
INTERNATIONAL TELECOMMUNICATION UNION

ITU-T X.904
TELECOMMUNICATION
STANDARDIZATION SECTOR
OF ITU

(12/97)

SERIES X: DATA NETWORKS AND OPEN SYSTEM
COMMUNICATION

Open distributed processing

Information technology – Open distributed
processing – Reference Model: Architectural
semantics

ITU-T Recommendation X.904
(Previously CCITT Recommendation)

ITU-T X-SERIES RECOMMENDATIONS

DATA NETWORKS AND OPEN SYSTEM COMMUNICATION

For further details, please refer to ITU-T List of Recommendations.

PUBLIC DATA NETWORKS

Services and facilities X.1–X.19

Interfaces X.20–X.49

Transmission, signalling and switching X.50–X.89

Network aspects X.90–X.149

Maintenance X.150–X.179

Administrative arrangements X.180–X.199

OPEN SYSTEM INTERCONNECTION

Model and notation X.200–X.209

Service definitions X.210–X.219

Connection-mode protocol specifications X.220–X.229

Connectionless-mode protocol specifications X.230–X.239

PICS proformas X.240–X.259

Protocol Identification X.260–X.269

Security Protocols X.270–X.279

Layer Managed Objects X.280–X.289

Conformance testing X.290–X.299

INTERWORKING BETWEEN NETWORKS

General X.300–X.349

Satellite data transmission systems X.350–X.399

MESSAGE HANDLING SYSTEMS X.400–X.499

DIRECTORY X.500–X.599

OSI NETWORKING AND SYSTEM ASPECTS

Networking X.600–X.629

Efficiency X.630–X.639

Quality of service X.640–X.649

Naming, Addressing and Registration X.650–X.679

Abstract Syntax Notation One (ASN.1) X.680–X.699

OSI MANAGEMENT

Systems Management framework and architecture X.700–X.709

Management Communication Service and Protocol X.710–X.719

Structure of Management Information X.720–X.729

Management functions and ODMA functions X.730–X.799

SECURITY X.800–X.849

OSI APPLICATIONS

Commitment, Concurrency and Recovery X.850–X.859

Transaction processing X.860–X.879

Remote operations X.880–X.899

OPEN DISTRIBUTED PROCESSING X.900–X.999

ITU-T Rec. X.904 (1997 E) i

INTERNATIONAL STANDARD 10746-4

ITU-T RECOMMENDATION X.904

INFORMATION TECHNOLOGY – OPEN DISTRIBUTED PROCESSING –
REFERENCE MODEL: ARCHITECTURAL SEMANTICS

Summary

This Recommendation | International Standard is an integral part of the ODP Reference Model. It contains a
formalisation of the ODP modelling concepts defined in ITU-T Rec. X.902 | ISO/IEC 10746-2, clauses 8 and 9. The
formalisation is achieved by interpreting each concept in terms of the constructs of the different standardised formal
description techniques.

Source

The ITU-T Recommendation X.904 was approved on the 12th of December 1997. The identical text is also published as
ISO/IEC International Standard 10746-4.

ii ITU-T Rec. X.904 (1997 E)

FOREWORD

ITU (International Telecommunication Union) is the United Nations Specialized Agency in the field of telecommuni-
cations. The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of the ITU. The ITU-T is
responsible for studying technical, operating and tariff questions and issuing Recommendations on them with a view to
standardizing telecommunications on a worldwide basis.

The World Telecommunication Standardization Conference (WTSC), which meets every four years, establishes the
topics for study by the ITU-T Study Groups which, in their turn, produce Recommendations on these topics.

The approval of Recommendations by the Members of the ITU-T is covered by the procedure laid down in WTSC
Resolution No. 1.

In some areas of information technology which fall within ITU-T’s purview, the necessary standards are prepared on a
collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a telecommunication
administration and a recognized operating agency.

INTELLECTUAL PROPERTY RIGHTS

The ITU draws attention to the possibility that the practice or implementation of this Recommendation may involve the
use of a claimed Intellectual Property Right. The ITU takes no position concerning the evidence, validity or applicability
of claimed Intellectual Property Rights, whether asserted by ITU members or others outside of the Recommendation
development process.

As of the date of approval of this Recommendation, the ITU had not received notice of intellectual property, protected by
patents, which may be required to implement this Recommendation. However, implementors are cautioned that this may
not represent the latest information and are therefore strongly urged to consult the TSB patent database.

 ITU 1998

All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means, electronic or
mechanical, including photocopying and microfilm, without permission in writing from the ITU.

ITU-T Rec. X.904 (1997 E) iii

CONTENTS

Page

0 Introduction... 1

1 Scope... 2

2 Normative references .. 2

3 Definitions... 2
3.1 Definitions from ISO/IEC 8807... 2
3.2 Definitions from ITU-T Recommendation Z.100 .. 2
3.3 Definitions from the Z-Base Standard ... 3
3.4 Definitions from ISO/IEC 9074... 3

4 Interpretation of modelling concepts... 3
4.1 Architectural semantics in LOTOS.. 3
4.2 Architectural semantics in ACT ONE.. 9
4.3 Architectural semantics in SDL’92.. 15
4.4 Architectural semantics in Z .. 20
4.5 Architectural semantics in ESTELLE.. 25

iv ITU-T Rec. X.904 (1997 E)

Foreword

This Recommendation | International Standard is an integral part of the ODP Reference Model. It contains a
formalisation of the ODP modeling concepts defined in ITU-T Rec. X.902 ISO/IEC 10746-2, clauses 8 and 9. The
formalisation is achieved by interpreting each concept in terms of the constructs of the different standardised formal
description techniques.

This Recommendation | International Standard is accompanied by an amendment and a technical report. The associated
amendment focuses on the formalisation of the computational viewpoint language contained in ITU-T Rec. X.903 |
ISO/IEC 10746-3. The associated technical report contains examples on how the formalisation of the ODP Reference
Model can be applied to develop specifications.

ISO/IEC 10746-4 : 1998 (E)

ITU-T Rec. X.904 (1997 E) 1

.INTERNATIONAL STANDARD
ISO/IEC 10746-4 : 1998 (E)
ITU-T Rec. X.904 (1997 E)

ITU-T RECOMMENDATION

INFORMATION TECHNOLOGY – OPEN DISTRIBUTED PROCESSING –
REFERENCE MODEL: ARCHITECTURAL SEMANTICS

0 Introduction

The rapid growth of distributed processing has lead to a need for a coordinating framework for the standardization of
Open Distributed Processing (ODP). This Reference Model of ODP provides such a framework. It creates an architecture
within which support of distribution, interworking, interoperability and portability can be integrated.

The Basic Reference Model of Open Distributed Processing (RM-ODP), (see ITU-T Recs. X.901 to X.904 | ISO/IEC
10746), is based on precise concepts derived from current distributed processing developments and, as far as possible, on
the use of formal description techniques for specification of the architecture.

The RM-ODP consists of:

– ITU-T Rec. X.901 | ISO/IEC 10746-1: Overview: Contains a motivational overview of ODP giving
scooping, justification and explanation of key concepts, and an outline of ODP architecture. This part is
not normative.

– ITU-T Rec. X.902 | ISO/IEC 10746-2: Foundations: Contains the definition of the concepts and
analytical framework and notation for normalized description of (arbitrary) distributed processing systems.
This is only to a level of detail sufficient to support ITU-T Rec. X.903 | ISO/IEC 10746-3 and to establish
requirements for new specification techniques. This part is normative.

– ITU-T Rec. X.903 | ISO/IEC 10746-3: Architecture: Contains the specification of the required
characteristics that qualify distributed processing as open. These are the constraints to which ODP
standards must conform. It uses the descriptive techniques from ITU-T Rec. X.902 | ISO/IEC 10746-2.
This part is normative.

– ITU-T Rec. X.904 | ISO/IEC 10746-4: Architectural Semantics: Contains a formalisation of the ODP
modeling concepts defined in ITU-T Rec. X.902 | ISO/IEC 10746-2, clauses 8 and 9, and a formalisation
of the viewpoint languages of ITU-T Rec. X.903 | ISO/IEC 10746-3. The formalisation is achieved by
interpreting each concept in terms of the constructs of the different standardized formal description
techniques. This part is normative.

The purpose of this Recommendation | International Standard is to provide an architectural semantics for ODP. This
essentially takes the form of an interpretation of the basic modeling and specification concepts of ITU-T Rec. X.902 |
ISO/IEC 10746-2 and viewpoint languages of ITU-T Rec. X.903 | ISO/IEC 10746-3, using the various features of
different formal specification languages. An architectural semantics is developed in four different formal specification
languages: LOTOS, ESTELLE, SDL and Z. The result is a formalization of ODP’s architecture. Through a process of
iterative development and feedback, this has improved the consistency of ITU-T Rec. X.902 | ISO/IEC 10746-2 and ITU-
T Rec. X.903 | ISO/IEC 10746-3.

An architectural semantics provides the additional benefits of:

– assisting the sound and uniform development of formal descriptions of ODP systems; and

– of permitting uniform and consistent comparison of formal descriptions of the same standard in different
formal specification languages.

Rather than provide a mapping from all the concepts of ITU-T Rec. X.902 | ISO/IEC 10746-2, this Recommendation |
International Standard focuses on the most basic. A semantics for the higher level architectural concepts is provided
indirectly through their definition in terms of the basic ODP concepts.

Examples of the use of some of the formal specification languages in this report can be found in TR 10167 (Guidelines
for the Application of ESTELLE, LOTOS and SDL).

In the following clauses, the concepts are numbered in accordance with the scheme used in ITU-T Rec. X.902 |
ISO/IEC 10746-2.

ISO/IEC 10746-4 : 1998 (E)

2 ITU-T Rec. X.904 (1997 E)

1 Scope

This Recommendation | International Standard specifies an architectural semantics for ODP. This is required to:

– provide formalisation of the ODP modelling concepts;

– assist sound and uniform development of formal descriptions of standards for distributed systems;

– act as a bridge between the ODP modelling concepts and the semantic models of the specification
languages: LOTOS, SDL, ESTELLE and Z;

– provide a basis for uniform and consistent comparison between formal descriptions of the same standard in
specification languages that are used to develop an architectural semantics.

This part is normative.

2 Normative references

The following Recommendations and International Standards contain provisions which, through reference in this text,
constitute provisions of this Recommendation | International Standard. At the time of publication, the editions indicated
were valid. All Recommendations and Standards are subject to revision, and parties to agreements based on this
Recommendation | International Standard are encouraged to investigate the possibility of applying the most recent edition
of the Recommendations and Standards listed below. Members of IEC and ISO maintain registers of currently valid
International Standards. The Telecommunication Standardization Bureau of the ITU maintains a list of currently valid
ITU-T Recommendations.

– ISO/IEC 8807:1989, Information processing systems – Open Systems Interconnection – LOTOS – A
formal description technique based on the temporal ordering of observational behaviour.

– ITU-T Recommendation Z.100 (1993), CCITT Specification and Description Language (SDL).

– ISO/IEC TR 10167:1991, Information technology – Open Systems Interconnection – Guidelines for the
application of Estelle, LOTOS and SDL.

– ISO/IEC 135681), Information technology – Programming Languages their Environments and System
Software Interfaces, Z Specification language.

– The Z Notation, A Reference Manual, J.M. Spivey, International Series in Computer Science, Second
Edition, Prentice-Hall International, 1992.

– ISO/IEC 9074:1997, Information technology – Open Systems Interconnection – Estelle: A formal
description technique based on an extended state transition model.

3 Definitions

3.1 Definitions from ISO/IEC 8807

This Recommendation | International Standard makes use of the following terms defined in ISO/IEC 8807:

action denotation, actualisation of parameters, behaviour expression, choice, conformance, disabling, enabling,
enrichment, equation, event, extension, formal gate list, formal parameter list, gate, gate hiding, guard, instantiation,
interleaving, internal observable event, operation, parallel composition, parameterised type definition, process
definition, reduction, selection predicate, sort, synchronisation, type definition, value parameter list.

