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FOREWORD

The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of the International Telecom-
munication Union. The ITU-T is responsible for studying technical, operating and tariff questions and issuing
Recommendations on them with a view to standardizing telecommunications on a worldwide basis.

The World Telecommunication Standardization Conference (WTSC), which meets every four years, established the
topics for study by the ITU-T Study Groups which, in their turn, produce Recommendations on these topics.

ITU-T Recommendation Z.100 – Annex F.1 was revised by the ITU-T Study Group X (1988-1993) and was approved
by the WTSC (Helsinki, March 1-12, 1993).

___________________

NOTES

1 As a consequence of a reform process within the International Telecommunication Union (ITU), the CCITT
ceased to exist as of 28 February 1993. In its place, the ITU Telecommunication Standardization Sector (ITU-T) was
created as of 1 March 1993. Similarly, in this reform process, the CCIR and the IFRB have been replaced by the
Radiocommunication Sector.

In order not to delay publication of this Recommendation, no change has been made in the text to references containing
the acronyms “CCITT, CCIR or IFRB” or their associated entities such as Plenary Assembly, Secretariat, etc. Future
editions of this Recommendation will contain the proper terminology related to the new ITU structure.

2 In this Recommendation, the expression “Administration” is used for conciseness to indicate both a
telecommunication administration and a recognized operating agency.

  ITU  1994

All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means, electronic or
mechanical, including photocopying and microfilm, without permission in writing from the ITU.
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SPECIFICATION  AND  DESCRIPTION  LANGUAGE  (SDL)

(Helsinki, 1993)

1 Preface

This Formal definition of SDL provides a language definition which supplements the definition given in the
recommendation text. This annex is for use by those who require a very precise and detailed definition of SDL such as
maintainers of the SDL language and designers of SDL tools.

The formal definition consists of three volumes:

Annex F.1 (This volume)

Which states the motivation, describes the overall structure, provides guidelines for how to use
the Formal Definition and describes the notation used.

Annex F.2 Which defines the static properties of SDL

Annex F.3 Which defines the dynamic properties of SDL

2 Motivation

Natural languages in general are ambiguous and incomplete, that is, more than one interpretation can be given to some
of the sentences in the language, no matter whether the reader is a computer or a human being.

A definition or specification is formal if its meaning (semantics) is unambiguous and complete. As natural languages
cannot be used for that purpose, special languages, known as specification languages (like SDL and LOTOS) have been
developed. An implementation language like CHILL or PASCAL could also be used as a specification language (for
instance a compiler specifies formally the semantics of another language), but often it is essential to separate the
implementation details, irrelevant for the understanding, from the semantics of a specification.

Formal languages specially suitable for defining languages are known as meta languages. For example, The Backus
Naur form (BNF) is a meta language specially suitable for defining formally the syntax of programming languages.

In spite of the ambiguity of natural languages, natural languages are usually more readable for human beings than formal
languages and can more easily express rationale giving a framework in which the formal specification can be
understood. For these reasons both a definition in natural language and a definition in a formal specification language
often are given.

This annex constitutes a formal definition of SDL. If any properties of an SDL concept defined in this document,
contradicts the properties defined in Z.100 and the concept is consistently defined in Z.100, then the definition in Z.100
takes precedence and this formal definition requires correction.

2.1 The Meta Language

The meta language used in this Formal Definition is Meta-IV [1]. The reasons for choosing this language are the
following:

• It builds upon a very strong and extensively researched mathematical foundation.

• It has very convenient and powerful facilities for object manipulations.

• It has a “programming like” notation which means that it is oriented towards programmers and
implementors.

• It is in the process of being standardised within the European Community.
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• It is well reported in books, proceedings and scientific journals and it has been used in the CCITT manual
The Formal Definition of CHILL [2] which also contains a summary of the Meta-IV notation.

• Meta-IV tools are available which allow for syntax checking, visibility analysis, document generation,
cross referencing, etc.

In section 5, an informal introduction to the parts of Meta-IV used in the Formal Definition can be found. A complete
definition of Meta-IV can be found in [1].

3 Modelling Technique

When considering what is meant by “semantics of SDL” it is convenient (conceptually) to decompose the language
definition into several parts:

• The definition of the syntax rules.

• The definition of the static semantic rules (so-called well-formedness conditions) such as which names it
is allowed to use at a given place, which kind of values it is allowed to assign to variables, etc.

• The definition of the semantics of the constructs in the language when they are interpreted (the dynamic
semantics).

There is no need for including the syntax rules in the Formal Definition as the BNF rules and Syntax diagrams found
in Z.100 already serve as formal definitions of the syntax rules, which means that the input to the Formal Definition is a
syntactically correct SDL specification. The input is represented by an Abstract Syntax. This abstract syntax is based on
the SDL textual concrete syntax parse-tree (BNF rules) with irrelevant details such as separators and lexical rules
removed. Therefore, this Abstract syntax is not the Abstract Syntax of Z.100 appearing in the Recommendations which
is an abstraction of the SDL model concept.

For example, the Abstract Syntax production rule:

1 Transition :: Actstmt* [ Termstmt]

expresses that a Transition consists of a possible empty list of Action statements and an optional Terminator statement
(the italicized letters also occur in the production rule). The complete set of production rules (so-called Domain
Definitions) defining the SDL-syntax on an abstract form is called AS0. In some respect it defines the language syntax
on a more basic level than the syntax rules found in Z.100 since the concrete textual syntax in Z.100 contains a lot of
semantic information (it is context sensitive) as opposed to AS0. It should be noted that AS0 is an abstraction of the
concrete textual syntax. The concrete graphical syntax has not been used for reasons of economy in time and space
rather than any difficulty in the task.

As an example, a signal list in Z.100 is defined to be:

<signal list> ::= <signal list item> {, <signal list item>}

<signal list item> ::= <signal identifier>  (<signal list identifier>)  <timer identifier>

whereas the corresponding definitions in AS0 are:

2 Signallist :: Signallistitem+

3 Signallistitem = Id  Signallistid

A Signallist consists of a list of Signallistitems. A Signallistitem is either an identifier or a signal list identifier. As
opposed to the context sensitive BNF production <signal item> no distinction is made between a signal identifier and a
timer identifier in AS0 because syntactically they are both identifiers as opposed to signal lists which are distinguished
by the use of parenthesis.

The starting point for the FD is syntactically correct SDL-specifications. The tasks of the Formal Definition are to:

• Define the well-formedness conditions for SDL-specifications. This task, referred to as the Static
Semantics, constitutes Annex F.2.

• Define the dynamic properties for SDL-specifications. This task, referred to as the Dynamic Semantics,
constitutes Annex F.3.
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The steps are shown in Figure 1. The result from the Static Semantics (i.e. AS1) is explained below.

The step of translating from the concrete textual syntax to AS0 is not formally defined, but is derived from the
correspondence between names in the two syntaxes as previously illustrated for Signallist.

T1007460-93/d01

Abstract syntax
representing 

Concrete syntax
(AS  )

Well-formed
Abstract syntax as
defined by Z. 100

(AS  )

Static
semantics

Dynamic
semantics

Behaviour

FIGURE  1/Z.100

Objective of Static Semantics and Dynamic Semantics

0 1

FIGURE 1...[D01] = 3 CM

3.1 Static Semantics

In Z.100, the dynamic semantics of the various constructs are defined in terms of an Abstract Syntax. Common
subsections, Semantics, Concrete textual grammar, Concrete graphical grammar and Model define the concrete syntax
rules, state the appropriate well-formedness conditions and relate the concrete syntax rules to other concrete syntax rules
(in the Model) and to the abstract grammar in Z.100. The abstract grammar is in Z.100 defined using Meta-IV (in the
common subsections Abstract grammar). The same abstract syntax is used in the Formal Definition (where it is referred
to as AS1). AS1 is listed in Annex F.3 and it is identical to the abstract syntax of the abstract grammar in Z.100.

