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FOREWORD

ITU (International Telecommunication Union) is the United Nations Specialized Agency in the field of
telecommunications. The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of the ITU.
Some 179 member countries, 84 telecom operating entities, 145 scientific and industria organizations and
38 international organizations participate in ITU-T which is the body which sets world telecommunications standards
(Recommendations).

The approval of Recommendations by the Members of ITU-T is covered by the procedure laid down in WTSC
Resolution No. 1 (Helsinki, 1993). In addition, the World Telecommunication Standardization Conference (WTSC),
which meets every four years, approves Recommendations submitted to it and establishes the study programme for the
following period.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are prepared on a
collaborative basis with ISO and IEC. The text of ITU-T Recommendation Z.200 was revised on the 16th of November
1993. The identical text is also published as ISO/IEC International Standard 9496.

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commission) form
the specialized system for worldwide standardization. National bodies that are members of ISO or IEC participate in the
development of International Standards through technical committees established by the respective organization to deal
with particular fields of technical activity. ISO and IEC technical committees collaborate in fields of mutual interest.
Other international organizations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the
work.

In the field of information technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1. Draft
International Standards adopted by the joint technical committee are circulated to national bodies for voting. Publication
as an International Standard requires approval by at least 75 % of the national bodies casting a vote.

The first edition of International Standard ISO/IEC 9496 was prepared by the International Telecommunications Union
(as CCITT Recommendation Z.200 : 1988) and was adopted, under a special “fast-track procedure”, by Joint Technical
Committee ISO/IEC JTC 1nformation technology, in parallel with its approval by national bodies of ISO and IEC.

This second edition cancels and replaces the first edition ISO/IEC 9496:1989.

NOTE

In this Recommendation, the expression “Administration” is used for conciseness to indicate both a telecommunication
administration and a recognized operating agency.

0 ITU 1995

All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means, electronic or
mechanical, including photocopying and microfilm, without permission in writing from the ITU.
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INTERNATIONAL STANDARD

ITU-T RECOMMENDATION

CCITT HIGH LEVEL LANGUAGE (CHILL)

1 INTRODUCTION

This recommendation defines the CCITT high level programming language CHILL. CHILL stands for CCITT High
Level Language.

The following sub-sections in this chapter introduce some of the motivations behind the language design and provide an
overview of the language features.

For information concerning the variety of introductory and training material on this subject, the reader is referred to the
CCITT Manuals, “Introduction to CHILL” and “CHILL user’'s manual”.

An alternative definition of CHILL, in a strict mathematical form (based on the VDM notation), is available in the
CCITT Manual entitled “Formal definition of CHILL".

11 GENERAL

CHILL is a strongly typed, block structured language designed primarily for the implementation of large and complex
embedded systems.

CHILL was designed to:
» enhance reliability and run time efficiency by means of extensive compile-time checking;

» be sufficiently flexible and powerful to encompass the required range of applications and to exploit a variety of
hardware;

» provide facilities that encourage piecewise and modular development of large systems;

» cater for real-time applications by providing built-in concurrency and time supervision primitives;
« permit the generation of highly efficient object code;

» be easy to learn and use.

The expressive power inherent in the language design allow engineers to select the appropriate constructs from a rich set
of facilities such that the resulting implementation can match the original specification more precisely.

Because CHILL is careful to distinguish between static and dynamic objects, nearly all the semantic checking can be
achieved at compile time. This has obvious run time benefits. Violation of CHILL dynamic rules results in run-time
exceptions which can be intercepted by an appropriate exception handler (however, generation of such implicit checks is
optional, unless a user defined handler is explicitly specified).

CHILL permits programs to be written in a machine independent manner. The language itself is machine independent;
however, particular compilation systems may require the provision of specific implementation defined objects. It should
be noted that programs containing such objects will not, in general, be portable.

12 LANGUAGE SURVEY

A CHILL program consists essentially of three parts:
» adescription of data objects;
» adescription of actions which are to be performed upon the data objects;
» adescription of the program structure.

Data objects are described by data statements (declaration and definition statements), actions are described by actior
statements and the program structure is described by program structuring statements.

The manipulatable data objects of CHILL are values and locations where values can be stored. The actions define the
operations to be performed upon the data objects and the order in which values are stored into and retrieved from
locations. The program structure determines the lifetime and visibility of data objects.

CHILL provides for extensive static checking of the use of data objects in a given context.

In the following sections, a summary of the various CHILL concepts is given. Each section is an introduction to a
chapter with the same title, describing the concept in detail.
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13 MODESAND CLASSES

A location has a mode attached to it. The mode of alocation defines the set of values which may reside in that location
and other properties associated with it (note that not all properties of a location are determinable by its mode alone).
Properties of locations are: size, internal structure, read-onliness, referability, etc. Properties of values are: interna
representation, ordering, applicable operations, etc.

A value has a class attached to it. The class of avalue determines the modes of the locations that may contain the value.

CHILL provides the following categories of modes:

discrete modes integer, character, boolean, set (enumerations) modes and ranges thereof;
real modes floating point modes and ranges thereof;

powerset modes sets of elements of some discrete mode;

reference modes bound references, free references and rows used as references to locations;
composite modes string, array and structure modes;

procedure modes procedures considered as manipul atabl e data objects;

instance modes identifications for processes;

synchronisation modes event and buffer modes for process synchronisation and communication;
input-output modes association, access and text modes for input-output operations;
timing modes duration and absol ute time modes for time supervision.

CHILL provides denotations for a set of standard modes. Program defined modes can be introduced by means of mode
definitions. Some language constructs have a so-called dynamic mode attached. A dynamic mode is a mode of which
some properties can be determined only dynamically. Dynamic modes are always parameterised modes with run-time
parameters. A mode that is not dynamic is called a static mode.

Classes have no denotation in CHILL. They are introduced in the metalanguage only to describe static and dynamic
context conditions.

14 LOCATIONSAND THEIR ACCESSES

Locations are places where values can be stored or from which values can be obtained. In order to store or obtain a
value, alocation has to be accessed.

Declaration statements define names to be used for accessing alocation. There are;
1. location declarations;
2. loc-identity declarations.

The first one creates locations and establishes access names to the newly created locations. The latter one establishes
new access names for locations created el sewhere.

Apart from location declarations, new locations can be created by means of a GETSTACK or ALLOCATE built-in routine
call yielding reference values (see below) to the newly created location.

A location may be referable. This means that a corresponding reference value exists for the location. This reference
value is obtained as the result of the referencing operation, applied to the referable location. By dereferencing a
reference value, the referred location is obtained. CHILL requires certain locations to be referable and others to be not
referable, but for other locations it is |eft to the implementation to decide whether or not they are refer able. Referability
must be a statically determinable property of locations.

A location may have a read-only mode, which means that it can only be accessed to obtain a value and not to store a
new value into it (except when initialising).

A location may be composite, which means that it has sub-locations which can be accessed separately. A sub-location is
not necessarily referable. A location containing at least one read-only sub-location is said to have the read-only
property. The accessing methods delivering sub-locations (or sub-values) are indexing and dlicing for strings and for
arrays, and selection for structures.

A location has a mode attached. If this mode is dynamic, the location is called a dynamic mode |ocation.

2 I TU-T Rec. Z.200 (1993 E)



| SO/IEC 9496 : 1995 (E)

The following properties of alocation, although statically determinable, are not part of the mode:
referability: whether or not a reference value exists for the location;
storage class: whether or not it is statically allocated;

regionality: whether or not the location is declared within aregion.

15 VALUESAND THEIR OPERATIONS

Values are basic objects on which specific operations are defined. A value is either a (CHILL) defined value or an
undefined value (in the CHILL sense). The usage of an undefined value in specified contexts results in an undefined
situation (in the CHILL sense) and the program is considered to be incorrect.

CHILL allows locations to be used in contexts where values are required. In this case, the location is accessed to obtain
the value contained in it.

A value has a class attached. Strong values are values that besides their class also have a mode attached. In that case the
value is always one of the values defined by the mode. The class is used for compatibility checking and the mode for
describing properties of the value. Some contexts require those properties to be known and a strong value will then be
required.

A vaue may be literal, in which case it denotes an implementation independent discrete value, known at compile time.
A value may be constant, in which case it aways delivers the same value, i.e. it need only be evaluated once. When the
context requires a literal or constant value, the value is assumed to be evaluated before run-time and therefore cannot
generate a run-time exception. A value may be intra-regional, in which case it can refer somehow to locations declared
within aregion. A value may be composite, i.e. contain sub-values.

Synonym definition statements establish new names to denote constant values.

16 ACTIONS
Actions constitute the algorithmic part of a CHILL program.

The assignment action stores a (computed) value into one or more locations. The procedure call invokes a procedure, a
built-in routine call invokes a built-in routine (a built-in routine is a procedure whose definition need not be written in
CHILL and whose parameter and result mechanism may be more general). To return from and/or establish the result of a
procedure call, the return and result actions are used.

To control the sequential action flow, CHILL provides the following flow of control actions:

if action for atwo-way branch;

case action for a multiple branch. The selection of the branch may be based upon several values, similarly
to adecision table;

do action for iteration or bracketing;

exit action for leaving a bracketed action or a module in a structured manner;

cause action to cause a specific exception;

goto action for unconditional transfer to alabelled program point.

Action and data statements can be grouped together to form a module or begin-end block, which form a (compound)
action.

To control the concurrent action flow, CHILL provides the start, stop, delay, continue, send, delay case, and receive case
actions, and receive and start expressions.

1.7 INPUT AND OUTPUT

The input and output facilities of CHILL provide the means to communicate with a variety of devices in the outside
world.

The input-output reference model knows three states. In the free state there is no interaction with the outside world.
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Through an ASSOCIATE operation, the file handling state is entered. In the file handling state there are locations of
association mode, which denote outside world aobjects. It is possible via built-in routines to read and modify the language
defined attributes of associations, i.e. existing, readable, writeable, indexable, sequencible and variable. File creation
and deletion are also done in the file handling state.

Through the CONNECT operation, a location of access mode is connected to a location of an association mode, and the
data transfer state is entered. The CONNECT operation allows positioning of a base index in afile. In the data transfer
state various attributes of locations of access mode can be inspected and the data transfer operations READRECORD and
WRITERECORD can be applied.

Through the text transfer operations, CHILL values can be represented in a human-readable form which can be
transferred to or from afile or a CHILL location.

18 EXCEPTION HANDLING

The dynamic semantic conditions of CHILL are those (non context-free) conditions that, in general, cannot be statically
determined. (It is left to the implementation to decide whether or not to generate code to test the dynamic conditions at
run time, unless an appropriate handler is explicitly specified.) The violation of a dynamic semantic rule causes a run-
time exception; however, if an implementation can determine statically that a dynamic condition will be violated, it may
reject the program.

Exceptions can also be caused by the execution of a cause action or, conditionally, by the execution of an assert action.
When, at a given program point, an exception occurs, control is transferred to the associated handler for that exception,
if oneis specified. Whether or not a handler is specified for an exception at a given point can be statically determined. If
no explicit handler is specified, control may be transferred to an implementation defined exception handler.

Exceptions have a name, which is either a CHILL defined exception name, an implementation defined exception name,
or a program defined exception name. Note that when a handler is specified for an exception name, the associated
dynamic condition must be checked.

19 TIME SUPERVISION

Time supervision facilities of CHILL provide the means to react to the elapsing of time in the external world. A process
becomes timeoutable when it reaches a well-defined point in the execution of certain actions. At this point it may be
interrupted. When this happens, control is transferred to an appropriate handler.

Programs may detect the elapsing of a period of time or may synchronise to an absolute point of time or at precise
intervals without cumulated drifts. Built-in routines for time are provided to convert absolute time values and duration
valuesinto integer values, to suspend a process until atime supervision expires.

110 PROGRAM STRUCTURE

The program structuring statements are the begin-end block, module, procedure, process and region. The program
structuring statements provide the means of controlling the lifetime of locations and the visibility of names.

The lifetime of a location is the time during which a location exists within the program. Locations can be explicitly
declared (in a location declaration) or generated (GETSTACK or ALLOCATE built-in routine call), or they can be
implicitly declared or generated as the result of the use of language constructs.

A name is said to be visible at a certain point in the program if it may be used at that point. The scope of a name
encompasses al the points where it isvisible, i.e. where the denoted object isidentified by that name.

Begin-end blocks determine both visibility of names and lifetime of locations.

Modules are provided to restrict the visibility of names to protect against unauthorised usage. By means of visibility
statements, it is possible to exercise control over the visibility of namesin various program parts.

A procedure is a (possibly parameterised) sub-program that may be invoked (caled) at different places within a
program. It may return avalue (value procedure) or alocation (location procedure), or deliver no result. In the latter case
the procedure can only be called in a procedure call action.
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Processes and regions provide the means by which a structure of concurrent executions can be achieved.

A complete CHILL programisalist of modules or regions that is considered to be surrounded by an (imaginary) process
definition. This outermost process is started by the system under whose control the program is executed.

Constructs are provided to facilitate various ways of piecewise development of programs. A spec module and spec
region are used to define the static properties of a program piece, a context is used to define the static properties of
seized names. In addition it is possible to specify that the text of a program piece is to be found somewhere el se through
the remote facility.

111 CONCURRENT EXECUTION

CHILL alows for the concurrent execution of program units. A process is the unit of concurrent execution. The
evaluation of a start expression causes the creation of a new process of the indicated process definition. The process is
then considered to be executed concurrently with the starting process. CHILL allows for one or more processes with the
same or different definition to be active at one time. The stop action, executed by a process, causes its termination.

A process is always in one of two states; it can be active or delayed. The transition from active to delayed is called the
delaying of the process; the transition from delayed to active is called the re-activation of the process. The execution of
delaying actions on events, or receiving actions on buffers or signals, or sending actions on buffers, can cause the
executing process to become delayed. The execution of a continue action on events, or sending actions on buffers or
signals, or receiving actions on buffers can cause a delayed process to become active again.

Buffers and events are locations with restricted use. The operations send, receive and receive case are defined on
buffers; the operations delay, delay case and continue are defined on events. Buffers are a means of synchronising and
transmitting information between processes. Events are used only for synchronisation. Signals are defined in signal
definition statements. They denote functions for composing and decomposing lists of values transmitted between
processes. Send actions and receive case actions provide for communication of alist of values and for synchronisation.

A region is a special kind of module. Its use is to provide for mutually exclusive access to data structures that are shared
by several processes.

112 GENERAL SEMANTIC PROPERTIES

The semantic (non context-free) conditions of CHILL are the mode and class compatibility conditions (mode checking)
and the visibility conditions (scope checking). The mode rules determine how names may be used; the scope rules
determine where names may be used.

The mode rules are formulated in terms of compatibility requirements between modes, between classes and between
modes and classes. The compatibility requirements between modes and classes and between classes themselves are
defined in terms of equivalence relations between modes. If dynamic modes are involved, mode checking is partly
dynamic.

The scope rules determine the visibility of names through the program structure and explicit visibility statements. The
explicit visibility statements influence the scope of the mentioned names. Names introduced in a program have a place
where they are defined or declared. This place is called the defining occurrence of the name. The places where the name
is used are called applied occurrences of the name. The name binding rules associate a unique defining occurrence with
each applied occurrence of the name.

1.13 IMPLEMENTATION OPTIONS

CHILL dlows for implementation defined integer modes, implementation defined built-in routines, implementation
defined process names, implementation defined exception handlers and implementation defined exception names.

An implementation defined integer mode must be denoted by an implementation defined mode name. This name is
considered to be defined in a newmode definition statement that is not specified in CHILL. Extending the existing
CHILL-defined arithmetic operations to the implementation defined integer modes is alowed within the framework of
the CHILL syntactic and semantic rules. Examples of implementation defined integer modes are long integers, and short
integers.
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A built-in routine is a procedure whose definition need not be written in CHILL and that may have a more genera
parameter passing and result transmission scheme than CHILL procedures.

A built-in process name is a process name whose definition need not be written in CHILL and that may have a more
general parameter passing scheme than CHILL processes. A CHILL process may cooperate with built-in processes or
start such processes.

An implementation defined exception handler is a handler appended to a process definition. If this handler receives
control after the occurrence of an exception, the implementation decides which actions are to be taken. An
implementation defined exception is caused if an implementation defined dynamic condition is violated.
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2 PRELIMINARIES

21 THE METALANGUAGE
The CHILL description consists of two parts:
 the description of the context-free syntax;

» thedescription of the semantic conditions.

211 The context-free syntax description

The context-free syntax is described using an extension of the Backus-Naur Form. Syntactic categories are indicated by
one or more English words, written in slanted characters, enclosed between angular brackets (< and >). Thisindicator is
called a non-terminal symbol. For each non-terminal symbol, a production rule is given in an appropriate syntax section.
A production rule for a non-terminal symbol consists of the non-terminal symbol at the lefthand side of the symbal ::=,
and one or more constructs, consisting of non-terminal and/or terminal symbols at the righthand side. These constructs
are separated by avertical bar (| ) to denote alternative productions for the non-terminal symbol.

Sometimes the non-terminal symbol includes an underlined part. This underlined part does not form part of the context-
free description but defines a semantic category (see section 2.1.2).

Syntactic elements may be grouped together by using curly brackets ({ and }). Repetition of curly bracketed groups is

indicated by an asterisk (*) or plus (*). An asterisk indicates that the group is optional and can be further repeated any

number of times; a plus indicates that the group must be present and can be further repeated any number of times. For

example, { A}* stands for any sequence of A’s, including zero, while {A}* stands for any sequence of at least/Ané

syntactic elements are grouped using square brackets ([ and ]), then the group is optional. A curly or square bracketed
group may contain one or more vertical bars, indicating alternative syntactic elements.

A distinction is made between strict syntax, for which the semantic conditions are given directly, and derived syntax.
The derived syntax is considered to be an extension of the strict syntax and the semantics for the derived syntax is
indirectly explained in terms of the associated strict syntax.

It is to be noted that the context-free syntax description is chosen to suit the semantic description in this document and is
not made to suit any particular parsing algorithm (e.g. there are some context-free ambiguities introduced in the interest
of clarity). The ambiguities are resolved using the semantic category of the syntactic elements.

212 The semantic description

Each syntactic category (hon-terminal symbol) is described in sub-sestimastics, static properties, dynamic
properties, static conditions anddynamic conditions.

The sectiorsemantics describes the concepts denoted by the syntactic categories (i.e. their meaning and behaviour).

The sectionstatic properties defines statically determinable semantic properties of the syntactic category. These
properties are used in the formulation of static and/or dynamic conditions in the sections where the syntactic category is
used.

The sectiordynamic properties defines the properties of the syntactic category, which are known only dynamically.

The sectiorstatic conditions describes the context-dependent, statically checkable conditions which must be fulfilled
when the syntactic category is used. Some static conditions are expressed in the syntax by means of an underlined part ir
the non-terminal symbol (see section 2.1.1). This use requires the non-terminal to be of a specific semantic category.
E.g.boolean expression is identical to €xpression> in the context-free sense, but semantically it requireexression

to be of a boolean class.

The sectiordynamic conditions describes the context-dependent conditions that must be fulfilled during execution. In
some cases, conditions are static if no dynamic modes are involved. In those cases, the condition is mentioned under
static conditions and referred to undedynamic conditions. In other cases, dynamic conditions can be checked
statically; an implementation may treat this as a violation of a static condition.
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In the semantic description, different fonts are used in the following ways: slanted font (without < and >) is used to
indicate syntactic objects; corresponding terms in roman font indicate corresponding semantic objects (e.g. a location
denotes alocation). Bolding is used to name semantic properties; sometimes a property can be expressed syntactically as
well as semantically (e.g. the sentence ‘eRpression is constant” means the same as “tlegpression is a constant
expression”).

Unless otherwise specified, the semantics, properties and conditions described in the sub-section of a syntactic category
hold regardless of the context in which in other sections that syntactic category may appear.

The properties of a syntactic categdéryhat has a production rule of the foAn:= B, whereB is a syntactic category,
are the same &unless otherwise specified.

In this document, virtual names are introduced to describe modes, locations and values which do not occur explicitly in
the program text. In such cases the name is preceded by an ampersand (&) symbol. These names are introduced fo
descriptive purposes only.

213 The examples

For most syntax sections, there is a seatkamples giving one or more examples of the defined syntactic categories.
These examples are extracted from a set of program examples contained in Appendix D. References indicate via which
syntax rule each example is produced and from which example it is taken.

E.9.6.20 (d+5)/5 (1.2) indicates an example of the terminal strif@t5)/5, produced via rulg(1.2) of the
appropriate syntax section, taken from program examplé liree 20.

214 The binding rulesin the metalanguage

Sometimes the semantic description mentions CHipécial simple name strings (see Appendix C). Thesecial
simple name strings are always used with their CHILL meaning and are therefore not influenced by the binding rules of
an actual CHILL program.

22 VOCABULARY

Programs are represented using the CHILL character set (see Appendix A). The alphabet is represented by the syntactic
category <haracter>, from which any character that is in the CHILL character set can be derived as terminal
production.

The lexical elements of CHILL are:
» special symbols;
» simple name strings;
o literals.
The special symbols are listed in Appendix B. They can be formed by a single character or by character combinations.

Simple name strings are formed according to the following syntax:

syntax:

<simple name string> ::= (0]

<letter> { <letter> | digit>| _}* 1.1

<letter> ::= 2
A|B|C|ID|E|F|G|H]|I|J|K|L|M 2.1
INJO|P|QIR|S|T|U|V|W]|X]|Y]Z (2.2)
lalblc|dlel[flg[h]iljlk|I|m (2.3)
Infolplalrfs|tlulv|w]|x]y]|z (2.4)

<digit>::= ©)]
0]1]2]3]4]5]6]7]8]9 (3.2
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semantics; The underline character () forms part of the simple name string; e.g. the simple name string life_time is
different from the simple name string lifetime. Lower case and upper case letters are different, e.g. Satus and
status are two different simple name strings.

The language has a number of special simple name strings with predetermined meanings (see Appendix C).
Some of them arereserved, i.e. they cannot be used for other purposes.

The special simple name strings in a piece must either all be in upper case representation or al be in lower
case representation. The reserved simple name strings are only reserved in the chosen representation (e.g. if
the lower case fashion is chosen, row isreserved, ROW is not).

static conditions: A simple name string may not be one of the reserved simple name strings (see Appendix C.1).

23 THE USE OF SPACES

A sequence of one or more spacesis allowed before and after each lexical element. Such a sequence is called a delimiter.
Lexical elements are also terminated by the first character that cannot be part of the lexica element. For instance,
IFBTHEN will be considered a simple name string and not as the beginning of an action IF B THEN, //* will be
considered as the concatenation symbol (//) followed by an asterisk (*) and not as a divide symbol (/) followed by a
comment opening bracket (/*).

24 COMMENTS

syntax:

<comment> ::= D
<bracketed comment> (1.2)

| <line-end comment> (1.2

<bracketed comment> ::= 2

[* <character string>*/ (2.1

<line-end comment> ::= (©)]

— — <character string> <end-of-line> (3.1

<character string> ::= 4

{ <character> }* (4.0

N.B. end-of-line denotes the end of the line in which the comment occurs.
semantics. A comment conveys information to the reader of a program. It has no influence on the program semantics.
A comment may be inserted at all places where spaces are allowed as delimiters.

A bracketed comment is terminated by the first occurrence of the special sequ&hdkline-end comment is
terminated by the first occurrence of the end of the line.

examples:
41 * from collected algorithms from CACM no. 93 */ (2.1

25 FORMAT EFFECTORS

The format effectors BS (Backspace), CR (Carriage return), FF (Form feed), HT (Horizontal tabulation), LF (Line feed),
VT (Vertical tabulation) of the CHILL character set (see Appendix A, positiopsié-EEs) and theend-of-line are not
mentioned in the CHILL context-free syntax description. When used, they have the same delimiting effect as a space.
Spaces and format effectors may not occur within lexical elements (except character string literals).
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2.6 COMPILER DIRECTIVES

syntax:
<directive clause> ::= D
<> <directive> { , <directive> }* <> (1.2
<directive> ::= )]
<implementation directive> (2.1)

semantics: A directive clause conveys information to the compiler. This information is specified in an implementation
defined format.

An implementation directive must not influence the program semantics, i.e. a program with implementation
directivesis correct, in the CHILL sense, if and only if it is correct without these directives.

A directive clause is terminated by the first occurrence of the directive ending symbol (<>). A directive may
contain any character of the character set (see Appendix A).

static properties: A directive clause may be inserted at any place where spaces are allowed as delimiters. It has the
same delimiting effect as a space. The names used in a directive clause follow an implementation defined
name binding scheme which does not influence the CHILL name binding rules (see section 12.2).

2.7 NAMESAND THEIR DEFINING OCCURRENCES

syntax:

<name> ::= (D)
<name string> (1.1
<namestring>::= ()]
<simple name string> (2.1

| <prefixed name string> (2.2
<prefixed name string> ::= 3
<prefix> | <simple name string> 3.)
<prefix::= 4
<simple prefix> { | <simple prefix>}* 4.2)

<simple prefix> ::= 5)
<simple name string> (5.0

<defining occurrence> ::= (6)
<simple name string> (6.1)

<defining occurrencelist> ::= @)
<defining occurrence> { , <defining occurrence> }* (7.2)

<set element name> ;= (8
<simple name string> (8.1)

<set element name defining occurrence> ::= (9)
<simple name string> (9.1

<field name> ::= (20)
<simple name string> (10.1)

<field name defining occurrence> ::= (11
<simple name string> (111
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<field name defining occurrencelist> ::= (12
<field name defining occurrence> { , <field name defining occurrence> }* (12.1)
<exception name> ::= (13
<simple name string> (13.1)

| <prefixed name string> (13.2)

<text reference name> ::= (14)
<simple name string> (14.1)

| <prefixed name string> (14.2)

semantics: Names in a program denote objects. Given an occurrence of a name (formally: an occurrence of a terminal
production of name) in a program, the binding rules of section 12.2 provide defining occurrences (formally:
occurrences of termina productions of defining occurrence) to which that (occurrence of) name is bound.
The name then denotes the object defined or declared by the defining occurrences. (There can be more than
one defining occurrence for a name only in the case of names with quasi defining occurrences.) Defining
occurrences are said to define the name. A name is said to be an applied occurrence of the name created by
the defining occurrence to which it is bound. The name has its rightmost simple name string equal to that of
the name.

Similarly, field names are bound to field name defining occurrences and denote the fields (of a structure
mode) defined by those field name defining occurrences.

Exception names are used to identify exception handlers according to the rules stated in Chapter 8.

Text reference names are used to identify descriptions of pieces of source text in an implementation defined
way, subject to the rulesin section 10.10.1.

When a name is bound to more than one defining occurrence, each of the defining occurrences to which the
name isbound defines or declares the same object (see 10.10 and 12.2.2 for precise rules).

definition of notation: Given a name string NS, and a string of characters P, which is either a prefix or is empty, the
result of prefixing NSwith P, written P! NS, is defined as follows:

o if Pisempty, then P! NSisNS;

« otherwise P! NS is the name string obtained by concatenating all the characters in P, a prefixing
operator and all the charactersin NS.

For example, if Pisd! r"and NSiss!n"then P! NSisf!r!s!n".

static properties: Eachsimple name string has acanonical name string attached which is thieple name string itself.
A name string has acanonical name string attached which is:

« if the name string is asimple name string, then thecanonical name string of thatimple name string;

< if the name string is aprefixed name string, then the concatenation in left to right order ofsatiple
name strings in the name string, separated by prefixing operators, i.e. interspersed spaces, comments
and format effectors (if any) are left out.

In the rest of this document:

« the name string of aame, exception name or text reference name is used to denote theanonical
name string of theame string in thatname, exception name or text reference name, respectively;

< the name string of defining occurrence, field name or field name defining occurrence is used to
denote thecanonical name string of thaeimple name string in thatdefining occurrence, field name or
field name defining occurrence, respectively.
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The binding rules are such that:

« names with asimple name string are bound to defining occurrences with the same name string;

« names with a prefixed name string are bound to defining occurrences with the same name string as the
rightmost simple name string in the prefixed name string of the name;

« field names are bound to field name defining occurrences with the same name string as the field
names.

A name inherits al the static properties attached to the name defined by the defining occurrence to which it is
bound. A field name inherits all static properties attached to the field name defined by the field name defining
occurrence to which it is bound.
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3 MODESAND CLASSES

31 GENERAL

A location has a mode attached to it; a value has a class attached to it. The mode attached to alocation defines the set of
values that may be contained in the location, the access methods of the location and the allowed operations on the
values. The class attached to a value is a means of determining the modes of the locations that may contain the value.
Some values are strong. A strong value has a class and a mode attached. Strong values are required in those value
contexts where mode information is needed.

311 M odes

CHILL has static modes (i.e. modes for which al properties are statically determinable) and dynamic modes (i.e. modes
for which some properties are only known at run time). Dynamic modes are always parameterised modes with run-time
parameters.

Static modes are terminal productions of the syntactic category mode.
Modes are al so parameterised by values not explicitly denoted in the program text.

312 Classes
Classes have no denotation in CHILL.
The following kinds of classes exist and any value in a CHILL program has aclass of one of these kinds:

For amode M there exists the M-value class. All values with such a class and only those values are str ong and the mode
attached to the value is M.

» For amode M there exists the M-derived class.

* For any mode M there exists the M-reference class.
e Thenull class.

* Theall class.

The last two classes are constant classes, i.e. they do not depend on a mode M. A classis said to be dynamic if and only
if itisan M-value class, an M-derived class, or an M-reference class, where M is a dynamic mode.

313 Properties of, and relations between, modes and classes

Modes in CHILL have properties. These may be hereditary or non-hereditary properties. A hereditary property is
inherited from a defining mode to a mode name defined by it. Below a summary is given of the properties that apply to
all modes (except for thefirst, they are al defined in section 12.1):

e A mode hasanovelty (defined in sections 3.2.2, 3.2.3 and 3.3).
» A mode can have the read-only property.
e A mode can be parameterisable.
* A mode can have the referencing property.
« A mode can have the tagged parameterised property.
* A mode can have the non-value property.
Classesin CHILL may have the following properties (defined in section 12.1):
» A classcan have aroot mode.
e Oneor more classes may have aresulting class.

Operations in CHILL are determined by the modes and classes of locations and values. This is expressed by the mode
checking rules which are defined in section 12.1 as a number of relations between modes and classes. There exists the
following relations:

*  Two modes can be similar.

e Two modes can be v-equivalent.
» Two modes can be equivalent.

e Two modes can be I-equivalent.

ITU-T Rec. Z.200 (1993 E) 13



| SO/IEC 9496 : 1995 (E)

*  Two modes can be alike.

» Two modes can be novelty bound.

» Two modes can be read-compatible.

» Two modes can be dynamic read-compatible.
» Two modes can be dynamic equivalent.

* A mode can berestrictable to a mode.

» A mode can be compatible with aclass.

» A classcan be compatible with a class.

32 MODE DEFINITIONS

3.21 General

syntax:
<mode definition> ::= @
<defining occurrence list> = <defining mode> (1.2
<defining mode> ::= 2
<mode> (2.1

derived syntax: A mode definition where the defining occurrence list consists of more than one defining occurrence is
derived from several mode definitions, one for each defining occurrence, separated by commas, with the same
defining mode. For example:

NEWM ODE dollar, pound = INT;
is derived from:
NEWM ODE dollar = INT, pound = INT;

semantics. A mode definition defines a name that denotes the specified mode. Mode definitions occur in synmode and
newmode definition statements. A synmode is synonymous with its defining mode. A newmode is not
synonymous with its defining mode. The difference is defined in terms of the property novelty, that isused in
the mode checking (see section 12.1).

static properties: A defining occurrence in a mode definition defines a mode name.

Predefined mode names, implementation defined integer mode names and implementation defined floating
point mode names (if any, see section 3.4.2 and 3.5.1) are also mode names.

A mode name has a defining mode which is the defining mode in the mode definition which defines it. (For
predefined and implementation defined mode names this defining mode is a virtual mode). The hereditary
properties of a mode name are those of its defining mode.

A set of recursive definitions is a set of mode definitions or synonym definitions (see section 5.1) such that
the defining mode in each mode definition or constant value or mode in each synonym definition is, or directly
contains, amode name or a synonym name defined by a definition in the set.

A set of recursive mode definitions is a set of recursive definitions having only mode definitions.

Any mode being or containing a mode name defined in a set of recursive mode definitions is said to denote a
recursive mode. A path in a set of recursive mode definitionsis alist of mode names, each name indexed with
amarker such that:

« al namesin the path have a different definition;

» for each name, its successor is or directly occursin its defining mode (the successor of the last nameis
the first name);
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« the marker indicates uniquely the position of the name in the defining mode of its predecessor (the
predecessor of the first name is the last name).

(Examplee NEWMODE M = STRUCT (i M, n REF M); containstwo paths: {M;} and {Mp}.)

A path is safe if and only if at least one of its names is contained in a reference mode, a row mode, or a
procedure mode at the marked place.

static conditions: For any set of recursive mode definitions, all its paths must be safe. (The first path of the example
above is not safe).

examples:
115 operand_mode = INT (1.1
33 complex = STRUCT (re,im FLOAT) (1.2)

322 Synmode definitions

syntax:
<synmode definition statement> ::= D
SYNMODE <mode definition> { , <mode definition>}* ; (1.2)

semantics: A synmode definition statement defines mode names which are synonymous with their defining mode.

static properties: A defining occurrence in a mode definition in a synmode definition statement defines a synmode
name (which is also a mode name). A synmode name is said to be synonymous with amode M (conversely,
M is said to be synonymous with the synmode name) if and only if:

« either M isthe defining mode of the synmode name;
» or the defining mode of the synmode name isitself a synmode name synonymous with M.
The novelty of a synmode nameis that of its defining mode.

If the defining mode is a discrete range mode or a floating point range mode, then the parent mode of the
synmode name is that of its defining mode. If the defining mode is a varying string mode, then the
component mode of the synmode name s that of its defining mode.

examples:
6.3 SYNMODE month = SET (jan, feb, mar, apr, may, jun,
jul, aug, sep, oct, hov, dec); (1.1
323 Newmode definitions
syntax:
<newmode definition statement> ::= @
NEWM ODE <mode definition> { , <mode definition>}* ; (1.2)

semantics: A newmode definition statement defines mode names which are not synonymous with their defining mode.

static properties. A defining occurrence in a mode definition in a newmode definition statement defines a newmode
name (which is also amode name).

The novelty of the newmode name is the defining occurrence which defines it. If the defining mode of the
newmode name is a discrete range mode or a floating point range mode, then the virtual mode & name is
introduced as the parent mode of the newmode name. The defining mode of & name is the parent mode of
the discrete range mode or the one of the floating point range mode, and the novelty of &name is that of the
newmode name.

If the defining mode is a varying string mode, then the virtual mode & name is introduced as the component
mode of the newmode name. The defining mode of & name is the component mode of the varying string
mode, and the novelty of & name is that of the newmode name.

If the defining occurrence of the mode definition is a quasi defining occurrence, then the novelty is a quasi
novelty, otherwiseit isareal novelty.

static conditions: If the novelty isaquasi novelty, then at most one real novelty must be novelty bound to it.

examples:
11.6 NEWMODE line=INT (1:8); (1.1
11.12 NEWM ODE board = ARRAY (line) ARRAY (column) square; (1.1
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3.3 MODE CLASSIFICATION

syntax:

<mode> ::= D
[ READ ] <non-composite mode> (1.3)

| [ READ ] <composite mode> (12
<non-composite mode> ::= ()]
<discrete mode> (2.1

| <real mode> (2.2

| <powerset mode> (2.3

| <reference mode> (2.4)

| <procedure mode> (2.5)

| <instance mode> (2.6)

| <synchronisation mode> (2.7)

| <input-output mode> (2.8

| <timing mode> (2.9

semantics. A mode defines a set of values and the operations which are allowed on the values. A mode may be a read-
only mode, indicating that a location of that mode may not be accessed to store a value. A mode has a
novelty, indicating whether it was introduced via a newmode definition statement or not.

static properties: A mode has the following hereditary properties:

» Itisaread-only modeif it isan explicit or an implicit read-only mode.

e |t is an explicit read-only mode if READ is specified or it is a parameterised array mode, a
parameterised string mode or a parameterised structure mode, where the origin array mode name,
origin string mode name or origin variant structure mode name, respectively, in it is a read-only
mode.

* Itisanimplicit read-only modeif it is not an explicit read-only mode and if:

— it is the element mode of a read-only string mode or a read-only array mode (see sections
3.13.2 and 3.13.3);

— it is a field mode of a read-only structure mode or it is the mode of a tag field of a
parameterised structure mode (see section 3.13.4}).

A mode has the same properties as the non-composite mode or composite mode in it. In the following sections,
the properties are defined for predefined mode names and for modes that are not mode names; the properties
of mode names are defined in section 3.2. Read-only modes have the same properties as their corresponding
non-read-only modes except for the read-only property (see section 12.1.1.1).

A mode has the following non-hereditary properties:

* A novelty that is either nil or the defining occurrence in a mode definition in a newmode definition
statement. The novelty of a mode which is not a mode name (nor READ mode name) is defined as
follows:

- if itisaparameterised string mode, a parameterised array mode or a parameterised structure
mode, its novelty isthat of its origin string mode, origin array mode or origin variant structure
mode, respectively;

— if it is a discrete range mode or a floating point range mode, its novelty is that of its parent
mode;

— otherwise its novelty isnil.
The novelty of amode that is amode name (READ mode name) is defined in sections 3.2.2 and 3.2.3.

* A dsizethat is the value delivered by SIZE (& M), where &M is a virtual synmode hame synonymous
with the mode.
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34 DISCRETE MODES

34.1 General

syntax:
<discrete mode> ::= Q
<integer mode> (1.2)
| <boolean mode> (1.2
| <character mode> (1.3
| <set mode> (1.4)
| <discrete range mode> (1.5)

semantics. A discrete mode defines sets and subsets of totally-ordered values.

34.2 Integer modes

syntax:
<integer mode> ::= (D)
<integer mode name> (1.1

predefined names. The name INT is predefined as an integer mode name.

semantics. An integer mode defines a set of signed integer values between implementation defined bounds over which
the usual ordering and arithmetic operations are defined (see section 5.3). An implementation may define
other integer modes with different bounds (e.g. LONG_INT, SHORT_INT, UNSIGNED _INT) that may also be
used as parent modes for ranges (see section 13.2). The &INT mode is introduced as the virtual mode that
contains al the values of all predefined integer modes defined by the implementation. The internal
representation of an integer value is the integer value itself. Note that &INT is not a predefined mode
(although it may have the same bounds as those of a predefined integer mode).

static properties: An integer mode has the following hereditary properties:

e An upper bound and a lower bound which are the literals denoting respectively the highest and
lowest value defined by the integer mode. They are implementation defined.

e A number of values which isupper bound —lower bound + 1.

examples:

15 INT (1.2)
34.3 Boolean modes
syntax:

<boolean mode> ::= (@]

<boolean mode name> (1.0
predefined names. The namaBOOL is predefined as laoolean mode name.

semantics. A boolean mode defines the logical truth valuBRUE andFALSE), with the usual boolean operations (see
section 5.3). The internal representationg-A£.SE and TRUE are the integer values 0 and 1, respectively.
This representation defines the ordering of the values.

static properties: A boolean mode has the following hereditary properties:
* An upper bound which isSTRUE, and dower bound which isFALSE.
* A number of values which is 2.

examples:
5.4 BOOL (1.1

344 Character modes

syntax:
<character mode> ::= D
<character mode name> (1.3
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predefined names: The name CHAR is predefined as a char acter mode name.

semantics. A character mode defines the character values as described by the CHILL character set (see Appendix A).
This aphabet defines the ordering of the characters and the integer values which are their interna
representations.

static properties: A character mode has the following hereditary properties:

An upper bound and alower bound which are the character literals denoting respectively the highest
and lowest value defined by CHAR.

A number of values which is 256.

examples:
8.4 CHAR (1.2)
345 Set modes
syntax:
<set mode> ::= (D)
SET (<setlist>) (1.2
| <set mode name> (1.2
<set list> ;= @)
<numbered set list> (2.1)
| <unnumbered set list> (2.2
<numbered set list> ::= 3
<numbered set element> { , <numbered set element>} * (3.1
<numbered set element> ::= 4
<set element name defining occurrence> = <integer literal expression> (4.0
<unnumbered set list> ::= )
<set element> { , <set element>}* (5.2)
<set dlement> ::= (6)
<set element name defining occurrence> (6.1

semantics: A set mode defines a set of named and unnamed values. The named values are denoted by the names defined
by defining occurrences in the set list; the unnamed values are the other values. The internal representation of
the named values is the integer value associated with them. This representation defines the ordering of the
values.

The maximum number of values of a set mode isimplementation defined.

static properties: A defining occurrence in a set list defines a set element name. A set element name has a set mode
attached, which is the set mode.

A set mode has the following hereditary properties.

A set of set element names which isthe set of names defined by defining occurrencesin its set list.

Each set element name of a set mode has an internal representation value attached which is, in the case
of a numbered set element, the value delivered by the integer literal expression in it; otherwise one of
the values 0, 1, 2, etc., according to its position in the unnumbered set list. For example in: SET (a,b),
a has representation value 0, and b has representation value 1 attached.

An upper bound and a lower bound which are its set element names with the highest and lowest
representation values, respectively.

A number of values which is the highest of the values attached to the set element names plus 1.

It isanumbered set mode if the set list in it is a numbered set list; otherwise it is an unnumbered set
mode.

static conditions: For each pair of integer literal expressions ey, e in the set list NUM (ep) and NUM (&) must deliver
different non-negative results.

examples:
11.7
6.3

SET (occupied, free) (1.2
month (1.2
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3.4.6 Discrete range modes
syntax;
<discrete range mode> ::= )
<discrete mode name> ( <literal range>) (1.2)
| RANGE ( <literal range>) (1.2
| BIN ( <integer literal expression>) (1.3
| <discrete range mode name> (1.9
<literal range> ::= 2
<lower bound> : <upper bound> (2.1
<lower bound> ::= 3
<discrete literal expression> (3.1
<upper bound> ::= 4
<discrete literal expression> (4.0

derived syntax: The notation BIN (n) is derived from RANGE (0: 2"- 1), e.g. BIN (2+1) standsfor RANGE (0: 7).

semantics: A discrete range mode defines the set of values ranging between the bounds specified (bounds included) by
the literal range. The range is taken from a specific parent mode that determines the operations on and
ordering of the range values.

static properties. A discrete range mode has the following non-hereditary property: it has a parent mode, defined as
follows:

 If the discrete range mode is of the form:
<discrete mode name> ( <literal range>)

then if the discrete mode name is not a discrete range mode, the parent mode is the discrete mode
name; otherwise it is the parent mode of the discrete mode name.

 |f the discrete range mode is of the form:
RANGE ( <literal range>)

then the parent mode depends on the resulting class of the classes of the upper bound and lower
bound in the literal range:

— if it isan M-derived class, where M is an integer mode, then the parent mode is a predefined
integer mode chosen by the implementation such that it contains the range of values delivered
by literal range,

— otherwiseit isthe root mode of the resulting class.

« |f the discrete range mode is a discrete range mode name which is a synmode name, then its parent
mode is that of the defining mode of the synmode name; otherwise it is a newmode name and then its
parent mode is the virtually introduced parent mode (see section 3.2.3).

A discrete range mode has the following hereditary properties:

e An upper bound and a lower bound which are the literals denoting the values delivered by lower
bound and upper bound, respectively, in the literal range.

e A number of values which is the value delivered by NUM (U) - NUM (L) + 1, where U and L denote
respectively the upper bound and lower bound of the discrete range mode.

* Itisanumbered range mode if its parent mode isanumbered set mode.

static conditions: The classes of upper bound and lower bound must be compatible and both must be compatible with
the discrete mode name, if specified.

Lower bound must deliver a value that is less than or equal to the value delivered by upper bound, and both
values must belong to the set of values defined by discrete mode name, if specified.

Theinteger literal expression in case of BIN must deliver a non-negative value.

If the parent mode is an integer mode, there must exist a predefined integer mode that contains the set of
values included between the lower bound and the upper bound.
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If the discrete range mode is of the form:
RANGE ( <literal range>) or <discrete mode name> ( <literal range>)

then the evaluation of the 1.lower bound, 2.upper bound, must not depend directly or indirectly on the value
of the 1L.lower bound, 2.upper bound of the discrete range mode. If the discrete range mode is of the form:

BIN ( <integer literal expression>)

then the evaluation of the integer literal expression must not depend directly or indirectly on the value of the
upper bound of the discrete range mode.

examples:
9.5 INT (2:max) 1.1
11.12 line (1.4

35 REAL MODES

syntax:
<real mode> ::= ()
<floating point mode> (1.1
| <floating point range mode> (1.2

semantics: A real mode specifies a set of numerical values which approximate a continuous range of real numbers.

351 Floating point modes

syntax:
<floating point mode> ::= (€]
<floating point mode name> (1.2)

predefined names. The name FLOAT is predefined as a floating point mode name.

semantics: A floating point mode defines a set of numeric approximations to a range of real values, together with their
minimum relative accuracy, between implementation defined bounds, over which the usua ordering and
arithmetic operations are defined (see section 5.3). This set contains only the values which can be represented
by the implementation. An implementation may define other floating point modes with different bounds
and/or precision (e.g. LONG_FLOAT, SHORT_FLOAT) that may also be used as parent modes for ranges
(see section 13.3). The & FLOAT mode is introduced as the virtual mode that contains al the values of all
predefined floating point modes defined by the implementation. The internal representation of a floating
point value is the floating point value itself. Note that & FLOAT is not a predefined mode (although it may
have the same bounds as those of a predefined floating point mode).

static properties: A floating point mode has the following hereditary properties:

e An upper bound and a lower bound which are the literals denoting respectively the highest and
lowest value defined by the floating point mode. They are implementation defined.

* A precision which is the maximum number of significant decimal digits defined by the mode.

e A positive lower limit and a negative upper limit which are the literals denoting respectively the
smallest positive value and the largest negative value exactly representable in the floating point mode,

zero excluded.
examples:
FLOAT (1.2)
352 Floating point range modes
syntax:
<floating point range mode> ::= (@]
<floating point mode name> ( <float value range>) (1.1
| RANGE ( <float value range> [ , <significant digits>] ) (1.2
| <floating point range mode name> (1.3
<float value range> ::= ()]
<lower float bound> : <upper float bound> (2.1)
<lower float bound> :: = 3
<floating point literal expression> (3.1
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<upper float bound> :: = 4
<floating point literal expression> 4.2
<significant digits> ::= 5)
<integer literal expression> (5.1

semantics. A floating point range mode defines the set of values ranging between the bounds specified (bounds
included) by float value range with the number of significant digits specified by significant digits. The range
is taken from a specific parent mode that determines the operations on and ordering of the range values. E.g.
RANGE (-10.0E1: 10.0E1, 2) denotes the values: -10.0, -9.9, ..., -0.11, -0.1, 0, 0.1, ..., 10.0.

static properties: A floating point range mode has the following non-hereditary property: it paseat mode, defined
as follows:

» If the floating point range mode is of the form:

<floating point mode name> ( <float value range> )

then if thefloating point mode name is not a floating point range mode, ther ent mode is thdloating
point mode name; otherwise it is thg@arent mode of thedloating point mode name.

» If the floating point range mode is of the form:
RANGE ( <float value range> [, <significant digits> ] )

then theparent mode depends on thesulting class of the classes of thgpper float bound andlower
float bound in theliteral range:

- if it is an M-derived class, where M is a floating point mode, thenptirent mode is a
predefined floating point mode chosen by the implementation such that it contains the range of
values delivered bfloat value range, with theprecision defined below

— otherwise it is theoot mode of the esulting class.

« If the floating point range mode isfl@ating point range mode name which is asynmode name, then
its parent mode is that of thdefining mode of thesynmode name; otherwise it is mewmode name
and then itparent mode is the virtually introducguhrent mode (see section 3.2.3).

A floating point range mode has the following hereditary properties:

e An upper bound and alower bound which are the literals denoting the values delivereddayer
float bound andupper float bound, respectively, in th8oat value range.

e A precision which is, if the floating point range mode is of the form:
RANGE ( <float value range> [, <significant digits>])
— the value delivered bsignificant digits if specified,
— otherwise the greateptecision of theprecisions of lower float bound andupper float bound.

Otherwise it is that of thitoating point mode name or thefloating point range mode name.

static conditions: Lower float bound must deliver a value that is less than or equal to the value deliverggbédyfloat
bound, and both values must belong to the set of values defin@ddbiyng point mode name, if specified.

There must exist aredefined floating point mode that contains baipper bound andlower bound with
the specifiecprecision.

The value delivered bsignificant digit must be greater than zero.

The evaluation of the thwer float bound, 2.upper float bound, must not depend directly or indirectly on the
value of the 1ower bound, 2.upper bound of the floating point range mode.

3.6 POWERSET MODES

syntax:
<powerset mode> ::= D
POWERSET <member mode> (1.2)
| <powerset mode name> (1.2
<member mode> ::= 2
<discrete mode> (2.1
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semantics: A powerset mode defines values that are sets of values of its member mode. Powerset values range over all
subsets of the member mode. The usual set-theoretic operators are defined on powerset values (see section

5.3).
The maximum number of values of the member mode isimplementation defined.
static properties: A powerset mode has the following hereditary property:

* A member mode which isthe member mode.

examples:
8.4 POWERSET CHAR
95 POWERSET INT (2:max)
9.6 number_list

37 REFERENCE M ODES

371 General

syntax:
<reference mode> ::=
<bound reference mode>
| <free reference mode>
| <row mode>

(1.2)
(1.1)
(1.2)

(1)
(1.2)
(1.2)
(1.3)

semantics. A reference mode defines references (addresses or descriptors) to referable locations. By definition, bound
references refer to locations of a given static mode; free references may refer to locations of any static mode;

rows refer to locations of a dynamic mode.

The dereferencing operation is defined on reference values (see sections 4.2.3, 4.2.4 and 4.2.5), delivering the

location that is referenced.

Two reference values are equal if and only if they both refer to the same location, or both do not refer to a

location (i.e. they are the value NULL).

3.7.2 Bound reference modes
syntax:
<bound reference mode> ::=
REF <referenced mode>

| <bound reference mode name>

<referenced mode> ::=
<mode>

semantics. A bound reference mode defines reference values to locations of the specified referenced mode.

static properties: A bound reference mode has the following hereditary property:

* A referenced mode which is the referenced mode.

examples:

10.42 REF cdll
3.7.3 Freereference modes
syntax:

<freereference mode> ::=

<free reference mode name>

predefined names. The name PTRis predefined as a fr ee r efer ence mode name.
semantics. A free reference mode defines reference values to locations of any static mode.

examples:
19.8 PTR
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374 Row modes
syntax:
<row mode> ::=
ROW <string mode>
| ROW <array mode>
| ROW <variant structure mode>
| <row mode name>

| SO/IEC 9496 : 1995 (E)

(1)
(1.2)
(1.2)
(1.3)
(1.4)

semantics. A row mode defines reference values to locations of dynamic mode (which are locations of some

parameterised mode with non constant parameters).
A row value may refer to:
 gtring locations with non constant string length;

« array locations with non constant upper bound;

» parameterised structure locations with non constant parameters.

static properties: A row mode has the following hereditary property:

« A referenced origin mode which is the string mode, the array mode, or the variant structure mode,

respectively.
static condition: The variant structure mode must be parameterisable.
examples:
8.6 ROW CHARS (max)

38 PROCEDURE MODES

syntax:
<procedure mode> ::=
PROC ([ <parameter list>]) [ <result spec> ]
[ EXCEPTIONS ( <exception list>) ]
| <procedure mode name>
<parameter list> ;=
<parameter spec>{ , <parameter spec>}*

<parameter spec> ::=

<mode> [ <parameter attribute> ]
<parameter attribute> ::=

IN|OUT |INOUT |[LOC[ DYNAMIC]
<result spec>::=

RETURNS ( <mode> [ <result attribute> ] )
<result attribute>::=

[ NONREF ] LOC[DYNAMIC]
<exception list>::=

<exception name> { , <exception name>} *

(1.2)

)
(1.1)
(1.2)

2
2.1)

©)
(3.1)

@
4.1)

®)
(5.1)

(6)
(6.1)

(7)
(7.1)

semantics. A procedure mode defines (general) procedure values, i.e. the objects denoted by general procedure names
that are names defined in procedure definition statements. Procedure values indicate pieces of code in a
dynamic context. Procedure modes allow for manipulating a procedure dynamically, e.g. passing it as a
parameter to other procedures, sending it as message value to a buffer, storing it into a location, etc.

Procedure values can be called (see section 6.7).

Two procedure values are equal if and only if they denote the same procedure in the same dynamic context, or

if they both denote no procedure (i.e. they are the value NULL).

static properties: A procedure mode has the following hereditary properties:

* A list of parameter specs, each consisting of a mode and possibly a parameter attribute. The

parameter specs are defined by the parameter list.

» An optional result spec, consisting of a mode and an optional result attribute. The result spec is

defined by the result spec.

e A possibly empty list of exception names which are those mentioned in the exception list.

ITU-T Rec. Z.200 (1993 E) 23



| SO/IEC 9496 : 1995 (E)

static conditions: All names mentioned in exception list must be different.

If LOC is specified in the parameter spec or in the result spec, the mode in it may have the non-value
property.

If DYNAMIC is specified in the parameter spec or in the result spec, the mode in it must be
parameterisable.

3.9 INSTANCE MODES

syntax:
<instance mode> ::= D
<instance mode name> 1.n

predefined names. The name INSTANCE is predefined as an instance mode name.

semantics: An instance mode defines values which identify processes. The creation of a new process (see sections
5.2.15, 6.13 and 11.1) yields a unique instance value as identification for the created process.

Two instance values are equal if and only if they identify the same process, or they both identify no process
(i.e. they arethe value NULL).

examples:
15.39 INSTANCE (1.1

310 SYNCHRONISATION MODES

3.10.1 General

syntax:
<synchronisation mode> ::= (1)
<event mode> (1.2)
| <buffer mode> 1.2

semantics. A synchronisation mode provides a means for synchronisation and communication between processes (see
chapter 11). There exists no expression in CHILL denoting a value defined by a synchronisation mode. As a
consequence, there are no operations defined on the values.

3.10.2 Event modes

syntax:
<event mode> ::= (€]
EVENT [ ( <event length>) ] (1.2)
| <event mode name> 1.2
<event length> ::= 2
<integer literal expression> (2.1

semantics: An event mode location provides a means for synchronisation between processes. The operations defined on
event mode locations are the continue action, the delay action and the delay case action, which are described
in section 6.15, 6.16 and 6.17, respectively.

The event length specifies the maximum number of processes that may become delayed on an event location;
that number is unlimited if no event length is specified.

An event mode location which contains the undefined value is an “empty” event, i.e., no delayed processes
are attached to it.

static properties: An event mode has the following hereditary property:
» An optionalevent length which is the value delivered leyent length.
static conditions: Theevent length must deliver a positive value.

The evaluation of thevent length must not depend directly or indirectly on the value ofeent length of
the event mode.

examples:
14.10 EVENT 1.1
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3.10.3 Buffer modes

syntax:

<buffer mode> ::= )
BUFFER [ ( <buffer length>) ] <buffer element mode> (1.1

| <buffer mode name> (1.2

<buffer length> ::= ()]

<integer literal expression> (2.1)

<buffer element mode> ::= 3

<mode> (31

semantics. A buffer mode location provides a means for synchronisation and communication between processes. The
operations defined on buffer locations are the send action and the receive case action, described in section
6.18 and 6.19, respectively.

The buffer length specifies the maximum number of values that can be stored in a buffer location; that number
isunlimited if no buffer length is specified.

A buffer mode location which contains the undefined value is an “empty” buffer, i.e. no delayed processes
are attached to it nor are there messages in the buffer.

static properties: A buffer mode has the following hereditary properties:
* An optionalbuffer length which is the value delivered logffer length.
* A buffer element mode which is théuffer element mode.
static conditions. Thebuffer length must deliver a non-negative value.
The buffer element mode must not have theon-value property.

The evaluation of thbuffer length must not depend directly or indirectly on the value oftthier length of
the buffer mode.

examples:
16.30 BUFFER (1) user_messages (1.1
16.34 user_buffers (1.2

311 INPUT-OUTPUT MODES

3111 General

syntax:
<input-output mode> ::= (€]
<association mode> (1.2)
| <access mode> (1.2
| <text mode> (1.3

semantics: An input-output mode provides a means for input-output operations as defined in chapter 7. There exists no
expression in CHILL denoting a value defined by an input-output mode. As a consequence, there are no
operations defined on the values.

examples:
20.17 ASSOCIATION (1.2)

3.11.2 Association modes

syntax:
<association mode> ::= (€]
<association mode name> (1.2

predefined names. The nameéASSOCIATION is predefined as aassociation mode name.

semantics. An association mode location provides a means for representing a relation to an outside world object. Such a
relation is called an association in CHILL; associations can be created by the built-in ASSD@& ATE and
be ended bypISIOCIATE.

An association mode location which contains timelefined value is “empty”, i.e. it does not contain an
association.

ITU-T Rec. Z.200 (1993 E) 25



ISO/IEC

3113
syntax:

9496 : 1995 (E)

Access modes
<access mode> ::= Q
ACCESS| ( <index mode>) ] [ <record mode>[ DYNAMIC]] (1.2)
| <access mode name> (1.2
<record mode> ::= 2
<mode> (2.1
<index mode> ::= ©)]
<discrete mode> (31
| <literal range> 3.2

derived syntax: Theindex mode notation literal range is derived from the discrete mode RANGE (literal range).

semantics; An access mode location provides a means for positioning a file and for transferring values from a CHILL

program to afile in the outside world, and vice versa.

An access mode may define a record mode; this record mode defines the root mode of the class of the values

that can be transferred via a location of that access mode to or from afile. The mode of the transferred value

may be dynamic, i.e. the size of the record may vary, when the attribute DY NAM I C is specified in the access

mode denotation or when record mode is a varying string mode. In the latter case DY NAMIC need not be
specified.

An access mode may also define an index mode; such an index mode defines the size of a “window” to (a part

of) the file, from which it is possible to read (or write) records randomly. Such a window can be positioned in

an (ndexable) file by the connect operation. If riadex mode is specified, then it is possible to transfer
records only sequentially.

An access mode location which contains thelefined value is “empty”, i.e., it is not connected to an
association.

static properties. An access mode has the following hereditary properties:

e An optional record mode which is thaecord mode if present. It is adynamic record mode if
DYNAMIC is specified or ifrecord mode is avarying string mode, otherwise it is static record
mode.

* An optionalindex mode which is théndex mode.

e Optionalupper bound andlower bound which are thaupper bound andlower bound of theindex
mode, if present.

static conditions: The optionalecord mode must not have theon-value property.

examples:

3114
syntax:

26

If DYNAMIC is specified, thaecord mode must bgarameterisable and must not be tagless structure
mode.

Theindex mode must neither be aumbered set mode nor aumbered range mode.
If the index mode is aliteral range of the form:
<lower bound> : <upper bound>

then, the evaluation of thel@wer bound, 2.upper bound, must not depend directly or indirectly on the value
of the 1llower bound, 2.upper bound of the access mode.

20.18 ACCESS (index_set) record_type (1.1
22.20 ACCESS string DYNAMIC (1.1
20.18 record_type (2.1
20.18 index_set (3.1
Text modes
<text mode> ::= D
TEXT ( <textlength>) [ <index mode>] [ DYNAMIC ] (1.2
<text length> ::= @)
<integer literal expression> (2.1
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semantics; A text mode location provides a means for transferring values represented in human-readable form from a
CHILL program to afile in the outside world, and vice versa. A text mode location has a text record sub-
location and an access sub-location. The text record sub-location isinitialised with an empty string.

A text mode has a text length, which defines the maximum length of the records that can be transferred, and
possibly an index mode that has the same meaning as for access modes. The actual length attribute of a text
mode location is the actual length of itstext record.

A text mode location which contains the undefined value has a text record sub-location that contains the
empty string and an access sub-location that contains the undefined value.

static properties: A text mode has the following hereditary properties:
« A text length which isthe value delivered by text length.
* A text record modewhichis CHARS (<text length>) VARYING.

* It has an access mode which is ACCESS [(<index mode>)] CHARS (<text length>) [DYNAMIC]
(<index mode> and DY NAMI C are part of the mode only if they are specified).

* Optional upper bound and lower bound which are the upper bound and lower bound of the index
mode, if present.

static conditions: If theindex modeisaliteral range of the form:
<lower bound> : <upper bound>

then, the evaluation of the 1.lower bound, 2.upper bound, must not depend directly or indirectly on the value
of the 1.lower bound, 2.upper bound of the text mode.

examples:
26.8 TEXT (80) DYNAMIC 1.1

312 TIMING MODES

3.12.1 General

syntax:
<timing mode> ::= 1)
<duration mode> (1.1
| <absolute time mode> (1.2

semantics: A timing mode provides a means for time supervision of processes as described in chapter 9. Timing values
are created by a set of built-in routines. The relational operators are defined on timing values.

3.12.2 Duration modes

syntax:
<duration mode> ::= (D)
<duration mode name> (1.1

predefined names. The name DURATION is predefined as a dur ation mode name.

semantics: A duration mode defines values which represent periods of time. The set of values defined by the duration
mode is implementation defined. An implementation may choose to represent duration values as pairs of
precision and value. Duration values are ordered in the intuitive way.

3.12.3 Absolute time modes

syntax:
<absolute time mode> ::= (@]
<absolute time mode name> (1.2)

predefined names: The name TIME is predefined as an absolute time mode name.

semantics. An absolute time mode defines values which represent points in time. The set of values defined by the
absolute time mode is implementation defined. Absolute time values are ordered in the intuitive way.
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3.13

3131
syntax:

COMPOSITE MODES

General
<composite mode> ::= 1)
<string mode> (1.1
| <array mode> (1.2)
| <structure mode> (1.3

semantics. A composite mode defines composite values, i.e. values consisting of sub-components which can be

3.13.2
syntax:

accessed or obtained (see sections 4.2.6-4.2.10 and 5.2.6-5.2.10).

String modes
<string mode> ::= (0]
<string type> ( <string length>) [ VARYING ] (1.2)
| <parameterised string mode> (1.2
| <string mode name> (1.3
<parameterised string mode> ::= 2
<origin string mode name> ( <string length>) (2.1
| <parameterised string mode name> (2.2
<origin string mode name> ;= (©)]
<string mode name> (3.1
<string type> ::= ©)
BOOLS (4.2
| CHARS 4.2
<string length> ::= ®)
<integer literal expression> (5.1

semantics: A fixed string mode defines bit or character string values of alength indicated or implied by the string mode.