3.2 Definitions from ITU-T Recommendation Z.100

This Recommendation | International Standard makes use of the following terms defined in ITU-T Rec. Z.100:

action statement, active, atleast, block (type), call, channel, content parameter, continous signal, create, enabling
condition, export, exported procedure, exported variable, finalized, gate, import, imported variable, input, nextstate,
nodelay, now, output, procedure, process (type), provided, redefined, remote procedure, reset, return, revealed variable,
service (type), set, signal, signalroute, stop, system (type), task, time, timer, transition, view, viewed variable, virtual.

1) Currently at the stage of draft.

ISO/IEC 10746-4 : 1998 (E)

ITU-T Rec. X.904 (1997 E) 3

3.3 Definitions from the Z-Base Standard

This Recommendation | International Standard makes use of the following terms defined in the Z-Base Standard:

axiomatic description, conjunction, data refinement, invariant, operation refinement, overriding, postcondition,
precondition, schema (operation, state, framing), schema calculus, schema composition.

3.4 Definitions from ISO/IEC 9074

This Recommendation | International Standard makes use of the following terms defined in ISO/IEC 9074:

activity, assignment statement, attach, channel, channel definition, connect, control state, DELAY-Clause, detach,
disconnect, exported variable, external interaction point, FROM-Clause, function, init, instantiation, interaction,
interaction point, module body definition, module header definition, module instance, output, parent instance, primitive
procedure, procedure, PROVIDED-Clause, release, role, systemactivity, systemprocess, TO-Clause, transition,
transition block, transition clause, WHEN-clause.

4 Interpretation of modelling concepts

4.1 Architectural semantics in LOTOS

LOTOS is a standardized (ISO/IEC 8807) Formal Specification Language (FSL). Tutorial material is available in the
standard.

This clause explains how the fundamental modeling concepts can be expressed in LOTOS (see IS0/IEC 8807). It should
be pointed out that there exist two main ways in LOTOS to model the concepts contained in ITU-T Rec. X.902 |
ISO/IEC 10746-2. These are based upon the process algebra part of the language and the ACT ONE data typing part of
the language. Since the ACT ONE formalisation of the concepts is applicable to SDL-92 also, the ACT ONE
formalization is given in an independent clause. See 4.2.

To avoid confusion in the ODP and LOTOS terminology, the following clause uses italics to denote LOTOS specific
terms.

4.1.1 Basic modeling concepts

4.1.1.1 Object

An instantiation of a LOTOS process definition which can be uniquely referenced.

4.1.1.2 Environment (of an object)

The part of a model which is not part of the object. In LOTOS, the environment of an object within a specification at a
given time is given by the environment of the specification and by the other behaviour expressions that are composed
with that object in the specification at that time.

NOTE – The environment of a specification is empty if the specification is not parameterised.

4.1.1.3 Action

Actions in LOTOS are modeled as either internal events or observable events. All events in LOTOS are atomic. An
internal action may be given explicitly by the internal event symbol, i, or by an event occurrence whose associated gate is
hidden from the environment.

An interaction is represented in LOTOS by a synchronisation between two or more behaviour expressions associated
with objects at a common interaction point (gate). Interactions may be of the kind:

– pure synchronisation on a common gate with no offer: No passing of values between objects occurs;

– ! and ! for pure synchronisation: No values are exchanged between the objects;

– ! and ? for value passing provided the ? event contains the ! event: Another way of considering this is that
the ! event selects a value from a choice of values for the ? event;

– ? and ? for value establishment: Here the effect is an agreement on a value from the intersection of the set
of values. If the intersection of the values is the empty set then no synchronisation and hence no
interaction occurs.

ISO/IEC 10746-4 : 1998 (E)

4 ITU-T Rec. X.904 (1997 E)

If a non-atomic granularity of actions is required event refinement may be used. This will then enable non-instantaneous
and overlapping actions to be modelled. It should be noted that event refinement is a non-trivial problem, especially when
behavioural compatibility is to be maintained.

There exists no construct in LOTOS to express cause and effect relationships, although this might sometimes be possible
to represent informally.

4.1.1.4 Interface

An abstraction of the behaviour of an object that consists of a subset of the observable actions of that object. As all
observable actions of an object in LOTOS require gates with which to synchronise with the environment, the subset of
observable actions is usually achieved by partitioning the gates given in the process definition associated with the object.
In order to obtain an interface, hiding the gates not required for the interface under consideration can be achieved.
Alternatively, synchronising on only a subset of the gates associated with an object can be used. In this case, actions
occurring at those gates in the process definition not in the set synchronised with, may be regarded as actions internal to
the object as far as the environment synchronising on those gates making up the interface is concerned.

It should be noted that this definition requires that the interfaces of an object use different gate names, i.e. it is not
possible to distinguish between interfaces that use the same gate.

4.1.1.5 Activity

An activity is a single-headed directed acyclic graph of actions, where each node in the graph represents a system state
and each arc represents an action. For an action to occur it must satisfy the preconditions of the system state.

4.1.1.6 Behaviour (of an object)

The behaviour of an object is defined by the LOTOS behaviour expression associated with the process definition that
constitutes the object template. A behaviour expression may consist of a sequence of both externally visible event offers
and internal events. The actual behaviour of an object as might be recorded in a trace, is dependent upon the behaviour
expression associated with the object and how this is configured with the environment. The actual behaviour the object
exhibits depends upon the behaviour expression of the object and how this synchronises with its environment. An object
may exhibit non-deterministic behaviour.

4.1.1.7 State (of an object)

The condition of an object that determines the set of all sequences of actions in which the object can take part. This
condition is governed by the behaviour expression defined in the object template from which the object was created and
possibly by the current bindings of any existing local variables.

4.1.1.8 Communication

The conveyance of information (via value passing) between two or more interacting objects. It is not possible to write
directly, cause and effect relationships. It should also be pointed out that the synchronisation itself may be construed as
communication.

4.1.1.9 Location in space

LOTOS abstracts away from the notion of location in space. It is only possible to equate space with the structure of the
specification model. The location of an event – the structural location with respect to the specification model – is given
by a gate for interactions in LOTOS. The notion of location in space at which an internal event can occur is abstracted
away from in LOTOS. This abstraction is achieved implicitly using the LOTOS hide ... in construct which makes gates
used internally within a process invisible to the environment of the process, or explicitly using the internal event
symbol, i.

It is possible for the same location in space to be used for more than one interaction point. This is made possible in
LOTOS by having a single gate with different action denotations.

The location of an object is given by the union of the locations of the gates associated with that object, i.e. the union of
all of the locations of the actions in which that object may take part.

4.1.1.10 Location in time

LOTOS abstracts away from the concept of time, only considering temporal order so there is no absolute location in
relative metric time. Location in time would be possible, however, if an extended form of LOTOS were used with time
aspects incorporated.

ISO/IEC 10746-4 : 1998 (E)

ITU-T Rec. X.904 (1997 E) 5

4.1.1.11 Interaction point

A gate with a possibly empty list of associated values.

NOTE – In a specification, changes in location may be reflected by changes in the associated values.

4.1.2 Specification concepts

4.1.2.1 Composition

– of objects: A composite object is an object described through the application of one or more LOTOS
combination operators. These include:

• interleaving operator (|||);

• parallel composition operators (|| and |[gate-list]|);

• enabling operator (>>);

• disabling operator ([>);

• choice operator ([])

– of behaviours: The composition of the behaviour expressions associated with the component objects in
the creation of a composite object through composition. The operators for the composition of behaviours
are the same as those for the composition of objects.

4.1.2.2 Composite object

An object described using one or more of the interleaving, parallel composition, disabling, enabling and choice
operators of LOTOS.

4.1.2.3 Decomposition

– of objects: The expression of a given object as a composite object. There may be more than one way to
decompose a composite object, however.

– of behaviours: The expression of a given behaviour as a composite behaviour. There may be more than
one way to decompose a composite behaviour.

NOTE – It might also be considered that the notion of decomposition of behaviours is inherently supplied by the ACT ONE
operations and equations associated with a sort. That is, these operations and equations provide all possible combinations of
behaviours. Thus for example, sequential composition might be generated through operations applied sequentially. Each
operation application in the sequence must satisfy the necessary equations for occurrence. Whether this is behavioural
composition is debatable though, since the operations and equations already existed and defined all possible behaviours.

4.1.2.4 Behavioural compatibility

In LOTOS, specific theories have been developed to check for behaviour compatibility. There are no specific LOTOS
language syntactical features to construct and ensure behaviour compatibility generally. The LOTOS standard, however,
develops the notion of conformance which provides a basis for consideration of behaviour compatibility.

In order to determine whether or not two object behaviours are compatible, the notion of conformance needs to be
introduced. Conformance is concerned with assessing the functionality of an implementation against its specification,
where here the term implementation may be taken to be a less abstract description of a specification.

If P and Q are two LOTOS processes, then the statement Q conforms to P (written as Q conf P) signifies that Q is a valid
implementation of P. This means that if P can perform some trace σ and then behave like some process P’, and if Q can
also perform trace σ and then behave like Q’ then the following conditions on P’ and Q’ must be met: whenever Q’ can
refuse to perform every event from a given set A of observable actions, then P’ must also be able to refuse to perform
every event of A.

Thus Q conf P if and only if, placed in any environment whose traces are limited to those of P, Q cannot deadlock when
P cannot deadlock. Another way of defining this is Q has the deadlocks of P in an environment whose traces are limited
to those of P.

An object can be made behaviourally compatible with a second object after some modification to its behaviour, which
might include extending the object’s behaviour (adding additional behaviour) or a reduction of the object’s behaviour
(restricting the object’s behaviour). This process of modification of an object is known as refinement (see 4.1.2.5).

ISO/IEC 10746-4 : 1998 (E)

6 ITU-T Rec. X.904 (1997 E)

4.1.2.5 Refinement

Refinement is the process by which an object may be modified, either by extending or reducing its behaviour or a
combination of both, so that it conforms to another object. Letting P and Q be LOTOS processes, an extension of P by Q
(written as Q extends P) means that Q has no less traces than P, but in an environment whose traces are limited to those
of P, then Q has the same deadlocks. A reduction of P by Q (written as Q reduces P) means that Q has no more traces
than P, but in an environment whose traces are limited to those of Q, then P has the same deadlocks.

4.1.2.6 Trace

A trace of the behaviour of an object from its initial instantiated state to some other state is a recording of the finite
sequence of interactions (observable events) between the object and its environment.

4.1.2.7 Type of an <X>

Types that can be written down explicitly in LOTOS for objects and interfaces are template types. There is no explicit
construct in LOTOS that will permit the modeling of action types as such. A LOTOS specification consists of a
behaviour expression which is itself composed of action denotations (action templates). These action templates either
occur as part of the behaviour of the system, in which case their occurrence may loosely be regarded as the action
template instantiation, or they do not occur, in which case the action template remains uninstantiated. The action
templates themselves may be given by the internal event symbol, i, or event offers at gates which may or may not have
finite sequence of value and/or variable declarations.

LOTOS does not offer facilities to characterise actions directly, however, a limited form of action characterisation is built
into the synchronisation feature of LOTOS. That is, it might be considered that synchronised action denotations (action
templates) must satisfy the same action type in order for the action to occur. However, LOTOS does not classify the
characterising features of these arbitrary action denotations and thus it is not possible to put a formal type to any given
action. It might be the case that informally the event offers involved in an interaction are given a cause and effect role, but
this is generally not the case. See 4.1.1.8.

The internal event symbol may be used to represent an action type, where the common characteristics of this collection of
actions are that they have no characteristics.

It should be noted that by stating that the only predicate possible in LOTOS for objects (and interfaces) are that they
satisfy their template type, the concepts of type and template type as given in ITU-T Rec. X.902 | ISO/IEC 10746-2
reduce to the same modeling technique in LOTOS. Thus there is no distinction in LOTOS between a type in its broad
characterisation sense, and a template type in its more restrictive sense of template instantiation.