In addition to defining the well-formedness conditions, the Static Semantics must therefore define how the AS0
representation of a specification is transformed into the AS1 representation, that is, given an AS0 representation, an AS1
representation is returned by the Static Semantics if the AS0 representation was well-formed. The Static Semantics can
be regarded as an “abstract compiler” where the AS0 representation is the source language and the AS1 representation is
the object language.

In addition to AS0 and AS1, the Static Semantics uses some internal utility domains, known as the Semantic Domains,
which hold the information required at any place about a given entity. For example, when a process definition is
transformed, information about its formal parameters is kept in the Semantic Domains and the information is retrieved
during transformation of the Create Request action. The AS0 domains could have been used for that purpose, as the
Semantic Domains anyway are deduced from AS0, but a tree representation is not useful when information of a certain
entity (say a process definition) occurring somewhere in the tree is required. Therefore Semantic Domains are usually
mappings modelling tables.

For instance, the Semantic Domains include a mapping (further explained in section 5.4.7) of identifiers into some
descriptor containing information about the identifiers:

4 Descriptordict = Qual m → Descr

where Qual is the identifier representation used internally in the Formal Definition and Descr is any descriptor. The
descriptor may for instance be a process descriptor:

5 Descr = ProcessD …

6 ProcessD :: ParameterD* Validinputset Localinputset

expressing that a Process Descriptor contains a list of Parameter Descriptors, information about the Valid input signal
set and information about the Local input signal set. The definitions of these three (sub)descriptors are not shown here.

The transformation itself is performed by a set of Meta-IV functions using the three Domains AS0, AS1 and the
Semantic Domains.
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3.2 The Dynamic Semantics

The task of the Dynamic Semantics is to define the behaviour of an SDL specification on AS1 form.

The Dynamic Semantics is divided into three major sections:

• The Model for the underlying system (the abstract SDL-machine).

• The Interpretation of the process graphs.

• Transformation of AS1 into a more appropriate representation; that is, a mapping is constructed (a
Semantic Domain) which contains the information required during the interpretation such as information
about the sorts of variables, possible communication paths between processes, equivalence classes for
types, etc. The mapping is named Entity-dict (or more correctly, the domain of the mapping is named
Entity-dict).

Concurrency in SDL is in the Dynamic Semantics modelled by using Meta-processes; that is, concurrently executing
Meta-processes in Meta-IV model concurrently executing processes in SDL.

Eight different Meta-process types are used:

• system

To handle the signal routing between SDL process instance sets and the generation of unique PId values.

• path

To handle the non-deterministic delay of (delaying) channels.

• view

To keep track of all revealed variables.

• timer

To keep track of the current time and handle time-outs.

• process-set-admin

To handle all ingoing signals and create requests and to manage the other Meta-processes needed to
interpret an SDL process instance set. For each SDL process instance set there exists exactly one instance
of process-set-admin.

• input-port

Which handles the queueing of signals in an SDL process instance. For each SDL process instance there
exists exactly one instance of input-port.

• sdl-process

To interpret the behaviour of the body of an SDL process instance. For each SDL process instance there
exists exactly one instance of sdl-process.

If the SDL process is decomposed into services sdl-process manages the Meta-processes needed to
interpret the services.

• sdl-service

To interpret the behaviour of (the body of) an SDL service. For each SDL service instance there exists
exactly one instance of sdl-service.

There is, in most cases, no shared data between Meta-processes – they interact by transmitting values conveyed by
instances (objects) of Communication Domains (correspond to the SDL concept signals). The only exception is
sdl-service instances which may access and modify Meta-IV variables owned by their managing sdl-process instance.

Communication Domains are defined in the same way as other domains; for example, objects of the Communication
Domain Input-Signal are directed to an sdl-process instance from its attached input-port instance. The Communication
Domain is defined like this:

7 Input-Signal :: Signal-Identifier1 Value-List Sender-Value

Instances of Input-Signal convey the identifier of the SDL signal which is sent, the list of values conveyed by the SDL
signal and the PId value of the sender.
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Figures 2 and 3 show the complete “Meta-process interaction scheme”. The Meta-processes for interpreting an
SDL process instance set is shown as sdl-process-set in Figure 2 and detailed in Figure 3. The communication
mechanism is synchronous and the notation is known as CSP (see [3] and [4]) (Communicating Sequential Processes).
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3.3 Example

Figure 4 shows the communication between meta-processes in the formal definition for the following (partial)
SDL-process, when a signal (“b”) arrives from the environment, and the process responds by sending a signal (“a”) back
to the environment:

…

state S;
input b;
output a;

…

The communication is informally illustrated by means of a message sequence chart. Path(1) and Path(2) denote two
instances of the path-processor, corresponding to the path from the environment to the SDL process instance set
[Path(l)] and vice versa [Path(2)].
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3.4 Physical Structure of The Formal Definition

The Static Semantics (Annex F.2) is divided into three main parts:

1. The Domain definitions for AS0.

2. The Domain definitions for the Semantic Domains.

3. The Meta-IV functions checking well-formedness conditions and defining how AS0 is transformed
into AS1.

Annex F.2 also includes cross-indices on Meta-IV function names and domain names (both defining occurrence and
applied occurrences) and a cross index on the well-formedness conditions applied.

The Dynamic Semantics (Annex F.3) is divided into seven major sections:

1. A summary of the Abstract Syntax (AS1) Domains.

2. Domain definitions for the Communication Domains.

3. Domain definitions for the Semantic Domains (Entity-dict).

4. The Meta-process definitions and attached functions for the model of the underlying system.

5. The Meta-process definitions and attached functions for the interpretation of an SDL process and
SDL service.

6. The creation of the internal domain Entity-dict. Entity-dict is used by the SDL processes and
SDL services and it is therefore created before any SDL processes and SDL services are interpreted.

7. Some simple general-purpose auxiliary functions on Abstract Syntax Domains.

Annex F.3, like Annex F.2, also contains a number of indices covering domain names, function names, Meta-process
names, error conditions, etc.

The volume of material (especially in Annex F.2) might seem frightening at a first glance. However, more than half of
the space contains annotations for the Domains, function and process definitions.

The layout for a function and process definition follows a scheme:

1. First, the function or process definition is specified by:

(a) a heading defining the process or function name and the names of its formal parameters;

(b) its body (algorithm);

(c) a type clause specifying the type (domain) of the formal parameters and the type of the result (if
any).

2. Then follows the itemized (plain English) annotations attached to the process or function definition:

Objective Explains the purpose of the function or process.

Parameters Explains the purpose of every formal parameter to the function or process.

Result Explains the object returned (if any).

Algorithm Explains, on a line by line base, the algorithm used in the function or process.

Example

The outermost function definition-of-SDL from Annex F.2 which ties together the Static Semantics (transform-system)
and the Dynamic Semantics (by starting the Meta-process system) is as follows:

definition-of-SDL(extparms, systemtext, predeftext) 

1 (let (systemdef, predef) = construct-AS0 (systemtext, predeftext) in
2 let (as1, auxinf) = transform-system (systemdef, predefsorts, extparms) in
3 if  as1 = nil then
4    undefined
5   else
6    (let subsetcut = select-consistent-subset (as1, extparms) in
7     start system (as1, subsetcut, auxinf)))

type: External-Information Sys0 Datadef0+ ⇒
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Objective Define the properties of SDL

Parameters

extparms Some External-Information (see Annex F.2 Section 2.3).

systemtext The sequence of lexical elements (i.e. characters) representing the SDL specification.

predeftext The sequence of lexical elements (i.e. characters) representing the predefined data.

Algorithm

Line 1 Transform the text for the SDL specification (systemtext) and the text for the predefined data
(predeftext) into their AS0 representations.

Line 2 Transform the system into the abstract syntax form (AS1 form).

