl5 (4557) acl5 (4557) /i
. 100 100
o [T .
i @
T 80 - VAN —. 80
IS [
£ £
S 60 | 2 60 -
[(@]
0 (3]
© >
240 A < 40
z
= 20 - 20 —
o — 0 ‘ ‘ ‘ ‘ ‘ ‘ ‘
36 108 180 252 324 396 468 540 36 108 180 252 324 396 468 540
Memory Word Size (bits) Memory Word Size (bits)

Figure 7.11: Performance results for 12 real filter sets; left-column shows worst-case sequential
memory accesses (SMA), average SMA, and memory requirements in bytes per filter (Bad~) fo
gregation network optimized for worst-case SMA; right-column shows same results for aggrega
network optimized for average-case SMA,; call-outs highlight three specific filter sets ofisario
sizes and types (filter set size given in parentheses).

170

10

< 12

: 5.} [een)

§ 10 44 e A o gl

5 @ 1 N [fws (20k‘)J\

o g AN

<} 3: 6 - Y R NN e A

= = w5 (10K)

g E 51 %= = ————— y

= S 4 acl5 (10k) Jacl5 (20K)

(@) [0}

2 g 3]

© Q 5 I |

Q » 21 -

Iz S 4 |

: Sl fsEm]

= 0 ‘ ‘ : : ‘ ‘ ‘
36 108 180 252 324 396 468 540 36 108 180 252 324 396 468 540

Memory Word Size (bits) Memory Word Size (bits)

200 /

B
MIZZIN

w5 (10K) £

[y

a

o
!

=

o

o
|

A
o
|

Worst-case Optimal, BpF

0 + \ \ \ \ \
36 108 180 252 324 396 468 540

Memory Word Size (bits)

Figure 7.12: Performance results for synthetic filter sets containing 10k, 20k, and 5@k fitkaer-
ated with parameter files from filter setsl5 andfw5; call-outs highlight most pronounced effects
(number of filters given in parentheses).

word-size linearly increases the memory inefficiency without yielding any fewer meaccesses.
We believe that this is also the case with the optimal aggregation netwodcl®with memory
word size 288. Clearly, finding the optimum balance of lookup performance ambryefficiency
requires careful selection of memory word size.

Figure 7.11(b) shows the worst-caSMAfor all 12 real filter sets for an average-case op-
timal aggregation network. Figure 7.11(d) shows the avefigé for all 12 real filter sets for
an average-case optimal aggregation network. When optimizing for avBMg§eaverage perfor-
mance is improved by approximately 25%, but worst-case performance suffers foxiamdely
50%. With the exception of rare application environments, sacrificing worst-case perferfoanc
average performance is unfavorable. For the remaining simulations, we only wepsticase op-
timal results.

The second set of simulations investigates the scalabiliy@fL to larger filter sets. Re-
sults are shown in Figure 7.12. This set of simulations utilizedgsBencliools suite to generate

171
synthetic filter sets containing 10k, 20k, and 50k filters ugiagameter fileextracted from filter
setsacl5 andfw5. As shown in Figure 7.12(a), the worst-c&@gAis ten or less for all filter sets
and memory word sizes. The most striking feature of each simulation is the flat responsedymem
word size. For all filter sets generated with fhié parameter filethe worst-cas&MAperformance
remains constant for memory word sizes greater than or equal to 72 bits. For adldtkerenerated
with the acl5 parameter filethe worst-cas&MA performance remains constant for memory word
sizes greater than or equal to 144 bits. ThassBench Synthetic Filter Set Generatmintains the
field overlap properties specified in tharameter file Coupled with the results in Figure 7.12, this
confirms that the property of filter set structure most influentiaD@#L performance is the maxi-
mum number of unique field values matching any packet header field. Assdstin Chapter 5, we
expect this property to hold as filter sets scale in size. If field overlap does increaBlth8plit-
ting optimization provides a way to reduce this to a desired threshold. As shown in Figue)7.12
the memory requirements increase with memory word size. Given the fav@mtA@erformance
there is no need to increase the word size beyond 144 bits, as it only results in a limeasénit
memory inefficiency. These results imply that tuning the memory word size is less criti¢atder
filter sets.

The third set of simulations investigates the effect of filter scope on the performance of
DCFL. Recall that scope is measure of the specificity of the filters in the filter GletssBench
provides high-level control over the average scope of the filters in the filter set wvip@rparameter
s. We generated synthetic filter sets containing 16000 filters ysangmeter filegrom a variety of
filter sets.For eacharameter filewe generated filter sets using scope parametér®, and 1. Note
that these filter sets are used in the evaluation ofQlassBenchiools suite in Figure 6.4.2. The
scope parameter had the most pronounced effects on worssSté&éor the filter sets generated
with the parameter fildfrom ipcl. As shown in Figure 7.13(a), decreasing the average scope of the
filters in the filter set{ = —1) results in significantly better performance; thus, as filters become
more specific the performance DICFL improves. This is a favorable result given the generally
accepted conjecture the primary source of future filter set growth will be flow specific filters for
applying network services. If we increase the scope of the filters in the filtdDG&l, performance
suffers. This trend also holds for the aver&MA As shown in Figure 7.13(c), filter set specificity
has little effect on memory requirements for memory word sizes of 144 bits or lessn Ugieg
larger memory word sizes, filter sets containing more specific filters require more meméhgper
as filters become less specific they become more memory efficient. We believe thissrdaalto
the fact that less-specific filter fields are more likely to be used by several filters. For exémple
port range for all user ports is more likely to be used by multiple filters than a specific pobtenu
When we construct filters with less-specific fields, the sharing of filter fields among filters increases
and the memory efficiency of labeling is more apparent.

The fourth set of simulations investigate the efficacy and consequencedélidh&plitting
optimization. We selected two of the worst-performing real filter sets and performed simulations

172

a

o
w
o

N
[&)]

Worst-case optimal, Average SMA
N
o

w
o

=
[&)]

.
|
i

20

=
o

=
o

[&)]

0

Worst-case Optimal, Worst-case SMA

\ \ \ \ \ \ \ 0 \ \ \ \ \ \ \
36 108 180 252 324 396 468 540 36 108 180 252 324 396 468 540

Memory Word Size (bits) Memory Word Size (bits)
300

N
a1
o

lipcl (s = Cy\

lipcl (s =1)

N
o
o

=
o
o

Worst-case Optimal, BpF
&
o

[$)]

o
|
\

36 108 180 252 324 396 468 540
Memory Word Size (bits)

Figure 7.13: Performance results for synthetic filter sets containing 16k filters, generatedewith th
ipcl parameter filavith scope parameters{-1,0,1}; call-outs highlight most pronounced effects
(scope parameter given in parentheses); note that these filter sets are used in thierewdltiee
ClassBencltools suite in Figure 6.4.2.

with various field overlap thresholds. The performance results are summarized in FigurEat.14.
acl2, Field Splitting reduces the worst-caseMA from 16 to 10 for 36-bit memory words. For
fwl, Field Splittingreduces the worst-cas&MAfrom 9 to 5 for 36-bit memory words. In these
casesField Splittingprovides a 37% and 44% increase in performance, respectively. It is important
to note, however, that the impact Bfeld Splittingis reduced as we increase memory word size.
Clearly, the primary benefit dfield Splittingis that it allows us to achieve better performance using
smaller memory word sizes which improves the memory efficiency. As shown in Figutéey, the
memory utilization for all filter sets using memory word sizes of 74-bits or less remains vel-be
40 bytes per filter. Consider the specific casaa?®. In order to achieve a worst-caSMAof eight

or less withoutField Splitting we must use a memory word-size of 144 bits resulting in memory
requirements of 44 bytes per filter. Usikggld Splittingwith a field overlap threshold of three, we