A varying string mode defines bit or character string values whose actual length ranges from O to the string
length. The length is known only at runtime from the value of the attribute actual length. For a fixed string
mode the actual length is always equal to the string length. Character strings are sequences of character
values; bit strings are sequences of boolean values.

String values are either empty or have string elements which are numbered from 0 upward.

The string values of a given string mode are totally-ordered in accordance with the ordering of the component
values and the following definition.

Two strings sand t are equal if and only if they are empty or have the same length | and s(i) = t(i) for all 0 <i
<I. A string s precedes t when either:

» thereexistsanindex j such that s(j) <t(j)and s(0:j-1)=t(0:j-1),or
e LENGTH (s) < LENGTH (t) and s=t(0 UP LENGTH (9)).

The concatenation operator is defined on string values. The usual logical operators are defined on hit string
values and operate between their corresponding elements (see section 5.3).

The maximum lenght of string modes isimplementation defined.

static properties: A string mode has the following hereditary properties:

28

¢ A string length which isthe value delivered by string length.
¢ An upper bound and a lower bound which are the values delivered by string length - 1 and O,
respectively.

* An element mode which is either M or READ M, where M is BOOL or CHAR depending on whether
string type specifies BOOLS or CHARS, or the element mode of the origin string mode name,
respectively. The element mode will be READ M if and only if the string mode is a read-only mode;
in such caseit isan implicit read-only mode.

e Itisavarying string mode if VARYING is specified or if the origin string mode name denotes a
varying string mode; otherwiseit is afixed string mode.
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A string mode is parameterised if and only if it isa parameterised string mode.

A parameterised string mode has an origin string mode which is the mode denoted by origin string mode
name.

A varying string mode has the following non-hereditary property: it has a component mode, defined as
follows:

« |f thevarying string mode is of the form:
<string type> ( <string length>) VARYING
then it is <string type> ( <string length>).
» |f thevarying string mode is of the form:
<origin string mode name> ( <string length>)

then the component mode is & name ( string length ), where & name is a virtually introduced synmode
name synonymous with the component mode of the origin string mode name.

« |f thevarying string mode is a string mode name which is a synmode name, then its component mode
is that of the defining mode of the synmode name; otherwise it is a newmode name and then its
component mode is the virtually introduced component mode (see section 3.2.3).

static conditions: The string length must deliver a non-negative value.

The value delivered by the string length directly contained in a parameterised string mode must be less than
or equal to the string length of the origin string mode name. This condition applies only to the
parameterised string modes that are not introduced virtually.

The evaluation of the string length must not depend directly or indirectly on the value of the string length of
the string mode.

examples:
7.51 CHARS (20) 1.1
22.22 CHARS (20) VARYING 1.1

3.13.3  Array modes

syntax:

<array mode> ::= )

ARRAY ( <index mode> { , <index mode> }* )
<element mode> { <element layout> }* (1.1
| <parameterised array mode> (1.2
| <array mode name> (1.3
<parameterised array mode> ::= 2
<origin array mode name> ( <upper index>) (2.1
| <parameterised array mode name> (2.2
<origin array mode name> ::= (©)]
<array mode name> (3.1
<upper index> ::= 4
<discrete literal expression> (4.0
<element mode> ::= 5)
<mode> (5.1

derived syntax: An array mode with more than one index mode (denoting a multi-dimensional array), is derived syntax
for an array mode with an element mode that is an array mode. For example:

ARRAY (1:20,1:10) INT
is derived from:
ARRAY (RANGE (1:20)) ARRAY (RANGE (1:10)) INT

Only if this derived syntax is used, is more than one element layout occurrence allowed. The number of
element layout occurrences must be less than or equal to the number of index mode occurrences. In that case,
the leftmost element layout is associated with the innermost element mode, etc.
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semantics. An array mode defines composite values, which are lists of values defined by its element mode. The physical
layout of an array location or value can be controlled by element layout specification (see section 3.13.5).
Two array values are equa if and only if they have the same number of elements and the corresponding
element values are equal.

The maximum number of elements of array modes isimplementation defined.
static properties: An array mode has the following hereditary properties:

* Anindex mode which is the index mode if it is not a parameterised array mode, otherwise the index
mode is the discrete range mode constructed as:

& name (lower bound : upper bound)

where &name is a virtua synmode name synonymous with the index mode of origin array mode
name, lower bound is the lower bound of the index mode of the origin array mode name and upper
bound is the upper index.

e An upper bound and a lower bound which are the upper bound and the lower bound of its index
mode, respectively.

* An element mode which is either M or READ M, where M is the element mode, or the element mode
of the origin array mode name, respectively. The element mode will be READ M if and only if M is
not aread-only mode and the array mode is aread-only mode. The element mode is an implicit read-
only modeif itisREAD M.

» An element layout which, if it is a parameterised array mode, is the element layout of its origin
array mode name; otherwise it is either the specified element layout, or the implementation defaullt,
which is either PACK or NOPACK.

* A number of elementswhich isthe value delivered by:
NUM (upper bound) - NUM (lower bound) + 1

where upper bound and lower bound are respectively the upper bound and the lower bound of its
index mode.

* Itisamapped modeif element layout is specified and is a step.
An array mode is parameterised if and only if it is a parameterised array mode.

A parameterised array mode has an origin array mode which is the mode denoted by origin array mode
name.

static conditions. The class of upper index must be compatible with the index mode of the origin array mode name
and the value delivered by it must lie in the range defined by that index mode.

If the array mode is a parameterised array mode, the evaluation of the upper index must not depend directly
or indirectly on the value of the upper bound of the array mode. If the array mode is neither a parameterised
array mode nor an array mode name, and if the index mode is aliteral range of the form:

<lower bound> : <upper bound>

then, the evaluation of the 1.lower bound, 2.upper bound, must not depend directly or indirectly on the value
of the 1.lower bound, 2.upper bound of the array mode.

examples:
5.27 ARRAY (1:16) STRUCT (c4, c2, c1 BOOL) (1.2
11.12 ARRAY (line) ARRAY (column) square (1.1
11.17 board (1.3

3.134 Structure modes

syntax:

<structure mode> ::= D
STRUCT (<fidld>{ , <field>}* ) (1.2)

| <parameterised structure mode> (1.2

| <structure mode name> (1.3

<fidd>::= ()]

<fixed field> (2.1

| <alternative field> (2.2
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<fixed field> ::= ©)
<field name defining occurrence list> <mode> [ <field layout> ] (3.1
<alternativefield> ::= 4

CASE [ <taglist>] OF
<variant alternative> { , <variant alternative>}*

[ ELSE [ <variant field> { , <variant field>}* ] ] ESAC 4.1

<variant alternative> ::= 5)
[ <case label specification>] : [ <variant field> { , <variant field> }* ] (5.2

<tag list> ::= (6)
<tag field name> { , <tag field name>}* (6.1

<variant field> ::= @)
<field name defining occurrence list> <mode> [ <field layout> ] (7.1
<parameterised structure mode> ::= (8
<origin variant structure mode name> ( <literal expression list>) (8.1

| <parameterised structure mode name> (8.2
<origin variant structure mode name> ;= 9
<variant structure mode name> (9.1

<literal expression list> ::= (10)
<discrete literal expression> { , <discrete literal expression> }* (10.2)

derived syntax: A fixed field occurrence or variant field occurrence, where field name defining occurrence list consists
of more than one field name defining occurrence, is derived syntax for several fixed field occurrences or
variant field occurrences with one field name defining occurrence respectively, each with the specified mode
and optional field layout. In the case of field layout, thisfield layout must not be pos. For example:

STRUCT (1, BOOL PACK)
is derived from:
STRUCT (I BOOL PACK, JBOOL PACK)

semantics. Structure modes define composite values consisting of a list of values, selectable by a component name.
Each value is defined by a mode that is attached to the component name. Structure values may reside in
(composite) structure locations, where the component name serves as an access to the sub-location. The
components of a structure value or location are called fields and their names field names.

There are fixed structures, variant structures and parameterised structures.

Fixed structures consist only of fixed fields, i.e. fields that are always present and that can be accessed
without any dynamic check.

Variant structures have variant fields, i.e. fields that are not always present. For tagged variant structures,
the presence of these fields is known only at run time from the value(s) of certain associated fixed field(s)
caled tag fields. Tag-less variant structures do not have tag fields. Because the composition of a variant
structure may change during run time, the size of a variant structure location is based upon the largest choice
(worst case) of variant alternatives.

In an alternative field the variant alternative chosen is that for which values give in the case label
specification match; if no value match, the variant alternative following EL SE (which will be present) is
chosen.

A parameterised structure is determined from a variant structure mode for which the choice of variant
aternatives is statically specified by means of literal expressions. The composition is fixed from the point of
the creation of the parameterised structure and may not change during run time. The tag fields, if present, are
read-only and automatically initialised with the specified values. For a parameterised structure location, a
precise amount of storage can be alocated at the point of declaration or generation. Note that dynamic
parameterised structure modes also exist; their semantics are defined in section Error! Reference source
not found..

The layout of a structure location or value can be controlled by means of a field layout specification (see
section 3.13.5).

Two structure values are equal if and only if the corresponding component values are equal. However, if the
structure values are tag-less variant structure values, the result of comparison isimplementation defined.
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For a mode with the tagged parameterised property the undefined value denotes a value in which tag field
sub-values are equal to the corresponding parameter values and al the other ones are equal to the undefined
value.

static properties:
general:
A structure mode has the following hereditary properties:

» Itisafixed structure mode if it is a structure mode that does not directly contain an alternative field
occurrence.

e |t is a variant structure mode if it is a structure mode and contains at least one alternative field
occurrence.

* Itisaparameterised structure modeif it is a parameterised structure mode.

* Ithasaset of field names. This set is defined below for the different cases. A nameis said to be afield
name if and only if it is defined in a field name defining occurrence list in fixed fields or variant fields
in a structure mode.

Each fixed field, variant field and therefore each field name of a structure mode has a field mode
attached that is either M or READ M, where M is the mode in the fixed field or variant field. The field
mode is READ M if M is not a read-only mode and either the structure mode is a read-only mode, or
the field is a tag field of a parameterised structure mode. The field mode is an implicit read-only
mode if itiSREAD M.

A fixed field, variant field and therefore a field name of a given structure mode has a field layout
attached to it that is the field layout in the fixed field or variant field, if present; otherwise it is the
default field layout, which is either PACK or NOPACK.

* Itisamapped modeif itsfield names have afield layout that is pos.
fixed structures:
A fixed structure mode has the following hereditary property:

e A set of field names which is the set of names defined by any field name defining occurrence list in
fixed fields. These field names are fixed field names.

variant structures:
A variant structure mode has the following hereditary properties:

* A st of field names which is the union of the set of names defined by any field name defining
occurrence list in fixed fields and the set of hames defined by any field name defining occurrence list
in aternative fields. Field names defined by afield name defining occurrence list in fixed fields are the
fixed field names of the variant structure mode; its other field names are the variant field names.

A field name of avariant structure modeisatag field name if and only if it occursin any tag list of an
aternative field. Alternative fieldsin which no tag list are specified are tag-less alternative fields.

* A variant structure mode is atag-less variant structure mode if all its alternative field occurrences are
tag-less. Otherwise it isatagged variant structure mode.

e A variant structure mode is a parameterisable variant structure mode if it is either atagged variant
structure mode or atag-less variant structure mode where for each of the alternative field occurrences
acase label specification is given for all the variant alternative occurrencesin it.

e A parameterisable variant structure mode has alist of classes attached, determined as follows:

— if itisatagged variant structure mode, the list of M; -value classes, where M; are the modes of
the tag field names in the order that they are defined in fixed fields;

- ifitisatag-lessvariant structure mode, thelist is built up from the individual resulting lists of
classes of each alternative field by concatenating them in the order as the alternative fields
occur. The resulting list of classes of an alternative field occurrence is the resulting list of
classes of thelist of case label specification occurrencesin it (see section 12.3).

parameterised structures:
A parameterised structure mode has the following hereditary properties:

e Anorigin variant structure mode which is the mode denoted by origin variant structure mode name.
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» A set of field names which is the union of the set of fixed field names of its origin variant structure
mode and the set of those variant field names of its origin variant structure mode that are defined in
variant alternative occurrences that are selected by the list of values defined by literal expression list.

e Theset of tag field names of a parameterised structure mode is the set of tag field names of its origin
variant structure mode.

» A list of values attached, defined by literal expression list.

» Itisatagged parameterised structure mode if its origin variant structure mode is a tagged variant
structure mode; otherwise the parameterised structure mode istag-less.

For dynamic parameterized structure modes see section Error! Refer ence sour ce not found..
static conditions:

general:

All field names of a structure mode must be different.

If any field has afield layout which is pos, al the fields must have afield layout which must be pos.

variant structures:

A tag field name must be a fixed field name and must be textually defined before all the alternative field
occurrences in whose tag list it is mentioned. (As a consequence, a tag field precedes all the variant fields
that depend upon it). The mode of atag field name must be a discrete mode.

The mode of variant field may have neither the non-value property nor the tagged parameterised property.

In a variant structure mode the alternative field occurrences must be either al tagged or al tag-less. For
tagged alternative fields, case label specification must be specified in each variant alternative. For tag-less
alternative fields, case label specification may be omitted in all variant alternative occurrences together, or
must be specified for each variant alternative occurrence.

If, for atag-less variant structure mode, any of its alternative fields has case label specification given, al its
alternative fields must have case label specification.

For alternative fields, the case selection conditions must be fulfilled (see section 12.3), and the same
completeness, consistency and compatibility requirements must hold as for the case action (see section 6.4).
Each of the tag field names of tag list (if present) serves as a case selector with the M-value class, where M is
the mode of the tag field name. In the case of tag-less aternative fields, the checks involving the case selector
areignored.

For a parameterisable variant structure mode none of the classes of its attached list of classes may be the all
class. (This condition is automatically fulfilled by atagged variant structure mode.)

parameterised structures:
The origin variant structure mode name must be par ameterisable.

There must be as many literal expressionsin the literal expression list as there are classes in the list of classes
of the origin variant structure mode name. The class of each literal expression must be compatible with the
corresponding (by position) class of the list of classes. If the latter class is an M-value class, the value
delivered by the literal expression must be one of the values defined by M.

examples:
3.3 STRUCT (re, imINT) (1.2)
11.7 STRUCT (status SET (occupied, free),
CASE status OF
(occupied): p piece,
(free):
ESAC) (1.2)
2.6 fraction 1.3
11.7 status SET (occupied, free) (3.1
11.8 status (6.1
11.9 p piece (7.0
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3.135
syntax:

Layout description for array modes and structure modes

<element layout> ::= D
PACK | NOPACK | <step> (1.2)

<field layout> ::= 2
PACK | NOPACK | <pos> (2.1)
<step>::= (©)
STEP (<pos> [, <step size>] ) (3.1

<pos> ::= 4
POS ( <word>, <start bit>, <length>) (4.0

| POS(<word>[, <start bit>[ : <end bit>]1]) 4.2
<word> ::= ®)
<integer literal expression> (5.2
<stepsize> ::= (6)
<integer literal expression> (6.2)

<start bit>::= @
<integer literal expression> (7.0

<end bit> ::= ()
<integer literal expression> (8.1

<length> ::= ©)
<integer literal expression> (9.0

semantics: It is possible to control the layout of an array or a structure by giving packing or mapping information in its
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mode. Packing information is either PACK or NOPACK, mapping information is either step in the case of
array modes, or posin the case of structure modes. The absence of element layout or field layout in an array or
structure mode will always be interpreted as packing information, i.e. either as PACK or as NOPACK.

If PACK is specified for elements of an array or fields of a structure, it means that the use of memory spaceis
optimised for the array elements or structure fields, whereas NOPACK implies that the access time for the
array elements or the structure fields is optimised. NOPACK also impliesreferable.

The PACK, NOPACK information is applied only for one level, i.e. it is applied to the elements of the array
or fields of the structure, not for possible components of the array element or structure field. The layout
information is always attached to the nearest mode to which it may apply and which does not already have
layout attached. For example, if the default packing is NOPACK:

STRUCT (fARRAY (0:1) mPACK)
is equivalent to:
STRUCT (f ARRAY (0:1) mPACK NOPACK)

It is also possible to control the precise layout of an array or a structure by specifying positioning information
for its components in the mode. This positioning information is given in the following ways:

» For array modes, the positioning information is given for all elements together, in the form of a step
following the array mode.

» For structure modes, the positioning information is given for each field individualy, in the form of a
pos, following the mode of the field.

Mapping information with posis given in terms of word and bit-offsets. A pos of the form:
POS (<word> , <dtart hit>, <length>)

defines a bit-offset of
NUM (word) * WIDTH + NUM (start hit)

and a length of NUM (length) bits, where WIDTH is the (implementation defined) number of bits in a word,
and word is an integer literal expression.

When pos is specified in field layout it defines that the corresponding field starts at the given bit-offset from
the start of each location of the structure mode, and occupies the given length.
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A step of the form:
STEP (<pos> , <step size>)

defines a series of bit-offsets b for i taking values 0 to n-1 where n is the number of elementsin the array
and

b =i* NUM (step size).

The j-th element of the array starts at a bit-offset of p + bj from the start of each location of the array mode,
where p is the bit-offset specified in pos. Each element occupies the length given in pos.

Defaults
The notation:
POS (<word> , <start bit>: <end bit>)
issemantically equivalent to:
POS (<word> , <start bit>, NUM (<end hit>) - NUM (<start bit>) + 1)
The notation:
POS (<word> , <start bit>)
is semantically equivalent to:
POS (<word> , <start bit>, BSZE)

where BSIZE is the minimum number of bits which is needed to be occupied by the component for which the
posis specified.

The notation:
POS (<word>)
is semantically equivalent to:
POS (<word>, 0, BS ZE)
The notation:
STEP (<pos>)
is semantically equivalent to
STEP (<pos>, SSZE)
where SSZE is the <length> specified in pos or derivable from pos by the above rules.

static properties: For any location of an array mode the element layout of the mode determines the referability of its
sub-locations (including sub-arrays, array slices) asfollows:

« either al sub-locations are r efer able, or none of them are;
« if the element layout isSNOPACK all sub-locations are refer able.

For any location of a structure mode, the referability of the structure field selected by a field name is
determined by the field layout of the field name as follows:

» thefield nameisreferableif thefield layout is NOPACK.

static conditions: If the element mode of a given array mode or the field mode of a field name of a given structure
mode, isitself an array or structure mode, then it must be a mapped mode if the given array or structure mode
ismapped.

NUM (word), NUM (start bit), NUM (end bit), NUM (length) and NUM (step size) = 0;
NUM (start bit) and NUM (end bit) < WIDTH; NUM (start bit) < NUM (end hit).

Each implementation defines for each mode a minimum number of bits its values need to occupy; call this the
minimum bit occupancy. For discrete modes it is any number of bits not less than log to the base two of the
number of values of the mode. For array modes it is the offset of the element of the highest index plus its
occupied hits. For structure modesiit is the offset of the highest bit occupied.

For each pos the length specified must not be less than the minimum bit occupancy of the mode of the
associated field or array components.

For each mapped array mode the step size must not be less than the length given or implied in the pos.
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Consistency and feasibility
Consistency:

No component of a structure may be specified such that it occupies any bits occupied by another component
of the same object except in the case of two variant field names defined in the same alternative field
occurrence; however, in the latter case the variant field names may not both be defined in the same variant
alternative nor both following EL SE.

Feasibility:

There are no language defined feasibility requirements, except for the one that can be deduced from the rule
that the referability of a sub-location of any (referable or non-referable) location is determined only by the
(element or field) layout, which is a property of the mode of the location. This places some restrictions on the
mapping of components that themselves have r efer able components.

examples:
175 PACK 1.1
19.14 POS (1,0:15) 4.2

314 DYNAMIC MODES

3.14.1 General

A dynamic mode is a mode of which some properties are known only at run time. Dynamic modes are always
parameterised modes with one or more run-time parameters. For description purposes, virtual denotations are introduced
in this document. These virtual denotations are preceded by the ampersand symbol (&) to distinguish them from actual
notations which appear in a CHILL program text.

3142  Dynamic string modes
virtual denotation: &<origin string mode name> ( <integer expression>)
semantics. A dynamic string mode is a parameterised string mode with non constant length.

static properties. Dynamic string modes have the same properties as string modes, except for the properties described
below.

dynamic properties.

e A dynamic string mode has a dynamic string length which is the value delivered by integer
expression.

e A dynamic string mode has an upper bound and a lower bound which are the values delivered by
string length -1 and O, respectively.

3.14.3  Dynamic array modes
virtual denotation; &<origin array mode name> ( <discrete expression> )
semantics. A dynamic array mode is a parameterised array mode with non constant upper bound.

static properties: Dynamic array modes have the same properties as array modes, except for the properties described
below.

dynamic properties:

* A dynamic array mode has a dynamic upper bound which is the value delivered by discrete
expression, and adynamic number of elements which isthe value delivered by

NUM (discrete expression) - NUM (lower bound) + 1

where lower bound isthe lower bound of the origin array mode name.
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3.144  Dynamic parameterised structure modes
virtual denotation: & <origin variant structure mode name> ( <expression list>)

semantics. A dynamic parameterised structure mode is a parameterised structure mode with non constant
parameters.

static properties: The static properties of a dynamic parameterised structure mode are those of a static parameterised
structure mode except for the following:

* The set of field names of a dynamic parameterised structure mode is the set of field names of its
origin variant structure mode.

dynamic properties:

e A dynamic parameterised structure mode has a list of values attached that is the list of values
delivered by the expressions in the expression list.
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4 LOCATIONSAND THEIR ACCESSES

4.1 DECLARATIONS

411 General

syntax:
<declaration statement> ::= D
DCL <declaration> { , <declaration> }* ; (1.2)
<declaration> ::= 2
<location declaration> (2.1
| <loc-identity declaration> (2.2

semantics. A declaration statement declares one or more names to be an access to alocation.

examples:
6.9 DCL j INT := julian_day number,
d, m yINT; (1.1)
11.36 starting_square LOC := b(m.lin_1)(m.col_1) (2.2
41.2 L ocation declarations
syntax:
<location declaration> ::= Q)
<defining occurrence list> <mode> [ STATIC ] [ <initialisation> ] (1.1
<initialisation> ::= 2
<reach-bound initialisation> (2.1
| <lifetime-bound initialisation> (2.2
<reach-bound initialisation> ::= 3
<assignment symbol> <value> [ <handler> ] (3.1
<lifetime-bound initialisation> : ;= 4
INIT <assignment symbol> <constant value> (4.2)

semantics: A location declaration creates as many locations as there are defining occurrences specified in the defining
occurrence list.

With reach-bound initialisation, the value is evaluated each time the reach in which the declaration is placed
is entered (see section 10.2) and the delivered value is assigned to the location(s). Before the value is
evaluated the location(s) contain(s) the undefined value.

With lifetime-bound initialisation, the value yielded by the constant value is assigned to the location(s) only
once at the beginning of the lifetime of the location(s) (see sections 10.2 and 10.9).

Specifying no initialisation is semantically equivalent to the specification of a lifetime-bound initialisation
with the undefined value (see section 5.3.1).

The meaning of the undefined value as initialisation for alocation which has attached a mode with the tagged
parameterised property or the non-value property isasfollows:

« tagged parameterised property: the created tag field sub-location(s) are initialised with their
corresponding parameter value.

e non-value property:

— the created event and/or buffer (sub-)location(s) are initialised to “empty”, i.e. no delayed
processes are attached to the event or buffer nor are there messages in the buffer;

— the created association (sub-)location(s) are initialised to “empty”, i.e. they do not contain an
association;

— the created access (sub-)location(s) are initialised to “empty”, i.e. they are not connected to an
association;
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— the created text (sub-)location(s) have a text record sub-location which is initialised with an
empty string and an access sub-location which is initialised with “empty”, i.e. it is not
connected to an association.

¢ The semantics #@TATIC andhandler can be found in section 10.9 and chapter 8, respectively.

static properties. A defining occurrence in alocation declaration defines docation name. The mode attached to the
location name is thenode specified in théocation declaration. A location name isr eferable.

static conditions: The class of thealue or constant value must becompatible with themode and the delivered value
should be one of the values defined byriuele, or theundefined value.

If the mode has theread-only property, initialisation must be specified. If thenode has thenon-value
property, reach-bound initialisation must not be specified.

If initialisation is specified, the@alue must beregionally safe for the location (see section 11.2.2).

dynamic conditions: In the case ofeach-bound initialisation, the assignment conditions edlue with respect to the
mode apply (see section 6.2).

examples:
5.7 k2, x, w, t, s, r BOOL (1.1
6.9 := julian_day_number (3.1
84 INIT :=[AZ] (4.2)
413 L oc-identity declarations
syntax:
<loc-identity declaratior ::= 1)
<defining occurrence list<mode- LOC [ DYNAMIC ]
<assignment symbeklocatior> [ <handler ] (1.1)

semantics. A loc-identity declaration creates as many access names to the specified location as there are defining
occurrencesspecified in the defining occurrence listThe mode of the location may be dynamic only if
DYNAMIC is specified.

If the locationis evaluated dynamically, this evaluation is done each time the reach in which the loc-identity
declaration is placed is entered. In this case, a declared name denotes an undefined location prior to the first
evaluation during the lifetime of the access denoted by the declared name (see sections 10.2 and 10.9).

static properties. A defining occurrencén aloc-identity declaratiordefines aloc-identity name. The mode attached to
a loc-identity name is, if DYNAMIC is not specified, the mode specified in the loc-identity declaration
otherwise it is the dynamically parameterised version of it that has the same parameters as the mode of the
location

A loc-identity nameisreferableif and only if the specified locationisreferable.
static conditions: If DYNAMIC is specified in the loc-identity declarationthe modemust be parameterisable. The
specified modemust be dynamic read-compatible with the mode of the locationif DYNAMIC is specified

and read-compatible with the mode of the location otherwise.

The locationmust not be a string elemenbr string slicein which the modeof the string locationis avarying
string mode.

dynamic conditions: The RANGEFAILor TAGFAIL exception occurs if DYNAMIC is specified, and the above-
mentioned dynamic read-compatible check fails.

examples:
11.36 starting square OC := b(m.lin_1)(m.col_1) (1.2)
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4.2 LOCATIONS

42.1 General

syntax:

<location> ::= (@)
<access hame> (D]

| <dereferenced bound reference> (1.2

| <dereferenced free reference> (1.3

| <dereferenced row> (1.4

| <string element> (1.5)

| <string slice> (1.6)

| <array element> a7

| <arraydlice> (1.8)

| <structurefield> (2.9

| <location procedure call> (1.10)

| <location built-in routine call> (1.11)

| <location conversion> (1.12)

semantics; A location is an object that can contain values. Locations have to be accessed to store or obtain avalue.
static properties. A location has the following properties:

* A mode, as defined in the appropriate sections. This mode is either static or dynamic.

e Itisstatic or not (see section 10.9).

* ltisintra-regional or extra-regional (see section 11.2.2).

» Itisreferable or not. The language definition requires certain locations to be referable and others to
be not referable as defined in the appropriate sections. An implementation may extend referability to
other locations except when explicitly disallowed.

422 Access hames

syntax:
<access hame> ::= (D)
<location name> (1.2)
| <loc-identity name> (1.2
| <location enumeration name> (1.3
| <location do-with hame> (1.4)

semantics: An access name delivers alocation. An access name is one of the following:

» alocation name, i.e. a name explicitly declared in a location declaration or implicitly declared in a
formal parameter without the L OC attribute;

e aloc-identity name, i.e. a name explicitly declared in a loc-identity declaration or implicitly declared
in aformal parameter with the LOC attribute;

» alocation enumeration name, i.e. aloop counter in alocation enumeration;
» alocation do-with name, i.e. afield name used as direct accessin the do action with awith part.

If the location denoted by a location do-with name is a variant field of atag-less variant structure location, the
semantics are implementation defined.

static properties: The (possibly dynamic) mode attached to an access name is the mode of the location name, loc-
identity name, location enumeration name or location do-with name, respectively.

An access name is referable if and only if it is a location name, a referable |oc-identity name, a referable
location enumeration name, or ar efer able [ocation do-with name.
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dynamic conditions. When accessing via a loc-identity name, it must not denote an undefined location.

When accessing via aloc-identity name a location which is a variant field, the variant field access conditions
for the location must be satisfied (see section 4.2.10). Accessing via a location do-with name causes a
TAGFAIL exception if the denoted location is a variant field and the variant field access conditions for the
location are not satisfied.

examples:
412 a (1.2)
11.39 starting (1.2
15.35 each (1.3
5.10 cl (1.4
423 Dereferenced bound references
syntax:
<dereferenced bound reference> ::= ()

<bound reference primitive value> —> [ <mode name> | (1.2)
semantics: A dereferenced bound reference delivers the location that is referenced by the bound reference value.
static properties: The mode attached todereferenced bound reference is themode name if specified, otherwise the

referenced mode of the mode of thieound reference primitive value. A dereferenced bound reference is

referable.

static conditions. The bound reference primitive value must bestrong. If the optionalmode name is specified, it must
beread-compatible with thereferenced mode of the mode of tH@und reference primitive value.

dynamic conditions: The lifetime of the referenced location must not have ended.
The EMPTY exception occurs if thisound reference primitive value delivers the valu®ULL.

If the referenced location is wariant field, the variant field access conditions for the location must be
satisfied (see section 4.2.10).

examples:
10.54 p-> 1.1
424 Dereferenced freereferences
syntax:
<dereferenced freereference> ::= ()
<free reference primitive value> —> <mode name> (1.1

semantics: A dereferenced free reference delivers the location that is referenced by the free reference value.

static properties. The mode attached todareferenced free reference is themode name. A dereferenced free reference
isreferable.

static conditions: Thefree reference primitive value must bestrong.
dynamic conditions: The lifetime of the referenced location must not have ended.
The EMPTY exception occurs if thigee reference primitive value delivers the valu&lULL.
The mode name must be ead-compatible with the mode of the referenced location.
If the referenced location is ariant field, the variant field access conditions for the location must be

satisfied (see section 4.2.10).
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425 Dereferenced rows
syntax:
<dereferenced row> ::= D
<row primitive value> —> (1.2)
semantics: A dereferenced row delivers the location that is referenced by the row value.
static properties: The dynamic mode attached tdexeferenced row is constructed as follows:

&<origin mode name> ( <parameter> { , <parameter> }*)

where &origin mode name is a virtualsynmode namesynonymous with thereferenced origin mode of the
mode of theow primitive value and where the parameters are, depending oretbeenced origin mode:

e the dynamicstring length, in the case of a string mode;
» the dynamiaipper bound, in the case of an array mode;

» the list of values associated with the mode of the parameterised structure location, in the case of a
variant structure mode.

A dereferenced row is referable.

static conditions: Therow primitive value must bestrong.

dynamic conditions. The lifetime of the referenced location must not have ended.
The EMPTY exception occurs if theow primitive value deliversNULL.

If the referenced location is wariant field, the variant field access conditions for the location must be
satisfied (see section 4.2.10).

examples:
8.11 input -> (1.0

426 String elements

syntax:
<string element> ::= 1)
<string location> ( <start element>) (1.n
<start element> ::= 2
<integer expression> (2.1)

semantics. A string element delivers a (sub-)location which is the element of the specified string location indicated by
start element.

static properties. The mode attached to theing element is theelement mode of the mode of thairing location.
If the mode of thestring location is avarying string mode, then tharing element is notrefer able.
dynamic conditions. TheRANGEFAIL exception occurs if the following relation does not hold:
0<NUM (start element) <L - 1
Wherel is theactual length of thestring location.
examples:

18.16 string ->(i) (1.1)
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427 String dlices

syntax:

<string slice> ::= (0]

<string location> ( <left element> : <right element> ) (1.n

| <string location> ( <start element> UP <dlice size>) (1.2

<left element> ::= 2

<integer expression> (2.1

<right element> ::= 3)

<integer expression> 3.1

<dlicesize> ::= 4

<integer expression> (4.2

semantics. A string dice delivers a (possibly dynamic) string location that is the part of the specified string location
indicated by left element and right element or start element and slice size. The (possibly dynamic) length of
the string slice is determined from the specified expressions.

A string dlice in which the right element delivers a value which is less than that delivered by the left element
or in which dlice size delivers a non positive value denotes an empty string.

static properties. The (possibly dynamic) mode attached to a string dlice is a parameterised string mode constructed
as.

& name (string size)

where &name is a virtual synmode name synonymous with the (possibly dynamic) mode of the string
location if it isafixed string mode, otherwise with the component mode, and where string size is either

NUM (right element) - NUM (left element) + 1
or
NUM (slice size).
However, if an empty string is denoted, string size is 0. The mode attached to a string slice is static if string
size is literal, i.e. left element and right element are literal or dice size is literal; otherwise the mode is
dynamic.
If the mode of the string location is avarying string mode, then the string sliceis not referable.
static conditions: The following relations must hold:
0< NUM (left lement) <L - 1
0<NUM (right lement) <L - 1
0< NUM (start dlement) <L - 1

NUM (start element) + NUM (dlicesize) <L

where L is the actual length of the string location. If L and the value all integer expressions are known
statically, the relations can be checked statically.

dynamic conditions. The RANGEFAIL exception occurs if adynamic part of the check of the relations above fails.
examples:

18.26 blanks (count : 9) (1.1
18.23 string ->(scanstart UP 10) (1.2
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428 Array elements

syntax:
<array element> ::= (1)
<array location> ( <expression list>) (1.1
<expression list> ::= 2
<expression> { , <expression> }* (2.1)

derived syntax: The notation: ( <expression list>) is derived syntax for:
(<expression>) { ( <expression>) }*

where there are as many parenthesised expressions as there are expressions in the expression list. Thus an
array element in the strict syntax has only one (index) expression.

semantics: An array element delivers a (sub-)location which is the element of the specified array location indicated by
expression.

static properties. The mode attached to the array element is the element mode of the mode of the array location.
An array element isreferable if the element layout of the mode of the array location is NOPACK.

static conditions. The class of the expression must be compatible with the index mode of the mode of the array
location.

dynamic conditions. The RANGEFAIL exception occurs if the following relation does not hold:
L < expression< U

where L and U are the lower bound and the (possibly dynamic) upper bound of the mode of the array
location, respectively.

examples:
11.36 b(m.lin_1)(m.col_1) 1.1

429 Array slices

syntax:

<array dice>::= D

<array location> ( <lower element> : <upper element>) (1.1

| <array location> ( <first element> UP <dlice size>) (1.2

<lower element> ;= 2
<expression> (2.1

<upper element> ::= ©)
<expression> (31

<first element> ::= 4
<expression> (4.1)

semantics. An array dlice delivers a (possibly dynamic) array location which is the part of the specified array location
indicated by lower element and upper element or first element and slice size. The lower bound of the array

slice is equal to the lower bound of the specified array; the (possibly dynamic) upper bound is determined
from the specified expressions.

static properties. The (possibly dynamic) mode attached to an array dice is a parameterised array mode constructed
as.

& name (upper index)

where &name is a virtual synmode name synonymous with the (possibly dynamic) mode of the array
location and upper index is either an expression whose class is compatible with the classes of lower element
and upper element and delivers a value such that:

NUM (upper index) = NUM (L) + NUM (upper element) - NUM (lower element)
or is an expression whose class is compatible with the class of first element and delivers a value such that:
NUM (upper index) = NUM (L) + NUM (slicesize) - 1

where L isthe lower bound of the mode of the array location.
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The mode attached to an array dliceis static if upper index isliteral, i.e. lower element and upper element are
both literal or slice sizeisliteral; otherwise the mode is dynamic.

Anarray diceisreferableif the element layout of the mode of the array location is NOPACK .

static conditions: The classes of lower element and upper element or the class of first element must be compatible with
the index mode of the array location.

The following relations must hold:
L < NUM (lower element) < NUM (upper element) < U
1< NUM (slice size) < NUM (U) - NUM (L) + 1
NUM (L) < NUM (first element) < NUM (first element) + NUM (slice size) - 1 < NUM (U)

where L and U are respectively the lower bound and upper bound of the mode of the array location. If U
and the value &f all expressions are known statically, the relations can be checked statically.

dynamic conditions: The RANGEFAIL exception occurs if adynamic part of the check of the relations above fails.

examples:
17.27 res(0: count - 1)(1.1)

4.2.10 Structurefields

syntax:
<structurefield> ::= (0]
<structure location> . <field name> (1.2)

semantics. A structure field delivers a (sub-)location which is the field of the specified structure location indicated by
field name. If the structure location has atag-less variant structure mode and the field name isavariant field
name, the semantics are implementation defined.

static properties: The mode of the structure field is the mode of the field name.
A structurefield isreferableif thefield layout of the field nameis NOPACK.

static conditions: The field name must be a name from the set of field names of the mode of the structure location.

dynamic conditions. A location must not denote:

« atagged variant structure mode location in which the associated tag field value(s) indicate(s) that the
field does not exist;

e adynamic parameterised structure mode location in which the associated list of values indicates that
the field does not exist.

The above mentioned conditions are called the variant field access conditions for the location. The TAGFAIL
exception occursif they are not satisfied for the structure location.

examples:
10.57 last ->.info (1.2)

4211  Location procedurecalls

syntax:
<location procedure call> ::= (D)
<location procedure call> (1.2)

semantics. A location procedure call delivers the location returned from the procedure.

static properties: The mode attached to a location procedure call is the mode of the result spec of the location
procedure call if DYNAMIC is not specified in it; otherwise it is the dynamically parameterised version of it
that has the same parameters as the mode of the delivered location.

The location procedure call is referable if NONREF is not specified in the result spec of the location
procedure call.

dynamic conditions. The location procedure call must not deliver an undefined location and the lifetime of the
delivered location must not have ended.
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4212 L ocation built-in routine calls

syntax:
<location built-in routine call> ::= D
<location built-in routine call> (1.1

semantics: A location built-in routine call delivers the location returned from the built-in routine call.

static properties: The mode attached to the location built-in routine call is the mode of the result spec of the location
built-in routine call.

dynamic conditions: The location built-in routine call must not deliver an undefined location and the lifetime of the
delivered location must not have ended.

42.13 L ocation conversions

syntax:
<location conversion> ::= D
<mode name> # ( <static mode location> ) (1.1

semantics. A location conversion delivers the location denoted by static mode location. However, it overrides the
CHILL mode checking and compatibility rules and explicitly attaches a mode to the location without any
change in the internal representation.

The precise dynamic semantics of alocation conversion are implementation defined.
static properties: The mode of alocation conversion is the mode name.

A location conversion isreferable.
static conditions: The static mode location must be referable.

The following relation must hold:

SZE ( mode name) = SZE ( static mode location )
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5 VALUESAND THEIR OPERATIONS

51 SYNONYM DEFINITIONS

syntax:
<synonym definition statement> ::= (€]
SYN <synonym definition> { , <synonym definition>}* ; (1.2)
<synonym definition> ::= 2
<defining occurrence list> [ <mode> | = <constant value> (2.2)

derived syntax: A synonym definition, where defining occurrence list consists of more than one defining occurrence, is
derived from several synonym definition occurrences, one for each defining occurrence with the same
constant value and mode, if present. E.g. SYN i ,j = 3; isderived fromSYNi=3,j = 3;.

semantics: A synonym definition defines a name that denotes the specified constant value.
static properties: A defining occurrence in a synonym definition defines a synonym name.

The class of the synonym nameis, if a mode is specified, the M-value class, where M is the mode, otherwise
the class of the constant value.

A synonym name isundefined if and only if the constant value is an undefined value (see section 5.3.1).

A synonym nameisliteral if and only if the constant value isliteral.

static conditions: If a mode is specified, it must be compatible with the class of the constant value and the value
delivered by the constant value must be one of the values defined by the mode.

The evaluation of the constant value must not depend directly or indirectly on the constant value of the
synonym name.

examples:
117 SYN neutral_for_add = O,
neutral_for_mult = 1; (1.1
2.18 neutral_for_add fraction=1[ 0,1] (2.1)

52 PRIMITIVE VALUE

521 General

syntax:

<primitive value> ::= (N}
<location contents> (1.2)

| <value name> (1.2

| <literal> (1.3)

| <tuple> (1.4

| <value string element> (1.5

| <valuestring slice> (1.6)

| <valuearray element> a7

| <valuearray dlice> (1.8

| <valuestructure field> (2.9

| <expression conversion> (1.20)

| <representation conversion> (1.11)

| <value procedure call> (1.12)

| <valuebuilt-in routine call> (1.13)

| <start expression> (1.14)

| <zero-adic operator> (1.15)

| <parenthesised expression> (1.16)

semantics. A primitive value is the basic constituent of an expression. Some primitive values have a dynamic class, i.e.
a class based on a dynamic mode. For these primitive values the compatibility checks can only be completed
at run time. Check failure will then result in the TAGFAIL or RANGEFAIL exception.
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static properties: The class of the primitive value is the class of the location contents, value name, etc., respectively.

A primitive value is constant if and only if it is a constant value name, a literal, a constant tuple, a constant
expression conversion, a constant representation conversion, a constant value built-in routine call or a
constant parenthesised expression.

A primitive value isliteral if and only if it is avalue name that isliteral, a discrete literal, or avalue built-in
routine call that isliteral.

5.2.2 L ocation contents
syntax:
<location contents> ::= (€]
<location> (1.1

semantics: A location contents delivers the value contained in the specified location. The location is accessed to obtain
the stored value.

static properties: The class of the location contents is the M-value class, where M is the (possibly dynamic) mode of
the location.

static conditions: The mode of the location must not have the non-value property.
dynamic conditions. The delivered value must not be undefined.

examples:
37 c2.im (1.1

5.2.3 Value names

syntax;
<value name> ::= @
<synonym name> (1.2)
| <value enumeration name> 1.2
| <value do-with name> (1.3
| <valuereceive name> (1.4
| <general procedure name> (1.5)

semantics: A value name delivers avalue. A value name is one of the following:
e asynonym name, i.e. aname defined in a synonym definition statement;
e avalueenumeration name, i.e. aname defined by aloop counter in avalue enumeration;
« avaluedo-with name, i.e. afield name introduced as value namein the do action with awith part;
» avaluereceive name, i.e. aname introduced in areceive case action;
e ageneral procedure name (see section 10.4).

If the value denoted by a value do-with name is a variant field of a tag-less variant structure value, the
semantics are implementation defined.

static properties: The class of a value name is the class of the synonym name, value enumeration name, value do-with
name, value receive name or the M-derived class, where M is the mode of the general procedure name,
respectively.

A value nameisliteral if and only if it isa synonym name that isliteral.

A value name is constant if it is a synonym name or a general procedure name denoting a procedure name
which has attached a procedure definition which is not surrounded by a block.

static conditions: The synonym name must not be undefined.

dynamic conditions: Evaluating a value do-with name causes a TAGFAIL exception if the denoted value is a variant
field and the variant field access conditions for the value are not satisfied.

examples:
10.12 max 1.1
8.8 i 1.2
15.54 this_counter (1.4
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524 Literals

5.24.1 General

syntax:

<literal>::= (@]

<integer literal> (1.2)

| <floating point literal> (1.2

| <boolean literal> (1.3)

| <character literal> (1.4

| <setliteral> (1.5

| <emptinessliteral> (1.6)

| <character string literal> .7

| <bit string literal> (1.8)

semantics; A literal delivers aconstant value.

static properties: The class of the literal is the class of the integer literal, boolean literal, etc., respectively. A literal is
discreteif it is either an integer literal, aboolean literal, acharacter literal or a set literal.

The letter together with the following apostrophe which starts an integer literal, boolean literal, and bit string
literal (i.e.B’,D’,H’, O, b’, d’, h’, 0") isaliteral quaification.

5242 Integer literals

syntax:

<integer literab ::= Q)
<unsigned integer literad (1.1)

| <signed integer literat (1.2)
<unsigned integer literad ::= (2
<decimal integer literat (2.1)

| <binary integer literab (2.2)

| <octal integer literab (2.3)

| <hexadecimal integer literal (2.4)
<signed integer litera ::= (3)
- <unsigned integer literad (3.1)
<decimal integer literat ::= 4)
[{D|d}’] <digit sequence> 4.2

<binary integer literal> ::= (5)
{Blb} {O1]_} (5.1)

<octal integer literal>::= (6)
{O]o} {<octal digit>| _} (6.2)
<hexadecimal integer literal>::= 7
{H | h>}"{<hexadecimal digit>| _}* (7.2)
<hexadecimal digit> ::= (8)
<digit>|A|B|C|D|E|F|a|b]|c|d]|e|f (8.1)

<octal digit> ::= (9)
0]1]2]|3|4]|5]|6]|7 (9.2)

<digit sequence> ::= (20)
{<digit>| _} (10.2)

semantics. An integer literal delivers an integer value. The usual decimal (base 10) notation is provided as well as
binary (base 2), octal (base 8) and hexadecimal (base 16). The underline character ( _ ) is not significant, i.e. it
serves only for readability and it does not influence the denoted value.

A signed integer literal delivers a value which is the additive inverse of that delivered imsitired integer
literal in it.

static properties. The class of aimteger literal is the& INT-derived class. Amteger literal is constant andliteral.
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static conditions. The string following the apostrophe (' ) and the digit sequencenust not consist solely of underline
characters.

The value delivered by integer literalmust be one of the values defined by the &INT mode.

examples:
6.11 1721 119 (2.1)
D'1_721 119 (2.1)
B’101011 110100 (2.2)
0'53_64 (2.3)
H'AF4 (2.4)

5243 Floating point literals

syntax:

<floating point literab ::= Q)
<unsigned floating point literal (1.2)

| <signed floating point literad (1.2)
<unsigned floating point literad ::= (2)
<digit sequence. [ <digit sequence] [ <exponer ] (2.1)

[ <digit sequence] . <digit sequence[ <exponert ] (2.2)

<signed floating point literad ::= 3
- <unsigned floating point literal (3.1)
<exponert ::= (4)
E <digit sequence (4.1)

E - <digit sequence (4.2)

derived syntax: A floating point literalin which 1. a digit sequence2. an exponenis missing is derived syntax for a
literal in which 1. the digit sequencés 0, 2. the exponents E1.

semantics: A floating point literal delivers afloating point value, expressed as a decimal number in scientific notation.

A signed floating point literal delivers a value which is the additive inverse of that delivered by the unsigned
floating point literalin it.

If the floating point literal lies between the upper bound and lower bound of one of the predefined floating
point modes of the implementation but is not exactly representable, the floating point literal value is
approximated to the value delivered by an implicit representation conversidn the predefined floating point
mode chosen by the implementation for representing the floating point literal

static properties: The class of a floating point literalis the &FLOAT-derived class. A floating point literalis constant
and literal.

The precision of afloating point literalis the sum of the number of significant decimal digits delivered by the
two digit sequencethat form its mantissa.

static conditions: The value delivered by floating point literalmust be one of the values defined by the &FLOAT mode.

examples:
10.0E1 (1.1)
-365.0E-5 (1.1)

5244 Boolean literals

syntax:
<boolean literab ::= Q)
<boolean literal name 1.1)

predefined names: The names FALSEand TRUEare predefined as boolean literal names.
semantics: A boolean literal delivers aboolean value.
static properties: The class of aboolean literalis the BOOL-derived class. A boolean literalis constant and literal.

examples:
5.42 FALSE (1.1
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5.245 Character literals

syntax:
<character literal> ::= D
"{ < character> | <control sequence>}’ (1.1
<control sequence> ::= 2
N (<integer literal expression> { , <integer literal expression> }*) (2.1
| ~ <non-special character> (2.2
|~ (2.3)

semantics; A character literal delivers a character value.

Apart from the printable representation, tioatrol sequence representation may be usedcéntrol sequence

in which the circumflex character (#) is followed by an open parenthesis denotes the sequence of characters
whose representations are thieger literal expression in it; otherwise if it is followed by another circumflex
character it denotes itself, otherwise it denotes the character whose representation is obtained by logically
negating the b7 of the internal representation of nbrespecial character in it (see section 12.4.4 and
Appendix A).

static properties. The class of aharacter literal is theCHAR-derived class. Aharacter literal is constant andliteral.
static conditions: A control sequence in acharacter literal must denote only one character.

The value delivered by anteger literal expression in acontrol sequence must belong to the range of values
defined by the representations of the characters in the CHILL character set (see Appendix A).

examples:
79 '™’ (1.2)

5246 Set literals

syntax:
<set literab ::= 1)
[ <mode nanme. ] <set elememame (1.1)

semantics; A set literal delivers aset value. A set literal is aname defined in a set mode.

static properties: The class of a set literalis the M-value class, where M is the mode namef specified. Otherwise, M
depends upon the context where the set literaloccurs, according to the following list:

« if the set literalis used in a place where a tuple without the mode namean be used, then M is derived
following the same rules defined for the tuple (see section 5.2.5);

« if theset literalis used asavauein atuple, then M isthe mode of that value;
« if theset literalis used in a literal rangeto define a discrete range modef the form:
<discrete mode narrg <literal range>)
then M isthe discrete mode name

« if the set literal is the usage expressiorthe where expressigrthe index expressiorr the write
expressionin a built-in routine for input output (see section 7.4), then M is respectively USAGE
WHERE the index mode of the access locatiomr of the textlocation the record mode of the access
location

« if the set literalis used in a conditional expressignthen M is derived in the same way as for the
expressionn which it is contained;

» if the set literalis the upper indexin a parameterised array modéhen M is the corresponding index
modeof the origin array mode;

» if the set literalis an expressiorin a parameterized structure modien M is the root mode of the
corresponding tag field namen the origin variant structure mode;

« if the set literalis used in an array elemenor array slice then M is the corresponding index moden
the array mode

« if the set literalis used in a case labelthen M is derived from the mode of the corresponding tag field
name(for structure modg from the mode of the corresponding selector in the case selector lisffor
case actioror conditional expressignor from the index modéfor tuple).
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« if theset literal is used as the lower bound or the upper bound and a discrete mode name is specified in
theliteral range in which it is contained, then M is the discrete mode name.

A set literal is constant and literal.
static conditions: The optional mode name may be omitted only in the contexts specified above.
The set element name must belong to the set of set element names of M.

examples:
6.51 dec (1.2)
11.78 king (1.1

5247 Emptiness litera

syntax:
<emptinessliteral> ::= ()]
<emptiness literal name> (1.2)

predefined names. The name NULL is predefined as an emptinessliteral name.

semantics: The emptiness literal delivers either the empty reference value, i.e. a value which does not refer to a location,
the empty procedure value, i.e. a value which does not indicate a procedure, or the empty instance value, i.e. a
value which does not identify a process.

static properties: The class of the emptinessliteral isthe null class. An emptiness literal is constant.

examples:
10.43 NULL 1.1

5248 Character string literals

syntax:
<character string literal> ::= Q)
" { <non-reserved character> | <gquote> | <control sequence>}* " 1.1
<guote> ::= 2
”” (2.1)

semantics: A character string literal delivers a character string value that may be of length 0. It is a list of values for the
elements of the string; the values are given for the elements in increasing order of their index from left to
right. To represent the character qudtewithin a character string literal, it hasto be written twice (™ ).

static properties. The string length of a character string literalis the number of non-reserved characteguoteand
characters denoted by control sequenceccurrences.

The class of a character string literalis the CHARS (n)-derived class, where n is the string length of the
character string literal A character string literalis constant.

examples:
8.20 "A-B<ZAA9K' " (1.2)

5249 Bit string literals

syntax:

<bit string literab ::= (1)
<binary bit string literab (1.2)

| <octal bit string literab 1.2

| <hexadecimal bit string literal (1.3)
<binary bit string literab ::= (2)
{Blb} {O[1]_}’ (21)

<octal bit string literal> ::= 3)
{O |0}’ {<octal digit>| _}*’ (3.1
<hexadecimal bit string literal> ::= 4
{H | h} {<hexadecimal digit>|_}*’ (4.1)

semantics. A bit string literal delivers a bit string value that may be of length 0. Binary, octal or hexadecimal notations
may be used. The underline character ( _) is insignificant, i.e. it serves only for readability and does not
influence the indicated value.
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A bit string literal is a list of values for the elements of the string; the values are given for the elements in
increasing order of their index from left to right.

static properties: The string length of a bit string literal is either the number of 0 and 1 occurrences in a binary bit
string literal, three times the number of octal digit occurrences in a octal bit string literal or four times the
number of hexadecimal digit occurrencesin a hexadecimal bit string literal.

The class of abit string literal isthe BOOL S (n)-derived class, where n is the string length of the bit string
literal. A bit string literal is constant.

examples:
B’'101011_110100 (1.2)
0'53_64’ (1.2)
H'AF4’ (1.3)
525 Tuples
syntax:
<tuple> ::= Q)
[ <mode name] (: { <powerset tuple |
<array tuple> | <structure tuple } :) (1.2)
<powerset tuple ::= (2)
[ { <expression | <range>} { , { <expression | <range>} }* | (2.1)
<range> .= 3)
<expression : <expression (3.1)
<array tuple> ::= 4)
<unlabelled array tuple (4.1)
| <labelled array tuple (4.2)
<unlabelled array tuple ::= (5)
<value> { , <value>}* (5.1)
<labelled array tuple ::= (6)
<case label list : <value> { , <case label list : <value>}* (6.1)
<structure tuple ::= @)
<unlabelled structure tupte (7.1)
| <labelled structure tupbe (7.2)
<unlabelled structure tupte::= (8)
<value> { , <value>}* (8.1)
<labelled structure tupte::= 9)
<field name list : <value> { , <field name list : <value>}* (9.1)
<field name list ::= (20)
. <field name { , . <field name }* (10.2)

derived syntax: The tuple opening and closing brackets, [ and ], are derived syntax for (: and :), respectively. Thisis not
indicated in the syntax to avoid confusion with the use of square brackets as meta symbols.

semantics: A tuple delivers either a powerset value, an array value or a structure value.

If it isa powerset value, it consists of alist of expressions and/or ranges denoting those member values which
are in the powerset value. A range denotes those values which lie between or are one of the values delivered
by the expressions in the range. If the second expression delivers a value which is less than the value
delivered by the first expression, the range is empty, i.e. it denotes no values. The powerset tuple may denote
the empty powerset value.

If it is an array value, it is a (possibly labelled) list of values for the elements of the array; in the unlabelled
array tuple, the values are given for the elements in increasing order of their index; in the labelled array tuple,
the values are given for the elements whose indices are specified in the case label list labelling the value. It
can be used as a shorthand for large array tuples where many values are the same. The label EL SE denotes all
the index values not mentioned explicitly. The label * denotes all index values (for further details, see
section 12.3).
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If it isastructure value, it is a (possibly labelled) set of values for the fields of the structure. In the unlabelled
structure tuple, the values are given for the fields in the same order as they are specified in the attached
structure mode. In the labelled structure tuple, the values are given for the fields whose field names are
specified in the field name list for the value.

The order of evaluation of the expressions and values in a tuple is undefined and they may be considered as
being evaluated in any order.

static properties: The class of a tuple is the M-vaue class, where M is the mode name, if specified. Otherwise M
depends upon the context where the tuple occurs, according to the following list:

if the tuple is the value or constant value in an initialisation in a location declaration, then M is the
mode in the location declaration;

if the tuple is the righthand side value in a single assignment action, then M is the (possibly dynamic)
mode of the lefthand side location;

if the tuple is the constant value in a synonym definition with a specified mode, then M is that mode;

if the tuple is used in an operand-2 and one of the operands is strong, then M is the mode of the
strong operand;

if the tuple is an actual parameter in aprocedure call or in a start expression where DYNAMIC is not
specified in the corresponding parameter spec, then M is the mode in the corresponding parameter

Spec;

if the tuple is the value in areturn action or aresult action, then M is the mode of the result spec of
the procedur e name of the result action or return action (see section 6.8);

if thetupleisavaluein asend action, then it is the associated mode specified in the signal definition of
the signal name or the buffer element mode of the mode of the buffer location;

if the tuple is an expression in an array tuple, then M is the element mode of the mode of the array
tuple;

if the tuple is an expression in an unlabelled structure tuple or a labelled structure tuple where the
associated field name list consists of only one field name, then M is the mode of the field in the
structure tuple for which the tuple is specified;

If the tuple is the value in a GETSTACK or ALLOCATE built-in routine call, then M is the mode
denoted by mode argument.

A tupleisconstant if and only if each value or expression occurring in it is constant.

static conditions: The optional mode name may be omitted only in the contexts specified above. Depending on whether
a powerset tuple, array tuple or structure tuple is specified, the following compatibility requirements must be
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fulfilled:
a. powerset tuple
1. The mode of the tuple must be a powerset mode.
2. The class of each expression must be compatible with the member mode of the mode of the
tuple.
3. For aconstant powerset tuple the value delivered by each expression must be one of the values
defined by that member mode.
b. array tuple

1. The mode of the tuple must be an array mode.
2. The class of each value must be compatible with the element mode of the mode of the tuple.

3. In the case of an unlabelled array tuple, there must be as many occurrences of value as the
number of elements of the array mode of the tuple.

4. Inthe case of alabelled array tuple, the case selection conditions must hold for the list of case
label list occurrences (see section 12.3). The resulting class of the list must be compatible with
the index mode of the mode of the tuple. The list of case label specifications must be complete.

5. Inthe case of alabelled array tuple, the values explicitly indicated by each case label in a case
label list must be values defined by the index mode of the tuple.
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6. Inanunlabelled array tuple, at |east one value occurrence must be an expression.

7. For a constant array tuple, where the element mode of the mode of the tuple is a discrete
mode, each specified value must deliver a value defined by that element mode, unless it is an
undefined value.

C. structuretuple
1. The mode of the tuple must be a structure mode.

2. This mode must not be a structure mode which has field names which are invisible (see section
12.2.5).

In the case of an unlabelled structure tuple:

If the mode of the tuple is neither a variant structure mode nor a parameterised
structure mode, then:

3. There must be as many occurrences of value as there are field namesin the list of
field names of the mode of the tuple.

4. The class of each value must be compatible with the mode of the corresponding
(by position) field name of the mode of the tuple.

If the mode of the tuple is atagged variant structure mode or a tagged parameterised
structure mode, then:

5. Each value specified for atag field must be a discrete literal expression.

6. There must be as many occurrences of value as there are field names indicated as
existing by the value(s) delivered by the discrete literal expression occurrences
specified for the tag fields.

7. The class of each value must be compatible with the mode of the corresponding
field name.

If the mode of the tuple isatag-less variant structure mode or a tag-less parameterised
structure mode,

8. No unlabelled structure tupleis allowed.

In the case of alabelled structure tuple:

If the mode of the tuple is neither a variant structure mode nor a parameterised
structure mode, then:

9. Each field name of the list of field names of the mode of the tuple must be
mentioned once and only once in the tuple.

10. The class of each value must be compatible with the mode of every field name
specified in the field name list labelling that value. The modes of all field names
in the field name list must be equivalent.

If the mode of the tuple is atagged variant structure mode or a tagged parameterised
structure mode, then:

11. Each value that is specified for atag field must be a discrete literal expression.

12. Each field name that denote a fixed field or a field indicated as existing by the
value(s) delivered by the discrete literal expression occurrences specified for the
tag fields must be mentioned once and only once in the tuple.

13.The class of each value must be compatible with the mode of any field name
specified in the field name list labelling that value.

If the mode of the tuple is atag-less variant structure mode or a tag-less parameterised
structure mode, then:

14. Each field name must be mentioned at most once in the tuple. All the fixed field
names must be mentioned. Field names mentioned in the tuple, which are defined
in the same alternative field, must all be defined in the same variant aternative or
all be defined after ELSE. All field names of an dternative field in each variant
alternative or al field names defined after EL SE must be mentioned.

15.The class of each value must be compatible with the mode of any field name
specified in the field name list labelling that value.
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16. If the mode of the tuple is atagged parameterised structure mode, the list of values delivered
by the discrete literal expression occurrences specified for the tag fields must be the same as
the list of values of the mode of the tuple.

17.For a constant structure tuple, each value specified for a field with a discrete mode must
deliver avalue defined by the field mode, unlessit is an undefined value.

18. At least one value occurrence must be an expression.

No tuple may have two value occurrences in it such that one is extra-regional and the other isintra-regional
(see section 11.2.2).

dynamic conditions: The assignment conditions of any value with respect to the member mode, element mode or
associated field mode, in the case of powerset tuple, array tuple or structure tuple, respectively (see section
6.2) apply (refer to conditions a2, b2, ¢4, ¢7, c10, c13 and c15).

If the tuple has a dynamic array mode, the RANGEFAIL exception occurs if any of the conditions b3 or b5 are
not satisfied.

If the tuple has a dynamic parameterised structure mode, the TAGFAIL exception occurs if any of the
conditions c14 or ¢16 are not satisfied.

The value delivered by a tuple must not be undefined.

examples:
9.6 number_list [ ] (1.1
9.7 [ 22max] (2.1)
8.26 [CA):3,(B'K','Z):1,( ELSE):Q] (6.1)
17.5 [¢): ] (6.1)
12.35 (:NULL,NULL,536:) (7.1)
11.18 [.status:occupied,.p:[white,rook]] (9.1)

5.2.6 Value string elements

syntax:
<value string element::= (D)
<string primitive value ( <start element) (1.2)

N.B. if the string primitive valueis a string location the syntactic construct is ambiguous and will be
interpreted as a string elemenfsee section 4.2.6).

semantics. A value string element delivers a value which is the element of the specified string value indicated by start
element

static properties: The class of the value string elemens the M-value class, where M is the element mode of the mode
of the string primitive value

A value string elemens constant if and only if string primitive valueand start elemenére constant.
dynamic conditions. The value delivered by avalue string elememhust not be undefined.
The RANGEFAILexception occursiif the following relation does not hold:
0< NUM (start element< L - 1
Where L isthe actual length of the string primitive value

5.2.7 Valuestring slices

syntax:
<value string slice ::= QD
<string primitive value ( <left element : <right elemerw ) (1.1)
| <string primitive value ( <start element UP <slice size ) (1.2)

N.B. if the string primitive valueis a string location the syntactic construct is ambiguous and will be
interpreted as a string slice(see section 4.2.7).

semantics: A value string slice delivers a (possibly dynamic) string value which is the part of the specified string value
indicated by left elementand right elementor start elementind slice size The (possibly dynamic) length of
the string slice is determined from the specified expressions.

A string slicein which the right elementelivers a value which is less than that delivered by the left element
or inwhich slice sizedelivers a non positive value denotes an empty string.
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static properties: The (possibly dynamic) class of avalue string slice isthe M-value classiif the string primitive value is
strong and otherwise the M-derived class, where M is a parameterised string mode constructed as:

& name (string size)

where &name is a virtual synmode name synonymous with the (possibly dynamic) root mode of the string
primitive value if it is a fixed string mode, otherwise with the component mode, and where string size is
either

NUM (right element) - NUM (left element) + 1
or
NUM (slice size).