Line 3 If static errors are found (i.e. if no AS1 representation could be derived) then the behaviour is
not defined.

Line 4 If no static errors are found then.

Line 6 Select the set of Block-identifier1s denoting the consistent subset.

Line 7 Create a system instance, i.e. create a Meta-IV process which behaves like the underlying
system.

4 How to Use the Formal Definition

4.1 The SDL Users

The Formal Definition is not intended as a user’s reference manual on SDL. Newcomers on SDL may find the text
books more appropriate for achieving an overview of concepts (and their rationale) in the language, while the
Z.100 Recommendation itself serves as a reference manual on SDL, but there might be some cases where Z.100 is
inadequate. For instance:

• if some properties are missing (e.g. some expected static condition), if some stated properties contradict
other properties; or

• if the exact meaning of some stated properties is difficult to understand; or

• if some properties (due to the lack of cross index in Z.100) are difficult to find; or

• if the user wants to achieve a deeper understanding of more complex matters like the abstract
SDL machine, when and how to select a consistent subset, resolution by context, the inheritance
mechanism, etc.

In such cases the Formal Definition might be a useful supporting document. The user must of course first gain insight in
the structure of the Formal Definition, how the functions are organized and what the Domains are used for. A certain
amount of knowledge about the Meta-IV notation is also required, but as the functions are extensively annotated, it may
be possible to read Meta-IV by reading the functions in conjunction with the annotations after having read the
introduction on Meta-IV (section 5 below). When looking up in the Formal Definition, the users may take advantage of
using the table of contents and the cross indices.

4.2 The Implementors

As mentioned earlier, the Meta-IV approach allows implementors to derive an implementation systematically (i.e. static
analyzer, simulator, etc.) from the Meta-IV specification. For SDL, it is possible to derive a static analyzer from
Annex F.2 and a simulator from Annex F.3. It is advised to use the AS1 representation (generated by the static analyzer)
as a basis for simulation. The reasons are that context information for identifiers is missing in AS0 (they are normally not
qualified in AS0) and that the dynamic semantics of a specification on AS0 form may be difficult to derive due to the
large number of shorthands in SDL (especially for concepts like data types).

It should be noted that the derivation into an implementation is systematical, but it is not mechanical.
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The following points must be considered:

• Appropriate datatypes must be found for representing the ideal data types (domains) in Meta-IV such as
mappings, lists and sets used in AS0, AS1 and the Semantic Domains.

• The initial algebra approach implies that the Formal Definition manipulates infinite objects. Also
AS1 contains infinitely objects. It is therefore necessary to modify AS1 slightly and to impose restrictions
on the use of data types or to use some abstraction technique in which these objects can be encoded.

5 Introduction to Meta-IV

This section contains an informal introduction to Meta-IV and to how Meta-IV has been used in the Formal Definition,
i.e. Meta-IV is explained in terms of the Formal Definition (abbreviated as FD) which means that only those parts of
Meta-IV which have been used in the FD are explained.

5.1 General Structure

The FD consists of:

• A set of function and process definitions defining the semantics of SDL. Processes (in Meta-IV and in the
FD called processors) are used for modelling concurrency and are therefore only used in the Dynamic
Semantics. Syntactically, processor definitions look like function definitions (except for the keyword
processor following the processor name); therefore, the following description of the function concept
also applies for processors.

• A set of domain definitions which define the type of the objects manipulated with by the functions. Terms
denoting certain groups of domain definitions are introduced in order to classify them logically. We have
the AS0 domains denoting the representation of the concrete syntax, the AS1 domains denoting the abstract
syntax of SDL and the sets of domains Dict and Entity-dict denoting the “internal” utility domains
(semantic domains) of the Static- and Dynamic Semantics respectively. In this section, we will often use
“value” as a synonym for object and “type” as a synonym for domain.

Definitions may be specified in any order and names introduced in definitions may be used before they textually are
defined.

5.2 Function Definitions

A function definition consists of three parts:

1. The heading starts with the function name and is followed by one or two formal parameter lists. Each
formal parameter list is enclosed in parenthesis. There is no formal significance in dividing the parameters
between two lists. Often some parameters are put into a separate (second) parameter list if they are of
secondary importance for the evaluation. For instance, in the case of the semantic domains which often
are used by the functions and supplied in a separate parameter list.

2. The body of the function which can either be an expression or a sequence of statements. A function does
not have to deliver any result (see below).

3. The type clause specifying the type of the formal parameters and the type of the result. First, the type of
the first parameter list is specified, then the type of the second parameter list (if any) separated by the first
parameter list by an arrow (→ or ⇒), then another arrow and then the result.

Example

f (a, b) (d) 

1 /*  expression * /

type: DomX DomY → DomZ → DomW
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In this example we have:

f is the name of the function.

a, b, d are formal parameters. a and b are contained in the first formal parameter list and d is contained in
the second parameter list. The type of a is DomX, the type of b is DomY and the type of d is DomZ.
The type of the result is DomW. The domains DomX, DomY, DomZ and DomW must be defined in
some domain definitions.

If the formal parameters or the result are not used in accordance with the type clause, there is an error in the Meta-IV
specification. In the example above, informal Meta-IV text (the text enclosed in /* */) is used to denote some Meta-IV
expression which for reasons of economy in space has been left out. Informal Meta-IV text is similar to informal text
in SDL and it is extensively used in the examples of this section.

Normally, a distinction is made between applicative and imperative functions. Applicative functions are functions
which do not refer to parts of the global state (variables), that is, the result of such functions are only depending on the
value of the applied actual parameters. The body of an applicative function is restricted to be an expression as statements
impose some change of state. Applicative functions must always deliver a result. Imperative functions are functions
which refer to or even change the global state (functions with side effects). If a function is imperative, it must be
reflected in the type clause by using ⇒ instead of → when specifying the result.

That is:

f (a, b) (d) 

1 /* expression referring to the global state or sequence of statements */

type: DomX DomY → DomZ ⇒ DomW

In the FD, the Static Semantics and the creation of the internal Domain Entity-dict in the Dynamic Semantics are
applicative.

5.3 Variable Definitions

Global variables are defined at the outermost level in processor definitions. They are visible to all functions used by the
processor defining the variable even though the functions normally are defined outside processor definitions. However, a
function which is shared by two or more processors is not allowed to access variables. When several instances of a given
processor exist, several instances of variables defined by the processor also exist. (There are no shared variables.)

Variable definitions are introduced by specifying the keyword dcl followed by a list of variable names, optionally
followed by an initial expression and ending with the type of the variable.

Example

dcl v1 := 5 type Intg;

dcl v2 type DomD;

Here we have defined two variables v1 and v2, v1 is of type integer and is initialized to 5. v2 is of type DomD. Note that
variables can always be distinguished syntactically from other names since they are not italicized. An alternative syntax
of variable definitions is:

dcl v1 := 5 type Intg;

v2 type DomD;

The value associated to variables is accessed by using the contents operator which is the keyword c.

Example

ƒ ( ) 

1 c v1 + c v2

type: ( ) ⇒ Intg
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5.4 Domains

Domains are usually defined in the beginning of a document. Domain names can be distinguished syntactically from
other names since the first letter is in capital. A domain is defined by specifying the domain name followed by a “::”
symbol (or by a “=” in the case of a synonym name as explained in section 5.4.1) and then followed by a domain
expression reflecting its properties (for an introduction to the domain notation see also 1.5.1 of Z.100).

Example

8 Output-node1 :: Signal-identifier1

[Expression1]*

[Signal-destination1]

Direct-via1

This example is taken from the abstract syntax of SDL (for clarity, all the names of AS1 are suffixed by a “1” in the FD).
It defines a named tree, that is, a record-like datatype where the name of the recordtype is Output-node1 and it’s fields
are of the type Signal-identifier1, [Expression1]*, [Signal-destination1] and Direct-via1.