173

<197 e
<
16 s _ acl2
@ n
o] g acl2 (t=3)
s 14 Laclz ? 6
£12 7 S
= 10 acl2 (t=3) :_‘é
© < £ 4
E 8 =
a o3
O 6 1 e T NAN e T
§ 4 G2 :
ht 17
S =
=) : : ‘ ‘ ‘ ‘ ‘ 0 : : : : : : :
36 108 180 252 324 396 468 540 36 108 180 252 324 396 468 540
Memory Word Size (bits) Memory Word Size (bits)
100
S 80 -
m
T
£ o0
o
(@]
(]
& 40
?
[
S 20
0 T T T T T T T T

36 108 180 252 324 396 468 540
Memory Word Size (bits)

Figure 7.14: Performance results for real filter setdZ andfwl) using theField-Splitting opti-
mization; call-outs highlight most pronounced effects (field overlap threshold giearentheses).

achieve the desired worst-caS®MAperformance using a memory word-size of 72 bits resulting in
memory requirements of 35 bytes per filter. Recall fiatd Splittingdoes increase the number of
aggregation nodes in the aggregation network, thus increasing the numbemofyrtdocks and
logic required for implementation. However, these results show that the total memaiseraents
are actually reduced for a particular performance target. It is important to note ehd weach a
point of diminishing returns witlField Splitting The aggregation network can grow too large if
too many splits are required to achieve a particularly low field overlap threshold. In thislase,
impact on worst-cas8MAis minimal while the memory resource requirements increase drastically
due to the additional overhead. This situation is reflected in Figure 7.14(c) for filtBvsetth a
field overlap threshold of three and memory word size of 288 bits.

The fifth and final set of simulations investigate the scalabilitipGfFL to additional filter
fields. Using theClassBenchools suite, we generated four filter sets containing 16000 filters using

174

N

8 fields 7

< < !Qflelds
= =35
n 0 ~

]
Q 3 P
hrd ~
§ ;2.5 PE

S L

= £ 2Tl 2T =
: 1S e i
= @
o 8
o Q
g 2 [
Q o 0.5
® 2
o 0 0
2

36 108 180 252 324 396 468 540 36 108 180 252 324 396 468 540
Memory Word Size (bits) Memory Word Size (bits)
180

9 fields | |8 fields

36 108 180 252 324 396 468 540
Memory Word Size (bits)

Figure 7.15: Performance results for synthetic filter sets containing 16k filters, generatedwith p
rameter file from filter sehcl5 with extra filter fields; call-outs highlight most pronounced effects
(number of filter fields given in parentheses).

the acl5 parameter file No smoothingor scopeadjustments were applied. The first filter set was
generated such that half of the filters specifying the TCP or UDP protocols specifiedoane
wildcard field in addition to the standard six filter fields (the 5-tuple plus protocol flags). The
non-wildcard field value was selected from a set of 100 random values using a unifodonra
variable. The remaining filter sets were generated in the same manner with two, tiitdeulan
extra field values. As shown in Figure 7.15(a), extra filter fields have a negligible effeebist-
caseSMA performance. We believe that this is attributable to two impetuses: (1) the additional
filter fields allow filters to be more specific, and (2) the additional filter fields are exact rilttt

and the maximum fields overlap is at most two. As reflected in Figure 7.15(c), the Sadrea
memory requirements for an additional filter field is small for memory word sizes of itg4b
less. Specifically, when using 144-bit memory words the memory requirements incgedde b
bytes per filter when adding a seventh field and 16 bytes per filter when addaighdh filter field.

175
There is no observable increase when adding the ninth filter field. This is constitutegageave
10 bytes per filter for each additional field. Given our reasonable assumpti@rdirggthe nature
of additional filter fields in future filter sets, we assert that the performance and scalabDiGrdf
will make it an even more compelling solution for packet classification as filter sets scée iand
the number of filter fields.

7.8 Related Work

In general, there have been two major threads of research efforts addressindg#telpasification
problem: algorithmic and architectural. A few pioneering groups of researchers thesgablem,
provided complexity bounds, and offered a collection of algorithmic solutions [b053, 53].
Subsequently, the design space has been thoroughly explored by many ofésviatgorithms and
improvements upon existing algorithms [54, 27, 29]. Given the inability of earlyridhmgas to meet
performance constraints imposed by high speed links, researchers in industry andiackaésed
architectural solutions to the problem. This thread of research produced the mostusiddipacket
classification device technology, Ternary Content Addressable Memory (TCAM) [58,756.7].
While they provide sufficient speed, current TCAM-based solutions consume exodritanhts of
power and hardware resources relative to implementations of efficient algoritteosniRvork has
addressed many of the unfavorable aspects of current TCAM-based solutions 2],d@&8ever,
there remain fundamental limits to their scalability and efficiency.

The most promising algorithmic research embraces the practice of leveraging the statistical
structure of filter sets to improve average performance [50, 54, 58, 51, 59]. Sdgerihms in
this class are amenable to high-performance hardware implementation. New arcilitestearch
combines intelligent algorithms and novel architectures to eliminate many of theowable char-
acteristics of current TCAMs [32]. We observe that the community appears to bergimgven
a combined algorithmic and architectural approach to the problem [28]. Our solDistriputed
Crossproducting of Field LabelCFL), employs this combined approach to provide a scalable,
high-performance packet classifier. Chapter 4 provides a thorough surveyket ptassification
techniques using a taxonomy that frames each technique according to its reghgpvoach. In
this section, we highlight the sources of the key ideas and data structures whitilvard utilize
in DCFL. In order to demonstrate the value of our solution relative to the state of the art, we also
contrast it with two leading solutions which are arguably the top solutions from the algaridimah
architectural threads.

As clearly indicated by the namBCFL draws upon the semin@lrossproductingechnique
introduced by Srinivasan, Varghese, Suri, and Waldvogel [B8JFL avoids the exponential blowup
in memory requirements experienced®ypssproductindy only storing the labels for field values
and combinations of field values present in the filter table. It retains high-perforrgraggregat-
ing intermediate results in a distributed fashion. Gupta and McKeown introdveedrsive Flow