However, if an empty string is denoted, string size is 0. The class of a value string slice is static if string size
isliteral, i.e. left element and right element are literal or slice sizeisliteral; otherwise the classis dynamic.

A value string slice is constant if and only if string primitive value and string size are constant.
static conditions: The following relations must hold:
0< NUM (left dlement) <L - 1
0< NUM (right element) < L - 1
0< NUM (start dlement) <L - 1
NUM (start element) + NUM (dlicesize) <L

where L isthe actual length of the string primitive value. If L and the value all integer expressions are known
statically, the relations can be checked statically.

dynamic conditions. The value delivered by avalue string slice must not be undefined.

The RANGEFAIL exception occursif a dynamic part of the check of the relations above fails.

528 Value array elements

syntax:
<value array element> ::= D
<array primitive value> ( <expression list>) (1.1

N.B. If the array primitive value is an array location the syntactic construct is ambiguous and will be
interpreted as an array element (see section 4.2.8).

derived syntax: See section 4.2.8.

semantics. A value array element delivers a value which is the element of the specified array value indicated by
expression.

static properties: The class of the value array element is the M-value class, where M is the element mode of the mode
of the array primitive value.

A value array element is constant if and only if array primitive value and expression are constant.

static conditions. The class of the expression must be compatible with the index mode of the mode of the array
primitive value.

dynamic conditions. The value delivered by avalue array element must not be undefined.
The RANGEFAIL exception occursif the following relation does not hold:
L < expresson< U

where L and U are the lower bound and (possibly dynamic) upper bound of the mode of the array primitive
value, respectively.

529 Valuearray dices

syntax:
<valuearray sice> ::= (1)
<array primitive value> ( <lower element> : <upper element>) (1.0
| <array primitive value> ( <first element> UP <dice size>) (1.2
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N.B. If the array primitive value is an array location, the syntactic construct is ambiguous and will be
interpreted as an array dlice (see section 4.2.9).
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semantics. A value array dice delivers an (possibly dynamic) array value which is the part of the specified array value
indicated by lower element and upper element, or first element and slice size. The lower bound of the value
array dliceis equal to the lower bound of the specified array value; the (possibly dynamic) upper bound is
determined from the specified expressions.

static properties: The (possibly dynamic) class of avalue array sliceis the M-vaue class, where M is a parameterised
array mode constructed as:

&name (upper index)

where &name is a virtua synmode name synonymous with the (possibly dynamic) mode of the array
primitive value and upper index is either an expression whose class is compatible with the classes of lower
element and upper element and delivers a value such that:

NUM (upper index) = NUM (L) + NUM (upper element) - NUM (lower element)

or is an expression whose class is compatible with the class of first element and delivers a value such that:
NUM (upper index) = NUM (L) + NUM (slicesize) - 1

where L isthe lower bound of the mode of the array primitive value.

Theclass of avalue array diceis static if upper indexisliteral, i.e. lower element and upper element both are
literal or dicesizeisliteral; otherwise the class is dynamic.

static conditions: The classes of lower element and upper element or the class of first element must be compatible with
the index mode of the array primitive value.

The following relations must hold:
L < NUM (lower element) < NUM (upper element) < U
1< NUM (slice size) < NUM (U) - NUM (L) + 1
NUM (L) < NUM (first element) < NUM (first element) + NUM (slice size) - 1 < NUM (U)

where L and U are, respectively, the lower bound and upper bound of the mode of the array primitive value.
If U and the value af all expressions are known statically, the relations can be checked statically.

A value array dliceis constant if and only if array primitive value and upper index are constant.
dynamic conditions: The value delivered by avalue array slice must not be undefined.

The RANGEFAIL exception occursif adynamic part of the check of the relations above fails.

5.2.10 Value structurefields

syntax:
<value structurefield> ::= @
<structure primitive value> . <field name> (1.1

N.B. If the structure primitive value is a structure location, the syntactic construct is ambiguous and will be
interpreted as a structure field (see section 4.2.10).

semantics: A value structure field delivers a value which is the field of the specified structure value indicated by field
name. If the structure primitive value has a tag-less variant structure mode and the field name is a variant
field name, the semantics are implementation defined.

static properties: The class of value structure field is the M-value class, where M is the mode of the field name.

A value structurefield is constant if and only if structure primitive valueis constant.

static conditions: The field name must be a name from the set of field names of the mode of the structure primitive
value.

dynamic conditions. The value delivered by a value structure field must not be undefined.

A value must not denote:

e atagged variant structure mode value in which the associated tag field value(s) indicate(s) that the
denoted field does not exist;

» adynamic parameterised structure mode value in which the associated list of values indicates that the
field does not exist.
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The above mentioned conditions are called the variant field access conditions for the value (note that the
condition do not include the occurrence of an exception). The TAGFAIL exception occurs if they are not
satisfied for the structure primitive value.

examples:
11.140 b (lin)(col).status (1.2)

5211  EXxpression conversion

syntax:
<expression conversion> ::= Q)
<mode name> # ( <expression> ) (1.1

N.B. If the expression is a static mode location, the syntactic construct is ambiguous and will be interpreted as
alocation conversion (see section 4.2.13)

semantics: An expression conversion overrides the CHILL mode checking and compatibility rules. It explicitly attaches
amode to the expression without any change in the internal representation.

static properties: The class of the expression conversion is the M-value class, where M is the mode name. An
expression conversion is constant if and only if the expression is constant.

static conditions: The mode name must not have the non-value property. The size of the root mode of the expression
and the size of mode name must be equal.

5.212  Representation conversion

syntax:
<representation conversion> ::= 0
<mode name> ( <expression>) (1.2

semantics. A representation conversion overrides the CHILL mode checking and compatibility rules. It explicitly
attaches a mode to the expression and may change the internal representation of the value delivered by the
expression itself. If the mode of the mode name is a discrete mode and the class of the value delivered by the
expression is discrete, then the value delivered by the representation conversion is such that:

NUM (mode name (expression)) = NUM (expression) .

A representation conversion in which mode name and the root mode of the class of the expression are
respectively:

e aninteger mode and afloating point mode,
« afloating point mode and an integer mode,
» afloating point mode and another floating point mode with different r oot modes,

may involve an approximation. If the value delivered by expression is exactly representable in the set of
values of mode name, the result of the representation conversion is the value of expression itself, otherwise is
one of the two values belonging to the set of values of mode name that delimit the smallest interval in which
the value delivered by expression is contained. A representation conversion in which mode name is an integer
mode and the root mode of the class of the expression is a duration mode, delivers an integer value which
represents in milliseconds the value delivered by expression.

A representation conversion in which mode name or the root mode of the class of the expression is a structure
mode, and the other one is a parameterised structure mode whose origin structure mode is similar with it,
delivers a structure value in which the values of the fields are equal to the corresponding ones of the
expression, if present. Otherwise the result isimplementation defined.

Note that for tag-less variant structure values and for tagged variant structure values in which thelist of tag
values is different from that of the parameterised structure mode the result of the representation conversion
isimplementation defined.

A representation conversion in which the mode M of the mode name is a reference mode and the class of the
expression is the null class, the result of the representation conversion is null, if M is compatible with the
class of -> ((expression) ->) then the result is equal to it, otherwise the result isimplementation defined.

Otherwise the value delivered by the representation conversion is implementation defined and may depend on
the internal representation of values.

static properties: The class of the representation conversion is the M-value class, where M is the mode name. A
representation conversion is constant if and only if the expression is constant.
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static conditions: The mode name must not have the non-value property. An implementation may impose additional
static conditions.

dynamic conditions: In the case of an expression that is not constant:

»  aRANGEFAIL exception occurs if mode name is a duration mode and the r oot mode of the class of the
expression is an integer mode (or vice-versa), and the value delivered by representation conversion
does not belong to the set of values defined for mode name.

e an OVERFLOW exception occursif:

— the class of the value delivered by expression is discrete and the mode of mode name is a
discrete mode which does not define a value with an internal representation equal to NUM
(expression);

- the mode of mode name and the root mode of the class of the expression are, independently, an
integer mode or a floating point mode, and the expression delivers a value that does not lie
between the bounds of the root mode of mode name.

* an UNDERFLOW exception occurs if the mode name and the root mode of the class of the expression
are floating point modes, and the value delivered by expression is greater than the negative lower limit
and less than the positive lower limit of the mode name, and is different from zero.

An implementation may impose additional dynamic conditions that, when violated, cause an exception
defined by the implementation.

5213 Valueprocedurecalls

syntax:
<value procedurecall> ::= Q
<value procedure call> (1.1

semantics: A value procedure call delivers the value returned from a procedure.

static properties: The class of the value procedure call is the M-value class, where M is the mode of the result spec of
the value procedure call.

dynamic conditions: The value procedure call must not deliver an undefined value (see sections 5.3.1 and 6.8).

examples:
6.50 julian_day_number([ 10,dec,1979]) 1.1
11.63 ok_bishop(b,m) (1.2)

5214 Value built-in routine calls

syntax:
<value built-in routine call> ::= (0]
<value built-in routine call> (1.1

semantics. A value built-in routine call delivers the value returned by the built-in routine.
static properties. The class attached to the value built-in routine call is the class of the value built-in routine call.

dynamic conditions. The value built-in routine call must not deliver an undefined value (see sections 5.3.1 and 6.8).

5215  Start expressions

syntax:
<start expression> ::= 1)
START <process name> ( [ <actual parameter list>] ) 1.n

semantics: The evaluation of the start expression creates and activates a new process whose definition is indicated by
the process name (see chapter 11). The start expression delivers the instance value identifying the created
process. Parameter passing is analogous to procedure parameter passing; however, additional actual
parameters may be given with an implementation defined meaning.

static properties: The class of the start expression is the INSTANCE-derived class.
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static conditions: The number of actual parameter occurrences in the actual parameter list must not be less than the

number of formal parameter occurrences in the formal parameter list of the process definition of the process
name. If the number of actual parameters is m and the number of formal parameters is n(m=n), the
compatibility and regionality requirements for the first n actual parameters are the same as for procedure
parameter passing (see section 6.7). The static conditions for the rest of the actual parameters are

implementation defined.

dynamic conditions: For parameter passing, the assignment conditions of any actual value with respect to the mode of

its associated formal parameter apply (see section 6.7).

The start expression causes the SPACEFAIL exception if storage requirements cannot be satisfied.

examples:
15.35 START counter() (1.1
5216  Zero-adic operator
syntax:
<zero-adic operator> ::= (@]
THIS (1.2)
semantics. The zero-adic operator delivers the unique instance value identifying the process executing it.
static properties: The class of the zero-adic operator isthe INSTANCE-derived class.
5217  Parenthesised expression
syntax:
<parenthesised expression> ::= Q)
( <expression>) (1.2)
semantics. A parenthesised expression delivers the value delivered by the evaluation of the expression.
static properties: The class of the parenthesised expression is the class of the expression.
A parenthesised expression is constant (literal) if and only if the expression is constant (literal).
examples:
5.10 (a1 OR bl) (1.2)
5.3 VALUES AND EXPRESSIONS
531 General
syntax:
<value> ::= D
<expression> (1.2
| <undefined value> (1.2
<undefined value> ::= ()]
* (2.1
| <undefined synonym name> (2.2

semantics. A valueis either an undefined value or a (CHILL defined) value delivered as the result of the evaluation of

an expression.

Except where explicitly indicated to the contrary, the order of evaluation of the constituents of an expression
and their sub-constituents, etc., is undefined and they may be considered as being evaluated in any order.
They need only be evaluated to the point that the value to be delivered is determined uniquely. If the context
requires a constant or literal expression, the evaluation is assumed to be done prior to run time and cannot
cause an exception. An implementation will define ranges of allowed values for literal and constant
expressions and may reject a program if such a prior-to-run-time evaluation delivers a value outside the
implementation defined bounds.

static properties: The class of avalueisthe class of the expression or undefined value, respectively.

The class of the undefined value is the all classif the undefined value is a*; otherwise the class is the class of
the undefined synonym name.
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A value is constant if and only if it is an undefined value or an expression which is constant. A value is
literal if and only if it isan expression whichisliteral.

dynamic properties: A valueis said to be undefined if it is denoted by the undefined value or when explicitly indicated
in this document. A composite value is undefined if and only if al its sub-components (i.e. substring values,
element values, field values) are undefined.

examples:
6.40 (146_097xc)/4+(1_461xy)/4
+(153* m+2)/5+day+1 721 119 (1.1)
532 Expressions
syntax:
<expression> ::= D
<operand-0> (1.1
| <conditional expression> 1.2
<conditional expression> ::= ()]
| |F <boolean expression> <then alternative>
<else alternative> Fl (2.1
| CASE <case sdlector list> OF { <value case alternative>} +
[ EL SE <sub expression>] ESAC (2.2
<then alternative> ::= (©)]
THEN <sub expression> (3.1
<else alternative> ::= 4
EL SE <sub expression> (4.0
| ELSIF <boolean expression>
<then alter native> <else alternative> (4.2
<sub expression> ::= 5)
<expression> (5.1
<value case alternative> ;.= (6)
<case label specification> : <sub expression> ; (6.2)

semantics. If | F is specified, the boolean expression is evaluated and if it yields TRUE, the result is the value delivered
by the sub expression in the then alternative, otherwise it is the value delivered by the else alternative.

The value delivered by an else alternative is the value of the sub expression if EL SE is specified, otherwise
the boolean expression is evaluated and if it yields TRUE, it isthe value delivered by the sub expression in the
then alternative, otherwise it is the value delivered by the else alternative.

If CASE is specified, the sub expressions in the case selector list are evaluated and if a case label
specification matches, the result is the value delivered by the corresponding sub expression, otherwise it is the
value delivered by the sub expression following EL SE (which will be present).

Unused sub expressions in a conditional expression are not eval uated.

static properties: If an expression is an operand-0, the class of the expression is the class of the operand-0. If it is a
conditional expression, the class of the expression is the M-value class, where M is the mode which depends
on the context where the conditional expression occurs according to the same rules that define the mode of the
class of atuple without a mode name (see section 5.2.5).

An expression is constant (literal) if and only if it is either an operand-0 which is constant (literal), or a
conditional expression in which all boolean expression or case selector list in it are constant (literal) and in
which all sub expressionsin it are constant (literal).

static conditions: If an expression is a conditional expression the following conditions apply:

« aconditional expression may occur only in the contexts in which a tuple without a mode name in front
of it may occur;

» each sub expression must be compatible with the mode that is derived from the context with the same
rules as for tuples. However, the dynamic part of the compatibility relation applies only to the selected
sub expression;
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« if CASE is specified, the case selection conditions must be fulfilled (see section 12.3), and the same
completeness, consistency and compatibility requirements must hold as for the case action (see
section 6.4);

* no conditional expression may have two sub expression occurrences in it such that one is extra-
regional and the other isintra-regional (see section 11.2.2).

dynamic conditions. In the case of a conditional expression, the assignment conditions of the value delivered by the
selected sub expression with respect to the mode M derived from the context apply.

533 Operand-0

syntax:
<operand-0> ::= ()
<operand-1> (1.2)
| <suboperand-0>{ OR |ORIF | XOR >} <operand-1> (1.2
<sub operand-0> ::= %)
<operand-0> (2.1)

semantics. If OR, ORIF or XOR is specified, sub operand-0 and operand-1 deliver:

» boolean values, in which case OR and XOR denote the logical operators “inclusive disjunction” and
“exclusive disjunction”, respectively, delivering a boolean valu®©Ri F is specified aneperand-0
delivers the boolean valueRUE, then this is the result, otherwise the result is the value delivered by
operand-1;

< bit string values, in which cas@R andXOR denote the logical operations on corresponding element
of the bit strings, delivering a bit string value;

e powerset values, in which ca@R denotes the union of both powerset valuesX@@iR denotes the
powerset value consisting of those member values which are in only one of the specified powerset
values (e.gA XOR B = A-BOR B-A).

static properties. If an operand-0is an operand-] the class of operand-0is the class of operand-1 If OR, ORIF or
XOR is specified, the class of operand-Qis the resulting class of the classes of sub operand-@nd operand-1

An operand-Qis constant (literal) if and only if it is either an operand-1which is constant (literal), or built
up from an operand-0and an operand-1which are both constant(literal).

static conditions: If OR, ORIF or XOR is specified, the class of sub operand-0nust be compatible with the class of
operand-1If ORIF is specified, both classes must have a boolean root mode, otherwise both classes must
have a boolean, powerset or bit string root mode, in which case the actual length of sub operand-Gand
operand-1must be the same. This check is dynamic if one or both modes is (are) dynamic or varying string
modes.

dynamic conditions: In the case of OR or XOR, a RANGEFAILexception occurs if one or both operands have a
dynamic class and the dynamic part of the above mentioned compatibility check fails.

examples:
10.31 Kmin (1.1)
10.31 Kmin OR i>max (1.2)

534 Operand-1

syntax:
<operand-% ::= Q)
<operand-2 (1.12)
| <sub operand-2{ AND | ANDIF >} <operand-2 (1.2)
<sub operand-% ::= (2)
<operand-% (2.1)

semantics: If AND or ANDIF is specified, sub operand-Bnd operand-2deliver:

* boolean values, in which case AND denotes the logical “conjunction” operation, delivering a boolean
value. If ANDIF is specified andub operand-1 delivers the boolean valueALSE, then this is the
result, otherwise the result is the value deliveredgeyand-2;

 bit string values, in which cageND denotes the logical operation on corresponding element of the bit
strings, delivering a bit string value;
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e powerset values, in which case AND denotes the “intersection” operation of powerset values
delivering a powerset value as a result.

static properties: If an operand-1 is anoperand-2, the class obperand-1 is the class obperand-2.

If AND or ANDIF is specified, the class operand-1 is theresulting class of the classes cfub operand-1
andoperand-2.

An operand-1 is constant (literal) if and only if it is either amperand-2 which isconstant (literal), or built
up from anoperand-1 and aroperand-2 which are botltonstant (literal).

static conditions: If AND or ANDIF is specified, the class afib operand-1 must becompatible with the class of
operand-2. If ANDIF is specified, both classes must have a boaleanmode, otherwise both classes must
have a boolean, powerset loit string root mode, in which case thactual length of sub operand-1 and
operand-2 must be the same. This check is dynamic if one or both modes is (are) dynamariging string
modes.

dynamic conditions: In the case oAND, aRANGEFAIL exception occurs if one or both operands have a dynamic class
and the dynamic part of the above mentioned compatibility check fails.

examples:
5.10 (a1 OR bl) 1.1
5.10 NOT k2 AND (al OR b1l) 1.2

535 Operand-2

syntax:

<operand-2> ::= (1)
<operand-3> (1D

| <sub operand-2> <operator-3> <operand-3> (1.2

<sub operand-2> ::= %)
<operand-2> (2.1
<operator-3>::= 3
<relational operator> 3.1

| <membership operator> (3.2

| <powerset inclusion operator> (3.3)
<relational operator> ::= 4
=l /=1>]>=]<|<= (4.1)
<membership operator> ::= 5)
IN (5.2)
<powerset inclusion operator> ::= (6)
<=|>=|<|> (6.1

semantics. The equality (=) and inequality (/=) operators are defined between all values of a given mode. The other
relational operators (less than: <, less than or equal to: <=, greater than: >, greater than or equal to: >=) are
defined between values of a given discrete, timing, string or floating point mode. All the relational operators
deliver a boolean value as result.

The membership operator is defined between a member value and a powerset value. The operator delivers
TRUE if the member value is in the specified powerset value, othe RNEEE.

The powerset inclusion operators are defined between powerset values and they test whether or not a powerset
value is contained in: <=, is properly contained in: <, contains: >= or properly contains: > the other powerset
value. A powerset inclusion operator delivers a boolean value as result.

static properties: If an operand-2 is anoperand-3, the class obperand-2 is the class ofperand-3. If an operator-3 is
specified, the class @perand-2 is theBOOL-derived class.

An operand-2 is constant (literal) if and only if it is either amperand-3 which isconstant (literal) or built
up from asub operand-2 and aroperand-3 which are botltonstant (literal).

static conditions: If an operator-3 is specified, the following compatibility requirements between the classbof
operand-2 and the class afperand-3 must be fulfilled:

« if operator-3is = or /=, both classes must dmmpatible;

« if operator-3 is arelational operator other than = or /=, both classes mustcbmpatible and must
have a discrete, timing, string or floating painbt mode;
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« if operator-3 is a membership operator, the class of operand-3 must have a powerset root mode and
the class of sub operand-2 must be compatible with the member mode of that root mode;

o if operator-3 is a powerset inclusion operator, both classes must be compatible and must have a
powerset root mode.

dynamic conditions: In the case of arelational operator, a RANGEFAIL or TAGFAIL exception occurs if one or both

operands have a dynamic class and the dynamic part of the above mentioned compatibility check fails. The
TAGFAIL exception occurs if and only if a dynamic class is based upon a dynamic parameterised structure
mode.

examples:
10.50 NULL (1.1)
10.50 last=NULL 1.2
5.3.6 Operand-3
syntax:
<operand-3> ::= 1)
<operand-4> (1.1
| <sub operand-3> <operator-4> <operand-4> (1.2
<sub operand-3> ::= 2
<operand-3> (2.1
<operator-4> ::= ©)
<arithmetic additive operator> (3.)
| <string concatenation operator> 3.2
| <powerset difference operator> (3.3
<arithmetic additive operator> ::= 4
+]- (4.2
<string concatenation operator> ::= (5)
I (5.1)
<powerset difference operator> ::= (6)
) (6.2)

semantics: If operator-4 is an arithmetic additive operator, both operands deliver either integer values or floating point

values and the resulting integer value or floating point value respectively isthe sum (+) or difference (-) of the
two values.

If operator-4 is a string concatenation operator, both operands deliver either bit string values or character
string values; the resulting value consists of the concatenation of these values. Boolean (character) values are
also allowed; they are regarded as bit (character) string values of length 1.

If operator-4 is the powerset difference operator, both operands deliver powerset values and the resulting
value is the powerset value consisting of those member values which are in the value delivered by sub
operand-3 and not in the value delivered by operand-4.

If the class of operand-3 has a floating point root mode, the result is the floating point value that
approximates, using the same criterion used for representation conversion, the result of the exact mathematical
operation.

static properties: If an operand-3 is an operand-4, the class of operand-3 is the class of operand-4. If an operator-4 is
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specified, the class of operand-3 is determined by operator-4 as follows:

» if operator-4 is a string concatenation operator, the class of operand-3 is dependent on the classes of
operand-4 and sub operand-3, in which an operand that is a boolean or a character value is regarded as
avaluewhose classisaBOOLS (1)-derived class or CHARS (1)-derived class, respectively:

— if none of them is strong, the class is the BOOLS (n)-derived class or CHARS (n)-derived
class, depending on whether both operands are bit or character strings, where n is the sum of the
string lengths of the root modes of both classes;

— otherwise the class is the &name(n)-value class, where &name is a virtual synmode name
synonymous with the root mode of the resulting class of the classes of the operands and n is
the sum of the string lengths of the r oot modes of both classes

(this classis dynamic if one or both operands have a dynamic class).
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- if operator-4 is an arithmetic additive operator or powerset difference operator, the class of operand-3
isthe resulting class of the classes of operand-4 and sub operand-3.

An operand-3 is constant (literal) if and only if it is either an operand-4 which is constant (literal), or built
up from an operand-3 and an operand-4 which are both constant (literal) and operator-4 is either the
arithmetic additive operator or the powerset difference operator.

If operator-4 is the string concatenation operator, an operand-3 is constant if it is built up from an operand-
3 and operand-4 which are both constant.

static conditions: If an operator-4 is specified, the following compatibility requirements must be fulfilled:

« if operator-4 is the arithmetic additive operator, the classes of both operands must be compatible and
they must both have either an integer or a floating point root mode. Furthermore if operand-3 is not
constant, the root mode of the class of operand-3 must be a predefined integer mode or a predefined
floating point mode.

« if operator-4 isthe string concatenation operator then:

— the classes of both operands must be compatible and they must both have a bit string root
mode or both have a character string root mode, or

— the classes of both operands must be compatible with the BOOL mode or both be compatible
with the CHAR mode, or

— the class of one operand must have a bit (character) string root mode and the other must be
compatible with the BOOL (CHAR) mode.

« if operator-4 is the powerset difference operator, the classes of both operands must be compatible and
both must have a powerset r oot mode.

dynamic conditions: In the case of an operand-3 that is not constant, if operator-4 is an arithmetic additive operator,
an OVERFLOW exception occurs if an addition (+) or a subtraction (-) givesrise to a value that is not one of
the values defined by the root mode of the class of operand-3, or one or both operands do not belong to the
set of values of the r oot mode of operand-3.

In the case of an operand-3 that is not constant, an UNDERFLOW exception occurs if the class of operand-3
has a floating point root mode and the exact mathematical addition (+) or subtraction (-) give rise to a value
that is greater than the negative upper limit and less than the positive lower limit of the root mode of
operand-3, and is different from zero.

examples:
1.6 j (1.1)
1.6 i+] (1.2)

537 Operand-4

syntax:

<operand-4> ::= 1)
<operand-5> (1.2)

| <sub operand-4> <arithmetic multiplicative operator> <operand-5> (1.2

<sub operand-4> ::= 2
<operand-4> (2.1)

<arithmetic multiplicative operator> ::= (©)]

O]/ |MOD | REM (32)

semantics. If the arithmetic multiplicative operator is either the product (O or the quotient operator (/), then both sub
operand-4 and operand-5 deliver either integer values or floating point values and the resulting integer value
or floating point value respectively isthe product or quotient of both values.

If the arithmetic multiplicative operator is either the modulo (MOD) or division remainder (REM) operator,
then both sub operand-4 and operand-5 deliver integer values, and the resulting integer value is the modulo or
division remainder of both values.

The modulo operation is defined such that i MOD j delivers the unique integer value k, 0 < k < j such that
thereis an integer value n such that i = n 0j + k; j must be greater than 0.
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The quotient operation is defined such that all relations:
ABS (x/y) = ABS(x) / ABS(y) and
sign (x/y) = sign (x) / sign (y) and
ABS(X) - (ABS(X) / ABS (y)) OABS(y) = ABS(X) MOD ABS(y)

yield TRUE for all integer values x and y, where sign (x) = -1 if x < 0, otherwise sign (x) = 1.
The remainder operation is defined such that x REM y = x - (x/y) Oy yields TRUE for all integer values x and
y.

If the class of operand-4 has a floating point root mode, the result is the floating point value that
approximates, using the same criterion used for representation conversion, the result of the exact mathematical
operation.

static properties: |If operand-4 is an operand-5, the class of operand-4 is the class of operand-5; otherwise the class of

operand-4 is the resulting class of the classes of sub operand-4 and operand-5.

An operand-4 is constant (literal) if and only if it is either an operand-5 which is constant (literal), or built
up from an operand-4 and an operand-5 which are both constant (literal).

static conditions: If an arithmetic multiplicative operator is specified between integer or floating point operands, then

the classes of operand-5 and sub operand-4 must be compatible and both must have an integer root mode or
afloating point root mode respectively. Furthermore if operand-4 is not constant, the root mode of the class
of operand-4 must be a predefined integer mode or a predefined floating point mode.

dynamic conditions: In the case of an operand-4 that is not constant, if an arithmetic multiplicative operator is

examples:

5.3.8
syntax:

specified, an OVERFLOW exception occurs if a multiplication (0, a division (/), a modulo (MOD), or a
remainder (REM) operation gives rise to a value that is not one of the values defined by the root mode of the
class of operand-4 or is performed on operand values for which the operator is mathematically not defined,
i.e. division or remainder with an operand-5 delivering 0 or a modulo operation with an operand-5 delivering
a non-positive integer value, or one or both operands do not belong to the set of values of the root mode of
operand-4.

In the case of an operand-4 that is not constant, an UNDERFLOW exception occurs if the class of operand-4
has a floating point root mode and the exact mathematical multiplication (0) or division (/) giveriseto avalue
that is greater than the negative upper limit and less than the positive lower limit of the root mode of
operand-4, and is different from zero.

6.15 1 461 (1.2)

6.15 (40d+ 3)/1 461 (1.2
Operand-5

<operand-5> ::= 1

<operand-6> 1.n

| <sub operand-5> <exponentiation operator> <operand-6> (1.2

<sub operand-5> ::= %)

<operand-5> (2.1

<exponentiation operator> ;= (©)]

mn| (31

semantics. If the exponentiation operator is specified, sub operand-5 and operand-6 deliver a floating point value or an

integer value. The resulting value is that obtained by raising the value delivered by sub operand-5 to the
power of that delivered by operand-6.

If the class of operand-5 has a floating point root mode, the result is the floating point value that
approximates, using the same criterion used for representation conversion, the result of the exact mathematical
operation.

static properties: If the operand-5 is an operand-6, the class of the operand-5 is the class of operand-6.
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If the exponentiation operator is specified, the class of the operand-5 isthat of the sub operand-5.

An operand-5 is constant (literal) if and only if it is either an operand-6 which is constant (literal), or built
up from an operand-5 and operand-6 which are both constant (literal).
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static conditions: If an exponentiation operator is specified:

» if the class of sub operand-5 has a floating point root mode, the class of operand-6 must have an
integer root mode or afloating point root mode

» otherwise the class of sub operand-5 must have an integer root mode and the class of operand-6 must
have an integer root mode.

dynamic conditions: In the case of an operand-5 which is not constant, an OVERFLOW exception occurs if an
exponentiation operation gives rise to a value outside the range of the root mode of the class of the
operand-5.

In the case of an operand-5 that is not constant, an UNDERFLOW exception occurs if the class of operand-5
has a floating point root mode and the exact mathematical exponentiation gives rise to a value that isless than
the positive lower limit of the root mode of operand-5.

If an exponentiation operator is specified and the class of operand-5 has an integer root mode, then if
operand-6 is not constant its value must be greater than or equal to zero.

examples:
r+x 4 (1.2)
539 Operand-6
syntax:
<operand-6> ::= D
[ <monadic operator>] <operand-7> (1.1
| <signed integer literal> (1.2
| <signed floating point literal> (1.3
<monadic operator> ::= ()]
—|NOT (2.2)
| <string repetition operator> (2.2
<string repetition operator> ::= (©)]
( <integer literal expression>) (31

N.B. If the monadic operator is the change sign operator (-) and dperand-7 is anunsigned integer literal
or anunsigned floating point literal, the syntactic construct is ambiguous and will be interpretedsigmenl
integer literal or asigned floating point literal respectively.

semantics: If the monadic operator is a change-sign operatoofer,and-7 delivers an integer value or a floating point
value and the resulting integer value or floating point value is the previous integer value or floating point
value with its sign changed.

If the monadic operator NOT, operand-7 delivers a boolean value, a bit string value, or a powerset value. In

the first two cases the logical negation of the boolean value or of the elements of the bit string value is
delivered. In the latter case, the set complement value, i.e. the set of those member values which are not in the
operand powerset value, is delivered.

If the monadic operator is a string repetition operatperand-7 is acharacter string literal or abit string

literal. If the integer literal expression delivers 0, the result is the empty string value; otherwise the result is
the string value formed by concatenating the string with itself as many times as specified by the value
delivered by thénteger literal expression minus 1.

static properties: If operand-6 is anoperand-7, the class obperand-6 is the class ofperand-7.
If a monadic operator is specified, the class operand-6 is:
 if the monadic operator is—or NOT then the resulting class of operand-7

« if the monadic operatois the string repetition operatqgrthen it is the CHARS (n)- or BOOLS (n)-
derived class (depending on whether the literal was a character string literalbor bit string literal) where
n =r OIl, wherer is the value delivered by the integer literal expressioand | is the string length of
the string literal.

An operand-6is constant if and only if the operand-7is constant. An operand-6is literal if and only if the
operand-T7isliteral and the monadic operatois—or NOT.

static conditions: If monadic operators —, the class of operand-7must have an integer root mode or a floating point
root mode. Furthermore if operand-6is not constant, the root mode of the class of operand-6must be a
predefined integer mode or a predefined floating point mode.
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If monadic operator isNOT, the class of operand-7 must have a boolean, bit string or powerset root mode.

If monadic operator is the string repetition operator, operand-7 must be a character string literal or a bit
string literal. The integer literal expression must deliver a non-negative integer-value.

dynamic conditions: If operand-6 is not constant, an OVERFLOW exception occurs if a change sign (—) operation
givesriseto avalue which is not one of the values defined by the root mode of the class of the operand-6

In the case of an operand-6that is not constant, an UNDERFLOWexception occurs if the class of operand-6
has a floating point root mode and the exact mathematical change sign operation (-) giveriseto avaluethat is
greater than the negative upper limit and less than the positive lower limit of the root mode of operand-6
and is different from zero.

examples:
5.10 NOT k2 (1.1
7.54 6y~ (1.1)
7.54 (6) (2.2

5310 Operand-7

syntax:
<operand-7>::= (0]
<referenced location> (1.2
| <primitive value> (1.2
<referenced location> ::= ()]
—> docation> (2.1

semantics. A referenced location delivers a reference to the specified location.

static properties: The class of anperand-7 is the class of thesferenced location or primitive value, respectively. The
class of theeferenced location is the M-reference class where M is the mode ofdtation.

An operand-7 is constant if and only if theprimitive value is constant or thereferenced location is constant.
A referenced location is constant if and only if thelocation is static. An operand-7 isliteral if and only if the
primitive value is literal.

static conditions: Thelocation must be eferable.

examples:
8.25 >c (2.1)
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6 ACTIONS

6.1 GENERAL

syntax:

<action statement> ::= Q
[ <defining occurrence> : | <action> [ <handler>] [ <simple name string>1] ; (1.2)

| <module> (1.2

| <spec module> (1.3)

| <context module> (1.9
<action>::= 2
<bracketed action> (2.1

| <assignment action> (2.2

| <call action> (2.3)

| <exitaction> (2.4

| <returnaction> (2.5)

| <result action> (2.6)

| <goto action> 2.7)

| <assertaction> (2.8)

| <empty action> (2.9

| <start action> (2.10)

| <stop action> (2.11)

| <delay action> (2.12)

| <continue action> (2.13)

| <send action> (2.14)

| <causeaction> (2.15)
<bracketed action> ::= ©)]
<if action> (3.1

| <caseaction> (3.2

| <do action> (3.3)

| <begin-end block> (3.4

| <delay case action> (3.5)

| <receive case action> (3.6)

| <timing action> (3.7

semantics. Action statements constitute the algorithmic part of a CHILL program. Any action statement may be
labelled. Those actions that have no exception defined may not have a handler appended.

static properties: A defining occurrence in an action statement defines alabel name.

static conditions: The simple name string may only be given after an action which is a bracketed action or if a handler
is specified, and only if a defining occurrence is specified. The simple name string must be the same name
string as the defining occurrence.

6.2 ASSIGNMENT ACTION

syntax:

<assignment action> ::= (D)
<single assignment action> (1.2)

| <multiple assignment action> (1.2
<single assignment action> ::= ()]
<location> <assignment symbol> <value> (2.1)

| <location> <assigning operator> <expression> (2.2
<multiple assignment action> ::= 3
<location> { , <location> } + <assignment symbol> <value> (3.1
<assigning operator> ::= (4
<closed dyadic operator> <assignment symbol > (4.0
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<closed dyadic operator> ::= 5)
OR | XOR |AND (5.1

| <powerset difference operator> (5.2

| <arithmetic additive operator> (5.3

| <arithmetic multiplicative operator> (5.9

| <string concatenation operator> (5.5
<assignment symbol> ::= (6)
= (6.2)

semantics: An assignment action stores a value into one or more locations.

If an assignment symbol is used, the value yielded by the right hand side is stored into the location(s)
specified at the left hand side.

If an assigning operator is used, the value contained in the location is combined with the right hand side value
(in that order) according to the semantics of the specified closed dyadic operator, and the result is stored back
into the same location.

The evaluation of the left hand side location(s), of the right hand side value, and of the assignment themselves
are performed in any order. Any assignment may be performed as soon as the value and a location have been
evaluated.

If the location (or any of the locations) is the tag field of a variant structure, the semantics for the variant
fields that depend on it are implementation defined.

static conditions: The modes of all location occurrences must be equivalent and they must have neither the read-only

property nor the non-value property. Each mode must be compatible with the class of the value. The
checks are dynamic in the case where dynamic mode locations and/or a value with a dynamic class are
involved.

The value must be regionally safe for every location (see section 11.2.2).

If any location has a fixed string mode, then the string length of the mode and the actual length of the value
must be the same; otherwise, if it has a varying string mode, then the string length of the mode must not be
less than the actual length of the value. This check is dynamic if one or both modes is (are) dynamic or
varying string modes. This condition is called the string assignment condition.

dynamic conditions: The RANGEFAIL or TAGFAIL exception occurs if the mode of the location and/or that of the

examples:

72

value are dynamic modes and the dynamic part of the above mentioned compatibility checksfails.

The RANGEFAIL exception occurs if the mode of the location and/or that of the value are varying string
modes and the dynamic part of the above mentioned compatibility checksfails.

The RANGEFAIL exception occurs if any location has a discrete range mode (floating point range mode) and
the value delivered by the evaluation of value is neither one of the values defined by the discrete range mode
(floating point range mode) nor the undefined value.

The above mentioned dynamic conditions together with the string assignment condition are called the
assignment conditions of a value with respect to a mode.

In the case of an assigning operator, the same exceptions are caused as if the expression:
<location> <closed dyadic operator> (<expression>)

were evaluated and the delivered value stored into the specified location (note that the location is evaluated
once only).

4.12 a:=btc (1.1
10.25 stackindex- := 1 (2.1
19.19 X->.prev, X->.next := NULL (3.1
10.25 -:= (4.1)
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6.3 IF ACTION

syntax:
<if action> ::=
| F <boolean expression> <then clause> [ <else clause> ] Fl

<then clause> ::=
THEN <action statement list>

<dseclause> ::=
EL SE <action statement list>
| ELSIF <boolean expression> <then clause> [ <else clause> |

derived syntax: The notation:
ELSIF <boolean expression> <then clause> [ <else clause> |
is derived syntax for:

ELSE I F <boolean expression> <then clause> [ <else clause> ] FI;

| SO/IEC 9496 :

1995 (E)

(1)
(1.2)

(2
2.2)

©)
(3.1)
(3.2)

semantics. An if action is a conditional two-way branch. If the boolean expression yields TRUE, the action statement
list following THEN is entered; otherwise the action statement list following EL SE, if present, is entered.

dynamic conditions. The SPACEFAIL exception occurs if storage requirements cannot be satisfied.

examples:
7.22 IFn>=50THEN rn(r) :='L’;
n- ;= 50;
r+:=1;
Fl
10.50 IF last = NULL
THEN first,last := p;
EL SE last->.succ := p;
p->.pred ;= last;
last ;= p;
FI

6.4 CASE ACTION

syntax:
<case actiom ::=
CASE <case selector listOF [ <range list ; ] { <case alternative } +
[ EL SE <action statement list] ESAC

<case selector list::=

<discrete expressiory , <discreteexpression }*
<range list ::=

<discrete mode narng , <discrete mod@ame- }*

<case alternative ::=
<case label specification: <action statement list

(1.1)

(1.1)

(1)
(1.1)

(2)
2.1)

()
(3.1)

(4)
(4.1)

semantics: A case action is a multiple branch. It consists of the specification of one or more discrete expressions (the
case selector list) and a number of labelled action statement lists (case alternatives). Each action statement list
is labelled with a case label specification which consists of alist of case label list specifications (one for each
case selector). Each case label list defines a set of values. The use of alist of discrete expressions in the case

selector list alows selection of an alternative based on multiple conditions.

The case action enters that action statement list for which values given in the case label specification match
the values in the case selector list; if no value match, the action statement lisbllowing EL SE is entered.

The expressions in the case selector list are evaluated in any order. They need be evaluated only up to the

point where a case alternative is uniquely determined.

static conditions: For the list of case label specificationccurrences, the case selection conditions apply (see section

12.3).
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The number of discrete expression occurrences in the case selector list must be equal to the number of classes
in the resulting list of classes of the list of case label list occurrences and, if present, to the number of
discrete mode name occurrences in the range list.

The class of any discrete expression in the case selector list must be compatible with the corresponding (by
position) class of the resulting list of classes of the case label list occurrences and, if present, compatible
with the corresponding (by position) discrete mode name in the range list. The latter mode must also be
compatible with the corresponding class of the resulting list of classes.

Any value delivered by a discrete literal expression or defined by a literal range or by a discrete mode name
in a case label (see section 12.3) must lie in the range of the corresponding discrete mode name of the range
list, if present, and also in the range defined by the mode of the corresponding discrete expression in the case
selector ligt, if it is a strong discrete expression. In the latter case, the values defined by the corresponding
discrete mode name of the range list, if present, must also liein that range.

The optional EL SE part according to the syntax may only be omitted if the list of case label list occurrences
iscomplete (see section 12.3).

dynamic conditions: The RANGEFAIL exception occursif arange list is specified and the value delivered by a discrete

expression in the case selector list does not lie within the bounds specified by the corresponding discrete
mode name in the range list.

The SPACEFAIL exception occursif storage requirements cannot be satisfied.

examples:
411 CASE order OF
(): a:=b+g
RETURN;
(2: d:=0
(ELSE): d:= 1,
ESAC (1.1)
11.43 starting.p.kind, starting.p.color (2.1
11.58 (rook),(*):
IF NOT ok_rook(b,m)
THEN
CAUSE illegal;
Fl; 4.1
6.5 DO ACTION
6.5.1 General
syntax:
<do action> ::= Q
DO [ <control part>; ] <action statement list> OD (1.1)
<control part>::= ()]
<for control> [ <while control> ] (2.1)
| <while control> (2.2
| <with part> (2.3

semantics. A do action has one out of three different forms: the do-for and the do-while versions, both for looping, and
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the do-with version as a convenient short hand notation for accessing structure fields in an efficient way. If no
control part is specified, the action statement list is entered once, each time the do action is entered.

When the do-for and the do-while versions are combined, the while control is evaluated after the for control,
and only if the do action is not terminated by the for control.

If the specified control part is a for control and/or while control, then for as long as control stays inside the

reach of the do action, the action statement list is entered according to the control part, but the do reach is not
re-entered for each execution of the action statement list.
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dynamic conditions. The SPACEFAIL exception occurs if storage requirements cannot be satisfied.

examples:
417 DOFORi:=1TOg;
op(a,b,d,order-1);
d:=g
oD (1.2)
15.58 DO WITH each;
| F this_counter = counter
THEN
status:= idle;
EXIT find_counter;
FI;
oD (1.2
6.5.2 For control
syntax:
<for control>::= @
FOR { <iteration>{ , <iteration>}* | EVER } (1.1
<iteration>::= ()]
<value enumeration> (2.1
| <location enumeration> (2.2
<value enumeration> ::= 3
<step enumeration> (3.1
| <range enumeration> (3.2
| <powerset enumeration> (3.3
<step enumeration> ::= (4)
<loop counter> <assignment symbol >
<start value> [ <step value>] [ DOWN ] <end value> 4.0
<loop counter> ::= 5)
<defining occurrence> (5.2)
<start value> ::= (6)
<discrete expression> (6.2)
<step value> ::= @)
BY <integer expression> (7.1
<end value> ::= (8
TO <discrete expression> (8.1
<range enumeration> ::= 9
<loop counter>[ DOWN ] IN <discrete mode name> (9.1
<powerset enumeration> ::= (20
<loop counter>[ DOWN ] IN <powerset expression> (10.2)
<location enumeration> ::= (11)
<loop counter>[ DOWN ] IN <composite object> (11.1)
<composite object> ::= (12
<array location> (12.2)
| <array expression> (12.2)
| <string location> (12.3)
| <string expression> (12.49)

N.B. If the composite object is a string location or an array location, the syntactic ambiguity is resolved by
interpreting composite object as alocation rather than an expression.
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semantics. The for control may mention several loop counters. The loop counters are evaluated each time in an

76

unspecified order, before entering the action statement list, and they need be evaluated only up to the point
that it can be decided to terminate the do action. The do action is terminated if at least one of the loop counters
indicates termination.

1. dofor ever:

The action list isindefinitely repeated. The do action can only terminate by a transfer of control out of
it.

. value enumeration:

The action statement list is repeatedly entered for the set of specified values of the loop counters. The
set of values is either specified by a discrete mode name (range enumeration), or by a powerset value
(powerset enumeration), or by a start value, step value and end value (step enumeration).

The loop counter implicitly defines a name which denotes its value or location inside the action
statement list.

range enumeration;

In the case of range enumeration without (with) DOWN specification, the initial value of the loop
counter is the smallest (greatest) value in the set of values defined by the discrete mode name. For
subsequent executions of the action statement list, the next value will be evaluated as:

SUCC (previous value) (PRED (previous valug)).

Termination occurs if the action statement list has been executed for the greatest (smallest) value
defined by the discrete mode name.

power set enumer ation;

In the case of powerset enumeration without (with) DOWN specification, the initial value of the loop
counter is the smallest (highest) member value in the denoted powerset value. If the powerset value is
empty, the action statement list will not be executed. For subsequent executions of the action statement
list, the next value will be the next greater (smaller) member value in the powerset value. Termination
occurs if the action statement list has been executed for the greatest (smallest) value. When the do
action is executed, the power set expression is evaluated only once.

step enumer ation:

In the case of step enumeration without (with) DOWN specification, the set of values of the loop
counter is determined by a start value, an end value, and possibly a step value. When the do action is
executed, these expressions are evaluated only once in any order. The step value is always positive.
The test for termination is made before each execution of the action statement list. Initially, atest is
made to determine whether the start value of the loop counter is greater (smaller) than the end value.
For subsequent executions, next value will be evaluated as:

previous value + step value (previous value - step value)
in the case of step value specification; otherwise as:
SUCC (previous value) (PRED (previous value)).

Termination occurs if the evaluation yields a value which is greater (smaller) than the end value or
would have caused an OVERFLOW exception.

. location enumer ation:

In the case of alocation enumeration without (with) DOWN specification, the action statement list is
repeatedly entered for a set of locations which are the elements of the array location denoted by array
location or the components of the string location denoted by string location. If an array expression or a
string expression is specified that is not a location, a location containing the specified value will be
implicitly created. The lifetime of the created location is the do action. The mode of the created
location is dynamic if the value has a dynamic class. The semantics are as if before each execution of
the action statement list the loc-identity declaration:

DCL <loop counter> <mode> L OC := <composite object> (<index>);
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were encountered, where mode is the element mode of the array location or & name(1) such that &nameis
avirtual synmode name synonymous with the mode of the string location if it is a fixed string mode,
otherwise with the component mode, and where index is initialy set to the lower bound (upper
bound) of the mode of location and index before each subsegquent execution of the action statement list
is set to SUCC (index) (PRED (index)). The action statement list will not be executed if the actual
length of the string location equals 0. The do action is terminated if index just after an execution of the
action statement list is equal to the upper bound (lower bound) of the mode of location. When the do
action is executed, the composite object is evaluated only once.

static properties: A loop counter has a name string attached which is the name string of its defining occurrence.
value enumer ation:
The name defined by the loop counter isavalue enumeration name.
step enumeration:

The class of the name defined by aloop counter isthe resulting class of the classes of the start value, the step
value, if present, and the end value.

range enumer ation:
The class of the name defined by the loop counter isthe M-value class, where M is the discrete mode name.
power set enumer ation:

The class of the name defined by the loop counter is the M-value class, where M is the member mode of the
mode of the (strong) powerset expression.

location enumer ation:

The name defined by the loop counter is a location enumer ation name. Its mode is the element mode of the
mode of the array location or array expression or the string mode &name(1), where &name is a virtual
synmode name synonymous with the mode of string location or the r oot mode of the string expression.

A location enumeration name is referable if the element layout of the mode of the array location is
NOPACK.

static conditions: The classes of start value, end value and step value, if present, must be pairwise compatible.
Theroot mode of the class of aloop counter in avalue enumeration must not be anumbered set mode.

If the root mode of the class of aloop counter is an integer mode, there must exist a predefined integer mode
that contains all the values delivered by start value, end value and step value, if present.

dynamic conditions: A RANGEFAIL exception occurs if the value delivered by step value is not greater than 0. This
exception occurs outside the block of the do action.

examples:
417 FORi:=1TOc(11)
15.37 FOR EVER (1Y
417 i:=1TOc (3.1
9.12 j := MIN (sieve) BY MIN (sieve) TO max (3.1
14.28 i ININT (1:100) (3.2

6.5.3 While control

syntax:
<while control> ::= (1)
WHILE <boolean expression> (.2

semantics. The boolean expression is evaluated just before entering the action statement list (after the evaluation of the
for control, if present). If it yields TRUE, the action statement list is entered; otherwise the do action is
terminated.

examples:
7.35 WHILEn>=1 (1.2)
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6.5.4 With part

syntax:
<with part> ::= (€]
WITH <with control> { , <with control> }* (1.1)
<with control> ::= )]
<structure location> (2.1
| <structure primitive value> (2.2

N.B. If the with control is a structure location, the syntactic ambiguity is resolved by interpreting with control
as alocation rather than a primitive value.

semantics. The (visible) field names of the mode of the structure locations or structure value specified in each with
control are made available as direct accesses to the fields.

The visibility rules are as if afield name defining occurrence were introduced for each field name attached to
the mode of the location or primitive value and with the same name string as the field name.

If astructure location is specified, access names with the same name string as the field names of the mode of
the structure location are implicitly declared, denoting the sub-locations of the structure location.

If a structure primitive value is specified, value names with the same name string as the field names of the
mode of the (strong) structure primitive value are implicitly defined, denoting the sub-values of the structure
value.

When the do action is entered, the specified structure locations and/or structure values are evaluated once only
on entering the do action, in any order.

static properties: The (virtual) defining occurrence introduced for a field name has the same name string as the field
name defining occurrence of that field name.

If a structure primitive value is specified, a (virtua) defining occurrence in a with part defines a value do-
with name. Its class is the M-value class, where M is the mode of that field name of the structure mode of the
structure primitive value which is made available as value do-with name.

If a structure location is specified, a (virtual) defining occurrence in a with part defines a location do-with
name. Its mode is the mode of that field name of the mode of the structure location which is made available
as location do-with name. A location do-with name is referable if the field layout of the associated field
nameisNOPACK.

examples:
15.58 WITH each (1.2)

6.6 EXIT ACTION
syntax:
<exit action> ::= D
EXIT <label name> (1.2)

semantics: An exit action is used to leave a bracketed action statement or a module. Execution is resumed immediately
after the closest surrounding bracketed action statement or module labelled with the label name.

static conditions: The exit action must lie within the bracketed action statement or module of which the defining
occurrence in front has the same name string as label name.

If the exit action is placed within a procedure or process definition, the exited bracketed action statement or
module must also lie within the same procedure or process definition (i.e. the exit action cannot be used to
leave procedures or processes).

No handler may be appended to an exit action.

examples:
15.62 EXIT find_counter (1.1
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6.7 CALL ACTION

syntax:

<call action> ::= D
<procedure call> (1.2
| <built-inroutine call> (1.2
<procedurecall>::= ()]

{ <procedure name> | <procedure primitive value> }
([ <actual parameter list>]) (2.1
<actual parameter list>::= 3
<actual parameter>{ , <actual parameter>}* (3.1
<actual parameter> ::= ©)
<value> (4.0
| <location> (4.2)
<built-in routine call> ::= 5)
<built-in routine name> ( [ <built-in routine parameter list>]) (5.1
<built-in routine parameter list> ::= (6)
<built-in routine parameter> { , <built-in routine parameter> }* (6.2)
<built-in routine parameter> ::= (7
<value> (7.2)
| <location> (7.2)
| <non-reserved name> [ ( <built-in routine parameter list>) ] (7.3

N.B. If the actual parameter or built-in routine parameter is alocation, the syntactic ambiguity is resolved by
interpreting it as alocation rather than a value.

semantics: A call action causes the call of either a procedure or a built-in routine. A procedure call causes a call of the
general procedure indicated by the value delivered by the procedure primitive value or the procedure
indicated by the procedure name. The actual values and locations specified in the actual parameter list are
passed to the procedure.

A built-in routine call is either a CHILL built-in routine call or an implementation built-in routine call (see
sections 6.20 and 13.1, respectively).

A value, alocation, or any program defined name that is not a reserved simple name string may be passed as
built-in routine parameter. The built-in routine call may return avalue or alocation.

A built-in routine may be generic, i.e. its class (if it is a value built-in routine call) or its mode (if it is a
location built-in routine call) may depend not only on the built-in routine name but also on the static
properties of the actual parameters passed and the static context of the call.

static properties. A procedure call has the following properties attached: a list of parameter specs, possibly a result
spec, a possibly empty set of exception names, a generality, a recursivity, and possibly it is intra-regional
(the latter is only possible with a procedure name, see section 11.2.2). These properties are inherited from the
procedure name or any mode compatible with the class of the procedure primitive value (in the latter case,
the generality is always general).

A procedure call with aresult spec is alocation procedure call if and only if LOC is specified in the result
spec; otherwiseit is avalue procedure call.

A built-in routine nameisa CHILL or an implementation defined name that is considered to be defined in the
reach of the imaginary outermost process definition or in any context (see section 10.8).

A built-in routine call is alocation built-in routine call if it delivers alocation; it is a value built-in routine
call if it deliversavalue.

static conditions: The number of actual parameter occurrences in the procedure call must be the same as the number of
its parameter specs. The compatibility requirements for the actual parameter and corresponding (by position)
parameter spec of the procedure call are:

» |f the parameter spec hasthe IN attribute (default), the actual parameter must be a value whose class is
compatible with the mode in the corresponding parameter spec. The latter mode must not have the
non-value property. The actual parameter is a value which must be regionally safe for the procedure
call.
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If the parameter spec has the INOUT or OUT attribute, the actual parameter must be a location,
whose mode must be compatible with the M-value class, where M is the mode in the corresponding
parameter spec. The mode of the (actual) location must be static and must not have the read-only
property nor the non-value property. The actual parameter is alocation. It can be viewed as a value
which must be regionally safe for the procedure call.

If the parameter spec has the INOUT attribute, the mode in the parameter spec must be compatible
with the M-value class where M is the mode of the location.

If the parameter spec has the L OC attribute specified without DY NAMI C, the actual parameter must
be alocation which is both referable and such that the mode in the parameter spec is read-compatible
with the mode of the (actual) location, or the actual parameter must be a value which is not a location
but whose classis compatible with the mode in the parameter spec.

If the parameter spec has the L OC attribute with DYNAM I C specified, the actual parameter must be
a location which is both referable and such that the mode in the parameter spec is dynamic read-
compatible with the mode of the (actual) location, or the actual parameter must be a value which is
not a location but whose class is compatible with a parameterised version of this mode.

If the parameter spec has the L OC attribute then
— if the actual parameter isalocation it must have the sameregionality asthe procedure call;

— if the actual parameter is avalue then it must be regionally safe for the procedure call.

dynamic conditions. A call action can cause any of the exceptions from the attached set of exception names. A
procedure call causes the EMPTY exception if the procedure primitive value delivers NULL. A call action
causes the SPACEFAIL exception if storage requirements cannot be satisfied. If the recursivity of the
procedure is non-recur sive, then the procedure must not call itself either directly or indirectly.

Parameter passing can cause the following exceptions:

If the parameter spec has the IN or INOUT attribute, the assignment conditions of the (actua) value
with respect to the mode of the parameter spec apply at the point of the call (see section 6.2) and the
possible exceptions are caused before the procedureis called.

If the parameter spec hasthe INOUT or OUT attribute, the assignment conditions of the local value of
the formal parameter with respect to the mode of the (actual) location apply at the point of return (see
section 6.2) and possible exceptions are caused after the procedure has returned.

If the parameter spec has the LOC attribute and the actual parameter is a value which is not a
location, the assignment conditions of the (actual) value with respect to the mode of the parameter spec
apply at the point of the call and the possible exceptions are caused before the procedure is called (see
section 6.2).

The procedure primitive value must not deliver a procedure defined within a process definition whose
activation is not the same as the activation of the process executing the procedure call (other than the
imaginary outermost process) and the lifetime of the denoted procedure must not have ended.

examples:
4.18

op(a,b,d,order-1) (1.1

6.8 RESULT AND RETURN ACTION

syntax:

<return action> ::= D
RETURN [ <result>] (1.2)

<result action> ::= 2

RESULT <result> (2.1

<result>::= ©)

<value> (3D

| <location> (3.2

derived syntax: The return action with result is derived from DO RESULT <result> ; RETURN; OD.
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semantics. A result action serves to establish the result to be delivered by a procedure call. This result may be alocation
or avalue. A return action causes the return from the invocation of the procedure within whose definition it is
placed. If the procedure returns a result, this result is determined by the latest executed result action. If no
result action has been executed, the procedure call delivers an undefined location or undefined value,
respectively.

static properties: A result action and a return action have a pr ocedur e name attached, which is the name of the closest
surrounding procedure definition.

static conditions: A return action and a result action must be textually surrounded by a procedure definition. A result
action may only be specified if its procedure name has aresult spec.

A handler must not be appended to a return action (without result).

If LOC (LOC DYNAMIC) is specified in the result spec of the procedure name of the result action, the
result must be a location, such that the mode in the result spec is read-compatible (dynamic read-
compatible) with the mode of the location. The location must be referable if NONREF is not specified in
the result spec. The result is a location which must have the same regionality as the procedure name
attached to the result action.

If LOC is not specified in the result spec of the procedure name of the result action, the result must be a
value, whose class is compatible with the mode in the result spec. The result is a value which must be
regionally safe for the procedur e name attached to the result action.

dynamic conditions: If LOC is not specified in the result spec of the procedur e nhame, the assignment conditions of
the value in the result action with respect to the mode in the result spec of its procedur e name apply.

examples:
4.21 RETURN (1.1)
16 RESULT i+j 2.1
5.19 c (3.1

6.9 GOTO ACTION
syntax:
<goto action> ::= D
GOTO <label hame> (1.1

semantics. A goto action causes a transfer of control. Execution is resumed with the action statement labelled with the
label name.

static conditions: If a goto action is placed within a procedure or process definition, the label indicated by the |abel
name must also be defined within the definition (i.e. it is not possible to jump outside a procedure or process
invocation).

A handler must not be appended to a goto action.

6.10 ASSERT ACTION
syntax:
<assert action> ::= (€]
ASSERT <boolean expression> (1.1
semantics; An assert action provides a means of testing a condition.
dynamic conditions: The ASSERTFAIL exception occurs if the boolean expression delivers FALSE.
examples:

4.7 ASSERT b>0 AND c>0 AND order>0 (1.1)

ITU-T Rec. Z.200 (1993 E) 81



| SO/IEC 9496 : 1995 (E)

6.11 EMPTY ACTION

syntax:
<empty action> ::=
<empty>

<empty>::=
semantics. An empty action causes no action.

static conditions: A handler must not be appended to an empty action.

6.12 CAUSEACTION

syntax:
<cause action> ::=
CAUSE <exception name>

semantics: A cause action causes the exception whose name is indicated by exception name to occur.

static conditions: A handler must not be appended to a cause action.

examples:
4.9 CAUSE wrong_input

6.13 START ACTION

syntax:
<dtart action> ::=
<start expression>

(1)
(1.2)

@

(2)
(1.2)

(1.2)

(1)
(1.2)

semantics. A start action evaluates the start expression (see section 5.2.15) without using the resulting instance value.

examples:
14.45 START call_distributor ()

6.14 STOPACTION

syntax:
<stop action> ::=
STOP

semantics: A stop action terminates the process executing it (see section 11.1).

static conditions: A handler must not be appended to a stop action.

6.15 CONTINUE ACTION

syntax:
<continue action> ::=
CONTINUE <event location>

semantics; A continue action evaluates the event location.

(1.2)

1)
(1.1)

)
(1.2)

If the event location has a non-empty set of delayed processes attached, one of these, with the highest priority,
will be re-activated. If there are several such processes, one will be selected in an implementation defined

way. If there are no such processes, the continue action has no further effect.

If a process becomes re-activated, it is removed from all sets of delayed processes of which it was a member.

examples:
13.25 CONTINUE resource freed
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6.16 DELAY ACTION

syntax:
<delay action> ::= (@]
DELAY <event location> [ <priority> ] (1.1
<priority> ::= 2
PRIORITY <integer literal expression> (2.1)

semantics. A delay action evaluates the event location.
Then a DELAYFAIL exception occurs (see below) or the executing process becomes delayed.

If the executing process becomes delayed, it becomes a member with a priority of the set of delayed processes
attached to the specified event location. The priority is the one specified, if any, otherwise O (lowest).

dynamic properties: A process executing a delay action becomes timeoutable when it reaches the point of execution
where it may become delayed. It ceases to be timeoutable when it leaves that point.

static conditions: Theinteger literal expression must not deliver a negative value.

dynamic conditions: The DELAYFAIL exception occurs if the event location has a mode with an event length attached
which is equal to the number of processes already delayed on the event location.

The lifetime of the event location must not end while the executing processis delayed on it.

examples:
13.18 DELAY resource freed 1.n

6.17 DELAY CASE ACTION

syntax:
<delay case action> ::= (€]
DELAY CASE [ SET <instance location> [ <priority>] ; | <priority>; ]
{ <delay alternative>} +
ESAC (1.2)
<delay alternative> ::= 2
( <event list>) : <action statement list> (2.1
<event list> ::= 3
<event location> { , <event location> }* (3.0

semantics. A delay case action evaluates, in any order, the instance location, if present, and all event locations specified
in adelay alternative.

Then a DELAYFAIL exception occurs (see below) or the executing process becomes delayed.

If the executing process becomes delayed, it becomes a member with a priority of the set of delayed processes
attached to each of the specified event locations. The priority is the one specified, if any, otherwise O (lowest).

If the delayed process becomes re-activated by another process executing a continue action on an event
location, the corresponding action statement list is entered. If several delay alternatives specify the same
event location, the choice between them is not specified. Prior to entering, if an instance location is specified,
the instance value identifying the process that has executed the continue action is stored in it.

dynamic properties: A process executing a delay case action becomes timeoutable when it reaches the point of
execution where it may become delayed. It ceases to be timeoutable when it leaves that point.

static conditions: The mode of the instance location must not have the read-only property. The integer literal
expression in priority must not deliver a negative value.

dynamic conditions: The DELAYFAIL exception occurs if any event location has a mode with an event length attached
which is equal to the number of processes already delayed on that event location.

The lifetime of none of the event locations must end while the executing process is delayed on them.
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The SPACEFAIL exception occurs if storage requirements cannot be satisfied.

examples:
14.26 DELAY CASE
(operator_is ready): /* some actions*/
(switch_is closed): DO FOR i IN INT (1:100);
CONTINUE operator_is _ready;
[* empty the queue */

OD;
ESAC 1.1
6.18 SEND ACTION
6.18.1 General
syntax:
<send action> ::= 1)
<send signal action> (1.1
| <send buffer action> 1.2

semantics. A send action initiates the transfer of synchronisation information from a sending process. The detailed
semantics depend on whether the synchronisation object isa signal or a buffer.