The most important operator for named trees is the mk- (make) operator which is used for composing and decomposing
tree objects (i.e. record values).

For example, if a name sigid denotes an object of domain Signal-identifier1, a name exprlist denotes an object of domain
[Expression1]*, a name dest denotes an object of type [Signal-destination1] and a name via denotes an object of domain
Direct-via1 then an object of domain Output-node1 is constructed by writing:

mk-Output-node1 (sigid, exprlist, dest, via)

which can be used in Meta-IV expressions. Note that the order in which the arguments are specified in the mk- operator
is significant. This applies for function calls as well.

Similarly, if we have an object, named outputnode, of domain Output-node1 and we want to access the fields, we can
introduce names for the fields by decomposing it (the same names as above are chosen here):

let mk-Output-node1 (sigid, exprlist, dest, via) = outputnode in

/* some expression using the fields * /

By means of the let construct we have introduced names to denote the fields in the object outputnode. Using the let
construct is the general way of introducing names for objects (not only in combination with the mk- operator). The let
construct is explained further in section 5.5.

If some of the fields are not used in the expression we can omit the corresponding names in the decomposition. For
instance, if sigid is not used in the expression, we can write:

let mk-Output-node1 (, exprlist, dest, via) = outputnode in

/* some expression using exprlist and dest */

If we only want to use the Signal-Identifier1 in the expression we can alternatively use the field select operator s-:

let sigid = s-Signal-Identifier1 (outputnode) in

/* some expression using sigid */

The field select operator can only be used if the field can be uniquely determined by mentioning the domain name.

We can choose to decompose (i.e. introduce names for the contained elements) the formal parameters in the function
head instead of in the body if we find it more readable. That is:

int-create-node (mk-Create-request-node1 (prid, exprl))(dict) 

1 /*  body of int-create-node * /

type: Create-request-node1 → Entity-dict ⇒
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is equivalent to

int-create-node (createnode) (dict) 

1 (let mk-Create-request-node1 (prid, exprl) = createnode in
2 /* body of int-create-node */ )

type: Create-request-node1 → Entity-dict ⇒
NOTE – In this example we also have a second parameter list containing the formal parameter dict of the domain

Entity-dict.

5.4.1 Synonyms

Using the field select operator is only possible if the field in the domain definition is represented by a name. If for
instance we want to use the select operator on the second field of objects of the domain Output-nodel, we must define
Output-nodel in a slightly different way:

9 Output-node1 :: Signal-identifier1
Valuelist
[Signal-destination1]
Direct-Via1

10 Valuelist = [Expression1]*

This Output-node1 is exactly the same domain as the Output-node1 previously defined. The only difference is that we
have given the second field a name, i.e. we have defined a synonym or shorthand for the domain expression
[Expression1] * (the “=” symbol is used when defining synonyms). Often there are other reasons for defining synonyms
such as if the same domain expression is used at several places or for the sake of readability. For instance, in the abstract
syntax of SDL, we have Channel-name1, Block-name1, Process-name1, etc. which all are synonyms for the domain
Name1, but which carry information to the reader about the objects represented by the various Name1s being of certain
entity classes. Another typical case is where we have a long list of alternatives. For instance, the abstract syntax for
Expression1 is

11 Expression1 = Ground-expression1 
Active-expression1 

12 Active-expression1 = Variable-access1 
Conditional-expression1 
Operator-application1 
Imperative-operator1 
Error-expression1 

13 Imperative-operator1 = Now-expression1 
Pid-expression1 
View-expression1 
Timer-active-expression1 
Anyvalue-expression1 

14 Pid-expression1 = Self-expression1 
Parent-expression1 
Offspring-expression1 
Sender-expression1 

which better reflects the grouping of the various kinds of expressions than

15 Expression1 = Ground-expression1 
Variable-access1 
Conditional-expression1 
Operator-application1 
Now-expression1 
Self-expression1 
Parent-expression1 
Offspring-expression1 
Sender-expression1 
View-expression1 
Timer-active-expression1 
Anyvalue-expression1 
Error-expression1 
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5.4.2 Unnamed Trees

In some cases, we do not need to name a tree definition. Unnamed trees are extensively used in the FD, but they are
anonymous since they often do not have to be defined explicitly.

Example

The first line in the definition of Entity-dict in the Dynamic Semantics is:

16 Entity-dict = (Qualifier1 TYPE) m → TypeDD

which expresses that the Entity-dict includes a mapping from the two domains Qualifier1 and TYPE into some
descriptor (TypeDD). These two domains constitute an unnamed tree. If a named tree should be used, we would have to
rewrite the definition into:

17 Entity-dict = Pair m → TypeDD
18 Pair :: Qualifier1 TYPE

Example

Reachability in the dynamic semantics is defined as

19 Reachability = Reachability-endp Signal-identifier1-set Path

Here we have defined a synonym for an unnamed tree containing three fields:

1. A field of the domain Reachability-endp.

2. A field which contains a set of signal identifiers.

3. A field of the domain Path.

As shown, parentheses are in the domain definitions both used for defining unnamed trees and for grouping alternatives.

Example

The function make-procedure-formal-parameters in the Dynamic Semantics is defined as:

make-procedure-formal-parameters(parml, level) 

1 /*  The body, which is not shown here */

type: Procedure-formal-parameters1* Qualifier1 → FormparmDD* Entity-dict

This function returns two objects, FormparmDD* and Entity-dict which means that it in fact returns an unnamed tree
consisting of two objects.

The mk- operator cannot be used on unnamed trees. Composition and decomposition of these is obtained by enclosing
the fields in parentheses.

Example

Composition of a Reachability object where a denotes a Reachability-endp, b denotes a signal identifier set and
d denotes a Path:

(a, b, d )

if, for the sake of readability, we want to denote the object by a name (it is easier to deal with a name than with (a, b, d),
especially if (a, b, d) is used several times in an expression) then we can again use the let construct, that is, the
expression:

/*  some expression using “(a, b, d)” * /

is equivalent to

(let reach = (a, b, d) in
/*  some expression using “reach” */)

The let construct is also used for decomposing objects of unnamed trees. For example, a decomposition of a
Reachability object named reach where we for some reason do not use the signal identifier set is:

let (a, ,d) = reach in
/* some expression using a and d */
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When we call a function, it is usual to decompose unnamed trees which are the result of the function call, i.e.:

let (parmddl, fdict) = make-procedure-formal-parameters(…, …) in
/* some expression using the function results parmddl and fdict */

is equivalent to:

let parminf = make-procedure-formal-parameters(…, …) in
let (parmddl, fdict) = parminf in
/* some expression using the function results parmddl and fdict */

5.4.3 Branching Constructs

In some cases, it must be possible to distinguish a number of tree objects from each other. For instance, objects of
the Imperative-operator1 synonym previously defined is either a Now-expression1, a Pid-expression1, a
View-expression1, etc. With an Imperative-operator1 in hand, we must first determine the type of the
Imperative-operator1 before we can evaluate it. For that purpose, we can use the case expression/statement. For
instance, a function which evaluates the imperative SDL expressions could look like:

eval-imperative-expression(expr) 

1 cases expr:
2 (mk-Now-expression1( )
3   → eval-now-expression( ),
4 mk-View-expression1(vid, pidexpr)
5   → eval-view-expression(vid, pidexpr)
6 mk-Timer-active-expression1(tid, actlist)
7   → eval-timer-expression(tid, actlist)
8 mk-Anyvalue-expression1(sortref)
9   → eval-anyvalue-expression(sortref),

10 T → eval-pid-expression(expr))

type: Imperative-operator1 ⇒

Note that we branch on the type of the Imperative-operator,  not on the actual value of the fields in the tree. T denotes
an “otherwise” clause which is used here because the final alternative in Imperative-operator1 (Pid-expression1) is a
synonym representing four other alternatives which we do not want to distinguish here. The evaluation of these
alternatives is deferred to eval-pid-expression.

