
INTERNATIONAL TELECOMMUNICATION UNION

ITU-T X.952
TELECOMMUNICATION
STANDARDIZATION SECTOR
OF ITU

(12/97)

SERIES X: DATA NETWORKS AND OPEN SYSTEM
COMMUNICATION

Open distributed processing

Information technology – Open distributed
processing – Trading function: Provision of
trading function using OSI Directory service

ITU-T Recommendation X.952
(Previously CCITT Recommendation)

ITU-T X-SERIES RECOMMENDATIONS

DATA NETWORKS AND OPEN SYSTEM COMMUNICATION

For further details, please refer to ITU-T List of Recommendations.

PUBLIC DATA NETWORKS

Services and facilities X.1–X.19

Interfaces X.20–X.49

Transmission, signalling and switching X.50–X.89

Network aspects X.90–X.149

Maintenance X.150–X.179

Administrative arrangements X.180–X.199

OPEN SYSTEM INTERCONNECTION

Model and notation X.200–X.209

Service definitions X.210–X.219

Connection-mode protocol specifications X.220–X.229

Connectionless-mode protocol specifications X.230–X.239

PICS proformas X.240–X.259

Protocol Identification X.260–X.269

Security Protocols X.270–X.279

Layer Managed Objects X.280–X.289

Conformance testing X.290–X.299

INTERWORKING BETWEEN NETWORKS

General X.300–X.349

Satellite data transmission systems X.350–X.399

MESSAGE HANDLING SYSTEMS X.400–X.499

DIRECTORY X.500–X.599

OSI NETWORKING AND SYSTEM ASPECTS

Networking X.600–X.629

Efficiency X.630–X.639

Quality of service X.640–X.649

Naming, Addressing and Registration X.650–X.679

Abstract Syntax Notation One (ASN.1) X.680–X.699

OSI MANAGEMENT

Systems Management framework and architecture X.700–X.709

Management Communication Service and Protocol X.710–X.719

Structure of Management Information X.720–X.729

Management functions and ODMA functions X.730–X.799

SECURITY X.800–X.849

OSI APPLICATIONS

Commitment, Concurrency and Recovery X.850–X.859

Transaction processing X.860–X.879

Remote operations X.880–X.899

OPEN DISTRIBUTED PROCESSING X.900–X.999

ITU-T Rec. X.952 (1997 E) i

INTERNATIONAL STANDARD 13235-3

ITU-T RECOMMENDATION X.952

INFORMATION TECHNOLOGY –
OPEN DISTRIBUTED PROCESSING – TRADING FUNCTION:

PROVISION OF TRADING FUNCTION USING OSI DIRECTORY SERVICE

Summary

This Recommendation | International Standard describes how the ODP Trading Function can be realised using
information entries and support mechanisms of the OSI Directory. This Specification is to be used in conjunction with
the ODP Trading Function Standard (see ITU-T Rec. X.950 | ISO/IEC 13235-1). If there are any discrepancies between
the prescriptive statements in ITU-T Rec. X.950 and those in this Specification, the prescriptive statements in ITU-T
Rec. X.950 take precedence.

The scope of this Specification is:

– standardised templates for Trading Function information objects in the DIT;

– descriptions of mapping of Trading Function operations to appropriate Directory operations;

– description of use of other Directory features to provide the support mechanisms for implementing the
ODP Trading Function.

The field of application of this Specification is for the construction of the ODP Trading Function using the OSI Directory,
when required.

Source

The ITU-T Recommendation X.952 was approved on the 12th of December 1997. The identical text is also published as
ISO/IEC International Standard 13235-3.

ii ITU-T Rec. X.952 (1997 E)

FOREWORD

ITU (International Telecommunication Union) is the United Nations Specialized Agency in the field of telecommuni-
cations. The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of the ITU. The ITU-T is
responsible for studying technical, operating and tariff questions and issuing Recommendations on them with a view to
standardizing telecommunications on a worldwide basis.

The World Telecommunication Standardization Conference (WTSC), which meets every four years, establishes the
topics for study by the ITU-T Study Groups which, in their turn, produce Recommendations on these topics.

The approval of Recommendations by the Members of the ITU-T is covered by the procedure laid down in WTSC
Resolution No. 1.

In some areas of information technology which fall within ITU-T’s purview, the necessary standards are prepared on a
collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a telecommunication
administration and a recognized operating agency.

INTELLECTUAL PROPERTY RIGHTS

The ITU draws attention to the possibility that the practice or implementation of this Recommendation may involve the
use of a claimed Intellectual Property Right. The ITU takes no position concerning the evidence, validity or applicability
of claimed Intellectual Property Rights, whether asserted by ITU members or others outside of the Recommendation
development process.

As of the date of approval of this Recommendation, the ITU had not received notice of intellectual property, protected by
patents, which may be required to implement this Recommendation. However, implementors are cautioned that this may
not represent the latest information and are therefore strongly urged to consult the TSB patent database.

 ITU 1998

All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means, electronic or
mechanical, including photocopying and microfilm, without permission in writing from the ITU.

ITU-T Rec. X.952 (1997 E) iii

CONTENTS

Page

1 Scope and field of application ... 1

2 Normative References 1
2.1 Identical Recommendations | International Standards ... 1

3 Definitions... 2

4 Abbreviations 4

5 Overview.. 4

6 Schema.. 5
6.1 General... 6
6.2 Trader Entry.. 7

6.2.1 commonName.. 7
6.2.2 traderInterface... 8
6.2.3 dsaName 8
6.2.4 typeRepos 8
6.2.5 defSearchCard... 8
6.2.6 maxSearchCard... 8
6.2.7 defMatchCard 9
6.2.8 maxMatchCard.. 9
6.2.9 defReturnCard... 9
6.2.10 maxReturnCard.. 9
6.2.11 defHopCount.. 10
6.2.12 maxHopCount.. 10
6.2.13 defFollowPolicy.. 10
6.2.14 maxFollowPolicy ... 11
6.2.15 maxLinkFollowPolicy.. 11
6.2.16 supportsModifiableProperties .. 11
6.2.17 supportsDynamicProperties ... 11
6.2.18 supportsProxyOffers .. 12
6.2.19 maxList 12
6.2.20 requestIdStem 12
6.2.21 description.. 12
6.2.22 userPassword 12
6.2.23 Other X.500 attributes.. 12

6.3 Trader Policy Entry.. 13
6.3.1 commonName.. 13
6.3.2 typeManagementConstraint ... 13
6.3.3 searchConstraint... 14
6.3.4 offerAcceptanceConstraint... 14
6.3.5 Other X.500 attributes.. 14

6.4 Service Offer Entry .. 14
6.4.1 sOfferId.. 15
6.4.2 serviceInterfaceId... 16
6.4.3 serviceTypeId 16
6.4.4 hasDynamicProperties ... 16
6.4.5 hasModifiableProperties .. 17
6.4.6 dynamicProps... 17
6.4.7 Other X.500 attributes.. 17

6.5 Trader Link Entry .. 18
6.5.1 linkName.. 18
6.5.2 linkId.. 18
6.5.3 targetTraderInterfaceId .. 19
6.5.4 defPassOnFollowRule.. 19
6.5.5 limitingFollowRule .. 19
6.5.6 Other X.500 attributes.. 19

iv ITU-T Rec. X.952 (1997 E)

Page
6.6 Proxy Offer Entry .. 20

6.6.1 proxyOfferId .. 20
6.6.2 proxyLookUpInterfaceId ... 21
6.6.3 constraintRecipe... 21
6.6.4 ifMatchAll.. 21
6.6.5 Other X.500 attributes.. 21

6.7 Other X.500 entries used by the T-DUA ... 22

7 Operations ... 22
7.1 Initialisation ... 23
7.2 Client operations .. 23
7.3 Register operations .. 23

7.3.1 Export .. 23
7.3.2 Withdraw ... 25
7.3.3 Modify ... 25
7.3.4 Describe ... 26
7.3.5 Withdraw with constraint... 26
7.3.6 Resolve .. 27

7.4 Look up operations .. 27
7.4.1 Query operation ... 27
7.4.2 Policies... 28
7.4.3 Searching locally.. 28
7.4.4 Searching Federated Traders.. 29
7.4.5 Searching Proxy Offers.. 29
7.4.6 Service Offer returned.. 29

7.5 Link operations .. 29
7.5.1 Add Link.. 29
7.5.2 Remove Link.. 30
7.5.3 Modify Link... 30
7.5.4 Describe Link... 31
7.5.5 List Links ... 31

7.6 Proxy Offer operations... 31
7.6.1 Export Proxy.. 31
7.6.2 Withdraw Proxy... 32
7.6.3 Describe Proxy... 33

7.7 Trader Attribute Operations ... 33
7.8 Administrative operations .. 33

7.8.1 List Offers .. 33
7.8.2 List Proxies .. 34

7.9 Dynamic Property Evaluation operations .. 34
7.9.1 EvalDP... 34

8 Type Repository.. 35
8.1 X.500 schema and the Minimal Type Repository .. 35

9 Dynamic Properties... 36
9.1 Exporting a Service Offer .. 36
9.2 Importing a Service Offer .. 36

Annex A – Trader definitions schema definition.. 37

Annex B – Sample service description schema definition.. 47

ITU-T Rec. X.952 (1997 E) v

Introduction

The ODP Trading Function (see ITU-T Rec. X.950-Series | ISO/IEC 13235) provides the means to offer a service and
the means to discover services that have been offered. ITU-T Rec. X.950 | ISO/IEC 13235-1 defines an enterprise
Specification, an information Specification and a computational Specification of this Trading Function. No engineering
Specification is defined in ITU-T Rec. X.950 | ISO/IEC 13235-1. This Recommendation | International Standard
describes how the Specifications of the Trading Function in ITU-T Rec. X.950 | ISO/IEC 13235-1 can be engineered
using OSI Directory Service (see ITU-T Rec. X.500 | ISO/IEC 9594-1) to store information and to provide support
mechanisms. This Specification does not prescribe that a trader must be engineered by using OSI Directory. But if OSI
Directory is used, this Specification defines standardised templates for information entries (e.g. service offer and link
information objects) in the Directory DIT.

Clause 5 gives an overview of how the Trading Function is implemented as a combination of X.500 DUA and DSA. The
X.500 DSA is used to store the Trader Information Object and a Trader DUA (T-DUA) implements the functionality
required by a Trader, which is difficult, or impossible, to implement using OSI Directory services.

Clause 6 defines the standardised templates for information entries of the Trader Information Object, the information
known to a particular Trader.

Clause 7 describes mapping of Trading Function operations to appropriate Directory operations.

Clause 8 specifies a minimal Type Repository Function necessary to enable the correct functioning of the X.500
Directory for Trading.

Clause 9 describes the mechanisms used to enable the handling of dynamic properties of a Trader’s service offers.

This Specification contains two annexes.

Annex A is a normative schema definition of Trader definitions.

Annex B is an informative schema definition of a sample service description.

ISO/IEC 13235-3 : 1998 (E)

ITU-T Rec. X.952 (1997 E) 1

INTERNATIONAL STANDARD
ISO/IEC 13235-3 : 1998 (E)

ITU-T Rec. X.952 (1997 E)

ITU-T RECOMMENDATION

INFORMATION TECHNOLOGY –
OPEN DISTRIBUTED PROCESSING – TRADING FUNCTION:

PROVISION OF TRADING FUNCTION USING OSI DIRECTORY SERVICE

1 Scope and field of application

This Specification describes how the ODP Trading Function can be realised using information entries and support
mechanisms of the OSI Directory. This Specification is to be used in conjunction with the ODP Trading Function
Standard (ITU-T Rec. X.950 | ISO/IEC 13235-1). If there are any discrepancies between the prescriptive statements in
ITU-T Rec. X.950 | ISO/IEC 13235-1 and those in this Specification, the prescriptive statements in ITU-T Rec. X.950 |
ISO/IEC 13235-1 take precedence.

The scope of this Specification is:

– standardised templates for Trading Function information objects in the DIT;

– descriptions of mapping of Trading Function operations to appropriate Directory operations;

– description of use of other Directory features to provide the support mechanisms for implementing the
ODP Trading Function.

This Specification does not prescribe that a trader must be engineered by using OSI Directory. But if OSI Directory is
used, this Specification defines standardised templates for information entries (e.g. service offer and link information
objects) in the Directory DIT. This Specification does not put any restrictions on where these entries are placed in the
Directory DIT. That is, this Specification does not standardise any structure rules. This Specification does describe a
mechanism to provide the Trading Function using OSI Directory.

The field of application of this Specification is for the construction of the ODP Trading Function using the OSI
Directory, when required.

2 Normative References

The following Recommendations and International Standards contain provisions which, through reference in this text,
constitute provisions of this Recommendation | International Standard. At the time of publication, the editions indicated
were valid. All Recommendations and Standards are subject to revision, and parties to agreements based on this
Recommendation | International Standard are encouraged to investigate the posibility of applying the most recent edition
of the Recommendations and Standards listed below. Members of IEC and ISO maintain registers of currently valid
Internationa Standards. The Telecommunication Standardization Bureau of the ITU maintains a list of currently valid
ITU-T Recommendations.

2.1 Identical Recommendations | International Standards

– ITU-T Recommendation X.500 (1993) | ISO/IEC 9594-1:1995, Information technology – Open Systems
Interconnection – The Directory: Overview of concepts, models and services.

– ITU-T Recommendation X.501 (1993) | ISO/IEC 9594-2:1995, Information technology – Open Systems
Interconnection – The Directory: Models.

– ITU-T Recommendation X.509 (1993) | ISO/IEC 9594-8:1995, Information technology – Open Systems
Interconnection – The Directory: Authentication framework.

– ITU-T Recommendation X.511 (1993) | ISO/IEC 9594-3:1995, Information technology – Open Systems
Interconnection – The Directory: Abstract service definition.

– ITU-T Recommendation X.519 (1993) | ISO/IEC 9594-5:1995, Information technology – Open Systems
Interconnection – The Directory: Protocol specifications.

ISO/IEC 13235-3 : 1998 (E)

2 ITU-T Rec. X.952 (1997 E)

– ITU-T Recommendation X.520 (1993) | ISO/IEC 9594-6:1995, Information technology – Open Systems
Interconnection – The Directory: Selected attribute types.

– ITU-T Recommendation X.521 (1993) | ISO/IEC 9594-7:1995, Information technology – Open Systems
Interconnection – The Directory: Selected object classes.

– ITU-T Recommendation X.680 (1994) | ISO/IEC 8824-1:1995, Information technology – Abstract Syntax
Notation One (ASN.1): Specification of basic notation.

– ITU-T Recommendation X.681 (1994) | ISO/IEC 8824-2:1995, Information Technology – Abstract Syntax
Notation One (ASN.1): Information object specification.

– ITU-T Recommendation X.682 (1994) | ISO/IEC 8824-3:1995, Information technology – Abstract Syntax
Notation One (ASN.1): Constraint specification.

– ITU-T Recommendation X.683 (1994) | ISO/IEC 8824-4:1995, Information technology – Abstract Syntax
Notation One (ASN.1): Parameterisation of ASN.1 specifications.

– ITU-T Recommendation X.902 (1995) | ISO/IEC 10746-2:1996, Information technology – Open
distributed processing – Reference Model: Foundations.

– ITU-T Recommendation X.903 (1995) | ISO/IEC 10746-3:1996, Information technology – Open
distributed processing – Reference Model: Architecture.

– ITU-T Recommendation X.950 (1997) | ISO/IEC 13235-11), Information technology – Open distributed
processing – Trading function: Specification.

3 Definitions

This Recommendation | International Standard makes use of the following terms defined in ITU-T Rec. X.902 |
ISO/IEC 10746-2:

– activity;

– behaviour;

– client object;

– failure;

– identifier;

– instance;

– interaction;

– interface;

– interface signature;

– name;

– object;

– obligation;

– ODP system;

– policy;

– server object;

– subtype;

– <X> template;

– trading;

– type;

– viewpoint.

1) To be published.

ISO/IEC 13235-3 : 1998 (E)

ITU-T Rec. X.952 (1997 E) 3

This Recommendation | International Standard makes use of the following terms defined in ITU-T Rec. X.903 |
ISO/IEC 10746-3:

– administrator;

– community;

– computational viewpoint;

– engineering interface reference;

– engineering viewpoint;

– enterprise viewpoint;

– exporter;

– importer;

– information viewpoint;

– service export;

– service import;

– service offer;

– technology viewpoint;

– Trading Function;

– Type Repository Function.

This Recommendation | International Standard makes use of the following terms defined in ITU-T Rec. X.950 |
ISO/IEC 13235-1:

– federated traders;

– iterator;

– link;

– proxy offer;

– service type;

– service property;

– trader;

– trader attribute;

– trading graph.