6.18.2  Send signal action

syntax:
<send signal action> ::= (D)
SEND <sighal name> [ ( <value> { , <value>1}* )]
[ TO <instance primitive value> | [ <priority> ] (1.0

semantics: A send signal action evaluates, in any order, the list of values, if present, and the instance primitive value, if
present.

The signal specified by signal name is composed for transmission from the specified values and a priority.
The priority isthe one specified, if any, otherwise O (lowest).

If the signal name has a process name attached, only processes with that name may receive the signal; if an
instance primitive value is specified, only that process may receive the signal. Otherwise any process may
receive the signal.

If the signal has a non-empty set of delayed processes attached, in which one or more may receive the signal,
one of these will be re-activated. If there are several such processes, one will be selected in an implementation
defined way. If there are no such processes, the signal becomes pending.

If a process becomes re-activated, it is removed from all sets of delayed processes of which it was a member.

static conditions: The number of value occurrences must be equal to the number of modes of the signal name. The class
of each value must be compatible with the corresponding mode of the signal name. No value occurrence may
be intra-regional (see section 11.2.2). The integer literal expression in priority must not deliver a negative
value.

dynamic conditions: The assignment conditions of each value with respect to its corresponding mode of the signal
name apply.

The EMPTY exception occursif the instance primitive value delivers NULL.

The lifetime of the process indicated by the value delivered by the instance primitive value must not have
ended at the point of the execution of the send signal action.

The SENDFAIL exception occurs if the signal name has a pr ocess name attached which is not the name of the
process indicated by the value delivered by the instance primitive value.

examples:
15.78 SEND ready TO received user (1.1
15.86 SEND readout(count) TO user (1.2)
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6.18.3 Send buffer action

syntax:
<send buffer action> ::= D
SEND <buffer location> ( <value>) [ <priority>] (1.1

semantics: A send buffer action evaluates the buffer location and the value in any order.

If the buffer location has a non-empty set of delayed processes attached, one of these will be re-activated. If
there are several such processes, one will be selected in an implementation defined way. If there are no such
processes and the capacity of the buffer location is exceeded, the executing process becomes delayed with a
priority. Otherwise the value is stored with a priority. The priority is the one specified, if any, otherwise O
(lowest). The capacity of the buffer is exceeded if the buffer location has a mode with a buffer length
attached which is equal to the number of values already stored in the buffer location.

If the executing process becomes delayed, it becomes a member of the set of delayed sending processes
attached to the buffer location. If a process becomes re-activated, it is removed from al sets of delayed
processes of which it was a member.

dynamic properties. A process executing a send buffer action becomes timeoutable when it reaches the point of
execution where it may become delayed. It ceasesto be timeoutable when it leaves that point.

static conditions: The class of the value must be compatible with the buffer element mode of the mode of the buffer
location. The value must not be intra-regional (see section 11.2.2). The integer literal expression in priority
must not deliver a negative value.

dynamic conditions: The assignment conditions of the value with respect to the buffer element mode of the mode of
the buffer location apply; the possible exceptions occur before the process may become delayed.

The lifetime of the buffer location must not end while the executing processis delayed on it.

examples:
16.123 SEND user->([ready, ->counter_buffer]) ; (1.1

6.19 RECEIVE CASE ACTION

6.19.1 General

syntax:
<receive case action> ::= D
<receive signal case action> (1.0
| <receive buffer case action> (1.2

semantics; A receive case action receives synchronisation information transmitted by a send action. The detailed
semantics depend on the synchronisation object used, which is either a signal or a buffer. Entering a receive
case action does not necessarily result in a delaying of the executing process (see chapter 11 for further
details).

6.19.2  Receivesignal caseaction

syntax:
<receive signal case action> ::= Q
RECEIVE CASE [ SET <instance location>; ]
{ <signal receive alternative> } +
[ EL SE <action statement list>] ESAC (1.2)
| RECEIVE [ SET <instance location> ]
(<signal name> [ IN <location list>1] ) (1.2
<location list> ::= 2
<location> { , <location> }* (2.1
<signal receive alternative> ::= 3
(<signal name> [ IN <defining occurrencelist>] ) : <action statement list> (3.1
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derived syntax: The notation (1.2) is derived syntax for
RECEIVE CASE [ SET <instance location>; |
(<signal name> [ IN <&name>y, ..., <&name>y ] ):
<location>1 := <& name>y; ... <location>, := <& name>,; ESAC,
where & name>y, ..., <&name>, are virtually introducedalue receive names, and
<location>y, ..., docation>, are thdocations in thelocation list.

semantics. A receive signal case action evaluatesi tisgance location, if present.

Then the executing process: (immediately) receives a signalkdr SE is specified, enters the corresponding
action statement list, otherwise becomes delayed. The executing process immediately receives a signal if one
of asignal name specified in asignal receive alternative is pending and may be received by the process. If
more than one signal may be received, one with the highest priority will be selected in an implementation
defined way.

If the executing process becomes delayed, it becomes a member of the set of delayed processes attached to
each of the specified signals. If the delayed process becomes re-activated by another process executing a send
signal action, it receives a signal.

If the executing process receives a signal, the correspoadiiog statement list is entered. Prior to entering,

if an instance location is specified, the instance value identifying the process that has sent the received signal
is stored in it. If thesignal name of the received signal has a list of modes attached, a Vistuefreceive

names is specified; the signal carries a list of values, anehthe r eceive names denote their corresponding
value in the entereaktion statement list.

static properties. A defining occurrence in thedefining occurrence list of asignal receive alternative defines avalue
receive name. Its class is the M-value class, where M is the corresponding mode in the list of modes attached
to thesignal name in front of it.

dynamic properties: A process executing a receive signal case action beaomesutable when it reaches the point
of execution where it may become delayed. It ceasestimieeutable when it leaves that point.

static conditions. The mode of thénstance location must not have thiesad-only property.
All signal name occurrences must be different.

The optional N and thedefining occurrence list in thesignal receive alternative must be specified if and only
if the signal name has a non-empty set of modes. The number of names defthisng occurrence list must be
equal to the number of modes of gignal name.

The assignment conditions of the values delivered&bgmey, ..., &name, with respect to the modes of
locationy, ..., location,, apply.

dynamic conditions. The SPACEFAIL exception occurs if storage requirements cannot be satisfied.

examples:
15.83 RECEIVE CASE
(advance): count + := 1,
(terminate):
SEND readout(count) TO user;
EXIT work_loop;
ESAC (1.1

6.19.3 Receive buffer case action

syntax:
<receive buffer case action> ::= Q
RECEIVE CASE [ SET <instance location> ; |
{ <buffer receive alternative> }*
[ EL SE <action statement list> ]

ESAC (1.2)
| RECEIVE [ SET <instance location> ]

( <buffer location > IN <location>) (1.2
<buffer receive alternative> ::= 2

( <buffer location> IN <defining occurrence> ) : <action statement list> (2.1
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derived syntax: The notation (1.2) is derived syntax for
RECEIVE CASE [ SET <instance location>; |
( <buffer location> IN <& name>): <location> := <& name>;
where <& name> is avirtually introduced value r eceive name.

semantics: A receive buffer case action evaluates, in any order, the instance location, if present, and al buffer locations
specified in a buffer receive alternative.

Then the executing process: (immediately) receives avalue or, if EL SE is specified, enters the corresponding
action statement list, otherwise becomes delayed. The executing process immediately receives a value if one
isstored in, or a sending process delayed on, one of the specified buffer locations. If more than one value may
be received, one with the highest priority will be selected in an implementation defined way.

If the executing process becomes delayed, it becomes a member of the set of delayed processes attached to
each of the specified buffer locations. If the delayed process becomes re-activated by another process
executing a send buffer action, it receives a value.

If the executing process receives a value, the corresponding action statement list is entered. If several buffer
receive alternatives specify the same buffer location, the choice between them is not specified. Prior to
entering, if an instance location is specified, the instance value identifying the process that has sent the
received value is stored in it. The specified value receive name denotes the received value in the entered
action statement list.

Another process becomes re-activated if the executing process receives a value from a buffer location, the
attached set of delayed sending processes of which is not empty. The re-activated process is one with the
highest priority attached, if the received value was stored in the buffer location, otherwise the one sending the
received value. In the former case, the value to be sent by the re-activated process is stored in the buffer
location (the capacity of which remains exceeded), and if more than one process may be re-activated, one will
be selected in an implementation defined way. The re-activated process is removed from the set of delayed
sending processes attached to the buffer location.

static properties: A defining occurrence in a buffer receive alternative defines a value receive name. Its class is the M-
value class, where M is the buffer element mode of the mode of the buffer location labelling the buffer
receive alternative.

dynamic properties: A process executing a receive buffer case action becomes timeoutable when it reaches the point
of execution where it may become delayed. It ceases to be timeoutable when it leaves that point.

static conditions. The mode of the instance location must not have the read-only property.

The assignment conditions of the value denoted by & name with respect to the mode of the location apply.
dynamic conditions. The SPACEFAIL exception occursif storage requirements cannot be satisfied.

The lifetime of none of the buffer locations must end while the executing process is delayed on them.

6.20 CHILL BUILT-IN ROUTINE CALLS

syntax:
<CHILL built-inroutine call> ::= D
<CHILL simple built-in routine call> (1.1
| <CHILL location built-in routine call> (1.2
| <CHILL value built-in routine call> (1.3

predefined names: The CHILL built-in routine names are predefined as built-in routine names (see section 6.7).

semantics: A CHILL built-in routine call is either a CHILL simple built-in routine call, which delivers no results (see
section 6.20.1), a CHILL location built-in routine call, which delivers a location (see section 6.20.2), or a
CHILL value built-in routine call, which delivers a value (see section 6.20.3).

static properties: A CHILL built-in routine call is a location built-in routine call if it is a CHILL location built-in
routine call; it isavalue built-in routine call if it isa CHILL value built-in routine call.

ITU-T Rec. Z.200 (1993 E) 87



| SO/IEC 9496 : 1995 (E)

6.20.1 CHILL simplebuilt-in routine calls

syntax:
<CHILL simple built-inroutine call> ::= D
<terminate built-in routine call> (1.1
| <iosimplebuilt-in routine call> (1.2
| <timing simple built-in routine call> (1.3)

semantics: A CHILL simple built-in routine call is a built-in routine call which delivers neither a value nor a location.
The simple built-in routines for input output are defined in Chapter 7. The simple built-in routines for timing
are defined in Chapter 9.

6.20.2 CHILL location built-in routine calls

syntax:
<CHILL location built-in routine call> ::= (D)
<io location built-in routine call> (1.1

semantics; A CHILL location built-in routine call is a built-in routine call that delivers alocation. The location built-in
routines for input output are defined in Chapter 7.

6.20.3 CHILL value built-in routine calls

syntax:

<CHILL value built-in routine call> ::= D
NUM ( <discrete expression>) (1.2

| PRED ( <discrete expression>) (1.2

| SUCC ( <discrete expression>) (1.3

| ABS( <numeric expression>) (1.4

| CARD ( <powerset expression>) (1.5)

| MAX ( <powerset expression>) (1.6)

| MIN ( <powerset expression>) @7

| SZE ({ <location> | <mode argument>} ) (1.8)

| UPPER ( <upper lower argument>) (2.9

| LOWER ( <upper lower argument>) (1.20)

| LENGTH ( <length argument>) (1.12)

| <allocate built-in routine call> (1.12)

| <iovaluebuilt-in routine call> (1.13)

| <time value built-in routine call> (1.19)

| SN ( <floating point expression>) (1.15)

| COS( <floating point expression>) (1.16)

| TAN ( <floating point expression>) (2.17)

| ARCSN ( <floating point expression>) (1.18)

| ARCCOS( <floating point expression>) (1.19)

| ARCTAN ( <floating point expression>) (1.20)

| EXP ( <floating point expression>) (1.22)

| LN ( <floating point expression>) (12.22)

| LOG ( <floating point expression>) (1.23)

| SQRT ( <floating point expression>) (1.24)
<numeric expression> ::= 2
<integer expression> (2.1

| <floating point expression> (2.2

<mode argument> ::= 3
<mode name> (3.1

| <array mode name> ( <expression>) (3.2

| <string mode name> ( <integer expression>) (3.3

| <variant structure mode name> ( <expression list>) (3.4

<upper lower argument> ::= 3
<array location> (4.1

| <array expression> 4.2

| <array mode name> 4.3

| <string location> (4.4

88 I TU-T Rec. Z.200 (1993 E)



| SO/IEC 9496 : 1995 (E)

| <string expression> (4.5)
| <string mode name> (4.6)
| <discrete location> (4.7
| <discrete expression> (4.8
| <discrete mode name> (4.9
| <floating point location> (4.10)
| <floating point expression> (4.11)
| <floating point mode name> (4.12
| <accesslocation> (4.13)
| <access mode name> (4.19)
| <textlocation> (4.15)
| <text mode name> (4.16)
<length argument> ::= )
<string location> (5.1

| <string expression> (5.2
| <string mode name> (5.3
| <event location> (5.4
| <event mode name> (5.5
| <buffer location> (5.6)
| <buffer mode name> (5.7)
| <textlocation> (5.8
| <text mode name> (5.9

N.B. If the upper lower argument is an array location, a string location, a discrete location or a floating point
location, the syntactic ambiguity is resolved by interpreting upper lower argument as a location rather than an
expression or primitive value. If the length argument is a string location, the syntactic ambiguity is resolved
by interpreting length argument as a location rather than an expression.

semantics. A CHILL value built-in routine call is abuilt-in routine call that delivers avalue.
NUM delivers an integer value with the same internal representation as the value delivered by its argument.
PRED and SUCC deliver respectively the next lower and higher discrete value of their argument.

ABS is defined on numeric values, i.e. integer values and floating point values, delivering the corresponding
absolute value.

CARD, MAX and MIN are defined on powerset values. CARD delivers the number of element values in its
argument.

MAX and MIN deliver respectively the greatest and smallest element value in their argument.

S ZE is defined on referable locations and (possibly dynamic) modes. In the first case, it delivers the number
of addressable memory units occupied by that location; in the second case, the number of addressable memory
units that a referable location of that mode will occupy. The mode is static if the mode argument is a mode
name, otherwise it is a dynamically parameterised version of it, with parameters as specified in the mode
argument. In the first case, the location will not be evaluated at run time.

UPPER and LOWER are defined on (possibly dynamic):

e array, string, discrete, floating point, access and text locations, delivering the upper bound and lower
bound of the mode of the location,

» array and string expressions, delivering the upper bound and lower bound of the mode of the value’s
class,

» strong discrete and floating point expressions, deliveringupyeer bound andlower bound of the
mode of the value’s class,

e array, string, discrete, floating point, access and rieode names, delivering thapper bound and
lower bound of the mode.

LENGTH is defined on (possibly dynamic):
» string and text locations and string expressions delivering the actual value of them;

< event locations delivering thavent length of the mode of the locations;
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« buffer locations delivering the buffer length of the mode of the locations;
« string mode names delivering the string length of the mode;
« text mode names delivering the text length of the mode;
« buffer mode names delivering the buffer length of the mode;
» event mode names delivering the event length of the mode.
SIN delivers the sine of its argument (interpreted in radians).
COSdélivers the cosine of its argument (interpreted in radians).
TAN delivers the tangent of its argument (interpreted in radians).
ARCSIN deliversthe sin'l function of its argument in the range -1v2 : T72.
ARCCOS delivers the cos'® function of its argument in therange 0 : Tt
ARCTAN delivers the tan1 function of its argument in the range -1v2 : T72.
EXP delivers the eX function, where x isits argument.
LN deliversthe natural logarithm of its argument.
LOG delivers the base 10 logarithm of its argument.
ORT delivers the square root of its argument.

The same rules for the evaluation of the result of built-in routine call with constant arguments as that of
constant expression apply (see section 5.3.1).

static properties. The class of a NUM hbuilt-in routine call is the & INT-derived class. The built-in routine call is
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constant (literal) if and only if the argument is constant (literal).

The class of a PRED or SUCC built-in routine call is the resulting class of the argument. The built-in routine
call isconstant (literal) if and only if the argument is constant (literal).

The class of an ABS built-in routine call is the resulting class of the argument. The built-in routine cal is
constant (literal) if and only if the argument is constant (literal).

The class of a CARD built-in routine call isthe & INT-derived class. The built-in routine call is constant if and
only if the argument is constant.

The class of a MAX or MIN built-in routine call is the M-value class, where M is the member mode of the
mode of the powerset expression. The built-in routine call is constant if and only if the argument is constant.

The class of a SZE built-in routine call is the & INT-derived class. The built-in routine call is constant if the
mode of the argument is static.

The class of an UPPER and LOWER built-in routine call is

» the M-value classif upper lower argument is an array location, array expression or array mode name,
where M isthe index mode of array location, array expression or array mode name, respectively;

» the & INT-derived class if upper lower argument is a string location, string expression or string mode
name;

« the M-value class if upper lower argument is a discrete location, discrete expression or discrete mode
name, where M is the mode of discrete location, or discrete expression, or discrete mode name,
respectively;

« the M-value class if upper lower argument is a floating point location, floating point expression, or
floating point mode name, where M is the mode of the floating point location, floating point
expression, or floating point mode name, respectively;

« the M-value classif upper lower argument is an access location or access mode name, where M is the
index mode of the mode of the access location or access mode name, respectively;

« the M-value class if upper lower argument is atext location or text mode name, where M is the index
mode of the mode of the text location or text mode name, respectively.
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An UPPER or LOWER built-in routine call is literal if the upper lower argument is an array mode name, a
string mode name, a discrete mode name, a floating point mode name, an access mode name, or a text mode
name, if the mode of the array location or string location is static, if the array expression or string expression
has a static class, or if the upper lower argument is a discrete location, a discrete expression, a floating point
location, a floating point expression, an access location, or atext location.

The class of a LENGTH built-in routine call is the & INT-derived class. The built-in routine call isliteral if the
length argument is a string location with a static mode, a string expression with a static class, an event
location, or a buffer location, or if it is a string mode name, an event mode name, a buffer mode name, or a
text mode name.

Theclass of a TAN, EXP, LN, LOG or SQRT built-in routine call isthe resulting class of its argument.

The class of SN, COS, ARCS N, ARCCOS, ARCTAN isthe 1. N-derived class, 2. N-value class if the class of
the argument is 1. an N-derived class, 2. an N-value class, where N is a mode constructed as follows:

e for IN: &RANGE (-1.0:1.0,9
e for COS &RANGE (-1.0:1.0,9
« for ARCIIN: & RANGE (-112: 172, §)
« for ARCCOS &RANGE (0: T, S
o for ARCTAN: &RANGE (-172: 172, S
where Sisthe precision of N, and the novelty isthat of N.

A SN, COS, TAN, ARCIN, ARCCOS, ARCTAN, EXP, LN, LOG or SQRT built-in routine cal is constant
(literal) if and only if the argument is constant (literal).

static conditions: If the argument of a PRED or SUCC built-in routine call is constant, it must not deliver, respectively,
the smallest or greatest discrete value defined by the root mode of the class of the argument. The root mode
of the discrete expression argument of PRED and SUCC must not be anumber ed set mode.

If the argument of a MAX or MIN built-in routine call is constant, it must not deliver the empty powerset
value.

The location argument of SZE must be referable.
The discrete expression and floating point expression as arguments of UPPER and LOWER must be strong.

If the upper lower argument is an access mode name or an access location, the corresponding access mode
must have an index mode.

If the upper lower argument is a text mode name or atext location, the corresponding text mode must have an
index mode.

The following compatibility requirements hold for a mode argument which is not a single mode name:
« Theclass of the expression must be compatible with the index mode of the array mode name.

» The variant structure mode name must be parameterisable and there must be as many expressions in
the expression list as there are classes in its list of classes and the class of each expression must be
compatible with the corresponding classin the list of classes.

dynamic conditions. PRED and SUCC that are not constant cause the OVERFLOW exception if they are applied to the
smallest or greatest discrete value defined by the root mode of the class of the argument.

NUM and CARD that are not constant cause the OVERFLOW exception if the resulting value is outside the
set of values defined by & INT.

MAX and MIN cause the EMPTY exception if they are applied to empty powerset values.

ABSthat is not constant causes the OVERFLOW exception if the resulting value is outside the bounds defined
by the root mode of the class of the argument.
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examples:

6.20.4
syntax:

The RANGEFAIL exception occursif in the mode argument:

» the expression delivers a value which does not belong to the set of values defined by the index mode
of the array mode name;

» theinteger expression delivers a negative value or a value which is greater than the string length of
the string mode name;

e any expression in the expression list for which the corresponding class in the list of classes of the
variant structure mode name is an M-value class (i.e. is strong) delivers a value which is outside the
set of values defined by M.

ARCSN and ARCCOSthat are not constant cause the OVERFLOW exception if the argument does not liein
therange-1.0: 1.0.

LN and LOG that are not constant cause the OVERFLOW exception if the argument is not greater than zero.

SORT that is not constant causes the OVERFLOW exception if the argument is not greater than or equal to
zero.

SN, COS TAN, ARCSN, ARCTAN, LN and LOG that are not constant cause the OVERFLOW exception if
the resulting value is greater than the upper bound or less than the lower bound of the root mode of the class
of the argument. In the case of an exact mathematical resulting value that is greater than the negative upper
limit and less than the positive lower limit of the root mode of the argument, and is different from zero, an
UNDERFLOW exception occurs.

ARCCOS, EXP and SQRT that are not constant cause the OVERFLOW exception if the resulting value is
greater than the upper bound or less than the lower bound of the root mode of the class of the argument. In
the case of an exact mathematical resulting value that is greater than zero and less than the positive lower
limit of the root mode of the argument, an UNDERFLOW exception occurs.

9.12 MIN (sieve) (1.7)
11.47 PRED (col_1) (1.2
11.47 SUCC (col_1) .3
Dynamic storage handling built-in routines

<allocate built-in routine call> ::= D
GETSTACK ( <mode argument> [ , <value>1]) (1.1

| ALLOCATE ( <mode argument> [ , <value>1]) (1.2)
<terminate built-in routine call> ::= 2
TERMINATE ( <reference primitive value> ) (2.1

semantics. GETSTACK and ALLOCATE create a location of the specified mode and deliver a reference value for the

created location. GETSTACK creates this location on the stack (see section 10.9). A location whose mode is
that of the mode argument is created and a value referring to it is delivered. The created location is initialised
with the value of value, if present; otherwise with the undefined value (see section 4.1.2).

TERMINATE ends the lifetime of the location referred to by the value delivered by reference primitive value.
An implementation might as a consequence release the storage occupied by this location, and if the reference
primitive value is alocation which is not read-only, assign the undefined value to the location.

static properties. The class of a GETSTACK or ALLOCATE built-in routine call is the M-reference class, where M is
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the mode of mode argument. M is either the mode name or a parameterised mode constructed as:
& <array mode hame> (<expression>) or
&<string mode name> (<integer expression>) or

&<variant structure mode name> (<expression list>),

respectively.

A GETSTACK or ALLOCATE built-in routine call isintra-regional if it is surrounded by a region, otherwise
itisextra-regional.
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static conditions: The class of the value, if present, in the GETSTACK and ALLOCATE built-in routine call must be
compatible with the mode of mode argument; this check is dynamic in case the mode of mode argument is a
dynamic mode.

If the mode of mode argument has the read-only property, the second argument must be present.

The value, if present, in the GETSTACK and ALLOCATE built-in routine call, must be regionally safe for the
created location.

dynamic properties: A reference value is an allocated reference value if and only if it is returned by an ALLOCATE
built-in routine call.

dynamic conditions: GETSTACK causes the SPACEFAIL exception if storage requirements cannot be satisfied.
ALLOCATE causes the ALLOCATEFAIL exception if storage requirements cannot be satisfied.

For GETSTACK and ALLOCATE the assignment conditions of the value delivered by value with respect to the
mode of mode argument apply.

TERMINATE causes the EMPTY exception if the reference primitive value delivers the value NULL.

The reference primitive value must deliver an allocated reference value. The lifetime of the referenced
location must not have ended.
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7 INPUT AND OUTPUT

7.1 /O REFERENCE MODEL

A model is used for the description of the input/output facilities in an implementation independent way; it distinguishes
three states for a given association location: afree state, afile handling state and a data transfer state.

The diagram shows the three states and the possibl e transitions between the states.

The association location contains no value. No

free state relation to an outside world object.
ASSOCIATE DISSOCIATE
file The association location contains an association.
handling Operations like create and delete afile, or change
state its properties.
CONNECT DISCONNECT
data An access location is connected to the association
transfer location. Transfer datato/from afile: read and write
state operations.

The model assumes that objects, in implementations often referred to as datasets, files or devices, exist in the outside
world, i.e. the external environment of a CHILL program. Such an outside world object is called a file in the model. A
file can be a physical device, a communication line or just afile in a file management system; in genera, afileis an
object that can produce and/or consume data.

Manipulating a file in CHILL requires an association; an association is created by the associate operation and it
identifies afile. An association has attributes; these attributes describe the properties of afile that is or could be attached
to the association.

In the free state, there is no interaction or relation between the CHILL program and outside world objects. The associate
operation changes the state of the model from the free state into the file handling state. This operation takes as one
argument an association location and an implementation defined denotation for an outside world object for which an
association must be created; additional arguments may be used to indicate the kind of association for the object and the
initial values for the attributes of the association. A particular association also implies an (implementation dependent) set
of operations that may be applied on the file that is attached to that association.

In the file handling state, it is possible to manipulate a file and its properties via an association, provided that the
association enables the particular operation; for operations that change the properties of afile, an exclusive association
for the file will be necessary in general.

The model assumes associations in general are exclusive, i.e. only one association exists at the same time for a given
outside world object. However, implementations may alow the creation of more associations for the same object,
provided that the object can be shared among different users (programs) and/or among different associations within the
same program. All operations in the file handling state take an association as an argument.

The dissociate operation is used to end an association for an outside world object; this operation causes transition from
the file handling state back to the free state.
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Transferring datato or from afile is possible only in the data transfer state; transfer operations require an access location
to be connected to an association for that file. The connect operation connects an access location to an association and
changes the state of the model into the data transfer state. The operation takes an association location and an access
location as arguments; the association location contains an association for the file to, or from, which data can be
transferred via the access location. Additional arguments of the connect operation denote for which type of transfer
operations the access location must be connected, and to which record the file must be positioned. At most one access
location can be connected to an association location at any one time.

The disconnect operation takes an access location as argument and disconnects it from the association it is connected to;
it changes the state of the model back to the file handling state.

In the data transfer state, an access location must be used as an argument of a transfer operation; there are two transfer
operations provided, namely, aread operation to transfer data from afile to the program and a write operation to transfer
data from the program to afile. The transfer operations use the record mode of the access location to transform CHILL
values into records of thefile, and vice versa.

A fileisviewed in the model as an array of values; each element of this array relates to arecord of the file. The element
mode of this array is determined by the connect operation to be the record mode of the access location being connected.
An index value is assigned to each record of the file; this value uniquely identifies each record of the file. In the
description of the connect and transfer operations, three special index values will be used, namely, a base index, a
current index and a transfer index. The base index is set by the connect operation and remains unchanged until a
subsequent connect operation; it is used to calculate the transfer index in transfer operations and the current index in a
connect operation. The transfer index denotes the position in the file where a transfer will take place; the current index
denotes the record to which the file currently is positioned.

7.2 ASSOCIATION VALUES

7.2.1 General

An association value reflects the properties of afile that is or could be attached to it. A particular association value also
implies an (implementation dependent) set of operations on the file that is possibly attached to it.

Association values have no denotation but are contained in locations of association mode; there exists no expression

denoting a value of association mode. Association values can only be manipulated by built-in routines that take an
association location as parameter.

7.2.2 Attributes of association values

An association value has attributes; the attributes describe the properties of the association and the file that may or could
be attached to it.

The following attributes are language defined:
* exigting: indicating that a (possibly empty) fileis attached to the association;
» readable: indicating that read operations are possible for the file when it is attached to the association;
» writeable: indicating that write operations are possible for the file when it is attached to the association;
* indexable: indicating that the file, when it is attached to the association, allows for random access to its records;

* sequencible: indicating that the file, when it is attached to the association, allows for sequential access to its
records,

» variable: indicating that the size of the records of the file, when it is attached to the association, may vary within
thefile.

These attributes have a boolean value; the attributes are initialized when the association is created and may be updated as

a consequence of particular operations on the association. This list comprises the language defined attributes only;
implementations may add attributes according to their own needs.
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7.3 ACCESSVALUES

7.3.1 General

Access values are contained in locations of access mode. An access location is necessary to transfer datafrom or to afile
in the outside world.

Access values have no denotation but are contained in locations of access mode; there exists no expression denoting a
value of access mode. Access values can only be manipulated by built-in routines that take an access location as
parameter.

7.3.2 Attributes of accessvalues

Access values have attributes that describe their dynamic properties, the semantics of transfer operations, and the
conditions under which exceptions can occur.

CHILL defines the following attributes:

» usage: indicating for which transfer operation(s) the access location is connected to an association; the attribute is
Set by the connect operation.

» outoffile: indicating whether or not the transfer index calculated by the last read operation was in the file; the
attribute isinitialized to FALSE by the connect operation and is set by every read operation.

74 BUILT-IN ROUTINESFOR INPUT OUTPUT

74.1 General

Language defined built-in routines are defined for operations on association locations and access locations, and for
inspecting and changing the attributes of their values.

The built-in routines will be described in the following sections.

syntax:

<io value built-in routine call> ::= D
<association attr built-in routine call> (1.2

| <isassociated built-in routine call> (1.2

| <accessattr built-in routine call> (1.3

| <readrecord built-in routine call> (1.4

| <gettext built-in routine call> (1.5)

<io simple built-in routine call> ::= 2
<dissociate built-in routine call> (2.1

| <modification built-in routine call> (2.2

| <connect built-in routine call> (2.3

| <disconnect built-in routine call> (2.4

| <writerecord built-in routine call> (2.5)

| <text built-in routine call> (2.6)

| <settext built-in routine call> 2.7

<io location built-in routine call> ::= 3
<associate built-in routine call> 3.1

static conditions: A built-in routine parameter in an io built-in routine that is an association location, an access
location or atext location must bereferable.

74.2 Associating an outside world object

syntax:
<associate built-in routine call> ::= (@]
ASSOCIATE ( <association location> [ , <associate parameter list>1]) (1.1
<isassociated built-in routine call> ::= 2
ISASSOCIATED (<association location>) (2.1
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<associate parameter list> ::= 3
<associate parameter> { , <associate parameter> }* (3.1
<associate parameter> ::= 4
<location> (4.2)

| <value> (4.2

semantics. ASSOCIATE creates an association to an outside world object. It initializes the association location with the
created association. It initializes the attributes of the created association. The association location is also
returned as a result of the call. The particular association that is created is determined by the locations and/or
values occurring in the associate parameter list; the modes (classes) and the semantics of these locations
(values) are implementation defined.

ISASSOCIATED returns TRUE if association location contains an association and FALSE otherwise.

static properties. The class of an ISASSOCIATED built-in routine call is the BOOL-derived class. The mode of an
ASSOCIATE built-in routine call is the mode of the association location.

Theregionality of an ASSOCIATE built-in routine call isthat of the association location.
static conditions: The mode and the class of each associate parameter isimplementation defined.

dynamic conditions: ASSOCIATE causes the ASSOCIATEFAIL exception if the association location aready contains
an association or if the association cannot be created due to implementation defined reasons.

examples:

20.21 ASSOCIATE (file_association,”"DSK:RECORDS.DAT"); (1.1)
74.3 Dissociating an outside world object
syntax:

<dissociate built-in routine caHl :;= Q)

DISSOCIATH <associationocatior>) 1.1)

semantics. DISSOCIATEerminates an association to an outside world object. An access location that is till connected
to the association contained in an association location is disconnected before the association is terminated.

dynamic conditions. DISSOCIATEcauses the NOTASSOCIATERxception if associatiorlocationdoes not contain an
association.

examples:
22.38 DISSOCIATE (association); (1.1)

7.4.4 Accessing association attributes

syntax:

<association attr built-in routine call::= Q)
EXISTING(<associatiorlocatiors ) (1.1)

| READABLE <associatioriocatiorn>) 1.2)

| WRITEABLHK <associatiorlocatiors ) (1.3)

| INDEXABLE( <associatioriocatior>) 1.4)

| SEQUENCIBLE <associatiorocatiors ) (1.5)

| VARIABLE( <associatiorlocatior>) (1.6)

semantics. EXISTING READABLE WRITEABLE INDEXABLE SEQUENCIBLEand VARIABLETreturn respectively
the value of the existing-, readable-, writeable-, indexable-, sequencible- and variable-attribute of the
association contained in associatiorlocation

static properties: The class of an association attr built-in routine calk the BOOL-derived class.

dynamic conditions. The association attr built-in routine caltauses the NOTASSOCIATE@xception if association
locationdoes not contain an association.
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7.4.5 M odifying association attributes

syntax:

<modification built-in routine call> ::= (@]

CREATE ( <association location> ) (1.1

| DELETE ( <association location>) (1.2

| MODIFY ( <association location> [ , <modify parameter list>] ) (1.3)

<modify parameter list>::= ()]

<modify parameter> { , <modify parameter>}* (2.1

<modify parameter> ::= 3

<value> (31

| <location> (3.2

semantics: CREATE creates an empty file and attaches it to the association denoted by the association location. The
existing-attribute of the indicated association is set to TRUE if the operation succeeds.

DELETE detaches a file from the association denoted by association location and deletes the file. The
existing-attribute of the indicated association is set to FALSE if the operation succeeds.

MODIFY provides the means of changing properties of an outside world object for which an association exists
and that is denoted by association location; the locations and/or values that occur in modify parameter list
describe how the properties must be modified. The modes (classes) and the semantics of these locations
(values) are implementation defined.

dynamic conditions. CREATE, DELETE and MODIFY cause the NOTASSOCIATED exception if the association
location does not contain an association.

CREATE causes the CREATEFAIL exception if one of the following conditions occurs:
» theexisting-attribute of the association is TRUE;
» thecreation of the file fails (implementation defined).

DELETE causes the DELETEFAIL exception if one of the following conditions occurs:
« the existing-attribute of the association is FALSE;
« thedeletion of the file fails (implementation defined).

MODIFY causes the MODIFYFAIL exception if the properties, defined by modify parameter list cannot or
may not be modified; the conditions under which this exception can occur are implementation defined.

examples:

21.39 CREATE (outassoc); (1.2)
21.69 DELETE (curassoc); (1.2

7.4.6 Connecting an access location

syntax:
<connect built-in routine call> ::= D
CONNECT ( <transfer location> , <association location>,
<usage expression> [ , <where expression> [ , <index expression>]]) (1.2
<transfer location> ::= 2
<access location> (2.1
| <textlocation> (2.2
<usage expression> ;= 3
<expression> (3.1
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<where expression> ::= 4
<expression> (4.1)
<index expression> ::= (5)
<expression> (5.1

predefined names: To control the connect operation, performed by the built-in routine CONNECT, two synmode
names are predefined in the language, namely, USAGE and WHERE; their defining modes are SET
(READONLY, WRITEONLY, READWRITE) and SET (FIRST, SAME, LAST), respectively.

Values of the mode USAGE indicate for which type of transfer operations the access location must be
connected to an association, while values of the mode WHERE indicate how the file that is attached to an
association must be positioned by the connect operation.

semantics:. CONNECT connects the access location denoted by transfer location to the association that is contained in
association location; there must be a file attached to the denoted association; i.e. the associaéxisting-
attribute must b&@RUE.

The access location denotedtbgnsfer location is the location itself if it is amccess location; otherwise the
access sub-location of théext location.

The value that is delivered hysage expression indicates for which type of transfer operations the access
location must be connected to the file. If the expression delREADONLY, the connection is prepared for
read operations only; if it delive®RITEONLY, the connection is set up for write operations only; if it
deliversREADWRITE, the connection is prepared for both read and write operations.

Theindexable-attribute of the denoted association musfTREE if the access location has amlex mode,
while thesequencible-attribute must b&RUE if the location has nmmdex mode.

CONNECT (re)positions the file that is attached to the denoted association; i.e. it establishes bageew)
index andcurrent index in the file. The (newhase index depends upon the value that is deliverediisre
expression:

« if where expression deliversFIRST or is not specified, théase index is set to O; i.e. the file is
positioned before the first record;

« if where expression deliversSAME, the base index is set to theurrent index in the file; i.e. the file
position is not changed,;

» if where expression deliversLAST, thebase index is set to N, where N denotes the number of records
in the file; i.e. the file is positioned after the last record.

After a base index is set, aurrent index will be established bgONNECT. This current index depends
upon the optional specification of amdex expression:

 if noindex expression is specified, theurrent index is set to the (nevbase index;
« if anindex expression is specified, theurrent index is set to
base index +NUM (v) - NUM (1)

wherel denotes théower bound of the access locationiadex mode ands denotes the value that is
delivered byindex expression.

If the access location is being connected for sequential write operations (i.e. the access locationdeas no

mode and thausage expression delivers WRITEONLY), then those records in the file that have an index

greater than the (newerrent index will be removed from the file; i.e. the file may be truncated or emptied
by CONNECT.

An access location that has no index mode cannot be connected to an association for read and write operations
at the same time.

Any access location to which the denoted association may be connected will be disconnected implicitly before
the association is connected to the location that is denotedrsfer location.

CONNECT initializes theoutoffile-attribute of the access location FALSE and sets thaisage-attribute
according to the value that is deliveredusgge expression.
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static properties: The mode attached to a transfer location is the mode of the access location or the access mode of the
text location, respectively.

static conditions: The mode of transfer location must have an index mode if an index expression is specified; the class
of the value delivered by index expression must be compatible with that index mode. The transfer location
must have the same regionality as the association location.

The class of the value delivered by usage expression must be compatible with the USAGE-derived class.

The class of the value delivered by where expression must be compatible with the WHERE-derived class.

dynamic conditions: CONNECT causes the NOTASSOCIATED exception if association location does not contain an
association.

CONNECT causes the CONNECTFAIL exception if one of the following conditions occurs:

CONNECT causes th®ANGEFAIL exception if thendex mode of access location is a discrete range mode

the association’&xisting-attribute isFALSE;

the association’sreadable-attribute is FALSE and usage expression delivers READONLY or
READWRITE;

the association’swriteable-attribute is FALSE and usage expression delivers WRITEONLY or
READWRITE;

the association’'mdexable-attribute isSFALSE and access location hasiadex mode;
the association’sequencible-attribute isSFALSE and access location hasimdex mode;

where expression delivers SAME, while the association contained &ssociation location is not
connected to an access location;

the association'variable-attribute isFALSE and the access location haslymamic record mode,
while usage expression deliversWRITEONLY or READWRITE;

the association’sariable-attribute iSTRUE and the access location hastatic record mode, while
usage expression deliversREADONLY or READWRITE;

the access location has malex mode, whileusage expression deliversREADWRITE;

the association contained @ssociation location cannot be connected to the access location, due to

implementation defined conditions.

and theindex expression delivers a value which lies outside the bounds of that discrete range mode.

The EMPTY exception occurs if thaccess reference of thetext location delivers the valu&lULL.

examples:
20.22 CONNECT (record _file, file_association, READWRITE); 1.D
20.22 READWRITE (3.1
74.7 Disconnecting an access location
syntax:
<disconnect built-in routine call> ::= Q)
DISCONNECT ( <transfer location> ) (1.2

semantics. DISCONNECT disconnects the access location denotedrbgsfer location from the association it is
connected to.

dynamic conditions. DISCONNECT causes thelIOTCONNECTED exception if the access location denotedrbpsfer
location is not connected to an association.
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7.4.8 Accessing attributes of accesslocations

syntax:
<access attr built-in routine call> ::= @
GETASSOCIATION ( <transfer location>) 1.1
| GETUSAGE ( <transfer location>) (1.2
| OUTOFFILE ( <transfer location>) (1.3

semantics. GETASSOCIATION returns a reference value to the association location that the access location denoted by
transfer location is connected to; it returns NULL if the access location is not connected to an association.

GETUSAGE returns the value of the usage-attribute; i.e. READONLY (WRITEONLY) if the access location is

connected only for read (write) operations, or READWRITE if the access location is connected for both read
and write operations.

OUTOFFILE returns the value of the outoffile-attribute of access location; i.e. TRUE if the last read operation
calculated atransfer index that was not in the file, FALSE otherwise.

static properties: The class of a GETASSOCIATION built-in routine call is the ASSOCIATION-reference class. The
regionality of an GETASSOCIATION built-in routine call isthat of the transfer location.

The class of an OUTOFFILE built-in routine call isthe BOOL-derived class.
The class of a GETUSAGE built-in routine call isthe USAGE-derived class.

dynamic conditions: GETUSAGE and OUTOFFILE cause the NOTCONNECTED exception if the access location is
not connected to an association.

examples:
21.47 OUTOFFILE (infiles (FALSE)) (1.3
7.4.9 Datatransfer operations
syntax:
<readrecord built-inroutine call> ::= D
READRECORD ( <access location> [ , <index expression> ]
[, <storelocation>1]) 1.n
<writerecord built-in routine call> ::= 2
WRITERECORD ( <access location> [, <index expression>] ,
<write expression>) (2.1
<storelocation> ::= (©)]
<static mode location> (3.1
<write expression> ::= (4)
<expression> (4.1)

N.B. If the access location has an index mode, the syntactic ambiguity is resolved by interpreting the second
argument as an index expression rather than a store location.

semantics. For the transfer of data to or from a file, the built-in routines WRITERECORD and READRECORD are
defined. The access location must have arecord mode, and it must be connected to an association in order to
transfer data to or from the file that is attached to that association. The transfer direction must not be in
contradiction with the value of the access location’s usage-attribute.

Before a transfer takes place, thansfer index, i.e. the position in the file of the record to be transferred, is
calculated. If theaccess location has nandex mode, thdransfer index is thecurrent index incremented by
1; if theaccess location has arindex mode, theéransfer index is calculated as follows:

transfer index :=base index +NUM (v) - NUM (1) + 1
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where | is the lower bound of the mode of the access location’s index mode ands denotes the value that is
delivered byindex expression. If the transfer of the record with the calculatednsfer index has been
performed successfully, tloarrrent index becomes thigansfer index.

Theread operation:
READRECORD transfers data from a file in the outside world to the CHILL program.

If the calculatedransfer index is not in the file, theutoffile-attribute is set tdRUE; otherwise the file is
positioned, the record is read, and dlioffile-attribute is set tEALSE.

The record that is read must not deliveuadefined value; the effect of the read operation is implementation
defined if the record being read from the file is not a legal value according ttectvel mode of theaccess
location.

If a store location is specified, then the value of the record that was read is assigned to this location. If no
store location is specified, the value will be assigned to an implicitly created location; the lifetime of this
location ends when thaccess location is disconnected or reconnected. Whether the referenced location is
created only once by the connect operation, or every time a read operation is performed, is not defined.

READRECORD returns in both cases a reference value that refers to the (possibly dynamic mode) location to
which the value was assigned.

If the outoffile-attribute is set tdRUE as a result of the built-in routine call, then tidLL value is returned
as a result of the call.

Thewrite operation:

WRITERECORD transfers data from the CHILL program to a file in the outside world. The file is positioned
to the record with the calculated index and the record is written.

After the record has been written successfully, the number of records is setrtandfier index, if the latter
is greater than the actual number of records.

The record written bYWWRITERECORD is the value delivered byrite expression.

static properties. The class of the value that was readRBADRECORD is the M-value class, where M is thecord

mode of theaccess location, if it has astatic record mode, or a dynamically parameterised version of it, if the
location has aynamic record mode; the parameters of such a dynamically parameterised record mode are:

» the dynamicstring length of the string value that was read in case of a string mode;
« the dynamiapper bound of the array value that was read in case of an array mode;

« the list of (tag) values associated with the mode of the structure value that was read in case of a
variant structure.

The class of thREADRECORD built-in routine call is the M-reference classtifre location is not specified,
otherwise it is the S-reference class, where S is the mode sibthéocation.

The regionality of a READRECORD built-in routine call is that of thatore location if it is specified,
otherwise it is that of thaccess location.

static conditions: Theaccess location must have aecord mode.

102

An index expression may not be specified ificcess location has noindex mode and must be specified if
access location has arindex mode; the class of the value delivereditex expression must becompatible
with thatindex mode.

Thestore location must ber efer able.

The mode oftore location must not have thiesad-only property.
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If store location is specified, then the mode of store location must be equivalent with the record mode of the
access location, if it has a static record mode or a varying string record mode, otherwise a dynamically
parameterised version of it; the parameters of such a dynamically parameterised mode are those of the value
that has been read.

The class of the value delivered by write expression must be compatible with the record mode of the access
location, if it has a static record mode or a varying string record mode; otherwise there should exist a
dynamically parameterised version of record mode that is compatible with the class of write expression. The
assignment conditions of the value of write expression with respect to the above mentioned mode apply.

dynamic conditions: The RANGEFAIL or TAGFAIL exceptions occur if the dynamic part of the above mentioned
compatibility check fails.

The READRECORD and WRITERECORD built-in routine call cause the NOTCONNECTED exception if the
access location is not connected to an association.

The READRECORD or WRITERECORD built-in routine call cause the RANGEFAIL exception if the index
mode of access location is adiscrete range mode and the index expression delivers avalue that lies outside the
bounds of that discrete range mode.

The READRECORD hbuilt-in routine call causes the READFAIL exception if one of the following conditions
oCCurs:

« thevalue of the usage-attribute is WRITEONLY;

« the value of the outoffile-attribute is TRUE and the access location is connected for sequential read
operations;

» thereading of the record with the calculated index fails, due to outside world conditions.

The WRITERECORD built-in routine call causes the WRITEFAIL exception if one of the following conditions
ocCurs:

« thevalue of the usage-attribute is READONLY;
« thewriting of the record with the calculated index fails, due to outside world conditions.

If the RANGEFAIL exception or the NOTCONNECTED exception occur then it occurs before the value of any
attribute is changed and before the file is positioned.

examples:
20.24 READRECORD (record_file, curindex, record_buffer); (1.1
22.25 READRECORD (fileaccess); (1.1
20.32 WRITERECORD (record file, curindex, record_buffer); (2.1
2161 WRITERECORD (outfile, buffers( flag )); (2.1)
20.24 record_buffer 3.1
21.61 buffers( flag ) (4.1)

7.5 TEXT INPUT OUTPUT

7.5.1 General

Text output operations allow the representation of CHILL values in a human-readable form; text input operations
perform the opposite transformation.

Text transfer operations are defined on top of the basic CHILL input/output model and operate on files that may be
accessed either sequentially or randomly and whose records may have afixed or variable length.

The model assumes that every record has a (possibly empty) positioning information attached, in implementations often
referred to as carriage control or control characters.
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Manipulating atext filein CHILL requires an association; transferring data to or from a text file requires a text location
to be connected to an association for that file.

Text transfer operations can be applied to CHILL values that may become records of some text file, aswell asto CHILL
locations that are not necessarily related to any i/o activity of the program.

The possibility to recover from a piece of text the same CHILL values that originated it cannot be guaranteed in general,
but rather it depends on the specific representation that has been used.

Text values are contained in locations of text mode. A text location is necessary to transfer data in human-readable form.

Text values have no denotation but are contained in locations of text mode; there exists no expression denoting a value
of text mode. Text values can only be manipulated by built-in routines that take a text location as parameter.

75.2 Attributes of text values
Text values have attributes that describe their dynamic properties. The following attributes are defined:

» actual index: indicating the next character position of the text record to be read or written. It has a mode which
is RANGE (0:L-1), where L is the text length of the value’s mode. It is initialised to 0 when a text location is
created.

» text record reference: indicating a reference value to ttext record sub-location of the text location. It has a
mode which iREF M, whereM is thetext record mode of the value’s mode.

» accessreference: indicating a reference value to thecess sub-location of the text location. It has a mode which
is REF M, whereM is theaccess mode of the value’s mode.

75.3 Text transfer operations

syntax:

<text built-in routine call> ::= D
READTEXT ( <text io argument list>) (1.1
| WRITETEXT ( <textio argument list>) (1.2
<text io argument list> ::= ()]

<text argument> [ , <index expression> ],
<format argument> [, <io list>] (2.1
<text argument> ::= ©)
<text location> (3.1
| <character string location> (3.2
| <character string expression> (3.3
<format argument> ::= 4
<character string expression> 4.1
<iolist>::= 5)
<iolist element> { , <iolist element> }* (5.1
<iolist element> ::= (6)
<value argument> (6.1
| <location argument> (6.2
<location argument> ::= @)
<discrete location> (7.0
| <floating point location> (7.2)
| <dstring location> (7.3
<value argument> ::= 8
<discrete expression> (8.1
| floating point expression> (8.2)
| <string expression> (8.3)

N.B. If theio list element is a location, the syntactic ambiguity is resolved by interpretingpthst element as
alocation argument rather than aalue argument.
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semantics. READTEXT applies the conversion, editing and i/o control functions contained in the format argument to the
text record denoted by the text argument; this (possibly) produces a list of values that are assigned to the
elements of the io list in the sequence in which they are specified. WRITETEXT performs the opposite
operation. No implicit i/o operations are performed.

If the text argument is a character string location or a character string expression, then the conversion and
editing functions are applied without any relation with the external world. In this case the actual index
denotes alocation that isimplicitly created at the beginning of the built-in routine call and initialised to 0. The
text record isthe character string denoted by character string location or character string expression and the
text length its string length.

The elements of theio list may be either:
« value arguments and location arguments, or
» variable clause widths as described below.
Relationships between a format argument and an io list
The value delivered by a format argument must have the form of a format control string (see 7.5.4.)

During the execution of a text i/o built-in routine call the format control string (see 7.5.4) denoted by the
format argument and the io list are scanned from left to right. Each occurrence of a format text and format
specification is interpreted and the appropriate action is taken as follows:

a format text:

In READTEXT the text record should contain at the actual index position a string slice which is equal
to the string delivered by format text. In WRITETEXT, the string delivered by format text is transferred
to the text record. The semantics are the same as if a format specification which is %C and an io list
element that delivers the same string value as that delivered by format text were encountered.

b. format specification:

If the format specification contains a repetition factor, then it is equivalent to a sequence of as many
format element occurrences as the number denoted by repetition factor.

If the format specification is a format clause, then it contains a control code. If the control code is a
conversion clause, then an io list element is taken from the io list and the conversion function selected
by the conversion code, conversion qualifiers and clause width is applied to it (see section 7.5.5). If the
control code is an editing clause or an io clause, then the editing or io function selected by the editing
code or io code and clause width is applied to the text argument without reference to the io list (see
sections 7.5.6 and 7.5.7).

If the clause width is variable, then a value is taken from the list, which denotes the width parameter
of the conversion or editing control function.

If the format specification is a parenthesised clause, then the format control string that is contained in
itis scanned.

The interpretation of the format control string terminates when the end of the string delivered by format
control string has been reached.

Theiolist elements of the io list are scanned in the order that they are specified.
static conditions: If the text argument is a string location, its mode must be a varying string mode.

An index expression may not be specified if the text argument is not a text location or if it is and its access
mode has no index mode and must be specified if the access mode has an index mode; the class of the value
delivered by index expression must be compatible with that index mode.

A text argument in a WRITETEXT built-in routine call must be alocation.
A string location in atext argument must be referable.
dynamic conditions: The TEXTFAIL exception occursif:

 the string value delivered by the format argument cannot be derived as a terminal production of the
format control string, or

e an attempt to assign to the actual index a value which is less than O or greater than text length is
made, or

ITU-T Rec. Z.200 (1993 E) 105



| SO/IEC 9496 : 1995 (E)

« during the interpretation, the end of the format control string has been reached and the io list is not
completely scanned, or no more elements can be taken from the io list and the format control string
contains more conversion codes or variable clause widths, or

e anio clauseisencountered and the text argument is not a text location, or

« aformat text is encountered in READTEXT and the text record does not contain at the actual index
position a string which is equal to the string delivered by format text.

Any exception defined for the READRECORD and WRITERECORD built-in routine call can occur if an i/o
control function is executed and any one of the dynamic conditions defined is violated.

examples:
26.18 WRITETEXT (output,”%B%/",10) (1.2)

754 Format control string

syntax:

<format control string ::= Q)
[ <format text ] { <format specification [ <format text ] }* (1.2)

<format text ::= (2)
{ <non-percentharactep | <percent }* (2.1)
<percenp ::= 3)
% % (3.1)

<format specification ::= (4)
% [ <repetition factor | <format element (4.2)
<repetition factop ::= (5)
{ <digit>}+ (5.1)

<format element ::= (6)
<format clause (6.1)

| <parenthesised clause (6.2)
<format clause ::= @)
<control code [ %. ] (7.1)

<control code ::= (8)
<conversion clause (8.1)

| <editing clause (8.2)

| <io clause (8.3)
<parenthesised clause:= 9)
( <format control string %) (9.1)

N.B. A format specifications terminated by the first character that cannot be part of the format element
Spaces and format effectors may not be used within format elementsA period (.) may be used to terminate a
format clauselt belongs to the format clauseand it has only a delimiting effect. To represent the character

percent (%) within aformat textit has to be written twice (%%0).

semantics. A format control stringspecifies the external form of the values being transferred and the layout of data
within the records. A format control strings composed of format textoccurrences, which denote fixed parts
of the records and of format specificatioroccurrences, which denote the external representations of CHILL
values, allowing the editing of the text record or controlling the actual i/o operations.

If a format specificatiorncontains a repetition factorand a format clausethen it is equivalent to as many
identical format specificatioroccurrences of the format clausess the number delivered by repetition factor A
repetition factorcan be O, in which case the format specificatioris not considered. E.g. "%3C4” is equivalent
t0 "% C4%C4%C4".

The decimal notation is assumed for the digitsin arepetition factor

A format control stringn a parenthesised claude repeatedly scanned according to the repetition factor If
noneis specified, 1 is assumed by default.

examples:
26.20 size = %C%/ 1.1)
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755 Conversion

syntax:

<conversion clause> ::= (€]
<conversion code> { <conversion qualifier>}*
[ <clause width> ] (1.1

<conversion code> ::= 2
B|O|H|C|F (2.1)

<conversion qualifier>::= (©)]
L | E| P <character> (3.1

<clause width> ::= 4
{ { <digit>}* |V } [ <fractional width>] [ <exponent width> ] 4.0

<fractional width> ::= 5)
A <digit>}* (5.1)

<exponent width> ::= (6)
{ <digit>}* (6.1)

derived syntax: A conversion clause in which a clause width is not present is derived syntax for a conversion clause in
which a clause width that is O is specified.

semantics. A conversion in a READTEXT built-in routine call transforms a string which is an external representation
into a CHILL vaue. A conversion in a WRITETEXT built-in routine call performs the opposite
transformation. The conversion code together with the conversion qualifier specifiy the type of the conversion
and the details of the requested operation such as justification, overflow handling and padding.

The external representation is a string whose length usually depends on the value being converted. That string
may contain the minimum number of characters that are necessary to represent the CHILL value (free format)
or may have a given length (fixed format).

In the fixed format a dlice of width size starting from the actual index position is read from or written into the
text record according to the justification and padding selected by conversion qualifiers, as follows:

» in READTEXT: al padding characters (to the left or to the right according to the justification), if any,
are removed. However, when characters or fixed character strings are being read, the maximum
number N of padding characters that are removed is width -L , where L is 1 or string length,
respectively. No characters are removed if N < 0. The remaining characters are taken as the external
representation;

* in WRITETEXT: if the length of the externa representation is less than or equal to width, then the
characters are justified to the left or to the right in the dlice (according to the justification). The unused
string elements, if any, are filled with the padding character. Otherwise the string is truncated (on the
left if the justification to the right is selected, otherwise on the right), or width “overflow” indicator
characters«) are transferred, if the qualifidt is present. The truncation is applied to the external
representation, including the minus sign, the period (.) anH teeientific representation), if any.

In the free format the following holds:

* in READTEXT: padding characters, if any, are skipped except when a character or a character string is
being read and theonversion qualifier P is not specified. Then, the external representation is taken as
the longest slice of characters that starts atatteal index and is made of all the subsequent
characters that may lexically belong to it as defined below.

* in WRITETEXT: the string delivered by the conversion is inserted starting fronadhel index
position.

In WRITETEXT the string which is the external representation is transferred texthieecord without regard

to its actual length. After the transfer, thactual index is automatically advanced to the next available
character position and ttaetual length is set to the maximum value between diotual index and the (old)
actual length.

A clause width is constant if it is made ofdigits. The decimal notation is assumed. Otherwisevai$able.
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If the width is zero, then the free format is chosen, otherwise the width is the length of the fixed format.

If the width is too small to contain the string, the appropriate action is taken depending on the conversion
qualifier.

In a READTEXT the external representation that is applied is the one defined below for the mode of the
location argument.

In a WRITETEXT the external representation that is applied is the one defined below for the mode M of the
M-value or M-derived class of the value delivered by the value argument.

Conversion codes

Conversion codes are represented as single letters. The following conversion codes are defined:

B:
O:
H:
C:

F:

binary representation;
octal representation;
hexadecimal representation,;

conversion: indicates the default external representation of CHILL vaues, which depends on the mode
of the value being converted (see below).

scientific representation, i.e. the representation of floating point values with mantissa and exponent.

The external representation depends on the conversion code and the mode of the value being converted.

Conversion qualifiers

Conversion qualifiers are represented as single letters. The following conversion qualifiers are defined:

L:

left justification. Right justification is assumed if it is not present. In the free format the qualifier has no
effect.

overflow evidence. In WRITETEXT the overflow indication is selected; if the qualifier is not present,
then truncation is performed. In READTEXT or in the free format this qualifier has no effect.

padding. The character that follows the qualifier specifies the padding character. If P is not present,
then the padding character is assumed to be space by default. In READTEXT if the free format is
selected, then spaces and HT (Horizontal Tabulation) are considered as the same character for skipping
purposes, either when specified after the qualifier or when applied by default.

External representation

The external representation of CHILL valuesis defined as follows:

a

integers

Integer values are lexically represented as one or more digits in a decimal default base without leading
zeroes and with aleading sign if negative. Underline characters, aleading plus sign and leading zeroes
are discarded in READTEXT. The following conversion codes are available: B, O, C and H. The
conversion code C selects the decimal representation. The digits that may belong to the representation
are only those that are selected by the conversion code.

floating point

Floating point values can be represented in two ways:
» fixed point representation (selected by C conversion code)
» scientific representation (selected by F conversion code)

In the fixed point representation the floating point value is lexically represented by a sequence of one
or more digits (integer part) followed by an optional sequence of one or more digits (fractional part)
separated from the integer part by aperiod (.). A leading minus sign is present if the value is negative.

In the scientific representation the floating point value is represented by mantissa and exponent. The
mantissa is lexically represented as a fixed point value with the integer part consisting of only one
digit, greater than zero. The exponent islexically represented by an E followed by a possible sign and a
seguence of one or more digits. For both representations a leading plus sign and zeros are discarded in
READTEXT.

If fractional width is present, the value delivered by digits contained in it indicates the length of the
fractional part extended with trailing zeros if necessary, otherwise the fractional part contains the
minimum number of digits that are necessary to represent it.
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If exponent width is present, the value delivered by digits contained in it indicates the minimum
number of digits to use to represent the exponent, including leading zeros if necessary, otherwise a
default value of 3 is assumed.

The following conversion codes are available: C, F.

booleans

Boolean values are lexically represented as simple name string, that are TRUE and FALSE (in upper
case (eg. TRUE) or lower case (eg. true) depending on the representation chosen by the
implementation for the special simple name strings). The following conversion code is available: C.

. characters

Character values are lexically represented as strings of length 1. The following conversion code is
available:C.

sets

Set mode values are lexically represented as simple name strings, that are the set literals. The following
conversion code is available:C.

ranges

Range values have the same representation as the values of their root mode. However, only the
representations of those values defined by the discrete range mode or floating point range mode belong
to the set of external representations associated to the discrete range mode or floating point range
mode.

character strings

Character string values are lexically represented as strings of characters of length L. In WRITETEXT L
isthe actual length. In READTEXT L isthe string length if the string is afixed string, otherwiseitisa
varying string and L isthe string length, unless there are less characters available in the (dice of) text
record at the actual index position, in which case L is the number of available characters. The
following conversion code is available:C.

bit strings

Bit string values are lexically represented as strings of binary digits. The same rules as for character
strings apply to determine the number of digits. The following conversion code is available:C.

dynamic properties: A clause width has awidth, which is the value delivered by digits or by a value from theio list if
the clause width is variable, otherwiseit is zero if noneis specified.

dynamic conditions. The TEXTFAIL exception occursif:

examples:

26.21

in READTEXT, the text record does not contain a string slice starting at the actual index that (after
the removal or skipping of padding characters, see above) can be interpreted as an external
representation of one of the values of the mode of the current location argument (including an attempt
to read a non-empty external representation from a text record when actual index = actual length),
or

in WRITETEXT, astring slice that is the externa representation of the current value argument can not
be transferred to the text record starting at the actual index, or

in READTEXT a conversion code is encountered and the current element in the io list is not alocation,
or the mode of the location has the read-only property, or

the same conversion qualifier is specified more than once, or

avariable clause width is encountered and the corresponding io list element in theio list does not have
an integer classor itislessthan 0.

a clause width has a fractional width or an exponent width and the corresponding io list element in the
io list does not have afloating point class, or it has an exponent width and the conversion codeis not F.

CL6 (1.1)
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756 Editing
syntax:
<editing clause> ::= (@]
<editing code> [ <clause width> ] (1.1
<editing code> ::= 2
X|<|>|T (2.1)

derived syntax: An editing clause in which a clause width is not present is derived syntax for an editing clause in which
aclause width that is 1 is specified if the editing code is not T, otherwise 0, respectively.

semantics,

. The following editing functions are defined:

X: space: width space characters are inserted or skipped.

>. skip right: the actual index is moved rightward for width positions.
<: skip l€eft: the actual index is moved leftward for width positions.
T: tabulation: the actual index is moved to the position width.

In WRITETEXT, if the actual index is moved to a position which is greater than the actual length, then a
string of N space characters, where N is the difference between the actual index and the (old) actual length is
appended to the text record. The actual length is set to the maximum value between the actual index and
the (old) actual length.

dynamic conditions: The TEXTFAIL exception occursif:

examples:

7.5.7
syntax:

« theactual index ismoved to a position which isless than O or greater than text length, or
* in READTEXT the actual index is moved to a position which is greater than the actual length, or

* in READTEXT the editing code X is specified and a string of width space or HT (Horizontal
Tabulation) charactersis not present in the text record at the actual index position.