Another way of doing it is by using the boolean operator is- which returns true if the object given as argument is of a
certain domain, e.g.

eval-imperative-expression(expr) 

1 if is-Now-expression1(expr) then
2 eval-now-expression( )
3 else
4 if is-View-expression1(expr) then
5 eval-view-expression(s-Variable-identifier1(expr),s-Expression1(expr))
6 else
7 if is-Timer-active-expression1(expr) then
8 (let mk-Timer-active-expression1(tid, actlist) = expr in
9 eval-timer-expression(tid, actlist))

10 else
11 if is-Anyvalue-expression1(expr) then
12 (let mk-Anyvalue-expression1(sortref) = expr in
13 eval-anyvalue-expression(sortref))
14 else
15 eval-pid-expression(expr)

type: Imperative-operator1 ⇒

Note that both access to the fields by decomposition (line 8) and access to the fields by means of the field selection
operator (line 5) are illustrated here.
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As in most other programming and specification languages, it is required that the alternatives in the case
expression/statement are “constant” (as they are when we branch on the tree type) which means that if the alternatives
are of a dynamic nature (say variables or formal parameters) the if-then-else construct must be used. However, there is
another notation for the if-then-else construct, the so-called Mc-Carthy construct which is more convenient if there are
many alternatives:

eval-imperative-expression(expr) 

1 (is-Now-expression1(expr)
2   → eval-now-expression( ),
3 is-View-expression1(expr)
4   → (let mk-View-expression1(vid, pidexpr) = expr in
5 eval-view-expression(vid, pidexpr)),
6 is-Timer-expression1(expr)
7   → (let mk-Timer-expression1(tid, actlist) = expr in
8 eval-timer-expression(tid, actlist)),
9 is-Anyvalue-expression1(expr)

10   → (let mk-Anyvalue-expression1(sortref) = expr in
11 eval-anyvalue-expression(sortref)),
12 T → eval-pid-expression(expr))

type: Imperative-operator1 ⇒

Note that some FD function names also start with “is-”. These cases can easily be distinguished from the “is-” operator
since they are not in boldface.

5.4.4 Elementary domains

Meta-IV provides a number of predefined elementary domains. Their notation and the associated operators are described
in the following.

5.4.4.1 Boolean

The Meta-IV name Bool denotes the domain of truth values, i.e. the set {true,false}

Operators for Boolean:

Notation Type Operation

¬ Bool → Bool negate

∧ Bool → Bool and

∨ Bool → Bool or

⊃ Bool → Bool imply

= Bool Bool → Bool equal

≠ Bool Bool → Bool different

Example

In terms of Meta-IV expressions, the properties of the Bool operators  ¬, ∧, ∨ and  ⊃ can be illustrated as follows:

¬a = (if a then false else true)
a ∨ b = (if a then true else b)
a ∧ b = (if a then b else false)
a ⊃ b = (if a then b else true)



16 Recommendation Z.100  –  Annex F.1     (03/93)

5.4.4.2 Integer

Three domain names are predefined for the integer values:

• The name Intg denotes the domain of all integer values, i.e. the set {... −2,−1,0,1,2,...}

• The name N0 denotes the domain of non-negative integer values, i.e. the set {0,1,2,...}

• The name N1 denotes the domain of positive integer values, i.e. the set {1,2,...}

Operators for Integer:

Notation Type Operation

− Intg → Intg negate

− Intg Intg → Intg subtract

+ Intg Intg → Intg add

* Intg Intg → Intg multiply

/ Intg Intg → Intg integer divide

mod N0 N1 → N0 modulus

= Intg Intg → Bool equal

≠ Intg Intg → Bool different

< Intg Intg → Bool less than

≤ Intg Intg → Bool less than or equal

> Intg Intg → Bool greater than

≥ Intg Intg → Bool greater than or
equal

5.4.4.3 Character

The Meta-IV name Char denotes the domain of ASCII character values. For the printable characters, there exist object
representations which are enclosed in quotation marks, e.g. “a”, “Z”, “ ”.

Operators for Character:

Notation Type Operation

= Char Char → Bool equal

≠ Char Char → Bool different

< Char Char → Bool less than

≤ Char Char → Bool less than or equal

> Char Char → Bool greater than

≥ Char Char → Bool greater than or
equal

The relational operators are applied on the associated ASCII numerical values.

For the sake of readability, objects of the domain Char+ may be represented by a sequence of characters enclosed in
quotation marks, e.g. “abc” is the same as (“a”,“b”,“c”) (see section 5.4.6).
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5.4.4.4 Quotation

The Meta-IV name Quot denotes the domain of quotations. They are distinct elementary objects and they are represented
as any bold-face sequence of uppercase letters and digits, e.g. ENVIRONMENT , REVERSE.

Operators for Quotations:

Notation Type Operation

= Quot Quot → Bool equal

≠ Quot Quot → Bool different

As opposed to other domains, objects of Quot may occur in domain definitions when only certain object(s) of Quot are
possible in the given context, for example, in the abstract syntax of Z.100, Originating-block1 is defined to be

1 Originating-block1 = Block-identifier1 | ENVIRONMENT

alternatively, Originating-block1 could have been defined using Quot:

2 Originating-block1 = Block-identifier1 | Quot

however, using ENVIRONMENT in the domain definition is more precise, since this object is the only Quot value
possible in that context.

5.4.4.5 Token

The Meta-IV name Token denotes the domain of tokens. This domain can be considered as consisting of a potentially
infinite set of distinct elementary objects for which no representations are required.

Operators for Tokens:

Notation Type Operation

= Token Token → Bool equal

≠ Token Token → Bool different

Example

Name1 in the abstract syntax of Z.100 is defined to be

1 Name1 :: Token

The only property needed for Name1s during interpretation is equality. A Name1 therefore consists of a Token value (the
actual spelling of names is irrelevant).

5.4.4.6 Ellipsis

The Ellipsis domain (represented by ...) denotes an unspecified construct. It is used in domain definitions or in
expressions:

• whenever the actual domain or expression is of no importance for the semantics; or

• whenever the elaboration of the domain or expression is outside the scope of the specification.
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Example

Informal-text1 in the abstract syntax of Z.100 is defined to be

1 Informal-text1 :: …

Informal-text1 cannot be interpreted using Meta-IV. Informal-text1 therefore contains some further unspecified object.

5.4.5 Set Domains

A set domain is constructed by postfixing the element domain by the keyword -set (the dash is significant). For example:

2 State-node1 :: State-name1

Save-signalset1
Input-node1-set
Spontaneous-transition1-set

3 Save-signalset :: Signal-Identifier1-set

expresses that objects of the domain State-node1 consist of a state name, a save signalset, which contains a set of signal
identifiers, a set of input nodes and a set of spontaneous transitions. Set values can be constructed by using an explicit
set constructor which is an expression list enclosed by braces, i.e.

{1, 3, 5, 1}

denotes an object of the domain Intg-set and it contains the three Intg values 1,3,5. A more usual form is the so-called
implicit set constructor where the set includes all those elements which satisfy a certain condition (predicate). For
example:

{i ∈ Intg  0 ≤ i ≤ 5 ∨ i mod 2 = 0}

defines the set

{0, 1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 16, …}

It reads: The set of those values on the left hand side of the vertical bar (possibly qualified by a value or by a domain) for
which the expression on the right hand side of the vertical bar holds.

The empty set is denoted by {}.

In the following explanation of the semantics of the operators on sets, s denotes the set {1,3,5}:

∈ Membership operator.

Test whether a given element of the element domain is contained in a set, that is, 1 ∈ s ≡ true and
2 ∈ s ≡ false.

∉ Test whether a given element of the element domain is excluded in a set, that is, 1 ∉ s ≡ false and 2 ∉ s ≡ true.

∪ Union operator.

Join two sets, that is, {2,3} ∪ s ≡ {1,2,3,5} and s ∪ s ≡ s.

