
INTERNATIONAL  TELECOMMUNICATION  UNION

ITU-T X.901
TELECOMMUNICATION
STANDARDIZATION  SECTOR
OF  ITU

(08/97)

SERIES X: DATA NETWORKS AND OPEN SYSTEM
COMMUNICATION

Open distributed processing

Information technology – Open distributed
processing – Reference Model: Overview

ITU-T  Recommendation  X.901
(Previously  CCITT  Recommendation)



ITU-T  X-SERIES  RECOMMENDATIONS

DATA NETWORKS AND OPEN SYSTEM COMMUNICATION

For further details, please refer to ITU-T List of Recommendations.

PUBLIC DATA NETWORKS X.1–X.199

Services and facilities X.1–X.19

Interfaces X.20–X.49

Transmission, signalling and switching X.50–X.89

Network aspects X.90–X.149

Maintenance X.150–X.179

Administrative arrangements X.180–X.199

OPEN SYSTEM INTERCONNECTION X.200–X.299

Model and notation X.200–X.209

Service definitions X.210–X.219

Connection-mode protocol specifications X.220–X.229

Connectionless-mode protocol specifications X.230–X.239

PICS proformas X.240–X.259

Protocol Identification X.260–X.269

Security Protocols X.270–X.279

Layer Managed Objects X.280–X.289

Conformance testing X.290–X.299

INTERWORKING BETWEEN NETWORKS X.300–X.399

General X.300–X.349

Satellite data transmission systems X.350–X.399

MESSAGE HANDLING SYSTEMS X.400–X.499

DIRECTORY X.500–X.599

OSI NETWORKING AND SYSTEM ASPECTS X.600–X.699

Networking X.600–X.629

Efficiency X.630–X.649

Naming, Addressing and Registration X.650–X.679

Abstract Syntax Notation One (ASN.1) X.680–X.699

OSI MANAGEMENT X.700–X.799

Systems Management framework and architecture X.700–X.709

Management Communication Service and Protocol X.710–X.719

Structure of Management Information X.720–X.729

Management functions X.730–X.799

SECURITY X.800–X.849

OSI APPLICATIONS X.850–X.899

Commitment, Concurrency and Recovery X.850–X.859

Transaction processing X.860–X.879

Remote operations X.880–X.899

OPEN DISTRIBUTED PROCESSING X.900–X.999



ITU-T Rec. X.901 (1997 E) i

INTERNATIONAL  STANDARD  10746-1

ITU-T  RECOMMENDATION  X.901

INFORMATION  TECHNOLOGY  –  OPEN  DISTRIBUTED  PROCESSING  –
REFERENCE  MODEL:  OVERVIEW

Summary

This Recommendation | International Standard is an integral part of the ODP Reference Model. It contains a motivational
overview of Open Distributed Processing (ODP), giving scoping, justification and explanation of key concepts, and an
outline of the ODP architecture. It contains explanatory material on how this Reference Model is to be interpreted and
applied by its users, who may include standards writers and architects of ODP systems. It also contains a categorization of
required areas of standardization expressed in terms of the reference points for conformance identified in ITU-T Rec.
X.903 | ISO/IEC10746-3.

Source

The ITU-T Recommendation X.901 was approved on the 9th of August 1997. The identical text is also published as
ISO/IEC International Standard 10746-1.



ii ITU-T Rec. X.901 (1997 E)

FOREWORD

ITU (International Telecommunication Union) is the United Nations Specialized Agency in the field of telecommuni-
cations. The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of the ITU. The ITU-T is
responsible for studying technical, operating and tariff questions and issuing Recommendations on them with a view to
standardizing telecommunications on a worldwide basis.

The World Telecommunication Standardization Conference (WTSC), which meets every four years, establishes the
topics for study by the ITU-T Study Groups which, in their turn, produce Recommendations on these topics.

The approval of Recommendations by the Members of the ITU-T is covered by the procedure laid down in WTSC
Resolution No. 1.

In some areas of information technology which fall within ITU-T’s purview, the necessary standards are prepared on a
collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression “Administration” is used for conciseness to indicate both a telecommunication
administration and a recognized operating agency.

INTELLECTUAL  PROPERTY  RIGHTS

The ITU draws attention to the possibility that the practice or implementation of this Recommendation may involve the
use of a claimed Intellectual Property Right. The ITU takes no position concerning the evidence, validity or applicability
of claimed Intellectual Property Rights, whether asserted by ITU members or others outside of the Recommendation
development process.

As of the date of approval of this Recommendation, the ITU had not received notice of intellectual property, protected by
patents, which may be required to implement this Recommendation. However, implementors are cautioned that this may
not represent the latest information and are therefore strongly urged to consult the TSB patent database.

  ITU  1998

All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means, electronic or
mechanical, including photocopying and microfilm, without permission in writing from the ITU.



ITU-T Rec. X.901 (1997 E) iii

CONTENTS

Page

1 Scope and field of application ......................................................................................................................... 1

2 Normative references .......................................................................................................... ............................ 1

2.1 Identical Recommendations | International Standards ......................................................................... 1

2.2 Paired Recommendations | International Standards equivalent in technical content............................ 2

2.3 International Standards ........................................................................................................................ 2

3 Definitions................................................................................................................... .................................... 2

3.1 Definitions in this Recommendation | International Standard.............................................................. 2

3.2 Definitions from other Recommendations | International Standards.................................................... 2

4 Abbreviations .................................................................................................................................................. 6

5 Conventions .................................................................................................................................................... 7

6 ODP standardization ....................................................................................................................................... 7

6.1 Objectives and motivation ................................................................................................................... 7

6.2 Realization ........................................................................................................................................... 8
6.2.1 Object modelling................................................................................................................ 8
6.2.2 Viewpoint specifications.................................................................................................... 9
6.2.3 Distribution transparency................................................................................................... 9
6.2.4 Conformance...................................................................................................................... 9

6.3 Standards ............................................................................................................................................. 10
6.3.1 The Reference Model......................................................................................................... 10
6.3.2 Specific standards .............................................................................................................. 10

7 Foundations..................................................................................................................................................... 10