This Recommendation | International Standard makes use of the following terms defined in ITU-T Rec. X.500 |
ISO/IEC 9594-1:

– Directory;

– Directory Information Base;

– (Directory) User.

This Recommendation | International Standard makes use of the following terms defined in ITU-T Rec. X.501 |
ISO/IEC 9594-2:

– attribute;

– attribute type;

– attribute value;

– Directory Information Tree;

– Directory System Agent;

– Directory User Agent;

– distinguished name;

– (Directory) entry;

– filter;

ISO/IEC 13235-3 : 1998 (E)

4 ITU-T Rec. X.952 (1997 E)

– matching rule;

– (Directory) name;

– name form;

– object;

– object class;

– object entry;

– relative distinguished name;

– structure rule;

– subclass;

– subordinate;

– superclass.

This Recommendation | International Standard makes use of the following operations defined in ITU-T Rec. X.511 |
ISO/IEC 9594-3:

– addEntry;

– modifyEntry;

– read;

– removeEntry;

– search.

This Recommendation | International Standard makes use of the following terms defined in ITU-T Rec. X.509 |
ISO/IEC 9594-8:

– authentication;

– password.

4 Abbreviations

For the purposes of this Recommendation | International Standard, the following abbreviations apply:

DIB Directory Information Base

DIT Directory Information Tree

DN Distinguished Name

DSA Directory System Agent

DUA Directory User Agent

ODP Open Distributed Processing

OID Object Identifier

RDN Relative Distinguished Name

T-DUA Trader Directory User Agent

5 Overview

In this Specification, the Trading Function is implemented as a combination of X.500 DUA and DSA. As far as possible,
the features of X.500 are used to directly implement the Trading Function, but not all Trader features can be directly
supported by X.500. For this reason, the Trader (the object that provides the Trading Function) is composed of two
components: an X.500 Directory which stores the Trader Information and a Trader DUA (T-DUA) which implements the
functionality required by a Trader which is difficult, or impossible, to implement in X.500. The X.500 Directory is used
to store the Trader Information Object. Requests from trader clients (importers and exporters) are mapped into operations
on the X.500 database. Figure 1 shows the components of a Trader and its interactions with its clients.

ISO/IEC 13235-3 : 1998 (E)

ITU-T Rec. X.952 (1997 E) 5

T0727990-97/d01

Trader
clients

Trader
clients

Trader
clients

T-DUA

Trader

X.500
DSA

DIT

Figure 1 – The trader with its components and clients

FIGURE 1/X.052...[D01] = 7 CM

The T-DUA and the trader clients (importers and exporters) communicate using a Trader protocol. The Trader protocol
is not defined in this Specification. It may be any protocol which implements the functionality specified by
ITU-T Rec. X.950 | ISO/IEC 13235-1. The purpose of this Specification is to specify how the T-DUA uses an X.500
Directory to support the functionality specified by ITU-T Rec. X.950 | ISO/IEC 13235-1.

The information stored by the X.500 Directory comprises:

– The Trader Attributes (i.e. information about the Trader itself).

– The Trader Enterprise policies (i.e. rules to determine and guide Trader behaviour).

– The set of Service Offers (i.e. information used by Trader when acting as a server).

– The set of Trader Links (i.e. information used by Trader when acting as a client).

– The set of Proxy Offers (i.e. information used by Trader when acting as a server for Proxy Offers).

X.500 is used to store this information for several reasons:

– The information model required by the ODP Trader is very similar to that provided by X.500.

– X.500 provides significant flexibility in allowing the definition of new X.500 attributes at runtime.

– It makes sense to use the existing investment in X.500 rather than to attempt to create a completely new
infrastructure.

– It allows the Trader to use the general X.500 infrastructure to look up presentation addresses of linked
Traders and Clients, and to use the security features of X.500 to authenticate users.

NOTE – Details of how to provide the X.500 infrastructure and the security features of X.500 for the Trading
Function are outside the scope of this Specification.

It is not possible to implement an ODP Trader completely using X.500 because of the significant differences in the
operational model used by the ODP Trader. These include:

– The Trader operations that do not directly map to X.500 operations.

– Distributed operations that are implemented using information stored in Trader Links and Trader
Attributes whose meaning differ from the distribution implemented in X.500.

6 Schema

This X.500 schema describes the portion of an X.500 DIT used to store the information known to one Trader. The
schema is based on the X.500 Directory model and is given in Annex A.

ISO/IEC 13235-3 : 1998 (E)

6 ITU-T Rec. X.952 (1997 E)

6.1 General

The information known to a particular Trader (the Trader Information Object) is kept in a subtree of the X.500 DIT. This
subtree can be attached anywhere in the global DIT and no Structure Rules are defined for controlling its position. It is
expected that the Trader subtree would be commonly attached beneath organisational and organisational unit entries
(representing, respectively, the information known to organisational and organisational unit Traders). The information
known to each trader is kept separately in the DIT and no attempt is made to map the distribution model used in X.500 to
the very different distribution model of federated Traders.

Trader Information is stored in the X.500 DIT as self contained parcels. Each parcel contains the information known to
one Trader. In the example shown in Figure 2, there are two Traders: one for the organisation as a whole and a second for
a unit within the organisation. Linkages between these two Traders is via the Trader protocol, not via X.500 protocol.

The Trader Information Object (see Figure 3) is composed of five types of entries:

– The Trader Entry contains details about the Trader itself.

– The Trader Policy Entry contains details about the Trader enterprise policies.

– The Service Offer Entries contain details about the Service Offers known to the Trader.

– The Trader Link Entries contain details about the Links with other Traders.

– The Proxy Offer Entries contain details about the Proxy Offers known to the Trader.

NOTE 1 – The structuring of the Service Offers, Links, and Proxy Offers shown in Figure 3 is only one example
of possible information structure.

NOTE 2 – In addition to the X.500 attributes listed in each entry, the presence of other attributes in an entry is not
a violation of this Specification. Other X.500 attributes may be required for the following reasons:

– if a particular trader application requires specific additional X.500 attributes, they can be defined in that
trader application Specification;

– if a particular trader implementation requires specific additional X.500 attributes, they can be defined in the
documentation for that implementation.

Additional attributes can be included as Auxiliary Object Classes.

T0728000-97/d02

o = Springshur

Trader
information for
Organization

ou =
Research

Figure 2 – An example of two traders stored in the X.500 DIT

c = AU

FIGURE 2/X.052...[D02] = 9 CM

ISO/IEC 13235-3 : 1998 (E)

ITU-T Rec. X.952 (1997 E) 7

T0728010-97/d03

Proxy Offer entries Service Offer entries Trader Link
entries

Trader
Policy
Entry

Trader
entry

Trader Information Object

From rest of X.500 DIT

Figure 3 – An example of a Trader Information Object with five types of X.500 entry

FIGURE 3/X.052...[D03] = 11.5 CM

6.2 Trader Entry

The root of the Trader subtree is the Trader Entry. This entry contains information about the Trader itself (the Trader
Attributes – standardised Trader characteristics and trading policies) and is used as configuration information by the
Trader (T-DUA) when it boots. The information is expressed as a set of X.500 attributes which represent Trader
Attributes.

traderEntry OBJECT-CLASS ::= {

SUBCLASS OF {top}

MUST CONTAIN {commonName | traderInterface | dsaName | typeRepos |
defSearchCard | maxSearchCard | defMatchCard |
maxMatchCard | defReturnCard | maxReturnCard |
defHopCount | maxHopCount | defFollowPolicy |
maxFollowPolicy | maxLinkFollowPolicy |
supportsModifiableProperties| supportsDynamicProperties |
supportsProxyOffers | maxList | requestIdStem}

MAY CONTAIN {description | userPassword}

ID id-trader-oc-traderEntry}

6.2.1 commonName

The name of this Trader. The commonName attribute forms the RDN of the Trader Entry. The full name of a Trader is
the Distinguished Name of this entry (i.e. the full 'pathname' of the Trader Entry in the global X.500 DIT). The full
Distinguished Name uniquely identifies this Trader amongst all other Traders in the X.500 Directory. This is a standard
X.500 attribute defined in ITU-T Rec. X.520 | ISO/IEC 9594-6.

ISO/IEC 13235-3 : 1998 (E)

8 ITU-T Rec. X.952 (1997 E)

6.2.2 traderInterface

The address of the trader. The ’Address’ is the Presentation Address at which this Trader can be contacted. This X.500
attribute is used by the Trader when booting as part of its configuration information and also by other Traders when they
wish to distribute a Trader import amongst federated Traders.

traderInterface ATTRIBUTE ::= {

SUBTYPE OF presentationAddress

SINGLE VALUE TRUE

ID id-trader-at-traderInterface}

6.2.3 dsaName

The name for the DSA associated with the Trader object.

dsaName ATTRIBUTE ::= {

SUBTYPE OF distinguishedName

SINGLE VALUE TRUE

ID id-trader-at-dsaName}

6.2.4 typeRepos

The name of the Type Repository used by the Trader for the repository of definitions of Service Types, Interface Types
and Service Properties Types.

typeRepos ATTRIBUTE ::= {

SUBTYPE OF distinguishedName

SINGLE VALUE TRUE

ID id-trader-at-typeRepos}

6.2.5 defSearchCard

The default upper bound of service offers to be considered before terminating a search. This value is used if none is
specified by an importer. It must not exceed the value of maxSearchCard.

defSearchCard ATTRIBUTE ::= {

WITH SYNTAX INTEGER

EQUALITY MATCHING RULE integerMatch

SINGLE VALUE TRUE

ID id-trader-at-defSearchCard }

6.2.6 maxSearchCard

The maximum upper bound of service offers a Trader considers before terminating any search.

maxSearchCard ATTRIBUTE ::= {

WITH SYNTAX INTEGER

EQUALITY MATCHING RULE integerMatch

SINGLE VALUE TRUE

ID id-trader-at-maxSearchCard}

ISO/IEC 13235-3 : 1998 (E)

ITU-T Rec. X.952 (1997 E) 9

6.2.7 defMatchCard

The default upper bound of matched offers found before a Trader terminates a search. This value is used if none is
specified by an importer. It must not exceed the value of maxMatchCard.

defMatchCard ATTRIBUTE ::= {

WITH SYNTAX INTEGER

EQUALITY MATCHING RULE integerMatch

SINGLE VALUE TRUE

ID id-trader-at-defMatchCard}

6.2.8 maxMatchCard

The maximum upper bound of matched offers found before a Trader terminates any search.

maxMatchCard ATTRIBUTE ::= {

WITH SYNTAX INTEGER

EQUALITY MATCHING RULE integerMatch

SINGLE VALUE TRUE

ID id-trader-at-maxMatchCard}

6.2.9 defReturnCard

The default upper bound of service offers returned to an importer. This value is used if none is specified by an importer.
It must not exceed the value of maxReturnCard.

defReturnCard ATTRIBUTE ::= {

WITH SYNTAX INTEGER

EQUALITY MATCHING RULE integerMatch

SINGLE VALU E TRUE

ID id-trader-at-defReturnCard}

6.2.10 maxReturnCard

The maximum upper bound of service offers returned to an importer.

maxReturnCard ATTRIBUTE ::= {

WITH SYNTAX INTEGER

EQUALITY MATCHING RULE integerMatch

SINGLE VALUE TRUE

ID id-trader-at-maxReturnCard}

ISO/IEC 13235-3 : 1998 (E)

10 ITU-T Rec. X.952 (1997 E)

6.2.11 defHopCount

The default upper bound of depth of Links to be traversed before terminating a search. This value is used if none is
specified by an importer. It must not exceed maxHopCount.

defHopCount ATTRIBUTE ::= {

WITH SYNTAX INTEGER

EQUALITY MATCHING RULE integerMatch

SINGLE VALUE TRUE

ID id-trader-at-defHopCount}

6.2.12 maxHopCount

The maximum upper bound of depth of Links to be traversed before terminating any search.

maxHopCount ATTRIBUTE ::= {

WITH SYNTAX INTEGER

EQUALITY MATCHING RULE integerMatch

SINGLE VALUE TRUE

ID id-trader-at-maxHopCount}

6.2.13 defFollowPolicy

The default Link follow behaviour when no link follow behaviour is specified by an importer. The follow behaviour on a
Link can be one of the following:

– local_only – Never follow unless explicitly named in an operation;

– if_no_local – Follow only if no local offer can match;

– always – Always follow except when overridden by some policies.

defFollowPolicy ATTRIBUTE ::= {

WITH SYNTAX FollowOption

EQUALITY MATCHING RULE integerMatch

SINGLE VALUE TRUE

ID id-trader-at-defFollowPolicy }

FollowOption ::= ENUMERATED{

localOnly (0),

ifNoLocal (1),

always (2)}

ISO/IEC 13235-3 : 1998 (E)

ITU-T Rec. X.952 (1997 E) 11

6.2.14 maxFollowPolicy

The limiting link follow behaviour on all the links in a Trader for a given Query. It can override both link and importer
policies on link follow behaviour.

maxFollowPolicy ATTRIBUTE ::= {

WITH SYNTAX FollowOption

EQUALITY MATCHING RULE integerMatch

SINGLE VALUE TRUE

ID id-trader-at-maxFollowPolicy }

6.2.15 maxLinkFollowPolicy

The most permissive link follow behaviour for a link when creating or modifying the limiting behaviour on any link in a
trader.

maxLinkFollowPolicy ATTRIBUTE ::= {

WITH SYNTAX FollowOption

EQUALITY MATCHING RULE integerMatch

SINGLE VALUE TRUE

ID id-trader-at-maxLinkFollowPolicy }

6.2.16 supportsModifiableProperties

If ’true’, this attribute permits the Modify Offer operation to be invoked.

supportsModifiableProperties ATTRIBUTE ::= {

WITH SYNTAX BOOLEAN

EQUALITY MATCHING RULE booleanMatch

SINGLE VALUE TRUE

ID id-trader-at-supportsModifiableProperties}

6.2.17 supportsDynamicProperties

If ’true’, this attribute permits service offers to have dynamic properties. That is, properties whose values need to be
obtained when required for matching or describing of service offers and/or matching of proxy offers.

supportsDynamicProperties ATTRIBUTE ::= {

WITH SYNTAX BOOLEAN

EQUALITY MATCHING RULE booleanMatch

SINGLE VALUE TRUE

ID id-trader-at-supportsDynamicProperties}

ISO/IEC 13235-3 : 1998 (E)

12 ITU-T Rec. X.952 (1997 E)

6.2.18 supportsProxyOffers

If ’true’, this attribute permits the export, withdraw, describe and listing of Proxy Offers, which are special service offers
that provide run-time determination of the interface at which the advertised service is provided.

supportsProxyOffers ATTRIBUTE ::= {

WITH SYNTAX BOOLEAN

EQUALITY MATCHING RULE booleanMatch

SINGLE VALUE TRUE

ID id-trader-at-supportsProxyOffers}

6.2.19 maxList

The maximum list size for an iterator the Trader is willing to support.

maxList ATTRIBUTE ::= {

WITH SYNTAX INTEGER

EQUALITY MATCHING RULE integerMatch

SINGLE VALUE TRUE

ID id-trader-at-maxList }

6.2.20 requestIdStem

An identification of the Trader, to be used as the stem for the production of an identifier for a Query request that is
initiated by this trader to be passed onto a linked trader.

requestIdStem ATTRIBUTE ::= {

WITH SYNTAX OCTET STRING (SIZE (0..ub-request-id-stem))

EQUALITY MATCHING RULE octetStringMatch

SINGLE VALUE TRUE

ID id-trader-at-requestIdStem }

6.2.21 description

A textual description of the Trader. The ’description’ is a free text field which describes the Trader (e.g. "CSIRO Division
of Information Technology Trader"). This is a standard X.500 attribute defined in ITU-T Rec. X.520 | ISO/IEC 9594-6.

6.2.22 userPassword

A password to provide simple authentication when accessing the Trader information object by the T-DUA. The access
control rules for this attribute should not allow this attribute to be generally readable. This is a standard X.500 attribute
defined in ITU-T Rec. X.509 | ISO/IEC 9594-8.

6.2.23 Other X.500 attributes

Additional X.500 attributes required by a specific implementation or by a specific application can be included as
Auxiliary Object Classes. Examples of possible additional X.500 attributes in this entry are:

– Access Control information (on the Trader Entry).

– Contact information for the Trader Administrator.

– Human contact information for the Service, including a textual description of the service.

– Limit information (e.g. the maximum amount of resource to be consumed by a Query, the maximum
lifetime of an Offer).