∩ Intersection operator. Return the intersection of two sets, that is, {2,3} ∩ s ≡ {3} and {} ∩ s ≡ { }.

\ Complement operator.

Exclude a given set of values from a set, that is, s \ {1,2} ≡ {3,5} and {1,2} \ s ≡ {2}.

⊂ Proper subset operator.

Test whether the elements of a given set are contained in a set, that is, {1,5} ⊂ s ≡ true, s ⊂ {1,5} ≡ false and
s ⊂ s ≡ false.

⊆ Subset operator.

Test whether the elements of a given set are contained in or equal to a set, that is, {1,5} ⊆ s ≡ true, s ⊆ {1,5}
≡ false and s ⊆ s ≡ true.

card Cardinality operator.

Return the number of elements in a set, that is, card s ≡ 3 and card {} ≡ 0.
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union Distributed union operator.

The argument is a set of sets and the result is the union of all the sets contained in the argument, that is, union
{s, {5,6},{1,5,8}} ≡ s ∪ {5,6} ∪ {1,5,8} ≡ {1,3,5,6,8}.

=, ≠ Test for equality and inequality of sets.

Example

In terms of Meta-IV expressions, the properties of the set operators ∉, ∪, ∩, ⊂, ⊆, card and union can be illustrated as
follows:

element ∉ s1 = (¬(element ∈ s1))

s1 ∪ s2 = {element  element ∈ s1 ∨ element ∈ s2}

s1 ∩ s2 = {element  element ∈ s1 ∧ element ∈ s2}

s1 \ s2 = {element  element ∈ s1 ∧ element ∉ s2}

s1 ⊂ s2 = (∀element ∈ s1) (element ∈ s2) ∧ s1 ≠ s2

s1 ⊆ s2 = (∀element ∈ s1) (element ∈ s2)

card s1 = (if  s1 = { }

then 0

else (let element ∈ s1 in

1 + card (s1 \ {element })))

union s1 = {element  ∃set ∈ s1) (element ∈ set)}

The quantifiers (∀ and ∃) are explained in section 5.6.

5.4.6 List Domains

A list or tuple domain is constructed by postfixing the element domain by a “*” in the case of a possibly empty list and
otherwise by a “+”.

Example

4 Signal-definition1 :: Signal-name1

Sort-reference-identifier1*

This domain definition expresses that a signal definition consists of a signal name and a possibly empty list of sort
identifiers.

A list value can be constructed by using an explicit tuple constructor. This is an expression list enclosed in angular
brackets, i.e.

〈11, 12, 11, 13, 14〉

denotes an object of the domain Intg+ (or Intg*) and it contains 5 ordered elements.

The empty list is denoted by 〈 〉.

There are also implicit list constructors similar to those for sets. For instance, in the function int-output-node in the
Dynamic Semantic we construct a tuple (vall) which contains the values of all the actual parameters (exprl) in an output
node:

let vall = 〈eval-expression (exprl [i])(dict) | 1 ≤ i ≤ len exprl〉 in

which corresponds to an explicit enumeration of all the elements in the list:

let vall = 〈eval-expression(exprl [1])(dict),

eval-expression(exprl [2])(dict),
eval-expression(exprl [3])(dict),

…〉 in

Note that the tuple brackets (〈 and 〉) have a different shape than the relational operators < and >.
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In the following explanation of the semantics of the operators on lists l denotes the list 〈11,12,11,13,14〉:

hd Return the first element (the head of a list). That is, hd l ≡ 11. The argument to hd must not be an empty list
(〈 〉).

tl Return the list where the first element has been removed (return the tail). That is tl  l ≡ 〈12,11,13,14〉.

[i] Return element number i in a list. That is, l[3] ≡ 11 et l[5] ≡ 14. The index value must not be less than 1 or
greater than the length of the list.

len Return the length of a list. That is, len l ≡ 5.

elems Return the set which consists of those elements which are in a list. That is, elems l ≡ {11,12,13,14}.

ind Return the set of integer objects which are the legal index values for a list. That is, ind l ≡ {1,2,3,4,5}.

Concatenate two lists. That is l  〈0,1〉 ≡ 〈11,12,11,13,14,0,1〉.

conc Concatenate all those lists which are elements of the list given as argument. That is, conc 〈〈0,7〉,l,〈9〉〉
≡ 〈0,7,11,12,11,13,14,9〉.

=, ≠ Test for equality and inequality of lists.

Example

In terms of Meta-IV expressions, the properties of the list operators hd, tl , ind, elems and conc can be illustrated as
follows:

hd l = (if l = 〈 〉 then undefined else l [1])

tl l = 〈l [i]  2 ≤ i ≤ len l〉
ind l = {i  1 ≤ i ≤ len l}

elems l = {l [i]  i ∈ ind l}

conc l = (if l = 〈 〉 then 〈 〉 else hd l  conc tl l)

5.4.7 Map Domains

A map Domain (i.e. a table) is constructed by specifying the domain of entry objects, followed by the m → operator and
followed by the domain of the objects contained in the mapping (the range values).

Example

5 Entity-dict = (Identifier1 PROCESS) m → ProcessDD ∪
(Identifier1 SERVICE) m → ServiceDD ∪
ENVIRONMENT  m → Reachabilities ∪
EXPIREDF  m → Is-expiredF ∪
PIDSORT m → Sort-identifier1 ∪
NULLVALUE  m → Value ∪
TRUEVALUE  m → Value ∪
FALSEVALUE  m → Value ∪

For enhancing overview of this example only a part of the definition of Entity-dict is shown here. The full definition of
the Entity-dict mapping can be found in the Dynamic Semantics. It shows how the m → operator is used and also that
composite mappings can be constructed by using the domain merge operator ∪, that is, given a mapping of domain
Entity-dict:

• we lookup in the mapping by applying an object of the unnamed tree (Identifier1 PROCESS) and the
result is an object of domain ProcessDD; or

• we lookup in the mapping by applying an object of the unnamed tree (Identifier1 SERVICE) and the
result is an object of domain ServiceDD; or

• we apply the Quot value ENVIRONMENT  and the result is an object of domain Reachabilities; or

• we apply the Quot value EXPIREDF  and the result is an object of domain Is-expiredF; or

• we apply the Quot value PIDSORT and the result is an object of domain Sort-identifier1; or
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• we apply the Quot value NULLVALUE  and the result is an object of domain Value; or

• we apply the Quot value TRUEVALUE  and the result is an object of domain Value; or

• we apply the Quot value FALSEVALUE  and the result is an object of domain Value.

We can only apply a value if it previously has been put into the mapping object, as opposed to functions where the
correspondence between argument values and result values are fixed and defined when the function is defined.

Mapping values can be constructed by using an explicit mapping constructor which is a list of pairs of entry values and
range values enclosed in square brackets, i.e.

[1 a D,
2 a AA ,
4 a BB,
9 a ABC,
5 a XYZ ]

denotes a mapping value of domain Intg m → Quot.

Also implicit mappings may be constructed. For example, the implicit mapping

[a a b  a ∈ N1 ∧ a * a = b]

is equivalent to the infinite mapping

[1 a 1,
2 a 4,
3 a 9,
… a …]

In the following explanation of the semantics of the operators on mappings m denotes the first of the mapping specified
explicitly above:

m(entryvalue) Return a value from a mapping, that is, m(1) ≡ D and m(9) ≡ ABC.