7.1 Basic modelling concepts .................................................................................................................... 11
7.1.1 Objects ............................................................................................................................... 11
7.1.2 Interfaces and interaction points ........................................................................................ 11
7.1.3 Behaviour and state............................................................................................................ 12

7.2 Specification concepts ......................................................................................................................... 12
7.2.1 Composition/Decomposition.............................................................................................. 12
7.2.2 Behavioural compatibility.................................................................................................. 13
7.2.3 Type and class.................................................................................................................... 13
7.2.4 Templates........................................................................................................................... 13
7.2.5 Roles .................................................................................................................................. 13
7.2.6 Base classes and derived classes ........................................................................................ 14

7.3 Structuring concepts............................................................................................................................. 14
7.3.1 Groups and domains .......................................................................................................... 14
7.3.2 Naming............................................................................................................................... 14
7.3.3 Contract.............................................................................................................................. 14
7.3.4 Liaison and binding............................................................................................................ 15

8 Architecture..................................................................................................................................................... 15

8.1 Architectural framework...................................................................................................................... 15
8.1.1 Viewpoints ......................................................................................................................... 15
8.1.2 Distribution transparencies ................................................................................................ 16

8.2 Enterprise language.............................................................................................................................. 17

8.3 Information language ........................................................................................................................... 19

8.4 Computational language ...................................................................................................................... 20
8.4.1 Computational interfaces ................................................................................................... 21
8.4.2 Binding model.................................................................................................................... 21
8.4.3 Typing and subtyping for computational interfaces........................................................... 23
8.4.4 Portability .......................................................................................................................... 24



iv ITU-T Rec. X.901 (1997 E)

Page

8.5 Engineering language........................................................................................................................... 24
8.5.1 Clusters, capsules and nodes.............................................................................................. 25
8.5.2 Channels............................................................................................................................. 25
8.5.3 Interface references............................................................................................................ 28
8.5.4 Binding .............................................................................................................................. 29
8.5.5 Channel establishment ....................................................................................................... 29
8.5.6 Management interfaces ...................................................................................................... 30
8.5.7 Interceptors ........................................................................................................................ 30
8.5.8 Conformance points ........................................................................................................... 32

8.6 Technology language ........................................................................................................................... 32
8.7 Consistency between viewpoints.......................................................................................................... 32

8.7.1 Enterprise viewpoint consistency with other viewpoints.................................................... 34
8.7.2 Correspondences between computational and engineering specifications ......................... 35

8.8 ODP functions...................................................................................................................................... 37
8.8.1 Management functions....................................................................................................... 38
8.8.2 Coordination functions....................................................................................................... 38
8.8.3 Repository functions .......................................................................................................... 39
8.8.4 Security functions .............................................................................................................. 39

8.9 ODP distribution transparencies .......................................................................................................... 40
8.9.1 Access transparency........................................................................................................... 40
8.9.2 Failure transparency........................................................................................................... 40
8.9.3 Location transparency........................................................................................................ 40
8.9.4 Migration transparency ...................................................................................................... 40
8.9.5 Persistence transparency .................................................................................................... 41
8.9.6 Relocation transparency..................................................................................................... 41
8.9.7 Replication transparency.................................................................................................... 41
8.9.8 Transaction transparency ................................................................................................... 41

9 Conformance assessment................................................................................................................................. 41
9.1 Conformance assessment and the development process ...................................................................... 41
9.2 Conformance assessment: Relevant relationships................................................................................ 42
9.3 Conformance points and related concepts............................................................................................ 42
9.4 ODP conformance specifications......................................................................................................... 43

9.4.1 Level of abstraction............................................................................................................ 43
9.4.2 Use of multiple reference points ........................................................................................ 43

9.5 Conformance implications of viewpoint languages ............................................................................. 44
9.6 Conformance assessment activities...................................................................................................... 44

10 Management of ODP systems ......................................................................................................................... 44
10.1 Management domains .......................................................................................................................... 45
10.2 Management policy.......................................................................................................... .................... 45
10.3 Modelling management structures ....................................................................................................... 45

11 The use of standards in ODP systems ............................................................................................................. 46
11.1 Enterprise viewpoint ............................................................................................................................ 46

11.1.1 Enterprise specification...................................................................................................... 46
11.1.2 The application of standards .............................................................................................. 47

11.2 Information viewpoint.......................................................................................................................... 47
11.2.1 Information specification ................................................................................................... 47
11.2.2 The application of standards .............................................................................................. 48

11.3 Computational viewpoint..................................................................................................................... 48
11.3.1 Computational specification............................................................................................... 48
11.3.2 The application of standards .............................................................................................. 49

11.4 Engineering viewpoint ......................................................................................................................... 49
11.4.1 Engineering specification................................................................................................... 49
11.4.2 The application of standards .............................................................................................. 51

11.5 Technology viewpoint.......................................................................................................................... 51
11.5.1 Technology specification ................................................................................................... 51
11.5.2 The application of standards .............................................................................................. 52



ITU-T Rec. X.901 (1997 E) v

Page

12 Examples of ODP specifications..................................................................................................................... 52

12.1 Multimedia Conferencing System........................................................................................................ 53
12.1.1 Introduction............................................................................................................. ........... 53
12.1.2 Enterprise specification...................................................................................................... 54
12.1.3 Information specification ................................................................................................... 55
12.1.4 Computational specification............................................................................................... 55
12.1.5 Engineering specification................................................................................................... 58
12.1.6 Technology specification ................................................................................................... 60

12.2 Multiparty audio/video stream binding ................................................................................................ 60
12.2.1 General description ............................................................................................................ 60
12.2.2 Enterprise specification...................................................................................................... 61
12.2.3 Information specification ................................................................................................... 62
12.2.4 Computational specification............................................................................................... 64
12.2.5 Engineering specification................................................................................................... 67
12.2.6 Technology specification ................................................................................................... 68

12.3 A management example – Metric Object............................................................................................. 68
12.3.1 Enterprise specification...................................................................................................... 69
12.3.2 Information specification ................................................................................................... 70
12.3.3 Computational specification............................................................................................... 71

12.4 Database example ................................................................................................................................ 72
12.4.1 Enterprise specification...................................................................................................... 72
12.4.2 Information specification ................................................................................................... 72
12.4.3 Computational specification............................................................................................... 72

Annex  A  –  Bibliography.......................................................................................................................................... 76



vi ITU-T Rec. X.901 (1997 E)

Introduction

The rapid growth of distributed processing has led to a need for a coordinating framework for the standardization of Open
Distributed Processing (ODP). This Reference Model provides such a framework. It creates an architecture within which
support of distribution, interworking and portability can be integrated.