ISO/IEC 13235-3 : 1998 (E)

ITU-T Rec. X.952 (1997 E) 13

6.3 Trader Policy Entry

The Trader Policy Entry is located immediately underneath the Trader Entry in the information subtree. It contains the
Trader enterprise policies (policies defined in the Enterprise Specification of the Trading Function in ITU-T Rec. X.950 |
ISO/IEC 13235-1), expressed as a collection of policy constraints. Each policy constraint may be expressed as a string
describing the policy rule which consists of an X.500 filter composed of attributes of the Trader entry, or the name of an
object which implements that policy.

traderPolicyEntryNF NAME-FORM ::= {

NAMES traderPolicyEntry

WITH ATTRIBUTES {commonName}

ID id-trader-nf-traderPolicy}

traderPolicyEntry OBJECT-CLASS ::= {

SUBCLASS OF {top}

MUST CONTAIN {commonName }

MAY CONTAIN {typeManagementConstraint | searchConstraint |
offerAcceptanceConstraint }

ID id-trader-oc-traderPolicy}

Policy constraints are defined as:

PolicySpecification ::= CHOICE {

stringRule [0] DirectoryString{ub-policy-string-rule}

policyObjectId [1] DistinguishedName }

policySpecificationMatch MATCHING-RULE ::= {

SYNTAX PolicySpecification

ID id-trader-mr-policySpecificationMatch}

-- The rule returns TRUE if two Specifications contain exactly the same characters.

6.3.1 commonName

The commonName attribute forms the RDN of the Trader Policy Entry and has the value "Trader Policies". This is a
standard X.500 attribute defined in ITU-T Rec. X.520 | ISO/IEC 9594-6.

6.3.2 typeManagementConstraint

This constraint is a rule related to the Specification of types and the relationship between types.

typeManagementConstraint ATTRIBUTE ::= {

WITH SYNTAX PolicySpecification

EQUALITY MATCHING RULE policySpecificationMatch

SINGLE VALUE TRUE

ID id-trader-at-typeManagementConstraint}

ISO/IEC 13235-3 : 1998 (E)

14 ITU-T Rec. X.952 (1997 E)

6.3.3 searchConstraint

This constraint is a rule guiding the search for suitable offers through the Trader system, for example, sequential search
vs parallel search of federated traders.

searchConstraint ATTRIBUTE ::= {

WITH SYNTAX PolicySpecification

EQUALITY MATCHING RULE policySpecificationMatch

SINGLE VALUE TRUE

ID id-trader-at-searchConstraint}

6.3.4 offerAcceptanceConstraint

This constraint is a rule restricting the set of service offers acceptable to the Trader. For example, a trader may only
accept service offers with specific service types.

offerAcceptanceConstraint ATTRIBUTE ::= {

WITH SYNTAX PolicySpecification

EQUALITY MATCHING RULE policySpecificationMatch

SINGLE VALUE TRUE

ID id-trader-at-offerAcceptanceConstraint}

6.3.5 Other X.500 attributes

Additional X.500 attributes required by a specific implementation or application can be included as Auxiliary Object
Classes. Examples of possible additional X.500 attributes in this entry are:

– Access Control information (on the Trader Policy Entry).

– Additional Trader enterprise policy constraints.

6.4 Service Offer Entry

Zero or more Service Offer Entries are immediately underneath the Trader Entry in the information subtree. Each Service
Offer Entry contains the details of one Service Offer. Collectively, the Service Offer Entries form the set of Service
Offers. Every Service Offer Entry has a structural object class of serviceOfferEntry and exactly one auxiliary object class
of those listed in the content rule for the Service Offer Entry. Each auxiliary object class corresponds to a service type
and defines the service properties that are mandatory or optional. Every Service Offer Entry therefore contains the
mandatory and optional attributes of the Service Offer Entry, and the mandatory and optional attributes determined by
the corresponding auxiliary object class, specifying the mandatory and optional service properties. Each Service Offer
Entry is named by using the sOfferId attribute of the entry.

serviceOfferEntryNF NAME-FORM ::= {

NAMES serviceOfferEntry

WITH ATTRIBUTES {sOfferId}

ID id-trader-nf-serviceOffer}

serviceOfferEntry OBJECT-CLASS ::= {

SUBCLASS OF {top}

MUST CONTAIN {sOfferId | serviceInterfaceId |serviceTypeId
hasDynamicProperties | hasModifiableProperties }

MAY CONTAIN {dynamicProps}

ID id-trader-oc-serviceOffer}

ISO/IEC 13235-3 : 1998 (E)

ITU-T Rec. X.952 (1997 E) 15

Service properties in a Service Offer are stored as X.500 attributes. The particular attributes (mandatory service
properties) which must be present in a Service Offer and those which are allowed (optional service properties) in a
Service Offer are controlled by the X.500 schema. The Property Name maps to an X.500 Attribute Type and the Property
Values map to X.500 Attribute Values. Property Names are object identifiers. The service properties are controlled by
the auxiliary object class associated with the Service Type of the Service Offer. In addition, a Property in a Service Offer
can be controlled by access control rules to be non-modifiable by a user (that is, read only).

Each Service Type Identifier has an associated Interface Type and an associated Service Properties Type which can be
obtained from the Type Repository. The Exporter must specify a valid Service Type Identifier known to the Trader. The
associated Service Properties Type Identifier is represented as an X.500 Auxiliary Object Class and is consequently
stored in each Service Offer Entry as a value in the Object Class attribute. This Auxiliary Object Class defines the
mandatory and optional X.500 attributes (service properties) which must/may be contained in a Service Offer of this
Service Type.

Auxiliary Object Classes may be derived from other X.500 Object Classes (known as ’subclassing’ in X.500). This is
equivalent to deriving the definition of one Service Properties Type from another. The rules for subclassing may best be
understood in relation to the must and may contain lists:

– The subclass must contain any attributes of the 'must contain list' of its superclass.

– The subclass may contain any attributes of the 'may contain list' of its superclass.

– An object class may be a subclass of two or more other classes. The subclass must contain all the attributes
in all of the 'must contain lists' of all its superclasses and 'may contain' any of the attributes of its
superclasses.

NOTE − In the definition of Service Offer Entries, the structural object class of a Service Entry is the generic ’Service Offer’, while
the ’Service Properties Type’ which specialises the Service Offer to a particular service type is an auxiliary object class. It would
have been possible to make ’Service Offer’ an abstract object class, and then the various ’Service Properties Types’ would have
been structural object class derived from the Service Offer abstract class. That would have the disadvantage of requiring a complex
X.500 schema with many rules.

For a given offer, an exporter can also nominate that a particular property has a dynamic value. That is, the value of the
property is not specified at the time of export but to be evaluated when required by matching or describing service offers
(for example, by use of the Trader operations of Query or Describe). Instead, the exporter specifies the interface at which
the property can be evaluated.

6.4.1 sOfferId

The sOfferId is the identifier of the Service Offer Entry which is allocated by the Trader. It forms the RDN of the Service
Offer Entry. The identifier is chosen to be unique amongst all other Service Offer Identifiers held by that Trader. The
sOfferId forms part of the Service Offer Identifier which the T-DUA passes back to the exporter of the service offer after
the successful processing of an Export operation request.

NOTE 1 – The T-DUA may choose names using any algorithm – provided the resulting identifiers are unique. An incrementing
counter is sufficient.

sOfferId ATTRIBUTE ::= {

WITH SYNTAX DirectoryString{ub-s-offer-id}

EQUALITY MATCHING RULE caseIgnoreMatch

SUBSTRINGS MATCHING RULE caseIgnoreSubstringsMatch

SINGLE VALUE TRUE

ID id-trader-at-sOfferId}

NOTE 2 – The exporter receives a Service Offer Identifier which is the string representation of the partial Directory Name (under
the root of the Trader) of the Service Offer entry using ASN.1 value notation. For the example in Figure 3, a Service Offer
Identifier returned to the exporter could be {sOfferId, 5}.

ISO/IEC 13235-3 : 1998 (E)

16 ITU-T Rec. X.952 (1997 E)

6.4.2 serviceInterfaceId

The Service Interface contains the name of an Interface Entry (see 6.7) which contains information of the interface of the
exported service. The Trader uses this name to read the Interface Entry to retrieve information (e.g. the presentation
address or the engineering interface reference) about this interface.

serviceInterfaceId ATTRIBUTE ::= {

SUBTYPE OF distinguishedName

SINGLE VALUE TRUE

ID id-trader-at-serviceInterfaceId}

NOTE – When dealing with only one infrastructure, an alternative is to replace the above serviceInterfaceId Specification by:

ServiceIntId ::= SEQUENCE {

serviceInterfaceType DirectoryString{ub-service-interface-type}

interfaceRef OPEN TYPE}

serviceInterfaceId ATTRIBUTE ::= {

WITH SYNTAX ServiceIntId

EQUALITY MATCHING RULE caseExactMatch

ID id-trader-at-serviceInterfaceId}

6.4.3 serviceTypeId

The serviceTypeId is the identifier of the Service Type of the service that is being on offer. The Service Type Identifier
controls the Interface Type and the Service Properties Type that can be associated with this service offer.

serviceTypeId ATTRIBUTE ::= {

WITH SYNTAX OBJECT IDENTIFIER

EQUALITY MATCHING RULE objectIdentifierMatch

ID id-trader-at-serviceTypeId }

6.4.4 hasDynamicProperties

If set to ’true’, this attribute indicates that this service offer contains dynamic properties. That is, properties whose values
need to be obtained when required for matching or describing service offers. In its import policy, an importer may request
not to consider offers with dynamic properties.

hasDynamicProperties ATTRIBUTE ::= {

WITH SYNTAX BOOLEAN

EQUALITY MATCHING RULE booleanMatch

SINGLE VALUE TRUE

ID id-trader-at-hasDynamicProperties}

ISO/IEC 13235-3 : 1998 (E)

ITU-T Rec. X.952 (1997 E) 17

6.4.5 hasModifiableProperties

If set to ’true’, this attribute indicates that this Service Offer contains properties that are not Read Only. That is, properties
whose values can be changed when required by the exporter. In its import policy, an importer may request not to consider
offers with modifiable properties.

hasModifiableProperties ATTRIBUTE ::= {

WITH SYNTAX BOOLEAN

EQUALITY MATCHING RULE booleanMatch

SINGLE VALUE TRUE

ID id-trader-at-hasModifiableProperties}

6.4.6 dynamicProps

The dynamicProps attribute is set when a Service Offer contains dynamic properties. Dynamic properties are properties
whose values are to be obtained when they are needed for matching or describing service offers. Each exporter can
nominate which properties (mandatory or optional) are dynamic. To be nominated for dynamic evaluation of a property,
however, the property must not be a Read Only property. The dynamicProps attribute contains the information required
to obtain the values for one or more dynamic properties. A dynamicPropValue is set for each dynamic property in a
Service Offer.

dynamicProps ATTRIBUTE ::= {

WITH SYNTAX SEQUENCE OF DynamicPropValue

ID id-trader-at-dynamicProps}

dynamicPropValue ::= SEQUENCE {

propertyType OBJECT IDENTIFIER,

dynamicPropEvalIf DistinguishedName,

extraInfo DirectoryString{ub-dynamic-value-extra-info}}

DynamicPropValueMatch MATCHING-RULE ::=(

SYNTAX DynamicPropValue,

ID id-trader-mr-dynamicPropValueMatch}

-- The rule returns TRUE if two values contain exactly the same characters.

6.4.7 Other X.500 attributes

In addition to the attributes already listed, a Service Offer Entry normally contains other attributes which represent the
service properties. The service property attributes are specific to the type of service and are controlled by an auxiliary
object class. The Service Properties Type specifies whether a property is mandatory or optional, and (with access control
information) whether a user can modify its value. The dynamicProps attribute is specific to a particular offer, for
example, an offer of a particular service by an exporter may have no dynamic values while a different Service Offer of the
same service type may contain several dynamic properties.

Additional X.500 attributes required by a specific implementation or application can also be included. Examples of
possible additional X.500 attributes in this entry are:

– Access Control information (on the Service Offer Entry).

– Expiry date of a Service Offer.

– Human contact information for the service, including a textual description of the service.

ISO/IEC 13235-3 : 1998 (E)

18 ITU-T Rec. X.952 (1997 E)

6.5 Trader Link Entry

Zero or more Trader Link Entries are immediately underneath the Trader Entry in the information subtree. Each Trader
Link Entry contains the details of one Trader Link. Collectively the Trader Link Entries form the set of Trader Links.
Each Trader Link Entry is named by using the linkId attribute of this entry.

traderLinkEntryNF NAME-FORM ::= {

NAMES traderLinkEntry

WITH ATTRIBUTES {linkId}

ID id-trader-nf-traderLink}

traderLinkEntry OBJECT-CLASS ::= {

SUBCLASS OF {top}

MUST CONTAIN {linkName | linkId | targetTraderInterfaceId |
defPassOnFollowRule | limitingFollowRule}

ID id-trader-oc-traderLink}

6.5.1 linkName

The linkName is the name of the Link as supplied by the administrator of the source trader when creating the Link. The
name must be unique amongst all Link names held by the Trader.

linkName ATTRIBUTE ::= {

WITH SYNTAX DirectoryString {ub-link-name}

EQUALITY MATCHING RULE caseIgnoreMatch

SUBSTRINGS MATCHING RULE caseIgnoreSubstringsMatch

SINGLE VALUE TRUE

ID id-trader-at-linkName}

6.5.2 linkId

The linkId is the identifier of the Link which is allocated by the Trader. It forms the RDN of a Trader Link Entry. The
identifier must be unique amongst all other Trader Link Identifiers held by that Trader.

NOTE – The T-DUA may choose names using any algorithm – provided that the resulting identifiers are unique. An incrementing
counter is sufficient.

linkId ATTRIBUTE ::= {

WITH SYNTAX DirectoryString {ub-link-id}

EQUALITY MATCHING RULE caseIgnoreMatch

SUBSTRINGS MATCHING RULE caseIgnoreSubstringsMatch

SINGLE VALUE TRUE

ID id-trader-at-linkId}

ISO/IEC 13235-3 : 1998 (E)

ITU-T Rec. X.952 (1997 E) 19

6.5.3 targetTraderInterfaceId

This attribute contains the name of the interface of the target Trader pointed to by the Link. The name is used to look up
the presentation address of the remote Trader.

targetTraderInterfaceId ATTRIBUTE ::= {

SUBTYPE OF distinguishedName

SINGLE VALUE TRUE

ID id-trader-at-targetTraderInterfaceId}

6.5.4 defPassOnFollowRule

The default link follow behaviour on a Link is specified when a Link is created. It must not exceed the
limitingFollowRule for this link.

defPassOnFollowRule ATTRIBUTE ::= {

WITH SYNTAX FollowOption

EQUALITY MATCHING RULE integerMatch

SINGLE VALUE TRUE

ID id-trader-at-defPassOnFollowRule }

6.5.5 limitingFollowRule

The limiting link follow behaviour on a particular Link is specified when the link is created. Its value must not exceed the
source Trader’s maxLinkFollowPolicy at the time of the Link creation. However, it is permissible if a later change in the
Trader’s maxLinkFollowPolicy causes the limitingFollowRule to exceed the value of the changed Trader
maxLinkFollowPolicy.

limitingFollowRule ATTRIBUTE ::= {

WITH SYNTAX FollowOption

EQUALITY MATCHING RULE integerMatch

SINGLE VALUE TRUE

ID id-trader-at-limitingFollowRule }

6.5.6 Other X.500 attributes

In addition to the X.500 attributes already listed, a Trader Link Entry normally contains other attributes which represent
information of the target trader as perceived by the source trader. These Link attributes are used by the source Trader to
help decide which Link to follow next. These X.500 attributes and other additional X.500 attributes required by a specific
implementation or application can be included as Auxiliary Object Classes. Examples of possible additional X.500
attributes in this entry are:

– Access Control information (on the Trader Link Entry).

– Attributes about the linked (remote) Trader Entry, including human contact information for the linked
Trader and a textual description of the linked trader.

– The period over which this Link is valid.

– The last time the Link was invoked.