176
ClassificationRFC) which provides high lookup rates at the cost of memory inefficiency [50]. Sim-
ilar to theCrossproductingechniqueRFCperforms independent, parallel searches on “chunks” of
the packet header, where “chunks” may or may not correspond to paekder fields. The results
of the “chunk” searches are combined in multiple phases, rather than a single steprasspro-
ducting The result of each “chunk” lookup and aggregation stefRIRQ) is an equivalence class
identifier,eqlD, that represents the set of potentially matching filters for the packet. There is a sub-
tle, yet powerful difference between the use of equivalence class#sGand field labels ilDCFL.
In essence, the number of labeldDCFL grows linearly with the number of unique field values in
the filter table. The number @glDsin RFCdepends upon the number of distinct sets of filters that
can be matched by a packet. The numbezgiDsin an aggregation step scales with the number of
unigue overlapping regions formed by filter projections. Another major differeatvedenDCFL
andRFCis the means of aggregating intermediate resi®SC lookups in “chunk” and aggrega-
tion tables utilize indexing, causirigFCto make very inefficient use of memory. The index tables
used for aggregation also require significant precomputation in order to assign thequytipéor
the combination of theqIDs of the previous phases. Such extensive precomputation precludes dy-
namic updates at high rates. As we have shd@-L uses efficient set membership data structures
which can be engineered to provide fast lookup and update performanced&tacstructure only
stores labels for unique field combinations present in the filter table; hence, theyeffialent use
of memory and do not require significant precomputation. In order to illustrate the diffesde-
tweenRFCandDCFL, we provide an example of &FCsearch for two “chunks” of a search an
“chunks” in Figure 7.16. The squarés. . . [] represent the unique projections of the two “chunks”
x andy for all filters in a filter table. The number efglDsfor the “chunk” lookups is 11 for each
dimensionz andy, as 11 unique sets of filters are formed by the projections onto drely axes.
SinceRFC utilizes indexing for lookups, each “chunk” table requipdsentries, wheré is the size
in bits of the “chunk”. Note that if the number of unique projections wabeledas inDCFL, only
six labels for each dimension would be required, and the set membership data structigemly
need to store six entries. In order fARFCto aggregate theqlDsfrom “chunks”xz andy, it must
compute all of the unique sets of filters for the two-dimensional overlaps. As shownureFdlL6,
this results in 2%qIDs The aggregation table requirg§™ = 256 entries, agqlD(x)andeqID(y)
are four bits in size anBFCutilizes indexing to findeqID(x,y) Note that inDCFL, a label would
simply be assigned to each unique 2-d projection . (] and stored in a set membership data struc-
ture. In generalDCFL can provide line-speed lookups, likFC, but with much more efficient use
of memory and support for dynamic updates at high rates.

Our approach also shares similarities with Bagallel Packet ClassificatiogP2C) scheme
introduced by van Lunteren and Engbersen [28]. Specifically, B@FL and P2C fall into the
class of techniques using independent field searches coupled with noveirenand aggregation of
intermediate results. The primary advantagBGFL over P2C is its use of SRAM and amenability
to implementation in commodity hardware technolog,C requires the use of a separate TCAM

177

DCFL | RFC DCFLF,,
F, eql D(y) y (list of unique 2-D projections)
0 0 @ a(0,2)
; g(0,5)
1 16 ¢t c f b(1,1) h(1,4)
2 9 ..bcef b - e c(2,0) i(273)
8 abcdef |2 d(3,2) j(35)
7 a,b,d,6 e(4,1) k(4,4
6 a,f f(50 1(53)
0 @
3 , , RFC eqiD(x.y)
4 S _ | ' | (list of unique 2-D overlaps)
5 4 h,i,k, h K
3 g.hik g] o O g 13
2 ghik a ! gh 1
1 g.j E"b : hh.ig
g,n,l
0 9 . abcd hi 17
bc 5 i 18
QO ®: T O !
Siaooo—is SEEgaS c 6 i 19
Qioio Qi o d 7 j,k 20
Si@ = ’
= = de 8 k 21
RFC - = e 9 ikl 22
eql D(X) 0:1i2:3:4i5 0 6:7:8i9i1G0 def 10 k| 23
DCEL 3 ef 11 I 24
S p— 2 foo12
F
X 2 5

Figure 7.16: Contrast between unique field value labelBistributed Crossproducting of Field
Labels(DCFL) and equivalence class identifieexj(D9 in Recursive Flow Classificatigexample
shows two fields of & field search. Squarés. . .[] represent the unique projections of two fields
x andy for all filters in a filter table.

or a custom ASIC with embedded TCANDCFL also provides more efficient support of dynamic
updates.

Given the volume of work in packet classification, we must show how our techrsEidds
value to the state of the art. In our opinidtyperCutdss one of the most promising new algorithmic
solutions [59]. Introduced by Singh, Baboescu, Varghese, and Wang, the atgorigroves upon
the HiCuts algorithm developed by Gupta and McKeown [51] and also shares similarities with
the Modular Packet Classificatioalgorithms introduced by Woo [29]. In essentlyperCutsis a
decision tree algorithm that attempts to minimize the depth of the tree by selecting “cutaftin m
dimensional space that optimally segregate packet filters into lists of bounded sizerdifig to
performance results given in [59], traversing thgperCutsdecision tree required between 8 and 35
memory accesses, and memory requirements for the decision tree ranged from 5.9 toyfels per
filter. We assert thdDCFL exhibits advantages in all metrics of interest: worst-cals&\ memory
requirements, and dynamic update performarR€FL also provides the opportunity to strike a

178
favorable tradeoff between performance and memory requirements, as thes\garameters may
be tuned to achieve the desired results. All new algorithmic approaches must makeyaate for
their advantage relative to Ternary Content Addressable Memory (TCAM). Due to its parfoem
efficiency, scalability, and use of commodity hardware technolD@F L has the ability to provide
equivalent lookup performance at much lower cost and power consumption

7.9 Discussion

By transforming the problem of aggregating results from independent field searchseigme
distributed set membership queBjstributed Crossproducting of Field Label®CFL) avoids the
exponential increases in time and memory required by previous approachegraledéed several
new concepts including field labelingleta-labelingunique field combinations, artdeld Splitting
as well as optimized set membership data structures suBloam Filter Arraysthat minimize the
number of memory accesses required to perform a set membership query. Usinlgiaatiam of
real and synthetic filter sets, we demonstrated IH2FFL can achieve over 100 million searches per
second using existing hardware technology. Furthermore, we have also shoxCtHaretains
its lookup performance and memory efficiency when the number of filters anteruof fields
in the filters increases. Scalability to classify on additional fields is a distinct advabDi@ge
exhibits over existing decision tree algorithms and TCAM-based solutions. We continygdoeex
optimizations to improve the search rate and memory efficiendp@FL. We also believe that
DCFL has potential value for other searching tasks beyond traditional packet classificatio

179

Chapter 8

Summary

Only the curious will learn and only the resolute overcome the obstacles to learning.
The quest quotient has always excited me more than the intelligence quotient.
Eugene S. Wilson, Dean of Admissions, Amherst

All grand visions of the “next-generation” Internet assume that route lookup ariepelassifi-
cation search engines will scale to support fast links, larger route tables and filtemsetapee
complex packet classification filters. The work described in this dissertation provides several ¢
tributions that help meet these challenges. While the fruits of our work have addeessetber

of the open problems in packet classification, there remain a number of entigogiwpties for
future work.