The Reference Model of Open Distributed Processing, ITU-T Rec. X.901 | ISO/IEC 10746-1 to ITU-T Rec. X.904 |
ISO/IEC 10746-4, is based on precise concepts derived from current distributed processing developments and, as far as
possible, on the use of formal description techniques for specification of the architecture.

The RM-ODP (ISO/IEC 10746) consists of:

– ITU-T Rec. X.901 | ISO/IEC 10746-1: Overview: contains a motivational overview of ODP giving
scoping, justification and explanation of key concepts, and an outline of the ODP architecture. It contains
explanatory material on how this Reference Model is to be interpreted and applied by its users, who may
include standards writers and architects of ODP systems. It also contains a categorization of required areas
of standardization expressed in terms of the reference points for conformance identified in ITU-T Rec.
X.903 | ISO/IEC 10746-3. These common texts are not normative.

– ITU-T Rec. X.902 | ISO/IEC 10746-2: Foundations: contains the definition of the concepts and analytical
framework for normalized description of (arbitrary) distributed processing systems. This is only to a level
of detail sufficient to support ITU-T Rec. X.903 | ISO/IEC 10746-3 and to establish requirements for new
specification techniques. These common texts are normative.

– ITU-T Rec. X.903 | ISO/IEC 10746-3: Architecture: contains the specification of the required
characteristics that qualify distributed processing as open. These are the constraints to which ODP
standards must conform. It uses the descriptive techniques from ITU-T Rec. X.902 | ISO/IEC 10746-2.
These common texts are normative.

– ITU-T Rec. X.904 | ISO/IEC 10746-4: Architectural semantics: contains a normalization of the ODP
modelling concepts defined in ITU-T Rec. X.902 | ISO/IEC 10746-2, clauses 8 and 9. The normalization
is achieved by interpreting each concept in terms of the constructs of the different standardized formal
description techniques. These common texts are normative.

This Recommendation | International Standard contains one annex.

Clause 6 explains the business benefits of open distributed systems, and how the RM-ODP and its associated
ODP standards will enable corporations to realize these benefits. This clause states the “promises” of ODP – plug-and-
play building blocks and system integration tools for distributed systems.

Clauses 7 to 10 explain what RM-ODP and its distributed functions are about. These clauses justify how RM-ODP
supports the development of plug-and-play building blocks and system integration tools for distributed systems.

Clause 11 shows how ODP standards and specifications by other groups can be referenced in an ODP specification of a
system. These relationships are key to ODP’s ability to enable integration of disparate technologies.

Clause 12 contains examples that demonstrate the use of RM-ODP and the use of underlying principles to solve business
problems.



ISO/IEC 10746-1 : 1997 (E)

ITU-T Rec. X.901 (1997 E) 1

INTERNATIONAL  STANDARD
ISO/IEC 10746-1 : 1997 (E)

ITU-T Rec. X.901 (1997 E)

ITU-T  RECOMMENDATION

INFORMATION  TECHNOLOGY  –  OPEN  DISTRIBUTED  PROCESSING  –
REFERENCE  MODEL:  OVERVIEW

1 Scope and field of application

This Recommendation | International Standard:

– gives an introduction and motivation for ODP;

– provides an overview of the Reference Model of Open Distributed Processing (RM-ODP) and an
explanation of its key concepts;

– gives guidance on the application of the RM-ODP.

This Recommendation | International Standard covers both overview and detailed explanation, and can be consulted in
various ways when reading the standards:

a) if you intend to read only this Recommendation | International Standard, to gain a general understanding of
the importance of ODP to your organization, concentrate on clause 6;

b) if you intend to study the whole RM-ODP, you should also read clause 6 before moving on to
ITU-T Rec. X.902 | ISO/IEC 10746-2 and ITU-T Rec. X.903 | ISO/IEC 10746-3;

c) as you read ITU-T Rec. X.902 | ISO/IEC 10746-2 and ITU-T Rec. X.903 | ISO/IEC 10746-3 you may
wish to consult clauses 7 to 10, which give supporting explanation for the various concepts that these
common texts define;

d) when you have completed a first reading of ITU-T Rec. X.902 | ISO/IEC 10746-2 and ITU-T Rec. X.903 |
ISO/IEC 10746-3, read clauses 11 and 12 which discuss the use of standards in ODP system
specifications, and provide some examples of applying the ODP concepts in the specification of systems.

2 Normative references

The following Recommendations and International Standards contain provisions which, through reference in this text,
constitute provisions of this Recommendation | International Standard. At the time of publication, the editions indicated
were valid. All Recommendations and Standards are subject to revision, and parties to agreements based on this
Recommendation | International Standard are encouraged to investigate the possibility of applying the most recent edition
of the Recommendation and International Standard listed below. Members of IEC and ISO maintain registers of currently
valid International Standards. The Telecommunication Standardization Bureau of the ITU maintains a list of currently
valid ITU-T Recommendations.

2.1 Identical Recommendations | International Standards

– ITU-T Recommendation X.200 (1994) | ISO/IEC 7498-1:1994, Information technology – Open Systems
Interconnection – Basic Reference Model: The Basic Model.

– ITU-T Recommendation X.207 (1993) | ISO/IEC 9545:1994, Information technology – Open Systems
Interconnection – Application Layer structure.

– ITU-T Recommendation X.720 (1993) | ISO/IEC 10165-1:1993, Information technology – Open Systems
Interconnection – Structure of management information: Management Information Model.



ISO/IEC 10746-1 : 1997 (E)

2 ITU-T Rec. X.901 (1997 E)

– ITU-T Recommendation X.902 (1995) | ISO/IEC 10746-2:1996, Information technology – Open
distributed processing – Reference Model: Foundations.