ISO/IEC 13235-3 : 1998 (E)

20 ITU-T Rec. X.952 (1997 E)

6.6 Proxy Offer Entry

Zero or more Proxy Offer Entries are immediately underneath the Trader Entry in the information subtree. There need not
be any Proxy Offer Entries if the Trader Attribute of supportsProxyOffers is set to ’false’. If the supportsProxyOffers
attribute of the Trader entry is set to ’true’, then each Proxy Offer Entry contains the details of one Proxy Offer.
Collectively, the Proxy Offer Entries form the set of Proxy Offers. Every Proxy Offer Entry has a structural object class
of proxyOfferEntry and exactly one auxiliary object class of those listed in the content rule for the Proxy Offer Entry.
Each auxiliary object class corresponds to a Service Properties Type and defines the service properties that are mandatory
or optional. Every Proxy Offer Entry therefore contains the mandatory and optional attributes of the Proxy Offer Entry,
and the mandatory and optional attributes determined by the corresponding auxiliary object class, specifying the
mandatory and optional service properties. Each Proxy Offer Entry is named by using the proxyOfferId attribute of the
entry.

proxyOfferEntryNF NAME-FORM ::= {

NAMES proxyOfferEntry

WITH ATTRIBUTES {proxyOfferId}

ID id-trader-nf-proxyOffer}

proxyOfferEntry OBJECT-CLASS ::= {

SUBCLASS OF {top}

MUST CONTAIN {proxyOfferId | proxyLookUpInterfaceId |
hasDynamicProperties | hasModifiableProperties |
ifMatchAll | constraintRecipe}

MAY CONTAIN { dynamicProps }

ID id-trader-oc-proxyOffer}

A Proxy Offer is a cross between a Service Offer and a form of a restricted Link. Like normal Service Offers, Proxy
Offers have a service type and a set of service properties. However, a Proxy Offer does not include an interface at which
the offered service is provided. Instead, it provides a LookUp Interface, from which a modified Query operation is
invoked and from which a run-time determination of the interface to provide the service is obtained.

In addition, a Proxy Offer has a constraintRecipe (used to formulate a modified constraint on the modified query). A
Proxy Offer can also have a sequence of name-value pairs to be appended to the original importer policy to form the
importer policy on the modified Query.

6.6.1 proxyOfferId

The proxyOfferId is the RDN of the entry and is chosen to be unique amongst all other Proxy Offer names held by that
Trader. The proxyOfferId forms part of the Proxy Offer Identifier which the T-DUA passes back to the exporter of the
Proxy Offer after the successful processing of an Export Proxy operation request.

NOTE 1 – The T-DUA may choose names using any algorithm – provided the resulting names are unique. An incrementing
counter is sufficient.

NOTE 2 – The exporter receives a Proxy Offer Identifier which is the string representation of the partial Directory Name (under
the root of the Trader) of the Proxy Offer Entry using ASN.1 value notation.

proxyOfferId ATTRIBUTE ::= {

WITH SYNTAX DirectoryString {ub-proxy-offer-id}

EQUALITY MATCHING RULE caseIgnoreMatch

SUBSTRINGS MATCHING RULE caseIgnoreSubstringsMatch

SINGLE VALUE TRUE

ID id-trader-at-proxyOfferId}

ISO/IEC 13235-3 : 1998 (E)

ITU-T Rec. X.952 (1997 E) 21

6.6.2 proxyLookUpInterfaceId

The Proxy LookUp Interface Identifier is the name of an entry which represents an Interface that can accept a Trader
Query operation. The Trader uses this name to read the entry to retrieve information (e.g. the presentation address) about
this interface.

proxyLookUpInterfaceId ATTRIBUTE ::= {

SUBTYPE OF distinguishedName

SINGLE VALUE TRUE

ID id-trader-at-proxyLookUpInterfaceId}

6.6.3 constraintRecipe

The constraintRecipe attribute provides the recipe to convert an importer’s matching constraint in the original Query
request to a new matching constraint to be used in the modified Query request at the Proxy LookUp Interface. The
constraint language is specified in Annex C of ITU-T Rec. X.950 | ISO/IEC 13235-1.

constraintRecipe ATTRIBUTE ::= {

WITH SYNTAX DirectoryString {ub-constraint-recipe}

EQUALITY MATCHING RULE caseIgnoreMatch

SUBSTRINGS MATCHING RULE caseIgnoreSubstringsMatch

SINGLE VALUE TRUE

ID id-trader-at-constraintRecipe}

6.6.4 ifMatchAll

If set to ’true’, then the trader should match this Proxy Offer to an importer’s Query on Service Type only; that is, there is
no requirement to match the importer’s ’constraint’ expression against the properties associated with this Proxy Offer for a
search.

ifMatchAll ATTRIBUTE ::= {

WITH SYNTAX BOOLEAN

EQUALITY MATCHING RULE booleanMatch

SINGLE VALUE TRUE

ID id-trader-at-ifMatchAll }

6.6.5 Other X.500 attributes

In addition to the attributes already listed, a Proxy Offer entry, like a Service Offer Entry, normally contains other
attributes which represent the service properties, and whether there are dynamic properties and modifiable properties. The
service property attributes are specific to the type of service and are controlled by an auxiliary object class. A property
attribute type specifies that an attribute is mandatory or optional, and (with access control information) whether a user can
modify its value. If there are dynamic properties, then they are stored in dynamicProps attribute (see 6.4.6).

The Trading Function Specification in ITU-T Rec. X.950 | ISO/IEC 13235-1 also allows additional name-value pairs
(policies_to_pass_on) to be included in a Proxy Offer. These name-value pairs, if present, are to be appended onto the
policy parameter of the original Query request, in order to pass these name-value pairs to a service factory for use during
service creation by the service factory. The name-value pairs are represented as X.500 Attribute Type and Attribute
Value pairs.

ISO/IEC 13235-3 : 1998 (E)

22 ITU-T Rec. X.952 (1997 E)

Other additional X.500 attributes required by a specific implementation or application can be included. Examples of
possible additional X.500 attributes in this entry are:

– Access Control information (on the Proxy Offer Entry).

– Human contact information for the Proxy Offer, including a textual description of the service.

6.7 Other X.500 entries used by the T-DUA

In addition to the five types of entry in the Trader Information Object, the T-DUA may also make use of other entries in
the X.500 database. These include entries representing:

– Individuals, Organisational Units, or Organisations which may store authentication information.

– Interfaces, which contain information about the interface, for example, the address (or an engineering
interface reference) used to access that interface. Part 1 of the Trader Function (see ITU-T Rec. X.950 |
ISO/IEC 13235-1) specifies that an engineering interface reference needs to be specified for each
infrastructure. To maintain the maximum flexibility, we represent each interface of the computational
Specification by a separate Directory Entry. The Directory Entry can have attributes tailored for each
infrastructure as required. This adds a level of indirection to accessing interface addresses; the Trader
stores the name of an entry containing interface information and that entry is accessed to retrieve the
address. An advantage is that if the address at which the interface is accessed changes, then only one entry
needs to be changed, instead of all references to that interface in all Traders. This is particularly important
where the interface needs to be widely known by many Traders – a Type Repository for example.

Interface entries contain an interfaceReference attribute and an interfaceType attribute. The Object
Identifier for the Interface Type must be known to the Type Repository.

interfaceEntry OBJECT-CLASS ::= {

SUBCLASS OF {top}

KIND auxiliary

MUST CONTAIN {interfaceReference | interfaceType}

ID id-trader-oc-interfaceEntry}

interfaceReference ATTRIBUTE ::= {

WITH SYNTAX InterfaceId

EQUALITY MATCHING RULE caseExactMatch

ID id-trader-at-interfaceReference}

InterfaceId ::= DirectoryString {ub-interface-id}

interfaceType ATTRIBUTE ::= {

WITH SYNTAX InterfaceTypeName

EQUALITY MATCHING RULE objectIdentifierMatch

ID id-trader-at-interfaceType}

InterfaceTypeName ::= OBJECT IDENTIFIER

7 Operations

This clause describes the mapping between the Trader functions specified in ITU-T Rec. X.950 | ISO/IEC 13235-1 and
the operations the T-DUA performs on the X.500 Directory to implement these functions. It is assumed that exporters
and importers communicate with the T-DUA via a Trader protocol which supports the functionality required in ITU-T
Rec. X.950 | ISO/IEC 13235-1.

ISO/IEC 13235-3 : 1998 (E)

ITU-T Rec. X.952 (1997 E) 23

7.1 Initialisation

When setting up a new Trader, the Trader Entry is created by the administrator (either directly or via a program which
reads configuration information). The new entry contains the configuration information for the new Trader.
ISO/IEC 13235-3 : 1998 (E)

ITU-T Rec. X.952 (1997 E)

Whenever the Trader (T-DUA) is started, it binds to the Directory and reads the Trader Entry to discover the information
about itself. The only bootstrap information needed by the T-DUA is:

– The Distinguished Name of its Trader Entry.

– A Password.

The T-DUA binds to the X.500 DSA when the Trader is created and remains bound until the Trader is destroyed (except
for crashes of either the Trader or the X.500 system). The Trader must bind to the DSA with sufficient privileges to
modify the Trader Entry, and to create, read, remove, and modify the Service Offer Entries, the Trader Link Entries and,
if Proxy Offer is supported, to create, read and remove Proxy Offer entries.

7.2 Client operations

A client uses a Trader protocol to communicate with the T-DUA. This protocol is not defined further in
this Specification. The operation requested by the client results in one or more operations on the X.500 database.
The mapping between the Trader operations and the X.500 operations are described in the following subclauses. A
mapping takes place only after the T-DUA has checked for the syntax of each parameter as specified in Annex A of ITU-
T Rec. X.950 | ISO/IEC 13235-1; a syntactically incorrect parameter is returned as an exception with the prefix ‘illegal’
and the operation is not processed further.

Several Trader operations require some form of security (e.g. only a client acting in an administrator role can add or
delete Links). This security is implemented by taking advantage of the security provided by X.500. To perform a Trader
operation, a client must supply a name and a password. In this Specification these are assumed to be, or to directly map
to, an X.500 user name and user password, possibly protected in some form. How this is done depends on the Trader
protocol used to bind a client to a Trader.

The T-DUA uses this authentication to bind to the X.500 DSA as that user. X.500 provides facilities to protect the
password when it is being sent across the network between the T-DUA and the X.500 DSA. There is a security
implication in this approach: the Client must trust the T-DUA, as the T-DUA can see the Client’s password. The X.500
protocol provides mechanisms for protecting passwords when transmitted between DUAs and DSAs. It should be
feasible to extend this protection to operate between a Client and the DSA since the T-DUA does not need to know the
password.

Once bound as the Client to the DSA, the T-DUA uses the X.500 security features to control access to entries in the
Trader information tree. No specific access control exception is defined in ITU-T Rec. X.950 | ISO/IEC 13235-1, and a
system specific exception is returned when access is not allowed (for example, in CORBA, the standard exception of
No_Permission is raised).

7.3 Register operations

The Register operations form a set of operations that allow a client to export, withdraw, modify, and describe Service
Offers in a trader. In addition, there is an operation to resolve a context relative name of a trader.

7.3.1 Export

The Trader receives an Export operation. This operation is mapped to an X.500 addEntry operation to add a new Service
Offer Entry to the X.500 Directory. The data in the Export operation are:

Parameter X.500 attribute syntax Comment

reference Name The name of the entry in the X.500 database which
contains the address of the Service Interface. See 6.7.

type Object Identifier The Type specifies the service type. It is assumed to be the
Service Type Identifier. In the X.500 Trader, it is used to
obtain the Auxiliary Object class for the new entry.

properties Any (Optional) The actual X.500 attributes supplied by the exporter for the
service properties are controlled by the Service Properties
Type Identifier.

ISO/IEC 13235-3 : 1998 (E)

24 ITU-T Rec. X.952 (1997 E)

The T-DUA maps the export operation to an X.500 addEntry. The name of the new entry is selected by the T-DUA such
that it is unique amongst all Service Offers. Any scheme may be used; a simple method would be an incremental counter.
The structural object class of the new entry is serviceOffer. The auxiliary object class is the Service Properties Type
Identifier (OID) associated with the Service Type Identifier specified by the Exporter. The T-DUA uses its Type
Repository to obtain the Interface Type Identifier and the Service Properties Type Identifier associated with the
Service Type.

Access control information must be included in the new entry to prevent other X.500 users from accessing or modifying
the trader information. Additional access control information is added to allow the X.500 DSA to control access to trader
information by the Clients. This can be extended to only allowing certain clients the privilege of exporting services.

The reference parameter gives the name of the interface that provides the service. This entry is read to obtain the type
associated with the interface. If it can be determined that this type is not a subtype of the Interface Type associated
with the specified Service Type, then an InterfaceTypeMismatch exception may be returned. The exception
InvalidInterfaceRef may be raised if the parameter contains ’nil’.

If the Service Type Identifier or the Auxiliary Object class is not known to the Trader, the DSA returns an Update error
of type objectClassViolation. The T-DUA returns an exception of UnknownServiceType. The Service Type Identifier is
stored in the Service Offer entry.

The Service Property Values which may/must be present in the new entry are controlled by the Auxiliary Object Class
(Service Properties Type Identifier) of the entry. If the exporter does not supply the necessary mandatory attributes for
the specified Service Properties Type Identifier, the DSA returns an Update error of type objectClassViolation. The
T-DUA returns an exception of MissingMandatoryProperty. Similarly, if the user supplies service properties which are
not listed in the definition of the Service, an Update error of type objectClassViolation is returned. (The current
specification in ITU-T Rec. X.950 | ISO/IEC 13235-1 allows exporter to include an occasional optional property that is
not included in the Service Properties Type. However, this is not allowed in X.500. The exporter must first specify a
subtype that includes the additional property before exporting). The schema checking in X.500 does not check that the
service properties supplied by the Exporter are valid (e.g. that the printer type is one of the three valid values). This
checking has to be performed by the T-DUA and the PropertyTypeMismatch exception is raised if the property value is
not of the required type. If an Attribute Error of undefinedAttributeType occurs, the T-DUA can directly map this onto a
PropertyTypeMismatch exception.

The T-DUA also checks for the presence of dynamic properties in the offer. For each dynamic service property identified
(see clause 9), the T-DUA substitutes its value by a ’dummy’ value and creates an associated dynamicPropValue in the
dynamicProps attribute of the entry. The T-DUA also sets the hasDynamicProperties attribute of the Offer Entry to ’true’
if there are dynamic values in the offer. If a property with a dynamic value is non-modifiable according to the access
control information on the property, then a ReadonlyDynamicProperty exception is returned.

If a Trader does not support dynamic properties (that is, the Trader Attribute supportsDynamicProperties is set to ’false’)
and there are dynamic properties in the offer, then the exception PropertyTypeMismatch is raised and the Service Offer is
not accepted.

If all the properties of the service are non-modifiable, then the hasModifiableProperties attribute of the offer entry is set
to ’false’.

If two or more properties with the same property name are included in the property list, then the DuplicatePropertyName
exception is raised.

If the export is successful, the T-DUA returns success with the following information:

where the offerId is the string representation of a partial Directory Name, which gives the pathname from the Trader
Entry to the new Service Offer. The RDN (sOfferId) of the new Service Offer Entry forms the final RDN in the sequence
of names.

Parameter X.500 attribute syntax Comment

offerId DirectoryString A Service Offer Identifier

ISO/IEC 13235-3 : 1998 (E)

ITU-T Rec. X.952 (1997 E) 25

7.3.2 Withdraw

The T-DUA receives a request to delete a Service Offer. The Withdraw operation is mapped to an X.500 removeEntry
operation to remove the Service Offer entry. The data in the Withdraw operation are:

The entry is identified by the id, which is the partial DN that uniquely identifies the Service Offer. This operation simply
removes the Service Offer Entry.

If the Client supplies an unknown Offer Identifier, the removeEntry operation returns a nameError of noSuchObject. The
T-DUA then uses the partial DN to try to read a Proxy Offer Entry. If the read is successful, then the exception of
NotServiceOfferId is raised. If the read is unsuccessful, then the exception of UnknownOfferId is raised.

Access control is enforced by the DSA based on the access control information stored when the Service Offer was
exported and on the Client Identifier of the Withdraw operation. If the Client has insufficient access rights, a Security
Error of insufficientAccessRights is returned to the T-DUA which is mapped to system specific exception. If the
implementation requires the Trader administrator to purge ’old’ Offers, then the administrator must also have permission
to remove offers.

7.3.3 Modify

The Trader receives a request to modify the property values of a Service Offer. The Modify operation is mapped to
an X.500 read operation and then an X.500 modifyEntry operation to change the Service Offer Entry. The data in the
modify operation are:

The T-DUA first reads the Service Offer entry identified by the Service Offer Identifier. If this entry does not exist,
the DSA returns a nameError of noSuchObject, which is mapped to an UnknownOfferId Trader exception. If the client
does not have sufficient permission to read the entry, a security error of insufficientAccessRights is returned to the
T-DUA. This X.500 read operation is performed so that the T-DUA can build a list of the property attributes actually
present in the Service Offer Entry. The T-DUA modifies the entry accordingly: properties from the deleteList are
removed, existing property values are changed, and new property values are added.