4.1.2.8 Class of an <X>

The notion of class is dependent upon the characterising type predicate which the members of the class satisfy. Objects,
interfaces and actions can satisfy many arbitrary characterising type predicates. A type that can be written down is a
template type. When this is the case, the class of objects, interfaces and actions associated with that type is the template
class.

NOTE – It should be noted that by stating that the only classification possible in LOTOS for objects, interfaces and actions is that
they satisfy their template type, the concepts of class and template class as given in ITU-T Rec. X.902 | ISO/IEC 10746-2 reduce
to the same modeling technique in LOTOS. Thus there is no distinction in LOTOS between a class in its general classification
sense, and a template class in its more restrictive sense as the set of instances of a given template type.

4.1.2.9 Subtype/Supertype

As the types that can be written down in LOTOS for objects, interfaces and, to a lesser extent, actions, are template types,
a subtype relation in LOTOS is a relation that may exist between template types. In LOTOS, however, there exists no
direct feature to write down subtyping relations directly. If subtyping is required then extension can be used to give a
subtype relation based on substitutability, however, this is not a feature explicitly provided for in LOTOS.

4.1.2.10 Subclass/Superclass

As the types that can be written down in LOTOS for objects, interfaces and, to a lesser extent, actions, are template types,
a subclass relation exists between two classes when a subtyping relation exists between their corresponding template
types.

ISO/IEC 10746-4 : 1998 (E)

ITU-T Rec. X.904 (1997 E) 7

4.1.2.11 <X> Template

– Object Template: A process definition with some means by which it can be uniquely identified once
instantiated. If no value parameter list is given, then object identification will not be possible for more than
one object instantiated from the object template.

With regard to combination of object templates in LOTOS there are no existing combination operators
except for a limited form of scoping using the LOTOS “where” term.

– Interface Template: Any behaviour obtained from a process definition by considering only the
interactions at a subset of the gates associated with the process definition. This subsetting of the gates is
achieved by hiding the gates not required for the interactions under consideration.

With regard to combination of interface templates in LOTOS there are no existing combination operators
except for a limited form of scoping using the LOTOS “where” term.

– Action Template: An action denotation where an action denotation may be either an internal-event
symbol, a gate-identifier or a gate-identifier followed by a finite sequence of value and/or variable
declarations.

NOTE – The definition here of action denotation is contrived as LOTOS does not really support the concept of an action template.
In LOTOS, possible behaviours are specified by giving action denotations combined in some form. To relate a template to an
action denotation is the closest that can be achieved in LOTOS. However, the text of ITU-T Rec. X.902 | ISO/IEC 10746-2
requires an action template to group the characteristics of actions. This is not part of LOTOS as event offers (action denotations)
exist in isolation and it is not possible to collect them and apply a template to characterise them.

Composition of action templates may loosely be likened to synchronisation with value passing or value generation. In this case,
two (or more) action templates agree on a common action template for the synchronisation to occur, i.e. an action template with
the common characteristics of all of the action templates involved in the synchronisation (composition).

4.1.2.12 Interface signature

An interface signature as a set of action templates associated with the interactions of an interface is represented in
LOTOS by a set of action denotations. The members of this set are those action denotations that require synchronisation
with the environment in order to occur.

4.1.2.13 Instantiation (of an < X > Template)

– of an Object Template: The result of a process which uses an object template to create a new object in its
initial state. This process involves the actualisation of the formal gate list and formal parameters of a
process definition by a one-one relabelling from a specified gate list and list of actual parameters. The
features of the object created will be governed by the object template and any parameters used to
instantiate it.

– of an Interface Template: The result of a process by which an interface is created from an interface
template. The interface created can thereafter be used by the object it is associated with to interact with the
environment. The features of the interface created will be determined by the interface template and any
parameters used to instantiate it.

– of an Action Template: This is given as action occurrence in LOTOS. This may involve the rewriting of
ACT ONE expressions.

4.1.2.14 Role

A name associated with a process definition in the template for a composite object (i.e. LOTOS composition of
behaviour expressions). As such, roles cannot be used as parameters. However, it is possible to assign data values to each
role in a composition in order to distinguish or address them specifically.

4.1.2.15 Creation (of an < X >)

– of an object: The instantiation of an object template as part of the behaviour of an existing object.

– of an interface: As objects and interfaces are modelled the same way in LOTOS (via process definitions),
creation of objects corresponds to creation of interfaces. Thus the definition for interface creation is given
by the creation of objects.

4.1.2.16 Introduction (of an object)

The instantiation of the behaviour associated with a LOTOS specification.

ISO/IEC 10746-4 : 1998 (E)

8 ITU-T Rec. X.904 (1997 E)

4.1.2.17 Deletion (of an < X >)

– of an object: The termination of a process instantiation. This may be achieved through the use of the
LOTOS disabling operator, the LOTOS inaction (stop) behaviour expression which does not allow for the
passing of control, or the successful termination (exit) behaviour expression where passing of control is
possible via the enabling operator.

– of an interface: The process by which the future behaviour of an object is limited to that behaviour which
did not require the participation of the given interface to be deleted.

4.1.2.18 Instance of a type

– of an Object Template: An instance of a given object template is represented in LOTOS by an
instantiation of that object template or an acceptable substitution for an instantiation of that object
template. Here the acceptable substitute should capture the characteristics that identify this type. Thus an
acceptable substitute might be another template that is behaviourally compatible with the first. This might
be achieved through extension as defined in section 4.1.2.4. Using this relation guarantees that all
characteristics of the type under consideration are included. It might be the case, however, that a weaker
form of type satisfaction relation can be found which does not require all characteristics associated with a
given template to be included, but some subset of the total characteristics.

– of an Interface Template: As an interface template is represented the same way as an object template (via
a process definition in LOTOS), the above text applies equally well (i.e. replace all occurrences of object
with interface) for instance of an interface template.

– of an Action Template: An instance of an action template (action denotation) is represented in LOTOS
by another action denotation offering an equivalent event offer.

4.1.2.19 Template type (of an < X >)

A predicate expressing that an < X > is an instance of a given template, where an < X > may be an object, an interface or
an action.

4.1.2.20 Template class (of an < X >)

The template class of an < X > is the set of all < X >’s that are instances of that < X > template, where an < X > may be an
object, an interface or an action.

NOTE – The notion of the template class of an action is limited in its application to LOTOS, as LOTOS does not provide
explicitly for action templates, action template instantiations or action template types.

4.1.2.21 Derived class/Base class

If the template of a class is an incremental modification of the template of a second class, then the first class is a derived
class of the second class, and the second class is a base class of the first.

LOTOS templates can be incrementally modified by extending, enriching and modifying the data types or by modifying
the behaviour. Problems arise with the behaviour modifications however, specifically:

– subtyping: Non-determinism may be introduced into the system when the initials of the inherited template
and its modification are the same, thus subtyping cannot be guaranteed;

– the need for a redirection of self-reference: Any reference to a derived template from a parent template
should be redirected to the derived template, which is not always possible.

There is no satisfactory solution to these problems in standard LOTOS.

4.1.2.22 Invariant

In LOTOS, the only invariants which can be written down are process definitions. There is no way to attach an invariant
to a process definition which is not the process definition itself.

4.1.2.23 Precondition

A precondition is a predicate that a specification requires to be true in order for an action to occur and may be expressed
directly in LOTOS using one or more of:

– sequencing of actions;

– guards and selection predicates.

ISO/IEC 10746-4 : 1998 (E)

ITU-T Rec. X.904 (1997 E) 9

4.1.2.24 Postcondition

In LOTOS, the occurrence of an action is independent of the state of the system after the occurrence of the action. As
such, LOTOS does not provide the means to directly express postconditions.

4.2 Architectural semantics in ACT ONE

This subclause provides a formalisation of the basic modelling and specification concepts contained in ITU-T Rec. X.902
| ISO/IEC 10746-2. Whilst ACT ONE is not by itself a standardised FSL, it is used in the standardised FSLs LOTOS and
SDL-92 and provides an alternative way in which to formalise the aforementioned concepts. Therefore the ACT ONE
formalisation of the concepts contained in ITU-T Rec. X.902 | ISO/IEC 10746-2 is presented in its own separate clause.

4.2.1 Basic modelling concepts

4.2.1.1 Object

An instance of a sort which can be uniquely referenced. It should be pointed out that objects modelled this way must be
specified so that they have some form of existence. This can be achieved through a process algebra specification style.
Examples of this style include recursion in process definitions, where the object is an element of the value parameter list
associated with that process definition. Alternatively, let...in clauses can be used to model objects with a form of
existence. In both these styles, guards and/or selection predicates are required to ensure that instantiations of sort
definitions are unique.

4.2.1.2 Environment of an object

The environment of an object is not provided for in ACT ONE. This notion can only be considered through the process
algebra and the ACT ONE expressions that exist there. In effect, the environment of an object may be regarded as all of
the process algebra other than the ACT ONE expressions representing the object in question and the operations on that
object. That is, the environment is used to cause operations on an object to occur. This notion of environment does not
require that the operations on an object are invoked by other objects. This has consequences on notions such as
interaction, i.e. here interaction does not take place between objects but between an object and some outside agency –
here the process algebra.

4.2.1.3 Action

An operation occurrence. It should be noted that there is in general, no inherent distinction between an interaction and an
internal action purely from an ACT ONE perspective. That is, possible actions are modelled through operations in the
signature of an ACT ONE sort, and these may or may not occur, depending upon the occurrence of the ACT ONE
expressions existing in the process algebra. Thus internal actions are not explicitly catered for in ACT ONE. It might be
the case, however, that a form of internal action can be modelled through sorts defined locally in the process algebra.
Alternatively, all operations declared in the process algebra may be regarded as interactions. Operations used to satisfy
these operations, i.e. in the equations associated with the operations under consideration, may be regarded as internal
actions. For example, if processes call an operation pop2 which removes two elements from a queue and this uses the
operation pop twice in its associated equations, then pop2 may be regarded as an interaction, whilst pop can be regarded
as an internal action. The problem with this treatment of internal action, however, is that there is no notion of spontaneous
transitions as such, e.g. as for instance with the internal event symbol i in the process algebra.

It should be pointed out that this form of interaction does not require that two or more objects interact in the process
algebra sense, i.e. through synchronisation on a common gate. Rather, here interaction may be interpreted as something
which is caused indirectly by the environment but not necessarily caused by an object, i.e. not by another instance of a
sort modelling an object. Thus it might be the case that an event offer occurrence which does not involve ACT ONE
expressions causes an interaction to take place, e.g. through an event offer occurrence which results in the instantiation of
a process definition whose value parameter list contains an operation (interaction) on an object (or objects).

4.2.1.4 Interface

The operations and equations associated with an object.

4.2.1.5 Activity

A sequence of operation applications on a given sort. These operations must satisfy the equations associated with the
sort. Each operation in the sequence of operations that occurs, i.e. each operation in the activity, must have
preconditions that satisfy the postconditions of the previous operation occurrence. Preconditions and postconditions on
operations are defined in 4.2.2.23 and 4.2.2.24 respectively.

ISO/IEC 10746-4 : 1998 (E)

10 ITU-T Rec. X.904 (1997 E)

4.2.1.6 Behaviour (of an object)

The behaviour of an object modelled in ACT ONE is dependent upon the operations associated with the object template
and the current value the state of the object is bound to. That is, the value the state of an object is bound to can be used to
limit the possible operations that can take place, e.g. through excluding certain operations from occurring whose
equations are not valid for that value of the state.

ACT ONE does not explicitly provide for constraints on operation occurrences such as sequencing, non-determinism,
concurrency and real-time constraints as such. Rather, ACT ONE provides operations and equations which in themselves
denote all possible constraints, i.e. all possible behaviours with their associated constraints.

There does not exist the feature in ACT ONE to model internal actions specifically. That is, there is no notion of
spontaneous transitions as might occur in the process algebra with the internal event symbol i for example.

It should be pointed out that there is no real notion of behaviour actually occurring solely in ACT ONE. The notion of
ACT ONE behaviour occurring is normally associated with the ACT ONE expressions that are evaluated in the process
algebra.