– ITU-T Recommendation X.903 (1995) | ISO/IEC 10746-3:1996, Information technology – Open
distributed processing – Reference Model: Architecture.

– ITU-T Recommendation X.904 (1997) | ISO/IEC 10746-4:1998, Information technology – Open
distributed processing – Reference Model: Architectural semantics.

2.2 Paired Recommendations | International Standards equivalent in technical content

– ITU-T Recommendation X.290 (1995), OSI conformance testing methodology and framework for
protocol Recommendations for ITU-T applications – General concepts.

– ISO/IEC 9646-1:1994, Information technology – Open Systems Interconnection – Conformance testing
methodology and framework – Part 1: General concepts.

2.3 International Standards

– ISO/IEC 11578-21): Information technology – Open Systems Interconnection – Remote Procedure Call
(RPC) – Part 2: Interface Definition Notation.

– ISO/IEC TR 10000-1:1995, Information technology – Framework and taxonomy of International
Standardized Profiles – Part 1: General principles and documentation framework.

3 Definitions

3.1 Definitions in this Recommendation | International Standard

There are no definitions in this Recommendation | International Standard.

3.2 Definitions from other Recommendations | International Standards

This Recommendation | International Standard makes use of the following terms defined in ITU-T Rec. X.902 |
ISO/IEC 10746-2:

– Abstraction;

– Action;

– Action template;

– Activity;

– Architecture;

– Atomicity;

– Base class;

– Behaviour (of an object);

– Behavioural compatibility;

– Binding;

– Binding behaviour;

– Chain (of actions);

– Class;

– Client object;

– Communication;

– Compliance;

– Composite object;

– Composition;

– Configuration (of objects);

– Conformance points;

_______________
1) To be published.



ISO/IEC 10746-1 : 1997 (E)

ITU-T Rec. X.901 (1997 E) 3

– Consumer object;

– Contract;

– Contractual context;

– Creation;

– Data;

– Decomposition;

– Deletion;

– Derived class;

– Distribution transparency;

– Entity;

– Environment (of an object);

– Environment contract;

– Error;

– Establishing behaviour;

– Failure;

– Fault;

– Identifier;

– Information;

– Initiating object;

– Instance;

– Instantiation;

– Interaction;

– Interface;

– Interface signature;

– Internal action;

– Interworking reference point;

– Introduction (of an <X>);

– Invariant;

– Liaison;

– Location in space;

– Management information;

– Name;

– Name resolution;

– Naming domain;

– Notification;

– Object;

– Obligation;

– ODP standards;

– ODP system;

– Perceptual reference point;

– Permission;

– Persistence;

– Policy;

– Portability;

– Producer object;

– Programmatic reference point;

– Prohibition;

– Quality of service;



ISO/IEC 10746-1 : 1997 (E)

4 ITU-T Rec. X.901 (1997 E)

– Reference point;

– Refinement;

– Responding object;

– Role;

– Server object;

– State;

– Subclass;

– Subtype;

– System;

– Template class;

– Template type;

– Terminating behaviour;

– Thread;

– Trading;

– Type;

– Unbinding;

– Viewpoint.

This Recommendation | International Standard makes use of the following terms defined in ITU-T Rec. X.903 |
ISO/IEC 10746-3:

– <Viewpoint> language;

– Access control information;

– Access transparency;

– Announcement;

– Basic engineering object;

– Binder;

– Binding object;

– Capsule;

– Capsule manager;

– Channel;

– Checkpoint;

– Checkpointing;

– Cluster manager;

– Cluster template;

– Communication interface;

– Community;

– Compound binding action;

– Computational viewpoint;

– Deactivation;

– Dynamic schema;

– Engineering viewpoint;

– Enterprise viewpoint;

– Explicit binding;

– Failure transparency;

– Federation;

– Flow;

– Hide;

– Implicit binding;

– Information viewpoint;



ISO/IEC 10746-1 : 1997 (E)

ITU-T Rec. X.901 (1997 E) 5

– Interceptor;

– Interrogation;

– Invariant schema;

– Invocation;

– Location transparency;

– Migration;

– Migration transparency;

– Node;

– Nucleus;

– ODP function;

– Operation interface;

– Operation interface signature;

– Persistence transparency;

– Primitive binding actions;

– Protocol object;

– Reactivation;

– Recovery;

– Relocation transparency;

– Relocator;

– Replication schema;

– Replication transparency;

– Security authority;

– Security domain;

– Security policy;

– Signal;

– Signal interface;

– Signal interface signature;

– Static schema;

– Stream interface;

– Stream interface signature;

– Stub;

– Target;

– Technology viewpoint;

– Termination;

– Transaction transparency;

– Validate.

This Recommendation | International Standard makes use of the following terms defined in ISO/IEC 9646:

– Implementation conformance statement;

– Implementation Extra Information for Testing;

– Point of Control and Observation.

This Recommendation | International Standard makes use of the following terms defined in ITU-T Rec. X.200 |
ISO/IEC 7498-1:

– Open System;

– Abstract syntax;

– Transfer syntax.



ISO/IEC 10746-1 : 1997 (E)

6 ITU-T Rec. X.901 (1997 E)

4 Abbreviations

For the purposes of this Recommendation | International Standard, the following abbreviations apply:

A-profile Application profile

ACID Atomicity Consistency Isolation Durability

AE(I) Application Entity (Invocation)

ALS Application Layer Structure

AP(I) Application Process (Invocation)

API Application Program Interface

ASO Application Service Object

BEO Basic Engineering Object

CAD Computer Aided Design

CD Compact Disk

CIM Computer Integrated Manufacturing

CMIP Common Management Information Protocol

CMIS Common Management Information Service

DL Definition Language

F-profile Format and presentation profile

FDT Formal Description Techniques

GUI Graphical User Interface

HCI Human Computer Interface

HDTV High Definition TV

ICS Implementation Conformance Statement

IDL Interface Definition Language

IT Information Technology

IXIT Implementation Extra Information for Testing

MIM Management Information Model

MMC(S) Multimedia Conferencing (System)

ODP Open Distributed Processing

OMG Object Management Group

OMT Object Modelling Technique

OSE Open System Environment

OSF Open Software Foundation

OSI Open Systems Interconnection

PCO Point of Control and Observation

QOS Quality of Service

RDA Remote Database Access

RM-ODP Reference Model of Open Distributed Processing

RPC Remote Procedure Call

T-profile Transfer profile

TINA Telecommunication Information Networking Architecture

ULA Upper Layers Architecture



ISO/IEC 10746-1 : 1997 (E)

ITU-T Rec. X.901 (1997 E) 7

5 Conventions

The following conventions are specific to this Recommendation | International Standard:

1) The first use in clauses 7 and 8 of formal terms from ITU-T Rec. X.902 | ISO/IEC 10746-2 and
ITU-T Rec. X.903 | ISO/IEC 10746-3 is italicized.