8.1 Contributions

As evidenced by the number of proposed solutions discussed in Chapters 2lamdotite lookup
and packet classification problems are well-studied problems. Despite the energetioratién
the research community, there remain a number of ripe areas for contribution. Thheenoost
pressing issues are efficient search engine implementations, standardized perforahratoe
tools, and viable alternatives to TCAMs for packet classification. While many searatedang
plementations exist, many are targeted to general purpose processor systems oambhsst
are not open-source or otherwise available for study by the research communityo eelack
of standard performance evaluation tools, researchers offering new solutions pitoeitiogvn test
vectors, thus comparison of competing solutions is exceedingly difficult. As clealiyaited by
recent search engine market dynamics, router designers are increasingly edegnrpower con-
sumption and scalability, thus they are beginning to favor algorithmic packet classifisalutions
over TCAMs. We addressed all three of these areas throughout the course of this digsertatio
Chapter 3 presented the design and analysis of a scalable implementation of Eathdrton
Dittia’s Tree Bitmap algorithm for route lookup. The Fast Internet Protocol Lookup (FIPL)lsearc

180
engine provides approximately one million lookups per second per engirgegeachl engines may
be combined to provide even greater throughputs. Furthermore, each FIPL engsoenes less
than 1% of commaodity reconfigurable logic device. We have made the VHDe fadhe search
engine and evaluation environment publicly available. FIPL engines have \albegt incorpo-
rated in a System-on-Chip (SoC) packet processor for the Network Services Platform (NSP) [43]
which forms part of the infrastructure for the Open Network Laboratory (ONL) [109]. ONL al-
lows researchers to remotely configure and perform experiments on real netwongsseahof
heterogeneous hosts, links, and open-platform extensible routers.

In Chapter 4, we provided a survey of packet classification techniques andpEya tax-
onomy which frames each technique according to its high-level approach teodflem. Through
the use of a limited set of running examples, the survey presents a more cohereot trievgtate-
of-the-art and more clearly highlights potential areas for future contributions. We asgdtigha
taxonomy enables a better understanding of the packet classification algorittopppaed to sim-
ply reporting asymptotic performance bounds or reported performance results fdeelacigue.

Chapter 5 presented a detailed analysis of real filter sets as well as the forces infuenc
their composition. This is the most comprehensive study of filter set structure that weaasead.

The results of this analysis include an analysis of the storage inefficiency of standaidsT&

a novel study of thdield overlapin real filter sets. The latter findings led to the development of
Distributed Crossproducting of Field Labelhe new packet classification algorithm presented in
Chapter 7.

In response to the lack of publicly available filter sets and performance evaluation teols, w
developedClassBenchWe presented the design and analysis ofGlessBenctiools in Chapter 6.
The combination of th&ynthetic Filter Set Generatandparameter fileextracted from real filter
sets eliminates confidentiality concerns, and hence removes the access barriéstio test vec-
tors. In addition to providing high-level control of the composition of the filters in the syintfiéer
sets, theClassBenchools also produce synthetic header traces with variable locality of reference.
We have made th€lassBenchools publicly available along witharameter filegrom 12 real filter
sets and several research groups are already using the tools.

Chapter 7 presenteistributed Crossproducting of Field LabefBCFL), a novel combi-
nation of new and existing packet classification techniques that leveragesdeayations of filter
set structure and takes advantage of the capabilities of modern hardware tgghidégdantroduced
several new concepts including field labeliddeta-labelingunique field combinations, arfeleld
Splitting DCFL minimizes the number of sequential memory accesses required per lookupdy tran
forming the problem of aggregating results from independent field search engineslistotated
set membership query. In order to support this novel approach, we developecefficient data
structures includin@®loom Filter Arrays Using a set of 12 real filter sets and f@ssBencltools
suite, we demonstrated thaCFL not only provides sufficient lookup performance, but also scales

181
to larger filter sets and more complex filters. Given the anticipated effects of Inteowehgand di-
versification on the size and composition of filter s&#€FL will become an increasingly attractive
alternative to TCAMSs for packet classification.

8.2 Future Directions

The contributions of this dissertation provide a solid foundation for further research. Weoplan
promote broader use @lassBenctwith the hope of refining the tools and developing a formal
benchmarking methodology. If embraced by the research community, thensosdeuilding and
standardizing effort could be taken up by the Internet Engineering Task Force (IETHhgead
one or more Request for Comment (RFC) documents detailing a packet classifitichmarking
methodology.

In order to demonstrate the realizable performance, determine hardware resourcepzonsu
tion, and measure dynamic power consumption, we would like to design and ieqleprototype
of the Distributed Crossproducting of Field Labetdgorithm. As shown in Figure 8.1, we en-
vision a scalable, modular design which would allow the use of various field searstesrmmnd
dynamic reconfiguration of the aggregation network. The Field-programmable PortdeXter
similar open-platform research system with reconfigurable hardware and adequate meuidry
provide a suitable implementation platform. This design effort would require adequatectese
funding and human resources to accomplish in a timely manner.

Independent of a hardware prototyping effort, we bellB@¥FL has the potential to provide
better performance for a variety of complex searching problems. Several reseanctinerset-
working community have directed their attention to high-performance string matchingiqees
due to their use in network intrusion detection systems. Some Internet worms and virusés @on
known “signature” or sequence of characters. Searching packet payloddsdersignatures at the
edge of the network can prevent the spread of malicious programs. Intrusion detegtist one
of the applications falling under the broad heading of “deep packet insp&c@iher applications
include load-balancing for web server farms which requires inspection of the HTadehim order
to direct the web-page request to the most lightly-loaded server containing theGiege that the
scaling properties and performancel@EFL is independent of the type of field search performed,
our approach could provide better performance for a variety of hybrid searatiqaels comprised
of exact, range, prefix, and string matching.

182

1/O Interface

~~ A

I
@
o

Field Field
Search Search| aunuas Search
Engine Engine Engine

~~ ~~

Reconflgurable Interconnect

EEEEEEDRN delay@
buffers |:|

DCFL DCFL Priority
Agg. |$ Agg. I? Agg. |$ -
Node Node Node st
Reconfigurable Memory Interface

| | [| | [aesnnnnnnnnnnnns []

| | [| embedded memory blocks |:|

I:l----------------------------- I:l

Figure 8.1: Potential implementation architectureDistributed Crossproducting of Field Labels

SRS

183

Appendix A

Additional Data from Real Filter Sets

The following figures are a supplement to the data presented in Chapter 5.

Distribution

Skew (nodes with 2 children)

Figure A.1: Source address branching probability and skew for filter set ipcl.

2 Children O1 Child

100% -
90% -
80% -
70% -
60% -
50% -
40% -
30%
20% -
10% -
0% -
oY Oe®gNygaRII8AYS
Source Address Trie Depth
(a) Source address branching probability; average per level.
1 =
0.9 1
0.8
0.7 HHHE— =
0.6 T - .
0.5 I HHHHH a1
0.4 HHH B —H
0.3 HHHHH B 1 H
0.2 HHH B —H
0.1 HHH B —H
0 ‘[I‘
O v ™% © %,@N%vab,»‘b@rﬂzmb‘%b%‘b%o

Source Address Trie Depth

(b) Source address skew; average per level for nodes with two children.

184

100%
90%
80%

Distribution

3
2
1

70%
60%
50%
40%

0%
0%
0%
0%

2 Children O1 Child

i |

O N ©« © 0 O N ¥ © 0 O N ¥ © 0o O
= Hd d 4 4 N N N N N ™M

Destination Address Trie Depth

(a) Destination address branching probability; average per level.

0.9

0.8
0.7

0.6
0.5 -
0.4
0.3
0.2
0.1

Skew (nodes with 2 children)

VYV X o DO DO RO A DR S

Destination Address Trie Depth

(b) Destination address skew; average per level for nodes with two children.

185

Figure A.2: Destination address branching probability and skew for filter set ipc1l.

2 Children O1 Child

100% -
90% -
80% -
70% -
60% -
50% -
40% -
30% -
20% -
10% -
0% - e e e

O N © © 00 O N ©«© © 0 O N ¥ © 00 O
= Hd Hd 1 4 N N N N N ™M

Distribution

Source Address Trie Depth

(a) Source address branching probability; average per level.