26.22 X (1.2)

1/O control

<ioclause> ::= D
<io code> (D)

<iocode> ::= 2
I=1+]2]!]= (21)

semantics: The i/o control functions (except=) perform an i/o operation. They allow precise control over the transfer

110

of thetext record. In READTEXT, all the functions have the same effect, to read the next record from the file.
In WRITETEXT, thetext record and the appropriate representation of the carriage control information are
transferred. The initial position of the carriage at the timeektdocation is connected is such that the first
character of the firstext record is printed at the beginning of the first unoccupied line (regardless of any
positioning information attached to ttext record).

The carriage placement is described by means of the following abstract operations on the current column, line
and pagex Y, 2) considering columns as being numbered from zero starting at the left margin, and lines from
zero starting at the top margin.

nl(w): the carriage is moved lines downward, at the beginning of the line (new position:y(@, (
w) modp, z+ (y +w) / p, wherep is the number of lines per page));

npw): the carriage is moved pages downward at the beginning of the line (new position: @, O,
+Ww)).

The following control functions are provided:
/: next record: the record is printed on the next line (nl(1), print record, nl(0));
+: next page: the record is printed on the top of the next page (np(1), print record, nl(0));

- current line: the record is printed on the current line (print record, nl(0));
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?:. prompt: the record is printed on the next line. The carriage is left at the end of the line (nl(1), print
record);

I: emit: no carriage control is performed (print record);

=: end page: defines the positioning of the next record, if any, to be at the top of the next page (this
overrides the positioning performed before the printing of the record). It does not cause any i/o
operation.

The l/O transfer is performed as follows:

e in READTEXT, the semantics are as if a READRECORD (A, |, R), where A is the access sub-location
of the text location, | is the index expression (if any) and R denotes the text record, were executed.
After the I/O transfer actual index is set to 0 and actual length to the string length of the string value
that was read;

e INnWRITETEXT, the semantics are as if aWRITERECORD (A, |, R), where A is the access sub-location
of the text location, | is the index expression (if any) and R denotes the text record, were executed.
The associated positioning information is aso transferred. If the record mode of
the access is not dynamic, then the text record isfilled at the end with space characters and its actual
length is set to text length before the transfer takes place. After the 1/0O transfer actual index and
actual length are set to 0.

26.21 / (1.2)

Accessing the attributes of a text location

<gettext built-inroutine call> ::= (@]
GETTEXTRECORD ( <text location>) (1.1)

| GETTEXTINDEX ( <text location>) (1.2

| GETTEXTACCESS( <text location>) (1.3

| EOLN ( <text location>) (1.4
<settext built-in routine call> ::= ()]
SETTEXTRECORD ( <text location> , <character string location>) (2.1)

| SETTEXTINDEX ( <text location> , <integer expression>) (2.2

| SETTEXTACCESS ( <text location> , <access location>) (2.3

semantics: GETTEXTRECORD returnsthe text record r efer ence of text location.

GETTEXTINDEX returns the actual index of text location.
GETTEXTACCESS returns the access r efer ence of text location.

EOLN delivers TRUE if no more characters are available in the text record (i.e. if the actual index equals the
actual length).

SETTEXTRECORD stores a reference to the location delivered by character string location into the text
record reference of the text location.

SETTEXTINDEX has the same semantics as an editing clause in WRITETEXT in which editing code is T and
clause width delivers the same value as integer expression, applied to the text record denoted by text
location.

SETTEXTACCESS stores a reference to the location delivered by access location into the access r efer ence of
the text location.

static properties: The class of the GETTEXTRECORD built-in routine call is the M-reference class, where M is the text

record mode of the text location.
The class of the GETTEXTINDEX built-in routine cal isthe & INT-derived class.

The class of the GETTEXTACCESS built-in routine call isthe M-reference class, where M is the access mode
of the text location.

The class of the EOLN built-in routine call is the BOOL-derived class.

A GETTEXTRECORD or GETTEXTACCESS built-in routine call has the same regionality as the text
location.
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static conditions: The mode of the character string location argument of SETTEXTRECORD must be read-compatible
with the text record mode of the text location.

The mode of the access location argument of SETTEXTACCESS must be read-compatible with the access
mode of the text location.

The location argument in SETTEXTRECORD and SETTEXTACCESS must have the same regionality as the
text location.

dynamic conditions: The TEXTFAIL exception occurs if the integer expression argument of SETTEXTINDEX delivers
avalue that islessthan O or greater than the text length of the text location.

examples:
26.23 GETTEXTINDEX (output) 1.2
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8 EXCEPTION HANDLING

8.1 GENERAL

An exception is either a language defined exception, in which case it has a language defined exception name, a user
defined exception, or an implementation defined exception. A language defined exception will be caused by the dynamic
violation of adynamic condition. Any exception can be caused by the execution of a cause action.

When an exception is caused, it may be handled, i.e. an action statement list of an appropriate handler will be executed.

Exception handling is defined such that at any statement it is statically known which exceptions might occur (i.e. it is
statically known which exceptions cannot occur) and for which exceptions an appropriate handler can be found or which
exceptions may be passed to the calling point of a procedure. If an exception occurs and no handler for it can be found,
the programisin error.

When an exception occurs at an action statement or a declaration statement, the execution of the statement is performed
up to an unspecified extent, unless stated otherwise in the appropriate section.

8.2 HANDLERS

syntax:
<handler> ::= D
ON { <on-alternative> }* [ EL SE <action statement list>] END (1.1
<on-alternative> ::= ()]
(<exception list>) : <action statement list> (2.1

semantics. A handler is entered if it is appropriate for an exception E according to section 8.3. If E is mentioned in an
exception list in an on-alternative in the handler, the corresponding action statement list is entered; otherwise
EL SE is specified and the corresponding action statement list is entered.

When the end of the chosen action statement list is reached, the handler and the construct to which the
handler is appended are terminated.

static conditions: All the exception names in all the exception list occurrences must be different.

dynamic conditions: The SPACEFAIL exception occurs if an action statement list is entered and storage requirements
cannot be satisfied.

examples:
10.47 ON
(ALLOCATEFAIL): CAUSE overflow;
END (1.2)

8.3 HANDLER IDENTIFICATION

When an exception E occurs at an action or module A, or a data statement or region D, the exception may be handled by
an appropriate handler; i.e. an action statement list in the handler will be executed or the exception may be passed to the
calling point of a procedure; or, if neither is possible, the programisin error.

For any action or module A, or data statement or region D, it can be statically determined whether for a given exception
E at A or D an appropriate handler can be found or whether the exception may be passed to the calling point.

An appropriate handler for A or D with respect to an exception with exception name E is determined as follows:

1. if ahandler which mentions E in an exception list or which specifies EL SE is appended to or included in A or D,
and E occursin the reach directly enclosing the handler, then that handler is the appropriate one with respect to E;

2. otherwise, if A or D isdirectly enclosed by a bracketed action, a module or a region, the appropriate handler (if
present) is the appropriate handler for the bracketed action, module or region with respect to E;
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3. otherwise, if A or D is placed in the reach of a procedure definition then:

« if a handler which mentions E in an exception list or specifies EL SE is appended to the procedure
definition, then that handler is the appropriate handler,

» otherwiseg, if E is mentioned in the exception list of the procedure definition, then E is caused at the calling
point,

» otherwise there is no user-defined handler; however, in this situation an implementation defined handler
may be appropriate (see section 13.5);

4. otherwise, if A or D isplaced in the reach of a process definition, then:

» if ahandler which mentions E in an exception list or specifies EL SE is appended to the process definition,
then that handler is the appropriate handler,

» otherwise there is no user-defined handler; however, in this situation an implementation defined handler
may be appropriate (see section 13.5);

5. otherwise, if A isan action of an action statement list in a handler, then the appropriate handler is the appropriate
handler for the action A’ or data statement or region D’ with respect to E which the handler is appended to or

included in but considered as if that handler were not specified.

If an exception is caused and the transfer of control to the appropriate handler implies exiting from blocks, local storage
will be released when exiting from the block.
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9 TIME SUPERVISION

9.1 GENERAL

It is assumed that a concept of time exists externally to a CHILL program (system). CHILL does not specify the precise
properties of time, but provides mechanisms to enable a program to interact with the external world’s view of time.

9.2 TIMEOUTABLE PROCESSES

The concept of aimeoutable process exists in order to identify the precise points during program execution where a
time interrupt may occur, that is, when a time supervision may interfere with the normal execution of a process.

A process becomégmeoutable when it reaches a well-defined point in the execution of certain actions. CHILL defines
a process to becomameoutable during the execution of specific actions; an implementation may define a process to
becometimeoutable during the execution of further actions.

9.3 TIMING ACTIONS

syntax:
<timing action> ::= D
<relative timing action> (1.1
| <absolutetiming action> (1.2
| <cyclic timing action> (1.3)

semantics: A timing action specifies time supervisions of the executing process. A time supervision may be initiated, it
may expire and it may cease to exist. Several time supervisions may be associated with a single process
because of the cyclic timing action and because a timing action can itself contain other actions whose
execution can initiate time supervisions.

A time interrupt occurs when a processimeoutable and at least one of its associated time supervisions has
expired. The occurrence of a time interrupt implies that the first expired time supervision ceases to exist;
furthermore, it leads to the transfer of control associated with that time supervision in the supervised process.
If the supervised process was delayed, it becomes re-activated.

Time supervisions also cease to exist when control leaves the timing action that initiated them.

Note that if the transfer of control causes the process to leave a region, the region will be released (see section
11.2.1).

931 Relative timing action

syntax:
<relativetiming action> ;:= D
AFTER <duration primitive value> [ DELAY ] IN
<action statement list> <timing handler> END (1.1
<timing handler> ::= ()]
TIMEOUT <action statement list> (2.1

semantics. Theduration primitive value is evaluated, a time supervision is initiated, and themadtien statement list is
entered.

If DELAY is specified, the time supervision is initiated when the executing process beooetesable at
the point of execution specified by thetion statement in the action statement list, otherwise it is initiated
before theaction statement list is entered.

If DELAY is specified, the time supervision ceases to exist if it has been initiated and the executing process
ceases to bemeoutable.

The time supervision expires if it has not ceased to exist when the specified period of time has elapsed since
initiation.

The transfer of control associated with the time supervision is tadihen statement list of the timing

handler.
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static conditions: If DELAY is specified the action statement list must consist of precisely one action statement that
may itself cause the executing process to become timeoutable.

dynamic conditions. The TIMERFAIL exception occurs if the initiation of the time supervision fails for an
implementation defined reason.

932 Absolute timing action

syntax:
<absolute timing action> ::= D
AT <absolute time primitive value> IN
<action statement list> <timing handler> END (1.0

semantics. The absolute time primitive value is evaluated, a time supervision is initiated, and then the action statement
listis entered.

The time supervision expiresif it has not ceased to exist at (or after) the specified point in time.

The transfer of control associated with the time supervision is to the action statement list of the timing
handler.

dynamic condition: The TIMERFAIL exception occurs if the initiation of the time supervision fails for an
implementation defined reason.

9.33 Cyclic timing action

syntax:
<cyclic timing action> ::= (€]
CYCLE <duration primitive value> IN
<action statement list> END (1.2)

semantics. The cyclic timing action is intended to ensure that the executing process enters the action statement list at
precise intervals without cumulated drifts (this implies that the execution time for the action statement list on
average should be less than the specified duration value). The duration primitive value is evaluated, arelative
time supervision isinitiated, and then the action statement list is entered.

The time supervision expires if it has not ceased to exist when the specified period of time has elapsed since
initiation. Indivisibly with the expiration a new time supervision with the same duration value isinitiated.

Thetransfer of control associated with the time supervision is to the beginning of the action statement list.
Note that the cyclic timing action can only terminate by atransfer of control out of it.

dynamic properties: The executing process becomes timeoutable if and when control reaches the end of the action
statement list.

dynamic conditions. The TIMERFAIL exception occurs if any initiation of a time supervision fails for an
implementation defined reason.

94 BUILT-IN ROUTINESFOR TIME

syntax:
<time value built-in routine call> ::= Q
<duration built-in routine call> 1.1
| <absolute time built-in routine call> 1.2

semantics. Implementations are likely to have quite different requirements and capabilities in terms of precision and
range of time values. The built-in routines defined below are intended to accomodate these differences in a
portable manner.
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94.1 Duration built-in routines
syntax:

<duration built-inroutine call> ::= (0]
MILLISECS ( <integer expression>) (1.1
| SECS( <integer expression>) (1.2
| MINUTES( <integer expression>) (1.3
| HOURS( <integer expression>) (1.4
| DAYS( <integer expression>) (1.5)

semantics; A duration built-in routine call delivers a duration value with implementation defined and possibly varying
precision (i.e. MILLISECS (1000) and SECS (1) may deliver different duration values); this value is the
closest approximation in the chosen precision to the indicated period of time. The argument of MILLISECS,
SECS, MINUTES, HOURS and DAYS indicate a point in time expressed in milliseconds, seconds, minutes,
hours and days respectively.

static properties: The class of aduration built-in routine call is the DURATION-derived class.

dynamic conditions; The RANGEFAIL exception occurs if the implementation cannot deliver a duration value denoting
the indicated period of time.

9.4.2 Absolute time built-in routine

syntax:
<absolute time built-in routine call> ::= D

ABSTIME ([ [[[[[ <year expression>,] <month expression>, ]
<day expression>, ] <hour expression>, ]

<minute expression> , | <second expression>] ) (1.2)
<year expression> ::= 2
<integer expression> (2.1
<month expression> ::= ©)
<integer expression> (3.1
<day expression> ::= 4
<integer expression> (4.2
<hour expression> ::= )
<integer expression> (5.1
<minute expression> ::= (6)
<integer expression> (6.2)
<second expression> ::= (7)
<integer expression> (7.0

semantics. The ABSTIME built-in routine call delivers an absolute time value denoting the point in time in the
Gregorian calendar indicated in the parameter list. The parameters indicate the components of time in the
following order: the year, the month, the day, the hour, the minute and the second. When higher order
parameters are omitted, the point in time indicated is the next one that matches the low order parameters
present (e.g. ABSTIME (15,12,00,00) denotes noon on the 15th in this or the next month.

When no parameters are specified, an absol ute time value denoting the present point in time is delivered.
static properties. The class of the absolute time built-in routine call is the TIME-derived class.
dynamic conditions: The RANGEFAIL exception is caused if the implementation cannot deliver an absolute time value

denoting the indicated point in time.
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94.3
syntax:

Timing built-in routine call

<timing simple built-inroutine call> ::=
WAIT ()
| EXPIRED ()
| INTTIME (<absolute time primitive value> , [ [ [ [ <year location>
<month location> , ] <day location> , ]
<hour location> , ] <minute location> , ]
<second location>)

<year location> ::=
<integer location>

<month location> ::=
<integer location>

<day location> ::=
<integer location>

<hour location> ::=
<integer location>

<minute location> ::=
<integer location>

<second location> ::=
<integer location>

)
(1.2)
(1.2)

(1.3)

2
2.1)

©)
(3.1)

(4)
(4.2)

®)
(5.1)

(6)
(6.1)

(7
(7.2)

semantics. WAIT unconditionally makes the executing process timeoutable: its execution can only terminate by atime

interrupt. (Note that the process remains activein the CHILL sense).

EXPIRED makes the executing process timeoutable if one of its associated time supervisions has expired;

otherwise it has no effect.

INTTIME assigns to the specified integer locations an integer representation of the point in time in the
Gregorian calendar specified by the absolute time primitive value. The locations passed as arguments receive
the components of time in the following order: the year, the month, the day, the hour, the minute and the

second.

static conditions: All specified integer locations must be referable and their modes may not have the read-only

property.

dynamic properties: WAIT makes the executing process timeoutable.

118

EXPIRED makes the executing process timeoutable if thereis an expired time supervision associated with it.
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PROGRAM STRUCTURE

GENERAL

The if action, case action, do action, delay case action, begin-end block, module, region, spec module, spec region,
context, receive case action, procedure definition and process definition determine the program structure; i.e. they
determine the scope of hames and the lifetime of locations created in them.

The word block is used to denote:

the action statement list in ado action including any loop counter and while control;

the action statement list in athen clausein an if action;

— theaction statement list in a case alternative in a case action;

— theaction statement list in adelay alternative in adelay case action;
— abegin-end block;

— aprocedure definition excluding the result spec and parameter spec of al formal parameters of the formal
parameter list;

— aprocess definition excluding the parameter spec of al formal parameters of the formal parameter list;

— the action statement list in a buffer receive alternative or in a signal receive alternative, including any
defining occurrences in adefining occurrence list after IN;

— the action statement list after EL SE in an if action or case action or areceive case action or handler;
— theon-alternativein ahandler;

- theaction statement list in arelative timing action, an absolute timing action, a cyclic timing action or in a
timing handler.

The word modulion is used to denote:
— amodule or region, excluding the context list and defining occurrence, if any;
— aspec module or spec region, excluding the context list, if any;
- acontext.

The word group denotes either a block or a modulion.

The word reach or reach of a group denotes that part of the group that is not surrounded (see section 10.2) by an
inner group.

A group influences the scope of each name created in its reach. Names are created by defining occurrences:

A defining occurrence in the defining occurrence list of a declaration, mode definition or synonym definition or
appearing in a signal definition creates a name in the reach where the declaration, mode definition, synonym
definition or signal definition, respectively, is placed.

A defining occurrence in a set mode creates a name in the reach directly enclosing the set mode.

A defining occurrence appearing in the defining occurrence list in a formal parameter list creates a name in the
reach of the associated procedure definition or process definition.

A defining occurrence in front of a colon followed by an action, region, procedure definition, or process

definition creates a name in the reach where the action, region, procedure definition, process definition,
respectively, is placed.
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» A (virtual) defining occurrence introduced by a with part or in aloop counter creates a name in the reach of the
block of the associated do action.

» A defining occurrence in the defining occurrence list of a buffer receive alternative or asignal receive alternative
creates a name in the reach of the block of the associated buffer receive alternative or signal receive alternative,
respectively.

» A (virtual) defining occurrence for a language predefined or an implementation defined name creates a name in
the reach of the imaginary outermost process (see section 10.8).

The places where aname is used are called applied occurrences of the name. The name binding rules associate a defining
occurrence with each applied occurrence of the name (see section 12.2.2).

A name has a certain scope, i.e. that part of the program where its definition or declarations can be seen and, as a
consequence, where it may be freely used. The name is said to be visible in that part. Locations and procedures have a
certain lifetime, i.e. that part of the program where they exist. Blocks determine both visibility of names and the lifetime
of the locations created in them. Modulions determine only visibility; the lifetime of locations created in the reach of a
modulion will be the same as if they were created in the reach of the first surrounding block. Modulions allow for
restricting the visibility of names. For instance, a name created in the reach of a module will not automatically be visible
in inner or outer modules, although the lifetime might allow for it.

102 REACHESAND NESTING

syntax:
<begin-end body> ::= D
<data statement list> <action statement list> (1.2)
<proc body> ::= 2
<data statement list> <action statement list> (2.1)
<process body> ::= (©)]
<data statement list> <action statement list> (3.1
<module body> ::= 4
{ <data statement> | <visibility statement> | <region> |
<spec region> }* <action statement list> (4.0
<region body> ::= (5)
{ <data statement> | <visibility statement> } * (5.
<spec module body> ::= (6)
{ <quasi data statement> | <visibility statement> |
<spec module> | <spec region> }* (6.1)
<spec region body> ::= @)
{ <quasi data statement> | <visibility statement> }* (7.0
<context body> ::= 8
{ <quas data statement> | <visibility statement> |
<spec module> | <spec region> }* (8.1
<action statement list> ::= 9
{ <action statement>}* (9.1
<data statement list> ;= (20
{ <data statement> }* (10.2)
<data statement> ::= (1)
<declaration statement> (111
| <definition statement> (11.2)
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<definition statement> ::= (12
<synmode definition statement> (12.2)

| <newmode definition statement> (12.2)

| <synonym definition statement> (12.3)

| <procedure definition statement> (12.4)

| <process definition statement> (12.5)

| <signal definition statement> (12.6)

| <empty>; (12.7)

semantics. When a reach of a block is entered, all the lifetime-bound initialisations of the locations created when
entering the block are performed. Subsequently, the reach-bound initialisations in the block reach, the
possibly dynamic evaluationsin the loc-identity declarations, the reach-bound initialisationsin the regions and
the actions are performed in the order they are textually specified.

When a reach of a modulion is entered, the reach-bound initialisations, the possibly dynamic evaluations in
the loc-identity declarations, the reach-bound initialisations in the regions and the actions (if the modulionisa
module) that are in the modulion reach are performed in the order they are textually specified.

A data statement, action, module or region, is terminated either by completing it, or by terminating a handler
appended to it.

When a reach-bound initialisation, loc-identity declaration, action, module, region, procedure or process is
terminated, execution is resumed as follows, depending on the statement or the kind of termination:

if the statement is terminated by completing the execution of a handler, then the execution is resumed
with the subsequent statement;

otherwise, if it is an action that implies a transfer of control, the execution is resumed with the
statement defined for that action (see sections 6.5, 6.6, 6.8, 6.9);

otherwise, if it isaprocedure, control is returned to the calling point (see section 10.4).

otherwise, if it isa process, the execution of that process (or the program, if it is the outermost process)
ends (see section 11.1) and execution is (possibly) resumed with another process;

otherwise control will be given to the subsequent statement.

static properties: Any reach isdirectly enclosed in zero or more groups as follows:

If the reach is the reach of a do action, begin-end block, procedure definition, process definition, then
it isdirectly enclosed in the group in whose reach the do action, begin-end block, procedure definition
or process definition, respectively, is placed, and only in that group.

If the reach is the action statement list of a timing action or timing handler, or one of the action
statement lists of an if action, case action or delay case action, then it is directly enclosed in the group
in whose reach the timing action, timing handler, if action, case action or delay case action is placed,
and only in that group.

If the reach is the action statement list, or a buffer receive alternative, or signal receive alternative, or
the action statement list following EL SE in a receive buffer case action or receive signal case action,
then it is directly enclosed in the group in whose reach the receive buffer case action or receive signal
case action is placed, and only in that group.

If the reach is the action statement list in an on-alternative or the action statement list following EL SE
in a handler which is not appended to a group, then it is directly enclosed in the group in whose reach
the statement to which the handler is appended is placed, and only in that group.

If the reach is an on-alternative or action statement list after EL SE of a handler which is appended to a

group, then it is directly enclosed in the group to which the handler is appended, and only in that
group.
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If the reach is a module, region, spec module or spec region, then it is directly enclosed in the group in
whose reach it is placed, and also directly enclosed in the context directly in front of the module,
region, spec module or spec region, if any. This is the only case where a reach has more than one
directly enclosing group.

If the reach is a context, then it is directly enclosed in the context directly in front of it. If there is no
such context, it has no directly enclosing group.

A reach has directly enclosing reaches that are the reaches of the directly enclosing groups. A statement has a
unique directly enclosing group, namely, the group in which the statement is placed. A reach is said to directly
enclose agroup (reach) if and only if the reach isadirectly enclosing reach of the group (reach).

A statement (reach) is said to be surrounded by a group if and only if either the group is the directly enclosing
group of the statement (reach) or adirectly enclosing reach is surrounded by the group.

A reach is said to be entered when:

Module reach: the module is executed as an action (e.g. the module is not said to be entered when a
goto action transfers control to alabel name defined inside the module).

Begin-end reach: the begin-end block is executed as an action.

Region reach: the region is encountered (e.g. the region is not said to be entered when one of its
critical proceduresis called).

Procedure reach: the procedure is entered via a procedure call.
Process reach: the processis activated via the evaluation of a start expression.

Do reach: the do action is executed as an action after the evaluation of the expressions or locations in
the control part.

Buffer-receive alternative reach, signal receive aternative reach: the alternative is executed on
reception of a buffer value or signal.

On-alternative reach: the on-alternative is executed on the cause of an exception.

Other block reaches: the action statement list is entered.

An action statement list is said to be entered when and only when its first action, if present, receives control
from outside the action statement list.

A reachisaquasi reach if it is the one of a spec module, spec region or context, otherwise it isareal reach.

A defining occurrence isa quasi defining occurrence if:

it is surrounded by a context and not by a module or region, or
it is surrounded by a simple spec module or a simple spec region, or

it is not surrounded by one of the above mentioned groups and it is surrounded by a module spec or a
region spec and it is contained in aquasi declaration, aquasi procedure definition statement or a quasi
process definition statement,

otherwise it isareal defining occurrence.
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103 BEGIN-END BLOCKS
syntax:

<begin-end block> ::= 1)

BEGIN <begin-end body> END (1.2)

semantics: A begin-end block is an action, possibly containing local declarations and definitions. It determines both
visihility of locally created names and the lifetimes of locally created locations (see sections 10.9 and 12.2).

dynamic conditions. The SPACEFAIL exception occurs if storage requirements cannot be satisfied.

examples: see 15.73 - 15.90

104 PROCEDURE DEFINITIONS

syntax:
<procedure definition statement> ::= D
<defining occurrence> : <procedure definition>
[ <handler>] [ <smple name string> ] ; (1.2)
<procedure definition> ::= 2
PROC ([ <formal parameter list>]) [ <result spec> ]
[ EXCEPTIONS ( <exception list>) ] <procedure attribute list>
<proc body> END (2.2)
<formal parameter list> ::= 3
<formal parameter> { , <formal parameter> }* 3.1
<formal parameter> ::= 4
<defining occurrence list> <parameter spec> (4.0
<procedure attribute list> ::= 5)
[ <generality> ] (5.1
<generality> ::= (6)
GENERAL (6.2)
| SIMPLE (6.2)
| INLINE (6.3)

derived syntax: A formal parameter, wheredefining occurrence list consists of more than omlefining occurrence, is
derived from severdbrmal parameter occurrences, separated by commas, one for dgficting occurrence
and each with the sanparameter spec. E.g.i, j INT LOC is derived from INT LOC, j INT LOC.

semantics. A procedure definition statement defines a (possibly) parameterised sequence of actions that may be called
from different places in the program. The procedure is terminated and control is returned to the calling point
either by executing a return action or by reaching the end oprtheebody or by terminating a handler
appended to the procedure definition (falling through). Different degrees of complexity of procedures may be
specified as follows:

a. simple procedures§IMPLE) are procedures that cannot be manipulated dynamically. They are not
treated as values, i.e. they cannot be stored in a procedure location nor can they be passed as
parameters to or returned as result from a procedure call.

b. general proceduresGENERAL) do not have the restrictions $fmple procedures and may be treated
as procedure values.

c. inline procedures INLINE) have the same restrictions asnple procedures and they are not
recursive. They have the same semantics as normal procedures, but the compiler may insert the
generated object code at the point of invocation rather than generating code for actually calling the
procedure.
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Only simple and general procedures are recursive.

A procedure may return avalue or it may return alocation (indicated by the L OC attribute in the result spec).
The defining occurrence in front of the procedure definition defines the name of the procedure.

parameter passing:

There are basically two parameter passing mechanisms: the “pass by valbe'QUT andINOUT) and the
“pass by location”l( OC).

pass by value

In pass by value parameter passing, a value is passed as a parameter to the procedure and stored in a loca
location of the specified parameter mode. The effect is as if, at the beginning of the procedure call, the
location declaration:

DCL <defining occurrence> <mode> := <actual parameter>;

were encountered for thdefining occurrences of the formal parameter. However the procedure is entered
after the actual parameters have been evaluated. Optionally, the ké{vmialy be specified to indicate pass
by value explicitly.

If the attributel NOUT is specified, the actual parameter value is obtained from a location and just before
returning the current value of the formal parameter is restored in the actual location.

The effect ofOUT is the same as foNOUT with the exception that the initial value of the actual location is

not copied into the formal parameter location upon procedure entry; therefore, the formal parameter has an
undefined initial value. The store-back operation need not be performed if the procedure causes an exception
at the calling point.

pass by location

In pass by location parameter passing, a (possibly dynamic mode) location is passed as a parameter to the
procedure body. Onlgeferable locations can be passed in this way. The effect is as if at the entry point of the
procedure the loc-identity declaration statement:

DCL <defining occurrence> <mode>
LOC [ DYNAMIC ] := <actual parameter> ;

were encountered for thaefining occurrences of the formal parameter. However the procedure is entered
after the actual parameters have been evaluated.

If a value is specified that is notlacation, a location containing the specified value will be implicitly created
and passed at the point of the call. The lifetime of the created location is the procedure call. The mode of the
created location is dynamic if the value has a dynamic class.

result transmission:

Both a value and a location may be returned from the procedure. In the first vale, ia specified in any

result action, in the latter case, lacation (see section 6.8). If the attriblS®ONREF is not given in theesult

spec, the location must bereferable. The returned value or location is determined by the most recently
executed result action before returning. If a procedure with a result spec returns without having executed a
result action, the procedure returnsuamdefined value or arundefined location. In this case the procedure

call may not be used as a location procedure call (see section 4.2.11) nor as a value procedure call (see section
5.2.13), but only as a call action (section 6.7).

static properties: A defining occurrence in aprocedure definition statement defines grocedure name.

124

A procedure name has @rocedure definition attached that is thprocedure definition in the statement in
which theprocedure name is defined.

A procedure name has the following properties attached, as defined proitedur e definition:

* It has a list ofparameter specs that are defined by thparameter spec occurrences in théormal
parameter list, each parameter consisting of a mode and possibly a parameter attribute.
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» It haspossibly aresult spec, consisting of a mode and an optional result attribute.
* It hasapossibly empty list of exception names, which are the names mentioned in exception list.

« It has a generality that is, if generality is specified, either general or simple or inline, depending on
whether GENERAL, SIMPLE or INLINE is specified; otherwise an implementation default specifies
general or smple. If the procedure name is defined inside a block or a region, its generality is
simple.

» It hasarecursivity which isrecursive. However, if the generality isinline or if the procedure name
iscritical (see section 11.2.1) the recursivity is non-recursive.

A procedure name that is general isageneral procedure name. A general procedur e name has a procedure
mode attached, formed as:

PROC ([ <parameter list>]) [ <result spec>]
[ EXCEPTIONS ( <exception list>) ]

where <result spec>, if present, and <exception list> are the same asin its procedure definition and parameter
list is the sequence of <parameter spec> occurrencesin the formal parameter list, separated by commas.

A name defined in a defining occurrence list in the formal parameter is a location name if and only if the
parameter spec in the formal parameter does not contain the LOC attribute. If it does contain the LOC
attribute, it is aloc-identity name. Any such alocation name or loc-identity nameisreferable.

static conditions: If a procedure name is intra-regional (see section 11.2.2), its procedure definition must not specify
GENERAL.

If aprocedurenameiscritical (see section 11.2.1), its definition may not specify GENERAL.

If specified, the simple name string must be equal to the name string of the defining occurrence in front of the
procedure definition.

Only if LOC is specified in the parameter spec or result spec may the mode in it have the non-value
property.

All exception names mentioned in exception list must be different.

examples:
14 add:
PROC (i,j INT) RETURNS (INT) EXCEPTIONS (OVERFLOW);
RESULT i+j;
END add; (1.1

105 PROCESSDEFINITIONS

syntax:
<process definition statement> ;:= (0]
<defining occurrence> : <process definition>
[ <handler>] [ <simple name string>] ; (1.1)
<process definition> ::= 2
PROCESS ([ <formal parameter list>] ) <process body> END (2.

semantics. A process definition statement defines a possibly parameterised sequence of actions that may be started for
concurrent execution from different placesin the program (see chapter 11).

static properties: A defining occurrence in a process definition statement defines a pr ocess name.
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A process name has the following property attached, as defined by its process definition:

e It has alist of parameter specs that are defined by the parameter spec occurrences in the formal
parameter list, each parameter consisting of a mode and possibly a parameter attribute.

static conditions. If specified, the simple name string must be equal to the name string of the defining occurrence in
front of the process definition.

A process definition statement must not be surrounded by a region or by a block other than the imaginary
outermost process definition (see section 10.8).

The parameter attributes in the formal parameter list must not be INOUT nor OUT.

Only if LOC is specified in the parameter spec in a formal parameter in the formal parameter list may the
modein it have the non-value property.

examples:

14.13 PROCESS ();
wait:
PROC (x INT);
[* some wait action*/
END wait;
DO FOR EVER;
wait(10 /* seconds*/);
CONTINUE operator_is _ready;
OD;
END (2.1)

106 MODULES

syntax:
<module> ::= (D)
[ <context list>] [ <defining occurrence> : |
MODULE [ BODY ] <module body> END
[ <handler>] [ <simple name string>] ; (1.2)
| <remote modulion> (1.2

semantics. A module is an action statement possibly containing local declarations and definitions. A module is a means
of restricting the visibility of name strings; it does not influence the lifetime of the locally declared locations.

The detailed visibility rules for modules are given in section 12.2.

static properties: A defining occurrence in a module defines a module name as well as alabel name. The name has the
module (seen asamodulion, i.e. excluding the context list and defining occurrence, if any) attached.

A module is developed piecewisely if and only if a context list is specified.
A moduleisamodule body if and only if BODY is specified.

static conditions: If specified, the simple name string must be equal to the name string of the defining occurrence.
A remote modulion in a module must refer to a module.

examples:
7.48 MODULE
SEIZE convert;
DCL nINT INIT:=1979;
DCL rn CHARS (20) INIT:= (20)" ";
GRANT n,rn;
convert();
ASSERT rn = "MDCCCCLXXVIIIII6)" ™
END (1.1)
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10.7 REGIONS

syntax:
<region>::= (@]
[ <context list>] [ <defining occurrence> : |
REGION [ BODY ] <region body> END
[ <handler>] [ <simple name string> ] ; (1.2
| <remote modulion> (1.2

semantics: A region is a means of providing mutually exclusive access to its locally declared data objects for the
concurrent executions of processes (see chapter 11). It determines visibility of locally created names in the
same way as amodule.

static properties. A defining occurrence in a region defines a region name. It has the region (seen as a modulion, i.e.
excluding the context list and defining occurrence, if any) attached.

A region is developed piecewisely if and only if a context list is specified.
A regionisaregion body if and only if BODY is specified.
static conditions: If specified, the simple name string must be equal to the name string of the defining occurrence.
A region must not be surrounded by a block other than the imaginary outermost process definition.
A remote modulion in aregion must refer to aregion.

examples: see 13.1 —-13.28

108 PROGRAM

syntax:
<program> ::= @)
{ <module> | <spec module> | <region> | <spec region> }+ (1.1

semantics. Programs consist of a list of modules or regions surrounded by an imaginary outermost process definition.

The definitions of the CHILL pre-defined names (see Appendix C.2) and the implementation defined built-in
routines and integer modes are considered, for lifetime purposes, to be defined in the reach of the imaginary
outermost process definition. For their visibility see section 12.2.

109 STORAGE ALLOCATION AND LIFETIME
The time during which a location or procedure exists within its program is its lifetime.
A location is created by a declaration or by the executionGEESTACK or anALLOCATE built-in routine call.

The lifetime of a location declared in the reach of a block is the time during which control lies in that block or in a
procedure whose call originated from that block, unless it is declared with the at8ibATdC. The lifetime of a

location declared in the reach of a modulion is the same as if it were declared in the reach of the closest surrounding
block of the modulion. The lifetime of a location declared with the attriSTU#TIC is the same as if it were declared in

the reach of the imaginary outermost process definition. This implies that for a location declaration with the attribute
STATIC storage allocation is made only once, namely, when starting the imaginary outermost process. If such a
declaration appears inside a procedure definition or process definition, only one location will exist for all invocations or
activations.

The lifetime of a location created by executinGEBI'STACK built-in routine call ends when the directly enclosing block
terminates.

The lifetime of a location created by AhL OCATE built-in routine call is the time starting from tii&.LOCATE call
until the time that the location cannot be accessed anymore by any CHILL program. The latter is always the case if a
TERMINATE built-in routine is applied to aallocated reference value that references the location.

The lifetime of an access created in a loc-identity declaration is the directly enclosing block of the loc-identity
declaration.

The lifetime of a procedure is the directly enclosing block of the procedure definition.
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static properties: A location is said to be static if and only if it is a static mode location of one of the following kinds:

» A location name that is declared with the attribute STATIC or whose definition is not surrounded by a
block other than the imaginary outermost process definition.

« A string element or string slice where the string location is static and either the left element and right
element, or start element and dlice size are constant.

* Anarray element where the array location is static and the expression is constant.

e Anarray dice where the array location is static and either the lower element and upper element or the
first element and dlice size are constant.

* A structure field where the structure location is static.

« A location conversion where the location occurring in it is static.

10.10 CONSTRUCTSFOR PIECEWISE PROGRAMMING

Modules and regions are the elementary units (pieces) in which a complete CHILL program that is developed
piecewisely can be subdivided. The text of such pieces is indicated by remote constructs (see section 10.10.1). CHILL
defines the syntax and semantics of complete programs, in which all occurrences of remote pieces have been virtually
replaced by the referred text.

10.10.1 Remote pieces

syntax:

<remote modulion> ::= (0]
[ <smple name string> : ] REMOTE <piece designator> ; (1.2
<remote spec> ::= 2
[ <simple name string> : | SPEC REM OTE <piece designator> ; (2.1
<remote context> ::= (©)]

CONTEXT REMOTE <piece designator>
[ <context body>] FOR (31
<context module> ::= 4
CONTEXT MODULE REMOTE <piece designator> ; 4.1
<piece designator> ::= (5)
<character string literal> (5.1
| <text reference name> (5.2)
| <empty> (5.3)

derived syntax: The notation:
CONTEXT MODULE REMOTE <piece designator>
is derived syntax for:

CONTEXT REMOTE <piece designator> FOR
MODULE SEIZE ALL; END;

N.B. This construct is redundant but can be used for consistence checking.
semantics. Remote modulions, remote specs, remote contexts and context modules are means to represent the source text

of aprogram as a set of (interconnected) files.
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A piece designator refersin an implementation defined way to a description of a piece of CHILL source text,
asfollows:

« |f the piece designator is empty, the source text is retrieved from a place determined by the structure of
the program.

« |f the piece designator contains a character string literal, the character string literal is used to retrieve
the source text.

« |f the piece designator contains a text reference name, the text reference name is interpreted in an
implementation defined way to retrieve the source text.

A program with 1. remote modulions, 2. remote specs, is equivalent to the program built by replacing each 1.
remote modulion, 2. remote spec, by the piece of CHILL text referred to by its piece designator.

A program with remote contexts is equivalent to the program built by replacing each remote context by the
piece of CHILL text referred to by its piece designator in which the context body has been virtually inserted
immediately after the last occurrence of context body in the context list referred to by the piece designator.

If the designated piece is not available as CHILL text, then the piece designator in it is considered to refer to
an equivalent piece of CHILL text which isintroduced virtually.

Although the semantics of a remote piece is defined in terms of replacement, CHILL does not imply any
textual substitution.

static conditions: The piece designator in a 1. remote modulion, 2. remote spec, 3. remote context, 4. context module,

examples:

10.10.2

syntax:

must refer to a description of a piece of source text which is a terminal production of a 1. module or region
that is not a remote modulion, 2. spec module or spec region that is not a remote spec, 3., 4. context list which
is not aremote context.

When the source text referred to by the piece designator in a remote modulion starts with a defining
occurrence, then the remote modulion must start with a simple name string which is the name string of that
defining occurrence.

When the source text referred to by the piece designator in a remote spec starts with a simple name string,
then the remote spec must start with the same simple name string.

25.9 stack: REMOTE "example 27 or 28, (1.2)
25.9 "example 27 or 28" (5.1)

Spec modules, spec regions and contexts

<spec modube::= Q)
<simple spec modute (1.1)
| <module spee (1.2)
| <remote spex (1.3)
<simple spec modute:= (2)
[ <context list ] [ <simple name strireg: ] SPEC MODULE
<spec module bodyEND [ <simple name strirtg] ; (2.1)
<module spee::= 3)
[ <context list ] <simple name strirg: MODULE SPEC
<spec module bodyEND [ <simple name strirtg] ; (3.1)
<spec regiom ::= 4)
<simple spec region (4.1)
| <region spee (4.2)
| <remote spex (4.3)
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<simple spec region> ::= 5)
[ <context list>] [ <simple name string> : ] SPEC REGION
<spec region body> END [ <simple name string>] ; (5.1
<region spec> ::= O
[ <context list>] <simple name string> : REGION SPEC
<spec region body> END [ <simple name string>] ; (6.1
<context list>::= @)
<context> { <context> }* (7.2
| <remote context> (7.2
<context> ::= 8
CONTEXT <context body> FOR (8.1

semantics. Smple spec modules, simple spec regions and contexts are used to specify static properties of names. They
may be redundant but they can be used for piecewise programming.

Smple name strings in spec modules and spec regions are not names, they are not bound, and they have no
visibility rules.

1. spec modules, 2. spec regionsin areal reach indicate the properties of one or more 1. modules, 2. regions
that are piecewisely compiled and that are considered to be enclosed in that reach. The texts of such 1.
modules, 2. regions are indicated by occurrences of remote modulions. A context list indicates the surrounding
reaches (note that a module or aregion that is developed piecewisely always has a context list in front of it).

For each name string OP ! NSvisible in the reach of a 1. module spec, 2. region spec and linked there to a
quas s defining occurrence and that is granted into a real reach as NP | NS a (virtual) grant statement with
the same old name string OP ! NSand new name string NP ! NSis considered to be introduced in the reach of
the corresponding 1. module body, 2. region body.

static conditions: In a spec module or a spec region, the optional simple name string following END may only be
present if the optional simple name string before SPEC is present. When both are present, they must have
equal name strings.

A context which has no directly enclosing group may not contain visibility statements.

A real reach that contains a 1. spec module, 2. spec region must also contain at least a remote modulion and
vice-versa

If areal r reach containsa 1. module which isamodule body, 2. region which isaregion body, then it must
contain also a 1. module spec, 2. region spec such that the simple name strings in front of them have equal
name strings. The 1. module spec, 2. region spec is said to have a corresponding 1. module body, 2. region
body.

A remote spec in a 1. spec module, 2. spec region must refer to a 1. spec module, 2. spec region.

A spec module or a spec region may not be surrounded by a block other than the imaginary outermost process

definition.
examples:
232 letter_count:
SPEC MODULE
SEIZE max;

count: PROC (input ROW CHARS (max) IN,
output ARRAY ('A’’Z") INT OUT) END;
GRANT count;
END letter_count; (1.1)

10.10.3 Quas statements

syntax:
<guasi data statement:= Q)
<quasi declaration statement (1.2)
| <quasi definition statement 1.2)
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<quasi declaration statement> ::= ()]
DCL <quasi declaration> { , <quasi declaration>}* ; (2.1
<quasi declaration> ::= 3
<quasi location declaration> (3.1
| <quasi loc-identity declaration> (3.2
<quasi location declaration> ;:= 4
<defining occurrence list> <mode> (4.1
<quasi loc-identity declaration> ::= 5)
<defining occurrence list> <mode>
LOC [ NONREF ][ DYNAMIC] (5.2
<quasi definition statement> :;= (6)
<synmode definition statement> (6.1
| <newmode definition statement> (6.2
| <synonym definition statement> (6.3
| <quasi synonym definition statement> (6.4)
| <quasi procedure definition statement> (6.5)
| <quas process definition statement> (6.6)
| <quas signal definition statement> (6.7)
| <signal definition statement> (6.8)
| <empty>; (6.9
<quasi synonym definition statement> ::= @)
SYN <quasi synonym definition>{ , <quasi synonym definition>}* ; (7.0
<quasi synonym definition> ::= (8)
<defining occurrence list> { <mode> = [ <constant value>1] |
[ <mode>] = <literal expression>} (8.1
<quasi procedure definition statement> ::= 9

<defining occurrence> : PROC ([ <quasi formal parameter list>])
[ <result spec>] [ EXCEPTIONS ( <exception list>) ]

<procedure attribute list> [ END [ <simple name string> 1] ; (9.2
<quasi formal parameter list>::= (10)
<quasi formal parameter> { , <quasi formal parameter> }* (10.1)
<quasi formal parameter> ::= (11
<simple name string> { , <simple name string> }* <parameter spec> (11.1)
<quasi process definition statement> ::= (12
<defining occurrence> : PROCESS ([ <quasi formal parameter list>1] )
[ END [ <simple name string>1] ; (12.2)
<quasi signal definition statement> ::= (13)
SIGNAL <quasi signal definition>{ , <quasi signal definition>}* ; (13.2)
<quasi signal definition> ::= (14)
<defining occurrence> [ = (<mode>{ , <mode>1}* )] [ TO ] (14.1)

semantics. Quas statements are used in spec modules, spec regions and contexts to specify static properties of names.
Foec modules, spec regions and contexts may contain quasi statements and real statements. Quasi statements
may be redundant, but are used for piecewise programming.

An implementation that can not guarantee the equality of the values between quasi constant synonym names
and the corresponding real ones may disallow the indication of the constant value.

Note that in CHILL no quasi defining occurrences exist for label names.

static properties: Quasi statements are restricted forms of the corresponding statements, and have the same static
properties.

The name defined by a defining occurrence in a quasi loc-identity declaration isreferable if NONREF is not
specified.
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static conditions. Quas statements are restricted forms of the corresponding statements and are subject to their static

conditions.

A quas synonym definition statement or a quasi signal definition statement may only be directly enclosed in a
simple spec module, simple spec region or context. A synonym definition statement or a signal definition
statement in aquasi definition statement may only be directly enclosed in amodule spec or region spec.

10.10.4 Matching between quasi defining occurrences and defining occurrences

Two defining occurrences are said to match if they have identical semantic categories and:

If they are synonym names, then they must have the same regionality and value, the root mode of their classes
must be alike, they must both have an M-value, M-derived, M-reference, null or all class, and if the one which is
quasi isliteral, then so the other one must be.

If they are newmode names or synmaode names, then their modes must be alike.

If they are location names or loc-identity names, then they must have the same regionality, they both must be or
both not be referable, and their modes must be alike.

If they are procedur e names, then they must have the same regionality and generality, they both must be or both
not be critical, they must satisfy the same conditions of alikeness as procedure modes, and corresponding (by
position) simple name strings in the formal parameter list and quasi formal parameter list must be the same.

If they are process names, then the parameters of their process definitions must satisfy the same conditions of
matching and alikeness as the parameters of procedur e names.

If they are signal names, then they must both specify or both not specify TO, their lists of modes must have the
same number of modes, and corresponding modes must be alike.

If two structure modes are novelty bound in areach R, then they must have the same set of visible field namesin R.

The following rules apply:
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If a name string in a reach that is not the reach of a spec module, spec region or context is bound to a quasi
defining occurrence, then it must also be bound to a defining occurrence which is not a quas defining
occurrence, and further:

— Let a name string be bound to a quas defining occurrence QD and be bound also to a real defining
occurrence RD in reach R, then:

1. QD and RD must match as defined above, and

2. RD and QD must both be enclosed in an enclosed group of R or both not be enclosed in the group
of R or, if R isthe reach of a module or region which is a module body or region body, then QD
must be enclosed in the group of the corresponding module spec or region spec and RD must be
enclosed in the group of R.

- If anamestring in areal reach R is bound to a quasi defining occurrence that is enclosed in the group of
R (i.e. surrounded by a spec modulion), then it must also be bound to a real defining occurrence that is
surrounded by the group of a module or region that are indicated by a remote modulion directly enclosed
in R (informally, if the interface grants, so must the implementation). If the quasi defining occurrence is
enclosed in the group of a module spec or aregion spec, then the real one must be enclosed in the group
of the corresponding modulion.

— For each name string in the reach Q of a spec module or spec region directly enclosed in areal reach R
that is bound to a defining occurrence not surrounded by Q, there must be an identical name string in the
reach of amodule or region that is indicated by a remote modulion directly enclosed in R that is bound to
the same defining occurrence (informally, if the interface seizes, so must the implementation).

If two name strings are bound to the same 1. real, 2. quasi defining occurrence in a reach, then both name
strings must be bound to the same 1. quasi, 2. real defining occurrence, or both not be further bound.

A real novelty may not be novelty bound to two quasi noveltiesin any reach.

Let aquasi novelty QN and areal novelty RN be novelty bound to each other in areach R; then RN and QN
must both be enclosed in an enclosed group of R or both not be enclosed in the group of R, or if R is the reach of
amodule or region which isamodule body or region body, then RN must be enclosed in the group of R and QN
must be enclosed in the group of the corresponding module spec or region spec.
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11 CONCURRENT EXECUTION

111 PROCESSESAND THEIR DEFINITIONS

A process is the sequential execution of a series of statements. It may be executed concurrently with other processes.
The behaviour of a process is described by a process definition (see section 10.5), that describes the objects local to a
process and the series of action statements to be executed sequentially.

A processis created by the evaluation of a start expression (see section 5.2.15). It becomes active (i.e. under execution)
and is considered to be executed concurrently with other processes. The created processis an activation of the definition
indicated by the process name of the process definition. An unspecified number of processes with the same definition
may be created and may be executed concurrently. Each process is uniquely identified by an instance value, yielded as
the result of the start expression or the evaluation of the THIS operator. The creation of a process causes the creation of
its locally declared locations, except those declared with the attribute STATIC (see section 10.9), and of locally defined
values and procedures. The locally declared locations, values and procedures are said to have the same activation as the
created process to which they belong. The imaginary outermost process (see section 10.8), which is the whole CHILL
program under execution, is considered to be created by a start expression executed by the system under whose control
the program is executing. At the creation of a process, its formal parameters, if present, denote the values and locations
as delivered by the corresponding actual parametersin the start expression.

A process is terminated by the execution of a stop action, by reaching the end of the process body or by terminating a
handler specified at the end of the process definition (falling through). If the imaginary outermost process executes a
stop action or falls through, the termination will be completed when and only when all other processes in the program
are terminated.

A processiis, at the CHILL programming level, always in one of two states: it is either active (i.e. under execution) or
delayed ( see section 11.3). The transition from active to delayed is called the delaying of the process; the transition from
delayed to active is called the re-activation of the process.

11.2 MUTUAL EXCLUSION AND REGIONS

11.2.1 General

Regions (see section 10.7) are a means of providing processes with mutually exclusive indirect access to locations
declared inside the regions by granted procedures. Static context conditions (see section 11.2.2) are made such that
accesses by a process other than the imaginary outermost process to locations declared inside a region can be made only
by calling procedures that are defined inside the region and granted by the region. N.B.: The only situation when the
locations declared inside a region can be directly accessed by the imaginary outermost process is when the region is
entered and its reach-bound initialisations (if any) are performed.

A procedure name is said to denote a critical procedure (and it is a critical procedure name) if it is defined inside a
region and granted by the region.

A region is said to be free if and only if control liesin none of its critical procedures or in the region itself performing
reach-bound initialisations.

The region will be locked (to prevent concurrent execution) if:

» Theregion is entered (note that because regions are not surrounded by a block, no concurrent attempts can be
made to enter the region).

» A critical procedure of the regionis called.
» A process, delayed in the region, is re-activated.
The region will be released, becoming free again, if:
* Theregion isleft after having its reach-bound initialisations performed.
» A critical procedure returns.

» A critical procedure executes an action that causes the executing process to become delayed (see section 11.3). In
the case of dynamically nested critical procedure calls, only the latest locked region will be released.
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* A process executing acritical procedure terminates. In the case of dynamically nested critical procedure calls, al
the regions locked by the process will be released.

If, while the region is locked, a process attempts to call one of its critical procedures or a process delayed in the region
is re-activated, the process is suspended until the region is released (note that the process remains active in the CHILL
Sense).

When a region is released and more than one process has been suspended while attempting to call one of its critical
procedures or to be re-activated in one of its critical procedures, only one process will be selected to lock the region
according to an implementation defined scheduling algorithm.

11.2.2  Regionality

To alow for checking statically that alocation declared in a region can only be accessed by calling critical procedures
or by entering the region for performing reach-bound initialisations, the following static context conditions are enforced:

» the regionality requirements mentioned in the appropriate sections (assignment action, procedure call, send
action, result action, etc.);

» intra-regional procedures are not general (see section 10.4);
» critical procedures are neither general nor recur sive (see section 10.4).

A location and procedure call have aregionality which isintra-regional or extra-regional. A value has aregionality
whichisintra-regional or extra-regional or nil. These properties are defined as follows:

1. Location
A location isintra-regional if and only if any of the following conditions are fulfilled:
* Itisan access name that is either:

— alocation name declared textually inside a region or spec region and not defined in a formal
parameter of acritical procedure,

— aloc-identity name, where the location in its declaration is intra-regional or that is defined in a
formal parameter of an intra-regional procedure,

— alocation enumeration name, where the array location or string location in the associated do
actionisintra-regional,

— alocation do-with name, where the structure location in the associated do action isintra-regional.
» Itisadereferenced bound reference, where the bound reference primitive valuein it isintra-regional.
» Itisadereferenced free reference, where the free reference primitive value in it isintra-regional.
» ltisadereferenced row, wherethe row primitive valuein it isintra-regional.
* Itisanarray element or array dlice, where the array location init isintra-regional.
» Itisastring element or string slice, where the string location init isintra-regional.
e Itisastructurefield, where the structure location in it isintra-regional.

» Itisalocation procedure call, where in the location procedure call a procedure nameis specified which is
intra-regional.

e ltisalocation built-in routine call, that the CHILL definition or the implementation specifies to be intra-
regional.

» Itisalocation conversion, where the static mode location in it isintra-regional.

A location which isnot intra-regional is extra-regional.
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2. Value
A value has a regionality depending on its class. If it has the M-derived class or the all class or the null class
then it has regionality nil. Otherwise it has the M-value class or the M-reference class and it has a regionality

depending on the mode M asfollows:

If the value has the M-value class and M does not have the referencing property then the regionality is nil;
otherwise the value is an operand-7 (and has the r eferencing property) or a conditional expression:

If itisaprimitive value then:
» If itisalocation contentsthat is alocation, then it is that of the location.
« If itisavalue name, then:

— if itisasynonym name then it isthat of the constant valuein its definition;

— if it is a value do-with name then it is that of the structure primitive value in the associated do
action;

- ifitisavaluereceive namethenitisextra-regional.

» Ifitisatuplethen if one of the value occurrencesin it has regionality not nil, then it is that of that value
(it does not matter which choice is made, see section 5.2.5 static conditions); otherwiseit is nil.

« |Ifitisavaluearray element or avalue array slice then it isthat of the array primitive valuein it.
» Ifitisavaluestructurefield then it isthat of the structure primitive valuein it.

» Ifitisan expression conversion then it isthat of the expression init.

» Ifitisavalueprocedure call thenit isthat of the procedure call init.

» |If itisavalue built-in routine call that the CHILL definition or the implementation specifies to be intra-
regional or extra-regional.

If it isareferenced location then it is that of the location in it.

If it isaconditional expression, then if one of the sub expression occurrences in it has regionality not nil, then it
is that of that sub expression (it does not matter which choice is made, see section 5.3.2 static conditions);
otherwiseitisnil.

3. Procedure name

A procedure nameisintra-regional if and only if it isdefined inside a region or spec region and it is not critical
(i.e. not granted by the region). Otherwise it is extra-regional.

4. Procedurecall

A procedure call isintra-regional if it contains a procedure name which isintra-regional; otherwiseit is extra-
regional.

A valueisregionally safe for a non-terminal (used only for location, procedure call and procedure name) if and only if:
» thenon-termina is extra-regional and the value is not intra-regional;
» thenon-termina isintra-regional and the value is not extra-regional;

» thenon-termina hasregionality nil.
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11.3 DELAYING OF A PROCESS
An active process may become delayed by executing one of the following actions:
» delay action (see section 6.16),
» delay case action (see section 6.17),
* receivesignal case action (see section 6.19.2),
» receive buffer case action (see section 6.19.3),
» send buffer action (see section 6.18.3).

When a process becomes delayed while its control lies within acritical procedure, the associated region isreleased. The
dynamic context of the process is retained until it is re-activated. The process then attempts to lock the region again,
which may cause it to be suspended.

114 RE-ACTIVATION OF A PROCESS

A delayed process may become re-activated if it is time supervised and a time interrupt occurs (see chapter 9). It may
also become re-activated if another process executes one of the following actions:

» continue action (see section 6.15),

» send signal action (see section 6.18.2),

» send buffer action (see section 6.18.3),

* receive buffer case action (see section 6.19.3).

When a process, while having locked a region, re-activates another process, it remains active, i.e. it will not release the
region at that point.

11.5 SIGNAL DEFINITION STATEMENTS

syntax:
<signal definition statement> ::= (D)
SIGNAL <signal definition> { , <signal definition>}* ; (1.2)
<signal definition> ::= 2
<defining occurrence> [ = (<mode> { , <mode> }* ) ] [ TO <process hame> | (2.1

semantics: A signal definition defines a composing and decomposing function for values to be transmitted between
processes. If asignal is sent, the specified list of valuesis transmitted. If no process iswaiting for the signal in
areceive case action, the values are kept until a process receives the values.

static properties: A defining occurrence in asignal definition defines asignal name.
A signal name has the following properties:
It has an optional list of modes attached, that are the modes mentioned in the signal definition.
It has an optional process name attached that is the process name specified after TO.

static conditions: No mode in asignal definition may have the non-value property.

examples:
15.27 SIGNAL initiate = (INSTANCE),
terminate; (1.2)
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12 GENERAL SEMANTIC PROPERTIES

121 MODE RULES
12.1.1  Propertiesof modes and classes

12111  Read-only property
Informal

A mode has the read-only property if it is aread-only mode or contains a component or a sub-component, etc. which
isaread-only mode.

Definition
A mode has theread-only property if and only if itis:
» anarray mode with an element mode that has the read-only property;

» astructure mode where at least one of its field modes has the read-only property, where the field is not a tag
field with an implicit read-only mode of a parameterised structur e mode;

* aread-only mode.

12.1.1.2  Parameterisable modes
Informal
A mode is parameterisableif it can be parameterised.
Definition
A mode isparameterisableif and only if it is
e astring mode;
e anarray mode;
e aparameterisable variant structure mode.

12.1.1.3  Referencing property
Informal

A mode has the referencing property if it is a reference mode or contains a component or a sub-component, etc. which
is areference mode.

Definition
A mode has thereferencing property if and only if it is:
+ areference mode;
» an array mode with an element mode that has the referencing property;

* astructure mode where at least one of its field modes has the r eferencing property.

12.1.1.4  Tagged parameterised property
Informal

A mode has the tagged parameterised property if it is a tagged parameterised structure mode or contains a
component or a sub-component etc. which isatagged parameterised structure mode.

Definition

A mode has the tagged parameterised property if and only if it is:
e an array mode with an element mode which has the tagged parameterised property;
» astructure mode where at least one of its field modes has the tagged par ameterised property;
e atagged parameterised structure mode.
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12.1.1.5  Non-value property
Informal
A mode has the non-value property if no expression or primitive value denotation exists for the mode.
Definition
A mode has the non-value property if and only if it is:
+ an event mode, abuffer mode, an access mode, an association mode or a text mode;
» an array mode with an element mode that has the non-value property;

» astructure mode where at least one of its field modes has the non-value property.

12.1.1.6  Root mode
Any mode M has aroot mode defined as:
» if M isnot adiscrete range mode nor a floating point range mode;
» theparent mode of M, if M is adiscrete range mode or a floating point range mode.

Any M-value class or M-derived class has aroot mode which is the root mode of M.

12.1.1.7  Resulting class

Given two compatible classes (see section 12.1.2.16), where the first one is either the all class, an M-value class or an
M-derived class, where M and N are either a discrete mode, a floating point mode, a powerset mode or a string mode,
theresulting classis defined as:

» theresulting class of the M-value class and the N-value classis the R-value class,
» theresulting class of the M-value class and the N-derived class or the all classis the P-value class;
» theresulting class of the M-derived class and the N-derived classis the R-derived class;
» theresulting class of the M-derived class and the all classisthe P-derived class,
» theresulting class of the all classand the all classisthe all class.
where R isthe resulting mode of M and N, and P is the root mode of M.
Given two similar modes M and N, the resulting mode R is defined as:

» if theroot mode of oneisafixed string mode and the other one is a varying string mode, then it is the root mode
of the one (between M and N) whose r oot mode is avarying string mode;

¢ otherwiseitisP.

Given alist C; of pairwise compatible classes (i=1,...,n), theesulting class of the list of classes is recursively defined
as theresulting class of the resulting class of the listC; (i=1,...,n—1) and the clas§, if n > 1; otherwise as the
resulting class of C; andC;.

12.1.2 Relations on modes and classes

12.1.2.1 General

In the following sections, the compatibility relations are defined between modes, between classes, and between modes
and classes. These relations are used throughout the document to define static conditions.

The compatibility relations themselves are defined in terms of other relations which are mainly used in this chapter for
the above mentioned purpose.
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12.1.2.2  Equivalence relations on modes
Informal
The following equivalence relations play arole in the formulation of the compatibility relations:
» Two modes are similar if they are of the same kind; i.e. they have the same hereditary properties.
» Two modes are v-equivalent (value-equivalent) if they are similar and also have the same novelty.

* Two modes are equivalent if they are v-equivalent and also possible differences in value representation in
storage or minimum storage size are taken into account.

» Two modes are I-equivalent (location-equivalent) if they are equivalent and also have the same read-only
specification.

» Two modes are alike if they are indistinguishable; i.e. if al operations that can be applied to objects of one of the
modes can be applied to the other one as well, provided that novelty is not taken into account.

» Two modes are novelty bound if they are alike and have equal novelty specification.
Definition
In the following sections, the equivalence relations on modes are given in the form of a (partial) set of relations. The full
equivalence algorithms are obtained by taking the symmetric, reflexive and transitive closure of this set of relations. The
modes mentioned in the relations may be virtually introduced or dynamic. In the latter case, the complete equivalence

check can only be performed at run time. Check failure of the dynamic part will result in the RANGEFAIL or TAGFAIL
exception (see appropriate sections).

Checking two recursive modes for any equivalence requires the checking of associated modes in the corresponding paths
of the set of recursive modes by which they are defined. Equivalence between the modes holds if no contradiction is
found. (As a consequence, a path of the checking algorithm stops successfully if two modes which have been compared
before, are compared).