4.2.1.7 State (of an object)

The current value that an instance of a sort modelling an object is bound to. It should be pointed out that a sort modelling
an object should contain an identifier used to distinguish between different instances of the sort. The value of this
identifier does not represent part of the state though, i.e. this value should remain immutable in the operations and
equations associated with the sort.

4.2.1.8 Communication

This notion is not supported in ACT ONE. It might be the case that an abstract form of communication might be
modelled through a process algebra specification style. This does not reflect the text of ITU-T Rec. X.902 |
ISO/IEC 10746-2, however, i.e. it is not the case that one object conveys information to another object. Rather, it is the
environment (the process algebra) being used to communicate with and not other objects.

4.2.1.9 Location in space

The notion of a location in space is not explicitly supported in ACT ONE. If required, this notion can be engineered into
the specification model, e.g. through a sort modelling a location in space that is used in operations whose location in
space is to be ascertained.

4.2.1.10 Location in time

The notion of a location in time is not explicitly supported. However, if the notion of time is related to the current state of
a given object, i.e. to the state changes that have occurred and those that can occur, then the location in time at which a
given action can occur may be determined, to some extent, by the current state of a given object.

The location in time at which an action can occur may also be engineered into the specification, e.g. through a sort
modelling a location in time that is used in operations whose location in time is to be ascertained.

4.2.1.11 Interaction point

This notion is not directly supported in ACT ONE. It might be the case, however, that this concept can be engineered into
a specification. For example, through a sort used in the operations that are in the set of interfaces at the same location.
That is, all operations in the set of interfaces at the same location require an input parameter (sort) indicating the location
at which this operation exists. If required, several interaction points can be modelled so that they exist at the same
location. This could be achieved through an operation to create a location sort that required several interaction point
sorts as inputs. The operations and equations associated with these sorts should enable identification of distinct
interaction points and locations.

4.2.2 Specification concepts

4.2.2.1 Composition

– of objects: It is not generally the case that two arbitrary objects can be combined in ACT ONE and have a
meaningful result, i.e. a composite object with its own behaviour, etc. The most likely form of composition
in ACT ONE is through a constructor operation which has two or more objects as input parameters and a
means whereby it can be uniquely identified. Consider the following ACT ONE constructor operation:

makeCO: Id, Obl, Ob2 -> CO

ISO/IEC 10746-4 : 1998 (E)

ITU-T Rec. X.904 (1997 E) 11

Here a composite object is being created from two other objects which have their own associated
operations and equations, i.e. their own behaviours. Whilst it is the case that co: CO = makeCO
(id1,ob1,ob2) is composed of objects ob1 and ob2, object co has no behaviour as such. That is the
behaviours associated with ob1 and ob2 are not applicable to instances of CO.

To solve this problem, the composite object can have additional operations and equations specified. The
form of these operations and equations and their relationship to the component objects, then determines
the form of the composition. For example, if the operations and equations of the composite object simply
enable access to isolated component objects, then a form of delegation is achieved, with the component
object composition representing an aggregation. If the operations and equations of the composite object
are specified in such a way that they modify the behaviour of the component objects, then a form of
composition is achieved that more closely resembles the text of ITU-T Rec. X.902 | ISO/IEC 10746-2. It
should be pointed out, however, that the notion of composition given in ITU-T Rec. X.902 |
ISO/IEC 10746-2 does not require further specification to be made, i.e. it involves composing existing
objects and behaviours to generate new objects and behaviours, and not specifying additional behaviour to
enable the component object composition meaningful.

– of behaviours: Since ACT ONE does not provide specific composition operators, the notion of
composition of behaviours is not explicitly provided for. It should be pointed out that a form of
composition does exist in ACT ONE: that of enrichment. This may not be classified as composition
generally, however, as it does not provide explicit composition of behaviours (or objects) as such. Rather,
enrichment by itself, i.e. without further specification, offers no composition features. All of the data types
exist independently when enrichment is applied. It is only when operations and equations are specified
which use the sorts made available through enrichment, that the notion of composition can be applied.
This may not adequately reflect the text of ITU-T Rec. X.902 | ISO/IEC 10746-2 however, i.e. it is not the
case that two behaviours are simply combined. Further specification is required to combine the behaviours.
It should be added that enrichment does make available all of the existing operations and equations of the
sorts being combined though. Thus the respecification necessary to combine behaviours does not include
the operations and equations of the sorts introduced through enrichment.

A form of composition of behaviours might also be achieved through the actualisation of parameterised data types.
These require the data type actualisations satisfy any formal sorts, operations and equations of the data type being
actualised. This is the closest that can be achieved in ACT ONE to capture the notion of composition of behaviour as put
forward in ITU-T Rec. X.902 | ISO/IEC 10746-2. It is debatable whether this represents composition of behaviours
though, since there can be no behaviour of a parameterised data type until it has been actualised, i.e. it is not the case
that an instance of this sort can occur in the process algebra and operations applied.

4.2.2.2 Composite object

The result of a composition of objects.

4.2.2.3 Decomposition

– of objects: Objects may be decomposed in ACT ONE provided that operations exist in the signature
associated with the object to permit the decomposition. For example the following data type permits a
composite object to be decomposed into its component objects.

type Z is X, Y, IdType
sorts Z
opns makeZ: Id, X, Y -> Z

getX: Z -> X
getY: Z -> Y

eqns forall x: X, y: Y, id: ID
ofsort X

getX (makeZ(id,x,y)) = x;
ofsort Y

getY (makeZ(id,x,y)) = y;
endtype (* Z *)

Thus given z: Z = makeZ(id1,x,y), where x and y are instances of sorts modelling objects and id1 is a
unique identifier, this can be decomposed into x and y, i.e. it’s component objects, through getX(Z) and
getY(Z) respectively.

NOTE – This interpretation is based upon the idea of being able to separate out a composite object into its component parts
(objects). The text given in ITU-T Rec. X.902 | ISO/IEC 10746-2, however, requires only that decomposition specify a given
object as a combination of two or more objects, i.e. a composition. In ACT ONE, it is always the case that composite objects are
specified from combinations of component objects. Hence the distinction between composition and decomposition as given in
ITU-T Rec. X.902 | ISO/IEC 10746-2 is somewhat blurred when represented in ACT ONE.

ISO/IEC 10746-4 : 1998 (E)

12 ITU-T Rec. X.904 (1997 E)

– of behaviours: The notion of decomposition of behaviours is dependent upon the specification of
behavioural composition. This concept is not explicitly provided for in ACT ONE (see 4.2.2.1). That is,
behaviours are represented by operations and equations acting on a sort. It is not the case that two
arbitrary sort behaviours can be combined and a new behaviour yielded.

NOTE – It might also be considered that the notion of decomposition of behaviours is inherently supplied by the ACT ONE
operations and equations associated with a sort. That is, these operations and equations provide all possible combinations of
behaviours. Thus for example, sequential composition might be generated through operations applied sequentially. Each
operation application in the sequence must satisfy the necessary equations for occurrence. Whether this is behavioural
composition is debatable though, since the operations and equations already existed and defined all possible behaviours.

4.2.2.4 Behavioural compatibility

In LOTOS, behavioural equivalence of data types is based on name equivalence of sorts and possibly also by the value
that these sorts are bound to. As a result of this, it is not generally the case that an object can replace another object in
some environment if the objects are obtained from different object templates, i.e. they are instances of different sorts. It
may sometimes be possible to replace one object with another object derived from a different object template, however.
This requires that the environment offer operations that are applicable to both sorts and the results of these operations are
the same. For example, sorts representing a stack of integers and a queue of integers might be behaviourally compatible
in some environment if the environment offers only a top operation, and the queue and stack have the same number of
integers pushed onto them. That is, the result in both cases will be an integer. If an environment offers a pop or a push
operation, then behavioural compatibility will not exist between the objects, as the operations return stack sorts and
queue sorts. Since in general, the environment of an object may invoke any operation in the signature, this form of
behaviour compatibility is limited.

4.2.2.5 Refinement

Whilst the notion of refinement has been explicitly provided for in the process algebra of LOTOS, e.g. through
conformance testing and equivalence relations, there has been little work done on refinement in ACT ONE. Intuitively,
however, refinement in ACT ONE might take many forms. For example, through extending the signature of a given sort,
i.e. providing more operations. This form of refinement should generate natural behaviour compatibility, i.e. the existing
operations and equations remain unchanged. Other forms of refinement might also be possible, e.g. modification of the
equations associated with the operations on a sort. Ensuring behaviour compatibility is unlikely to be trivial in this case.

4.2.2.6 Trace

Since interactions are not explicitly provided for in ACT ONE, the notion of a trace is limited, i.e. it cannot be guaranteed
not to contain internal actions. If interactions are considered as the operations that occur in the process algebra and
internal actions as the operations used to evaluate the equations associated with these operations, then a trace may be
modelled to a limited extent. In this case it corresponds to the sequence of operation applications associated with an
instance of a sort modelling an object. It should be pointed out that if the equations associated with operations modelling
interactions are rewritten, then the record of an object’s interactions, i.e. the trace, is likely to be incorrect. For example,
the operation applications of a push followed by a pop on a queue are likely to be rewritten as queue as opposed to the
expression pop(push(x,q)). Hence the notion of a trace is limited in ACT ONE.

4.2.2.7 Type of an <X>

Objects, interfaces and actions specified in ACT ONE can satisfy many different arbitrary characterising predicates.
Types that can be written down explicitly are template types.

4.2.2.8 Class of an <X>

The notion of class is dependent upon the characterising type predicate which the members of the class satisfy. Objects,
interfaces and actions can satisfy many arbitrary characterising type predicates. A type that can be written down is a
template type. When this is the case, the class of objects, interfaces and actions associated with that type is the template
class.

NOTE – It should be noted that by stating that the only classification possible in LOTOS for objects, interfaces and actions is that
they satisfy their template type, the concepts of class and template class as given in ITU-T Rec. X.902 | ISO/IEC 10746-2 reduce
to the same modelling technique in LOTOS. Thus there is no distinction in LOTOS between a class in its general classification
sense, and a template class in its more restrictive sense as the set of instances of a given template type.

ISO/IEC 10746-4 : 1998 (E)

ITU-T Rec. X.904 (1997 E) 13

4.2.2.9 Subtype/Supertype

The notion of subtype and supertype is not generally supported in ACT ONE since LOTOS uses name equivalence when
type checking. For example, two object types are only the same when they are represented by the same sort. Thus it is not
generally the case that one sort can be substituted for another sort. It might be the case, however, that a limited form of
subtyping exists between two different sorts if the characterising type predicate is based on some aspect of the sorts other
than their name, e.g. this operation is valid on this sort and returns this result. This is a limited form of typing though and
is unlikely to exist in most cases.

4.2.2.10 Subclass/Superclass

The notion of subtypes and supertypes are only supported to a very limited extent in ACT ONE, i.e. where the
characterising type predicate is based upon some aspect of the sort. As a result the notions of subclass and superclass are
not fully supported in ACT ONE. If a subtype/supertype relationship does exist between two sorts, then a
subclass/superclass relationship also exists between the instances of the sorts in the process algebra.

4.2.2.11 <X> Template

– Object Template: A sort definition with associated operations and equations modelling an object.

– Interface Template: The set of operations and equations associated with a sort definition modelling an
object. It should be noted, that the notions of interface and object templates may be regarded as identical
since operations and equations must always act on a sort definition. It is also the case that the declaration
of an instance of a sort in the process algebra has implicitly associated with it, the operations and
equations as specified in the ACT ONE part of the specification.

– Action Template: An operation with associated equations.

4.2.2.12 Interface signature

The operations that apply to a variable declared as an instance of a sort modelling an object.

4.2.2.13 Instantiation (of an < X > Template)

– of an object template: Instantiation of an object template requires the initialisation of a sort modelling an
object to a valid initial state. This sort initialisation should ensure that the sort instance can be uniquely
referenced.