=
1

0.8 1t
0.7 HHHf
o6 {{HH HHHI B
0.5 HHHHHE— HEH
0.4 HHHFHHE— HH
0.3 HHHFIHH— -
0.2 HHHF—HHE— HH

Skew (nodes with 2 children)

o

O U ™ © 2.0 0O DD RS

Source Address Trie Depth

(b) Source address skew; average per level for nodes with two children.

Figure A.3: Source address branching probability and skew for filter set fwl.

186

187

2 Children O1 Child

100% -
90% -
80% -
70% -
60% -
50% -
40% -

30%
20%
10% I
0%7\\\- rrrr T T T T T T T
O N ©« © 0 O N ¥ © 0 O N ¥ © 0o O
- N ™M

= = << N N N «
Destination Address Trie Depth

Distribution

(a) Destination address branching probability; average per level.

0.9 {fH R .
0.8 - R .

0.5 M B - HEAHHH
0.4 {H B - HHHHHTH
0.3 {|H . . T

Skew (nodes with 2 children)

O v X 0 3 O WV a0 DO gL > q® R
Destination Address Trie Depth

(b) Destination address skew; average per level for nodes with two children.

Figure A.4: Destination address branching probability and skew for filter set fw1.

700

600

500
400

300

200

Number of filters

100 -

350

10 20 30 40 50 60 70 80 90 100

5-tuple scope

(&) acld,n = 30.9,0 = 15.1

300

250

200
150

100

Number of filters

50

Figure A.5: Distribution of 5-tuple scope for filters in filter sets acl4 and ipcl.

10 20 30 40 50 60 70 8 90 100
5-tuple scope

(b)ipcl,u = 39.7, 0 = 19.5

188

180

160 -
140 -
120 -
100 -
80 -
60 -
40 -
20 -

Number of filters

M PR ™ | NS S| PR B R

2000
1800
1600
1400
1200
1000
800
600
400
200

Number of filters

Figure A.6: Distribution of 5-tuple scope for filters in filter sets fwl and fw5.

100 20 30 40 50 60 70 80 90 100

5-tuple scope

(@) fwl,p=51.2,0 =157

OM

0 10 20 30 40 50 60 70 80 90 100

5-tuple scope

(b) fw5, 11 = 55.8, 0 = 17.0

189

190

References

[1] D. Clark, “The Design Philosophy of the DARPA Internet Protocols,” 1988.

[2] “Internet Domain Survey.” Internet Systems Consortium, January 2004.

[3] Clickz, “Population Explosion!.” http://www.clikz.com, May 2004. ClickZ Stats.

[4] Reuters, “U.S. online content spending rises in 2003,” May 2004. San Francisco.

[5] CNET, “Online holiday apending up, up and away.” http://news.com.dd@cember 2003.
[6] Linley, “Search Engine Market Maturing.” The Linley Wire, Volume 4, Issue 11, Jund 200

[7] S. Fuller, T. Li, J. Yu, and K. Varadhan, “Classless inter-domain routing (CIDR)ddness
assignment and aggregation strategy.” RFC 1519, September 1993.

[8] S. Deering and R. Hinden, “Internet Protocol, Version 6 (IPv6) Specification.” RFD,24
December 1998.

[9] United States Department of Defense, “Next-Generation Internet Protocol to BXable
Centric Operations.” News Release No. 413-03, June 2003.

[10] D. Cheriton, “Internet Architecture - It's Future and Why it matters.” Keynoterkdd, ACM
SIGCOMM, August 2003.

[11] W. N. Eatherton, “Hardware-Based Internet Protocol Prefix Lookups.” thesis, Washing
University in St. Louis, 1998. Available &ttp://www.arl.wustl.edu/

[12] D. E. Knuth,Sorting and Searchingol. 3 of The Art of Computer Programming\ddison-
Wesley, 1973.

[13] T. Cormen, C. Leiserson, and R. RiveBtfroduction to Algorithms McGraw-Hill Book
Company, 1990.

[14] B. H. Bloom, “Space/Time Trade-offs in Hash Coding with Allowable Erro@mmunica-
tions of the ACMvol. 13, pp. 422—-426, July 1970.

191
[15] A. Broder and M. Mitzenmacher, “Network applications of bloom filters: A suivayPro-
ceedings of 40th Annual Allerton Conferen@etober 2002.

[16] L. Fan, P. Cao, J. Almeida, and A. Z. Broder, “Summary cache: A scaleidle-area web
cache sharing protocollEEE/ACM Transactions on Networkingol. 8, pp. 281-293, June
2000.

[17] A.J. McAulay and P. Francis, “Fast Routing Table Lookup Using CAMS|EBE Infocom
1993.

[18] K. Sklower, “A tree-based routing table for Berkeley Unix,” tech. rep., @rsity of Califor-
nia, Berkeley, 1993.

[19] V. Srinivasan and G. Varghese, “Faster IP Lookups using Controlled Prefix &rpenin
SIGMETRICS1998.

[20] P. Gupta, S. Lin, and N. McKeown, “Routing Lookups in Hardware at Memocgess
Speeds,” inEEE Infocom 1998.

[21] M. Degermark, A. Brodnik, S. Carlsson, and S. Pink, “Small Forwarding TableBdet
Routing Lookups,” inrACM Sigcomm1997.

[22] D. E. Taylor, J. S. Turner, J. W. Lockwood, T. S. Sproull, and D. B. Parftiécalable IP
Lookup for Internet RoutersfJEEE Journal on Selected Areas in Communicatjomd. 21,
pp. 522-534, May 2003.

[23] B. Lampson, V. Srinivasan, and G. Varghese, “IP Lookups Using MultiwayMulticolumn
Search,1EEE/ACM Transactions on Networkingol. 7, no. 3, pp. 324-334, 1999.

[24] M. Waldvogel, G. Varghese, J. Turner, and B. Plattner, “Scalable highidpe®uting table
lookups,” inProceedings of ACM SIGCOMM '9pp. 25-36, September 1997.

[25] S. Dharmapurikar, P. Krishnamurthy, and D. E. Taylor, “Longest Prefix Matchsigg
Bloom Filters,” inACM SIGCOMM’'03 August 2003.

[26] C.-F. Su, “High-Speed Packet Classification Using Segment Tre®fdoeedings of IEEE
Globecom2000.

[27] A. Feldmann and S. Muthukrishnan, “Tradeoffs for Packet ClassificatiohZH Infocom
March 2000.

[28] J.van Lunteren and T. Engbersen, “Fast and scalable packet classifid&ttes,Journal on
Selected Areas in Communicatiomsl. 21, pp. 560-571, May 2003.

192
[29] T. Y. C. Woo, “A Modular Approach to Packet Classification: Algorithms ares@ts,” in
IEEE Infocom March 2000.

[30] F. P. Preparata and M. I. Shamd@pmputational Geometry: An IntroductionTexts and
Monographs in Computer Science, Springer-Verlag, 1985.

[31] R.E. TarjanData Structures and Network AlgorithmSBMS-NSF 44, Society for Industrial
and Applied Mathematics, 1983.

[32] E. Spitznagel, D. Taylor, and J. Turner, “Packet Classification Using Exteh@ads,” in
Proceedings of IEEE International Conference on Network Protocols (ICRE®)3.