2) Examples in clause 12 use OMT drawing conventions defined in [Rumbaugh 91].

3) In diagrams:

• Objects are represented as ovals or circles.

• The symbol “⊥” protruding from an object represents an interface.

6 ODP standardization

6.1 Objectives and motivation

The objective of ODP standardization is the development of standards that allow the benefits of distributing information
processing services to be realized in an environment of heterogeneous IT resources and multiple organizational domains.
These standards address constraints on system specification and the provision of a system infrastructure that
accommodate difficulties inherent in the design and programming of distributed systems.

Distributed systems are important because there is a growing need to interconnect information processing systems. This
need arises because of organizational trends such as downsizing, which demand the exchange of information both
between groups within an organization and between cooperating organizations. Advances in technology are making it
possible to respond to these trends by giving increasing importance to information service networks and personal
workstations, and by permitting the construction of applications distributed across large configurations of interconnected
systems.

In order both to manage system distribution and to exploit it (e.g. use the potential for availability, performance,
dependability and cost optimization), organizations must deal with a number of key characteristics of system distribution:

• Remoteness: Components of a distributed system may be spread across space; interactions may be either
local or remote.

• Concurrency: Any component of a distributed system can execute in parallel with any other components.

• Lack of global state: The global state of a distributed system cannot be precisely determined.

• Partial failures: Any component of a distributed system may fail independently of any other components.

• Asynchrony: Communication and processing activities are not driven by a single global clock. Related
changes in a distributed system cannot be assumed to take place at a single instant.

• Heterogeneity: There is no guarantee that components of a distributed system are built using the same
technology and the set of various technologies will certainly change over time. Heterogeneity appears in
many places: hardware, operating systems, communication networks and protocols, programming
languages, applications, etc.

• Autonomy: A distributed system can be spread over a number of autonomous management or control
authorities, with no single point of control. The degree of autonomy specifies the extent to which
processing resources and associated devices (printers, storage devices, graphical displays, audio devices,
etc.) are under the control of separate organizational entities.

• Evolution: During its working life, a distributed system generally has to face many changes which are
motivated by technical progress enabling better performance at a better price, by strategic decisions about
new goals, and by new types of applications.

• Mobility: The sources of information, processing nodes, and users may be physically mobile. Programs
and data may also be moved between nodes, e.g. in order to cope with physical mobility or to optimize
performance.



ISO/IEC 10746-1 : 1997 (E)

8 ITU-T Rec. X.901 (1997 E)

Building such systems is not easy. It requires an architecture and, because a single engineering solution will not meet all
requirements, it must be a flexible architecture. Moreover, since a single vendor will not have all of the answers, it is
essential that the architecture, and any functions necessary to implement the architecture, be defined in a set of standards,
so that multiple vendors can collaborate in the provision of distributed systems. Such standards will enable systems to be
built that:

• Are open – Providing both portability (execution of components on different processing nodes without
modification) and interworking (meaningful interactions between components, possibly residing in
different systems).

• Are integrated – Incorporating various systems and resources into a whole without costly ad-hoc
developments. This may involve systems with different architectures, and different resources with different
performance. Integration helps to deal with heterogeneity.

• Are flexible – Capable both of evolving and of accommodating the existence and continued operation of
legacy systems. An open distributed system should be capable of facing run-time changes – for example, it
should be capable of being dynamically reconfigured to accommodate changing circumstances. Flexibility
helps to deal with mobility.

• Are modular – Allowing parts of a system to be autonomous, but interrelated. Modularity is the basis for
flexibility.

• Can be federated – Allowing a system to be combined with systems from different administrative or
technical domains to achieve a single objective.

• Are manageable – Allowing the resources of a system to be monitored, controlled and managed in order
to support configuration, QOS and accounting policies.

• Meet quality of service needs – Covering, for example, provision of timeliness, availability and reliability
in the context of remote resources and interactions, together with provision of fault tolerance that allows
the remainder of a distributed system to continue to operate in the event of failure of some part. Provision
of fault tolerance (and of dependability in general) is necessary within large distributed systems where it is
unlikely that all parts of the system will ever be operational simultaneously.

• Are secure – Ensuring that system facilities and data are protected against unauthorized access. Security
requirements are made more difficult to meet by remoteness of interactions, and mobility of parts of the
system and of the system users.

• Offer transparency – Masking from applications the details and the differences in mechanisms used to
overcome problems caused by distribution. This is a central requirement arising from the need to facilitate
the construction of distributed applications. Aspects of distribution which should be masked (totally or
partially) include: heterogeneity of supporting software and hardware, location and mobility of
components, and mechanisms to achieve the required level for QOS in the face of failures (e.g. replication,
migration, checkpointing, etc.).

6.2 Realization

ODP standardization has four fundamental elements:

• an object modelling approach to system specification;

• the specification of a system in terms of separate but interrelated viewpoint specifications;

• the definition of a system infrastructure providing distribution transparencies for system applications;

• a framework for assessing system conformance.

6.2.1 Object modelling

Object modelling provides a formalization of well-established design practices of abstraction and encapsulation.
Abstraction allows the description of system functionality to be separated from details of system implementation.
Encapsulation allows the hiding of heterogeneity, the localization of failure, the implementation of security and the hiding
of the mechanisms of service provision from the service user.