An X.500 modifyEntry operation is then constructed which first deletes all the existing service properties and then adds
the properties from the modified offer. The parameters for this new Service Offer have the same name and function as the
Export operation. If a name in the del_List does not exist in the original offer, then the UnknownPropertyName exception
is returned.

The newly constructed entry may violate the schema (as represented by the Auxiliary Object Class – the Service
Properties Type Identifier). In this case, when the X.500 modifyEntry operation is performed, the DSA returns an Update
Error of object class violation, and the existing Service Offer remains unchanged. The T-DUA maps the Update Error to
various exceptions. A MandatoryProperty exception is returned if a mandatory property is deleted but not added back.
Access control is enforced by the DSA if the operation tries to change the value of a non-modifiable property or delete a
non-modifiable property, and a ReadOnly exception is returned; a PropertyTypeMismatch is returned if the values do not
match the specified types.

If the modification changes a non-dynamic property into a dynamic property, the T-DUA must add the appropriate
dynamicPropValue to the dynamicProps attribute of the entry. If the modification changes a dynamic property to a non-
dynamic property, the T-DUA must delete both the 'dummy' value and the associated dynamicPropValue in the
dynamicProps attribute and add the new static value. The hasDynamicProperties flag may also need to be reset
accordingly.

Parameter X.500 attribute syntax Comment

id DirectoryString A Service Offer identifier

Parameter X.500 attribute syntax Comment

id DirectoryString A Service Offer Identifier

del_list set of OIDs (optional) List of service properties to be deleted from the offer

modify_list Any (optional) List of service properties whose values are to be added or
replaced

ISO/IEC 13235-3 : 1998 (E)

26 ITU-T Rec. X.952 (1997 E)

The results of adding the new properties are equivalent to exporting the Service Offer, and the discussion as to the errors
which may occur in 7.3.1 applies here as well.

The invocation of the modifyEntry operation causes the T-DUA to return an exception of NotImplemented if the Trader
Attribute of supportsModifiableProperties is set to ’false’.

7.3.4 Describe

The T-DUA receives a request to describe a Service Offer. The Describe operation is mapped to an X.500 read operation
to read the Service Offer Entry. The data in the Describe operation are:

For the read operation, the entry is identified by the id (the partial DN of a Service Offer Entry) with the entry
information set to ’allUserAttributes’. The T-DUA must examine the dynamicProps attribute of the returned entry. For
each dynamicPropValue set in the dynamicProps attribute, the associated ’dummy’ value must be removed and replaced
by the value returned from the evalDP operation invoked on the associated dynamicPropEvalIf interface to retrieve the
current value of that property (see 7.9).

The T-DUA filters the attributes returned and passes back to its client the following information:

If the client supplies an unknown Service Offer Identifier, a nameError of noSuchObject is returned. The T-DUA returns
an UnknownOfferId exception.

Access control is enforced by the DSA based on the access control information stored when the Service Offer was
exported and on the Client Identifier of the Describe operation. If the client has insufficient access rights, a Security Error
of insufficientAccessRights is returned to the T-DUA which is mapped to the appropriate system error.

7.3.5 Withdraw with constraint

The T-DUA receives a request to delete a set of Service Offers within a trader. This set is identified in the same way as a
Query operation (see 7.4.1) identifies a set of offers to be returned to an importer.

The data in the Withdraw with constraint operation are:

The first step in processing this operation is to construct an X.500 filter from the constraint. This is complicated by
dynamic properties in the service offers. Each property test in the constraint is expanded to succeed if the associated
dynamicPropValue is present. For example, the test ’dotsPerInch = 600’ is expanded to ’dotsPerInch = 600 OR
dotsPerInchDynamicPropValue present’. The filter must include the matching of the ’type’ of the service.

Once the X.500 filter has been constructed, the T-DUA invokes an X.500 search for matching Service Offer Entries. The
entry information for the X.500 search is selected to sOfferId. The sOfferId is the RDN of a matched offer.

No error is reported by X.500 if a service property in the constraint specified by the client is not recognised by the DSA.
Similarly, no error is reported if a service property name is not recognised by the DSA.

Parameter X.500 attribute syntax Comment

id DirectoryString A Service Offer identifier

Parameter X.500 attribute syntax Comment

reference Name Name of Interface that provides the service

type Object Identifier The Service Type Identifier of the offer

properties Set of attributes Each attribute type maps to a Property Name and the
corresponding attribute value maps to a Property Value

Parameter X.500 Attribute Syntax Comment

type Object Identifier Identifies the Service Type Identifier to be used to select
offers to be removed

constr Filter The constraint used to select offers to be removed

ISO/IEC 13235-3 : 1998 (E)

ITU-T Rec. X.952 (1997 E) 27

An X.500 removeEntry operation is used to remove each of the Service Offers matched by the DSA. The removeEntry
operation simply removes the Service Offer entry. The entry is identified by the sOfferId which is returned by the DSA
for the matched offers.

Access control is enforced by the DSA based on the access control information stored when the Service Offer was
exported and on the Client Identifier of the Withdraw operation. If the client has insufficient access rights, a Security
Error of insufficientAccessRights is returned to the T-DUA which is mapped to system specific exception. If the
implementation requires the Trader administrator to purge ’old’ Offers, then the administrator must also have permission
to remove offers.

An exception of NoMatchingOffers is returned if the X.500 search operation yields no matching offers.

7.3.6 Resolve

The T-DUA receives a request to resolve a context relative name of another Trader. In particular, this operation is used
when exporting to a Trader that is known by its name (a sequence of Link Names that identifies a path of linked Traders
in a Trading Graph), rather than by an interface reference. The client provides the name of a sequence of name
components. Each component is used to match a Link name along a Trading Graph. The data in the describe
operation are:

The T-DUA extracts and removes the first component of the sequence (a linkName) and uses this component as a filter
for ’linkName’ in a one-level search operation on its Link entries. The entry information for the X.500 search is selected
to ’targetTraderInterfaceId’.

If another name exists in the sequence, then the T-DUA uses an X.500 read operation to map the ’targetTraderInterfaceId’
found to an Address of the target Trader. The T-DUA then connects to the linked target Trader and invokes a Resolve
operation with the residual names as its parameter. This process continues until the sequence is empty; at which point, the
T-DUA (that performs the last search) returns the final ‘targetTraderInterfaceId’ to its client, which in turn returns the
interface address to its client, and so on. Eventually the final Trader Interface Address corresponding to the final Trader
name is returned to the original invoker of this operation.

An UnknownTraderName exception is returned if any of the X.500 search operation is unsuccessful along the path.

If the client does not have sufficient permission to search the Link Entries, then a security error of insufficient
AccessRights is returned to the T-DUA which is mapped to a system specific exception.

7.4 Look Up operations

The Look Up operations provide the import functionality for the Trading function. Query is the only operation. It is used
to import Service Offer Entries stored in a Trader or a group of federated Traders.

7.4.1 Query operation

The Trader receives a request to search for service offers matching the client’s specified service type and constraint
within an expected search scope identified by the importer policy. And, optionally, the set of matched offers are further
filtered by the client’s preference criteria. The Query operation can also include property names of those properties
whose values are of interest to the importer. The data in the Query operation are:

Parameter X.500 attribute syntax Comment

type Object Identifier The type specifies the Service type to be matched

constr Filter It represents the constraint used for the offer matching
criteria – see below

pref Not used Preference criteria – used by T-DUA only

policies (Optional) Importer’s expectations – see below

desired_props (Optional) Service properties of interest – see below

how_many Not used Iterator control used by T-DUA only

Parameter X.500 attribute syntax Comment

name A sequence of Names A trader name formed by a sequence of Names, where
each Name is a Link name

ISO/IEC 13235-3 : 1998 (E)

28 ITU-T Rec. X.952 (1997 E)

Because of the complexity of an import, the description is broken into two components: searching the local Trader
Service Offer space; and searching the offer spaces of federated Traders. At the choice of the T-DUA, these two search
components may be done either sequentially or in parallel.

7.4.2 Policies

The first step in processing a Query operation is to process the Policies. Policies are represented as <name, value> pairs.
An importer can specify zero or more importer policies which specify the importer’s expectations for the search. Each
Trader has its own search policies that guide its behaviour in searching. The Trader policies interact with the importer
policies. If an importer policy is not specified, then the Trader uses the Trader’s default policy. If an importer policy
exceeds the maximum (or limiting) policy values set by the Trader, then the Trader overrides the importer’s expectations
with the Trader’s maximum/limiting policy value.

It is the T-DUA’s responsibility to check and set the actual upper bounds for the cardinality policies and hop_count
policy. It is also the T-DUA’s responsibility to place a policy name in the return parameter of 'limits_applied', if a search
is prematurely terminated by an upper bound.

A Trader has three standardised capability supported policies. If a Trader does not support a capability, then an importer
can not override it; the non-use of an importer’s request of a capability is reported by including the capability policy
name in 'limits-applied'. However, if a Trader supports a capability and an importer does not wish to use that capability,
then the Trader must respect the importer’s wish. The Trader’s capability applies if an importer does not specify an
expected capability. There are three standardised capability choices for an importer:

– use_proxy_offers – If set to 'false', then the Proxy Offer Entries are not searched for matches.

– use_modifiable_properties – If set to 'false', then the T-DUA 'And' s the term 'hasModifiableProperties =
false' in the matching filter.

– use_dynamic_properties – If set to 'false', then the T-DUA 'And' s the term 'hasDynamicProperties = false'
in the matching filter.

The next step is to process the Link Behaviour Policy to determine if any interworking can take place. This is described
in 7.4.4.

If an importer states a starting_trader policy, then the first component in the TraderName is searched against the name
held in each Link Entry. If no match is found, then the exception InvalidPolicyValue is returned. Otherwise, the T-DUA
invokes the Query operation on the named Link, and passes the 'starting_trader' policy with the first component removed
(See also 7.3.6 for Resolve operation).

7.4.3 Searching locally

Searching locally commences with the construction of an X.500 filter to match the Service Type Identifier. In addition to
Service Offers which exactly match the Service Type Identifier, the filter can also match any entry with a Service Type
Identifier which is a refinement (subclass) of the specified type (Service Type Identifier). However, only exact service
type matching is done if the importer has set the importer policy of exact_type_match to 'true' in the Query operation. If
the Trader supports dynamic properties and the importer wishes to use offers with dynamic properties, then the
'hasDynamicProperties' attribute is selected for the EntryInformationSelection for the X.500 search operation. A one-
level search on the Service Offer Entry is performed to see if there are any Service Offers with the required service type.

A second filter is constructed from the constraint specified for matching. This can be complicated by the support and
presence of dynamic properties in the Service Offers (knowledge obtained from the first search). If the Trader supports
dynamic properties and the importer wishes to use offers with dynamic properties, then each property test in the
constraint is expanded to succeed if the associated 'dynamicPropValue' is present. For example, the test 'dotsPerInch =
600' is expanded to 'dotsPerInch = 600 OR dotsPerInchDynamicPropValue present'.

The second filter is 'And' ed with the first filter. The T-DUA invokes an X.500 search for matching Service Offer Entries.
All userAttributes are selected in the X.500 EntryInformationSelection; it is the T-DUA’s responsibility to filter the
attributes returned. A user may wish to have the description of values for 'none', 'some' or 'all' of the service properties.

No error is reported by X.500 if a service property in the constraint specified by the client is not recognised by the DSA.
Similarly, no error is reported if a Service Property Name is not recognised by the DSA. However, an Attribute Error of
noSuchAttributeOrValue is returned if no attributes are returned.

If a DSA matches many Service Offers against the filter, the DSA need only return some of the matches. In this case the
partialOutcomeQualifier of sizelimitExceeded is set. The T-DUA may need to restart the search in this case using the
paged results option of the X.500 search operation.

ISO/IEC 13235-3 : 1998 (E)

ITU-T Rec. X.952 (1997 E) 29

The entries returned from the X.500 searches may contain dynamic properties. The T-DUA must examine each entry for
’dynamicProps’ attribute. If it is found, then the associated dummy attribute for every dynamicPropValue in the
dynamicProps attribute is removed from the search result and the associated interface for evaluation of the property is
invoked to retrieve the current value of that dynamic property (see 7.9 for evaluation of dynamic properties). The Query
constraint must then be evaluated by the T-DUA to determine if the Service Offers actually do satisfy the constraint.

7.4.4 Searching Federated Traders

Hop_count is used by a T-DUA to control the depth of Links traversed for an import. A hop_count of zero terminates the
propagation of an import through linked traders. One is subtracted from a hop_count whenever a Link is traversed to pass
on a Query operation.

Associated with each Link are two Link follow policies of def_pass_on_follow_rule and limiting_follow_rule that are set
at Link creation time. The Trader itself has three link related policies:

– maxLinkFollowPolicy – Limits the value of limiting_follow_rule allowed while a link is first established.

– maxFollowPolicy – Limits the link follow behaviour on any link in the trader for a given Query operation.

– defFollowPolicy – Provides the default link follow rule if an importer fails to specify one on its Query.

The follow policy for a particular Link is, therefore, either:

– min (trader.max_follow_policy, link.limiting_follow_rule, query.link_follow_rule); or

– min (trader.max_follow_policy, link.limiting_follow_rule, trader.def_follow_policy).

If any suitable Links are to be followed, the T-DUA uses X.500 read operations to map the targetTraderInterfaceId
names (from the Trader Link entries) to the Address of each target Trader. The T-DUA then connects to the selected
Traders and passes the Query operation to them with the link_follow_rule specified as either:

– min (trader.max_follow_policy, link.limiting_follow_rule, query.link_follow_rule); or

– min (trader.max_follow_policy, link.def_pass_on_follow_rule).

In addition, if the source trader that initiates a federated Query operation, wishes to include an identifier for the Query
operation in the policy parameter, it can do so. A Trader is not obliged to generate such an operation identifier, but a
Trader is obliged to pass this policy down a Link.

7.4.5 Searching Proxy Offers

If the importer’s use_proxy_offer policy is not set to 'false' and the trader’s supportsProxyOffer attribute is set to 'true',
then the X.500 searches of 7.4.3 are repeated on the Proxy Offer Entries. For each matched Proxy Offer, the T-DUA
applies a modified Query operation using information stored in the matched Proxy Offer. The T-DUA then uses an X.500
read operation to map the proxyLookUpInterfaceId name (from the Proxy Offer entry) to an ‘address’ which the T-DUA
uses to invoke the modified Query operation.

7.4.6 Service Offer returned

Once the Trader finds a set of Service Offers, the preference parameter and the various cardinality policies are used to
order and limit the offers returned to the Importer. This is a T-DUA function and is not considered further in this
Specification. The implementation of an offer iterator is also the responsibility of the T-DUA.

The exception of UnknownType (service type name not known) or NoMatchingType (no offers with the required service
type) is returned if either of these is true from the total scoped search space.

7.5 Link operations

7.5.1 Add Link

The Trader receives an Add Link operation. This operation is mapped to an X.500 addEntry operation to add a new
Trader Link entry to the X.500 Directory. The data in the Add Link operation are:

Parameter X.500 attribute syntax Comment

name DirectoryString Name of the new Link

target Name Name of another Trader

def_pass_on_follow_rule FollowOption Must not exceed limiting_follow_rule

limiting_follow_rule FollowOption Must not exceed max_link_follow_policy of the Trader

ISO/IEC 13235-3 : 1998 (E)

30 ITU-T Rec. X.952 (1997 E)

The T-DUA first checks the permissible values for the parameters. The exception DefaultFollowTooPermissive is raised
if the def_pass_on_follow_rule exceeds the limiting_follow_rule. The LimitingFollowTooPermissive exception is raised
if the limiting_follow_rule exceeds the Trader’s max_link_follow_policy. The T-DUA must first read the Trader Entry to
determine its max_link_follow_policy. The T-DUA also ensures that the new Link Name is unique within the set of
Trader Links by searching for an existing instance of the name. If a match is found, then the DuplicateLinkname
exception is raised.

The T-DUA maps the Add Link operation to an X.500 addEntry operation. The identifier of the new entry is selected by
T-DUA such that it is unique amongst all Trader Links. Any scheme may be used; a simple method would be an
incremental counter. The structural object class of the new entry is traderLink. The traderLink auxiliary object class can
also specify additional Link Properties that may be included in the addEntry operation.

Access control information must be included in the new entry to prevent other X.500 or Trader users from accessing or
modifying the Link information.

If the Add Link is successful, no exception is raised.

7.5.2 Remove Link

The T-DUA receives a request to delete a Trader Link. The data in the Remove Link operation is:

The T-DUA must first use the X.500 search operation on the Link Entries for an entry with that linkName. If the search
fails to find a Link Entry, then the exception UnknownLinkname is raised.