+ Overwrite a mapping with another mapping. This operator is not commutative, that is

m + [0 a XX , 1 a B] ≡

[0 a XX ,1 a B,2 a AA ,4 a BB,9 a ABC,5 a XYZ ]

whereas

[0 a XX ,1 a B] + m ≡

[0 a XX ,1 a D,2 a AA ,4 a BB,9 a ABC,5 a XYZ ]

\ Exclude a given set of entry values from a mapping, that is m\{1,2,3} is

[4 a BB,9 a ABC,5 a XYZ ]

dom Return the set which contains exactly those entry values which are present in a given mapping, that
is

dom m ≡ {1,2,4,5,9}

rng Return the set which contains exactly those range values which are contained in a given mapping,
that is

rng m ≡ {D,AA ,BB,ABC,XYZ }

=, ≠ Test for equality and inequality of two mappings.

merge From the given set of mappings, return the mapping which is constructed by merging all the
mappings contained in the set, that is

{m,[0 a WE],[10 a D] } ≡

[0 a WE,10 a D,1 a D, 2 a AA ,4 a BB,9 a ABC,5 a XYZ ]

If any of the mappings contained in the set have overlapping entries, an arbitrary value among the
possible values is chosen.
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The empty mapping is denoted by [] (two square brackets very close to each other).

Example

In terms of Meta-IV expressions, the properties of the mapping operators \ , +  and merge can be illustrated as follows:

m1 \ s = [a a b a ∈ dom m1 \ s ∧ m1(a) = b]

m1 + m2 = [a a b (a ∈ dom m2 ∧ m2(a) = b) ∨ (a ∈ dom m1 \ dom m2 ∧ m1(a) = b)]

merge m1 = (if m1 = { }

then []

else (let element ∈ m1 in

element + merge m1 \ {element }))

5.4.8 Pid Domains

A Pid domain (corresponding to the Pid sort in SDL) is constructed by means of the II symbol. Optionally it may be
qualified by the processor type to indicate which kind of Pid values the domain denotes, for example:

6 Import-Create ::  Π (input-port)

The Inport-Created domain (defined in the Dynamic Semantics) contains Pid objects qualified by the processor type
input-port. The Meta-IV Pid values should not be confused with the SDL Pid values which in SDL are Ground-term1s,
i.e. The domain of the SDL Pid values are defined in the Dynamic Semantics to be:

7 Pid-Value = Value

8 Value = Ground-term1

Meta-IV Pid values are created when applying the start statement/expression. It corresponds to the create request action
in SDL. For example, when the system processor creates an instance of a timer processor with the actual parameters
timeinf and dict, it looks like:

Example

start timer (timeinf)(dict)

When the start construct is used as an expression, it creates a processor instance and returns the Meta-IV Pid value of
this instance (corresponding to the offspring value in SDL). For example, when a process-set-admin processor starts an
input-port processor:

start input-port(offspring, dict (EXPIREDF ), delayf, self)

an instance of the input-port processor is created and the resulting Meta-IV Pid value is used by the process-set-admin
for identifying the input-port. The parameters offspring, dict(EXPIREDF), delayf and self are given to the created
instance. Like in SDL, an instance may access its own Pid value by using the self expression.

Communication is performed by the synchronous communication primitives input and output. In the output construct,
we can either choose to communicate with a specific processor instance or we can choose to communicate with an
unspecified instance of a specific processor type.

Example

output mk-Some-tree (somevalue, someothervalue, …) to p

where p either denotes a Pid value or p is the name of a processor type. The values sent by the processor are usually
encapsulated in a named tree object (of some communication domain) and such trees can therefore be equated to the
signal concept in SDL, i.e. Some-tree can be regarded as a signal.

In the input construct, we both specify the communication object we want to receive and the action which should be
taken when the object is received. In addition, we may specify a name which after the reception of the object denotes the
Pid value of the sending processor (corresponding to sender in SDL) or which restricts the possible senders, i.e.

input mk -Some-tree(a, b, d) from  p

⇒  /* some statements or an expression */
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After reception of Some-tree, a,b and d will denote the values conveyed by Some-tree and for p there are three possible
interpretations:

• If p is a processor type name, then the input should be received from an instance of that particular
processor type.

• If p is a name which is not already defined, then this occurrence is the defining occurrence of the name
and it is visible in the expression or statements which follow the input clause. It denotes the Meta-IV Pid
value of the sender.

• If p is an expression, then it must be of the type II and the input will be received from the processor
instance denoted by the expression.

If one of several inputs may be received, a number of input constructs separated by comma are specified and the number
is enclosed by braces, i.e.

{input mk -Some-tree(a, b, d) from  p

⇒   /* some statements or an expression */,

input mk -Some-other-tree(a, b, d) from  p

⇒   /* some statements or an expression */ }

In some cases we may want to specify that either an input or an output should be made, depending on which
communication first is possible (not applicable in SDL due to the fact that in SDL communication is asynchronous). In
such cases, output constructs are included in the set of communication events, i.e.

{input mk -Some-tree(a, b, d) from p

⇒   /* some statements or an expression */,

input mk -Some-other-tree(a, b, d) from p

⇒   /* some statements or an expression */,

output mk-Something(/* expression */, /* expression */) to pi }

Often the cycle construct is used in conjunction with input and output, if the communication should be repeated, i.e.

cycle {input mk -Some-tree(a, b, d) from p

⇒  /* some statements or an expression */,

input mk -Some-other-tree(a, b, d) from  p

⇒  /* some statements or an expression */,

output mk-Something(/* expression */, /* expression */) to pi }

which means that after a communication event, the processor instance will take the appropriate action and then start
waiting for a new event to happen.

5.4.9 Reference Domains

When a Meta-IV variable is declared by

dcl v type Intg;

a Meta-IV storage location is allocated and the variable (v) will denote a reference to the location. When the content of
the location is accessed, the c operator (contents operator) is used as shown earlier. When the variable is used without
the contents operator, the result is a value of the ref domain, that is, a reference to the storage location. ref domains are
specified by using the keyword ref, followed by the appropriate domain. For example:

9 VarDD :: Variable-identifier1 Sort-reference-identifier1

[Ground-expression1] [REVEALED ] ref Stg

The variable descriptor includes a reference to the domain Stg. The VarDD descriptor is defined in the Dynamic
Semantics and it is described further in the associated annotations.
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5.4.10 Optional Domains

The square brackets which are extensively used in the domain definitions mean optionality.

Example

10 Signal-definition1 :: Signal-name1
Sort-reference-identifier1*
[Signal-refinement1]

expresses that in objects of the tree Signal-definition1, the object of the domain Signal-refinement may or may not be
present. If it is not present, the field will contain the type-less value nil .

Example

(let mk-Signal-definition1(name, sort, refinement) = /* some Signal-definition1 object */ in
 if refinement = nil then

/* some actions */

else
(let mk-Signal-refinement1 (...) = refinement in

/* some other actions using the signal refinement */))

5.5 The let and def Constructs

As shown earlier, the let construct can be used for composing and decomposing objects. The let construct is more
generally used whenever we want some name to denote some specific object (often it is just in order to avoid too
complicated and unreadable expressions). The names occurring on the left hand side of the equal sign in the let construct
are the defining occurrences (except for domain names which must always be defined somewhere in a domain
definition). An introduced name can also be used on the right hand side of the equal sign (the name is then recursively
defined) and in the expression which follows the let construct. In the example below, name1 is visible (i.e. may be used)
in /*expression1*/, /*expression2*/, /*expression3*/ and /*expression4*/, name2 is visible in /*expression2*/,
/*expression3*/ and /*expression4*/ and name3 is visible in /*expression3*/ and /*expression4*/. For the sake of
restricting the visibility of the names introduced by a let, the let construct is enclosed by parenthesis. In the example
above, a signal refinement constitutes an expression and it starts with left parenthesis because a let construct is used.

There are two ways of specifying a sequence of lets:

let name1 = /* expression1 */ in
let name2 = /* expression2 */ in
let name3 = /* expression3 */ in
/* expression4 */

or

let name1 = /* expression1 */,

name2 = /* expression2 */,

name3 = /* expression3 */ in
/* expression4 */

The first form showing three lets is usually used in the FD when the order is important, that is if /*expression2*/ uses
name1 and if /*expression3*/ uses name2 whereas the second form is used when the various lets are independent.