The object modelling concepts cover:

• Basic modelling concepts – Providing rigorous definitions of a minimum set of concepts (action, object.
interaction and interface) that form the basis for ODP system descriptions and are applicable in all
viewpoints.



ISO/IEC 10746-1 : 1997 (E)

ITU-T Rec. X.901 (1997 E) 9

• Specification concepts – Addressing notions such as type and class that are necessary for reasoning about
specifications and the relations between specifications, provide general tools for design, and establish
requirements on specification languages.

• Structuring concepts – Building on the basic modelling concepts and the specification concepts to address
recurrent structures in distributed systems, and cover such concerns as policy, naming, behaviour,
dependability and communication.

6.2.2 Viewpoint specifications

A viewpoint (on a system) is an abstraction that yields a specification of the whole system related to a particular set of
concerns. Five viewpoints have been chosen to be both simple and complete, covering all the domains of architectural
design. These five viewpoints are:

• the enterprise viewpoint, which is concerned with the purpose, scope and policies governing the activities
of the specified system within the organization of which it is a part;

• the information viewpoint, which is concerned with the kinds of information handled by the system and
constraints on the use and interpretation of that information;

• the computational viewpoint, which is concerned with the functional decomposition of the system into a
set of objects that interact at interfaces – enabling system distribution;

• the engineering viewpoint, which is concerned with the infrastructure required to support system
distribution;

• the technology viewpoint, which is concerned with the choice of technology to support system distribution.

For each viewpoint there is an associated viewpoint language which can be used to express a specification of the system
from that viewpoint. The object modelling concepts give a common basis for the viewpoint languages and make it
possible to identify relationships between the different viewpoint specifications and to assert correspondences between
the representations of the system in different viewpoints.

6.2.3 Distribution transparency

Distribution transparencies enable complexities associated with system distribution to be hidden from applications where
they are irrelevant to their purpose. For example:

• access transparency masks differences of data representation and invocation mechanisms for services
between systems;

• location transparency masks the need for an application to have information about location in order to
invoke a service;

• relocation transparency masks the relocation of a service from applications using it;

• replication transparency masks the fact that multiple copies of a service may be provided in order to
provide reliability and availability.

ODP standards define functions and structures to realize distribution transparencies. However, there are performance and
cost tradeoffs associated with each transparency and only selected transparencies will be relevant in many cases. Thus, a
conforming ODP system must implement those transparencies that it supports in accordance with the relevant standards,
but it is not required to support all transparencies.

6.2.4 Conformance

The basic characteristics of heterogeneity and evolution imply that different parts of a distributed system can be
purchased separately, from different vendors. It is therefore very important that the behaviours of the different parts of a
system be clearly defined, and that it be possible to assign responsibility for any failure to meet the system’s
specifications.

The framework defined to govern the assessment of conformance addresses these issues. It covers:

• identification of the conformance points within the set of viewpoint specifications at which observations of
conformance can be made;

• definition of classes of conformance point;

• specification of the nature of conformance statements to be made in each viewpoint and the relation
between them.



ISO/IEC 10746-1 : 1997 (E)

10 ITU-T Rec. X.901 (1997 E)

6.3 Standards

6.3.1 The Reference Model

The RM-ODP provides the overall framework for ODP standardization. It comprises two main parts:

• ITU-T Rec. X.902 | ISO/IEC 10746-2: Foundations, which defines the concepts and analytical framework
for the description of distributed processing systems, including a general framework for the assessment of
conformance;

• ITU-T Rec. X.903 | ISO/IEC 10746-3: Architecture, which defines how ODP systems are specified and
the infrastructure providing distribution transparencies.

ITU-T Rec. X.904 | ISO 10746-4: Architectural semantics complements these two main parts by providing a formal
interpretation of the modelling concepts and viewpoint languages in terms of existing formal description techniques.

The RM-ODP is generic, that is, independent of, and equally applicable to, arbitrary application domains making use of
or requiring distributed systems technology. For some specific application domains it will be necessary to refine and
specialize the RM-ODP to suit particular needs, resulting in:

• specific reference models which cover individual types of enterprise, use concepts and common functions
given in the RM-ODP, and define additional conceptual detail and specific functions, e.g.
Telecommunication Information Networking Architecture (TINA);

• standards for the realization of specific functions needed for particular applications and possibly identified
in a specific reference model, e.g. interfaces for telephone call connection.

Because it is generic, the RM-ODP also enables disparate distributed system technologies to be integrated into cost
effective technical system solutions to business requirements. In particular, in the case of the architectures published by
the Open Software Foundation (OSF) and the Object Management Group (OMG) to explain how the functions they
specify to support distributed systems fit together, the ODP approach adds value by addressing such issues as federation,
transparency and system management, and by defining a fine grained framework of reference points to support the
integration of functions from different sources.

6.3.2 Specific standards

Four categories of standards are identified within the overall framework provided by the RM-ODP:

• additional architectural frameworks, which complement the RM-ODP in specific areas such as naming,
security and conformance assessment;

• notation standards, which define notations for expressing specifications of different aspects of system
integration and distribution, and rules for relating different specifications;

• component standards, which define a single ODP function or closely interrelated set of ODP functions,
possibly capable of implementation as a single hardware or software platform;

• component composition standards, which define the coordinated use of a number of components to
achieve some objective of the system as a whole, such as provision of a specific transparency.

NOTE – Some standards may specify both components and their composition (so that a useful facility can be implemented
directly). Other standards may form the basis for a number of component composition standards, for example, an ODP Relocator
standard would be referenced in component composition standards for the provision of location or migration transparencies.

The RM-ODP provides a framework for component standards and component composition standards for ODP functions which
permits a number of different approaches to their realization. This flexibility is necessary if the framework is to have a reasonable
lifetime, incorporating new developments as they mature. Thus, a specific standard or set of standards, specifies one particular
solution to the provision of some ODP requirement, making all the specific choices needed for implementation of open products
to be possible, and there may be a number of such standards, corresponding to different design choices. In time, new technologies
will be incorporated, leading to new generations of standards within the one ODP framework.