The T-DUA then uses an X.500 removeEntry operation to remove the Trader Link Entry by using the linkId of the
matched entry. This operation simply removes the Trader Link Entry.

Access control is enforced by the DSA based on the access control information stored when the Trader Link was created
and on the Client Identifier of the remove operation. If the Client has insufficient access rights, a Security Error of
insufficientAccessRights is returned to the T-DUA which is mapped to a system specific exception.

7.5.3 Modify Link

The Trader receives a request to modify a Trader Link. The Modify operation is mapped to an X.500 search to find the
Link using the linkName, and then to a modifyEntry operation to change the Trader Link entry. The data in the Modify
Link operation is:

The T-DUA first checks the permissible values for the parameters. The exception DefaultFollowTooPermissive is raised
if the def_pass_on_follow_rule exceeds the limiting_follow_rule. The LimitingFollowTooPermissive exception is raised
if the limiting_follow_rule exceeds the Trader’s max_link_follow_policy. The T-DUA then searches the Trader Link
entry identified by the linkName. AllUserAttributes are selected on the X.500 entry information selection. If this entry
does not exist, the DSA returns a nameError of noSuchObject, which is mapped to the UnknownLinkName exception.

An X.500 modifyEntry operation is then constructed which first deletes all the existing Link follow behaviour (and
properties, if any) and then adds the new follow behaviour (and properties, if any) from the Modify Link operation. If the
Client does not have sufficient permission to delete attributes of the entry, a security error of insufficient AccessRights is
returned to the T-DUA.

The trader Link Auxiliary Object class can also specify Link properties that may be included in the modifyEntry
operation. The newly modified entry may violate the schema. In this case, when the newly modified Link Entry is added,
the DSA returns an Update Error of object class violation. The existing Trader Link remains unchanged. The X.500
schema checking cannot check that the values are those specified by the Link schema. An Attribute Error of
undefinedAttributeType occurs if the DSA does not know one of the attributes supplied by the client.

Parameter X.500 attribute syntax Comment

name DirectoryString Identifies the Link to be removed by its linkName

Parameter X.500 attribute syntax Comment

name DirectoryString Identifies the Link to be modified

def_pass_on_follow_rule FollowOption Must not exceed limiting_follow_rule

limiting_follow_rule FollowOption Must not exceed limiting_follow_policy of the Trader

ISO/IEC 13235-3 : 1998 (E)

ITU-T Rec. X.952 (1997 E) 31

7.5.4 Describe Link

The Trader receives a request to return details of a particular Link. This operation is mapped into an X.500 search
operation. The data are:

The T-DUA searches the Trader Link entry identified by the linkName with the entry information selection set for
’allUserAttributes’. If this entry does not exist, the DSA will return a nameError of noSuchObject, which is mapped to an
UnknownLinkName exception. If the client does not have sufficient permission to search the entry, a security error of
insufficientAccessRights is returned to the T-DUA.

Once the data have been returned from the X.500 DSA, the T-DUA returns the data, minus the linkId, to the client.

7.5.5 List Links

The Trader receives a request to return the names of all Trader Links known to the Trader. This operation is mapped into
an X.500 search operation. The data are:

The T-DUA performs an X.500 search operation to return the linkName attribute of all Trader Link entries. The search is
a one level search at the Link entries. The Link names (if any) are returned to the User:

where each DirectoryString (a Link name) is unique for each Link entry.

7.6 Proxy Offer operations

The Proxy Offer operations form a set of operations that allow a client to export, withdraw, and describe Proxy Offers in
Trader.

7.6.1 Export Proxy

The Trader receives an Export Proxy operation. This operation is mapped to an X.500 addEntry operation to add a new
Proxy Offer entry to the X.500 Directory. The data in the Export Proxy operation are:

Parameter X.500 attribute syntax Comment

Name DirectoryString Identifies the Link to be retrieved

Parameter X.500 attribute syntax Comment

(None)

Parameter X.500 attribute syntax Comment

LinkNameSeq Set of DirectoryString

Trader parameter X.500 attribute syntax Comment

type Object Identifier The Type name is assumed to be the Service Type
Identifier. It is used to obtain the Auxiliary object class for
the new entry.

target Name The name of the entry in the X.500 database which contains
the address of the proxyLookUpInterfaceId.

properties Any (optional) The actual X.500 attributes supplied by the exporter for the
Service Properties are controlled by the Service Properties
Type Identifier.

if_match_all Boolean

recipe String

policies_to_pass_on Set of Attributes (optional)

ISO/IEC 13235-3 : 1998 (E)

32 ITU-T Rec. X.952 (1997 E)

The T-DUA maps the Export Proxy operation to an X.500 addEntry. The name of the new entry is selected by T-DUA
such that it is unique amongst all Proxy Offers. Any scheme may be used; a simple method would be an incremental
counter. The structural object class of the new entry is proxyOffer. The auxiliary object class is the Service Properties
Type Identifier (OID) associated with the Service Type Identifier parameter of the Proxy Offer. The T-DUA uses its
Type Repository to obtain the Interface Type Identifier and the Service Properties Type Identifier associated with this
Service Type.

Access control information must be included in the new entry to prevent other X.500 users from accessing or modifying
the trader information. Additional access control information is added to allow the X.500 DSA to control access to trader
information by the clients. This can be extended to only allowing certain clients the privilege of exporting Proxy Offers.

If the Service Type Identifier or auxiliary object class is not known to the Trader, the DSA returns an Update error of
type objectClassViolation. The T-DUA returns an exception of UnknownServiceType. The Service Type Identifier is
stored in the Proxy Offer Entry.

The Service Property Values which may/must be present in the new entry are controlled by the auxiliary object class
(Service Properties Type Identifier) of the entry. The processing of these property values are the same as for the
operation Export service offer (see 7.3.1).

The if_match_all parameter specifies whether this offer requires matching of the service type only.

The target parameter gives the name of the interface that is used to obtain the Service interface at runtime. If ’nil’ is
specified, then the exception InvalidInterfaceRef is raised.

The recipe parameter provides the modification that can be applied to the constraint of a Query operation that matches
this Proxy Offer in service type, and property values when if_match_all is not ’true’.

The policies_to_pass_on consists of <name, value> pairs to be appended to the policy parameter of the incoming Query
operation to form the modified policy parameter of the modified Query operation.

If the export of the Proxy Offer is successful, the T-DUA returns success with the following information:

where the OfferId is the string representation of the partial DN of the new Proxy Offer entry.

7.6.2 Withdraw Proxy

The T-DUA receives a request to delete a Proxy Offer. The Withdraw Proxy operation is mapped to an X.500
removeEntry operation to remove the Proxy Offer Entry. The data in the Withdraw Proxy operation are:

This operation simply removes the Proxy Offer Entry. The entry is identified by the ’id’ which uniquely identifies a Proxy
Offer Entry.

If the client supplies an unknown Proxy Offer Identifier, the removeEntry operation returns a nameError of
noSuchObject. The T-DUA then uses the Proxy Offer Identifier to read a Service Offer Entry. If the read is successful,
then the exception of NotProxyOfferId is raised. If the read is unsuccessful, then the exception of UnknownOfferId is
raised.

Access control is enforced by the DSA based on the access control information stored when the Proxy Offer was
exported and on the Client Identifier of the Withdraw Proxy operation. If the Client has insufficient access rights, a
Security Error of insufficientAccessRights is returned to the T-DUA which is mapped to system specific exception. If the
implementation requires the Trader administrator to purge ’old’ Proxy Offers, then the administrator must also have
permission to remove Proxy Offers.

Parameter X.500 attribute syntax Comment

OfferId DirectoryString A Proxy Offer identifier

Parameter X.500 attribute syntax Comment

id DirectoryString A Proxy Offer identifier

ISO/IEC 13235-3 : 1998 (E)

ITU-T Rec. X.952 (1997 E) 33

7.6.3 Describe Proxy

The T-DUA receives a request to describe a Proxy Offer. The describe operation is mapped to an X.500 read operation
to read the Proxy Offer Entry. The data in the Describe operation are:

The entry is identified by the ’id’ which uniquely identifies the entry. The entry information for the read operation is set
to ’allUserAttributes’. The T-DUA is not required to evaluate the dynamic property values in the Proxy Offer.

The T-DUA filters the attributes returned and passes back to its client the following information:

If the Client supplies an unknown Proxy Offer Identifier, the read operation returns a nameError of noSuchObject. The
T-DUA then uses the Proxy Offer Identifier to try to read a Service Offer Entry. If the read is successful, then the
exception of NotProxyOfferId is raised. If the read is unsuccessful, then the exception of UnknownOfferId is raised.

Access control is enforced by the DSA based on the access control information stored when the Proxy Offer was
exported and on the Client Identifier of the Describe Proxy operation. If the client has insufficient access rights, a
Security Error of insufficientAccessRights is returned to the T-DUA which is mapped to the appropriate System error.

7.7 Trader Attribute Operations

Trader properties and policies are expressed as X.500 attributes in the Trader Entry. All registered clients of a Trader can
‘get’ information on the Trader characteristics by the use of the X.500 read operation on the Trader Entry for the
characteristics attributes. All registered Exporters can, in addition, have the access rights to read the attributes of:
supportsModifiableProperties, supportsDynnamicProperties, supportsProxyOffers, and typeReposIf. All registered
Importers can, in addition, have the access rights to read the following Trader attributes: defSearchCard, maxSearchCard,
defMatchCard, maxMatchCard, defReturnCard, maxReturnCard, maxList, defHopCount, maxHopCount,
supportsModifiableProperties, supportsDynnamicProperties, supportsProxyOffers, defFollowPolicy, maxFollowPolicy,
and typeReposIf.

The administrator of the Trader can 'get' and 'set' all Trader attributes, where the 'get' operation is mapped onto X.500
read operation and the 'set' operation is mapped onto the X.500 modifyEntry operation.

7.8 Administrative operations

7.8.1 List Offers

The Trader receives a request to return the identifiers of all Service Offers known to the Trader. This operation is
mapped into an X.500 search operation. The data are:

Parameter X.500 attribute syntax Comment

id DirectoryString A Proxy Offer Identifier

Parameter X.500 attribute syntax Comment

type OID Service Type Identifier

target DN Name of Interface entry that provides the service interface
reference

serviceProperties Set of attributes An attribute type maps to Property Name and an attribute
value maps to a Property Value

if_no_match boolean

recipe string

policies_to_pass_on Set of attributes (if any)

Parameter X.500 attribute syntax Comment

how_many Not used This parameter is kept by the T-DUA in its implementation
of the Id iterator

ISO/IEC 13235-3 : 1998 (E)

34 ITU-T Rec. X.952 (1997 E)

The T-DUA performs an X.500 search operation to return the identifiers of all Service Offer Entries. The search is a one
level search for any Service Offer entries. No information is requested. These identifiers (if any) are returned to the User
as:

Parameter X.500 attribute syntax Comment

ids Set of DirectoryString

where each id (string representation of a partial DN) uniquely identifies a Service Offer Entry.

The T-DUA is responsible for implementing the Id Iterator.

Access control is enforced by the DSA based on the access control information stored when the Service Offer was
exported and only administrators can perform the List Offers operation. If a client has insufficient access rights, a
Security Error of insufficientAccessRights is returned to the T-DUA which is mapped to the appropriate system error.

7.8.2 List Proxies

The Trader receives a request to return the identifiers of all Proxy Offers known to the Trader. This operation is mapped
into an X.500 search operation. The data are:

The T-DUA performs an X.500 search operation to return the identifiers of all Proxy Offer Entries. The search is a one
level search for any Proxy Offer Entries. No information is requested. These identifiers (if any) are returned to
the User as:

where each id (string representation of a partial DN) uniquely identifies a Proxy Offer Entry.

The T-DUA is responsible for implementing the Id Iterator.

Access control is enforced by the DSA based on the access control information stored when the Proxy Offer was
exported and only administrators can perform this List Proxies operation. If a client has insufficient access rights, a
Security Error of insufficientAccessRights is returned to the T-DUA which is mapped to the appropriate system error.

7.9 Dynamic Property Evaluation operations

The T-DUA acts as a client for the Dynamic Property Evaluation operations to obtain values for dynamic properties.
EvalDP is the only operation specified.

7.9.1 EvalDP

To obtain the value of a dynamic property at runtime, the signature for the operation ’evalDP’ is specified. The data in the
operation is:

Parameter X.500 attribute syntax Comment

how_many Not used This parameter is kept by the T-DUA in its implementation
of the Id iterator

Parameter X.500 attribute syntax Comment

ids Set of DirectoryString

Parameter X.500 attribute syntax Comment

name Object Identifier Identifies the Property name

returned_type Object identifier Identifies the Property Type

extra_info Any (optional) May include information required to obtain the property
value

ISO/IEC 13235-3 : 1998 (E)

ITU-T Rec. X.952 (1997 E) 35

The operation returns ’any’ value which should contain a value for the property with a type of ’returned_type’.
The DPEvalFailure exception is raised if the value for the property cannot be determined.

How the value of a dynamic property is actually obtained is not specified in ITU-T Rec. X.950 | ISO/IEC 13235-1.

8 Type Repository

The concept of the Type Repository is central to the Trader. A minimal Type Repository is defined in this clause. This
minimal type repository covers only those parts of the Type Repository that are necessary to enable the correct
functioning of the X.500 Directory.

NOTE 1 – More complicated Type Repositories are feasible, but work in this area rapidly becomes research into Type
Repositories rather than specifying a Trader using X.500.

NOTE 2 – The ODP Type Repository Function work is in progress at the time of publication of this Specification.

8.1 X.500 schema and the Minimal Type Repository

The Minimal Type Repository consists of the normal X.500 schema. The functions provided by this component (and the
limitations) are described below.

Each Service Type Identifier is an OID (Object Identifier) and identifies a Service Type. Associated with each Service
Type is an Interface Type (identified by an OID) and a Service Properties Type (also identified by an OID). The
Interface Type identifies the operations (and their associated parameters) for the service and the Service Properties Type
identifies the service properties associated with the service.

When the T-DUA receives a Service Type Identifier from its exporter, it sends the OID to its Type Repository and
receives the associated Interface Type Identifier (OID) and the Service Properties Type Identifier (OID) from the Type
Repository. The T-DUA stores the Service Type identifier in the Service Offer Entry and uses the Service Properties
Type Identifier as the auxiliary object class for that Service Offer Entry.

The auxiliary object class defines the property attributes which can be included in a Service Offer. It does this by two
lists:

– The 'must contain' list which contains the property attributes which must be present in the Service Offer.

– The 'may contain' list which contains the property attributes which may be present in the Service Offer.

Property attributes which are not present in either the 'must contain' or 'may contain' lists cannot be included in the
service properties of the Service Offer. The appropriate use of access control rules for a property determines whether a
particular property is read-only and cannot be modified or deleted. The treatment of dynamic properties is discussed in
clause 9.

The property attributes are also identified by OIDs. Attribute definitions can control:

– Whether multiple values can be stored in the attribute.

– The syntax (e.g. string, integer) of the values. Complex attribute syntaxes (e.g. a value consists of a string
followed by an integer) can also be defined. Some syntaxes (e.g. telephoneNumberSyntax) have
restrictions on the characters which can appear in the value.

– How values are compared, i.e. when can two values be 'equal' – this might not be when they are identical.

A major limitation of attribute definitions (with respect to properties) is that it is not possible to control what values are
to be accepted for that attribute.

Attribute definitions are independent of object class definitions. Any attribute can be used with any object class
definition. Subtyping of property values are permitted.

The methods used to allocate OIDs assist in ensuring that a given OID does not identify two different types (Service
Types, Interface Types, Service Properties Types) or properties (property attributes), even between multiple Traders
owned by different organisations. There should never be a conflict because two different Traders allocated the same OID
to two different types or properties.

The types and properties definitions are known by both the DSA storing the Trader database and the T-DUA. In a DSA,
the X.500 schema is stored as part of the X.500 database, and, in theory, can be dynamically managed.

ISO/IEC 13235-3 : 1998 (E)

36 ITU-T Rec. X.952 (1997 E)

9 Dynamic properties

The use of the X.500 schema management to implement part of the Type Repository has implications for storage of
properties within X.500. The X.500 schema management rejects an attempt to create an entry which is missing
mandatory attributes (properties), even though these may be dynamic properties.

The solution adopted is for the T-DUA to add instances of any dynamic property to the Service Offer before storing it in
the X.500 Directory. An instance of a dynamic property in an Export is ’marked’ by the use of the dynamicProp Structure
instead of a normal value for the ’any’ value of a property. A Trader that supports dynamic property recognises this
structure and accepts it as a property with a dynamic value. The T-DUA stores a dynamic property with a ‘dummy’ value
and creates, at the same time, an associated 'dynamicPropValue' in the dynamicProps attribute which contains the
necessary information for the T-DUA to obtain a correctly-typed property value when required. The 'dummy' value of the
corresponding property attribute is ignored during matching of a service offer. A separate 'dynamicPropValue' is defined
for every possible dynamic property to be stored in the Trader.