There are several different forms of a let construct. We have already seen how it can be used for decomposing objects.
Other relevant forms are:

let name ∈ setorname1 in
/* some expression using name */
let name be s.t. /* condition using name */ in
/* some expression using name */
let name ∈ setorname2 be s.t. /* condition using name */ in
/* some expression using name */
let name (parameters) = /* function body */ in
/* some expression applying name */
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The first form reads: Extract an arbitrary value belonging to the set or belonging to the domain denoted by setorname1
and denote the value by name.

The second form reads: Construct a value, i.e. let name be such that the specified condition holds for the value.

The third form is a combination of the two previous forms, where both restrictions apply. If no such value exists, the
specification is erroneous.

The fourth form reads: Construct a local function (called name) which has some formal parameters (parameters) and a
body.

Example

Define the square root of 3:

let r ∈ Real be s.t. r > 0 ∧ r * r = 3 in

Example

Define the factorial function where n is the formal parameter:

let fact (n) = if  n < 0 then error else if n = 0 then 1 else n * fact (n – 1) in

When defining a name for an object which is constructed by referring to the global state (i.e. if the name is defined in
terms of an imperative expression) the def notation is used instead of the let notation, that is, the keyword let is replaced
by the keyword def, the equal symbol is replaced by a colon and the keyword in is replaced by a semicolon (because the
def construct is used in statement context, see section 5.7). For instance, if we want to denote a created processor
instance value by a name, we write:

(def pid : start input-port(somevalue);

/* some statements using the pid value */)

or if we want to decompose the result of an imperative function we write:

(def mk-Some-tree(a, b): some-imperative-function(...);

/* some statements using a and b */)

There also exist a def version of the “be such that” construct:

(def r ∈ Real s.t. r > 0 ∧ r *  r = c v1;

/*some statements using r */)

where we use def because we use a variable (v1) in the evaluation of r. It reads: Define a Real value r such that the
square of r equals the contents of the variable v1.

It should be noted that the names introduced in let and def are not variables. They are names representing a specific
value and it is not allowed to assign a new value to such names.

5.6 Quantification

Meta-IV also provides the mathematical quantifiers: the universal quantifier represented by the symbol ∀, the
existential quantifier represented by the symbol ∃ and the unique quantifier represented by the symbol ∃!. These
quantifiers may be used in quantified expressions which return the boolean value true if a specified condition (a
predicate) on an object is satisfied.

Example

identifiers-defined-on-system-level(p) 

1 (∀mk-Identifier1(q,) ∈p) (len q = 1)

type: Identifier1-set → Bool

This function returns true if and only if for all identifiers (Identifier1) in the set p it holds that the length of its qualifier
(q) is equal to 1 (the second pair of parenthesis encloses the predicate expression).
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Example

one-identifier-defined-on-system-level(p) 

1 (∃mk-Identifier1(q,) ∈p) (len q = 1)

type: Identifier1-set → Bool

This function returns true if and only if there exists at least one identifier (Identifier1) in the set p for which the length of
its qualifier (q) is equal to 1.

Example

exactly-one-identifier-defined-on-system-level(p) 

1 (∃!mk-Identifier1(q,) ∈ p) (len q = 1)

type: Identifier1-set → Bool

This function returns true if and only if there exists exactly one (Identifier1) in the set p for which the length of its
qualifier (q) is equal to 1.

Alternatively, we can choose to decompose the identifier in the predicate expression instead of in the quantification, that
is:

identifiers-defined-on-system-level(p) 

1 (∀p’ ∈ p)

2 ((let mk-Identifier1(q,) = p’ in

3 len q = 1))

type: Identifier1-set → Bool

NOTE – Apostrophe and dash are legal characters in Meta-IV names.

5.7 Auxiliary Statements

• Identity statement

The keyword I indicates an empty statement, i.e. a statement which does not do anything.

• Undefined statement/expression

The keyword undefined indicates that no semantics can be given.

• Return statement

The keyword return followed by an expression terminates the elaboration of an imperative function and
the result is the given expression.

• Error statement/expression.

The keyword error indicates in the FD a dynamic SDL error.

• Assign statement.

Like in SDL. The contents operator (c) is not used when assigning to variables.

• For and while statement.

Same (well-known) concept as in CHILL. The statements to be repeated are enclosed in parenthesis.

• Trap and exit statement/expression.

Trap (handle) any exits caused by an exit statement/expression. If an argument is given to the
exit statement, it is only trapped if the expression given matches the value given in the trap exit statement.
A special version of the trap exit mechanism: the tixe construct have been used in the functions
int-process-graph and int-procedure-graph. The tixe construct is explained in the associated annotations.
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5.8 Deviations from the notation used in the Formal Definition of CHILL

• In the formal definition of CHILL, the predefined domain names consist of boldface uppercase letters
(e.g. BOOL , INTG ) and names denoting semantic domains may consist of uppercase letters only.

In the formal definition of SDL, all domain names are in italic, the first letter is in uppercase and they
contain at least one lowercase letter.

• In the formal definition of CHILL, all objects are finite.

In the formal definition of SDL, objects may be infinite. The semantics of some of the operators are not
well-defined when applied on such objects, e.g. operators like cardinality and equality have not been used
on potentially infinite objects.

In addition, a special constant infinite has been used in transform-process in Annex F.2 for representing
the “unbounded number of instances” in AS1.

• In the formal definition of SDL, the Meta-IV notation has been extended to include the elementary
domain Char and the character strings objects (see section 5.4.4.3).

• In the path processor in Annex F.3, a so-called “output guard” has been used. The concept is described in
the annotations attached to the Path processor as well as in [4].

5.9 Example: Demon game specified in Meta-IV

In the following, it is shown how Meta-IV can be used for defining the semantics of Demon game. For further details
about Demon game, refer to Z.100/2.9.

Communication demon → monitor and monitor → game

11 Bump ::  ( )

Communication user → monitor

12 Newgame ::  ( )

Communication game → monitor

13 Gameover ::  Π

Communication monitor → game

14 Gameoverack ::  ( )

Communication game → user

15 Gameid ::  ( )

16 Win ::  ( )

17 Lose ::  ( )

18 Score ::  Intg

Communication user → game

19 Probe ::  ( )

20 Result ::  ( )

21 Endgame ::  ( )

int-demon-game( ) 

1 start monitor ( )

type: ( )  ⇒  ( )
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monitor processor ( ) 

1 (dcl userset := { } type Π-set,
2 gameset := { } type Π-set;
3 cycle (input mk -Newgame ( ) from sender)
4 ⇒  if sender ∉ c userset then
5 (def offspring : start game (sender);
6 gameset := c gameset ∪ {offspring};
7 userset := c userset ∪ {sender})
8 else
9 I,

10 input mk -Gameover (player) from sender
11 ⇒  (gameset := c gameset \ {sender};
12 userset := c userset \ {player};
13 output mk-Gameoverack( ) to sender),
14 input mk -Bump( ) from demon
15 ⇒  for all pid ∈ gameset do
16 output mk-Bump( ) to pid))

type: ( )  ⇒

game processor ( player) 

1 (dcl count := 0 type Intg;
2 dcl even := true type Bool;
3 output mk-Gameid( ) to player;
4 cycle (input mk -Probe( ) from user
5 ⇒  if c even
6 then (output mk-Win( ) to player;
7 count := c count + 1)
8 else (output mk-Lose( ) to player;
9 count := c count – 1),

10 input mk-Result( ) from user
11 ⇒  output mk-Score(count) to player,
12 input mk-Endgame( ) from user
13 ⇒  (output mk-Gameover(player) to monitor;
14 input-mk-Gameoverack( ) from monitor
15 ⇒  stop),
16 input-mk-Bump( ) from monitor
17 ⇒  even  := ¬c even))

type: Π  ⇒  ( )
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