7 Foundations

ITU-T Rec. X.902 | ISO/IEC 10746-2 defines a set of modelling concepts which provide the foundation for expressing
the architecture of ODP systems defined in ITU-T Rec. X.903 | ISO/IEC 10746-3. These concepts fall into three
categories:

• basic modelling concepts which introduce a general object-based model. In general, an ODP system can be
described as a collection of related, interacting objects;



ISO/IEC 10746-1 : 1997 (E)

ITU-T Rec. X.901 (1997 E) 11

• specification concepts which are not intrinsic to distributed systems but which allow their user to describe
and reason about ODP system specifications. They place requirements on any specification language that
is used for the specification of an ODP system and, because they are essentially language independent, can
be applied in any given specification language or programming language;

• structuring concepts, covering organization, the properties of systems and objects, policy, naming,
behaviour and management, that correspond to notions and structures that are generally applicable in the
design and description of distributed systems.

ITU-T Rec. X.902 | ISO/IEC 10746-2 also provides a general framework for understanding conformance in ODP
systems, expressed in terms of the general object model. This framework is discussed in clause 9.

7.1 Basic modelling concepts

7.1.1 Objects

ODP system specifications are expressed in terms of objects. An object is a representation of an entity in the real world. It
contains information and offers services. A system is composed of interacting objects. An object is characterized by that
which makes it distinct from other objects and by encapsulation, abstraction and behaviour.

Encapsulation is the property that the information contained in an object is accessible only through interactions at the
interfaces supported by the object. Because objects are encapsulated, there are no hidden side effects of interactions. That
is, an interaction with one object cannot affect the state of another object without some secondary interaction with that
object taking place. Thus, any change in the state of an object can only occur as a result of an internal action of the object
or as a result of an interaction of the object with its environment.

Abstraction implies that the internal details of an object are hidden from other objects and is crucial for dealing with
heterogeneity, permitting different services to be implemented in different ways, using different mechanisms and
technologies, enabling portability and interoperability.

Abstraction also builds a strong separation between objects, enabling them to be replaced or modified without changing
their environment, provided they continue to support the services their environment expects (i.e. they are backward
compatible). This approach to extensibility is essential in large, heterogeneous, distributed environments, which by their
very nature are continuously evolving. An object model provides modularity and the ability to compose new modules
from existing modules: these are capabilities important for building flexible systems and encourage reuse to enhance
productivity.

The ODP object model is general and makes a minimum number of assumptions. For instance:

• objects can be of an arbitrary granularity (e.g. they can be as large as the telephone network, or as small as
an integer);

• objects can exhibit arbitrary (encapsulated) behaviours, and have an arbitrary level of internal parallelism;

• interactions between objects are not constrained and can include, for example, asynchronous and
multiway-synchronous interactions.

7.1.2 Interfaces and interaction points

Objects can only interact at interfaces, where an interface represents a part of the object’s behaviour related to a particular
subset of its possible interactions. Each interface is identified with a set of interactions in which the object can participate.
Note that these interactions do not necessarily occur with other objects: an object can interact with itself. An important
characteristic of the concept of object in the RM-ODP is that an object can have a number of interfaces. The motivations
for considering multiple interfaces are functional separation and distribution. Functional separation can be understood,
for example, in the context of systems management, where management interactions and non-management interactions
are normally separated into different interfaces. When dealing with distributed objects, separation is also necessary where
interfaces constitute points of access to the object that are situated at different locations in space.

As a consequence of defining a number of interfaces for an object, the interactions at any one of the interfaces may be
affected by the interactions at other interfaces, and are not necessarily determined in isolation.



ISO/IEC 10746-1 : 1997 (E)

12 ITU-T Rec. X.901 (1997 E)

An interface exists at an interaction point which, at any point in time, is associated with some point in space. A number of
interfaces may exist at a given interaction point and the interaction point may be mobile. The significance of points in
space and time, and the way in which they are expressed, depends on the language in which a specification is expressed.

7.1.3 Behaviour and state

A behaviour of an object is a collection of actions that the object may take part in, together with the set of constraints on
when those actions can occur. The object model does not constrain the form or nature of object behaviour. The actions
can be interactions of the object with its environment or internal actions of the object.

State and behaviour are interrelated concepts. The state of an object is the condition of the object at a given instant that
determines the potential future sequences of actions that object may be involved in. At the same time, actions bring about
state changes and, hence, the current state of an object is partly determined by its past behaviour. Of course, the actions
the object will actually undertake are not entirely determined by its present state; they will also depend on which actions
the environment is prepared to participate in.

7.2 Specification concepts

7.2.1 Composition/Decomposition

Composition and decomposition can be used to organize the specification of a distributed system as a set of
specifications, each one dealing with a different level of abstraction. It permits the specification of a complex distributed
system to be decomposed into specifications of a number of simpler objects which may also be decomposed at a lower
level of abstraction.

The processes of composition and decomposition provide for a hierarchical specification of a distributed application. In
this composition hierarchy, object classes at higher levels are assembled from configurations of component object classes
at lower levels. Thus, composition is a powerful modelling concept in that it permits a subsystem to be treated as a single
higher-level object.

As an example, the diagram in Figure 1 shows the composition of two objects, C and D. In order to compose C with D,
the behaviour of C must be defined so that it interacts appropriately with D. The interface between C and D may be as
simple as a single interaction (for example, to pass information from C to D), or it may be a more complicated behaviour
(such as a sequence of interactions where C invokes an operation which returns a result). If C and D are composed into an
object, then interactions between C and D are hidden and become internal actions of the composite object. The left
interface represents an interface of the composite object.

C D

T0726160-96/d01

Figure 1 – Object composition

FIGURE 1/X.901...[D01] = 3.8 CM

Object composition yields composition of states and behaviours and it is therefore possible to speak of a composite
behaviour and of a composite state.

Composition hierarchy is orthogonal to the subclass hierarchy discussed in 7.2.3, and should not be confused with it. In
general there is no subclass hierarchy relationship between classes of the component objects and the classes of the
composite object. In fact, examples can be found where the composite object belongs to a subclass of the class to which



ISO/IEC 10746-1 : 1997 (E)

ITU-T Rec. X.901 (1997 E) 13

a component object belongs (e.g. where the objects represent communications services, with the composite object adding
value to one of its components).