For example, suppose that an Exporter exports a Service Offer with the property 'queueLength' marked as 'dynamic'.
When creating the Service Offer Entry in the X.500 database, the T-DUA creates an instance of the 'queueLength' and the
'queueLengthDynamicPropValue' dynamicPropValue in that entry. When reading that Service Offer Entry, the presence
of the 'queueLengthDynamicPropValue' in the dynamicProps attribute indicates that the value of the corresponding
attribute (property) 'queueLength' found in the X.500 database is to be ignored and the real value must be obtained from
the interface stored in the dynamicPropValue.

An alternative approach would be to include the 'dynamic' switch as part of each attribute definition (i.e. any attribute
either has a real value or the 'dynamic' choice set). This approach was rejected as it would mean that all attribute
definitions and processing would be complicated.

9.1 Exporting a Service Offer

When exporting a Service Offer, the client specifies the OID of the Service Type and a set of properties (attributes). If
the Trader supports dynamic properties and there are dynamic properties indicated in the Service Offer, then the T-DUA
constructs 'dummy' values and the dynamicProps attribute with a dynamicPropValue for each dynamic property in the
Service Offer. The T-DUA also sets the hasDynamicProperties attribute to 'true'. If the Trader does not support dynamic
properties, then any Service Offer with dynamic properties is rejected. The X.500 Directory also rejects the export if the
Service Offer does not match the schema.

If the Client wishes to export an offer of a new service type, the export becomes a two stage process. First, any new
'Type' definitions and any new 'Property' definitions are added to the X.500 schema held by the Type Repository. Once
the new Types and Attributes (Properties) have been registered with the DSA, the Client can export the new Service
Offer.

9.2 Importing a Service Offer

When importing a Service Offer, the client specifies the Service Type (OID) it wishes to find and a ‘matching constraint’.

A limited form of subclassing is available in X.500. An object class can be defined to be a 'subclass' of one or more
existing object class. In this case, specifying the Service Properties Type (OID) of a superclass will also select Service
Offers of the subclass. The limitation of the super/subclass concept is with the 'must contain' and 'may contain' lists of the
object class definition. A subclass inherits the 'must contain' and 'may contain' lists of its superclasses and can only add
additional attributes.

The T-DUA searches the X.500 database for matching Service Offers and Proxy Offers (if required) for the required
service type first, followed by the matching offers with the required constraint and type.

If the Trader supports dynamic properties and the importer requests the use of dynamic properties, then the value of the
hasDynamicProperties attribute is requested also on the first search. If this attribute is 'true', then the matching constraint
filter is rewritten to succeed. For each entry returned, the T-DUA goes through the list of attributes returned. If any
'dynamicPropValue' is present, the T-DUA requests the 'real' value of the associated property from the interface
contained in the dynamicPropValue. Once the dynamic properties have been returned, the T-DUA must complete the
evaluation of the matching constraint.

ISO/IEC 13235-3 : 1998 (E)

ITU-T Rec. X.952 (1997 E) 37

Annex A

Trader definitions schema definition
(This annex forms an integral part of this Recommendation | International Standard)

TraderDefinitions {joint-iso-itu-t 2}

DEFINITIONS ::=

BEGIN

IMPORTS

informationFramework, selectedAttributeTypes, authenticationFramework

FROM UsefulDefinitions {joint-iso-ccitt ds(5) modules(1)

usefulDefinitions(0) 2}

CONTENT-RULE, NAME-FORM, STRUCTURE-RULE, OBJECT-CLASS, MATCHING-RULE,

ATTRIBUTE, top, ObjectClassKind, objectIdentifierMatch,

DistinguishedName

FROM InformationFramework informationFramework

DirectoryString {}, commonName, description, presentationAddress,

distinguishedName, caseIgnoreMatch, caseIgnoreSubstringsMatch,

caseExactMatch, booleanMatch,integerMatch, octetStringMatch

FROM SelectedAttributeTypes selectedAttributeTypes

userPassword

FROM AuthenticationFramework authenticationFramework ;

-- Trader Entry

traderEntry OBJECT-CLASS ::= {

SUBCLASS OF { top }

MUST CONTAIN {commonName | traderInterface | dsaName |

typeRepos | defSearchCard | maxSearchCard |

defMatchCard | maxMatchCard | defReturnCard |

maxReturnCard | defHopCount | maxHopCount |

defFollowPolicy | maxFollowPolicy |

maxLinkFollowPolicy | supportsModifiableProperties |

supportsDynamicProperties | supportsProxyOffers |

maxList | requestIdStem}

MAY CONTAIN {description | userPassword}

ID id-trader-oc-traderEntry}

traderInterface ATTRIBUTE ::= {

SUBTYPE OF presentationAddress

SINGLE VALUE TRUE

ID id-trader-at-traderInterface}

ISO/IEC 13235-3 : 1998 (E)

38 ITU-T Rec. X.952 (1997 E)

dsaName ATTRIBUTE ::= {

SUBTYPE OF distinguishedName

SINGLE VALUE TRUE

ID id-trader-at-dsaName}

typeRepos ATTRIBUTE ::= {

SUBTYPE OF distinguishedName

SINGLE VALUE TRUE

ID id-trader-at-typeRepos}

defSearchCard ATTRIBUTE ::= {

WITH SYNTAX INTEGER

EQUALITY MATCHING RULE integerMatch

SINGLE VALUE TRUE

ID id-trader-at-defSearchCard }

maxSearchCard ATTRIBUTE ::= {

WITH SYNTAX INTEGER

EQUALITY MATCHING RULE integerMatch

SINGLE VALUE TRUE

ID id-trader-at-maxSearchCard}

defMatchCard ATTRIBUTE ::= {

WITH SYNTAX INTEGER

EQUALITY MATCHING RULE integerMatch

SINGLE VALUE TRUE

ID id-trader-at-defMatchCard}

maxMatchCard ATTRIBUTE ::= {

WITH SYNTAX INTEGER

EQUALITY MATCHING RULE integerMatch

SINGLE VALUE TRUE

ID id-trader-at-maxMatchCard}

defReturnCard ATTRIBUTE ::= {

WITH SYNTAX INTEGER

EQUALITY MATCHING RULE integerMatch

SINGLE VALUE TRUE

ID id-trader-at-defReturnCard}

maxReturnCard ATTRIBUTE ::= {

WITH SYNTAX INTEGER

EQUALITY MATCHING RULE integerMatch

SINGLE VALUE TRUE

ID id-trader-at-maxReturnCard}

ISO/IEC 13235-3 : 1998 (E)

ITU-T Rec. X.952 (1997 E) 39

defHopCount ATTRIBUTE ::= {

WITH SYNTAX INTEGER

EQUALITY MATCHING RULE integerMatch

SINGLE VALUE TRUE

ID id-trader-at-defHopCount}

maxHopCount ATTRIBUTE ::= {

WITH SYNTAX INTEGER

EQUALITY MATCHING RULE integerMatch

SINGLE VALUE TRUE

ID id-trader-at-maxHopCount}

defFollowPolicy ATTRIBUTE ::= {

WITH SYNTAX FollowOption

EQUALITY MATCHING RULE integerMatch

SINGLE VALUE TRUE

ID id-trader-at-defFollowPolicy }

FollowOption ::= ENUMERATED{

localOnly (0),

ifNoLocal (1),

always (2)}

maxFollowPolicy ATTRIBUTE ::= {

WITH SYNTAX FollowOption

EQUALITY MATCHING RULE integerMatch

SINGLE VALUE TRUE

ID id-trader-at-maxFollowPolicy }

maxLinkFollowPolicy ATTRIBUTE ::= {

WITH SYNTAX FollowOption

EQUALITY MATCHING RULE integerMatch

SINGLE VALUE TRUE

ID id-trader-at-maxLinkFollowPolicy }

supportsModifiableProperties ATTRIBUTE ::= {

WITH SYNTAX BOOLEAN

EQUALITY MATCHING RULE booleanMatch

SINGLE VALUE TRUE

ID id-trader-at-supportsModifiableProperties}

supportsDynamicProperties ATTRIBUTE ::= {

WITH SYNTAX BOOLEAN

EQUALITY MATCHING RULE booleanMatch

SINGLE VALUE TRUE

ID id-trader-at-supportsDynamicProperties}

ISO/IEC 13235-3 : 1998 (E)

40 ITU-T Rec. X.952 (1997 E)

supportsProxyOffers ATTRIBUTE ::= {

WITH SYNTAX BOOLEAN

EQUALITY MATCHING RULE booleanMatch

SINGLE VALUE TRUE

ID id-trader-at-supportsProxyOffers}

maxList ATTRIBUTE ::= {

WITH SYNTAX INTEGER

EQUALITY MATCHING RULE integerMatch

SINGLE VALUE TRUE

ID id-trader-at-maxList }

requestIdStem ATTRIBUTE ::= {

WITH SYNTAX OCTET STRING (SIZE (0..ub-request-id-stem))

EQUALITY MATCHING RULE octetStringMatch

SINGLE VALUE TRUE

ID id-trader-at-requestIdStem }

--Trader Policy Entry

traderPolicyEntryNF NAME-FORM ::= {

NAMES traderPolicyEntry

WITH ATTRIBUTES {commonName}

ID id-trader-nf-traderPolicy}

traderPolicyEntry OBJECT-CLASS ::= {

SUBCLASS OF {top}

MUST CONTAIN {commonName }

MAY CONTAIN {typeManagementConstraint | searchConstraint |

offerAcceptanceConstraint }

ID id-trader-oc-traderPolicy}

PolicySpecification ::= CHOICE {

stringRule [0] DirectoryString{ub-policy-string-rule},

policyObjectId [1] DistinguishedName }

policySpecificationMatch MATCHING-RULE ::= {

SYNTAX PolicySpecification

ID id-trader-mr-policySpecificationMatch}

-- The rule returns TRUE if two specifications contain exactly
-- the same characters.

typeManagementConstraint ATTRIBUTE ::= {

WITH SYNTAX PolicySpecification

EQUALITY MATCHING RULE policySpecificationMatch

SINGLE VALUE TRUE

ID id-trader-at-typeManagementConstraint}

ISO/IEC 13235-3 : 1998 (E)

ITU-T Rec. X.952 (1997 E) 41

searchConstraint ATTRIBUTE ::= {

WITH SYNTAX PolicySpecification

EQUALITY MATCHING RULE policySpecificationMatch

SINGLE VALUE TRUE

ID id-trader-at-searchConstraint}

offerAcceptanceConstraint ATTRIBUTE ::= {

WITH SYNTAX PolicySpecification

EQUALITY MATCHING RULE policySpecificationMatch

SINGLE VALUE TRUE

ID id-trader-at-offerAcceptanceConstraint}

-- Service Offer Entry

serviceOfferEntryNF NAME-FORM ::= {

NAMES serviceOfferEntry

WITH ATTRIBUTES {sOfferId}

ID id-trader-nf-serviceOffer}

serviceOfferEntry OBJECT-CLASS ::= {

SUBCLASS OF {top}

MUST CONTAIN {sOfferId | serviceInterfaceId |serviceTypeId

hasDynamicProperties | hasModifiableProperties }

MAY CONTAIN {dynamicProps}

ID id-trader-oc-serviceOffer}

sOfferId ATTRIBUTE ::= {

WITH SYNTAX DirectoryString{ub-s-offer-id}

EQUALITY MATCHING RULE caseIgnoreMatch

SUBSTRINGS MATCHING RULE caseIgnoreSubstringsMatch

SINGLE VALUE TRUE

ID id-trader-at-sOfferId}

serviceInterfaceId ATTRIBUTE ::= {

SUBTYPE OF distinguishedName

SINGLE VALUE TRUE

ID id-trader-at-serviceInterfaceId}

serviceTypeId ATTRIBUTE ::= {

WITH SYNTAX OBJECT IDENTIFIER

EQUALITY MATCHING RULE objectIdentifierMatch

ID id-trader-at-serviceTypeId }

hasDynamicProperties ATTRIBUTE ::= {

WITH SYNTAX BOOLEAN

EQUALITY MATCHING RULE booleanMatch

SINGLE VALUE TRUE

ID id-trader-at-hasDynamicProperties}

ISO/IEC 13235-3 : 1998 (E)

42 ITU-T Rec. X.952 (1997 E)

hasModifiableProperties ATTRIBUTE ::= {

WITH SYNTAX BOOLEAN

EQUALITY MATCHING RULE booleanMatch

SINGLE VALUE TRUE

ID id-trader-at-hasModifiableProperties}

dynamicProps ATTRIBUTE ::= {

WITH SYNTAX SEQUENCE OF DynamicPropValue

ID id-trader-at-dynamicProps}

DynamicPropValue ::= SEQUENCE {

propertyType OBJECT IDENTIFIER,

dynamicPropEvalIf DistinguishedName,

extraInfo DirectoryString{ub-dynamic-value-extra-info}}

dynamicPropValueMatch MATCHING-RULE ::= {

SYNTAX DynamicPropValue

ID Id-trader-mr-dynamicPropValueMatch}

-- The rule returns TRUE if two values contain exactly the same characters.

-- Trader Link Entry

traderLinkEntryNF NAME-FORM ::= {

NAMES traderLinkEntry

WITH ATTRIBUTES {linkId}

ID id-trader-nf-traderLink}

traderLinkEntry OBJECT-CLASS ::= {

SUBCLASS OF {top}

MUST CONTAIN {linkName | linkId | targetTraderInterfaceId |

defPassOnFollowRule | limitingFollowRule}

ID id-trader-oc-traderLink}

linkName ATTRIBUTE ::= {

WITH SYNTAX DirectoryString {ub-link-name}

EQUALITY MATCHING RULE caseIgnoreMatch

SUBSTRINGS MATCHING RULE caseIgnoreSubstringsMatch

SINGLE VALUE TRUE

ID id-trader-at-linkName}

linkId ATTRIBUTE ::= {

WITH SYNTAX DirectoryString {ub-link-id}

EQUALITY MATCHING RULE caseIgnoreMatch

SUBSTRINGS MATCHING RULE caseIgnoreSubstringsMatch

SINGLE VALUE TRUE

ID id-trader-at-linkId}

ISO/IEC 13235-3 : 1998 (E)

ITU-T Rec. X.952 (1997 E) 43

targetTraderInterfaceId ATTRIBUTE ::= {

SUBTYPE OF distinguishedName

SINGLE VALUE TRUE

ID id-trader-at-targetTraderInterfaceId}

defPassOnFollowRule ATTRIBUTE ::= {

WITH SYNTAX FollowOption

EQUALITY MATCHING RULE integerMatch

SINGLE VALUE TRUE

ID id-trader-at-defPassOnFollowRule }

limitingFollowRule ATTRIBUTE ::= {

WITH SYNTAX FollowOption

EQUALITY MATCHING RULE integerMatch

SINGLE VALUE TRUE

ID id-trader-at-limitingFollowRule }

-- Proxy Offer Entry

proxyOfferEntryNF NAME-FORM ::= {

NAMES proxyOfferEntry

WITH ATTRIBUTES {proxyOfferId}

ID id-trader-nf-proxyOffer}

proxyOfferEntry OBJECT-CLASS ::= {

SUBCLASS OF {top}

MUST CONTAIN {proxyOfferId | proxyLookUpInterfaceId |

hasDynamicProperties | hasModifiableProperties |

ifMatchAll | constraintRecipe}

MAY CONTAIN { dynamicProps }

ID id-trader-oc-proxyOffer}

proxyOfferId ATTRIBUTE ::= {

WITH SYNTAX DirectoryString {ub-proxy-offer-id}

EQUALITY MATCHING RULE caseIgnoreMatch

SUBSTRINGS MATCHING RULE caseIgnoreSubstringsMatch

SINGLE VALUE TRUE

ID id-trader-at-proxyOfferId}

proxyLookUpInterfaceId ATTRIBUTE ::= {

SUBTYPE OF distinguishedName

SINGLE VALUE TRUE

ID id-trader-at-proxyLookUpInterfaceId}

ISO/IEC 13235-3 : 1998 (E)