12.1.2.3  Therelation smilar
Two modes are similar if and only if;
» they areinteger modes,
 they arefloating point modes,
 they are boolean modes;
» they are character modes;
e they are set modes such that:
1. they define the same number of values;

2. for each set dlement name defined by one mode there is a set element name defined by the other mode
which has the same name string and the same representation value;

3. they both are numbered set modes or both are unnumber ed set modes.
» they are discrete range modes with similar parent modes;
» they arefloating point range modes
» oneisadiscrete range mode or afloating point range mode whose parent modeis similar to the other mode;
» they are powerset modes such that their member modes are equivalent;
 they are bound reference modes such that their referenced modes are equivalent;
» they are free reference modes;
» they are row modes such that their refer enced origin modes are equivalent;
 they are procedure modes such that:

1. they have the same number of parameter specs and corresponding (by position) parameter specs have |-
equivalent modes and the same parameter attributes, if present;

2. they both have or both do not have a result spec. If present, the result specs must have I-equivalent
modes and the same attributes, if present;
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3. they havethe same list of exception names;
4. they havethe samerecursivity;
they are instance modes;
they are event modes such that they both have no event length or both have the same event length;
they are buffer modes such that:
1. they both have no buffer length or both have the same buffer length;
2. they havel-equivalent buffer element modes;
they are association modes;
they are access modes such that:
1. they both have no index mode or both have index modes which are equivalent;

2. at least one has no record mode, or both have record modes that are |-equivalent and that are both static
record modes or both dynamic record modes;

they are text modes such that:
1. they havethe sametext length;
2. they havel-equivalent text record modes;
3. they have l-equivalent access modes;
they are duration modes,
they are absolute time modes;
they are string modes such that their element modes are equivalent;
they are array modes such that:
1. their index modes are v-equivalent;
2. their element modes are equivalent;
3. their element layouts are equivalent;
4

. they have the same number of elements. This check is dynamic if one or both modes is (are) dynamic.
Check failure will result in the RANGEFAIL exception;

they are structure modes which are not parameterised structure modes such that:

1. in the strict syntax, they have the same number of fields and corresponding (by position) fields are
equivalent;

2. if they are both parameterisable variant structure modes, their lists of classes must be compatible;
they are parameterised structure modes such that:
1. their origin variant structure modes are similar;

2. their corresponding (by position) values are the same. This check is dynamic if one or both modesis (are)
dynamic. Check failure will result in the TAGFAIL exception.

12.1.24  Therelation v-equivalent

Two modes are v-equivalent if and only if they are similar and have the same novelty.

12.1.25  Therelation equivalent

Two modes are equivalent if and only if they are v-equivalent and:
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if one is a discrete range mode, the other must also be a discrete range mode and both upper bounds must be
equal and both lower bounds must be equal;

if oneis afloating point range mode, the other must also be a floating point range mode and both upper bounds
must be equal and both lower bounds must be equal and they must have the same pr ecision.
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» if oneisafixed string mode, the other one must also be a fixed string mode, and they must have the same string
length. This check is dynamic in the case that one or both modesis (are) dynamic. Check failure will result in the
RANGEFAIL exception;

» if oneisavarying string mode, the other one must also be a varying string mode, and they must have the same
string length. This check is dynamic in the case that one or both modes is (are) dynamic. Check failure will
result in the RANGEFAIL exception.

12.1.26  Therelation I-equivalent

Two modes are |-equivalent if and only if they are equivalent and if one is aread-only mode, the other must also be a
read-only mode, and:

 if they are bound reference modes, their refer enced modes must be l-equivalent;
» if they are row modes, their referenced origin modes must be |-equivalent;
» if they are array modes, their element modes must be |-equivalent;

» if they are structure modes which are not parameterised structure modes, corresponding (by position) fields in
the gtrict syntax must be |-equivalent; if they are parameterised structure modes, their origin variant structure
modes must be |-equivalent.

12.1.2.7  Therelations equivalent and I-equivalent for fields

Two fields (both fields in the context of two given structure modes) are 1. equivalent, 2. I-equivalent if and only if both
fields are fixed fields which are 1. equivalent, 2. |-equivalent or both are alternative fields which are 1. equivalent, 2. I-
equivalent.

The relations equivalent and l-equivalent are recursively defined for corresponding fixed fields, variant fields,
alternative fields and variant alternatives, respectively, in the following way:

+ Fixedfieldsand variant fields
1. Both fixed fields or variant fields must have equivalent field layout.
2. Both field modes must be 1. equivalent, 2. I-equivalent.

» Alternativefields

1. Both alternative fields have tag lists or both have no tag lists. In the former case, the tag lists must have
the same number of tag field names and corresponding (by position) tag field names must denote
corresponding fixed fields.

2. Both must have the same number of variant alternatives and corresponding (by position) variant
alternatives must be 1. equivalent, 2. |-equivalent.

3. Both must have no EL SE specified or both must have EL SE specified. In the latter case, the same number
of variant fields must follow and corresponding (by position) variant fields must be 1. equivalent, 2. I-
equivalent.

* Variant alternatives

1. Both variant alternatives must have the same number of case label lists and corresponding (by position)
case label lists must either be both irrelevant, or both define the same set of values.

2. Both variant alternatives must have the same number of variant fields and corresponding (by position)
variant fields must be 1. equivalent, 2. I-equivalent.

12.1.2.8 Therelation equivalent for layout

In therest of the section, it will be assumed that each posis of the form:
POS (<number>,<start bit>,<length>)

and that each step is of the form:
STEP (<pos>,<step size>)
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Section 3.13.5 gives the appropriate rules to bring pos or step in the required form.

Field layout

Two field layouts are equivalent if they are both NOPACK, or both PACK, or both pos. In the latter case the
one pos must be equivalent to the other one (see below).

Element layout

Two element layouts are equivalent if they are both NOPACK, both PACK, or both step. In the latter case the
pos in the one step must be equivalent to the posin the other one (see below) and step size must deliver the same
values for the two element layouts.

Pos

A pos is equivalent to another pos if and only if both word occurrences deliver the same value, both start bit
occurrences deliver the same value and both length occurrences deliver the same value.

12.1.2.9 Therelation alike

Two modes are alike if and only if they both are or both are not read-only modes and they both have novelty nil or both
have the same novelty and:

142

they are integer modes;

they are boolean modes;

they are character modes;

they are similar set modes;

they are discrete range modes with equal upper bounds and equal lower bounds;
they are floating point range modes with equal upper bounds, equal lower bounds and equal precision;
they are powerset modes such that their member modes are alike;

they are bound reference modes such that their r eferenced modes are alike;

they are free reference modes;

they are row modes such that their referenced origin modes are alike;

they are procedure modes such that:

1. they have the same number of parameter specs and corresponding (by position) parameter specs have
alike modes and the same parameter attributes, if present;

2. they both have or both do not have a result spec. If present, the result specs must have alike modes and
the same attributes, if present;

3. they have the same list of exception names;
4. they have the samerecursivity;
they are instance modes;
they are event modes such that they both have no event length or both have the same event length;
they are buffer modes such that:
1. they both have no buffer length or both have the same buffer length;
2. they have buffer element modes which are alike;
they are association modes,
they are access modes such that:
1. they both have no index mode or both have index modes that are alike;

2. at least one has no record mode or both have record modes that are alike and that are both static record
modes or both dynamic record modes;
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» they are text modes such that:

1. they havethe sametext length;

2. their text record modes are alike;

3. their access modes are alike;

* they are duration modes,

 they are absolute time modes;

 they are string modes such that:

1
2.

3.

their element modes are alike;
they have the same string length;

they both are fixed string modes or both are varying string modes;

» they are array modes such that:

1. their index modes are alike;

2. their element modes are alike;
3.
4

. they have the same number of elements;

their element layouts are equivalent;

 they are structure modes that are not parameterised structure modes such that:

1.
2.

in the strict syntax they have the same number of fields and corresponding (by position) fields are alike;

if they are both parameterisable variant structure modes, their lists of classes must be compatible;

* they are parameterised structure modes such that:

1
2.

their origin variant structure modes are alike;

their corresponding (by position) values are the same.

12.1.2.10 Therelation alike for fields

Two fields (both fields in the context of two given structure modes) are alike if and only if both fields are fixed fields
which are alike or both are alternative fields which are alike.

The relation alike is recursively defined for corresponding fixed fields, variant fields, alternative fields and variant
alternatives, respectively, in the following way:

* Fixedfieldsand variant fields

1.
2.
3.

Both fixed fields or variant fields must have equivalent field layout.
Both field modes must be alike.

Both fixed fields or variant fields must have the same name string attached.

* Alternativefields

1

Both alternative fields have tag lists or both have no tag lists. In the former case, the tag lists must have
the same number of tag field names and corresponding (by position) tag field names must denote
corresponding fixed fields.

Both must have the same number of variant alternatives and corresponding (by position) variant
alternatives must be alike.

Both must have no EL SE specified or both must have EL SE specified. In the latter case, the same humber
of variant fields must follow and corresponding (by position) variant fields must be alike.

e Variant alternatives

1.

Both variant alternatives must have the same number of case label lists and corresponding (by position)
case label lists must either be both irrelevant, or both define the same set of values.

Both variant alternatives must have the same number of variant fields and corresponding (by position)
variant fields must be alike.
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12.1.211 Therelation novelty bound
Informal

In a program, each quasi newmode must represent at most one real newmode. This is established as follows: when a
name string is bound to both areal and a quasi defining occurrence all the newmodes involved are paired. The relation
novelty bound is then established between novelties.

Definition

The relation novelty paired applies between two modes and a reach. For each name string bound in areach R to both a
real and aquasi defining occurrence:

 if they are synonym names, then the root modes of their classes are novelty paired in R;
« if they arelocation or loc-identity names, then their location modes are novelty paired in R;

» if they are procedure names, then the modes of the parameter specs and result spec, if present, are novelty
paired inR;

 if they are process names, then the modes of the parameter specs are novelty paired in R;
« if they are signal names, then the modes in the list of modes are novelty paired in R.
If two modes are novelty paired in areach R, then:
 if they are powerset modes, their member modes are novelty paired in R;
 if they are bound reference modes, their referenced modes are novelty paired in R;
« if they are row modes, their referenced origin modes are novelty paired in R;

 if they are procedure modes, the modes of their parameter specs and result spec, if present, are novelty paired
inR;

« if they are buffer modes, their buffer element modes are novelty paired in R;

« if they are access modes, their index modes, if present, and record modes, if present, are novelty paired in R;
« if they are text modes, their index modes, if present, are novelty paired in R;

« if they are array modes, their index modes and element modes are novelty paired in R;

« if they are parameterised structure modes, their origin variant structure modes are novelty paired in R;

« if they are parameterisable variant structure modes, their field modes and the modes of the classes in their list
of classes are novelty paired in R;

» otherwiseif they are structure modes, their field modes are novelty paired in R.

If two modes are novelty paired in areach R and their novelties are not equal, then the real and quasi novelties of the
modes are novelty bound to each other in R.

Two novelties are considered the same if they are;
« thesamereal novelty, or

« areal novelty and aquasi novelty that are novelty bound.

12.1.2.12 Therelation read-compatible
Informal

The relation read-compatible is relevant for equivalent modes. A mode M is said to be read-compatible with a mode
N if it or its possible (sub-)components have equal or more restrictive read-only specifications and, if they are reference
modes, refer to I-equivalent locations. Thisrelation is therefore non-symmetric.

Example:

READ REF READ CHARisread-compatible with REF READ CHAR
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Definition
A mode M is said to be read-compatible with a mode N (a non-symmetric relation) if and only if M and N are
equivalent and, if N isaread-only mode, then M must also be aread-only mode and further:

« if M and N are bound reference modes, the referenced mode of M must be |-equivalent with the referenced
mode of N;

« if M and N are row modes, the referenced origin mode of M must be I-equivalent with the referenced origin
mode of N;

e if M and N are array modes, the element mode of M must be r ead-compatible with the element mode of N;

e if M and N are structure modes which are not parameterised structure modes, any field mode of M must be
read-compatible with the corresponding field mode of N. If M and N are parameterised structure modes, the
origin variant structure mode of M must be read-compatible with the origin variant structure mode of N.

12.1.2.13 Therelations dynamic equivalent and read-compatible
Informal

The relations 1. dynamic equivalent, 2. dynamic read-compatible, are relevant only for modes that can be dynamic,
i.e. string, array and variant structure modes. A parameterisable mode M is said to be 1. dynamic equivalent, 2.
dynamic read-compatible with a (possibly dynamic) mode N, if there exists a dynamically parameterised version of M
which is 1. equivalent, 2. read-compatible with N.

Definition
A mode M is 1. dynamic equivalent to a mode N, 2. dynamic read-compatible with a mode N (a non-symmetric
relation) if and only if one of the following holds:

M and N are string modes such that M(p) is 1. equivalent, 2. read-compatible with N, where p is the (possibly
dynamic) length of N. The value p must not be greater than the string length of M. This check isdynamic if N is
adynamic mode. Check failure will result in a RANGEFAIL exception;

M and N are array modes such that M(p) is 1. equivalent, 2. read-compatible with N, where p is such that NUM
(p) - LOWER (M) + 1 isthe (possibly dynamic) number of elements of N. The value p must not be greater than
the upper bound of M. This check is dynamic if N is a dynamic mode. Check failure will result in a
RANGEFAIL exception;

* M isaparameterisable variant structure mode and N is a parameterised structure mode such that M(py,...,pn)
is 1.equivalent, 2.read-compatible with N, wherep,,...,p, denote the list of values of N.

12.1.2.14 The relation restrictable
Informal

The relationrestrictable is relevant forequivalent modes with thea eferencing property. A mode M is said to be
restrictableto a mode N if it or its possible (sub-)components refer to locations with equal or more restéctioaly
specification than those referenced by N. This relation is therefore non-symmetric.

Example:

REF READ INT isrestrictable to REF INT
STRUCT (P REF READ BOOL) isrestrictable to STRUCT (Q REF BOOL)

Definition
A mode M isrestrictable to a mode N (a hon-symmetric relation) if and only if M and Negtevalent and further:

» if M and N are bound reference modes, tierenced mode of M must beead-compatible with thereferenced
mode of N;

» if M and N are row modes, thesferenced origin mode of M must beead-compatible with thereferenced
origin mode of N;

« if M and N are array modes, tbekement mode of M must beestrictable to theelement mode of N;

e if Mand N are structure modes, edadd mode of M must beestrictable to the correspondinfield mode of N.
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12.1.2.15 Compatibility between a mode and a class
* Any mode M iscompatible with the all class.

A mode M is compatible with the null class if and only if M is a reference mode or a procedure mode or an
instance mode.

» A mode M is compatible with the N-reference class if and only if it is a reference mode and one of the following
conditions is fulfilled:

1. Nisastatic mode and M is abound reference mode whose r efer enced mode is read-compatible with N;
2. Nisastatic mode and M is afree reference mode;
3. M isarow mode whose referenced origin modeis dynamic read-compatible with N.
A mode M iscompatible with the N-derived classif and only if M and N are similar.
A mode M iscompatible with the N-value classif and only if one of the following holds:
1. if M does not have the referencing property, M and N must be v-equivalent;

2. if M does have the referencing property, M must berestrictableto N.

12.1.2.16 Compatibility between classes
* Any classiscompatible with itself.
* Theall classis compatible with any other class.
* Thenull classis compatible with any M-reference class.

e The null class is compatible with the M-derived class or M-value class if and only if M is a reference mode,
procedure mode or instance mode.

* The M-reference class is compatible with the N-reference class if and only if M and N are equivalent. If M
and/or N is (are) a dynamic mode, the dynamic part of the equivalence check is ignored, i.e. no exceptions can
occur.

» The M-reference class is compatible with the N-value class if and only if N is a reference mode and one of the
following conditionsis fulfilled:

1. M isastatic mode and N is abound reference mode whose r efer enced mode is equivalent to M.

2. Misastatic mode and N is afree reference mode.

3. Nisarow mode whose referenced origin mode is dynamic equivalent with M;
e The M-derived classis compatible with the N-derived class or N-value classif and only if M and N are similar.
» TheM-vaue classis compatible with the N-value class if and only if M and N are v-equivalent.

Two lists of classes are compatible if and only if both lists have the same number of classes and corresponding (by
position) classes are compatible.

122 VISIBILITY AND NAME BINDING
The definition of visibility and name binding is based on the following terminology:

* name string: denotes a terminal string that has attached a canonical name string (see section 2.7) and visibility
properties;

* name: denotes a simple name string associated with the defining occurrence that has created it (see section 10.1);

* name: denotes an applied occurrence of a name (with a possibly prefixed name string).
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1221  Degreesof visibility

The binding rules are based on the visibility of name strings in the reaches of a program. Within a reach, each name
string has one of the following three degrees of visibility:

Visibility Properties (informal)

directly visible Name string is visible by creation, granting or
seizing or inheritance from spec to body

indirectly visible Name string is predefined or inherited via
block nesting

invisible Name string may not be applied

Table 1. Degrees of visibility

A name string is said to be visible in areach if it is either directly visible or indirectly visible in that reach. Otherwise
the name string is said to be invisible in that reach. The program structuring statements and visibility statements
determine uniquely to which visibility class each name string belongs.

When a name string is visible in areach, it can be directly linked to another name string in another reach, or directly
linked to a defining occurrence in the program. The rules for direct linkage are in section 12.2.3. Notice that any
application of arule introduces a new direct linkage for a name string.

Based on direct linkage, the notion of (not necessarily direct) linkage is defined as follows:

A name string N1, visible in reach Ry, is said to be linked to name string N in reach R, or to defining occurrence D, if
and only if one of the following conditions holds:

* Njin Ry isdirectly linked to N, in R, or to D. However, if N1 is directly linked to more than one defining
occurrence in Ry, then all but one of these defining occurrences are superfluous, and N1 is linked to an arbitrary
one of themin Ry.

* NiinRjpisdirectly linked to some N insomeR, and N in Rislinked to N, in R, or to D.

12.2.2  Visbility conditions and name binding
In each reach of a program, the following conditions must be satisfied:

e |f aname string isvisible in areach and has more than one direct linkage, then it must be linked to exactly one
real defining occurrence and one quasi defining occurrence.

A name string NS, visible in reach R, is said to be bound in R to several defining occurrences according to the
following rules:

e |If NSisvisblein R, NS is bound to the defining occurrences to which it is linked in R (as a visible name
string). If it is bound both to a quasi defining occurrence and areal defining occurrence, then the quasi oneis
redundant and does not participate further to visibility and name binding (i.e. it is not seized, granted nor
inherited).

+ otherwise NSisnot bound in R.
static condition: The name string attached to each name directly enclosed in areach must be bound in that reach.

binding of names. A name N with attached name string NS in areach R is bound to the defining occurrences to which
NSisboundinR.

12.23  Vidghility in reaches

12231  Generd

A name string isdirectly visible in areach according to the following rules:
e thenamestring is seized into the reach (see 12.2.3.5);
e thenamestring is granted into the reach (see 12.2.3.4);
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» there is a defining occurrence with that name string in the reach. In that case, the name string in the reach is
directly linked to the defining occurrence. (Note that the name string may be directly linked to several defining
occurrences in the reach.)

» The reach is a 1. module body, 2. region body and the name string is directly visible in the reach of a
corresponding 1. module spec, 2. region spec. The name string is directly linked to the name string in the
corresponding reach.

A name string which is not directly visiblein areach isindirectly visiblein it according to the following rules:

» Thereach isablock, and the name string is visible in the directly enclosing reach. The name string is said to be
inherited by the block, and is directly linked to the same name string in the directly enclosing reach.

e Thereach is not a block in which the name string is inherited and the name string is a language (see Appendix
C.2) or implementation defined name string. The name string is considered to be directly linked to a defining
occurrence in the reach of the imaginary outermost process definition for its predefined meaning.

12.2.3.2  Vishility statements

syntax:
<visibility statement> ::= )
<grant statement> (1.1)
| <seize statement> 12

semantics: Visbility statements are only allowed in modulion reaches and control the visibility of the name strings
mentioned in them.

static properties: A visibility statement has one or two origin reaches (see 10.2) and one or two destination reaches
attached, defined as follows:

« If the visibility statement is a seize statement, its destination reach is the reach directly enclosing the
seize statement, and its origin reaches are the reaches directly enclosing that reach.

« |f the visihility statement is a grant statement, then its origin reach is the reach directly enclosing the
grant statement, and its destination reaches are the reaches directly enclosing that reach.

12.2.3.3 Prefix rename clause

syntax:

<prefix rename clause> ::= D
(<old prefix> —> <new prefix> ) | <postfix> (1.2

<old prefix> ::= 2
<prefix> (2.1

| <empty> (2.2

<new prefix> ::= ©)
<prefix> (3D

| <empty> (3.2
<postfix> ::= 4
<seize postfix> { , <seize postfix> }* (4.0

| <grant postfix> { , <grant postfix> }* (4.2

derived syntax: A prefix rename clause where thepostfix consists of more than orseize postfix (grant postfix) is
derived syntax for severairefix rename clauses, one for eactseize postfix (grant postfix), separated by
commas, with the sanabd prefix andnew prefix.

For example:
GRANT (p—>q)'a,b;
is derived syntax for
GRANT (p—=>q)'a,(p=q)!b;

semantics. Prefix rename clauses are used in visibility statements to express change of prefix in prefixed name strings
that are granted or seized. (Since prefix rename clauses can be used without prefix changes — when both the
old prefix and thenew prefix are empty — they are taken as the semantic base for visibility statements).

static properties. A prefix rename clause has one or twaerigin reaches attached, which are tnégin reaches of the
visibility statement in which it is written.
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A prefix rename clause has one or two destination reaches attached, which are the destination reaches of the
visibility statement in which it is written.

A postfix has a set of name strings attached, which is the set of name strings attached to its seize postfix or the
set of name strings attached to its grant postfix. These name strings are the postfix name strings of the prefix
rename clause.

A prefix rename clause has a set of old name strings and a set of hew name strings attached. Each postfix
name string attached to the prefix rename clause gives both an old name string and a new name string
attached to the prefix rename clause, as follows: the new name string is obtained by prefixing the postfix
name string with the new prefix; the old name string is obtained by prefixing the postfix name string with the
old prefix.

When a hew name string and an old name string are obtained from the same postfix name string, the old
name string is said to be the source of the new name string.

visibility rules: The new name strings attached to a prefix rename clause are visible in their destination reaches and are

directly linked in those reaches to their sources in the origin reaches. If the prefix rename clause is part of a
seize statement (grant statement) , those name strings are seized (granted) in their destination reach
(reaches).

A name string NS is said to be seizable by modulion M directly enclosed in reach R if and only if it is visible
in R and it is neither linked in R to any name string in the reach of M nor directly linked to the defining
occurrence of a predefined name string.

A name string NS is said to be grantable by modulion M directly enclosed in reach R if and only if it is
visible in the reach of M and it is neither linked in it to any name string in R nor directly linked in it to the
defining occurrence of a predefined name string.

static conditions: If a prefix rename clause is in a seize statement directly enclosed in the reach of modulion M then

examples:

12.2.3.4
syntax:

each of its old name strings must be:
* bound to severa defining occurencesin the reach directly enclosing the reach of M and
* seizableby M.

If aprefix rename clause isin a grant statement directly enclosed in the reach of modulion M then each of its
old name strings must be;

* bound to several defining occurences in the reach of M and
e grantableby M.

A prefix rename clause that occurs in a grant statement (seize statement) must have a postfix that is a grant
postfix (seize postfix).

25.35 (stack ! int -> stack)! ALL (1.2)

Grant statement

<grant statement> ::= (0]
GRANT <prefix rename clause> { , <prefix rename clause> }* ; (1.1

| GRANT <grant window> [ <prefix clause>] ; (1.2

<grant window> ::= 2
<grant postfix>{ , <grant postfix> } * (2.1)

<grant postfix> ::= ©)]
<name string> (31

| <newmode name string> <forbid clause> (3.2

| [<prefix>!]ALL (3.3
<prefix clause> ::= @]
PREFIXED [ <prefix> ] 4.1

<forbid clause> ::= 5)
FORBID { <forbid namelist> | ALL } (5.1

ITU-T Rec. Z.200 (1993 E) 149



| SO/IEC 9496 : 1995 (E)

<forbid namelist> ::= (6)
(<field name> { , <field name> }* ) (6.2)

semantics. Grant statements are a means of extending the visibility of name strings in a modulion reach into the directly
enclosing reaches. FORBID can be specified only for newmode names which are structure modes. It means
that all locations and values of that mode have fields which may be selected only inside the granting
modulion, not outside.

Thefollowing visibility rules apply:

< |f the grant statement contains prefix rename clause(s), the grant statement has the effect of its prefix
rename clause(s) (see section 12.2.3.3).

« |f the grant statement contains grant windows, it is shorthand notation for a set of grant statements
with prefix rename clauses constructed as follows:

— For each grant postfix in the grant window, there is a corresponding grant statement.
— Theold prefix in their prefix rename clause is empty.

— The new prefix in their prefix rename clause is the prefix attached to the prefix clause in the
grant statement, or it is empty if thereis no prefix clause in the original grant statement.

— The postfix in the prefix rename clause is the corresponding postfix in the grant window.

» The notation FORBID ALL is shorthand notation for forbidding all the field names of the newmode
name (see section 12.2.5).

« |If aprefix rename clause in a grant statement has a grant postfix which contains a prefix and ALL,
then it is of the form:

(OP=>NP) | P IALL

where OP and NP are the possibly empty old prefixand new prefix respectively, and P is the prefixin
the grant postfix The prefix rename clausis then shorthand notation for a clause of the form:

(OP ! P=>NP ! P) IALL
static properties: A prefix clausehas a prefix attached, defined as follows:
» If the prefix clausecontains a prefix, then that prefixis attached.
» Otherwise the attached prefixis a simple prefixnvhose name strings determined as follows:

— If the reach directly enclosing the prefixis a moduleor region then the name strings the same
as the one of the module name or r egion name of that modulion.

— If the reach directly enclosing the prefixis a spec regioror spec modulethen the name string is
the name string in front of SPEC.

A grant postfixhas a set of name stringsttached, defined as follows:
« Ifitisaname stringor contains a newmodaame stringthen the set containing only that name string

» Otherwise, let OP be the (possibly empty) old prefix of the prefix rename clausén which the grant
postfixis placed, the set contains all name string®f the form OP ! N(i.e. obtained by prefixing N with
OP) for any name stringN such that OP ! Nis visible in the reach of the modulion in which the grant
postfixis placed and grantable by this modulion.

static conditions: The newmodename stringwith forbid clausemust be visible in the reach R of the modulion in which
the grant statemenis placed. The newmodename stringmust be bound in R to the defining occurrencef a
newmode which must be a structure mode, and each field namein the forbid name lismust be afield name of
that mode. The newmode defining occurrencenust be directly enclosed in R. All field namesn aforbid name
list must have different name strings.

If the grant statemenits placed in the reach of aregionor spec regionit must not grant a name stringwhich
isbound in that reach to the defining occurrencef:

» alocation name, or
» aloc-identity name, where the locationin its declaration isintra-regional, or

e asynonym name whose valueisintra-regional.
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The prefix rename clause in a grant statement must have a grant postfix.

If a grant statement contains a prefix clause which does not contain a prefix, then its directly enclosing
modulion must not be a context and:

» if its directly enclosing modulion is a module or region, then it must be named (i.e. it must be headed
by a defining occurrence followed by acolon);

« ifitsdirectly enclosing modulion is a spec module or a spec region, then it must be headed by a simple

name string.
examples:
25.7 GRANT (-> stack ! char) ! ALL; (1.2)
6.44 gregorian_date, julian_day number (2.1

12.2.35 Seize statement

syntax:

<seize statement> ::= D

SEIZE <prefix rename clause> { , <prefix rename clause> }* ; (1.1

| SEIZE <seize window> [ <prefix clause> ] ; (1.2

<seize window> ::= 2

<seize postfix> { , <seize postfix> } * (2.1

<seize postfix> ::= 3

<name string> (3.1

| [<prefix>!]ALL (3.2

semantics: Seize statements are a means of extending the visibility of name strings in group reaches into the reaches of
directly enclosed modulions.

The following visibility rules apply:

» |f the seize statement contains prefix rename clause(s), the seize statement has the effect of its prefix
rename clause(s) (see section 12.2.3.3).

» |f the seize statement contains a seize window, it is shorthand notation for a set of seize statements with
prefix rename clauses constructed as follows:

— For each seize postfix in the seize window, there is a corresponding seize statement.

— Theold prefix in their prefix rename clause is the prefix attached to the prefix clause in the seize
statement, or is empty if thereis no prefix clause in the original seize statement.

— Thenew prefix in their prefix rename clause is empty.
— The postfix in their prefix rename clause is the corresponding postfix of the seize window.

» If aprefix rename clause in a seize statement has a seize postfix which contains a prefix and ALL, then
itisof theform:

(OP=>NP) | P IALL

where OP and NP are the possibly empty old prefixand new prefix respectively, and P is the prefix in the
seize postfixThe prefix rename clausis then shorthand notation for a clause of the form:

(OP!P-=NP ! P) !ALL
static properties. A seize postfikas a set of name stringsttached, defined as follows:
« If the seize postfixs aname stringthe set containing only the name string

* Elsg, if the seize postfixs ALL, let OP be the (possibly empty) old prefixof the prefix rename clause
of which the seize postfixs part, the set contains all name stringsof the form OP ! S for any name
string S, such that:

— OP!Sis visble in the reach directly enclosing the modulion in which the seize statemens
placed, and

— itisseizable by this modulion, and

- itisbound to aquasi defining occurrencé this modulion has a contextin front of it.
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static conditions: The prefix rename clause in a seize statement must have a seize postfix.

If a seize statement contains a prefix clause which does not contain a prefix, then its directly enclosing
modulion must not be a context and,

« if itsdirectly enclosing modulion is a module or region, then it must be named (i.e. it must be headed
by a defining occurrence followed by a colon);

« ifitsdirectly enclosing modulion is a spec module or a spec region, then it must be headed by a simple
name string.

examples:
25.35 SEIZE (stack! int -> stack) ! ALL; (1.2

12.24  Visibility of set element names
A set element name may occur only in the context of a set literal.

If a set mode name is specified in the set literal, then the name string of a set element name can be bound to a set
element name defining occurrence in the mode of the class of the set literal.

Otherwise, a set mode name is not specified, and then the name string can be bound to a set element name defining
occurrence only if it isnot visible in the reach in which the set literal is placed.

12.25  Visibility of field names
Field names may occur only in the following contexts:
+ structure fields and value structure fields,
» labelled structure tuples,
» forbid clausesin grant statements.
Note that afield name may not occur in agrant postfix or in a seize postfix.

In each of these cases, the name string of the field name can be bound to a field name defining occurrence in the mode
M or in the defining mode of M, obtained as follows:

* M isthe mode of the structure location or (strong) structure primitive value;

* M isthe mode of the structure tuple;

* M isthe mode of the defining occurrence to which the newmode name string is bound in the reach in which the
forbid clause is placed.

However, if the novelty of M is a defining occurrence that defines a newmode name that has been granted by a grant
statement in a modulion as a grant postfix with a forbid clause, then the field names mentioned in the forbid name list
areonly visible:

» inthegroup of the granting modulion,

« if the novelty of M is novelty bound to a quasi novelty N, then in the group of the reach in which N is directly
enclosed,

 if the modulion is amodule spec or region spec, then in the reach of the corresponding modulion.

Outside these reaches the field names mentioned in the forbid name list are invisible and cannot be used.

123 CASE SELECTION

syntax:
<case label specification> ::= Q)
<caselabel list>{ , <caselabd list>}* 1.1
<caselabel list>::= 2
(<caselabel>{ , <caselabel>}*) (2.1
| <irrelevant> (2.2
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<caselabel> ::= 3
<discrete literal expression> (3.1

| <literal range> (3.2

| <discrete mode name> (3.3

| ELSE (3.4)
<irrelevant> ;.= 4
() (4.1)

semantics; Case selection is a means of selecting an aternative from alist of alternatives. The selection is based upon a
specified list of selector values. Case selection may be applied to:

» dternative fields (see section 3.13.4), in which case alist of variant fieldsis selected,

« labelled array tuples (see section 5.2.5), in which case an array element value is selected,
» conditiona expressions (see section 5.3.2), in which case an expression is selected,

» case action (see section 6.4), in which case an action statement list is selected.

In the first, third and fourth situations, each aternative is labelled with a case label specification; in the
labelled array tuple, each value is labelled with a case label list. For ease of description, the case label list in
the labelled array tuple will be considered in this section as a case label specification with only one case label
list occurrence.

Case selection selects that alternative which is labelled by the case label specification which matches the list
of selector values. (The number of selector values will aways be the same as the number of case label list
occurrences in the case label specification.) A list of values is said to match a case label specification if and
only if each value matches the corresponding (by position) case label list in the case label specification.

A valueissaid to match acase labdl list if and only if:

» thecaselabel list consists of case labels and the value is one of the values explicitly indicated by one of
the case labels or implicitly indicated in the case of EL SE;

» thecaselabd list consists of irrelevant.

The values explicitly indicated by a case label are the values delivered by any discrete literal expression, or
defined by the literal range or discrete mode name. The values implicitly indicated by EL SE are all the
possible selector values which are not explicitly indicated by any associated case label list (i.e. belonging to
the same selector value) in any case label specification.

static properties:

« An alternative fields with case label specification, alabelled array tuple, a conditional expression, or a
case action has alist of case label specifications attached, formed by taking the case label specification
in front of each variant alternative, value or case alternative, respectively.

* A caselabel has aclass attached, which is, if it is a discrete literal expression, the class of the discrete
literal expression; if it is a literal range, the resulting class of the classes of each discrete literal
expression in the literal range; if it is a discrete mode name, the resulting class of the M-value class
where M is the discrete mode name; if it is EL SE, the all class.

* A case labdl list has a class attached, which is, if it is irrelevant, then the all class, otherwise the
resulting class of the classes of each case label.

» A caselabel specification hasalist of classes attached, which are the classes of the case label lists.

* Alist of case label specifications has a resulting list of classes attached. This resulting list of classes
is formed by constructing, for each position in the list, the resulting class of al the classes that have
that position.

A list of case label specificationsis completeif and only if for all lists of possible selector values, a case label
specification is present, which matches the list of selector values. The set of all possible selector values is
determined by the context as follows:

» For atagged variant structure mode it is the set of values defined by the mode of the corresponding
tag field.
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* For a tag-less variant structure mode it is the set of values defined by the root mode of the
corresponding resulting class (this classis never the all class, see section 3.13.4).

« For an array tuple, it isthe set of values defined by the index mode of the mode of the array tuple.

» For acase action with arange list, it is the set of values defined by the corresponding discrete mode in
therange list.

» For acase action without a range list, or a conditional expression it is the set of values defined by M
where the class of the corresponding selector is the M-value class or the M-derived class.

static conditions: For each case label specification the number of case label list occurrences must be equal.
For any two case label specification occurrences, their lists of classes must be compatible.

The list of case label specification occurrences must be consistent, i.e. each list of possible selector values
matches at most one case label specification.

If the root mode of the class of a case label list is an integer mode, there must exist a predefined integer
mode that contains all the values delivered by each case label.

examples:
11.9 (occupied) (2.1
11.58 (rook),(*) (1.2)
8.26 (ELSE) (2.2)

124  DEFINITION AND SUMMARY OF SEMANTIC CATEGORIES

This section gives a summary of all semantic categories which are indicated in the syntax description by means of an
underlined part. If these categories are not defined in the appropriate sections, the definition is given here, otherwise the
appropriate section will be referenced.

12.4.1 Names

Mode names

absolute time mode name:

access mode name:

array mode name:

association mode name:

boolean mode name:

bound reference mode name:
buffer mode name:

character mode name:

discrete mode name:

discrete range mode name:
duration mode name:

event mode name:

floating point mode name;
floating point range mode name:
free reference mode name:
instance mode name:

integer mode name:

mode name:

parameterised array mode name:
parameterised string mode name:

parameterised structure mode name:

powerset mode name:

procedure mode name:
row mode name:

set mode name:

string mode name:

structure mode name:

variant structure mode name:
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a name defined to be an absolute time mode.
aname defined to be an access mode.

aname defined to be an array mode.

a name defined to be an association mode.

a name defined to be a boolean mode.

aname defined to be a bound reference mode.

a name defined to be a buffer mode.

a name defined to be a character mode.

a name defined to be a discrete mode.

aname defined to be a discrete range mode.

a name defined to be a duration mode.

a name defined to be an event mode.

aname defined to be afloating point mode.
aname defined to be a floating point range mode.
aname defined to be a free reference mode.

a name defined to be an instance mode.

aname defined to be an integer mode.

see section 3.2.1

aname defined to be a parameterised array mode.
aname defined to be a parameterised string mode.
aname defined to be a parameterised structure mode.
aname defined to be a powerset mode.

aname defined to be a procedure mode.

a name defined to be arow mode.

aname defined to be a set mode.

aname defined to be a string mode.

aname defined to be a structure mode.

aname defined to be avariant structure mode.



Access names

location name:
location do-with name:
|ocation enumeration name:

loc-identity name:

Value names

boolean literal name:

emptiness literal name:;

Ssynonym name;
value do-with name:

value enumeration name;

value receive name:

Miscellaneous names

built-in routine name:

general procedure name:

label name:
newmode name string:

non-reserved name;

procedure name:

process name;

set element name:

signal name:

tag field name:

undefined synonym name:

1242

L ocations

access location:

array location:
association location:
buffer location:
character string location:
discrete location:
event location:
floating point location:
instance location:
integer location:

static mode location;
string location:
structure location:

text location:

1243

Expressionsand values

absolute time primitive value:

array expression:;

array primitive value:

boolean expression:

bound reference primitive value:
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see sections 4.1.2.
see section 6.5.4.
see section 6.5.2.
see sections 4.1.3.

see section 5.2.4.4.

see section 5.2.4.7.

see section 5.1.

see section 6.5.4.

see section 6.5.2.

see sections 6.19.2, 6.19.3.

any CHILL or implementation defined name denoting a built-in
routine.

a procedure name whose generality is general.

see sections 6.1, 10.6.

a name string bound to the defining occurrence of a newmode
name.

a name which is none of the reserved names mentioned in
Appendix C.1.

see section 10.4.

see section 10.5.

see section 3.4.5.

see section 11.5.

see section 3.13.4.

see section 5.1.

alocation with an access mode.
alocation with an array mode.
alocation with an association mode.
alocation with a buffer mode.
alocation with acharacter string mode.
alocation with a discrete mode.
alocation with an event mode.
alocation with afloating point mode.
alocation with an instance mode.
alocation with an integer mode.
alocation with a static mode.
alocation with a string mode.
alocation with a structure mode.
alocation with atext mode.

a primitive value whose class is compatible with an absolute time
mode.

an expression whose class is compatible with an array mode.

a primitive value whose class is compatible with an array mode.

an expression whose classis compatible with a boolean mode.

a primitive value whose class is compatible with a bound reference
mode.
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character string expression:

constant value:

discrete expression:
discrete literal expression:
duration primitive value:

floating point expression:

floating point literal expression:

free reference primitive value:

instance primitive value:
integer expression:

integer literal expression:
literal expression:

power set expression:;
procedure primitive value;
reference primitive value:

row primitive value:
string expression:

string primitive value:
structure primitive value:

1244  Miscellaneous semantic categories

array mode:

discrete mode:

location built-in routine call:
location procedure call:
non-percent character:
non-reserved character:
non-special character:

string mode:
value built-in routine call:
value procedure call:
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an expression whose class is compatible with a character string
mode.

avaluewhich is constant.

an expression whose classis compatible with a discrete mode.
adiscrete expression which isliteral.

aprimitive value whose class is compatible with a duration mode.

an expression whose class is compatible with a floating point
mode.

afloating point expression whichisliteral.

a primitive value whose class is compatible with a free reference
mode.

aprimitive value whose class is compatible with an instance mode.
an expression whose class is compatible with an integer mode.

an integer expression whichisliteral.

an expression which isliteral.

an expression whose classis compatible with a powerset mode.
aprimitive value whose class is compatible with a procedure mode.

a primitive value whose class is compatible with either a bound
reference mode, a free reference mode or arow mode.

a primitive value whose class is compatible with a row mode.

an expression whose class is compatible with a string mode.
aprimitive value whose class is compatible with a string mode.
aprimitive value whose class is compatible with a structure mode.

amode in which the composite mode is an array mode.
amode in which the non-composite mode is a discrete mode.
See section 6.7

see section 6.7

acharacter which is not a percent (%).

acharacter which is neither aquote (”) nor a circumflex (*).

a character which is neither a circumflex (*) nor an open
parenthesis(}.

amode in which thecomposite mode is astring mode.
see section 6.7
see section 6.7
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13 IMPLEMENTATION OPTIONS

131 IMPLEMENTATION DEFINED BUILT-IN ROUTINES

semantics. An implementation may provide for a set of implementation defined built-in routines in addition to the set of
language defined built-in routines.

The parameter passing mechanism is implementation defined.
predefined names: The name of an implementation defined built-in routine is predefined as a built-in routine name.

static properties: A built-in routine name may have a set of implementation defined exception names attached. A
built-in routine call is a value (location) built-in routine call if and only if the implementation specifies that
for a given choice of static properties of the parameters and the given static context of the call, the built-in
routine call delivers avalue (location).

The implementation specifies also the regionality of the value (location).

132 IMPLEMENTATION DEFINED INTEGER MODES

An implementation defines the upper bound and lower bound of the integer mode INT. An implementation may define
integer modes other than the ones defined by INT; e.g. short integers, long integers, unsigned integers. These integer
modes must be denoted by implementation defined integer mode names. These names are considered to be newmode
names, similar to INT. Their value ranges are implementation defined. These integer modes may be defined as root
modes of appropriate classes.

133 IMPLEMENTATION DEFINED FLOATING POINT MODES

An implementation defines the upper bound and the lower bound, the negative upper limit and the positive lower
limit, the precision of the floating point mode FLOAT. An implementation may define floating point modes other than
the ones defined by FLOAT; e.g. short float, long float. These floating point modes must be denoted by implementation
defined floating point mode names. These names are considered to be newmode names, similar to FLOAT. Their values
ranges, lower limits and precision are implementation defined. These floating point modes may be defined as root
modes of appropriate classes.

134 IMPLEMENTATION DEFINED PROCESSNAMES

An implementation may define a set of implementation defined process hames; i.e. process names whose definition is
not specified in CHILL. The definition is considered to be placed in the reach of the imaginary outermost process or in
any context. Processes of this name may be started and instance val ues denoting such processes may be manipulated.

135 IMPLEMENTATION DEFINED HANDLERS

An implementation may specify that an implementation defined handler is appended to a process or procedure
definition; such a handler may handle any exception.

136 IMPLEMENTATION DEFINED EXCEPTION NAMES

An implementation may define a set of exception names.

137 OTHERIMPLEMENTATION DEFINED FEATURES
» Static check of dynamic conditions (see section 2.1.2)

» implementation directive (see section 2.6)
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» case of special simple name strings

» text reference name (see sections 2.7 and 10.10.1)

» default generality (see section 10.4)

» set of values of duration modes (see section 3.12.2)

» set of values of absolute time modes (see section 3.12.3)

» default element layout (see section 3.13.3)

» comparison of tag-less variant structure values (see section 3.13.4)
* number of bitsin aword (see section 3.13.5)

* minimum bit occupancy (see section 3.13.5)

» additional referable (sub-)locations (see section 4.2.1)

e semantics of a location do-with name and value do-with name which is a variant field of a tag-less variant
structure location (see sections 4.2.2 and 5.2.3)

e semantics of variant fields of tag-less variant structures (see section 4.2.10, 5.2.14 and 6.2)
* semantics of location conversion (see section 4.2.13)

e semantics of expression conversion and additional conditions (see section 5.2.11)
» additional actual parametersin a start expression (see section 5.2.15)

» rangesof vauesfor literal and constant expressions (see section 5.3.1)

» scheduling algorithm (see sections 6.15, 6.18.2, 6.18.3, 6.19.2, 6.19.3 and 11.2.1)
» releasing of storagein TERMINATE (see section 6.20.4)

» denotation for files (see section 7.1)

» Operations on associations (see sections 7.1 and 7.2.1)

e non-exclusive associations (see section 7.1)

» additional attributes of association values (see section 7.2.2)

e semantics of associate parameters (see section 7.4.2)

* ASSOCIATEFAIL exception (see section 7.4.2)

e semantics of modify parameters (see section 7.4.5)

» CREATEFAIL, DELETEFAIL and MODIFYFAIL exception (see section 7.4.5)

e CONNECTFAIL exception (see section 7.4.6)

» semantics of reading of records that are not legal values according to the record mode (see section 7.4.9)
» additional timeoutable actions (see section 9.2)

»  TIMERFAIL exception (see sections 9.3.1, 9.3.2 and 9.3.3)

» precision of duration values (see sections 9.4.1 and 9.4.2)

 indication of constant value in quasi synonym definitions (see section 10.10.3)

» regionality of built-in routines (see section 11.2.2).
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The character set of CHILL is an extension of the CCITT Alphabet No. 5, Internationa Reference Version,
Recommendation V3. For the values whose representations are greater than 127, no graphical representation is defined.

The integer representation is the binary number formed by bits bg to by, where b, isthe least significant bit.

bbgbs | 000 | oor | o010 | o1 100 101 110 111
bababob; 0 1 2 3 4 5 6 7
0000 0 NUL (SEE) SP 0 @ p D
0001 oy sTng) DC, ! 1 A Q a q
0010 2 (;%2() DC, 2 B R b r
0011 3 (chi) DCs # 3 c S c s
0100 4 (gg% DC, $ 4 D T d t
0101 5 (gﬁg) (,\TACQ) % 5 E U e u
0110 6 (;gﬁ) ( ST%\?I) & 6 F v f v
0111 7 BEL (TE%E?) ' 7 G w 9 w
1000 8 (';ESO) CAN ( 8 H X h X
1001 9 (ZETl) EM ) 9 | Y i y
1010 10 ('IZ_EFZ) SUB * J z i z
1011 11 (f/'% ESC + : K [ k {
1100 12 ('T:E;) (IFS§) , < L \ | |
1101 13 (FCEF% (gg) - = M ] m }
1110 14 SO (Eé) > N A n -
1111 15 sI (llJSé) / 2 0 _ o DEL
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left parenthesis

right parenthesis

|eft square bracket

right square bracket

left tuple bracket

) | right tuple bracket
: | colon

dot

:= | assignment symbol
< | lessthan

<= | lessthan or equal
= | equal

TN N o~ -

/= | not equal

>= | greater than or equal
greater than

plus

- | minus

* | asterisk

/| solidus

/I | double solidus
-> | arrow
<> | diamond
/* | comment opening
*/ | comment closing
apostrophe
# | sharp
guote

! prefixing operator
B’ | literal qualification
D’ | literal qualification
H' | literal qualification
O’ | literal qualification
——| lineend

Appendix B
Special symbols
Name Use
; semicolon terminator for statements etc.
comma separator in various constructs

opening parenthesis of various constructs
closing parenthesis of various constructs
opening bracket of atuple

closing bracket of atuple

opening bracket of atuple

closing bracket of atuple

label indicator, range indicator

field selection symbol

assignment, initialisation

relational operator

relational operator

relational operator, assignment, initialisation, definition
indicator

relational operator
relational operator
relational operator
addition operator
subtraction operator

multiplication operator, undefined value, unnamed value,
irrelevant symbol

division operator

concatenation operator

referencing and dereferencing, prefix renaming
start or end of adirective clause

bracket start of a comment

bracket end of a comment

start or end symbol in various literals
location and expression conversion

start or end symbol in character string literals
prefixing of names

binary base for literal

decimal basefor literal

hexadecimal base for literal

octal base for literal

line end delimiter of in-line comments
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Cil RESERVED SIMPLE NAME STRINGS

ACCESS
AFTER
ALL
AND
ANDIF
ARRAY
ASSERT
AT

BEGIN
BIN
BODY
BOOLS
BUFFER
BY

CASE
CAUSE
CHARS
CONTEXT
CONTINUE
CYCLE

DCL
DELAY
DO

DOWN
DYNAMIC

ELSE
ELSIF

END

ESAC

EVENT

EVER
EXCEPTIONS
EXIT

Fl
FOR
FORBID

GENERAL
GOTO
GRANT

IF

IN
INIT
INLINE
INOUT

LOC

MOD
MODULE

NEWMODE
NONREF
NOPACK

Appendix C
Special simple name strings

NOT

Oob
OF
ON
OR
ORIF
ouT

PACK

POS
POWERSET
PREFIXED
PRIORITY
PROC
PROCESS

RANGE
READ
RECEIVE
REF
REGION
REM
REMOTE
RESULT
RETURN
RETURNS
ROW

SEIZE
SEND

SET

SIGNAL
SIMPLE

SPEC

START
STATIC

STEP
STOP

STRUCT

SYN
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SYNMODE

TEXT

THEN

THIS

TIMEOUT

TO

upP

VARYING

WHILE

WITH

XOR
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Cc.2 PREDEFINED SIMPLE NAME STRINGS

ABS

ABSTIME
ALLOCATE
ASSOCIATE
ASSOCIATION

BOOL

CARD
CHAR
CONNECT
CREATE

DAYS
DELETE
DISCONNECT
DISSOCIATE
DURATION

EOLN
EXISTING
EXPIRED

FALSE
FIRST
FLOAT

GETASSOCIATION
GETSTACK
GETTEXTACCESS
GETTEXTINDEX
GETTEXTRECORD
GETUSAGE

HOURS

INDEXABLE
INSTANCE

INT

INTTIME
ISASSOCIATED

LAST
LENGTH
LOWER

C3 EXCEPTION NAMES

ALLOCATEFAIL
ASSERTFAIL
ASSOCIATEFAIL
CONNECTFAIL
CREATEFAIL
DELAYFAIL
DELETEFAIL
EMPTY
MODIFYFAIL
NOTCONNECTED

NOTASSOCIATED
OVERFLOW
RANGEFAIL
READFAIL
SENDFAIL
SPACEFAIL
TAGFAIL
TEXTFAIL
TIMERFAIL
UNDERFLOW
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MAX
MILLISECS
MIN
MINUTES
MODIFY

NULL
NUM

OUTOFFILE

PRED
PTR

READABLE
READONLY
READRECORD
READTEXT
READWRITE

SAME
SECS

WRITEFAIL

SEQUENCIBLE
SETTEXTACCESS
SETTEXTINDEX
SETTEXTRECORD
SZE

JUCC

TERMINATE
TIME
TRUE

UPPER
USAGE

VARIABLE

WAIT

WHERE
WRITEABLE
WRITEONLY
WRITERECORD
WRITETEXT
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Appendix D
Program examples

Operationson integers

integer_operations:

NNNEPEERRERRERRE
NP OWWNOOUNWNIERERO

MODULE

add:

PROC (i,j INT) RETURNS (INT) EXCEPTIONS (OVERFLOW);
RESULT i+j;

END add;

mult;

PROC (i,j INT) RETURNS (INT) EXCEPTIONS (OVERFLOW);
RESULT i*j;

END mult;

GRANT add, mult;
SYNMODE operand_mode=INT;
GRANT operand_maode;
SYN neutral_for_add=0,
neutral_for_mult=1;
GRANT neutral_for_add,
neutral_for_muilt;

END integer_operations;

Same oper ations on fractions

fraction_operations:
MODULE

© 00N O WNE DN

NNNNRE R R RRRR R R
WNPOWOWOWNOUNMNWNIERO

NEWM ODE fraction=STRUCT (num,denum INT);

add:

PROC (f1,f2 fraction) RETURNS (fraction) EXCEPTIONS (OVERFLOW);
RETURN [f1.num*f2.denunm+f2.num* f1.denum,f1.denurm* f2.denumy ;

END add;

mult:

PROC (f1,f2 fraction) RETURNS (fraction) EXCEPTIONS (OVERFLOW);
RETURN [f1.num*f2.num,f2.denum*f1.denum];

END muilt;

GRANT add, mult;
SYNM ODE operand_mode=fraction;
GRANT operand_mode;
SYN neutral_for_add fraction=[ 0,1],
neutral_for_mult fraction=[ 1,11;
GRANT neutral_for_add,
neutral_for_mult;

END fraction_operations;
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© O ~NOUA®WNERE A

NRNRNNNNRNR R R R R R R R
O R WNRPOO®OMNO®UODMWRNLEO
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Same oper ations on complex numbers

complex_operations:
MODULE

NEWM ODE complex=STRUCT (re,im FLOAT);

add:

PROC (c1,c2 complex) RETURNS (complex) EXCEPTIONS (OVERFLOW);
RETURN [cl.retc2.recl.im+c2.im|;

END add;

mult:

PROC (c1,c2 complex) RETURNS (complex) EXCEPTIONS (OVERFLOW);
RETURN [cl.re*c2.re-cl.im*c2.im,cl.re*c2.im+clim*c2.re];

END muilt;

GRANT add, mult;
SYNMODE operand_mode=complex;
GRANT operand_mode;
SYN neutral_for_add=complex[ 0.0,0.0],
neutral_for_mult=complex[ 1.0,0.0];
GRANT neutral_for_add,
neutral_for_mult;

END complex_operations;

General order arithmetic

general_order_arithmetic: /* from collected algorithms from CACM no. 93 */
MODULE

op:
PROC (aINT INOUT, b,c,order INT)
EXCEPTIONS (wrong_input);
DCL dINT;
ASSERT b>0 AND ¢>0 AND order>0
ON (ASSERTFAIL):
CAUSE wrong_input;

END;
CASE order OF
(D): a:= btg;
RETURN;
2): d:=0;
(ELSE): d:=1;
ESAC;

DOFORIi:=1TOcg;
op (a,b,d,order-1);
d:=a

OD;

RETURN;

END op;

GRANT op;

END general_order_arithmetic;
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Adding bit by bit and checking the result

add_bit_by bit:
MODULE
adder:
PROC (a STRUCT (a2,a1 BOOL) IN, b STRUCT (b2,b1 BOOL) IN)
RETURNS (STRUCT (c4,c2,c1 BOOL));
DCL ¢ STRUCT (c4,c2,c1 BOOL);
DCL k2,x,w,t,s,r BOOL;
DO WITH a,b,c;
k2 := al AND b1;
cl:= NOT k2 AND (al OR bl);
X := a2 AND b2 AND k2;
w:= a2 OR b2 OR k2;

t:= b2 AND k2;
s:= a2 AND k2;
r := a2 AND b2;

c4:=rORsORt;
c2:= XxOR (WAND NOT c4);
OD;
RETURN c;
END adder;
GRANT adder;
END add bhit by hit;

exhaustive_checker:
MODULE
SEIZE adder;
SYNMODE res=ARRAY (1:16) STRUCT (c4,c2,c1 BOOL);
DCL r INT, resultsres;
r:=0;
DO FOR a2 IN BOOL;
DO FOR al IN BOOL;
DO FOR b2 IN BOOL;
DO FOR bl IN BOOL;
r+:=1;
results (r) := adder ([a2,al], [b2,b1]);
OD;
OD;
OD;
OD;
ASSERT
resultssres| [FALSE,FALSEFALSE] | [FALSEFALSE, TRUE],
[FALSE, TRUE,FALSE ] ,[FALSE, TRUE,TRUE],
[FALSE,FALSE, TRUE|,[FALSE, TRUE,FALSE],
[FALSE, TRUE, TRUE] JTRUE,FALSE,FALSE ],
[FALSE, TRUE,FALSE ] ,[FALSE, TRUE, TRUE],
[TRUE,FALSE,FALSE ] [ TRUE,FALSE, TRUE],
[FALSE, TRUE,TRUE] JTRUE,FALSE,FALSE ],
[TRUE,FALSE, TRUE] JTRUE,TRUE,FALSE]];
END exhaustive checker;
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6. Playing with dates

1 playing_with_dates:

2 MODULE /* from collected algorithms from CACM no. 199 */
3 SYNMODE month=SET (jan,feb,mar,apr,may,jun,
4 jul,aug,sep,oct,nov,dec);

5 NEWM ODE date=STRUCT (day INT (1:31), mo month, year INT);
6

7 gregorian_date:

8 PROC (julian_day number INT) RETURNS (date);
9 DCL jINT:= julian_day number,

10 d,my INT;

11 j-:=1 721 119;

12 y:=(4*j-1)/146_097,

13 ji=4*j-1-146 097 * vy,

14 d:=jl4

15 ji=(@4*d+ 3)/1 461;

16 d:=4*d+ 3-1461*j;

17 d:=(d+4)/4

18 m:=(5*d-3)/153;

19 d:=5*d-3-153* m;

20 d:=(d+5)/5;

21 y:=100* y+ j;

22 IFm<10 THEN m+:=3;

23 ELSE m-:=9;

24 y+:=1;

25 FI;

26 RETURN [d,month (m-1), V];

27 END gregorian_date;

28

29 julian_day_number:

30 PROC (d date) RETURNS (INT);

31 DCL c,ymINT;

32 DO WITH d;

33 m:= NUM (mo)+1;

34 IFm>2 THEN m-:=3;

35 ELSE m+:=9;

36 year - ;= 1;

37 FI;

38 ¢ := year/100;

39 y := year-100*c;

40 RETURN  (146_097*c)/4+(1_461*y)/4
41 +(153*m+2)/5+day+1_721_119;
42 OD;

43 END julian_day_number;

44 GRANT gregorian_date, julian_day number;

45 END playing_with_dates;

46

47 test:

48 MODULE

49 SEIZE gregorian_date, julian_day number;

50 ASSERT julian_day_number ([ 10,dec,1979])= julian_day number
51 (gregorian_date(julian_day number ([ 10,dec,19791)));
52 END test;
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Roman numerals

Roman:
MODULE
SEIZE n,rn;
GRANT convert;
convert:
PROC () EXCEPTIONS (string_too_small);
DCL r INT:= 0;
DO WHILE n>=1_000;
rn(r) :='M’;

n-:=1 000;
r+:=1,
OD;
IF n>500 THENIN(r) :='D’;
n - := 500;
r+:=1,
Fl;

DO WHILE n>=100;
m(r) :='C’;
n - :=100;
r+:=1,

OD;

IF n>=50 THEN rn(r) :='L";
n - :=50;
r+:=1,

Fl;

DO WHILE n>=10;

rn(r) :='X’;
n-:=10;
r+:=1,

ODb;

IF n>=5 THEN rn(r) :="V’;
n-:=5;
r+:=1;

FI;

DO WHILE n>=1;

rn(r) ="l

n-:=1;

r+:=1,
OD;
RETURN;

END ON (RANGEFAIL): DO FOR i:=0 TO UPPER (rn);
rn(i) :=".;
OD;
CAUSE string_too_small;
END convert;
END Roman;
test:
MODULE
SEIZE convert;
DCL nINTINIT:=1979;
DCL rn CHARS (20)INIT:= (20)" ™;
GRANT n,rn;
convert ();
ASSERT rn="MDCCCCLXXVIII"//(6)" "
END test;
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Counting lettersin a character string of arbitrary length

letter_count;

MODULE
SEIZE max;
DCL letter POWERSET CHARINIT:=[A’:'Z7;
count:

PROC (inputROW CHARS (max)IN, outputARRAY (A’'Z’) INT

output := [(ELSE) : 0];
DO FOR i :=0 TO UPPER (input ->);
IF input -> (i) IN letter
THEN
output (input -> (i)) + :=1;
Fl;
OD;
END count;
GRANT count;
END letter_count;
test:
MODULE
SYNMODE resultssARRAY (A’:’'Z)INT,;
DCL cCHARS (10)INIT:="A-B<ZAA9K’ ”;
DCL output results;
SYN max=10_000;
GRANT max;
SEIZE count;
count (-> c,output);
ASSERT output=results [('A") : 3,('B",’K",’Z") : 1, (ELSE) :
END test;

Prime numbers

prime:
MODULE

SYN max = H'7FFF;
NEWM ODE number_list POWERSET INT (2:max);
SYN empty = number_list[];
DCL sieve number_lidiNIT:= [ 2:max ],
primes number_IlidtNI T:= empty;
GRANT primes;
DO WHILE sieve/=empty;
primesOR:= [MIN (sieve)];
DO FOR j := MIN (sieve)BY MIN (sieve)TO max;
sieve - :=[j];
OD;
OD;
END prime;

Implementing stacksin two different ways, transparent to the user

stack:MODULE
NEWM ODE element STRUCT (a INT, b BOOL);
stacks 1:
MODULE
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SEIZE element;

SYN max=10_000,min=1;

DCL stack ARRAY (min: max) element,
stackindex INT INIT:= min;

push:
PROC (e element) EXCEPTIONS (overflow);
| F stackindex=max
THEN CAUSE overflow;
FI;
stackindex + := 1,
stack (stackindex) := €;
RETURN;
END push;

pop:
PROC () EXCEPTIONS (underflow);

| F stackindex=min

THEN CAUSE underflow;

Fl;

stackindex - := 1;

RETURN;
END pop;

eem:
PROC (i INT) RETURNS (element LOC) EXCEPTIONS (bounds);
IF i<min OR i>max
THEN CAUSE bounds;
Fl;
RETURN stack (i);
END elem;

GRANT push,pop,elem;
END stacks 1;
stacks 2:
MODULE
SEIZE element;
NEWM ODE cell=STRUCT (pred,succ REF cell,info element);
DCL p,last,first REF cell INIT:= NULL;

push:
PROC (e element) EXCEPTIONS (overflow);
p := ALLOCATE (cell) ON
(ALLOCATEFAIL) : CAUSE overflow,

END;
IF last=NULL
THEN first:=p;
last:= p;
ELSElast ->. succ := p;
p->.pred:= last;
last := p;
Fl;
last ->. info:= g
RETURN;
END push;
pop:
PROC () EXCEPTIONS (underflow);
IF last=NULL
THEN CAUSE underflow;
Fl;
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66 p:= last;

67 last := last ->. pred;

68 IF last = NULL

69 THEN first := NULL;

70 EL SE last ->. succ := NULL;

71 FI;

72 TERMINATE(p);

73 RETURN;

74 END pop;

75

76 eem:

77 PROC (i INT) RETURNS (element LOC) EXCEPTIONS (bounds);
78 IF first=NULL

79 THEN CAUSE bounds,

80 Fl;

81 p:=first

82 DOFOR|:=2TOi;

83 IF p->.succ=NULL

84 THEN CAUSE bounds;

85 FI;

86 p:=p->.succ

87 OD;

88 RETURN p ->. info;

89 END elem;

90

91 /* GRANT push,pop,elem; */

92 END stacks 2;

93 END stack;

11. Fragment for playing chess

1 chess fragments:

2 MODULE

3 NEWM ODE piece=STRUCT (color SET (white,black),

4 kind SET (pawn,rook,knight,bishop,queen,king));
5 NEWM ODE column=SET (a,b,c,d,ef,g,h);

6 NEWM ODE line=INT (1: 8);

7 NEWM ODE square=STRUCT (status SET (occupied,free),

8 CASE status OF

9 (occupied) : p piece,

10 (free) :

11 ESAC);

12 NEWM ODE board=ARRAY (line) ARRAY (column) sguare;

13 NEWM ODE move=STRUCT (lin_1,lin_2line,

14 col_1,col_2 columny;

15

16 initialise:

17 PROC (bd board INOUT);

18 bd:= [ (@O): [ (ah): [.status: occupied, .p : [white,rook]],
19 (b,9): [.status: occupied, .p : [whiteknight]],
20 (c,f): [.status: occupied, .p : [whitebishop]],
21 (d): [.status: occupied, .p : [white,queen]],
22 (e): [.status: occupied, .p : [whiteking]]],
23 (2: [ (ELSE): [.status: occupied, .p: [white,pawn]]],
24 (3:6): [ (ELSE): [.status: fred]],

25 (7): [ (ELSE): [.status: occupied, .p: [black,pawn]]],
26 ®: [ (ah): [.status: occupied, .p : [black,rooK]],
27 (b,9): [.status: occupied, .p : [blackknight]],
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(c,f): [.status: occupied, .p : [black,bishop]],

(d): [ .status: occupied, .p : [black,queen]],
(e): [ .status: occupied, .p : [black,king]]]
K
RETURN;
END initialise;
register_move:

PROC (b board LOC,mmove) EXCEPTIONS (illegal);
DCL starting square LOC:= b (mlin_1)(m.col_1),
arriving square LOC:= b (m.lin_2)(m.col_2);
DO WITH m;
| F starting.status=free THEN CAUSE illegal; FI;
|F arriving.status/=free THEN
IF arriving.p.kind=king THEN CAUSE illegal; FI;
FI;
CASE starting.p.kind, starting.p.color OF
(pawn),(white):
IF col_1=col 2AND (arriving.status/=free
OR NOT (lin_2=lin_1+1 OR lin_2=lin_1+2 AND lin_2=2))
OR (col_2=PRED (col_1) OR col_2=SUCC (col_1))
AND arriving.status=free THEN CAUSE illegal; FI;
|F arriving.status/=free THEN
IF arriving.p.color=white THEN CAUSE illegal; FI; FI;
(pawn),(black):
IF col_1=col_2 AND (arriving.status/=free
OR NOT (lin_2=lin_1-1 OR lin_2=lin_1-2 AND lin_1=7))
OR (col_2=PRED (col_1) OR col_2=SUCC (col_1))
AND arriving.status=free THEN CAUSE illegal; FI;
|F arriving.status/=free THEN
IF arriving.p.color=black THEN CAUSE illegal; FI; FI;
(rook),(*):
IF NOT ok _rook (b,m)
THEN CAUSE illegal;
FI;
(bishop),(*):
IF NOT ok_bishop (b,m)
THEN CAUSE illegal;
FI;
(queen),(*):
IF NOT ok_rook (b,m) AND NOT ok_hishop (b,m)
THEN CAUSE illegal;
FI;
(knight),(*):
IF ABS( ABS(NUM (col_2)-NUM (col_1))
-ABS(lin_2-lin 1)) /=1
OR ABS(NUM (col_2)-NUM (col_1))
+ABS(lin_2- lin_1) =/ 3THEN CAUSE illegal; FI;
IF arriving.status/=free THEN
| F arriving.p.color=starting.p.color THEN
CAUSE illegal; FI; FI;
(king),(*):
|F ABS(NUM (col_2)-NUM (col_1)) > 1
ORABS(lin_ 2-lin.1)>1
ORlin_2=lin_1 AND col_2=col_1 THEN CAUSE illegal; FI;
IF arriving.status/=free THEN
| F arriving.p.color=starting.p.color THEN
CAUSE illegal; FI; FI;/* checking king moving to check not implemented */
ESAC;
OD;
arriving := starting;
starting := [.status:free];
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RETURN;
END register_move;
ok rook:
PROC (b board,mmove) RETURNS (BOOL);
DCL starting square:= b (m.lin_1)(m.col_1),
arriving square := b (m.lin_2)(m.col_2);

DOWITH m;
IF NOT (col_2=col_1 ORlin_1=lin_2) THEN RETURN FALSE; FI;
IF arriving.status/=free THEN
| F arriving.p.color=starting.p.color THEN;
RETURN FALSE; FI; FI;
IF col_1=col_2
THEN [IFlin_1<lin_2
THEN DO FOR lin:=1lin_ 1+1TO lin_2-1;
IF b (lin)(col_1).status/=free
THEN RETURN FALSE;
FI;
OD;
ELSE DO FOR lin:=1lin_1-1 DOWN TO lin_2+1;
IF b (lin)(col_1).status/=free
THEN RETURN FALSE;
FI;
OD;
FI;
ELSIF col_1<coal 2
THEN DO FOR col := SUCC (col_1) TO PRED (col_2);
IF b (lin_1)(col).status/=free
THEN RETURN FALSE;
FI;
OD;
EL SE DO FOR col := SUCC (col_2) DOWN TO PRED (col_1);
IF b (lin_1)(col).status/=free
THEN RETURN FALSE;

Fl;
OD;
Fl;
RETURN TRUE;
OD;
END ok_rook;
ok _hishop:

PROC (b board,mmove) RETURNS (BOOL);
DCL starting square:= b (m.lin_1)(m.col_1),
arriving square := b (m.lin_2)(m.col_2),
col column;

DO WITH m;
CASE lin_2>lin_1,col_2>col 1 OF
(TRUE),(TRUE): col := col_1;
DO FORIlin:=1lin 1+1TO lin _2-1;
col := SUCC (col);
IF b (lin)(col).status/=free
THEN RETURN FALSE;
FI;
OD;
IF SUCC (cal)/=cal_2
THEN RETURN FALSE;
Fl;
(TRUE),(FALSE): col := col_1;
DO FORIlin:=lin 1+1TO lin_2-1;
col := PRED (col);%
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150 IF b (lin)(col).status/=free
151 THEN RETURN FALSE;
152 Fl;

153 OD;

154 |F PRED (col)/=col_2

155 THEN RETURN FALSE;
156 Fl;

157 (FALSE),(TRUE): col := col_1;

158 DO FOR lin:=1lin_1-1 DOWN TO lin_2+1;
159 col := SUCC (col);

160 IF b (lin)(col).status/=free
161 THEN RETURN FALSE;
162 FI;

163 OD;

164 IF SUCC (col)/=col_2

165 THEN RETURN FALSE;
166 FI;

167 (FALSE),(FALSE): col := col_1;

168 DO FOR lin:=1in_1-1 DOWN TO lin_2+1;
169 col := PRED (col);

170 IF b (lin)(col).status/=free
171 THEN RETURN FALSE;
172 Fl;

173 OD;

174 IF PRED (col)/=col_2

175 THEN RETURN FALSE;
176 FI;

177 ESAC;

178 IF arriving.status=free THEN RETURN TRUE;

179 EL SE RETURN arriving.p.color/=starting.p.color; Fl;
180 OD;

181 END ok_bhishop;

182 END chess fragments;

12. Building and manipulating a circularly linked list

1 circular_list:

2 MODULE

3 handle list:

4 MODULE

5 GRANT insert, remove, node;

6 NEWM ODE node=STRUCT (pred, suc REF node, value INT);
7 DCL pool ARRAY (1:1000)node;
8 DCL head node:= (: NULL,NULL,0:);
9

10 insert: PROC (new node);

11 /* insert actions */

12 END insert;

13

14 remove: PROC ();

15 /* remove actions */

16 END remove;

17

18 initialize list:

19 BEGIN

20 DCL last REF node := ->head;
21 DO FOR new N pool;

22 new.pred := lagt;
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23 last->.suc := ->new;

24 last := ->new;

25 new.value:= 0;

26 OD;

27 head.pred := last;

28 last->.suc := ->head;

29 END initialize list;

30

31 END handle list;

32 manipul ate;

33 MODULE

34 SEIZE node, remove, insert;

35 DCL node_anode:= (: NULL,NULL,536 :);
36 remove();

37 remove();

38 insert(node_a);

39 END manipulate;

40 END circular_list;

13. A region for managing competing accessesto a resour ce
1 allocate resources:

2 REGION

3 GRANT allocate, deallocate;

4 NEWM ODE resource_set = INT (0:9);
5 DCL allocated ARRAY (resource_set)BOOL:= (: (resource _set): FALSE:);
6 DCL resource freed EVENT;

-

8 allocate:

9 PROC () RETURNS (resource_set);
10 DO FOR EVER;

11 DO FORIi IN resource set;

12 IF NOT allocated(i)

13 THEN

14 allocated(i) := TRUE;
15 RETURN i;

16 FI;

17 OD;

18 DELAY resource freed;

19 OD;

20 END allocate;

21

22 deallocate:

23 PROC (i resource_set);

24 allocated(i) := FALSE;

25 CONTINUE resource freed;

26 END deallocate;

27

28 END allocate resources;

14. Queuing callsto a switchboard

switchboard:
MODULE
[* Thisexampleillustrates a switchboard which queues incoming calls
and feeds themto the operator at an even rate. Every timethe
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operator isready one and only one call islet through. Thisis
handled by a call distributor which lets calls through at fixed
intervals. If the operator is not ready or there are other calls
waiting, a new call must queue up to wait for itsturn. */
DCL operator_is ready,
switch_is closed EVENT;

call_distributor:
PROCESS ();

wait:

PROC (x INT);

/*some wait action*/

END wait;

DO FOR EVER;
wait(10 /* seconds*/);
CONTINUE operator_is ready;

OD;

END call_distributor;

call_process:
PROCESS ();
DELAY CASE
(operator_is ready): /* some actions*/ ;
(switch_is closed): DO FOR i IN INT (1:100);
CONTINUE operator_is ready;
[* empty the queue*/
OD;
ESAC;
END call_process,

operator:
PROCESS ();
DCL time INT;
DO FOR EVER;
IF time= 1700
THEN CONTINUE switch_is closed;
Fl;
OD;
END operator;

START call_distributor();
START operator();
DO FOR i IN INT (1:100);
START call_process();
OD;
END switchboard,;

Allocating and deallocating a set of resour ces

definitions:

MODULE

SIGNAL
acquire,
release= (INSTANCE),
congested,
ready,
advance,
readout=(INT);
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GRANT ALL;

END definitions;

counter_manager:

MODULE

/* Toillustrate the use of signals and the receive case, (buffers
might have been used instead) we will ook at an example where an
allocator manages a set of resources, in this case a set of
counters. The module is part of a larger systemwhere thereare
users, that can request the services of the counter_manager. The
module is made to consist of two process definitions, one for the
allocation and one for the counters. Initiate and terminate
areinternal signals sent from the allocator
to the counters. All the other signals are external, being sent
fromor to the users. */

SEIZE/* external signals*/

acquire, release, congested,ready,advance,readout;
SIGNAL initiate= (INSTANCE),

terminate;

allocator:
PROCESS ();

NEWM ODE no_of_counters= INT (1:100);
DCL counters ARRAY (no_of _counters)

STRUCT (counter INSTANCE, status SET (busy,idle));

DO FOR each IN counters;

each := (: START counter(), idle:);
OD;
DO FOR EVER;
BEGIN

DCL user INSTANCE;

await_signals:

RECEIVE CASE SET user;

(acquire):
DO FOR each IN counters;
DO WITH each;
|F status= idle
THEN
status := busy;
SEND initiate (user) TO counter;
EXIT await_signals;
Fl;
OD;
oD,

SEND congested TO user;
(release IN this_counter):
SEND terminate TO this_counter;
find_counter:
DO FOR each IN counters,
DO WITH each;
| F this_counter = counter
THEN
status:= idle;
EXIT find_counter;
Fl;
OD;
OD find_counter;
ESAC await_signals,
END;
OD;
END allocator;
counter:
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PROCESS ();
DO FOR EVER;
BEGIN
DCL user INSTANCE,
count INT:= 0;
RECEIVE CASE
(initiate IN received_user):
SEND ready TO received_user;
user := received _user;
ESAC;
work_loop:
DO FOR EVER;
RECEIVE CASE
(advance): count + ;= 1;
(terminate):
SEND readout(count) TO user;
EXIT work_loop;
ESAC;
OD work_loop;
END;
OD;
END counter;
START allocator();
END counter_manager;

Allocating and deallocating a set of resour ces using buffers

user_world:

MODULE

[* This example is the same as no.15 except that buffersare
used for communication instead of signals.
The main differenceis that processes are now identified
by means of references to local message buffers rather than
by instance values. There is one message buffer declared
local to each process. Thereis one set of message types
for each process definition. When started each process must
identify its buffer address to the starting process.
The user_world modul e sketches some of the environment in
which the counter _manager is used. */

SEIZE allocator;
GRANT user_buffers,user_messages,
allocator_messages, allocator_buffers,
counter_messages, counters_buffers;
NEWM ODE
user_messages =
STRUCT (type SET ( congested, ready,
readout, allocator_id),
CASE type OF
(congested) : ,
(ready) : counter REF counters buffers,
(readout) : count INT,
(allocator_id): allocator REF allocator_buffers
ESAC),
user_buffers= BUFFER (1) user_messages,
allocator_messages =
STRUCT (type SET (acquire, release, counter_id),
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33 CASE type OF

34 (acquire) : user REF user_buffers,
35 (release,

36 counter_id): counter REF counters buffers
37 ESACQC),

38 allocator_buffers= BUFFER (1) allocator_messages,

39 counter_messages =

40 STRUCT (type SET (initiate, advance, terminate),

41 CASE type OF

42 (initiate) : user REF user_buffers,
43 (advance,

44 terminate):

45 ESACQC),

46 counters buffers= BUFFER (1) counter_messages,

47 DCL user_buffer user_buffers,

48 allocator_buf REF allocator_buffers,

49 counter_buf REF counters _buffers;

50 START allocator(->user_buffer);

51 RECEIVE CASE

52 (user_buffer IN u_msg): allocator_buf := u_msg.allocator;
53 ESAC;

54 END user_world;

55 counter_manager:

56 MODULE

57 SEIZE user_buffers,user_messages,

58 allocator_messages, allocator_buffers,

59 counter_messages, counters_buffers;

60 GRANT allocator;

61

62 allocator:

63 PROCESS (starter REF user_buffers);

64 DCL allocator_buffer allocator_buffers;

65 NEWM ODE no_of_counters = INT (1:10);

66 DCL countersARRAY (no_of counters)

67 STRUCT (counter REF counters buffers,
68 status SET (busy, idle)),
69 message allocator _messages;

70 SEND starter->([allocator_id, ->allocator_buffer]);

71 DO FOR each IN counters;

72 START counter(->allocator_buffer);

73 RECEIVE CASE

74 (allocator_buffer IN a_msg): each := [a_msg.counter, idl€];
75 ESAC;

76 OD;

77 DO FOR EVER;

78 BEGIN

79 DCL user REF user_buffers;

80 RECEIVE (allocator_buffer IN message);

81 handle_messages:

82 CASE message.type OF

83 (acquire):

84 user := message.user;

85 DO FOR each IN counters;

86 DO WITH each;

87 |F status= idle

88 THEN  satus:= busy,

89 SEND counter->([initiate, user]);

90 EXIT handle_messages,

91 FI;

92 OD;

93 OD;
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SEND user->([ congested)]);
(release):
SEND message.counter->([terminate]);
find_counter:
DO FOR each IN counters;
DO WITH each;
| F message.counter = counter
THEN status:=idle;
EXIT find_counter;
Fl;
OD;
OD find_counter;
(counter_id): ;
ESAC handle_messages;
END;
OD;
END allocator;
counter:
PROCESS (starter REF allocator_buffers);
DCL counter_buffer counters_buffers;
SEND starter->([counter_id, ->counter_buffer]);
DO FOR EVER;
BEGIN
DCL user REF user_buffers,
count INT:= 0,
message counter_messages,
RECEIVE (counter_buffer IN message);
CASE message.type OF
(initiate):  user := message.user;
SEND user->([ready, ->counter_buffer]);
EL SE/* someerror action */
ESAC;
work_loop:
DO FOR EVER;
RECEIVE (counter_buffer IN message);
CASE message.type OF
(advance): count + :=1;
(terminate): SEND user->([readout, count]);
EXIT work_loop;
EL SE/* some error action */
ESAC;
OD work_loop;
END;
OD;
END counter;
END counter_manager;

17. String scannerl

P OoO~NOOULAsWNERE

string_scanner1: /* This program implements strings by means
of packed arrays of characters. */
MODULE
SYN
blanks ARRAY (0:9)CHARPACK =[(*):" '], linelength = 132;
SYNMODE
stringptr =ROW ARRAY (lineindex) CHARPACK,
lineindex = INT (O:linelength-1);

scanner:
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11 PROC  (string stringptr, scanstart lineindex INOUT,
12 scanstop lineindex, stopset POWERSET CHAR)
13 RETURNS (ARRAY (0:9)CHAR PACK);
14 DCL count INT:= 0O,

15 resARRAY (0:9)CHAR PACK:= blanks;
16 DO

17 FOR cIN string->(scanstart: scanstop)

18 WHILE NOT (cIN stopset);

19 count + := 1,

20 OD;

21 I F count>0

22 THEN

23 I F count>10

24 THEN

25 count := 10;

26 Fl;

27 res(0:count-1) := string->(scanstart: scanstart+count-1);
28 FI;

29 RESULT res;

30 | F scanstart+count < scanstop

31 THEN

32 scanstart := scanstart+count+ 1,

33 FI;

34 END scanner;

35

36 GRANT scanner;

37

38 END string_scanner1;

18. String scanner2

1 string_scanner2: /* This example isthe same as no.17 but it uses
2 character string instead of packed arrays */
3 MODULE

4 SYN

5 blanks = (10)" ", linelength = 132;

6 SYNMODE

7 stringptr = ROW CHARS (linelength),

8 lineindex = INT (O:linelength-1);

9

10 scanner:

11 PROC  (string stringptr, scanstart lineinddNOUT,

12 scanstop lineindex, stops®WERSET CHAR)
13 RETURNS (CHARS (10));

14 DCL count INT:=0;

15 DO FOR i := scanstartTO scanstop

16 WHILE NOT (string->(i) IN stopset);

17 count + :=1;

18 OD;

19 IF count>0

20 THEN

21 |F count>=10

22 THEN

23 RESULT string->(scanstartUP 10);

24 ELSE

25 RESULT string->(scanstart:scanstart+count-1)
26 /Iblanks(count:9);

27 FI;

28 ELSE
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RESULT blanks;

Fl;
| F scanstart+count < scanstop
THEN
scanstart := scanstart+count+1;
Fl;
END scanner;
GRANT scanner;

END string_scanner2;

Removing an item from a double linked list

queue: MODULE
SYNMODE info=INT;
queue_removal:
MODULE
SEIZE info;
GRANT remove;
remove:

| SO/IEC 9496 : 1995 (E)

PROC (p PTR) RETURNS (info) EXCEPTIONS (EMPTY);

[* This procedure removes the item referred to
by p from a queue and returns the information
contents of that queue element */

SYNMODE €element = STRUCT (

i info POS (0,8:31),
prev PTR POS (1,0:15),
next PTR POS (1,16:31));

DCL x REF element LOC:= element(p), prev, next PTR;

prev:= x->.prev,
next := x->.next;
X->.prev, x->.next := NULL;
RESULT x->.i;
p:= prev;
X->.next := next;
p := next;
X->.prev .= prev;
END remove;
END queue_removal;
END queus;

Updatearecord of afile

read_modify write:
MODULE

[* this example indicates how the CHILL i/o concepts can be used
[* towrite an application where a record of a random accessible
[* file can be updated or added if not yet in use

NEWM ODE
index_set = INT (1:1000),
record type= STRUCT (
free BOOL,
count INT,
name CHARS (20));

*/
*/
*/
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DCL
curindex index_set,
file_association ASSOCIATION,
record file ACCESS (index_set) record_type,
record_buffer record_type;

ASSOCIATE (file_association,"DSK:RECORDS.DAT"); [* create association  */

CONNECT (record_file,file_association,READWRITE); /* connect to file */
curindex := 123; /* position record */
READRECORD (record_file,curindex,record_buffer); [* read the record */
I F record_buffer.free /% if record is free */
THEN /* the claim and */
record_buffer.free ;= FALSE /* initialize it */

record_buffer.count := 0;
record_buffer.name := "CHILL I/O concept ”;

Fl;
record_buffer.count + ;= 1; /* increment its count  */
WRITERECORD (record_file, curindex, record_buffer); /* write the record */
DISSOCIATE (file_association); /* end the association  */

END read_modify_write;

Merge two sorted files

merge_sorted_files:

MODULE
/* this example shows how two sorted files can be merged into one */
I* new sorted file, where the field 'key’ is used for sorting */

/* the old sorted files are deleted after the merging has been done  */

NEWMODE
record_type =STRUCT (
key INT,
name CHARS (50));
DCL
flag BOOL,
infiles ARRAY (BOOL)ACCESS record_type,
outfile ACCESS record_type,

buffers ARRAY (BOOL) record_type,

innames  ARRAY (BOOL)CHARS (10)INIT:= ["FILE.IN.1 ","FILE.IN.2 "],
outname  CHARS (10)INIT:="FILE.OUT ",

inassocs ARRAY (BOOL) ASSOCIATION,

outassoc ASSOCIATION;

[* associate both sorted input files, connect an access to them for input *
/* and read their first record into a buffer *

DO
FOR curfile IN infiles,
curbufferl N buffers,
curassodN inassocs,
curnamdN innames;
CONNECT (curfile, ASSOCIATE (curassoc,curname), READONLY);
READRECORD (curfile, curbuffer);
OD;

[* associate the output file, create a file for the association  */
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/* and connect an accessto it for output */

ASSOCIATE (outassoc,outname);

CREATE (outassoc);

CONNECT (outfile, outassoc, WRITEONLY);
merge files:

DO FOR EVER

[* determine which file, if any at all, to processnext ~ */
/* ‘flag’ indicates the file */

CASE OUTOFFILE (infiles(FALSE)),OUTOFFILE (infiles(TRUE)F
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(TRUE), (TRUE): [* both files are empty  */
EXIT merge_files;

(TRUE), (FALSE): [* one file is empty */
flag := TRUE;

(FALSE), (TRUE): [* one file is empty */
flag := FALSE;

(FALSE), (FALSE): /* no file is empty */
flag := buffers(FALSE).key>buffers(TRUE).key;

ESAC;
/* output the buffer which currently contains a record with the — */
/* smallest value for ‘key’, fill the buffer with a new record */

WRITERECORD (outfile,buffers(flag));
READRECORD (infiles(flag), buffers(flag));
OD merge_files;

[* delete the input files and close the output file */

*/

DO
FOR curassod N inassocs;

DELETE (curassoc); /* delete the file

DISSOCIATE (curassoc); [* and terminate association */
OD;

DISSOCIATE (outassoc);

END merge_sorted_files;

Read a file with variable length records

variable_length_records:
MODULE

I* This example shows how a file which consists of variable length
/* records can be treated.

I* The file consists of a number of strings of varying length; the

* algorithm will read a string, allocate an appropriate location

[* for it, and put the reference to this location into a push down list

NEWMODE
string =CHARS (80),
link_record =STRUCT (
next_record REF link_record,
string_row ROW string);

DCL
pushdownlist REF link_recordINIT:= NULL,
length INT (1:80),

/* disconnect and terminate */

*/
*/
*
*/
*/
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19 temporaryrow  ROW string,

20 fileaccess string DYNAMIC,

21 association ASSOCIATION;

22 filename CHARS (20) VARYING INIT := "INPUT.DATA";

23 ASSOCIATE (association,filename); [* associate the input file */
24 CONNECT (fileaccess, association, READONLY); [* connect access for input */
25 temporaryrow := READRECORD (fileaccess); /* read the first record */
26 DO /* while not end-of-file */

27 WHILE NOT(OUTOFFILE(fileaccess));

28 pushdownlist := ALLOCATE (link_record, /* get a new link record */
29 [pushdownlist,NULL J); /* and initialize it */
30 length := 1 + UPPER (temporaryrow->); [* determine length of string  */
31 DO

32 WITH pushdowlist->; /* add new string to list */
33 string_row := ALLOCATEQHARS (length), /* allocate space for string */
34 temporaryrow->); /* and fill it */

35 OD;

36 temporaryrow := READRECORD (fileaccess); /* get next record in file */
37 OD;

38 DISSOCIATE (association); /* end the association */
39

40 END variable_length_records;

23. Theuse of spec modules

1 [* The examples 23 and 24 are example 8 divided in two pieces. */

2 letter_count:

3 SPEC MODULE

4 [* This is a spec module for the corresponding module in example 8. */

5 SEIZE max;

6 count:

7 PROC (inputROW CHARS (max)IN, outputARRAY ('A’’Z") INT OUT) END;

8 GRANT count;

9 END letter_count;

10 letter_countREM OTE "example 24",

11 test:

12 MODULE

13 /* This is the module ‘test’ from example 8. */

14 /* It can now be piecewise compiled together with */

15 /* the above spec module */

16 SYNMODE results =ZARRAY ('A’’'Z") INT;

17 DCL cCHARS (10)INIT:= "A-B<ZAA9K' ";

18 DCL output results;

19 SYN max = 10_000;

20 GRANT max;

21 SEIZE count;

22 count (-> ¢, output);

23 ASSERT output = results [(A) : 3, (B, 'K’,’Z") : 1, (ELSE) : 0 ];

24 END test;

24. Example of a context

1 CONTEXT

2 /* This is a context for the module “letter_count” */
3 /* as used in example 23, allowing the piecewise */
4 /* compilation of “letter_count” */

5 SYN max = 10_000;

6 FOR
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letter_count:
MODULE
SEIZE max;
DCL letter POWERSET CHARINIT:=[A’:’Z7;
count:
PROC (inputROW CHARS (max)IN, outputARRAY ('A’’Z") INT OUT);
output := [ELSE) : 0];
DO FOR i :=0 TO UPPER (input ->);
IF input -> (i) IN letter THEN
output (input -> (i)) + :=1;
Fl;
OD;
END count;
GRANT count;
END letter_count;

The use of prefixing and remote modules

[* This example uses the module ‘stack’ from example 27 or 28. *
/* It shows how prefixes can be used to prevent name clashes. */
[* It uses the remote construct to share the source code. */
char_stack:
MODULE

SYNMODE element = CHAR;

GRANT (-> stack ! char) 'ALL;

stack:SPEC REM OTE"example 297;

stack:REMOTE "example 27 or 28 for CHAR”;
END char_stack;

int_stack:
MODULE
SYNMODE element = INT;
GRANT (-> stack !int) IALL;
stack:SPEC REMOTE"example 29”;
stack REMOTE "example 27 or 28 for CHAR”;
END int_stack;
/* Here ‘push’, ‘pop’ and ‘element’ are visible but */
/* with prefixes ‘stack ! char’ and ‘stack ! int’ for */
/* the implementations with element = CHAR and */
/* element = INT, respectively. */
/* Below are some possibilities of using the granted */
/* names inside modules. */
MODULE
SEIZE ALL PREFIXED stack ;
DCL c CHAR;
int! push (123) ;
char ! push ('a’) ;
int 'pop () ;
c:=char!elem(1);
END;

MODULE
SEIZE (stack ! int -> stack) ALL;
stack ! push (345) ;
stack ! pop () ;

END;
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26. Theuseof text i/o

1 textio:

2 MODULE

3

4 /* This example shows the use of the text i/o features. */

5

6 DCL

7 outfile  ASSOCIATION,

8 output  TEXT (80) DYNAMIC,

9 size INT:= 12345,

10 flag BOOL:= FALSE,

11 set SET (a,b,c) := b,

12 sl CHARS (5) := "CHILL",

13 s2 CHARS (5) VARYING:= "text”;

14

15 ASSOCIATE (outfile,"OUTPUT.DATA"); - - associate the output file
16 CREATE (ouftfile); - - create it

17 CONNECT (output,outfile, WRITEONLY); - - then connect text location
18 WRITETEXT (output,”%B%/”,10); --1010

19 WRITETEXT (output,”%C%/",set); --b

20 WRITETEXT (output,”’size = %C%/",size); - - size = 12345
21 WRITETEXT (output,”%CL6%C i/0%/",s1,s2); - - CHILL text i/o
22 WRITETEXT (output,”"flag =%X%C",flag); - - flag = FALSE
23 size := GETTEXTINDEX (output); --12

24 DISSOCIATE (outfile);

25 END textio;

27. A generic stack

1 [* This example implements a generic stack. Please */
2 [* note that the element mode has been left out. */
3 [* The element mode is defined in the surroundings. */
4 [* The context is a virtually introduced context, */

5 /* and it has no source. */

6 CONTEXT REMOTE FOR

7 stack:

8 MODULE

9 SEIZE element;

10 NEWM ODE cell = STRUCT (pred,sucREF cell,info element);
11 DCL p,last,firstREF cell INIT:= NULL;

12

13 push:

14 PROC (e elementEXCEPTIONS (overflow)

15 p := ALLOCATE (cellON (ALLOCATEFAIL):CAUSE overflow;END;
16 IF last = NULLTHEN

17 first := p;

18 last := p;

19 ELSE

20 last -> .succ = p;

21 p -> .pred := last;

22 last := p;

23 FI;

24 last -> .info ;= e;

25 RETURN;

26 END push;

27

28 pop:

29 PROC () EXCEPTIONS (underflow)
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30 IF last = NULL THEN
31 CAUSE underflow;
32 FI;

33 p:= last;

34 last := last -> .pred;

35 IFlast = NULL THEN
36 first := NULL;

37 ELSE

38 last -> .succ := NULL;
39 Fl;

40 TERMINATE (p);

41 RETURN;

42 END pop;

43

44 elem:

45 PROC (i INT) RETURNS (element LOC) EXCEPTIONS (bounds)
46 IF first = NULL THEN
47 CAUSE bounds;

48 FI;

49 p:=first;

50 DOFOR|:=2TOi;
51 IF p->.succ= NULL THEN
52 CAUSE bounds;
53 FI;

54 p:=p-> .succ

55 OD;

56 RETURN p -> .info;
57 END elem;

58

59 GRANT push,pop,elem;
60 END stack;

28. An abstract datatype

1 [* This example implements a stack with the same functionality */
2 [* of example 27, demonstrating how an abstract data type */
3 * can be implemented in two different waysin CHILL. */
4 CONTEXT REMOTE FOR

5 stack:

6 MODULE

7 SEIZE element;

8 SYN max = 10_000, min= 1,

9 DCL stack ARRAY (min: max) element,

10

11 stackindex INT INIT:= min-1;

12 push:

13 PROC (e element) EXCEPTIONS (overflow)

14 | F stackindex = max THEN

15 CAUSE overflow;

16 FI;

17 stackindex +:= 1;

18 stack(stackindex) := €

19 RETURN;

20 END push;

21 pop:

22 PROC () EXCEPTIONS (underflow)

23 | F stackindex = min THEN

24 CAUSE underflow;

25 FI;
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26 stackindex-:= 1;

27 RETURN;

28 END pop;

29

30 eem:

31 PROC (i INT) RETURNS (element LOC) EXCEPTIONS (bounds)
32 IFi<mnORi>max THEN
33 CAUSE bounds;

34 Fl;

35 RETURN stack(i);

36 END elem;

37

38 GRANT push,pop,elem;

39 END stacks;

29. Exampleof a spec module

* This SPEC MODULE defines the interface of examples 27 and 28. */
stack: SPEC MODULE
SEIZE: element;
push: PROC (e element) EXCEPTIONS (overflow) END;
pop: PROC () EXCEPTIONS (underflow) END;
elem: PROC (i INT) RETURNS (element LOC) EXCEPTIONS (bounds) END;
GRANT push,pop,elem;
END stack;

oO~NO UL WNPE
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Appendix E
Decommitted features

The features described in the following are not part of the present Recommendation Z.200, but were part of the
Recommendation Z.200, 1984, Red Book, Volume VI — Fascicle VI.12 and Recommendation Z.200, 1988, Blue Book,
Volume X — Fascicle X.6. In the following a brief description is given; for a complete definition of them, refer to the
relevant sections of the Z.200 1984, that are hereafter mentioned. These features may be supported by an
implementation. If no indication is given, the references are made to Z.200 1984 Recommendation.

1. Freedirective (section 2.6)}

A free directive freed theeserved simple name strings specified in theserved simple name string list so that they
could be redefined.

2. Integer modes syntax (section 3.4.2)

BIN was derived syntax fofNT.

3. Set modeswith holes (section 3.4.5)

A set mode defined a set of named or unnamed values. A set mode was a seitmbdkes, if and only if the number
of its set element names was less than thember of values of the set mode.

4. Procedure modes syntax (section 3.7)

A result spec without the optionateserved simple name strinQETURNS was derived syntax for thesult spec with
RETURNS.

5. String modes syntax (section 3.11.2)

The notatiorCHAR (n) andBIT (n) denoted character strings and bit strings respectively.

6. Array modes syntax (section 3.11.3)

Thereserved simple name stringRRAY was optional.

7. Level structurenotation (section 3.11.5)

A level structure mode was derived syntax for mested structure mode. In the level structure notation the fields were
preceded by a level number. If a structure contained fields that were themselves structures or arrays of structures, a
hierarchy of structures was formed and a level number could be associated with each field. Instead of writing nested
structure modes, it was allowed in tleeel structure mode to write the level number in the front of the field name.

8. Map reference names (section 3.11.6)

Map reference names could be used to specify mapping in an implementation defined way.
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9. Based declarations (section 4.1.4)

A based declaration without a bound or free reference location name was derived syntax for a synmode definition
statement. A based declaration with a bound or free reference location name defined one or more access names. These
names served as an aternative way of accessing a location by dereferencing the reference value contained in the
specified reference location. This dereferencing operation was performed each time and only when an access was made
viaadeclared based name.

10. Character string literals (section 5.2.4.6)

Character string literals were delimited by apostrophe characters. Apart from the printable representation, the
hexadecimal representation could be used. Character string literals of length one served as character literals.

11. Receiveexpressions (Z.200 1988 section 5.3.9)

Receive expressions were used to receive values from buffer locations. The executing process could become delayed and
could re-activate another process, delayed on sending a value to the specified buffer location.

12. Addr notation (section 5.3.8)

ADDR (<location>) was derived syntax for -> <location>.

13. Assignment syntax (section 6.2)

The = symbol was derived syntax for the := symbol.

14. Caseaction syntax (section 6.4)

The range list of a case action could be specified more generally by a discrete mode, and not only by a discrete mode
name.

15. Dofor action syntax (section 6.5.2)

The range in the range enumeration of a do-for action could be specified more generally by a discrete mode, and not
only by a discrete mode name.

16. Explicit loop counters (section 6.5.2)

If an access hame was visible in the reach where the do action was placed, which was equal to one of the names defined
by aloop counters, then the loop counter was explicit; otherwise it was implicit. In the former case, the value of the
loop counter was stored into the denoted location just prior to abnormal termination. A distinction was made between
normal and abnormal termination. Normal termination occurred if the evaluation of at least one of the loop counters
indicated termination. Abnormal termination occured if the evaluation of while condition delivered FALSE or if the do
action was |eft by atransfer of control out of it.
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17. Call action syntax (section 6.7)

The reserved simple name string CAL L was optional. A call action with CALL was derived from a call action without
CALL.

18. RECURSEFAIL exception (section 6.7)

The RECURSEFAIL exception was caused when a non-r ecur sive procedure called itself recursively.

19. Start action syntax (section 6.13)

The start action with the SET option was derived syntax for the single assignment action:
<instance location> ;= <start expression>

20. Explicit value receive names (section 6.19)

A receive signal case action and a receive buffer case action could introduce value r eceive names. |If a name was visible
in the reach where the receive signal case action was placed, which was equal to one of the names introduced after IN,
then the value receive name was explicit; otherwise it was implicit. In the former case, the received value was stored
into the denoted location immediately before the execution of the action statement list.

21. Blocks (section 8.1)

Theif action, case action, do action and delay case action were not defined to be blocks.

22. Entry statement (section 8.4)

A procedure could have multiple entry points by means of entry statements. These statements were considered to be
additional procedure definitions. The defining occurrence in the entry statement defined the name of the entry point in
the procedure in which reach it was placed. The entry point was determined by the textual position of the entry
statement.

23. Register names (section 8.4)

Register specification could be given in the formal parameter of the procedure and in the result spec. In the pass by value
case, it meant that the actual value was contained in the specified register; in the pass by location case, it meant that the
(hidden) pointer to the actual location was contained in the specified register. If the specification was in the result spec it
meant that the returned value or the (hidden) pointer to the returned location was contained in the specified register.

24. Recursive attribute (Z.200 1988 section 10.4)

The recursivity of procedures was an implementation default, unless the attribute RECURSIVE was specified in a
procedure attribute list.
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25. Quasi cause statements and quasi handlers (section 8.10.3)

Quasi cause statements indicated the presence of cause statements in remote modules or remote regions directly enclosed
in the reach directly enclosing the reach of the spec module or spec region in which the quasi cause statement was
placed. Quasi handlers indicated the presence of a handler in the program, reachable from the module, region or context
directly enclosed in the context to which the quasi handler was appended.

26. Syntax of quasi statements (Z.200 1988 section 10.10.3)

Quasi procedure and process definition statements were terminated by an END <simple name string>.

27. Wesakly visible names and visibility statements (Z.200 1988 section 12.2.1)

A name string which was not strongly visible in areach was said to be weakly visible in it if it was implied by a name
string which was strongly visible in the reach. The name string in the reach was linked to implied defining
occurrences. If they did not define the same set element of similar set modes, a weak clash occurred, otherwise the
name string was bound to them. Section 12.2.4 defined the implied defining occurrences for names.

28. Weakly visible names and visibility statements (section 10.2.4.3)

A name string NS weakly visible in reach R was said to be seizable by modulion M directly enclosed in R if NS was
linked in R to a defining occurrence not surrounded by the reach of M. A name string NS weakly visible in reach R of
modulion M was said to be grantable by M if NSwaslinked in R to a defining occurrence surrounded by R.

29. Pervasiveness (section 10.2.4.4)

When a grant statement contained (DIRECTLY) PERVASIVE, al name strings granted by it had the (directly)
pervasive property in the surrounding reaches of the modulion M that directly enclosed the grant statement. The name
strings:

» werestrongly visiblein adirectly surrounding reach S of M;

* in case the name strings had the directly pervasive property in S, they had also the directly pervasive property
inM;

 if they were not directly strongly visible in areach R and were strongly visible in a reach that directly enclosed
R and where they had the pervasive property, than they were indirectly strongly visible in R and had also the
pervasive property in R.

30. Seizing by modulion name (section 10.2.4.5)

If aprefix rename clause in a seize statement had a sei ze postfix which contained a modulion name string and AL L, then
the prefix rename clause was equivalent to a set of seize statements, for any name string that was strongly visible in the
reach that directly enclosed the modulion in which the seize statement was placed and was seizable by this modulion,
and was granted by the modulion attached to the modulion name in the reach directly enclosing the modulion in which
the sei ze statement was placed.

31. Predefined simple name strings (section C.2)

AND, NOT, OR, REM, MOD, THIS and XOR were predefined simple nhame strings.
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Appendix F
Index of production rules

non-terminal defining section used on

section page page(s)
<absolute time built-in routine call > 9.4.2 116 115
<absolute time mode > 3.12.3 27 27
<absolute timing action > 932 115 114
<access attr built-in routine call > 7.4.8 100 95
<access mode > 3113 26 25
<access name > 422 40 40
<action > 6.1 70 70
<action statement > 6.1 70 119
<action statement list > 10.2 119 72,73, 82,84, 85,112, 114, 115, 119
<actual parameter > 6.7 78 78
<actual parameter list > 6.7 78 60, 78
<allocate built-in routine call > 6.20.4 91 87
<alternative field > 3.134 31 30
<arithmetic additive operator > 536 65 65, 71
<arithmetic multiplicative operator > 537 66 66, 71
<array element > 4.2.8 44 40
<array mode > 3.13.3 29 28
<array dlice > 4.2.9 44 40
<array tuple > 525 53 53
<assert action > 6.10 80 70
<assigning operator > 6.2 70 70
<assignment action > 6.2 70 70
<assignment symbol > 6.2 71 38, 39, 70, 74
<associate built-in routine call > 7.4.2 95 95
<associate parameter > 74.2 96 96
<associate parameter list > 742 96 95
<association attr built-in routine call > 7.4.4 96, 95
<association mode > 3.11.2 25 25
<begin-end block > 10.3 122 70
<begin-end body > 10.2 119 122
<binary bit string literal > 5249 52 52
<hinary integer literal > 5.24.2 49 49
<bit string literal > 5249 52 49
<boolean literal > 5244 50 49
<boolean mode > 34.3 17 17
<bound reference mode > 3.7.2 22 22
<bracketed action > 6.1 70 70
<bracketed comment > 24 9 9
<buffer element mode > 3.10.3 25 25
<buffer length > 3.10.3 25 25
<buffer mode > 3.10.3 25 24
<buffer receive alternative > 6.19.3 85 85
<built-in routine call > 6.7 78 46, 60, 78
<built-in routine parameter > 6.7 78 78
<built-in routine parameter list > 6.7 78 78
<call action > 6.7 78 70
<case action > 6.4 72 70
<case alternative > 6.4 72 72
<case label > 12.3 152 151
<caselabdl list > 12.3 151 53,151
<case label specification > 12.3 151 31,62, 72
<case selector list > 6.4 72 62, 72
<cause action > 6.12 81 70
<character > 2.2 8 9, 51, 52, 105, 106
<character literal > 5245 51 49
<character mode > 344 17 17
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<character string > 24 9 9
<character string literal > 5248 52 49, 127
<CHILL built-in routine call > 6.20 86

<CHILL location built-in routine call > 6.20.2 87, 86
<CHILL simple built-in routine call > 6.20.1 87 86
<CHILL value built-in routine call > 6.20.3 87 86
<clause width > 755 106 106, 109
<closed dyadic operator > 6.2 71 70
<comment > 24 9

<composite mode > 3131 28 16
<composite object > 6.5.2 74 74
<conditional expression > 532 62 62
<connect built-in routine call > 7.4.6 97 95
<context > 10.10.2 129 129
<context body > 10.2 119 127,129
<context list > 10.10.2 129 125, 126, 128, 129
<context module > 10.10.1 127 70
<continue action > 6.15 81 70
<control code > 754 105 105
<control part > 6.5.1 73 73
<control sequence > 5245 51 51, 52
<conversion clause > 755 106 105
<conversion code > 755 106 106
<conversion qualifier > 755 106 106
<cyclic timing action > 9.33 115 114
<data statement > 10.2 119 119
<data statement list > 10.2 119 119
<day expression > 9.4.2 116 116
<day location > 943 117 117
<decimal integer literal > 5.24.2 49 49
<declaration > 411 38 38
<declaration statement > 411 38 119
<defining mode > 321 14 14
<defining occurrence > 2.7 10 10, 70, 74, 85, 122, 124, 125, 126, 130, 135
<defining occurrencelist > 2.7 10 14, 38, 39, 47, 84, 122, 130
<definition statement > 10.2 120 119
<delay action > 6.16 82 70
<delay alternative > 6.17 82 82
<delay case action > 6.17 82 70
<dereferenced bound reference > 423 41 40
<dereferenced free reference > 424 41 40
<dereferenced row > 425 42 40
<digit > 22 8 8, 49, 105, 106
<digit sequence > 5242 49 49, 50
<directive > 2.6 10 10
<directive clause > 2.6 10

<disconnect built-in routine call > 747 99 95
<discrete mode > 34.1 17 16
<discrete range mode > 3.4.6 19 17
<dissociate built-in routine call > 7.4.3 96 95

<do action > 6.5.1 73 70
<duration built-in routine call > 94.1 116 115
<duration mode > 3122 27 27
<editing clause > 75.6 109 105
<editing code > 7.5.6 109 109
<element layout > 3135 34 29
<element mode > 3.13.3 29 29

<else alternative > 5.3.2 62 62

<else clause > 6.3 72 72
<emptiness literal > 5.24.7 52 49
<empty > 6.11 81 81, 120, 127, 130, 147
<empty action > 6.11 81 70
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<end bit >

<end value >
<end-of-line >
<event length >
<event list >
<event mode >
<exception list >
<exception name >
<exit action >
<exponent >
<exponent width >
<exponentiation operator >
<expression >

<expression conversion >
<expression list >

<field >

<field layout >

<field name >

<field name defining occurrence >
<field name defining occurrence list >
<field namelist >

<first element >

<fixed field >

<float value range >

<floating point literal >
<floating point mode >
<floating point range mode >
<for control >

<forbid clause >

<forbid namelist >

<formal parameter >

<formal parameter list >
<format argument >

<format clause >

<format control string >
<format element >

<format specification >
<format text >

<fractional width >

<free reference mode >
<generality >

<gettext built-in routine call >
<goto action >

<grant postfix >

<grant statement >

<grant window >

<handler >

<hexadecimal bit string literal >
<hexadecimal digit >
<hexadecimal integer literal >
<hour expression >

<hour location >

<if action >

<implementation directive >
<index expression >

<index mode >

<initialisation >
<input-output mode >
<instance mode >

3.135
6.5.2
24
3.10.2
6.17
3.10.2
3.8
2.7
6.6
5243
7.5.5
539
532

5211
4.2.8
3.134
3.135
2.7

2.7

2.7
525
4.2.9
3.134
352
5243
351
352
6.5.2
12234
12234
104
10.4
7.5.3
754
754
754
754
754
755
3.7.3
10.4
7.5.8
6.9
12.2.34
12234
12234
8.2
5249
5242
5242
94.2
9.4.3
6.3

2.6
7.4.6
3113
412
3111
3.9

74

24
82
24
23
11
77
50
106
67
62

59

30
34, 37
10
10
11
53

31
20
50
20
20
74
148
149
122
122
103
105
105
105
105
105
106
22
122
110
80
148
148
148
112
52
49
49
116
117
72
10
98
26
38
25
24
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34,35
74

24

82

24

23, 112, 122, 124, 130
23,81

70

50

106

67

18, 19, 20, 21, 24, 25, 26
42,43, 44, 51, 53, 59, 61
76, 80, 82, 87, 88, 91, 97
116, 130, 152

47
37,44,57,87,91
30

31

31, 45, 53, 58, 149
11

31

53

44, 57

30

20,21

49

20

20

73

148

148

122

122, 124

103

105

105

105

105

105

106

22

122

95

70

147, 148

147

148

38, 39, 70, 122, 124, 125, 126
52

49, 52

49

116

117

70

97, 100, 103
26,29

38

16

16
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<integer literal > 5242 49 49

<integer mode > 34.2 17 17

<io clause > 757 109 105

<io code > 75.7 109 109

<iolist > 753 103 103

<iolist element > 75.3 103 103

<io location built-in routine call > 7.4.1 95 87

<io simple built-in routine call > 74.1 95 87

<io value built-in routine call > 74.1 95 87

<irrelevant > 12.3 152 151

<isassociated built-in routine call > 7.4.2 95 95

<iteration > 6.5.2 74 74

<labelled array tuple > 525 53 53

<labelled structure tuple > 525 53 53

<left element > 427 43 43, 56

<length > 3.135 34 34

<length argument > 6.20.3 88 87

<letter > 2.2 8 8

<lifetime-bound initialisation > 41.2 38 38

<line-end comment > 2.4 9 9

<literal > 5.24.1 49 47

<literal expression list > 3134 31 31

<literal range > 3.4.6 19 19, 20, 26, 51, 152

<location > 421 40 39, 42, 43, 44, 45, 46, 48, 69, 70, 74, 77, 78,
79, 81, 82, 84, 85, 87, 88, 95, 96, 97, 100,
103, 110, 117

<location argument > 753 103 103

<location built-in routine call > 4212 46 40

<location contents > 5.2.2 48 47

<location conversion > 4213 46 40

<location declaration > 412 38 38

<location enumeration > 6.5.2 74 74

<location list > 6.19.2 84 84

<location procedure call > 4211 45 40

<loc-identity declaration > 413 39 38

<loop counter > 6.5.2 74 74,75

<lower bound > 3.4.6 19 19, 26, 27, 30

<lower element > 429 44 44, 57

<lower float bound > 35.2 20 20

<member mode > 3.6 21 21

<member ship operator > 535 64 64

<minute expression > 94.2 116 116

<minute location > 9.4.3 117 117

<mode > 33 16 14, 22, 23, 25, 26, 29, 31, 38, 39, 47, 75,
123,130, 135

<mode argument > 6.20.3 87 87,91

<mode definition > 321 14 15

<modification built-in routine call > 745 97 95

<modify parameter > 745 97 97

<modify parameter list > 745 97 97

<module > 10.6 125 70, 126

<module body > 10.2 119 125

<module spec > 10.10.2 128 128

<monadic operator > 539 68 68

<month expression > 9.4.2 116 116

<month location > 9.4.3 117 117

<multiple assignment action > 6.2 70 70

<name > 2.7 10 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28,
29, 30, 31, 40, 41, 42, 46, 48, 50, 51, 52, 53,
59, 60, 61, 72, 74, 77, 78, 80, 83, 84, 87, 88,
91, 135, 152

<name string > 2.7 10 10, 148, 150
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<new prefix >

<newmode definition statement >
<non-composite mode >
<numbered set element >
<numbered set list >

<numeric expression >

<octal bit string literal >
<octal digit >

<octal integer literal >

<old prefix >

<on-alternative >

<operand-0 >

<operand-1 >

<operand-2 >

<operand-3 >

<operand-4 >

<operand-5 >

<operand-6 >

<operand-7 >

<operator-3 >

<operator-4 >

<origin array mode name >
<origin string mode name >
<origin variant structure mode name >
<parameter attribute >
<parameter list >

<parameter spec >
<parameterised array mode >
<parameterised string mode >
<parameterised structure mode >
<parenthesised clause >
<parenthesised expression >
<percent >

<piece designator >

<pos >

<postfix >

<powerset difference operator >
<powerset enumeration >
<power set inclusion operator >
<powerset mode >

<power set tuple >

<prefix >

<prefix clause >

<prefix rename clause >
<prefixed name string >
<primitive value >

<priority >

<proc body >

<procedure attribute list >
<procedure call >

<procedure definition >
<procedure definition statement >
<procedure mode >

<process body >

<process definition >

<process definition statement >
<program >

<quas data statement >

<quasi declaration >

<quasi declaration statement >
<quasi definition statement >

12.2.33
323
3.3
345
345
6.20.3
5.24.9
5242
524.2
12.2.33
8.2
533
534
535
5.3.6
537
539
539
5.3.10
535
536
3.13.3
3.13.2

38

3.8

3.8
3.13.3
3.13.2
3.134
754
5.2.17
754
10.10.1
3.135
12.2.3.3
536
6.5.2
535
3.6
525
2.7
12234
12.2.33
2.7
521

6.16
10.2
104
6.7
10.4
10.4
38
10.2
10.5
10.5
10.8
10.10.3
10.10.3
10.10.3
10.10.3

147
15
16
18
18
87
52
49
49
147
112
63
63

65
66
67
68
69

65
29
28
3.134
23
23
23
29
28
31
105
61
105
127

147
65
74

21
53
10
148
147
10
47

82

119
122
78

122
122
23

119
124
124
126
129
130
130
130
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147

120, 130
16

18

18

87

52

49, 52
49

147

112

62, 63

63

63, 64
64, 65
65, 66
66, 67

67

68

64

65

29, 36
28, 29, 36
31, 31, 37
23
23,124
23,122, 124, 130
29

28

30

105

47

105

127

34, 35, 140
147

65, 71
74

64

16

53

10, 147, 148, 150
148, 150
148, 150
10,11

41, 42, 56, 57, 58, 69, 77, 78, 83, 91, 114,

115, 117
82, 83, 84
122
122,130
45, 60, 78
122

120

16

124

124

120

119
130
129
129
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<quasi formal parameter >
<quasi formal parameter list >
<quasi location declaration >
<quasi loc-identity declaration >
<quasi procedure definition statement >
<quasi process definition statement >
<quasi signal definition >
<quasi signal definition statement >
<quasi synonym definition >
<quasi synonym definition statement >
<quote >

<range >

<range enumeration >
<rangelist >

<reach-bound initialisation >
<readrecord built-in routine call >
<real mode >

<receive buffer case action >
<receive case action >

<receive signal case action >
<record mode >

<reference mode >

<referenced location >
<referenced mode >

<region >

<region body >

<region spec >

<relational operator >

<relative timing action >
<remote context >

<remote modulion >

<remote spec >

<repetition factor >
<representation conversion >
<result >

<result action >

<result attribute >

<result spec >

<return action >

<right element >

<row mode >

<second expression >

<second location >

<seize postfix >

<sgize statement >

<seize window >

<send action >

<send buffer action >

<send signal action >

<set element >

<set element name >

<set element name defining occurrence >
<set list >

<set literal >

<set mode >

<settext built-in routine call >
<signal definition >

<signal definition statement >
<signal receive alternative >
<signed floating point literal >
<signed integer literal >
<significant digits >
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10.10.3
10.10.3
10.10.3
10.10.3

10.10.3
10.10.3
10.10.3
10.10.3

5248
525
6.5.2
6.4
41.2
749
3.5
6.19.3
6.19.1
6.19.2
3113
371
5.3.10
3.7.2
10.7
10.2
10.10.2
535
931
10.10.1
10.10.1
10.10.1
754
5212
6.8

6.8

38

38

6.8
4.2.7
3.74
94.2
9.4.3
12.2.35
12.2.35
12.2.35
6.18.1
6.18.3
6.18.2
345
2.7

345
54.2.6
345
758
115
115
6.19.2
5243
5242
3.5.2

130
130
130
130
10.10.3
130
130
130
130
10.10.3
52

53

74

72

38

100

20

85

26
22
69
22
126
119
129

114
127
127
127
105
59
79
79
23
23
79

23

116
117
150
150
150
83

83
18
10
2.7
18
51
18
110
135
135

50
49
21

130

130

130

130
130, 130
130

130

130

130
130, 130
52

53

74

72

38

95

16

84

70

84

26

16

69

22

119, 126
126

128

64

114

129
125, 126
128

105

47

79

70

23
23,122,124, 130
70

43, 56
22

116

117
147, 150
147

150

70

83

83

18

10, 18
18

49

17

95
135
120, 130
84
50, 68
49, 68
20,21



<simple name string >

<simple prefix >

<simple spec module >

<simple spec region >

<single assignment action >
<dicesize>

<spec module >

<spec module body >

<spec region >

<spec region body >

<start action >

<start bit >

<start element >

<start expression >

<start value >

<step >

<step enumeration >

<step size>

<step value >

<stop action >

<store location >

<string concatenation operator >
<string element >

<string length >

<string mode >

<string repetition operator >
<string slice >

<string type >

<structurefield >

<structure mode >

<structure tuple >

<sub expression >

<sub operand-0 >

<sub operand-1 >

<sub operand-2 >

<sub operand-3 >

<sub operand-4 >

<sub operand-5 >
<synchronisation mode >
<synmode definition statement >
<synonym definition >
<synonym definition statement >
<taglist >

<terminate built-in routine call >
<text argument >

<text built-in routine call >
<text io argument list >

<text length >

<text mode >

<text reference name >

<then alternative >

<then clause >

<time value built-in routine call >
<timing action >

<timing handler >

<timing mode >

<timing simple built-in routine call >
<transfer location >

<tuple >

<undefined value >

<unlabelled array tuple >

2.2

2.7
10.10.2
10.10.2
6.2
4.2.7
10.10.2
10.2
10.10.2
10.2
6.13
3.135
4.2.6
5.2.15
6.52
3.135
6.5.2
3.135
6.5.2
6.14
749
536
4.2.6
3.13.2
3.13.2
539
4.2.7
3.13.2
4.2.10
3134
525
532
533
534
535
536
537
539
3.10.1
322
51
51
3134
6.20.4
753
753
753
3114
3114
2.7
532
6.3
94
9.3
931
3121
9.4.3
7.4.6
525
531
525

10
128
129
70
43
128
119
128
119
81

42
60
74

74

74
8l
100
65
42
28
28
68

28

30
53
62
63
63

65
66
67
24
15
a7
a7
31
91
103
103
103
26
26
11
62
72
115
114
114
27
117
97
53
61
53
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10, 11, 70, 122, 124, 125, 126, 127, 128,

129, 130
10

128

128

70

43, 44, 56, 57
70, 119, 126
128
119, 126
129

70

34, 35, 140
42, 43, 56
47,81
74

34

74

34, 35, 140
74

70

100
65, 71
40

28, 29
28

68

40

28, 29
40

28

53

62

63

63

64

65

66

67

16

120, 130
47

120, 130
31

87

103

95

103

26

25

127

62

72

87

70

114, 115
16

87

97, 99, 100
47

61

53
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<unlabelled structure tuple >
<unnumbered set list >
<unsigned floating point literal >
<unsigned integer literal >
<upper bound >

<upper element >

<upper float bound >
<upper index >

<upper lower argument >
<usage expression >

<value >

<value argument >

<value array element >
<value array slice >

<value built-in routine call >
<value case alternative >
<value enumeration >
<value name >

<value procedure call >
<value string element >
<value string slice >

<value structure field >
<variant alternative >
<variant field >

<visibility statement >
<where expression >

<while control >

<with control >

<with part >

<word >

<write expression >
<writerecord built-in routine call >
<year expression >

<year location >

<zero-adic operator >

200 I TU-T Rec. Z.200 (1993 E)

525
345
5243
5.24.2
346
4.2.9
352
3.133
6.20.3
7.4.6
531
7.5.3
528
529
5214
532
6.5.2
523
5213
526
527
5210
3.134
3.134
12.2.3.2
7.4.6
6.5.3
6.5.4
6.5.4
3.135
749
749
94.2
9.4.3
5.2.16

53
18
50
49
19

21
29
87
97
61
103
57
57
60
62
74
48
60
56
56
58
31
31
147
98
76
77
77

100
100
116
117
61

53

18

50

49

19, 26, 27, 30
44, 57
20

29

87

97
38, 47,53, 70, 78, 79, 83, 84, 91, 96, 97, 130
103
47

47

47

62

74

47

47

47

47

47

31

31
119
97

73

77

73
34,35
100
95
116
117
47



| SO/IEC 9496 : 1995 (E)

INDEX

Page numbers in boldface are references to the defining occurrences of an item; norma font refers to applied

occurrences of indexed items

— A—

ABS, 67, 87, 88, 89, 90, 161

absolute time built-in routine call, 116

absolute time built-in routine call, 115, 116

absolute time mode, 2, 27, 139, 142, 153, 154, 157

absolute time mode, 27

absolute time mode name, 27, 153

absolute time primitive value, 115, 117, 154

absolute timing action, 114, 115, 118

absolute value, 88

ABSTIME, 116, 161

access, 2, 5, 13, 31, 34, 38, 39, 40, 77, 94, 110, 126,
132

ACCESS, 26, 27, 160

access attr built-in routine call, 95, 100

access attribute, 95

access location, 93, 94, 95, 96, 98, 99, 100

access location, 51, 88, 89, 90, 95, 98, 99, 100, 101,
102, 110, 111, 154

access mode, 4, 26, 90, 95, 137, 139, 141, 143, 153,
154

access mode, 25, 26

access mode, 27, 99, 103, 104, 110, 111, 139, 142

access mode name, 88, 89, 90, 153

access name, 2, 39, 40, 77, 133, 154

access reference, 99, 103, 110

access sub-location, 27, 39, 98, 103, 110

access values, 95

action, 1, 3, 4,5, 6, 9, 70, 75, 104, 107, 112, 113, 114,
118, 120, 121, 122, 124, 132, 135, 157

action statement, 1, 70, 80, 112, 119, 125, 132

action statement, 70, 114, 115

action statement list, 72, 73, 75, 76, 112, 113, 115, 121,
152

action statement list, 72, 82, 85, 86, 112, 114, 115, 118,
119, 120

activation, 79, 126, 132

active, 5, 117, 132, 133, 135

actual index, 103, 104, 105, 106, 108, 109, 110

actual length, 27, 28, 42, 43, 56, 57, 63, 64, 71, 76,
106, 108, 109, 110

actual parameter, 60, 61, 78, 123, 132

actual parameter, 54, 61, 78, 79, 157

actual parameter list, 78

actual parameter list, 61, 78

AFTER, 114, 160

alike, 14, 131, 138, 141, 142

ALL, 127, 148, 149, 150, 160

all class, 13, 33, 61, 131, 134, 137, 145, 152, 153

ALLOCATE, 2, 4, 54, 91, 92, 126, 161

allocate built-in routine call, 87, 91

allocated reference value, 92, 126

ALLOCATEFAIL, 92, 161

aternativefield, 55, 152

alternative field, 31, 32, 33, 36, 140, 142, 152

AND, 63, 64, 71, 160

ANDIF, 63, 64, 160

applied occurrence, 5, 11, 119, 145

ARCCOS, 87, 89, 90, 91

ARCSIN, 87, 89, 90, 91

ARCTAN, 87, 89, 90, 91

arithmetic additive operator, 65

arithmetic additive operator, 65, 66, 71

arithmetic multiplicative operator, 66

arithmetic multiplicative operator, 66, 67, 71

ARRAY, 29, 34, 160

array element, 34, 44, 152

array element, 40, 44, 51, 57, 127, 133

array expression, 75, 76, 89, 90, 154

array location, 23, 30, 44, 75, 76

array location, 44, 45, 57, 74, 75, 76, 88, 89, 90, 127,
133, 154

array mode, 16, 30, 34, 35, 36, 42, 54, 101, 136, 137,
139, 140, 142, 143, 144, 153, 154

array mode, 28, 29, 30, 51, 155

array mode, 23, 155

array mode name, 30, 87, 89, 90, 91, 153

array primitive value, 57, 58, 134, 154

array dice, 35, 44

array slice, 40, 44, 45, 51, 57, 127, 133

array tuple, 53, 153

array tuple, 53, 54, 55, 56

array value, 30, 53, 57, 58, 101

ASSERT, 80, 160

assert action, 4, 80

assert action, 70, 80

ASSERTFAIL, 80, 161

assigning operator, 71

assigning operator, 70, 71

assignment action, 3, 71, 133

assignment action, 70

assignment conditions, 39, 56, 61, 63, 71, 79, 83, 84,
85, 86, 92, 102

assignment symbol, 71

assignment symbol, 38, 39, 70, 71, 74

ASSOCIATE, 4, 25, 93, 95, 96, 161

associate built-in routine call, 95

associate parameter, 96, 157

associate parameter list, 95, 96

ASSOCIATEFAIL, 96, 157, 161

association, 2, 4, 25, 26, 38, 39, 93, 94, 95, 96, 97, 98,
99, 100, 103, 137, 157

ASSOCIATION, 25, 100, 161

association attr built-in routine call, 95, 96

association attribute, 94

association location, 93, 94, 95, 96, 100

association location, 95, 96, 97, 98, 99, 154

association mode, 4, 25, 94, 137, 139, 141, 153, 154

association mode, 25

association mode name, 25

association mode name, 25, 153
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association value, 94, 157
AT, 115, 160