[33] S. Choi, J. Dehart, R. Keller, F. Kuhns, J. Lockwood, P. Pappu, J. Paarafik D. Richard,
E. Spitznagel, D. Taylor, J. Turner, , and K. Wong, “Design of a High Performanhe
namically Extensible Router,” iDARPA Active Networks Conference and Exposijtiday
2002.

[34] J. S. Turner, “Gigabit Technology Distribution Programttp://www.arl.wustl.-
edu/gigabitkits/kits.html , Aug. 1999.

[35] J. Turner, T. Chaney, A. Fingerhut, and M. Flucke, “Design of a Gigabit Awitch,” inIn
Proceedings of Infocom 9W¥ar. 1997.

[36] S. Choi, J. Dehart, R. Keller, J. W. Lockwood, J. Turner, and T. Wolf, “Desiba flexible
open platform for high performance active networks, Aiterton Conference(Champaign,
IL), 1999.

[37] J. W. Lockwood, J. S. Turner, and D. E. Taylor, “Field programmable poeneber (FPX) for
distributed routing and queuing,” KCM International Symposium on Field Programmable
Gate Arrays (FPGA'200Q)XMonterey, CA, USA), pp. 137-144, Feb. 2000.

[38] J. W. Lockwood, N. Naufel, J. S. Turner, and D. E. Taylor, “Reprograbiendetwork Packet
Processing on the Field Programmable Port Extender (FPXACKI International Sympo-
sium on Field Programmable Gate Arrays (FPGA'200Monterey, CA, USA), pp. 87-93,
Feb. 2001.

[39] P. Newmaret al, “Transmission of flow labelled IPv4 on ATM data links.” Internet RFC
1954, May 1996.

[40] T. S. Sproull, J. W. Lockwood, and D. E. Taylor, “Control and Configuratioftv&ue for
a Reconfigurable Networking Hardware PlatformF@CM’02: 2002 IEEE Symposium on
Field-Programmable Custom Computing Machin&pril 2002.

[41] J. M. Anderson, M. llyas, and S. Hsu, “Distributed network management in an ihtnwie
ronment,” inGlobecom’97vol. 1, (Pheonix, AZ), pp. 180-184, Nov. 1997.

193
[42] “Internet Routing Table Statistics.” http://www.merit.edu/ipma-
/routing_table/ , May 2001.

[43] D. Taylor, A. Chandra, Y. Chen, S. Dharmapurikar, J. Lockwood, gl and J. Turner,
“System-on-Chip Packet Processor for an Experimental Network Services PlatfofBEEHn
GlobecomDecember 2003.

[44] Xilinx, “Virtex-Il Pro Platform FPGAs: Introduction and Overview.” DS083-1 (v3.0), De-
cember 2003.

[45] P. Newman, G. Minshall, and L. Huston, “IP Switching and Gigabit Routers.” IEEEB-Co
munications Magazine, January 1997.

[46] G. Chandranmenon and G. Varghese, “Trading Packet HeadersabfietPProcessing,”
IEEE/ACM Transactions on Networkingol. 4, pp. 141-152, April 1996.

[47] Y. Rekhter, B. Davie, D. Katz, E. Rosen, and G. Swallow, “Cisco Systents'Skitching
Architecture Overview.” RFC 2105, February 1997.

[48] E. Rosen, A. Viswanathan, and R. Callon, “Multiprotocol Label Switching Archite.”
RFC 3031, January 2001.

[49] SiberCore Technologies Inc., “SiberCAM Ultra-2M SCT2000.” Product Brief, 2000

[50] P. Gupta and N. McKeown, “Packet Classification on Multiple Fields A@M Sigcomm
August 1999.

[51] P. Gupta and N. McKeown, “Packet Classification using Hierarchical IntelliGettings,”
in Hot Interconnects V]IAugust 1999.

[52] T. V. Lakshman and D. Stiliadis, “High-Speed Policy-based Packet Forwarding Eiin
cient Multi-dimensional Range Matching,” RCM SIGCOMM‘98 September 1998.

[53] V. Srinivasan, S. Suri, G. Varghese, and M. Waldvogel, “Fast and Scalabée Eayr Switch-
ing,” in ACM SigcommJune 1998.

[54] F. Baboescu and G. Varghese, “Scalable Packet ClassificatioACM SigcommAugust
2001.

[55] R. A. Kempke and A. J. McAuley, “Ternary CAM Memory Architecture and Metblogy.”
United States Patent 5,841,874, November 1998. Motorola, Inc.

[56] G. Gibson, F. Shafai, and J. Podaima, “Content Addressable Memory Storatime.De
United States Patent 6,044,005, March 2000. SiberCore Technologies, Inc.

194
[57] R. K. Montoye, “Apparatus for Storing “Don’'t Care” in a Content Addressaikmory
Cell.” United States Patent 5,319,590, June 1994. HaL Computer Systems, Inc.

[58] F. Baboescu, S. Singh, and G. Varghese, “Packet Classification for CaterRads there an
alternative to CAMs?,” iHEEE Infocom 2003.

[59] S. Singh, F. Baboescu, G. Varghese, and J. Wang, “Packet Classificafiogn Multidimen-
sional Cutting,” inProceedings of ACM SIGCOMM’Q3ugust 2003. Karlsruhe, Germany.

[60] D.E. Taylorand J. S. Turner, “Scalable Packet Classification using Distributed @dssp
ing of Field Labels,” tech. rep., Department of Computer Science and Engingéfastning-
ton University in Saint Louis, 2004.

[61] SiberCore Technologies Inc., “SiberCAM Ultra-18M SCT1842.” Product Brief2200
[62] Micron Technology Inc., “Harmony TCAM 1Mb and 2Mb.” Datasheet, Janu@g32

[63] Micron Technology Inc., “36Mb DDR SIO SRAM 2-Word Burst.” Datasheet, Decemb
2002.

[64] D. Decasper, G. Parulkar, Z. Dittia, and B. Plattner, “Router Plugins: A Softiuatgtecture
for Next Generation Routers,” iRroceedings of ACM SigcomiBeptember 1998.

[65] J. van Lunteren, “Searching very large routing tables in wide embedded m&imoPro-
ceedings of IEEE Globecgmol. 3, pp. 1615-1619, November 2001.

[66] V. Srinivasan, S. Suri, and G. Varghese, “Packet classification using tuple Spa@h,” in
SIGCOMM 99 pp. 135-146, 1999.

[67] V. Srinivasan, “A Packet Classification and Filter Management System.” MicroseédReh,
2001.

[68] P. Warkhede, S. Suri, and G. Varghese, “Fast Packet Classification for TnenBional
Conflict-Free Filters,” iIHEEE Infocom 2001.

[69] A. Hari, S. Suri, and G. Parulkar, “Detecting and Resolving Packet Filter Ctsjflin Pro-
ceedings of IEEE Infocon2000.

[70] J.L.Hennessyand D. A. Patters@ugmputer Architecture A Quantitative Approadhorgan
Kaufmann Publishers, Inc., 2 ed., 1996.

[71] F. Chang, K. Li, and W. chang Feng, “Approximate Packet ClassificatiahiGg,” Tech.
Rep. CSE-03-002, OGI School of Science and Engineering at OHSU, 2003.

[72] M. M. I. Chvets, “Multi-zone Caches for Accelerating IP Routing Table LookupsPrio-
ceedings of High-Performance Switching and Royt2@p2.