– of an interface template: Instantiation of an interface template occurs when an object template is
instantiated. As such, an object has a single interface given by the operations and equations acting on the
sort from which the object is instantiated.

– of an action template: The occurrence of an ACT ONE operation in the process algebra. This operation
must satisfy the equations associated with that operation.

4.2.2.14 Role

The notion of a role may best be modelled through a sort in ACT ONE. This is because a role represents an identifier for
a behaviour. That is, through the declaration of a sort, the operations and equations that apply to that sort are made
accessible.

4.2.2.15 Creation (of an < X >)

– of an object/interface: Since objects and interfaces only have a form of existence when ACT ONE is
used in conjunction with the process algebra, ACT ONE by itself may not be used to model creation. ACT
ONE used in conjunction with the process algebra may be used to model creation of objects and interfaces
to a limited extent provided a certain specification style is followed. For example, an operation associated
with a sort modelling an object, i.e. an operation on an already existing object, which results in the
generation of a new object. It should be possible to uniquely reference the newly generated object. This
new object should also be used in the process algebra so that it has some form of existence (see 4.2.1.1 for
further details on how this can be achieved.)

4.2.2.16 Introduction (of an object)

Introduction of an object may be achieved in several ways in ACT ONE when used in conjunction with the process
algebra. For example, through event offers occurring whose action denotations result in a new instance of a sort
modelling an object being generated. These new instances should be in a valid initial state, be uniquely referenceable, and
have some form of existence in the process algebra. Alternatively, objects may be introduced through let ... in clauses.
Here too they should have a valid initial state, be used in the process algebra so that they have a form of existence, and it
should be possible to uniquely identify them.

ISO/IEC 10746-4 : 1998 (E)

14 ITU-T Rec. X.904 (1997 E)

4.2.2.17 Deletion (of an < X >)

– of an object/interface: Deletion of an object or interface may be achieved in ACT ONE when used in
conjunction with the process algebra through the rewriting that occurs with the equations associated with
the operations on sorts modelling objects. For example, an operation which removes an element from a
set can be used to model deletion, e.g. an object with a certain identifier is removed (deleted) from the set
of instantiated objects existing as part of the value parameter list of a recursive process definition.

4.2.2.18 Instance of a type

– of an Object/Interface/Action Template: An instance of a type depends upon the characterising
predicate defining the type. If the type predicate is the template type for objects and interfaces, an instance
of the object or interface type corresponds to an occurrence of the sort modelling the objects and
interfaces under consideration in the process algebra. Similarly, if the type predicate is the template type
for actions, an instance of an action type is given by the occurrence of an operation modelling the action
type under consideration in the process algebra.

4.2.2.19 Template type (of an < X >)

– of an Object/Interface: A predicate on instantiations of the sort used to model an object. All
instantiations (occurrences) of the template (sort) in the process algebra have the operations and equations
that are associated with that sort. Since a template for an object and an interface are modelled the same
way, i.e. by a sort definition with associated operations and equations, the template type of an object and
the template type of the interface to that object are synonymous in ACT ONE. That is, they both
correspond to an occurrence of a sort in the process algebra.

– of an Action: A predicate on operation occurrences in the process algebra. That is, all instantiations
(occurrences) of the template (operation) in the process algebra must fulfill the requirements of the
template, i.e. they must have the same inputs and produce the same results as given by the operation
definition, and the operation evaluation is governed by the equations associated with that operation.

4.2.2.20 Template class (of an < X >)

– of an Object: The set of instances of a given sort modelling an object in the process algebra.

– of an Interface: The set of instances of a given sort modelling an interface to an object in the process algebra.

– of an Action: The set of instances of a given operation in the process algebra.

4.2.2.21 Derived class/Base class

Derived classes and base classes are not supported in ACT ONE. This is because classes in ACT ONE are normally only
given through template classes, i.e. for objects, the set of instances of a given sort modelling an object in the process
algebra. It is not the case that sorts can be incrementally modified. That is, sorts and the labels that are attached to them,
i.e. the name of the sort, do not allow reference to another sort, i.e. self-reference always exists. Thus the operations and
equations associated with a given sort are only applicable to that sort and not another sort.

It should also be pointed out that the notion of actualisation of parameterised classes, whilst intuitively possessing the
features of derived/base class relationships, do not in effect represent such a relationship. This is because it is not the case
that instances of a parameterised class can occur in the process algebra, i.e. they must be actualised so that a class can
exist.

4.2.2.22 Invariant

This notion is implicit within ACT ONE, i.e. objects must always satisfy the operations and equations that apply to them.

4.2.2.23 Precondition

In ACT ONE all operations must satisfy all equations (and any associated guards) that apply to them before they can
occur.

4.2.2.24 Postcondition

This notion is implicit within ACT ONE, i.e. the occurrence of a given operation (action) requires the associated
equations to be defined (true).

ISO/IEC 10746-4 : 1998 (E)

ITU-T Rec. X.904 (1997 E) 15

4.3 Architectural semantics in SDL-92

SDL-92 is a standardised FSL. Tutorial material is annexed to the ITU-T Rec. Z.100. A number of SDL textbooks exist
as well as commercial tools, which support different aspects of SDL from graphics handling to analysis and generation of
programming code based on SDL.

SDL models a system as a set of extended finite state machines communicating by messages, called signals. The data
concept of SDL is based on ACT ONE. The state machines are extended in that they may define local variables to hold
part of their history. The signals are communicated asynchronously, thereby offering loose coupling between components
in a distributed system.

This subclause expresses one way in which modelling concepts can be expressed in SDL. The representation is not
regarded as unique. However it establishes that almost all of the fundamental concepts can be expressed in SDL. It should
be pointed out here that an alternative approach to modelling many of the concepts given here also exists. This focuses on
the use of ACT ONE. Details of this approach may be found in 4.2.

The version used is SDL-92, as defined in the ITU-T Rec. Z.100. SDL-92 contains a number of extensions compared
with SDL-88. The most important ones are:

– object-oriented constructs;

– possible nondelaying channels;

– non-determinism;

– possible inclusion of alternate data concepts and remote procedure calls.

The most significant feature of the alternate data typing is that they enable combined usage of ACT ONE and ASN.1
within SDL. The semantics of the combination of SDL-92 with ASN.1 is defined in the ITU-T Rec. Z.105.

To avoid confusion, italics have been used in the text to indicate SDL concepts, whenever it has been felt necessary.

4.3.1 Basic modelling concepts

4.3.1.1 Object

Objects in SDL are instances of system type, block type, process type, service type, timer, channel, and signalroute.
These instances are characterised by a state and a behaviour.

Each instance is encapsulated, i.e. any change in its state can only occur as a result of an internal action or as a result of
an interaction with its environment.

References for some kind of objects have to be provided explicitly.

4.3.1.2 Environment (of an object)

The environment of an object depends on the object kind. See Table 1.

Table 1 – Object environment

Object kind Environment constraints

system – incoming signals of channels
block – global datatypes

– incoming signals of channels
– calls of exported procedures
– imported variables

process – global datatypes
– incoming signals of implicit or explicit signalroutes
– calls of exported procedures
– viewed/imported variables
– time constraints for input actions

service – global variables/timers/datatypes, shared signal buffer (owned by enclosing process instance)
– incoming signals of implicit or explicit signalroutes
– calls of exported procedures
– viewed/imported variables
– time constraints for input actions

timer – calls of set and reset, stop of the owner process
channel – incoming signals from the connected blocks (resp. system environment env)
signalroute – incoming signals from the connected process/service instances

ISO/IEC 10746-4 : 1998 (E)

16 ITU-T Rec. X.904 (1997 E)

4.3.1.3 Action

An action in SDL is a single input or save, an action statement, a whole transition or the complete execution of a
procedure. Possible single action statements are:

– task, import, export, view;

– output;

– create;

– set, reset, active;

– procedure call;

– stop/return;

– nextstate.

The transmission of a signal by a channel or a signalroute is an action also, as is the generation of a timer signal.
Interactions are the input/output of a signal, the call and the return action of a remote procedure, and the use of shared
variables (global process variables of services, revealed/viewed and import/export of process variables). The action
sequence of sending, conveying and eventually receiving of a signal (output-input) can be considered as one interaction.

4.3.1.4 Interface

Depending on the kind of an object there are different means in SDL to describe interfaces, as shown in Table 2.

In case of a block object the set of remote procedures exported/imported to/from the outside of the block as well as the
set of signals sent/received by processes of that block should be encapsulated in one or more processes. These processes
then act as the interfaces of the block object. With those interface descriptions only the potential interactions of an object
are defined, where each interface describes a subset of potential interactions of an object.

Table 2 – Object Interfaces

4.3.1.5 Activity

In general an activity cannot be denoted explicitly, since it may span several objects.

One special case of an activity is the execution of a local or remote procedure with the call action being the head of the
activity and the potential return actions being the tail actions.

4.3.1.6 Behaviour (of an object)

The behaviour of a process/service is the set of all transitions of that process/service. The input actions provide
constraints on the circumstances in which the transitions may occur. Additional constraints can be introduced using the
provide construct or the continuous signal construct. An object may exhibit non-deterministic behaviour.

The behaviour of a block is aggregated from the behaviour of the processes contained in that block. The behaviour of a
system is aggregated from the behaviour of the blocks contained in that system.

Object kind Interface is characterised by

system – system gates with their signal lists
– ingoing/outgoing channels with their signal lists

block – block gates with their signal lists
– ingoing/outgoing channels with their signal lists
– ingoing/outgoing signalroutes with their signal lists
– set of remote procedures (exported/imported to/from outside of block)
– set of remote variables (exported/imported to/from outside of block)

process – process gates with their signal lists
– set of all valid input/output signals
– set of all exported/imported procedures
– set of shared variables (revealed/viewed to/from outside of process)

service – service gates with their signal lists
– set of all valid input/output signals
– set of all exported/imported procedures

timer – timer identification
channel – sets of all signals carried in each direction
signalroute – sets of all signals carried in each direction

ISO/IEC 10746-4 : 1998 (E)

ITU-T Rec. X.904 (1997 E) 17

The behaviour of a channel or a signalroute is the conveyance of signals (instantaneously or delayed when specified).

The behaviour of a timer is predefined in SDL in the sense of an alarm clock.

4.3.1.7 State (of an object)

The set of all sequences of actions in which an object can take part at a given instant in time is determined in case of a
process/service by the current SDL state at that time, the values of the local variables, and the content of the input port.

The state of a block or a system is the total of the states of all contained processes, blocks plus all contained channels or
signalroutes.

The state of a channel is given implicitly or explicitly by a block. The state depends whether the channel has a delay
property or not.

The state of signalroute is always given implicitly.

The state of a timer is active or not active. The state of an active timer is determined by the remaining time delay for
sending a timeout signal.

4.3.1.8 Communication

The conveyance of information between two or more objects is done by explicit or implicit (in case of remote procedures
or imported/exported variables) channels or signalroutes. Information is carried by signals.

4.3.1.9 Location in space

Actions occur within process instances and service instances. Transmission actions occur within channels or
signalroutes.

4.3.1.10 Location in time

Each action is characterized by a date when the action begins and a date when the action ends. Actions can be
instantaneous. The duration of an action cannot be denoted explicitly. Actions can be scheduled for a concrete date or
after a specified delay.

NOTE –

a) There is a global time in SDL accessible by now. Nothing is said about the time units.

b) Two consecutive actions al and a2, hold the relation now(al) <= now(a2).

c) The only ways to address explicitly time are the set action for a timer and the application of now in enabling conditions and
continuous signals. Scheduling of actions for a fixed point in time should be avoided.

4.3.1.11 Interaction point

Interaction points are the gates of block/process/service instances and the endpoints of (possibly implicit) channels and
signal-routes. Shared variables are interaction points too. They have a location. An object can have several interaction
points.