—B—

Backus-Naur Form, 7

baseindex, 4, 94, 98

BEGIN, 122, 160

begin-end block, 3, 4, 121, 122

begin-end block, 70, 118, 120, 122

begin-end body, 119, 122

BIN, 19, 20, 160

binary bit string literal, 52, 53

binary integer literal, 49

binding rules, 8, 11, 12, 146

bit string, 28, 63

bit string literal, 52, 53

bit string literal, 49, 52, 53, 68, 69

bit string value, 28, 52, 63, 65, 68, 108

block, 1, 48, 76, 113, 118, 119, 120, 121, 124, 125,
126, 127, 129, 132, 146, 147

BODY, 125, 126, 160

BOOL, 17, 28, 31, 50, 64, 66, 96, 100, 110, 144, 161

boolean expression, 76

boolean expression, 62, 72, 80, 154

boolean literal, 50

boolean literal, 49, 50

boolean literal name, 50, 154

boolean literal names, 50

boolean mode, 17, 138, 141, 153, 154

boolean mode, 17

boolean mode name, 17

boolean mode name, 17, 153

boolean value, 28, 50, 63, 64, 68, 94, 108

BOOLS, 28, 53, 65, 68, 160

bound, 11, 12, 129, 131, 143, 146, 148, 149, 150, 151,
154

bound reference, 2, 22

bound reference mode, 22, 138, 140, 141, 143, 144,
145, 153, 154, 155

bound reference mode, 22

bound reference mode name, 22, 153

bound reference primitive value, 41, 133, 154

bracketed action, 3, 77, 112

bracketed action, 70

bracketed comment, 9

buffer, 5, 23, 38, 83, 84

BUFFER, 25, 160

buffer element mode, 25

buffer element mode, 25, 54, 84, 86, 139, 141, 143

buffer length, 25, 84, 89, 139, 141

buffer length, 25

buffer location, 25, 84, 86, 89

buffer location, 54, 84, 86, 90, 154

buffer mode, 2, 25, 137, 139, 141, 143, 153, 154

buffer mode, 24, 25

buffer mode name, 88, 90, 153

buffer receive alternative, 85, 86, 118, 119, 120
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built-in routine call, 2, 3, 4, 46, 54, 78, 89, 90, 91, 92,
96, 100, 101, 102, 104, 105, 106, 110, 116,
126, 156

built-in routine call, 78, 87, 88, 89, 156

built-in routine name, 86, 156

built-in routine name, 78, 154

built-in routine parameter, 78, 95

built-in routine parameter list, 78

BY, 74, 160

—C—

call action, 78, 123

call action, 70, 78, 79

canonical namestring, 11, 145

CARD, 87, 88, 89, 90, 161

carriage placement, 109

CASE, 31, 62, 63, 72, 84, 85, 86, 160

case action, 3, 33, 63, 72, 152, 153

case action, 51, 70, 72, 118, 120, 152

case dternative, 72

case alternative, 72, 118, 152

case label, 54, 152

caselabel, 51, 73, 152, 153

case label list, 53, 72, 152

case label list, 53, 54, 73, 140, 142, 151, 152, 153

case labdl specification, 31, 72, 152, 153

case label specification, 31, 32, 33, 62, 72, 151, 152,
153

case selection, 152

case selection conditions, 33, 54, 63, 72

case selector list, 72

case selector list, 51, 62, 72, 73

CAUSE, 81, 160

cause action, 3, 81, 112

cause action, 70, 81

cause actiton, 4

change-sign, 68

CHAR, 18, 28, 51, 66, 161

character, 2,7, 8, 9, 10, 11, 18, 51, 52, 65, 103, 105,
106, 107, 108, 109, 110

character, 8, 9, 51, 106, 155

character literal, 18, 51

character literal, 49, 51

character mode, 18, 138, 153

character mode, 17

character mode name, 18

character mode name, 17, 153

character set, 8, 9, 10, 18, 51, 158

character string, 28, 65, 104, 106, 108

character string, 9

character string expression, 103, 104, 155

character string literal, 9, 52

character string literal, 49, 52, 68, 69, 127, 128

character string location, 103, 104, 110, 111, 154

character string mode, 154, 155

character string value, 28, 52, 108

CHARS, 27, 28, 52, 65, 68, 160

CHILL, 1,2,3,4,5,6,7,8,9, 10, 13, 18, 24, 25, 26,
27,46, 51, 59, 61, 70, 78, 86, 93, 94, 95,



101, 102, 103, 105, 106, 107, 114, 117, 126,
127, 128, 130, 132, 133, 134, 154, 156, 158

CHILL built-in routine call, 78, 86

CHILL location built-in routine call, 86, 87

CHILL simple built-in routine call, 86, 87

CHILL value built-in routine call, 86, 87, 88

class, 2, 3,5, 7,13, 14, 19, 21, 26, 30, 33, 39, 44, 45,
47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58,
59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71,
73,76, 77,78, 79, 80, 83, 84, 85, 86, 88, 89,
90, 91, 92, 96, 97, 99, 100, 101, 102, 104,
108, 110, 116, 131, 134, 137, 139, 142, 143,
145, 146, 151, 152, 153, 154, 155, 156

clause width, 104, 106, 108, 109, 110

closed dyadic operator, 71

closed dyadic operator, 70, 71

closest surrounding, 77, 80, 126

comment, 9, 11

comment, 9

compatibility relations, 137, 138

compatible, 14, 19, 30, 33, 39, 44, 45, 47, 54, 55, 57,
58, 59, 62, 63, 64, 65, 66, 67, 71, 73, 76, 78,
79, 80, 83, 84, 90, 92, 99, 101, 102, 104,
137, 139, 142, 145, 153, 154, 155

complement, 68

complete, 54, 73, 152

component mode, 15, 29, 43, 57, 76

composite mode, 2, 28

composite mode, 16, 28, 155

composite object, 74, 75, 76

composite value, 28, 30, 31, 62

concatenation, 9, 11, 28, 65

concurrent execution, 5, 124, 126, 132

conditional expression, 152, 153

conditional expression, 51, 62, 63, 134, 152

conjunction, 63

CONNECT, 4, 93, 97, 98, 99, 161

connect built-in routine call, 95, 97

connect operation, 26, 94, 95, 98, 101

connected, 4, 26, 38, 39, 94, 95, 96, 98, 99, 100, 102,
103, 109

CONNECTFAIL, 99, 157, 161

consistency, 33, 36, 63

consistent, 153

constant, 3, 8, 23, 36, 37, 48, 49, 50, 51, 52, 53, 54,
55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67,
68, 69, 89, 90, 91, 106, 127, 130, 155, 157

constant classes, 13

constant value, 3, 47, 49, 157

constant value, 14, 38, 39, 47, 54, 130, 134, 155

context, 1, 2, 3, 5, 8, 51, 52, 54, 61, 62, 63, 78, 132,
133, 135, 140, 142, 151, 152, 156

context, 118, 121, 129, 130, 131, 150, 151

CONTEXT, 127, 129, 160

context body, 119, 127, 128, 129

context list, 118, 125, 126, 128, 129

context module, 70, 127, 128

CONTINUE, 81, 160

continue action, 5, 24, 81, 82, 135

continue action, 70, 81

control code, 104, 105

control part, 73, 121
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control part, 73

control sequence, 51, 52

conversion clause, 104, 105, 106

conversion code, 107

conversion code, 104, 105, 106, 107, 108

conversion qualifier, 104, 106, 107, 108

corresponding, 129, 131, 147, 151

COsS, 87, 89, 90, 91

CREATE, 97, 161

created, 2, 11, 24, 25, 27, 38, 39, 60, 91, 92, 93, 94, 96,
103, 118, 119, 120, 122, 126, 132, 145

CREATEFAIL, 97, 157, 161

critical, 121, 124, 131, 132, 133, 134, 135

critical procedure name, 132

current index, 94, 98, 100, 101

CYCLE, 115, 160

cyclic timing action, 114, 115

cyclictiming action, 114, 115, 118

—D—

data statement, 1, 3, 112, 113, 120

data statement, 119

data statement list, 119

datatransfer state, 4, 93, 94

day expression, 116

day location, 117

DAYS 116, 161

DCL, 38, 75, 123, 130, 160

decimal integer literal, 49

declaration, 1, 31, 38, 119, 122, 126, 133, 149

declaration, 38, 118

declaration statement, 2, 38, 112

declaration statement, 38, 119

defined value, 3, 132

defining mode, 13, 14, 15

defining mode, 14

defining mode, 14, 15, 19, 21, 29, 98, 151

defining occurences, 148

defining occurrence, 5, 11, 12, 77, 129

defining occurrence, 10, 11, 12, 14, 15, 16, 18, 38, 39,
47,70, 74, 76, 77, 85, 86, 118, 119, 121,
122, 123, 124, 125, 126, 128, 130, 131, 135,
145, 146, 147, 148, 149, 150, 151, 154

defining occurrencelist, 10, 14, 38, 39, 47, 84, 85, 118,
119, 122, 124, 130

definition statement, 120

definition statements, 1

DELAY, 82, 114, 115, 160

delay action, 24, 82, 135

delay action, 70, 82

delay alternative, 82, 118

delay case action, 24, 82, 135

delay case action, 70, 82, 118, 120

delayed, 5, 24, 25, 38, 81, 82, 83, 84, 85, 86, 114, 132,
133, 135

DELAYFAIL, 82, 161

delaying, 5, 84, 132

DELETE, 97, 161

DELETEFAIL, 97, 157, 161
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delimiter, 9, 10

dereferenced bound reference, 41

dereferenced bound reference, 40, 41, 133

dereferenced free reference, 41

dereferenced free reference, 40, 41, 133

dereferenced row, 42

dereferenced row, 40, 42, 133

dereferencing, 2, 22

derived class, 13, 19, 21, 48, 49, 50, 51, 52, 53, 57, 60,
61, 64, 65, 68, 89, 90, 96, 99, 100, 107, 110,
116, 134, 137, 145, 153

derived syntax, 7, 29, 31, 44, 50, 53, 72, 85, 86, 106,
109, 127, 147

destination reach, 147, 148

difference, 14, 65, 109, 115, 138

digit, 8, 49, 105, 106, 107, 108

digit sequence, 49, 50

digits, 20, 107, 108

direct linkage, 146

directive, 10

directive, 10

directive clause, 10

directive clause, 10

directly enclose, 121

directly enclosed, 112, 120, 121, 131, 146, 148, 149,
150, 151

directly enclosing, 112, 118, 121, 126, 129, 147, 148,
149, 150, 151

directly linked, 146, 147, 148

directly visible, 146, 147

DISCONNECT, 93, 99, 161

disconnect built-in routine call, 95, 99

disconnect operation, 94

Discrete, 48, 49

discrete expression, 36, 72, 73, 87, 88, 89, 90, 155

discrete expressions, 72

discrete literal, 49

discrete literal expression, 31, 55, 56, 73, 152, 155

discrete location, 88, 89, 90, 154

discrete mode, 2, 17, 26, 33, 35, 55, 56, 59, 60, 137,
153, 154, 155

discrete mode, 16, 17, 155

discrete mode, 21, 26, 155

discrete mode name, 19, 51, 52, 72, 73, 75, 76, 88, 89,
90, 152, 153

discrete range mode, 15, 16, 19, 20, 30, 71, 99, 102,
108, 137, 138, 139, 141, 153

discrete range mode, 17, 19, 51

discrete range mode name, 19, 153

DISSOCIATE, 25, 93, 96, 161

dissociate built-in routine call, 95, 96

dissociate operation, 93

division remainder, 66

DO, 73, 79, 160

do action, 3, 73, 75, 76, 77, 121, 134

do action, 40, 48, 70, 73, 118, 119, 120, 133

DOWN, 74, 75, 160

DURATION, 27, 116, 161

duration built-in routine call, 116

duration built-in routine call, 115, 116

duration mode, 27, 59, 60, 139, 142, 153, 155, 157

duration mode, 27
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duration mode name, 27

duration mode name, 27, 153

duration primitive value, 114, 115, 155

duration values, 157

DYNAMIC, 23, 24, 26, 27, 39, 45, 54, 79, 80, 123,
130, 160

dynamic array mode, 36, 56

dynamic class, 13, 47, 63, 64, 65, 71, 75, 123

dynamic condition, 4, 6, 7, 60, 71, 105, 112, 156

dynamic conditions, 7

dynamic equivalent, 14, 144, 145

dynamic mode, 2, 5, 7, 13, 22, 23, 36, 42, 47, 71, 92,
101, 123, 144, 145

dynamic mode location, 2, 71

dynamic parameterised structure mode, 31, 37, 45, 56,
58, 65

dynamic properties, 95, 103

dynamic properties, 7

dynamic read-compatible, 14, 39, 79, 80, 144, 145

dynamic record mode, 26, 99, 101, 139, 141

dynamic string mode, 36

— E—

editing clause, 104, 105, 109, 110

editing code, 104, 109, 110

element, 2, 7, 28, 30, 34, 35, 36, 42, 44, 52, 53, 56, 57,
62, 63, 68, 75, 88, 94, 104, 105, 108

element layout, 35, 76, 141

element layout, 30, 44, 45, 139, 141, 142, 157

element layout, 29, 30, 34

element mode, 30, 76, 94

element mode, 29, 30

element mode, 16, 28, 30, 35, 42, 44, 54, 55, 56, 57,
76, 136, 137, 139, 140, 142, 143, 144

EL SE, 31, 36, 53, 55, 62, 72, 73, 84, 85, 86, 112, 113,
118, 120, 140, 142, 152, 160

else alternative, 62

elseclause, 72

ELSIF, 62, 72, 160

emptiness literal, 52

emptiness literal, 49, 52

emptinessliteral name, 52

emptinessliteral name, 52, 154

empty, 11, 23, 24, 25, 26, 28, 38, 39, 53, 75, 78, 94, 97,
102, 124, 128, 147, 149, 150

empty, 81, 120, 127, 130, 147

EMPTY, 41, 42, 79, 83, 90, 92, 99, 161

empty action, 81

empty action, 70, 81

empty instance value, 52

empty powerset value, 53, 90

empty procedure value, 52

empty reference value, 52

empty string, 27, 39, 43, 56, 57, 68

END, 112, 114, 115, 122, 124, 125, 126, 127, 128,
129, 130, 160

end bit, 34, 35

end value, 75

end value, 74, 76



end-of-line, 9

enter, 132

entered, 4, 38, 39, 72, 73, 75, 76, 77, 82, 85, 86, 112,
114, 115, 120, 121, 123, 132

EOLN, 110, 161

equality, 64, 130

equivalencereations, 5, 138

equivalent, 14, 55, 71, 102, 138, 139, 140, 141, 142,
143, 144, 145

ESAC, 31, 62, 72, 82, 84, 85, 160

EVENT, 24, 160

event length, 24, 82, 88, 89, 139, 141

event length, 24

event list, 82

event location, 24, 81, 82, 88

event location, 81, 82, 88, 90, 154

event mode, 24, 137, 139, 141, 153, 154

event mode, 24

event mode name, 24, 88, 90, 153

EVER, 74, 160

exception, 1, 3,4, 5, 6, 11, 39, 41, 42, 43, 44, 45, 47,
48, 56, 57, 58, 59, 60, 61, 63, 64, 65, 66, 67,
68, 69, 70, 71, 72, 73, 74, 75, 76, 79, 80, 81,
82, 83, 84, 85, 86, 90, 91, 92, 95, 96, 97, 99,
100, 102, 104, 105, 108, 109, 111, 112, 113,
115, 116, 121, 122, 123, 138, 139, 140, 144,
145, 156, 157

exception handling, 112

exception list, 113

exception list, 23, 24, 112, 122, 124, 130

exception name, 4, 11, 78, 79, 112, 124, 156

exception name, 11, 23, 81, 112

exception names, 23, 139, 141

EXCEPTIONS, 23, 122, 124, 130, 160

exclusive disunction, 63

existing, 4, 94, 96, 97, 98, 99

EXISTING, 96, 161

EXIT, 77, 160

exit action, 3, 77

exit action, 70, 77

EXP, 87, 89, 90, 91

EXPIRED, 117, 161

explicit read-only mode, 16

explicitly indicated, 54, 61, 62, 152

exponent, 107

exponent, 50

exponent width, 106, 108

exponentiation operator, 67, 68

expression, 24, 25, 31, 33, 37, 43, 44, 47, 53, 54, 56,
58, 59, 61, 71, 72, 75, 90, 91, 94, 95, 98,
103, 121, 137, 152, 157

expression, 7, 44, 45, 51, 53, 54, 55, 56, 57, 58, 59, 60,
61, 62, 70, 74, 88, 89, 90, 91, 97, 100, 127,
134, 154, 155

expression conversion, 59

expression conversion, 47, 48, 59, 134, 157

expression list, 37, 44, 57, 87, 90, 91

extra-regional, 40, 56, 63, 91, 133, 134
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— F—

FALSE, 17, 50, 63, 64, 80, 95, 96, 97, 98, 99, 100, 101,
108, 161

Fl, 62, 72, 160

field, 11, 31, 32, 33, 34, 35, 36, 45, 54, 55, 56, 58, 59,
77, 136, 149

field, 30, 139, 140, 142

field layout, 31, 32, 33, 35, 77, 141

field layout, 32, 45, 140, 141, 142

field layout, 31, 32, 34, 37

field mode, 16, 32, 35, 56, 136, 137, 140, 142, 143, 144

fiedld name, 11, 12, 54, 77, 151, 188

field name, 10, 11, 12, 45, 53, 54, 58, 149, 151

field name, 31, 32, 33, 35, 37, 40, 45, 48, 55, 58, 77,
149

field name defining occurrence, 11, 12, 77

field name defining occurrence, 10, 11, 12, 31, 77, 151

field name defining occurrence list, 32

field name defining occurrence list, 11, 31, 32

field namelist, 54

field namellit, 53, 54, 55

file, 4, 26, 27, 93, 94, 95, 97, 98, 100, 101, 102, 103,
109, 127, 157

file handling state, 4, 93, 94

file positioning, 98

file truncation, 98

FIRST, 98, 161

first element, 44, 45, 57, 58, 127

fixed field, 31, 32, 55

fixed field, 31, 32, 140, 142

fixed field name, 32, 33, 55

fixed format, 106, 107

fixed string, 108

fixed string mode, 28, 43, 57, 71, 76, 137, 140, 142

fixed structure mode, 32

FLOAT, 20, 156, 161

&FLOAT, 20, 50

float value range, 20, 21

floating point expression, 87, 88, 89, 90, 103, 155

floating point literal, 50

floating point literal, 49, 50

floating point literal expression, 20, 21, 155

floating point literal value, 50

floating point location, 88, 89, 90, 103, 154

floating point mode, 2, 20, 21, 59, 60, 64, 137, 138,
153, 154, 155, 156

floating point mode, 20

floating point mode name, 20

floating point mode name, 20, 21, 88, 89, 90, 153

floating point range mode, 15, 16, 21, 71, 108, 137,
138, 139, 141, 153

floating point range mode, 20

floating point range mode name, 20, 21, 153

floating point value, 20, 50, 65, 66, 67, 68, 88, 107

FOR, 74, 127, 129, 160

for control, 73, 75, 76

for control, 73, 74

FORBID, 148, 149, 160

forbid clause, 148, 149, 151

forbid namelist, 151
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forbid name list, 149, 151

formal parameter, 61, 79, 123, 132

formal parameter, 40, 61, 118, 122, 123, 124, 125, 133
formal parameter list, 61, 118, 122, 123, 124, 125, 131
format argument, 103, 104

format clause, 104, 105

format control string, 104, 105

format effectors, 9, 11, 105

format element, 104, 105

format specification, 104, 105

format text, 104, 105

fractional part, 107

fractional width, 106, 107, 108

free, 132

free format, 106, 107

free reference, 2, 22, 41

free reference mode, 22, 138, 141, 145, 153, 155
free reference mode, 22

free reference mode name, 22

free reference mode name, 22, 153

free reference primitive value, 41, 133, 155

free state, 3, 93

— G —

general, 23, 78, 124, 133, 154

GENERAL, 122, 124, 160

general procedure, 78, 122, 123

general procedure name, 23, 48, 124

general procedure name, 48, 154

generality, 78, 154

generality, 78, 124, 131, 157

generality, 122, 124

generated, 4, 122

GETASSOCIATION, 100, 161

GETSTACK, 2, 4,54, 91, 92, 126, 161

gettext built-in routine call, 95, 110

GETTEXTACCESS, 110, 161

GETTEXTINDEX, 110, 161

GETTEXTRECORD, 110, 161

GETUSAGE, 100, 161

GOTO, 80, 160

goto action, 3, 80, 121

goto action, 70, 80

GRANT, 147, 148, 160

grant postfix, 147, 148, 149, 150, 151

grant statement, 129, 149

grant statement, 147, 148, 149, 150, 151

grant window, 148, 149

grantable, 148, 149

greater than, 64, 66, 67, 69, 91, 98, 101, 104, 107, 109,
111, 144

greater than or equal, 64, 68, 91

group, 7, 118, 120, 121, 129, 131, 150, 151

— H—

handler, 1, 4, 5, 6, 11, 70, 112, 113, 120, 122, 132, 156
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handler, 38, 39, 70, 77, 80, 81, 112, 118, 120, 122,
124, 125, 126

handler identification, 112

hereditary property, 13, 22, 23, 24, 32

hexadecimal bit string literal, 52, 53

hexadecimal digit, 49, 52, 53

hexadecimal integer literal, 49

hour expression, 116

hour location, 117

HOURS, 116, 161

IF, 9,62, 72,160

if action, 3, 72

if action, 70, 72, 118, 120

imaginary outermost process, 78, 79, 119, 125, 126,
127, 129, 132, 147, 156

implementation built-in routine call, 78

implementation defined built-in routine, 5, 126, 156

implementation defined exception name, 4, 5, 156

implementation defined floating point mode names, 14,
156

implementation defined handler, 113, 156

implementation defined integer mode, 5

implementation defined integer mode names, 14, 156

implementation defined name, 10, 78, 119, 154

implementation defined name string, 147

implementation defined process names, 5, 156

implementation directive, 10

implementation directive, 10, 156

implicit read-only mode, 16, 28, 30, 32, 136

implicitly created, 75, 101, 104, 123

implicitly declared, 4, 40, 77

implicitly defined, 77

implicitly indicated, 152

IN, 23, 64, 74, 78, 79, 84, 85, 86, 114, 115, 118, 123,
160

inclusive digunction, 63

index expression, 51, 97, 98, 99, 100, 101, 102, 103,
104, 110

index mode, 26, 29, 98

index mode, 26, 27, 29, 30, 51

index mode, 26, 27, 30, 44, 45, 51, 54, 57, 58, 89, 90,
91, 98, 99, 100, 101, 102, 104, 139, 141,
142, 143, 153

indexable, 4, 26, 94, 96, 98, 99

INDEXABLE, 96, 161

indexing, 2

indirectly visible, 146, 147

inequality, 64

INIT, 38, 160

initialisation, 38

initialisation, 38, 39, 54

inline, 124

INLINE, 122, 124, 160

inline procedures, 122

INOUT, 23, 79, 123, 125, 160

input-output mode, 2, 25

input-output mode, 16, 25



INSTANCE, 24, 60, 61, 161

instance location, 82, 84, 85, 86, 154

instance mode, 2, 24, 139, 141, 145, 153, 154, 155

instance mode, 16, 24

instance mode name, 24

instance mode name, 24, 153

instance primitive value, 83, 155

instance value, 24, 52, 60, 61, 81, 82, 85, 86, 132, 156

INT, 14, 17, 29, 122, 144, 156, 161

&INT, 17, 49, 50, 89, 90, 110

integer expression, 36, 42, 43, 57, 74, 87, 91, 110, 111,
116, 155

integer literal, 49

integer literal, 49, 50

integer literal expression, 18, 19, 20, 21, 24, 25, 26, 28,
34,51, 68, 69, 82, 83, 84, 155

integer location, 117, 154

integer mode, 17, 19, 59, 60, 76, 126, 138, 141, 153,
154, 155, 156

integer mode, 17

integer mode name, 17

integer mode name, 17, 153

integer part, 107

integer value, 4, 17, 18, 49, 59, 65, 66, 67, 68, 88, 107

intersection, 64

intra-regional, 3, 40, 56, 63, 78, 83, 84, 91, 124, 133,
134, 149

INTTIME, 117, 161

invisible, 55, 146, 151

io clause, 104, 105, 109

io code, 104, 109

iolist, 103, 104, 105, 108

io list element, 103, 104, 108

io location built-in routine call, 87, 95

io simple built-in routine call, 87, 95

io value built-in routine call, 87, 95

irrelevant, 140, 142, 152

ISASSOCIATED, 95, 96, 161

isassociated built-in routine call, 95

iteration, 3

iteration, 74

—J—

justification, 106, 107

—L—

label name, 70, 121, 125, 130
label name, 77, 80, 154

labelled array tuple, 53, 152
labelled array tuple, 53, 54, 152
labelled structure tuple, 54
labelled structure tuple, 53, 54, 55, 151
LAST, 98, 161

layout, 30, 31, 34, 36, 105

left element, 43, 56, 57, 127
length, 34, 35, 140, 141
LENGTH, 28, 87, 88, 90, 161
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length argument, 87, 88, 90

l-equivalent, 14, 138, 139, 140, 144

less than, 35, 43, 53, 56, 60, 61, 64, 66, 67, 68, 69, 71,
91, 104, 108, 109, 111, 115

less than or equal, 19, 21, 29, 64, 106

letter, 9, 49, 107

letter, 8

lexical element, 8, 9

lifetime, 1, 4, 38, 39, 41, 42, 45, 46, 75, 79, 82, 83, 84,
86, 91, 92, 101, 118, 119, 122, 123, 125, 126

lifetime-bound initialisation, 38

lifetime-bound initialisations, 120

line-end comment, 9

linkage, 146

linked, 129, 146, 148

list of classes, 32, 33, 90, 91, 137, 143, 152

list of values, 5, 31, 33, 37, 45, 52, 53, 56, 58, 85, 135,
144, 152

literal, 8, 17, 19, 20, 21, 49, 68

literal, 3, 31, 33, 43, 45, 47, 48, 49, 50, 51, 52, 57, 58,
61, 62, 63, 64, 66, 67, 68, 69, 89, 90, 131,
155, 157

literal, 47, 48, 49

literal expression, 130, 155

literal expression list, 31, 33

literal qualification, 49

literal range, 19, 20, 21, 26, 27, 30, 51, 52, 73, 152

LN, 87, 89, 90, 91

LOC, 23, 24, 39, 40, 75, 78, 79, 80, 122, 123, 124,
125, 130, 160

location, 1, 2, 3, 4, 5, 8, 13, 16, 22, 23, 24, 25, 26, 27,
31, 34, 35, 36, 38, 39, 40, 41, 42, 44, 45, 46,
48,52, 69, 71, 75, 76, 77, 78, 79, 80, 86, 87,
88, 89, 91, 92, 94, 95, 96, 97, 98, 101, 103,
104, 108, 110, 117, 118, 119, 120, 121, 122,
123, 125, 126, 132, 133, 138, 143, 144, 149,
156, 157

location, 39, 40, 42, 43, 44, 45, 46, 48, 51, 54, 56, 57,
59, 69, 70, 71, 74, 77, 78, 79, 80, 82, 84, 85,
86, 87, 88, 90, 95, 96, 97, 100, 111, 123,
127, 133, 134, 149, 154

location argument, 103, 104, 107, 108

location built-in routine call, 46

location built-in routine call, 40, 46

location built-in routine call, 78

location built-in routine calllocation

location built-in routine call, 46, 133, 155

location contents, 48

location contents, 47, 48, 134

location conversion, 46

location conversion, 40, 46, 59, 127, 133, 157

location declaration, 2, 4, 38, 123, 126

location declaration, 38, 39, 40, 54

location do-with name, 40, 77

location do-with name, 40, 41, 133, 154, 157

location enumeration, 75

location enumeration, 40, 74

location enumer ation name, 40, 76

location enumeration name, 40, 133, 154

location list, 84, 85

location name, 39, 40, 124, 131, 149

location name, 40, 127, 133, 154
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location procedure, 4

location procedure call, 45, 123

location procedure call, 40, 45, 133

location procedure call, 45, 78, 133, 155
loc-identity declaration, 2, 39, 75, 120, 123, 126
loc-identity declaration, 38, 39, 40
loc-identity name, 39, 40, 124, 131, 143, 149
loc-identity name, 40, 41, 133, 154

locked, 132, 133, 135

LOG, 87, 89, 90, 91

LONG_FLOAT, 20

LONG_INT, 17

loop counter, 75, 76

loop counter, 40, 48, 74, 75, 76, 118, 119
LOWER, 87, 88, 89, 90, 144, 161

lower bound, 30, 44

lower bound, 17, 18, 19, 20, 21, 26, 27, 28, 30, 36, 44,

45, 50, 57, 58, 76, 88, 91, 98, 101, 139, 141,
156

lower bound, 19, 20, 26, 27, 30, 36, 52

lower case, 9, 108

lower element, 44, 45, 57, 58, 127

lower float bound, 20, 21

— M=

mantissa, 50, 107

mapped, 30, 32, 35
mapping, 34, 36

match, 131

MAX, 87, 88, 89, 90, 161
member mode, 22

member mode, 21, 22
member mode, 22, 54, 56, 65, 76, 89, 138, 141, 143
membership operator, 64
member ship operator, 64, 65
metalanguage, 2, 7
MILLISECS, 116, 161

MIN, 87, 88, 89, 90, 161
minute expression, 116
minute location, 117
MINUTES, 116, 161

MOD, 66, 67, 160

mode, 2, 3, 5, 13, 14, 15, 16, 17, 20, 23, 27, 29, 30, 31,
32, 33, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44,
45, 46, 48, 50, 51, 54, 55, 56, 57, 58, 59, 60,
61, 62, 63, 64, 66, 69, 71, 73, 75, 76, 77, 78,

79, 80, 82, 83, 84, 85, 86, 88, 89, 90, 91, 92,
96, 97, 98, 99, 101, 102, 103, 104, 107, 108,
111, 117, 123, 124, 125, 131, 134, 135, 136,
137, 138, 139, 140, 141, 143, 144, 145, 149,
151, 152, 153

mode, 13, 14, 16, 22, 23, 24, 26, 29, 31, 33, 38, 39, 47,
54, 75, 76, 123, 130, 135, 155

mode argument, 54, 87, 88, 90, 91, 92

mode checking, 5, 13, 14, 46, 59

mode definition, 2, 14, 15

mode definition, 14, 15, 16, 118

mode name, 13, 14, 15, 16, 88, 89
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mode name, 16, 41, 46, 51, 52, 53, 54, 59, 60, 62, 87,
88, 90, 91, 153

moderules, 5, 136

modification built-in routine call, 95, 97

MODIFY, 97, 161

modify parameter, 97, 157

modify parameter list, 97

MODIFYFAIL, 97, 157, 161

module, 3, 4, 5, 77, 112, 119, 120, 121, 125, 126, 127,
129

module, 70, 118, 121, 125, 126, 128, 129, 131, 149,
150, 151

MODULE, 125, 127, 128, 160

module body, 125, 129, 131

module body, 119, 125, 147

module name, 125, 149

module spec, 121, 128, 129, 131, 147, 151

modulion, 118, 119, 120, 125, 126, 131, 147, 148, 149,
150, 151

modulo, 66, 67

monadic operator, 68

monadic operator, 68, 69

month expression, 116

month location, 117

multi-dimensional array, 29

multiple assignment action, 70

— N—

name, 2, 3, 4,5, 8, 10, 11, 12, 14, 15, 17, 18, 20, 22,
23, 24, 25, 27, 31, 32, 38, 39, 40, 45, 47, 48,
50, 51, 52, 58, 75, 76, 78, 80, 81, 83, 85,
118, 119, 122, 123, 124, 126, 129, 130, 145,
156

name, 10, 11, 12, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26,
27,28, 29, 30, 31, 40, 41, 42, 46, 48, 50, 51,
52,53, 54, 59, 60, 61, 62, 72, 73, 74, 75, 76,
77,78, 80, 83, 84, 85, 87, 88, 89, 90, 91,
118, 133, 134, 135, 145, 146, 151, 152, 153,
154, 157

&name, 15, 29, 30, 43, 44, 57, 58, 65, 76, 85, 86

name binding, 5, 10, 119, 145, 146

name string, 11, 12, 70, 76, 77, 124, 125, 128, 129,
138, 149, 150

name string, 10, 11, 129, 131, 142, 143, 145, 146, 147,
148, 149, 150, 151, 154

named values, 18

negative lower limit, 60

negative upper limit, 20, 66, 67, 69, 91, 156

new prefix, 147, 148, 149, 150

NEWM ODE, 14, 15, 160

newmode definition statement, 5, 14, 15, 16

newmode definition statement, 15, 16, 120, 130

newmode name, 15, 19, 21, 29, 131, 149, 151, 154,
156

newmode hame string, 148, 149, 151, 154

nil, 16, 133, 134, 141

non-composite mode, 16, 155

non-hereditary property, 13, 19, 21, 29

non-percent character, 105, 155



non-recursive, 79, 124

NONREF, 23, 45, 80, 123, 130, 160

non-reserved character, 52, 155

non-reserved name, 78, 154

non-special character, 51, 155

non-value property, 13, 24, 25, 26, 33, 38, 39, 48, 59,
60, 71, 78, 79, 124, 125, 135, 137

NOPACK, 30, 32, 34, 35, 44, 45, 76, 77, 141, 160

NOT, 68, 69, 160

NOTASSOCIATED, 96, 97, 99, 161

NOTCONNECTED, 99, 100, 102, 161

novelty, 13, 14, 15, 16, 90, 138, 139, 141, 151

novelty bound, 14, 15, 131, 138, 143

novelty paired, 143

null, 59

NULL, 22, 23, 24, 41, 42, 52, 79, 83, 92, 99, 100, 101,
161

null class, 13, 52, 59, 134, 145

NUM, 18, 19, 30, 34, 35, 36, 42, 43, 44, 45, 56, 57, 58,
59, 60, 87, 88, 89, 90, 98, 100, 144, 161

number of elements, 30, 35, 36, 54, 139, 142, 144

number of values, 17, 18, 19, 22, 35, 138

number ed range mode, 19, 26

numbered set element, 18

numbered set list, 18

numbered set mode, 18, 19, 26, 76, 90, 138

numeric expression, 87

—0—

octal hit string literal, 52, 53
octal digit, 49, 52, 53

octal integer literal, 49

OD, 73,79, 160

OF, 31, 62, 72, 160

old prefix, 147, 148, 149, 150
ON, 112, 160

on-aternative, 121
on-alternative, 112, 118, 120
operand-0, 62, 63
operand-1, 63, 64
operand-2, 54, 63, 64
operand-3, 65

operand-3, 64, 65, 66
operand-4, 67

operand-4, 65, 66, 67
operand-5, 67

operand-5, 66, 67, 68
operand-6, 67, 68, 69
operand-7, 68, 69, 134
operator-3, 64, 65
operator-4, 65, 66

OR, 63, 71, 160

ORIF, 63, 160

origin array mode, 51

origin array mode, 16, 30
origin array mode name, 29, 30, 36
origin array mode name, 16
origin reach, 147, 148
origin string mode, 16, 29
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origin string mode name, 28, 29, 36

origin string mode name, 16

origin structure mode, 59

origin variant structure mode, 51

origin variant structure mode, 16, 32, 33, 37, 139, 140,
142, 143, 144

origin variant structure mode name, 31, 32, 33, 37

origin variant structure mode name, 16

OUT, 23, 79, 123, 125, 160

outoffile, 95, 98, 100, 101, 102

OUTOFFILE, 100, 161

outside world object, 4, 25, 93, 96, 97

overflow, 106, 107

OVERFLOW, 60, 66, 67, 68, 69, 75, 90, 91, 161

—pP—

PACK, 30, 31, 34, 141, 160

packing, 34

padding, 106, 107, 108

parameter attribute, 23, 123, 125, 138, 141

parameter attribute, 23

parameter list, 78, 116

parameter list, 23, 124

parameter passing, 6, 60, 61, 79, 123, 156

parameter spec, 78, 79

parameter spec, 23, 24, 54, 118, 122, 123, 124, 125,
130

parameter specs, 23, 78, 123, 125, 138, 141, 143

parameterisable, 13, 23, 24, 26, 33, 39, 90, 136, 144

parameterisable variant structure mode, 32, 33, 136,
139, 142, 143, 144

parameterised array mode, 36

parameterised array mode, 29, 30, 51

parameterised array mode, 16, 30, 44, 58, 153

parameterised array mode name, 29, 153

parameterised string mode, 36

parameterised string mode, 28, 29
parameterised string mode, 16, 29, 43, 57, 153
parameterised string mode name, 28, 153

parameterised structure mode, 30, 31, 32, 33

parameterised structure mode, 16, 31, 32, 33, 37, 55,
59, 136, 139, 140, 142, 143, 144, 153

parameterised structure mode name, 31, 153

parameterized structure mode, 51
parent mode, 15, 16, 17, 19, 20, 21, 137, 138
parenthesised clause, 104, 105
parenthesised expression, 44, 61
parenthesised expression, 47, 48, 61
pass by location, 123

pass by value, 123

path, 14, 15, 138

percent, 105, 155

percent, 105

piece, 5, 9, 11, 23, 103, 127, 128

piece designator, 127, 128

piecewise programming, 127, 129, 130
pos, 141

pos, 31, 32, 33, 34, 35, 140, 141

POS, 34, 35, 140, 160
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positive lower limit, 20, 60, 66, 67, 68, 69, 91, 156

postfix, 148

postfix, 147, 148, 149, 150

POWERSET, 21, 160

powerset difference operator, 65

power set difference operator, 65, 66, 71

powerset enumeration, 75

powerset enumeration, 74

power set expression, 75

power set expression, 74, 76, 87, 89, 155

powerset inclusion operator, 64

power set inclusion operator, 64, 65

powerset mode, 2, 22, 54, 137, 138, 141, 143, 153, 155

powerset mode, 16, 21

power set mode name, 21, 153

powerset tuple, 53, 54

powerset tuple, 53, 54, 56

powerset value, 22, 53, 63, 64, 65, 68, 75, 88

precision, 20, 21, 50, 90, 139, 141, 156

PRED, 75, 76, 87, 88, 89, 90, 161

predefined floating point mode, 20, 21, 50, 66, 67, 68

predefined integer mode, 17, 19, 66, 67, 68, 76, 153

predefined mode, 17, 20

predefined name string, 148

prefix, 147

prefix, 10, 11, 147, 148, 149, 150, 151

prefix clause, 148, 149, 150, 151

prefix rename clause, 147, 148, 149, 150, 151

prefix rename clauses, 147

PREFIXED, 148, 160

prefixed name string, 12, 145, 147

prefixed name string, 10, 11

prefixing operator, 11

primitive value, 47, 77, 137

primitive value, 47, 48, 69, 77, 88, 134, 154, 155

priority, 81, 82, 83, 84, 85, 86

priority, 82, 83, 84

PRIORITY, 82, 160

PROC, 23, 122, 124, 130, 160

proc body, 119, 122

procedure, 2, 3, 4, 6, 23, 45, 52, 60, 61, 77, 78, 79, 80,
112, 119, 120, 121, 122, 123, 126, 132, 133,
135

procedure attribute list, 122, 130

procedure cal, 3, 4, 78, 79, 80, 121, 122, 123, 132, 133

procedure call, 54, 78, 79, 133, 134

procedure definition, 80, 113, 122, 123, 124, 126, 156

procedure definition, 48, 118, 120, 122, 123, 124

procedure definition statement, 23, 122

procedure definition statement, 120, 122, 123

procedure mode, 2, 23, 124, 131, 138, 141, 143, 145,
153, 155

procedure mode, 15, 16, 23

procedure mode name, 23, 153

procedure name, 48, 54, 80, 123, 124, 131, 132, 143

procedure name, 78, 133, 134, 154

procedure primitive value, 78, 79, 155

procedure values, 23, 122

process, 2, 4, 5, 6, 24, 25, 27, 38, 52, 60, 61, 77, 79, 80,
81, 82, 83, 84, 85, 86, 114, 115, 117, 119,
120, 121, 126, 132, 133, 135, 156

PROCESS, 124, 130, 160
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process body, 132

process body, 119, 124

process creation, 132

process definition, 5, 6, 61, 77, 78, 79, 80, 113, 124,
125, 126, 127, 129, 131, 132, 147

process definition, 118, 120, 124, 125

process definition statement, 120, 124, 125

process delaying, 135

process name, 6, 83, 124, 125, 131, 132, 135, 143, 156

process name, 60, 61, 135, 154

process re-activation, 135

process termination, 132

product, 66

program, 1, 2, 3,4, 5, 8,9, 10, 11, 13, 26, 27, 36, 61,
78, 93, 94, 101, 103, 112, 114, 119, 120,
122, 124, 126, 127, 128, 132, 143, 146, 191

program, 126

program structure, 1, 5, 118

PTR, 22, 161

_Q_

guasi data statement, 119, 129

quasi declaration, 121, 130

quasi declaration statement, 130

quasi defining occurrence, 11, 15, 121, 130, 131, 143,
146, 150

quasi definition statement, 129, 130, 131

quasi formal parameter, 130

quasi formal parameter list, 130, 131

quasi location declaration, 130

quasi loc-identity declaration, 130

quasi novelty, 15, 131, 143, 151

quasi procedure definition statement, 121, 130

guasi process definition statement, 121, 130

quasi reach, 121

quasi signal definition, 130

quasi signal definition statement, 130, 131

quas statements, 130, 131

quasi synonym definition, 130, 157

quasi synonym definition statement, 130

quote, 52, 155

quote, 52

guotient, 66, 67

—R—

range, 1, 2, 17, 19, 20, 21, 30, 51, 53, 61, 68, 73, 89,
91, 108, 115, 156, 157

range, 53

RANGE, 19, 20, 21, 26, 29, 90, 160

range enumeration, 75

range enumeration, 74

range list, 153

rangelist, 72, 73

RANGEFAIL, 39, 42, 43, 44, 45, 47, 56, 57, 58, 60, 63,
64, 65, 71, 73, 76, 91, 99, 102, 116, 138,
139, 140, 144, 161



reach, 38, 39, 73, 78, 112, 113, 118, 119, 120, 121,
126, 129, 131, 143, 146, 147, 148, 149, 150,
151, 156

reach-bound initialisation, 120, 132, 133

reach-bound initialisation, 38, 39

re-activation, 5, 132

READ, 16, 28, 30, 32, 143, 144, 160

read operation, 94, 95, 98, 100, 101, 102

readable, 4, 94, 96, 99

READABLE, 96, 161

read-compatible, 14, 39, 41, 79, 80, 111, 143, 144,
145

READFAIL, 102, 161

read-only, 2, 16, 31, 91, 138, 143, 144

READONLY, 98, 99, 100, 102, 161

read-only mode, 2, 16, 28, 30, 32, 136, 140, 141, 144

read-only property, 2, 13, 16, 39, 71, 79, 82, 85, 86,
92, 101, 108, 117, 136

READRECORD, 4, 100, 101, 102, 105, 110, 161

readrecord built-in routine call, 95, 100

READTEXT, 103, 104, 105, 106, 107, 108, 109, 110,
161

READWRITE, 98, 99, 100, 161

real defining occurrence, 121, 131, 146

real mode, 2, 20

real mode, 16, 20

real novelty, 15, 131, 143

real reach, 121, 129, 131

real values, 20

RECEIVE, 84, 85, 86, 160

receive buffer case action, 86, 135

receive buffer case action, 84, 85, 120

receive case action, 3, 5, 25, 84, 135

receive case action, 48, 70, 84, 118

receive signal case action, 85, 135

receive signal case action, 84, 120

record mode, 26, 94, 101, 157

record mode, 26

record mode, 26, 51, 100, 101, 102, 110, 139, 141, 143

recursive, 122, 123, 124, 133

RECURSIVE, 190

recursive definitions, 14

recursive mode, 14, 138

recursive mode definitions, 14, 15

recursivity, 78, 79, 124, 139, 141

REF, 15, 22, 103, 143, 144, 160

referability, 2, 35, 36, 40

referable, 2, 22, 34, 35, 36, 39, 40, 41, 42, 43, 44, 45,
46, 69, 76, 77, 79, 80, 88, 90, 95, 101, 104,
117, 123, 124, 130, 131, 157

reference class, 13, 69, 91, 100, 101, 110, 134, 145

reference mode, 2, 22, 59, 136, 143, 145

reference mode, 15, 16, 22

reference primitive value, 91, 92, 155

referencevalue, 2, 3, 22, 23, 41, 91, 92, 100, 101, 103,
126

referenced location, 41, 42, 69, 92, 101

referenced location, 69, 134

referenced mode, 22

referenced mode, 22

referenced mode, 22, 41, 138, 140, 141, 143, 144, 145
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referenced origin mode, 23, 42, 138, 140, 141, 143,
144, 145

referencing property, 13, 134, 136, 144, 145

region, 3,4, 5,91, 112, 113, 114, 120, 121, 124, 125,
126, 127, 129, 132, 133, 134, 135

region, 118, 119, 121, 126, 128, 129, 131, 133, 134,
149, 150, 151

REGION, 126, 129, 160

region body, 126, 129, 131

region body, 119, 126, 147

region name, 126, 149

region spec, 121, 128, 129, 131, 147, 151

regionality, 3, 61, 79, 80, 96, 99, 100, 101, 110, 111,
131, 133, 134, 156, 157

regionally safe, 39, 71, 78, 79, 80, 92, 134

relational operator, 64, 65

relational operators, 27, 64

relative timing action, 114, 118

released, 113, 114, 132, 133, 135

REM, 66, 67, 160

REMOTE, 127, 160

remote context, 127, 128, 129

remote modulion, 125, 126, 127, 128, 129, 131

remote piece, 127, 128

remote spec, 127, 128, 129

repetition factor, 104, 105

representation conversion, 59, 65, 67

representation conversion, 47, 48, 50, 59, 60

reserved names, 154

reserved simple name string, 9

reserved simple name string, 9, 78

restrictable, 14, 144, 145

result, 2, 3, 4, 11, 18, 31, 59, 61, 62, 63, 64, 65, 67, 68,
71, 80, 84, 86, 89, 96, 101, 122, 132

result, 79, 80

RESULT, 79, 160

result action, 3, 80, 123, 133

result action, 54, 70, 79, 80, 123

result attribute, 23, 124

result attribute, 23

result spec, 123

result spec, 23, 45, 46, 54, 60, 78, 80, 124, 138, 141,
143

result spec, 23, 24, 118, 122, 123, 124, 130

result transmission, 6

resulting class, 13, 19, 21, 54, 63, 64, 65, 66, 67, 68,
76, 89, 90, 137, 152, 153

resulting list of classes, 32, 73, 152

resulting lists of classes, 32

resulting mode, 137

RETURN, 79, 160

return action, 80, 122

return action, 54, 70, 79, 80

RETURNS, 23, 160

right element, 43, 56, 57, 127

root mode, 13, 19, 21, 26, 51, 57, 59, 60, 63, 64, 65,
66, 67, 68, 69, 76, 90, 91, 108, 131, 137,
143, 153, 156

row, 2, 22, 23, 42

ROW, 9, 23, 160

row mode, 23, 138, 140, 141, 143, 144, 145, 153, 155
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row mode, 15, 22, 23
row mode name, 23, 153
row primitive value, 42, 133, 155

—S—

safe, 15

SAME, 98, 99, 161

scope, 4, 5, 118, 119

second expression, 53

second expression, 116

second location, 117

SECS, 116, 161

seizable, 148, 150

SEIZE, 127, 150, 160

seize postfix, 147, 148, 150, 151
seize statement, 150

seize statement, 147, 148, 150, 151
seize window, 150

selection, 2, 3, 72, 152

selector, 33, 51, 72, 153
selector value, 152, 153
semantic category, 7, 131, 153
semantic description, 7, 8

semantics, 7, 8, 9, 10, 31, 39, 40, 45, 46, 48, 58, 71, 75,

83, 84, 95, 96, 97, 104, 110, 122, 127, 128,
157
semantics, 7
SEND, 83, 84, 160
send action, 5, 25, 83, 84, 133
send action, 54, 70, 83
send buffer action, 84, 86, 135
send buffer action, 83, 84
send signal action, 83, 85, 135
send signal action, 83
SENDFAIL, 83, 161
sequencible, 4, 94, 96, 98, 99
SEQUENCIBLE, 96, 161
SET, 18, 82, 84, 85, 98, 160
set element, 18
set element name, 10, 52, 151
set element name, 18, 52, 138
set element name, 51, 154
set element name defining occurrence, 10, 18, 151
set list, 18
set literal, 51, 108
set literal, 49, 51, 52, 151
set mode, 18, 51, 108, 138, 141, 153
set mode, 17, 18, 118
set mode, 18
set mode name, 18, 151, 153
settext built-in routine call, 95, 110
SETTEXTACCESS, 110, 111, 161
SETTEXTINDEX, 110, 111, 161
SETTEXTRECORD, 110, 111, 161
SHORT _FLOAT, 20
SHORT _INT, 17
signal, 5, 83, 84, 85, 121, 135
SIGNAL, 130, 135, 160
signal definition, 54, 135
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signal definition, 118, 135

signal definition statement, 120, 130, 131, 135
signal definition statements, 5

signal name, 83, 85, 131, 135, 143

signal name, 54, 83, 84, 85, 154

signal receive dternative, 121

signal receive alternative, 84, 85, 118, 119, 120
signed floating point literal, 50

signed floating point literal, 50, 68

signed integer literal, 49

signed integer literal, 49, 68

significant digit, 21

similar, 13, 59, 137, 138, 139, 141, 145, 156
simple, 123, 124

SIMPLE, 122, 124, 160

simple name string, 8, 9, 12, 108

simple name string, 8, 9, 10, 11, 70, 108, 122, 124, 125,
126, 127, 128, 129, 130, 131, 145, 150, 151

simple prefix, 10, 149

simple procedures, 122

simple spec module, 121, 128, 129, 131

simple spec region, 121, 129, 131

SN, 87, 89, 90, 91

single assignment action, 54, 70

size, 16, 26, 31, 94

S ZE, 16, 46, 87, 88, 89, 90, 161

dlicesize, 43, 44, 45, 56, 57, 58, 127

dlicing, 2

SPACEFAIL, 61, 72, 73, 74, 79, 83, 85, 86, 92, 112,
122,161

spaces, 9, 10, 11, 105, 107

SPEC, 127, 128, 129, 149, 160

spec module, 5

spec module, 70, 118, 119, 121, 126, 128, 129, 130,
131, 149, 150, 151

spec module body, 119, 128

spec region, 5

spec region, 118, 119, 121, 126, 128, 129, 130, 131,
133, 134, 149, 150, 151

spec region body, 119, 129

special smple name strings, 8, 9, 108, 157

special symbol, 8, 159

SQRT, 87, 89, 90, 91

stack, 91

START, 60, 160

start action, 81

start action, 70, 81

start bit, 34, 35, 140, 141

start element, 42, 43, 56, 57, 127

start expression, 3, 5, 60, 81, 121, 132

start expression, 47, 54, 60, 61, 81, 157

start value, 75

start value, 74, 76

static, 40, 69, 127

STATIC, 38, 39, 126, 127, 132, 160

static class, 90

static condition, 7, 60, 61, 131, 134, 137

static conditions, 7

static mode, 2, 13, 22, 90, 145, 154

static mode location, 46, 59, 100, 127, 133, 154

static properties, 5, 12, 37, 78, 129, 130, 156

static properties, 7



static record mode, 26, 99, 101, 102, 139, 141

step, 30, 34, 35, 140, 141

STEP, 34, 35, 140, 160

step enumeration, 75

step enumeration, 74

step size, 34, 35, 140, 141

step value, 75

step value, 74, 75, 76

STOP, 81, 160

stop action, 5, 81, 132

stop action, 70, 81

storage, 31, 61, 72, 73, 74, 79, 83, 85, 86, 91, 92, 112,
113, 122, 138, 157

storage allocation, 126

store location, 100, 101, 102

strict syntax, 7, 44, 139, 140, 142

string concatenation operator, 65

string concatenation operator, 65, 66, 71

string element, 28, 42, 106

string element, 39, 40, 42, 56, 127, 133

string expression, 74, 75, 76, 88, 89, 90, 103, 155

string length, 23, 28, 29, 36, 42, 52, 53, 65, 68, 71, 89,
91, 101, 104, 106, 108, 110, 140, 142, 144

string length, 28, 29

string location, 23, 42, 43, 75, 76

string location, 39, 42, 43, 56, 74, 75, 76, 87, 88, 89,
90, 103, 104, 127, 133, 154

string mode, 16, 28, 29, 36, 42, 76, 101, 136, 137, 139,
142, 144, 153, 154, 155

string mode, 28, 155

string mode, 23, 155

string mode name, 28, 29, 87, 88, 89, 90, 91, 153

string primitive value, 56, 57, 155

string repetition operator, 68

string repetition operator, 68, 69

string size, 43, 57

string dlice, 43, 56, 104, 108

string slice, 39, 40, 43, 56, 127, 133

string type, 28, 29

string value, 28, 56, 65, 68, 101, 104, 110

strong, 3, 13, 41, 42, 54, 57, 65, 73, 76, 77, 88, 90, 91,
151

STRUCT, 15, 30, 31, 34, 144, 160

structure field, 34, 35, 45, 73

structurefield, 40, 45, 58, 127, 133, 151

structure location, 23, 31, 40, 42, 45, 77, 157

structure location, 45, 58, 77, 127, 133, 151, 154

structure mode, 2, 11, 26, 31, 32, 33, 34, 35, 54, 55, 59,
77,131, 136, 137, 139, 140, 142, 143, 144,
149, 153, 154, 155

structure mode, 28, 30, 32, 51

structure mode name, 30, 153

structure primitive value, 58, 59, 77, 134, 151, 155

structure tuple, 53, 54, 56, 151

structure value, 31, 48, 53, 54, 58, 59, 77, 101

sub expression, 62, 63, 134

sub operand-0, 63

sub operand-1, 63, 64

sub operand-2, 64, 65

sub operand-3, 65, 66

sub operand-4, 66, 67

sub operand-5, 67, 68
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UCC, 75, 76, 87, 88, 89, 90, 161

sum, 50, 65

surrounded, 5, 48, 80, 91, 118, 121, 125, 126, 127, 129,
131, 132

SYN, 47, 130, 160

synchronisation mode, 2, 24

synchronisation mode, 16, 24

SYNMODE, 15, 160

synmode definition statement, 15

synmode definition statement, 15, 120, 130

synmode name, 15, 16, 19, 21, 29, 30, 42, 43, 44, 57,
58, 65, 76, 98, 131

synonym definition, 14, 47

synonym definition, 14, 47, 54, 118

synonym definition statement, 3, 47

synonym definition statement, 47, 48, 120, 130, 131

synonym name, 14, 47, 48, 130, 131, 143, 149

synonym name, 48, 134, 154

synonymous, 14, 15, 16, 29, 30, 42, 43, 44, 57, 58, 65,
76

syntax, 7, 8, 53, 73, 127

syntax description, 7, 9, 153
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tag, 101

tag field, 16, 31, 32, 33, 38, 45, 55, 56, 58, 71, 136,
152

tag field name, 32, 33, 140, 142

tag field name, 31, 51, 154

tag list, 31, 33, 140, 142

tag values, 59

TAGFAIL, 39, 41, 45, 47, 48, 56, 59, 65, 71, 102, 138,
139, 161

tagged alternative fields, 33

tagged parameterised property, 13, 32, 33, 38, 136

tagged parameterised structure mode, 33, 55, 56, 136

tagged variant structure mode, 32, 33, 45, 55, 58, 152

tagged variant structure values, 59

tag-less alternative fields, 33

tag-less alternative fields, 32, 33

tag-less parameterised structure mode, 33

tag-less parameterised structure mode, 55

tag-lessvariant, 157

tag-lessvariant structure, 157

tag-lessvariant structure mode, 32, 33, 45, 55, 58, 153

tag-lessvariant structure values, 31, 59, 157

TAN, 87, 89, 90, 91

TERMINATE, 91, 92, 126, 157, 161

terminate built-in routine call, 87, 91

terminated, 9, 10, 73, 75, 76, 96, 105, 112, 120, 122,
132

TEXT, 26, 160

text argument, 103, 104, 105

text built-in routine call, 95, 103

text io argument list, 103

text length, 27, 89, 103, 104, 109, 110, 111, 139, 142

text length, 26, 27

text location, 88, 103

text location, 103
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text location, 51, 88, 89, 90, 95, 97, 98, 99, 103, 104,
105, 109, 110, 111, 154

text mode, 2, 27, 90, 103, 137, 139, 142, 143, 154

text mode, 25, 26

text mode name, 88, 89, 90

text record, 27, 103, 104, 105, 106, 108, 109, 110

text record mode, 27, 103, 110, 111, 139, 142

text record reference, 103, 110

text record sub-location, 27, 39, 103

text reference name, 11, 127, 128, 157

text value, 103

TEXTFAIL, 104, 108, 109, 111, 161

THEN, 9, 62, 72, 160

then alternative, 62

then clause, 72, 118

THIS, 61, 132, 160

TIME, 27, 116, 161

time value built-in routine call, 87, 115

TIMEOUT, 114, 160

timeoutable, 4, 82, 84, 85, 86, 114, 115, 117, 157

TIMERFAIL, 115, 157, 161

timing action, 114

timing action, 70, 114, 120

timing handler, 114, 115, 118, 120

timing mode, 2, 27

timing mode, 16, 27

timing simple built-in routine call, 87, 117

TO, 74, 83, 130, 131, 135, 160

transfer index, 94, 95, 100, 101

transfer location, 97, 98, 99, 100

TRUE, 17, 50, 62, 63, 64, 67, 72, 76, 96, 97, 98, 99,
100, 101, 102, 108, 110, 161

truncation, 106, 107

tuple, 53, 54, 55, 62

tuple, 47, 48, 51, 53, 54, 55, 56, 134

—U—

undefined location, 39, 41, 45, 46, 80, 123

undefined synonym name, 61, 154

undefined value, 3

undefined value, 61, 62

undefined value, 3, 24, 25, 26, 27, 32, 38, 39, 47, 55,
56, 60, 61, 71, 80, 91, 101, 123

UNDERFLOW, 60, 66, 67, 68, 69, 91, 161

underline character, 9, 49, 50, 52, 107

union, 32, 33, 63

unlabelled array tuple, 53

unlabelled array tuple, 53, 54, 55

unlabelled structure tuple, 54

unlabelled structure tuple, 53, 54, 55

unnamed values, 18

unnumbered set list, 18

unnumbered set mode, 18, 138

unsigned floating point literal, 50, 68

unsigned integer literal, 49, 68

UNSIGNED_INT, 17

UP, 28, 43, 44, 56, 57, 160

UPPER, 87, 88, 89, 90, 161
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upper bound, 17, 18, 19, 20, 21, 23, 26, 27, 28, 30, 36,
42, 44, 45, 50, 57, 58, 76, 88, 91, 101, 139,
141, 144, 156

upper bound, 19, 20, 26, 27, 30, 52

upper case, 9, 108

upper element, 44, 45, 57, 58, 127

upper float bound, 21

upper index, 29, 30, 44, 45, 51, 58

upper lower argument, 87, 88, 89, 90

usage, 95, 98, 100, 102

USAGE, 51, 98, 99, 100, 161

usage expression, 51, 97, 98, 99
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value, 38, 39, 54, 55, 56, 61, 62, 71, 75, 78, 79, 80, 83,
84,91, 92, 123, 134, 149, 152, 155

value argument, 103, 104, 107, 108

value array element, 57

value array element, 47, 57, 134

value array dlice, 58

value array dlice, 47, 57, 58, 134

value built-in routine call, 60

value built-in routine call, 47, 48, 60

value built-in routine call, 78

value built-in routine callvalue

value built-in routine call, 60, 134, 155

value case alternative, 62

value class, 13, 32, 33, 47, 48, 51, 54, 56, 57, 58, 59,
60, 62, 65, 76, 77, 79, 85, 86, 89, 90, 91,
101, 134, 137, 145, 152, 153

value do-with name, 48, 77

value do-with name, 48, 134, 154, 157

value enumeration, 48, 74, 76

value enumer ation name, 48, 76

value enumeration name, 48, 154

value name, 48, 77, 154

value name, 47, 48, 134

value procedure, 4

value procedure call, 60, 123

value procedure call, 47, 60, 134

value procedure call, 60, 78, 155

valuereceive name, 48, 85, 86

value receive name, 48, 134, 154

value string element, 56

value string element, 47, 56

value string dlice, 56

value string dlice, 47, 57

value structure field, 58

value structure field, 47, 58, 134, 151

variable, 4, 94, 96, 99, 104, 106, 108




VARIABLE, 96, 161

variable clause width, 104, 105, 108

variant alternative, 31, 55

variant alternative, 31, 32, 33, 36, 140, 142, 152
variant field, 31, 40, 48, 71, 152

variant field, 31, 32, 33, 140, 142

variant field, 33, 41, 42, 48, 157

variant field access conditions, 41, 42, 45, 48, 59
variant field name, 32, 33, 36, 45, 58

variant structure mode, 31, 32, 33, 55, 144, 153
variant structure mode, 23

variant structure mode name, 90, 91, 153
VARYING, 27, 28, 29, 160

varying string, 102, 108

varying string mode, 15, 26, 28, 29, 39, 42, 43, 63, 71,

104, 137, 140, 142
v-equivalent, 13, 138, 139, 145

visibility, 1, 4, 5, 77, 119, 122, 125, 126, 129, 145, 146,

149, 150

visibility of field names, 151

visibility statement, 119, 147, 148

visibility statements, 4, 5, 129, 146, 147

visible, 4, 77, 119, 129, 131, 146, 147, 148, 149, 150,
151

visible field names, 131

— W —

WAIT, 117, 161

WHERE, 51, 98, 99, 161

where expression, 51, 97, 98, 99
WHILE, 76, 160

while control, 73

while control, 73, 76, 118

width, 104, 106, 107, 108, 109

WITH, 77, 160

with control, 77

with part, 40, 48, 73, 77, 119

word, 7, 34, 118, 157

word, 34, 35, 141

write expression, 51, 100, 101, 102
write operation, 93, 94, 98, 100, 101
writeable, 4, 94, 96, 99

WRITEABLE, 96, 161

WRITEFAIL, 102, 161

WRITEONLY, 98, 99, 100, 102, 161
WRITERECORD, 4, 100, 101, 102, 105, 110, 161
writerecord built-in routine call, 95, 100
WRITETEXT, 103, 104, 106, 107, 108, 109, 110, 161

— X —

XOR, 63, 71, 160
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year expression, 116
year |location, 117

| SO/IEC 9496 : 1995 (E)

— 7

zero-adic operator, 61
zero-adic operator, 47, 61
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