44 ITU-T Rec. X.952 (1997 E)

constraintRecipe ATTRIBUTE ::= {

WITH SYNTAX DirectoryString {ub-constraint-recipe}

EQUALITY MATCHING RULE caseIgnoreMatch

SUBSTRINGS MATCHING RULE caseIgnoreSubstringsMatch

SINGLE VALUE TRUE

ID id-trader-at-constraintRecipe}

ifMatchAll ATTRIBUTE ::= {

WITH SYNTAX BOOLEAN

EQUALITY MATCHING RULE booleanMatch

SINGLE VALUE TRUE

ID id-trader-at-ifMatchAll }

-- Interface Entry

interfaceEntry OBJECT-CLASS ::= {

SUBCLASS OF {top}

KIND auxiliary

MUST CONTAIN {interfaceReference | interfaceType}

ID id-trader-oc-interfaceEntry}

interfaceReference ATTRIBUTE ::= {

WITH SYNTAX InterfaceId

EQUALITY MATCHING RULE caseExactMatch

ID id-trader-at-interfaceReference}

InterfaceId ::= DirectoryString {ub-interface-id}

interfaceType ATTRIBUTE ::= {

WITH SYNTAX InterfaceTypeName

EQUALITY MATCHING RULE objectIdentifierMatch

ID id-trader-at-interfaceType}

InterfaceTypeName ::= OBJECT IDENTIFIER

-- Object Identifier Assignments

id-trader OBJECT IDENTIFIER ::= {joint-iso-itu-t
trader(100)}

id-trader-at OBJECT IDENTIFIER ::= {id-trader 4}

id-trader-oc OBJECT IDENTIFIER ::= {id-trader 6}

id-trader-mr OBJECT IDENTIFIER ::= {id-trader 13}

id-trader-nf OBJECT IDENTIFIER ::= {id-trader 15}

id-trader-oc-traderEntry OBJECT IDENTIFIER ::= {id-trader-oc 0}

id-trader-oc-serviceOffer OBJECT IDENTIFIER ::= {id-trader-oc 1}

id-trader-oc-proxyOffer OBJECT IDENTIFIER ::= {id-trader-oc 2}

ISO/IEC 13235-3 : 1998 (E)

ITU-T Rec. X.952 (1997 E) 45

id-trader-oc-traderLink OBJECT IDENTIFIER ::= {id-trader-oc 3}

id-trader-oc-traderPolicy OBJECT IDENTIFIER ::= {id-trader-oc 4}

id-trader-oc-interfaceEntry OBJECT IDENTIFIER ::= {id-trader-oc 5}

id-trader-nf-serviceOffer OBJECT IDENTIFIER ::= {id-trader-nf 1}

id-trader-nf-traderLink OBJECT IDENTIFIER ::= {id-trader-nf 2}

id-trader-nf-traderPolicy OBJECT IDENTIFIER ::= {id-trader-nf 3}

id-trader-nf-proxyOffer OBJECT IDENTIFIER ::= {id-trader-nf 4}

id-trader-at-traderInterface OBJECT IDENTIFIER ::= {id-trader-at 0}

id-trader-at-typeRepos OBJECT IDENTIFIER ::= {id-trader-at 1}

id-trader-at-defSearchCard OBJECT IDENTIFIER ::= {id-trader-at 2}

id-trader-at-maxSearchCard OBJECT IDENTIFIER ::= {id-trader-at 3}

id-trader-at-defMatchCard OBJECT IDENTIFIER ::= {id-trader-at 4}

id-trader-at-maxMatchCard OBJECT IDENTIFIER ::= {id-trader-at 5}

id-trader-at-commonName OBJECT IDENTIFIER ::= {id-trader-at 6}

id-trader-at-dsaName OBJECT IDENTIFIER ::= {id-trader-at 7}

id-trader-at-defReturnCard OBJECT IDENTIFIER ::= {id-trader-at 10}

id-trader-at-maxReturnCard OBJECT IDENTIFIER ::= {id-trader-at 11}

id-trader-at-defHopCount OBJECT IDENTIFIER ::= {id-trader-at 12}

id-trader-at-maxHopCount OBJECT IDENTIFIER ::= {id-trader-at 13}

id-trader-at-defFollowPolicy OBJECT IDENTIFIER ::= {id-trader-at 14}

id-trader-at-maxLinkFollowPolicy OBJECT IDENTIFIER ::= {id-trader-at 15}

id-trader-at-maxFollowPolicy OBJECT IDENTIFIER ::= {id-trader-at 16}

id-trader-at-supportsModifiableProperties OBJECT IDENTIFIER ::= {id-trader-at 20}

id-trader-at-supportsDynamicProperties OBJECT IDENTIFIER ::= {id-trader-at 21}
id-trader-at-supportsProxyOffers OBJECT IDENTIFIER ::= {id-trader-at 22}

id-trader-at-maxList OBJECT IDENTIFIER ::= {id-trader-at 23}

id-trader-at-requestIdStem OBJECT IDENTIFIER ::= {id-trader-at 24}

id-trader-at-typeManagementConstraint OBJECT IDENTIFIER ::= {id-trader-at 25}

id-trader-at-searchConstraint OBJECT IDENTIFIER ::= {id-trader-at 30}

id-trader-at-offerAcceptanceConstraint OBJECT IDENTIFIER ::= {id-trader-at 31}

id-trader-at-sOfferId OBJECT IDENTIFIER ::= {id-trader-at 32}

id-trader-at-serviceTypeId OBJECT IDENTIFIER ::= {id-trader-at 33}

id-trader-at-serviceInterfaceId OBJECT IDENTIFIER ::= {id-trader-at 34}

id-trader-at-hasDynamicProperties OBJECT IDENTIFIER ::= {id-trader-at 35}

id-trader-at-hasModifiableProperties OBJECT IDENTIFIER ::= {id-trader-at 40}

id-trader-at-dynamicProps OBJECT IDENTIFIER ::= {id-trader-at 41}

id-trader-at-linkId OBJECT IDENTIFIER ::= {id-trader-at 42}

id-trader-at-linkName OBJECT IDENTIFIER ::= {id-trader-at 43}

id-trader-at-targetTraderInterfaceId OBJECT IDENTIFIER ::= {id-trader-at 44}

id-trader-at-defPassOnFollowRule OBJECT IDENTIFIER ::= {id-trader-at 45}

id-trader-at-limitingFollowRule OBJECT IDENTIFIER ::= {id-trader-at 50}

id-trader-at-proxyOfferId OBJECT IDENTIFIER ::= {id-trader-at 51}

id-trader-at-proxyLookUpInterfaceId OBJECT IDENTIFIER ::= {id-trader-at 52}

id-trader-at-constraintRecipe OBJECT IDENTIFIER ::= {id-trader-at 53}

ISO/IEC 13235-3 : 1998 (E)

46 ITU-T Rec. X.952 (1997 E)

id-trader-at-ifMatchAll OBJECT IDENTIFIER ::= {id-trader-at 55}

id-trader-at-interfaceReference OBJECT IDENTIFIER ::= {id-trader-at 60}

id-trader-at-interfaceType OBJECT IDENTIFIER ::= {id-trader-at 61}

id-trader-mr-policySpecificationMatch OBJECT IDENTIFIER ::= {id-trader-mr 1}

id-trader-mr-dynamicPropValueMatch OBJECT IDENTIFIER ::= {id-trader-mr 2}

-- Upperbounds

ub-common-name INTEGER ::= 64

ub-request-id-stem INTEGER ::= 1024

ub-policy-string-rule INTEGER ::= 1024

ub-s-offer-id INTEGER ::= 64

ub-dynamic-value-extra-info INTEGER ::= 1024

ub-link-name INTEGER ::= 64

ub-link-id INTEGER ::= 64

ub-proxy-offer-id INTEGER ::= 64

ub-constraint-recipe INTEGER ::= 1024

ub-interface-id INTEGER ::= 1024

END

ISO/IEC 13235-3 : 1998 (E)

ITU-T Rec. X.952 (1997 E) 47

Annex B

Sample service description schema definition
(This annex does not form an integral part of this Recommendation | International Standard)

PrinterServiceOfferDefinitions {joint-iso-itu-t 2}

DEFINITIONS ::=

BEGIN

IMPORTS

informationFramework, selectedAttributeTypes

FROM UsefulDefinitions {joint-iso-itu-t ds(5) modules(1)
usefulDefinitions(0) 2}

OBJECT-CLASS, MATCHING-RULE,ATTRIBUTE, top, ObjectClassKind, DistinguishedName

FROM InformationFramework informationFramework

DirectoryString {}, caseIgnoreMatch, caseIgnorSubstringsMatch, caseExactMatch,
booleanMatch, integerMatch, integerOrderMatch

FROM SelectedAttributeTypes selectedAttributeTypes

id-trader-at, id-trader-oc-serviceOffer

FROM id-trader{joint-iso-itu-t trader(100)} ;

printerServiceOffer OBJECT-CLASS ::= {

SUBCLASS OF {top}

KIND auxiliary

MUST CONTAIN printerType}

MAY CONTAIN {locationRoom | locationBuilding | costPerPage |
languagesSupported | pagesPerMinute | pageSize |
dotsPerInch | colourCapable | driverName | queueLength}

ID id-trader-oc-serviceOffer-printer}

printerType ATTRIBUTE ::= {

WITH SYNTAX DirectoryString {ub-trader-so-printerType}

EQUALITY MATCHING RULE caseIgnoreMatch

SUBSTRINGS MATCHING RULE caseIgnoreSubstringsMatch

SINGLE VALUE TRUE

ID id-trader-at-so-printerType}

locationRoom ATTRIBUTE ::= {

WITH SYNTAX DirectoryString {ub-trader-so-locationRoom}

EQUALITY MATCHING RULE caseIgnoreMatch

SUBSTRINGS MATCHING RULE caseIgnoreSubstringsMatch

SINGLE VALUE TRUE

ID id-trader-at-so-locationRoom }

ISO/IEC 13235-3 : 1998 (E)

48 ITU-T Rec. X.952 (1997 E)

locationBuilding ATTRIBUTE ::= {

WITH SYNTAX DirectoryString {ub-trader-so-locationBlg}

EQUALITY MATCHING RULE caseIgnoreMatch

SUBSTRINGS MATCHING RULE caseIgnoreSubstringsMatch

SINGLE VALUE TRUE

ID id-trader-at-so-locationBlg}

costPerPage ATTRIBUTE ::= {

WITH SYNTAX INTEGER

EQUALITY MATCHING RULE integerMatch

ORDERING MATCHING RULE integerOrderMatch

SINGLE VALUE TRUE

ID id-trader-at-so-costPerPage}

languagesSupported ATTRIBUTE ::= {

WITH SYNTAX DirectoryString {ub-trader-so-langSupp}

EQUALITY MATCHING RULE caseIgnoreMatch

SUBSTRINGS MATCHING RULE caseIgnoreSubstringsMatch

SINGLE VALUE TRUE

ID id-trader-at-so-langSupp}

pagesPerMinute ATTRIBUTE ::= {

WITH SYNTAX INTEGER

EQUALITY MATCHING RULE integerMatch

ORDERING MATCHING RULE integerOrderMatch

SINGLE VALUE TRUE

ID id-trader-at-so-pagesPerMinute}

pagesPerMinute ATTRIBUTE ::= {

WITH SYNTAX INTEGER

EQUALITY MATCHING RULE integerMatch

ORDERING MATCHING RULE integerOrderMatch

SINGLE VALUE TRUE

ID id-trader-at-so-pagesPerMinute}

dotsPerInch ATTRIBUTE ::= {

WITH SYNTAX INTEGER

EQUALITY MATCHING RULE integerMatch

ORDERING MATCHING RULE integerOrderMatch

SINGLE VALUE TRUE

ID id-trader-at-so-dotsPerInch}

ISO/IEC 13235-3 : 1998 (E)

ITU-T Rec. X.952 (1997 E) 49

colourCapable ATTRIBUTE ::= {

WITH SYNTAX BOOLEAN

EQUALITY MATCHING RULE booleanMatch

SINGLE VALUE TRUE

ID id-trader-at-so-colourCapable}

driverName ATTRIBUTE ::= {

WITH SYNTAX DirectoryString {ub-trader-so-driverName}

EQUALITY MATCHING RULE caseIgnoreMatch

SUBSTRINGS MATCHING RULE caseIgnoreSubstringsMatch

SINGLE VALUE TRUE

ID id-trader-at-so-driverName}

queueLength ATTRIBUTE ::= {

WITH SYNTAX INTEGER

EQUALITY MATCHING RULE integerMatch

ORDERING MATCHING RULE integerOrderMatch

SINGLE VALUE TRUE

ID id-trader-at-so-queueLength }

-- Object Identifiers

id-trader-oc-serviceOffer-printer

OBJECT IDENTIFIER ::= {id-trader-oc-serviceOffer 0}

id-trader-at-so OBJECT IDENTIFIER ::= {id-trader-at 100}

id-trader-at-so-printerType OBJECT IDENTIFIER ::= {id-trader-at-so 0}

id-trader-at-so-locationRoom OBJECT IDENTIFIER ::= {id-trader-at-so 1}

id-trader-at-so-locationBlg OBJECT IDENTIFIER ::= {id-trader-at-so 2}

id-trader-at-so-costPerPage OBJECT IDENTIFIER ::= {id-trader-at-so 3}

id-trader-at-so-langSupp OBJECT IDENTIFIER ::= {id-trader-at-so 4}

id-trader-at-so-pagesPerMinute OBJECT IDENTIFIER ::= {id-trader-at-so 5}

id-trader-at-so-pageSize OBJECT IDENTIFIER ::= {id-trader-at-so 6}

id-trader-at-so-dotsPerInch OBJECT IDENTIFIER ::= {id-trader-at-so 7}

id-trader-at-so-colourCapable OBJECT IDENTIFIER ::= {id-trader-at-so 8}

id-trader-at-so-driverName OBJECT IDENTIFIER ::= {id-trader-at-so 9}

id-trader-at-so-queueLength OBJECT IDENTIFIER ::= {id-trader-at-so 10}

-- Upperbounds

ub-trader-so-printerType INTEGER ::= 64

ub-trader-so-locationRoom INTEGER ::= 64

ub-trader-so-locationBlg INTEGER ::= 64

ub-trader-so-langSupp INTEGER ::= 64

ub-trader-so-pageSize INTEGER ::= 64

ub-trader-so-driverName INTEGER ::= 64

END

ITU-T RECOMMENDATIONS SERIES

Series A Organization of the work of the ITU-T

Series B Means of expression: definitions, symbols, classification

Series C General telecommunication statistics

Series D General tariff principles

Series E Overall network operation, telephone service, service operation and human factors

Series F Non-telephone telecommunication services

Series G Transmission systems and media, digital systems and networks

Series H Audiovisual and multimedia systems

Series I Integrated services digital network

Series J Transmission of television, sound programme and other multimedia signals

Series K Protection against interference

Series L Construction, installation and protection of cables and other elements of outside plant

Series M TMN and network maintenance: international transmission systems, telephone circuits,
telegraphy, facsimile and leased circuits

Series N Maintenance: international sound programme and television transmission circuits

Series O Specifications of measuring equipment

Series P Telephone transmission quality, telephone installations, local line networks

Series Q Switching and signalling

Series R Telegraph transmission

Series S Telegraph services terminal equipment

Series T Terminals for telematic services

Series U Telegraph switching

Series V Data communication over the telephone network

Series X Data networks and open system communication

Series Y Global information infrastructure

Series Z Programming languages

	Return to Menu
	Return to Series X Menu
	====================
	ITU-T Rec. X.952 (12/97) INFORMATION TECHNOLOGY – OPEN DISTRIBUTED PROCESSING – TRADING FUNCTION: PROVISION OF TRADING FUNCTION
	Summary
	Source
	FOREWORD
	CONTENTS
	Introduction
	INFORMATION TECHNOLOGY – OPEN DISTRIBUTED PROCESSING – TRADING FUNCTION: PROVISION OF TRADING FUNCTION USING OSI DIRECTORY SERVI
	1 Scope and field of application
	2 Normative References
	2.1 Identical Recommendations | International Standards

	3 Definitions
	4 Abbreviations
	5 Overview
	6 Schema
	6.1 General
	6.2 Trader Entry
	6.3 Trader Policy Entry
	6.4 Service Offer Entry
	6.5 Trader Link Entry
	6.6 Proxy Offer Entry
	6.7 Other X.500 entries used by the T-DUA

	7 Operations
	7.1 Initialisation
	7.2 Client operations
	7.3 Register operations
	7.4 Look Up operations
	7.5 Link operations
	7.6 Proxy Offer operations
	7.7 Trader Attribute Operations
	7.8 Administrative operations
	7.9 Dynamic Property Evaluation operations

	8 Type Repository
	8.1 X.500 schema and the Minimal Type Repository

	9 Dynamic properties
	9.1 Exporting a Service Offer
	9.2 Importing a Service Offer

	Annex A - Trader definitions schema definition
	Annex B - Sample service description schema definition