4.3.2 Specification concepts

4.3.2.1 Composition

– of objects:

a) a system object may be a concurrent composition of block objects which may be interconnected by
channels;

b) a block object may be a concurrent composition of block objects (which may be interconnected by
channels) or a concurrent composition of process objects, which may be connected by signalroutes;

c) a process object may be an interleaving composition of service objects;

d) a channel may be a composition of blocks interconnected by channels;

– of behaviour

a) the behaviour of a system is a concurrent composition of the behaviour of its blocks;

db) the behaviour of a block is a concurrent composition of the behaviour of its sub-blocks or of its
processes;

ISO/IEC 10746-4 : 1998 (E)

18 ITU-T Rec. X.904 (1997 E)

c) the behaviour of a process is an interleaving composition of the behaviour of its services or a
sequential composition of the actions of its process graph;

d) the behaviour of a service is a sequential composition of the actions of its service graph;

e) the behaviour of a channel may be a composition of the behaviour of the blocks it consists of and of
the channels interconnecting them.

4.3.2.2 Composite object

According to 4.3.2.1 the following objects can be expressed as a composition:

– system;

– block;

– process;

– channel.

4.3.2.3 Decomposition

– of objects: The specification of a given object as a composition.

– of behaviours: The specification of a given behaviour as a composition.

4.3.2.4 Behavioural compatibility

There is no general means to describe behavioural compatibility in SDL explicitly, however the semantical basis of the
language in terms of transition systems allows for the definition of behavioural compatibility and its verification.

An instance of a derived class can be considered restricted behavioural compatible with an instance of the corresponding
base class and an instance of a redefined type can be considered restricted behavioural compatible with an instance of the
corresponding virtual type. Atleast-clauses can be used to require a restricted behavioural compatibility.

4.3.2.5 Refinement

There are two ways to refine an SDL specification of an object:

– substructuring (on block or system level);

– use of the object-oriented features (inheritance, virtuality and generic parameters).

4.3.2.6 Trace

There is no explicit means to specify traces in SDL. Traces can be obtained as the result of the interpretation of an SDL
specification according to the dynamic semantics of SDL.

NOTE – Message Sequence Charts (MSC) provide an appropriate syntax and semantics for the representation of traces of SDL
specifications. There is a tight relation between the syntax and semantics of MSC and the syntax and semantics of SDL. MSC are
defined and standardised in ITU-T Rec. Z.120.

4.3.2.7 Type (of an <X>)

There is no general explicit predicate in SDL.

4.3.2.8 Class (of <X>)

This concept is not supported in general, only for template types.

4.3.2.9 Subtype/Supertype

This concept is not supported in general.

4.3.2.10 Subclass/Superclass

This concept is not supported in general, only for template types.

4.3.2.11 <X> Template

– Object Template: Object templates are type definitions for the appropriate object kind (system, block,
process, service). For timers, channels and signalroutes, the object templates are the corresponding
declarations.

ISO/IEC 10746-4 : 1998 (E)

ITU-T Rec. X.904 (1997 E) 19

– Interface Template: Depending on the interface kind, an interface template can be given implicitly by a
declaration (channel, signalroutes) or explicitly by a type definition for a process (see 4.3.1.4).

– Action Template: An action template is specified by the definition of a process/ procedure/ service
graph. Atomic action templates are input, output, save, set, reset, create, task, stop, return, nextstate, call,
import, export, view.

Templates may be specified using parameters (formal parameters or formal context parameters). Parameters may have
constraints. Templates may be combined (i.e. a type definition may contain other type definitions).

4.3.2.12 Interface signature

The set of signal types and remote procedure types which are valid for the interface.

4.3.2.13 Instantiation (of an <X> template)

There are two ways in SDL to instantiate templates:

– implicit instantiation (system, block, channels, signalroutes, processes, services) is done by object
declaration;

– explicit instantiation using create (only for processes).

Instantiations are always the result of an action to instantiate a template. Formal context parameters have to be actualized
before the instantiation can be obtained (by a process type specialization or a process declaration).

4.3.2.14 Role

There is no general means to specify roles.

Roles may be described as formal context parameters.

NOTE – Atleast-clauses can be used for a further qualification of a role.

4.3.2.15 Creation (of an <X>)

There are two kinds of creation (see 4.3.2.13):

– implicit instantiation;

– explicit instantiation – interpretation of a create action.

4.3.2.16 Deletion (of an <X>)

Only process objects can be deleted. A process can delete only itself. This is done through the interpretation of the stop
action. If a service interprets a stop action it results in the deletion of this service, the deletion of all other services
belonging to the same process and the deletion of the process.

NOTE –

a) The deletion of one process by another process can be modelled using the output of a special signal which eventually
consumption by the receiver causes the receiver to interpret a stop.

b) The deletion of all processes of a block can be considered as a deletion of that block.

4.3.2.17 Introduction (of an object)

The implicit instantiation (see 4.3.2.13) can be considered as introduction.

4.3.2.18 Instance of a type

An object is an instance of a system type, block type, process type or service type X, if there is an explicit or implicit
instantiation for that X or a substitute of X. A substitute is an instance of a type template which is a type specialization in
SDL.

4.3.2.19 Template type (of an <X>)

The fact that an <X> is an instantiation of an <X> template can be expressed for processes, services, blocks and systems
by the denotation that the object is an SDL instance of the type definition.

4.3.2.20 Template class (of an <X>)

There is no general explicit notation to characterise the template class of an <X>, however the template class is the set of
all processes, blocks, services or systems instances from a process type definition, block type definition, service type
definition or system type definition respectively.

ISO/IEC 10746-4 : 1998 (E)

20 ITU-T Rec. X.904 (1997 E)

4.3.2.21 Derived class/Base class

A type definition may be derived from another type definition by specialisation, which may comprise:

– binding of context parameters and addition of new context parameters;

– inheriting definitions;

– redefinition of virtual components;

– addition of further definitions.

Constraints may be applied using the atleast and finalised constructs.

NOTE – Multiple inheritance is not supported.

4.3.2.22 Invariant

There is no notation for invariants in SDL.

4.3.2.23 Precondition

Enabling conditions, continuous signals and signals can be used to specify the preconditions of a transition.

4.3.2.24 Postcondition

There is no notation for postconditions in SDL.

4.4 Architectural semantics in Z

The Z notation is a specification notation based on strongly typed set theory and first order predicate calculus. Z is not yet
an ISO FSL but a standard is being prepared by ISO SC22 WG19. The latest version of the Standard is contained in the
Z-Base Standard. See clause 2.

A de-facto standard for Z exists (Spivey’s Z Notation). See clause 4. This version of the notation is stable and very close
to the Z-Base Standard, and tool support exists for syntax and static semantics checking. This version of the notation will
be used for the architectural semantics of RM-ODP until an ISO version of the documentation is widely available.

To avoid confusion in ODP and Z terminology, italics are used in the following subclauses to denote Z-specific terms.

4.4.1 Basic modelling concepts

4.4.1.1 Object

An object may be described in Z by a collection of specification fragments. These fragments should contain a collection
of operation schemas (representing the interface to the object) including appropriate state schema(s). These state
schemas may include predicates which are used to represent (fragments of) the invariants of the object. The specification
fragments should also have some means whereby they can be uniquely referenced (representing the identity of the object).
This can be achieved through having an identifier in the state schema(s) of the object that remains constant in all
operations defined for that object. Finally, there must exist a valid initial state for that object. This can be achieved
through an initialisation schema that gives legal bindings to the variables declared in the state schema with a predicate
that ensures the object is unique within the specification.

NOTE – Care has to be taken when specifying objects in Z, since the language does not possess features of encapsulation
(essential for describing objects) as discussed in the Note of 4.4.1.3.

4.4.1.2 Environment (of an object)

The environment of an object in a Z specification is described in terms of its input and output. Input to an object comes
from the environment. Output of an object goes to the environment. The environment of an object can either be specified
directly or left unspecified. If it is unspecified, then the occurrence of operation schemas producing outputs or requiring
inputs may occur with the environment either providing the inputs or receiving the outputs respectively. If the
environment of an object is specified, however, then this implies that for each operation schema associated with the
object, there exists another operation schema (possibly associated with another object) that requires inputs or outputs of
the same type as the object under consideration. These two operation schemas are then conjoined with one another with
the inputs/outputs of the operation under consideration being renamed as the outputs/inputs of the operation representing
the environment respectively.

The environment of an object may also be given by variables referenced by an object that have a global scope, e.g. those
found in axiomatic descriptions.

ISO/IEC 10746-4 : 1998 (E)

ITU-T Rec. X.904 (1997 E) 21

4.4.1.3 Action

An action is modelled in Z by the performance of an operation specified in an operation schema. The effect is the
instantaneous change in state (or the null change) of the objects with which that action is associated. An action may
produce a non-deterministic result.

Since there is no explicit notion of encapsulation in Z, it is not usual to determine whether an action is observable or
internal in Z, hence the distinction between interactions and internal actions is not clearly defined. This Recommendation
| International Standard will use the convention that an operation schema representing an action which has either inputs,
outputs or variables global to the specification interacts with its environment. The environment may or may not be
specified (see 4.4.1.2). Actions requiring inputs from an unspecified environment that produce no outputs may be
regarded as externally invoked non-observable actions. Actions producing outputs going to an unspecified environment
may be regarded as internally invoked (spontaneous) observable actions. Actions that require inputs from an unspecified
environment and produce outputs going to that environment may be regarded as externally invoked observable actions.

If the environment of an object is specified, however, then this implies that for each operation schema requiring inputs or
outputs that is associated with an interface to an object, i.e. an observable action, there exists another operation schema
(possibly associated with another object) that requires inputs or outputs of the same type as the object under
consideration. These two operation schemas are then conjoined with one another with the inputs/outputs of the operation
under consideration being renamed as the outputs/inputs of the operation representing the environment respectively.

Alternatively the occurrence of operations that reference variables that are global throughout the specification can be
regarded as interactions.

All operations in Z are atomic. That is, operation schemas in Z either happen in their entirety or do not happen at all.
Thus, it is not possible in Z to have actions that are not atomic.

An object interacting with itself can be modelled informally by composition of Z operation schemas. For example,
operation OpA with output a!: A can be composed with operation OpB, with input b?: A, and a predicate conjunction
added to state that a! = b?.

The notion of cause and effect relationships are not strictly within the scope of Z. However, if an operation requires an
input to occur, then this might be considered as the environment causing this operation to occur, i.e. the environment acts
as the producer and the operation schema as the consumer. Similarly, if an operation schema produces an output, then
this might be considered as the environment acting as the consumer and the operation as the producer. If a given
operation schema requires both inputs and gives outputs, or has no inputs or outputs, then it is not possible to give a
cause and effect relationship to that particular action.

NOTE – It should be noted that this syntactic convention for distinguishing internal and observable actions is limited since there is
no semantic distinction between operations which are to be interpreted as spontaneous or internal, and those which require
environmental participation; this can only be achieved using the natural language commentary which should accompany all
Z specifications. As a consequence of this, the above definition treats a lossy queue as a subtype of a queue. Clearly though the
intention of the extra lose operation in a lossy queue is that it should occur non-deterministically.

4.4.1.4 Interface

An abstraction of the behaviour of an object obtained by identifying the operations associated with that object that are to
form the substance of the interface. In all remaining operation schemas all inputs and outputs are hidden and the
occurrence of the operations defined in these operation schemas are regarded as internal actions, i.e. they do not require
or involve the participation of the environment of the object. The resulting Z text representing that object is an interface
template. Any instance of the interface template is an interface.

4.4.1.5 Activity

The notion of an activity as a single headed directed acyclic graph of actions does not exist directly in the Z language.
However, the concept of an activity may be modelled to some extent by noting that if action x precedes action y in some
activity, then the postcondition of action x must imply the precondition for action y.

4.4.1.6 Behaviour (of an object)

The behaviour of an object in a given state is the set of all possible activities that may occur from that state. The actual
sequence of actions that may occur may be affected by the environment of the object and the constraints expressed in the
preconditions.

4.4.1.7 State (of an object)

A binding of the state variables declared in the state schema(s) associated with the object template used for calculating
preconditions.