195
[73] K. Li, F. Chang, D. Berger, and W. chang Fang, “Architectures fazkBaClassification
Caching,” inProceedings of IEEE ICON2003.

[74] IBM Blue Logic, “Embedded SRAM Selection Guide,” November 2002.

[75] Micron Technology Inc., “256Mb Double Data Rate (DDR) SDRAM.” Datash@etober
2002.

[76] P. Crowley, M. Franklin, H. Hadimioglu, and P. Onufryitetwork Processor Design: Issues
and Practicesvol. 1. Morgan Kaufmann, 2002.

[77] M. E. Kounavis, A. Kumar, H. Vin, R. Yavatkar, and A. T. Campbellif€tions in Packet
Classification for Network Processors,” 8econd Workshop on Network Processors (NP2)
February 2003.

[78] N. Shah, “Understanding network processors,” Tech. Rep. Version 1.0, EEG®rsity of
California, Berkeley, September 2001.

[79] Cisco, “CiscoWorks VPN/Security Management Solution,” tech. rep., Cisco Systems,
2004.

[80] Lucent, “Lucent Security Management Server: Security, VPN, and QoS Marag&uolu-
tion,” tech. rep., Lucent Technologies Inc., 2004.

[81] J. Postel, “Transmission Control Protocol.” RFC 793, September 1981.
[82] J. Postel, “User Datagram Protocol.” RFC 768, August 1980.
[83] J. Postel, “Internet Control Message Protocol.” RFC 792, September 1981.

[84] D. Farinacci, T. Li, S. Hanks, D. Meyer, and P. Traina, “General Routingagsulation.”
RFC 2784, March 2000.

[85] J. Moy, “OSPF Version 2.” RFC 2784, July 1997.

[86] Cisco, “Enhanced Interior Gateway Routing Protocol (EIGRP).” white papeB.20isco
Systems Inc.

[87] S. Kentand R. Atkinson, “IP Encapsulating Security Payload (ESP).” RFC 240&n\msr
1998.

[88] S. Kentand R. Atkinson, “IP Authentication Header.” RFC 2402, Noverbes.
[89] C. Perkins, “IP Encapsulation within IP.” RFC 2003, October 1996.

[90] C. Bormann, et. al., “RObust Header Compression (ROHC): Framework angbrfofiles:
RTP, UDP, ESP, and uncompressed.” RFC 3095, July 2001. IETF Network Working Grou

196
[91] “IPv6 Operational Report.” http://net-stats.ipv6.tilab.com/bgp/-
bgp-table-snapshot.txt/ , February 2003.

[92] R. Hinden and S. Deering, “Internet Version 6 (IPv6) Addressing Architecture.” B3i3,
April 2003.

[93] R. Hinden, S. Deering, and E. Nordmark, “IPv6 Global Unicast Address Rdrinternet
Draft, February 2003.

[94] IANA, “IPv6 Address Allocation and Assignment Policy.”
http://www.iana.org/ipaddress/ipv6-allocation-policy-26jun02, June 2002.

[95] V. Paxson, G. Almes, J. Mahdavi, and M. Mathis, “Framework for ip performandgasé
RFC 2330, May 1998.

[96] S. Bradner, “Benchmarking Terminology for Network Interconnect DevidRBC 1242,
July 1991.

[97] S. Bradner and J. McQuaid, “Benchmarking Methodology for Network InterecnDe-
vices.” RFC 2544, March 1999.

[98] G. Trotter, “Terminology for Forwarding Information Base (FIB) based Router Perfucara
RFC 3222, December 2001.

[99] G. Trotter, “Methodology for Forwarding Information Base (FIB) based Router Rerfor
mance.” Internet Draft, January 2002.

[100] D. Newman, “Benchmarking Terminology for Firewall Performance.” RF@726August
1999.

[101] B. Hickman, D. Newman, S. Tadjudin, and T. Martin, “Benchmarking Mdtiogy for Fire-
wall Performance.” RFC 3511, April 2003.

[102] P. Chandra, F. Hady, and S. Y. Lim, “Framework for Benchmarking NetWwwoocessors.”
Network Processing Forum, 2002.

[103] F. Baboescu and G. Varghese, “Fast and Scalable Conflict DetectiBadket Classifiers,”
in Proceedings of IEEE International Conference on Network Protocols (ICRIR)2.

[104] V. Sahasranaman and M. Buddhikot, “Comparative Evaluation of Softwarernmepntations
of Layer 4 Packet Classification Schemes,Pioceedings of IEEE International Conference
on Network Protocols2001.

[105] Wikipedia, “Pareto distribution.” Wikipedia, The Free Encyclopedia, April 2004
http://en.wikipedia.org/wiki/Paretdistribution.

197
[106] G. Narlikar, A. Basu, and F. Zane, “CoolCAMs: Power-Efficient TCAMs for Fanaing
Engines,” inProc. of Infocom2003.

[107] Xilinx, “Virtex-1l Platform FPGAs: Introduction and Overview.” DS031-1 (v2.0), Asgu
2003.

[108] D. Shah and P. Gupta, “Fast incremental updates on ternary-cams fiogrtmokups and
packet classification,” ifdot Interconnects (Hotl-8)p. 6.1, Aug. 2000.

[109] “Open Network Laboratory: A Resource for Networking Researchers.”
http://www.arl.wustl.edu/arl/projects/onl/. Applied Research Laboratory, Washington
University in Saint Louis.

Date of Birth

Place of Birth

Degrees

Experience

Professional
Societies

Professional
Activities

Scholarships
& Awards

198
Vita
David Edward Taylor

December 11, 1975
Saint Louis, Missouri, United States of America

Washington University in Saint Louis

Master of Science in Electrical Engineering, 2002

Master of Science in Computer Engineering, 2002

Bachelor of Science in Electrical Engineering cum laude, 1998
Bachelor of Science in Computer Engineering cum laude, 1998

IBM Zurich Research Laboratory, Network Processor Hardware Group,
Summer 2002

Applied Research Laboratory, Washington University in Saint Louis,
1999 - 2004

Mentor Graphics Higher Education Project, Summer 1998

Institute of Electrical and Electronics Engineers (IEEE)
IEEE Communications Society

IEEE Computer Society

Association for Computing Machines (ACM)

Reviewer for IEEE/ACM Transactions on Networking

Reviewer for IEEE Journal on Selected Areas in Communications
Reviewer for Computer Networks (Elsevier)

Reviewer for IEEE Micro

Reviewer for IEEE Communications Letters

Reviewer for IEEE Infocom 2003, 2004

Reviewer for IEEE Globecom 2003, 2004

Graduate Student Representative to the Board of Trustees (2003 — 2004)
Research Assistantship (January 1999 — present)

Dean’s Honorary Scholarship (1994 — 1998)

Missouri Higher Education Academic Scholarship (1994 — 1998)
Graduate of the LeaderShape Institute (Summer 1997)

Eta Kappa Nu (International Electrical Engineering Honor Fraternity)
Eagle Scout, Boy Scouts of America

Journal
Publications

Conference
Publications

199

David E. Taylor, Jonathan S. Turner, John W. Lockwood, Todd Sproull,
David B. Parlour,Scalable IP Lookup for Internet RouterlEEE
Journal on Selected Areas in Communications, May 2003, Volume
21, Number 4.