ISO/IEC 10746-4 : 1998 (E)

22 ITU-T Rec. X.904 (1997 E)

4.4.1.8 Communication

Communication may be modelled in Z through inputs and outputs to operations. Inputs to and outputs from operation
schemas are normally considered as communications with the environment of an object. Since communication occurs
between objects, the environment of an object (see 4.4.1.2) must be specified to model communication. Communication
is then achieved by firstly normalising the operation schemas associated with the interacting objects and then conjoining
them, with the outputs of one operation being renamed as the inputs to the other operation schema. This modelling of
communication requires that the inputs and outputs of the associated operation schemas are of the same type.

Alternatively, the occurrence of operation schemas that reference variables global to the specification represent
communications, with the value of the global variable following the operation occurrence being communicated with all
other operation schemas referencing that variable.

4.4.1.9 Location in space

The concept of space is not considered primitive in Z. The location in space at which an action occurs can only be given
in Z in terms of the specification model rather than the real world system being modelled. Thus a location in space might
be introduced as a Z type. Through this, relations can be specified associating operation schemas with given locations in
space. This then makes it possible to reason about locations in space at which actions can occur.

4.4.1.10 Location in time

The concept of time is not considered primitive in Z. The location in time at which an action occurs can only be given in
Z in terms of the specification model rather than the real world system being modelled. Thus a location in time might be
introduced as a Z type that can be associated with given actions, e.g. through some relation. Through this, quantification
over the time at which actions can occur, can be achieved.

4.4.1.11 Interaction point

The concept of interaction point depends upon the definitions of interaction and locations in space and time. See 4.4.1.3,
4.4.1.9 and 4.4.1.10.

4.4.2 Specification concepts

4.4.2.1 Composition

– of Objects: Composition of objects is not a feature explicitly offered by the Z language, due amongst
other things to the lack of encapsulation. However, it is possible to model some characteristics of
composition through schema inclusion and redefinition of operations through promotion.

– of Behaviours: As a behaviour in its most degenerate case may be considered an action, and an action in
Z is the performance of an operation defined by an operation schema, composition of actions equates to
the combination of operation schemas in Z. Operation schemes may be combined in several ways in Z.
such as:

• schema calculus;

• schema composition (;);

• overriding (⊕).

Generally, characteristics of the resulting behaviour may be derived from the composition which may not be derived from
the individual behaviours being combined. In addition, irrelevant details of the behaviours being combined may be
suppressed.

4.4.2.2 Composite object

See interpretation of composition above.

4.4.2.3 Decomposition

– of objects: See interpretation of composition of objects above.

– of behaviours: See interpretation of composition of behaviours above.

ISO/IEC 10746-4 : 1998 (E)

ITU-T Rec. X.904 (1997 E) 23

4.4.2.4 Behavioural compatibility

Behaviour compatibility is based upon the notion of substitutability in a given environment. Extension is one possible
way of achieving this. An extension of a base template may have extra components in the associated state schema, a
stronger state invariant, stronger initial conditions and more operation schemas. The operation schemas associated with
the extension of the template type may have weaker preconditions and stronger postconditions than the corresponding
operation schemas in the base template type.

4.4.2.5 Refinement

Refinement is the process of transforming one specification into a more detailed specification. Since Z deals with
abstractions of systems where data and operations on that data are used to represent the given system under consideration,
two main forms of refinement have been identified:

– operation refinement; and

– data refinement.

In order to refine a specification, the refinement must ensure behaviour compatibility between the specification and the
refinement. To account for this, certain conditions exist to ensure that a Z specification refinement produces a valid more
detailed specification. These are the safety and liveness conditions. The safety condition on the refinement of a
specification is that any circumstance acceptable to the specification must be acceptable to the refinement. The liveness
condition on the refinement of a specification is that for any circumstance acceptable to the specification, the behaviour
of the refinement must be allowed by the specification.

The safety and liveness conditions need to apply to both the operation and data refinements.

4.4.2.6 Trace

The modelling of a trace in Z is limited for two reasons. Firstly, there is no direct way to record an objects actions, and
secondly, there is no semantic distinction between internal and observable actions as discussed in the Note in 4.4.1.3.

4.4.2.7 Type (of an < X >)

An object, interface or action can have many different ODP types. ODP types correspond to sets in Z, where the
characterising predicate is given by set membership.

4.4.2.8 Class (of < X >’s)

The set of all < X >’s such that the set membership predicate, i.e. the ODP type, is true.

4.4.2.9 Subtype/Supertype

Subtypes and supertypes in ODP correspond to subsets and supersets respectively in Z.

4.4.2.10 Subclass/Superclass

Subclasses and superclasses in ODP correspond to the subset and superset relationships respectively in Z.

4.4.2.11 < X > Template

– Object Template: Fragments of a specification that represent the common features of the objects possible
states, have a unique (immutable) identity that can be referenced, and associated set of operation schemas
that act on that state. If the object template is a generic one, the precise form of template will only be given
when the type of the parameterising parameters is given.

– Interface Template: A set of operation schemas derived from the Z text representing an object template
in the way described under the interpretation of interface (see 4.4.1.4). If the object template is a generic
one, the precise form of interface template will only be given when the type of the parameterising
parameters are given. Interface templates may be combined using the Z operations for schema
combination.

– Action Template: An operation schema. Action templates may be combined using the Z operations for
schema combination. If the action template is a generic one, the precise form of action template will only
be given when the type of the parameterising parameters are given.

ISO/IEC 10746-4 : 1998 (E)

24 ITU-T Rec. X.904 (1997 E)

4.4.2.12 Interface signature

The set of action templates associated with the interactions of an interface.
NOTE – It should be noted that the text in ITU-T Rec. X.902 | ISO/IEC 10746-2 treats an interface signature as a set of action
templates associated with the interactions of an interface. Given that an action template is the common features of a collection of
actions, it is likely that this definition is incorrect. That is, an action template is likely to include semantic information as well as
syntactic. Common interpretations of interface signature deal primarily at the syntactic level, however. If a syntactic notion of
interface signature is considered, then this corresponds to the set of normalised action templates associated with the interactions of
an interface with all non-input/output variables declared in the operation schema signature being existentially quantified in the
predicate part of the operation schema.

4.4.2.13 Instantiation (of an < X > Template)

– of an Object Template: Specification of the initial values of the variables referred to in the object
template. This is often provided for explicitly in Z by an initialisation schema or set of schemas. The
values of these variables after the initialisation must correspond to a valid state, i.e. a state which satisfies
any invariants that may be present.

NOTE – These invariants may refer to other objects.

– of an Interface Template: Constraining the interface template fragments of the Z specification by
specifying values of the generic parameters and providing appropriate predicates on variables referred to
in the interface template.

– of an Action Template: The performance of an operation specified in an operation schema.

4.4.2.14 Role

A role may be represented by a name which identifies an individual object, e.g. through an identifier found in the state
schema associated with the object. This name may then be used with a framing schema to promote the operations of the
individual object to effect the system (specification) as a whole.

NOTE – This description may not adequately capture the intention of the associated text in ITU-T Rec. X.902 | ISO/IEC 10746-2.

4.4.2.15 Creation (of an < X >)

– of an Object: The creation of an object in Z is given by providing a valid initial state for the Z text
associated with the object template. That is, by providing a binding of the variables given in the state
schema of the object to the initial values that they hold. Often this is provided for explicitly in Z through
an initialisation schema. In this case, the action of creation is represented by the performance of the
operation given in the initialisation schema.

– of an Interface: The creation of an interface in Z is inherently linked with the creation of objects. That is,
when the text associated with an object template is initialised, any interface templates that might be
present, are initialised also.

In creation, it is necessary to ensure that the identity of the object being created is unique within the specification. This
can be achieved through a framing schema with an appropriate predicate ensuring the identities of all of created objects
are unique. This framing schema can then be used to promote the initialisation of an object to effect the specification as a
whole.

NOTE –

a) The text given here implies that because an initialisation schema is given as part of a specification, an object is created.
However, in Z there is no notion of the specification actually applying this initialisation schema since Z itself is not
executable. Thus is this in fact the introduction of an object, i.e. an object is instantiated by a mechanism not covered by the
model? It would appear that the notion of initialisation of a Z specification is partly creation (in that an initialisation schema
is given) and partly introduction (in that the application of the initialisation schema is not covered by the model).

b) It is normally the case that a proof obligation follows the application of an initialisation schema to ensure that the object is
in a valid initial state.

4.4.2.16 Introduction (of an object)

See Creation (of an object) (see 4.4.2.15).

4.4.2.17 Deletion (of an < X >)

It may be possible to have an abstract representation of deletion where a framing schema is used. Deletion can then be
modelled as the promotion of an operation to remove an object state and identity from the system as a whole.

It might also be the case that a form of deletion based upon inactivity may be modelled. For example, an object whose
associated future behaviours may no longer occur due to invariants being violated may in some sense be considered as
deleted. This form of deletion may not accurately capture the definition as given in ITU-T Rec. X.902 | ISO/IEC 10746-2
though, i.e. there is no destruction as such.

ISO/IEC 10746-4 : 1998 (E)

ITU-T Rec. X.904 (1997 E) 25

4.4.2.18 Instance of a type

An instance of an ODP type in Z is represented by an element of the set whose members satisfy the predicate, i.e. the
ODP type. Given a more specific notion of type, such as template type, an instance of an object or interface type
corresponds to the initialisation of the Z text (or an extension of it) representing the object/interface under consideration,
such that there exists a valid initial state for that object or interface. Here the characterising predicate is given by the
specification text and associated predicates on possible legal bindings (invariants), which must be satisfied by the
initialisation schema in order to be classified as an instance of the object or interface type.

As an operation schema gives the characteristics of an action type, an instance of an action type is given by the
occurrence of this operation schema or by the occurrence of another operation schema which is an extension of this
operation schema, i.e. the extension includes the characterising features of the action type.

4.4.2.19 Template type (of an < X >)

In Z, an object/interface template type is a predicate that an initialisation schema leaves the object and associated
interfaces in a valid initial state. Thus all state variables should be bound and all necessary predicates (invariants)
satisfied. Often checking an object or interface’s template type requires a proof to be made.

An action template type corresponds to a predicate that an action template, as given by an operation schema, can occur,
i.e. is an instantiation of a given operation schema. Thus all instantiations are expected to satisfy the predicates on legal
bindings of variables, as given in the operation schema’s predicates.

4.4.2.20 Template class (of an < X >)

A template class of an < X > is the set of all < X >’s that are instances of that < X > template, where an < X > may be an
object, interface or action.

4.4.2.21 Derived class/Base class

Given two templates A and B in Z where A is an incremental modification of B and the instances of A and B are in a
derived class/base class relationship respectively, the incremental modifications to B to produce A may include:

– adding or deleting state parameters;

– adding, deleting or modifying operations; or

– strengthening or weakening invariants.

4.4.2.22 Invariant

A predicate that a specification always requires to be true. Z allows invariants to be written down directly in schemas and
axiomatic descriptions. Often invariants impose restrictions on the possible bindings that the variables in schemas or
axiomatic descriptions can take. As such, an invariant is often used to restrict the possible behaviours given in a
specification.

4.4.2.23 Precondition

The condition on the state of the system before the occurrence of an operation defined by an operation schema and on its
inputs such that there exists a possible state after the performance of the operation and outputs which satisfy the
postconditions. Z allows preconditions to be written down directly.

4.4.2.24 Postcondition

A predicate which describes the set of states that a given system can be in after the performance of an operation defined
by an operation schema. Z allows postconditions to be written down directly.

4.5 Architectural semantics in ESTELLE

ESTELLE is a standardised FSL (see ISO/IEC 9074). A tutorial is included in that ISO Standard. Various tools
supporting simulation as well as distributed implementation of ESTELLE specifications exist.

ESTELLE is based on extended finite state automata. A system is modelled through a hierarchically structured set of
module instances, communicating in an asynchronous fashion via the exchange of messages on channels. The syntax of
the language and the definition of data types and variables are based on ISO Pascal.

ISO/IEC 10746-4 : 1998 (E)

26 ITU-T Rec. X.904 (1997 E)

In an ESTELLE specification, the externally visible interface of a module is defined in the module header, whilst the
module body describes the internal structure and behaviour of the module. Module instances define interaction points
through which they can send and receive messages. Two interaction points can be connected if they have been defined for
the opposing roles of the same channel definition. A channel definition contains two roles for the respective ends of the
channel. For each role it defines the messages (in ESTELLE called interactions) that can be sent. Such an interaction
definition consists of a name together with a set of parameters. To each interaction point, a queue is assigned in which
incoming messages are stored. A module instance can also have a common queue that is shared by several or all
interaction points.

The structure of an ESTELLE specification is dynamic, i.e. module instances can be instantiated and released and
interaction points can be connected and disconnected dynamically. The module instances of an ESTELLE specification
underlie a strong hierarchical order. Each module instance can instantiate or release child module instances, or connect or
disconnect their interaction points. The only way for a module instance to access sibling instances (or other module
instances which are not its own children) is via exchange of interactions on channels.

ESTELLE was developed initially for the purpose of specifying communication services and protocols. ESTELLE does
support encapsulation, but it does not contain the object-oriented features of inheritance or subtyping. Despite this,
ESTELLE permits the expression of most of the ODP concepts. ESTELLE specifications are easy to read and since
ESTELLE is a constructive technique, it is well suited for simulation and implementation.

The following subclause shows how the basic ODP concepts can be expressed using ESTELLE.

In this text, italics are used to denote ESTELLE concepts as defined in that ISO Standard. It should be noted that
ESTELLE uses the notion of interaction to denote the messages exchanged between communicating module instances.

4.5.1 Basic modelling concepts

4.5.1.1 Object

An object is modelled in ESTELLE by a module instance.

4.5.1.2 Environment (of an object)

The part of the specification that is not part of the module instance; particularly the parent instance and the other
instances that are connected to the module instances interaction points via channels.

4.5.1.3 Action

An action is represented in ESTELLE by the execution of a WHEN-clause, the execution of an action statement, a whole
transition, or the execution of a procedure. Possible action statements are:

– output;

– init;

– connect;

– attach;

– release;

– disconnect;

– detach;

– assignment statement.

There are several types of interactions. The execution of an output-statement is an interaction as well as the execution of
a WHEN-clause. Also, the action sequence consisting of the output of an interaction through an interaction point and its
subsequent consumption through the execution of a WHEN-clause can be considered as one interaction. Another type of
interaction is the update of an exported variable. All other actions are internal.

NOTE – Since ESTELLE channels possess infinite queues, the environment is always ready to participate in interactions.

4.5.1.4 Interface

There are two kinds of interfaces in ESTELLE:

– the first kind of interface is formed by the set of all interactions defined for the assigned role (in the
corresponding channel definition) at an external interaction point of an object;

– the second kind is formed by the set of all exported variables of an object.

ISO/IEC 10746-4 : 1998 (E)

ITU-T Rec. X.904 (1997 E) 27

In the first case, the set of interactions (constituting the interface) contains the set of output statements and/or WHEN-
clauses that the object executes at the interaction point. In the second case, the set of interactions consists of all
statements that read or write the exported variables. At this kind of interface, interactions are only possible between a
module instance and its parent instance.

4.5.1.5 Activity

In general, an activity cannot be denoted explicitly, since it may span several objects. An activity is some related
sequence of actions, e.g. a transition, or a procedure or function, if single statements are considered as actions.

4.5.1.6 Behaviour (of an object)

The behaviour of an object is determined by the set of all transitions of that object. Constraints on the circumstances in
which the specified actions may occur are defined in the transition clauses (e.g. FROM-Clause, PROVIDED-Clause). An
object may exhibit non-deterministic behaviour.

4.5.1.7 State (of an object)

The state of an object is composed of the following aspects:

– the module instances control state;

– the contents of interaction point queues;

– the values of internal and exported variables, and formal parameters of the module instance;

– the state of existing children instances, their connection structure and exported variables.

These aspects together determine the set of all sequences of actions (transitions) in which the module instance can take
part.

4.5.1.8 Communication

Information is conveyed between objects in two different ways:

– through the output and subsequent reception of an interaction (an action sequence forming an interaction);

– through the reading and updating of an exported variable.

4.5.1.9 Location in space

Actions occur within module instances, or at the interaction points of module instances. Thus, the location in space of an
action corresponds to the location in space of the associated module instance.

4.5.1.10 Location in time

In ESTELLE, time is only represented in the DELAY-clauses possibly associated with transitions. The only assumption
made about the character of time is that it is increasing uniformly as the execution proceeds.

4.5.1.11 Interaction point

An interaction point is represented either by an interaction point or by the set of all exported variables of an object.

4.5.2 Specification concepts

The expression of the given specification concepts in ESTELLE is subject to difficulties, since it’s support for object
oriented concepts is limited.

4.5.2.1 Composition

– of objects: A module instance may be composed of a set of children module instances. On the top level, a
specification may be composed of a set of system instances.

– of behaviours: When a module instance is a composition of children instances, their behaviour is either:

• composed in parallel, interleaved, if the parent module is attributed activity or systemactivity; or

• composed in parallel, synchronous, if the parent module is attributed process or systemprocess.

On the top level, the behaviour of the children instances is composed in parallel, if the specification is composed of a set
of system instances.

4.5.2.2 Composite object

A module instance which is described through a set of children module instances.

ISO/IEC 10746-4 : 1998 (E)

28 ITU-T Rec. X.904 (1997 E)

4.5.2.3 Decomposition

– of objects: The specification of a given object as a composition.

– of behaviours: The specification of a given behaviour as a composition.

4.5.2.4 Behavioural compatibility

There is no direct means to express behavioural compatibility in ESTELLE. However, the semantical basis of the
language in terms of transition systems allows for the definition of behavioural compatibility and its verification.

4.5.2.5 Refinement

An object can be refined by substructuring it into cooperating children instances.

4.5.2.6 Trace

Traces can by obtained from the dynamic interpretation (execution/simulation) of an ESTELLE specification.

4.5.2.7 Type (of an < X >)

There is no way to explicitly formulate predicates in ESTELLE.

4.5.2.8 Class (of < X >)

Not supported.

4.5.2.9 Subtype/Supertype

Not supported.

4.5.2.10 Subclass/Superclass

Not supported.

4.5.2.11 < X > Template

An object template is represented by a module body definition together with the corresponding module header definition.
Action templates are:

– output;

– init;

– release;

– connect;

– disconnect;

– attach;

– detach;

– assignment statement; and

– WHEN-clause.

Since there are two kinds of interfaces, an interface template is given:

– Through the corresponding channel definition (for sets of interactions at an interaction point). In this case,
the associated interface behaviour can be specified through a child module instance that is instantiated and
attached to the interaction point when the interface is created. If this is the case, the interface template
contains the module header and body definition of this module.

– In the module header definition of the object (for exported variables).

4.5.2.12 Interface signature

An interface signature is represented in two ways as follows:

– the definitions of interactions that are contained in the interface (for a set of interactions at an interaction
point);

– the assignment actions for the exported variables.

ISO/IEC 10746-4 : 1998 (E)

ITU-T Rec. X.904 (1997 E) 29

4.5.2.13 Instantiation (of an < X > template)

An instantiation of an object is a module instance of the corresponding module definition. An instantiation of an interface
is a particular interaction point (possibly with a specific child module instance attached to it, representing the interface
behaviour) or the set of exported variables of a particular module instance.

4.5.2.14 Role

A role is associated with each interaction point declaration. Interaction points to be connected must possess opposite
roles on the same channel definition. ESTELLE also supports the specification of different module bodies for the same
module header. This allows for the possible choice among different behaviours when an object is instantiated. The
interfaces of the object are the same regardless of the selected module body.

4.5.2.15 Creation (of an < X >)

Objects are created through the init action. Interfaces are created implicitly, when the object is created. There is no
dynamic creation of interfaces. However, the creation of an interface as an interaction point may be modelled by the
selection of an interaction point (out of an array of interaction points) with an appropriate channel and role associated. If
a child module is specified to represent the interface behaviour, an instance of the module is instantiated and attached to
the interaction point provided.

4.5.2.16 Deletion (of an < X >)

An object is deleted explicitly through the release action. Interfaces are deleted implicitly together with the object. If
dynamic creation of interfaces is modelled as mentioned above (see 4.5.2.15), the deletion of an interface corresponds to
releasing the attached child module instance (if any) and marking the interaction point as not representing an interface.

4.5.2.17 Introduction (of an object)

There is no way to introduce objects. In general, mechanisms not covered by the model may be captured using primitive,
external procedures or functions.

4.5.2.18 Instance of a type

Since there is no subtyping/subclassing in ESTELLE, instances of a template are given by the instantiations of that
template.

4.5.2.19 Template type (of a < X >)

For an object, the predicate which can be stated is that an object is an instance of the corresponding module definition.
An interface (a set of interactions at an interaction point) is an instance of the corresponding channel definition. An
interface represented by the set of all exported variables is an instance of the corresponding module header definition. An
action is an instance of the corresponding action template.

NOTE – What can be stated in ESTELLE is the fact that an object, interface or action is an instantiation of a given template. Since
the concept of subclass is not truly supported, only instantiations of a template can be identified as such, but not instances.

4.5.2.20 Template class (of a < X >)

The template class of an object is the set of all instances of the same module. The template class of an interface is the set
of all interaction points defined using the same channel definition and role.

4.5.2.21 Derived class/Base class

Not supported.

4.5.2.22 Invariant

There is no way to explicitly formulate invariants in ESTELLE.

4.5.2.23 Precondition

The preconditions of a transition execution are stated in the transition clauses of the transition. The preconditions of an
action inside a transition block are given by the preconditions of the transition together with the actions contained in the
transition block that precede the action of concern.

4.5.2.24 Postcondition

The postcondition of a transition is defined through the TO-clause of the transition together with the actions in the
transition block.

ITU-T RECOMMENDATIONS SERIES

Series A Organization of the work of the ITU-T

Series B Means of expression: definitions, symbols, classification

Series C General telecommunication statistics

Series D General tariff principles

Series E Overall network operation, telephone service, service operation and human factors

Series F Non-telephone telecommunication services

Series G Transmission systems and media, digital systems and networks

Series H Audiovisual and multimedia systems

Series I Integrated services digital network

Series J Transmission of television, sound programme and other multimedia signals

Series K Protection against interference

Series L Construction, installation and protection of cables and other elements of outside plant

Series M TMN and network maintenance: international transmission systems, telephone circuits,
telegraphy, facsimile and leased circuits

Series N Maintenance: international sound programme and television transmission circuits

Series O Specifications of measuring equipment

Series P Telephone transmission quality, telephone installations, local line networks

Series Q Switching and signalling

Series R Telegraph transmission

Series S Telegraph services terminal equipment

Series T Terminals for telematic services

Series U Telegraph switching

Series V Data communication over the telephone network

Series X Data networks and open system communication

Series Y Global information infrastructure

Series Z Programming languages

	Return to Menu
	Return to Series X Menu
	====================
	ITU-T Rec. X.904 (12/97) INFORMATION TECHNOLOGY - OPEN DISTRIBUTED PROCESSING - REFERENCE MODEL: ARCHITECTURAL SEMANTICS
	Summary
	Source
	FOREWORD
	CONTENTS
	Foreword
	INFORMATION TECHNOLOGY - OPEN DISTRIBUTED PROCESSING - REFERENCE MODEL: ARCHITECTURAL SEMANTICS
	0 Introduction
	1 Scope
	2 Normative references
	3 Definitions
	3.1 Definitions from ISO/IEC 8807
	3.2 Definitions from ITU-T Recommendation Z.100
	3.3 Definitions from the Z-Base Standard
	3.4 Definitions from ISO/IEC 9074

	4 Interpretation of modelling concepts
	4.1 Architectural semantics in LOTOS
	4.2 Architectural semantics in ACT ONE
	4.3 Architectural semantics in SDL-92
	4.4 Architectural semantics in Z
	4.5 Architectural semantics in ESTELLE