David E. Taylor, Jonathan S. Turner, John W. Lockwood, Edson L. Horta
Dynamic Hardware Plugins (DHP): Exploiting Reconfigurable Hard-
ware for High-Performance Programmable Route@omputer Net-
works, February 2002, Volume 38, Issue 3, pp. 295-310, Elsevier
Science.

William D. Richard, David E. Taylor, David M. ZaA Capstone Com-
puter Engineering Design CourskEEE Transactions on Education,
November 1999, Volume 42, Number 4, pp. 288-294.

David E. Taylor, Jonathan S. Turn&calable Packet Classification us-
ing Distributed Crossproducting of Field LabelBCM Sigcomm’04
Student Poster Session, 8/04.

David Taylor, Alex Chandra, Yuhua Chen, Sarang Dharmapurikar, John
Lockwood, Wenjing Tang, Jonathan Turn&ystem-on-Chip Packet
Processor for an Experimental Network Services PlatfdERE Globe-
com’03, December 1-5, 2003, San Francisco, CA.

Ed Spitznagel, David Taylor, Jonathan Turéacket Classification Us-
ing Extended TCAMsL1th IEEE International Conference on Net-
work Protocols (ICNP), November 4-7, 2003, Atlanta, GA.

Sarang Dharmapurikar, Praveen Krishnamurthy, David E. Taytorgest
Prefix Matching using Bloom FilteyfsACM SIGCOMM'03, August
25-29, 2003, Karlsruhe, Germany.

David E. Taylor, John W. Lockwood, Todd Sproull, Jonathan S. Turner,
David B. Parlour,Scalable IP Lookup for Programmable Routers
IEEE INFOCOM 2002: 21st Annual Joint Conference of the IEEE
Computer and Communications Societies, New York, NY, 6/02.

Edson L. Horta, John W. Lockwood, David E. Taylor, David Parlour,
Dynamic Hardware Plugins in an FPGA with Partial Run-time Re-
configuration Design Automation Conference (DAC), New Orleans,
LA, 6/02.

200

Sumi Choi, John Dehart, Ralph Keller, Fred Kuhns, John Lockwood,
Prashanth Pappu, Jyoti Parwatikar, W. David Richard, Ed Spitznagel,
David Taylor, Jonathan Turner, and Ken WoBgsign of a High Per-
formance Dynamically Extensible Routnoceedings of the DARPA
Active Networks Conference and Exposition, 5/02.

Todd S. Sproull, John W. Lockwood, David E. TaylGgntrol and Con-
figuration Software for a Reconfigurable Networking Hardware Plat-
form, FCCM’'02: 2002 IEEE Symposium on Field-Programmable
Custom Computing Machines, Napa, CA, 4/02.

David E. Taylor, Jonathan S. Turner, John W. Lockwdaghamic Hard-
ware Plugins (DHP): Exploiting Reconfigurable Hardware for High-
Performance Programmable RoutetfEEE OPENARCH 2001: 4th
IEEE Conference on Open Architectures and Network Programming,
Anchorage, AK, 4/01.

John W. Lockwood, Naji Naufel, David E. Taylor, Jon S. TurriRepro-
grammable Network Packet Processing on the Field Programmable
Port Extender (FPX)FPGA 2001: Ninth ACM International Sympo-
sium on Field-Programmable Gate Arrays, Monterey, CA, 2/01.

William D. Richard, David E. TaylorDevelopment of an FPGA-Based
South Bridge using Spectrum and Model3itentor Graphics User's
Group International Conference, Portland, OR, 10/00.

John W. Lockwood, Jon S. Turner, David E. Taylkeld Programmable
Port Extender (FPX) for Distributed Routing and QueugifPGA
2000: Eighth ACM International Symposium on Field-Programmable
Gate Arrays, Monterey, CA, 2/00.

David E. Taylor, David M. ZarPeveloping an FPGA Workflow to Ease
Novice and Experienced DesigngMentor Graphics User’'s Group
International Conference, Portland, OR, 10/8@arded Best Paper
for University/Research Track.

Technical
Reports

201

David E. Taylor, Jonathan S. Turn&calable Packet Classification us-
ing Distributed Crossproducting of Field LabeM/UCSE-2004-38,
6/04.

David E. Taylor, Jonathan S. Turn&lassBench: A Packet Classifica-
tion BenchmarkWUCSE-2004-28, 5/04.

David E. Taylor, Survey & Taxonomy of Packet Classification Tech-
nigues WUCSE-2004-24, 5/04.

David E. Taylor, Jonathan S. Turndipwards a Packet Classification
BenchmarkWUCSE-2003-42, 5/03.

David Taylor, Alex Chandra, Yuhua Chen, Sarang Dharmapurikar, John
Lockwood, Wenijing Tang, Jonathan Turn8ystem-on-Chip Packet
Processor for an Experimental Network Services PlatfoMyJCSE-
2003-22, 3/03.

David E. Taylor, John W. Lockwood, Todd Sproull, Jonathan S. Turner,
David B. Parlour,Scalable IP Lookup for Programmable Routers
WUCS-01-33, 10/01.

John D. DeHart, William D. Richard, Edward W. Spitznagel, David E.
Taylor, The Smart Port Card: An Embedded Unix Processor Architec-
ture for Network Management and Active NetworkMgJCS-01-18,
8/01.

David E. Taylor, John W. Lockwood, Naji NauféRAD Module Infras-
tructure of the Field Programmable Port Extender (FPX) Version 2.0
WUCS-TM-01-16, 7/01.

David E. Taylor, John W. Lockwood, Sarang Dharmapurikzneral-
ized RAD Module Interface Specification of the Field Programmable
Port Extender (FPX) Version 2.0VUCS-TM-01-15, 7/01.

August 2004

	Models, Algorithms, and Architectures for Scalable Packet Classification
	Recommended Citation
	Models, Algorithms, and Architectures for Scalable Packet Classification

	tmp.1470340445.pdf.XHyJB

	Abstract: Abstract: The growth and diversification of the Internet imposes increasing demands on the performance and functionality of network infrastructure. Routers, the devices responsible for the switching and directing of traffic in the Internet, are being called upon to not only handle increased volumes of traffic at higher speeds, but also impose tighter security policies and provide support for a richer set of network services. This dissertation addresses the searching tasks performed by Internet routers in order to forward packets and apply network services to packets belonging to defined

traffic flows. As these searching tasks must be performed for each packet traversing the router, the speed and scalability of the solutions to the route lookup and packet classification problems largely determine the realizable performance of the router, and hence the Internet as a whole. Despite the energetic attention of the academic and corporate research communities, there remains a need for search engines that scale to support faster communication links, larger route tables and filter sets, and increasingly complex filters. The major contributions of this work include the design and analysis of a scalable hardware implementation of a Longest Prefix Matching (LPM) search engine for route lookup, a survey and taxonomy of packet classification techniques, a thorough analysis of

packet classification filter sets, the design and analysis of a suite of performance evaluation tools for packet classification algorithms and devices, and a new packet classification algorithm that scales to support high-speed links and large filter sets classifying on additional packet fields.
	Footer2: Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160
	Footer1: Department of Computer Science & Engineering - Washington University in St. Louis
	Notes:
	Email:
	Date: July 28, 2004
	Author: Authors: Taylor, David E.
	Title: Models, Algorithms, and Architectures for Scalable Packet Classification, Doctoral Dissertation, August 2004
	ReportNumber: 2004-40
	DepartmentName: Department of Computer Science & Engineering