7.2.2 Behavioural compatibility

One object is said to be behaviourally compatible with another object in some environment if the first object can replace
the second, without the environment being able to detect any difference. Any particular interpretation of behavioural
compatibility will impose constraints on the allowed behaviour of the environment. A common approach is to assume that
the environment behaves as a tester for the original object. That is, the environment should be capable of fully exercising
the original behaviour but should be able to do no more. Such assumptions are essential if behavioural compatibility in
the context of some unknown environment is to be considered.

7.2.3 Type and class

A type is a predicate (that is, it is a property or set of properties) of a collection of things (objects, interfaces, etc.). For
example “is red” is a type. We say that something satisfies a type, or is of the type, if the predicate holds for the thing.
Things can be quite dissimilar and still satisfy the same type; they only need to possess the properties prescribed by the
type. For instance, a particular flag, a particular brick house and a particular sports car might all be red.

Types implicitly classify things into sets known as classes, where a class is the collection of things with the properties
prescribed by a type.

The notion of type is very general and can be specialized in various ways. It is useful in any context where it is necessary
to talk about, reason about and verify properties of things (e. g. for trading, for binding).

The concepts of type and class yield natural class/subclass and type/subtype hierarchies. The class/subclass distinction
corresponds to the intuitive distinction in set theory between sets and subsets. One class is a subclass of another if, and
only if, the former is a subset of the latter. One type is a subtype of another if the predicates of the first type imply the
predicates of the second type.

Subclassing and subtyping go hand in hand. For every type there is an associated class (which may, of course, be empty).
So if we have two types T1 and T2, then there must be associated classes C1 and C2. T1 is a subtype of T2 exactly when
C1 is a subclass of C2.

7.2.4 Templates

A template describes a collection of things (objects, interfaces etc.) in sufficient detail for a new thing to be instantiated
from it.

Where a template describes a set of objects, it describes features such as state parameters, operations and behaviour.
Typically, instantiation of an object entails establishing the initial state, for example, a buffer object might be created
with empty contents.

The concept of behavioural compatibility also applies to object templates in the sense that there is behavioural
compatibility between two object templates if the objects instantiated from those templates are behaviourally compatible.

A template type is a predicate defined in a template. A template type is satisfied by all instantiations from the template,
and, in general, can be satisfied by other things, where they fulfill the same requirements as the instantiations. For
example, a template type may be defined so that objects instantiated from different templates, but satisfying that template
type, show behavioural compatibility.

Each template type gives rise to a template class: the set of instances of the template type. The template classes can be
organized into subclass hierarchies, in accordance with the type/subtype relationships between template types.

7.2.5 Roles

A role identifies, in a template for a composite object, a behaviour to be associated with one of the component objects.

A role may correspond to a subset of the total behaviour of a component object. When an object is viewed in terms of a
role, only a named subset of its actions is of interest, and other actions are abstracted away, possibly to other roles. A
component object may have several roles at a given time depending upon its interactions, and may take different roles at
different times. These roles may be associated with interfaces.

For example, an object may have its normal functional or mission role (i.e. its purpose), and, for management purposes,
have a management role (i.e. the behaviour needed to monitor and control the mission role behaviour). Each role has its



ISO/IEC 10746-1 : 1997 (E)

14 ITU-T Rec. X.901 (1997 E)

own interface, where the mission role is associated with a mission interface and the management role is associated with a
management interface.

7.2.6 Base classes and derived classes

The concepts of base class and derived class are based on a general notion of modification of templates known as
incremental modification. Incremental modification is the derivation of a new template through the modification of an
existing template. The new template is called the derived template and the original template is called the base template.
Instances of the original template and the derived template are called the base class and the derived class, respectively.

In general, incremental modification which allows replacement may yield a different hierarchy than the class/subclass
one.

For instance, consider a template class C1 of red cars defined by a template Temp 1 containing the following line:

COLOUR=RED.

Suppose, to give template class C2, this line is replaced by:

COLOUR=BLUE.

The template class C2 is derived from C1 and is not a subclass of C1.

In some cases, the implementation of a derived class may be based on the implementation of the base class. This concept
is known as implementation inheritance, and enables sharing of code in executable programs. However, this can cause
problems in a distributed environment, since changes to the base class code must be propagated to update all the derived
class implementations, and therefore ODP systems are not required to support implementation inheritance.

7.3 Structuring concepts

7.3.1 Groups and domains

A group is a set of objects grouped together for structural reasons or because the behaviours of the objects have common
features (e.g. in a replication group they can replace each other, in a communicating group they participate in the same
interaction). The group concept is generic and allows the specification of different kinds of group that can be used in
distributed systems for many different purposes, such as fault tolerance, availability and application support (e.g. in
conferencing applications).

A domain is a particular form of group in which a particular aspect of the behaviour of objects in the group is controlled
by the same authority. For example, in a security domain the security policies that apply to the behaviour of the objects in
the domain are set by the same security authority. The domain concept allows the notions of autonomy, authority and
control to be introduced into distributed systems. The domain concept covers many different needs since distributed
systems use many kinds of domains (e.g. security domains, management domains, naming domains).

7.3.2 Naming

Naming is necessary to distinguish and access components of a distributed system and is, therefore, a fundamental
element in distributed system construction.

Context dependent naming and name management is necessary in order to deal with heterogeneity, autonomy and
federation. It brings flexibility and evolution by allowing independent development of name systems and arbitrary
combinations of name systems, including existing, independent ones. It also allows heterogeneity in name systems at
several levels, e.g. forms of names, name assignment, naming policies and strategies for name resolution can be different
in different systems.

Names are used to refer to entities in a given context. There may be circumstances when a name refers to more than one
entity. A name that refers unambiguously to one entity is called an identifier.

The naming concepts in ITU-T Rec. X.902 | ISO/IEC 10746-2 do not specify a full naming framework for ODP. Such a
framework is a subject for separate standardization.

7.3.3 Contract

A contract is an agreement that governs cooperation among a number of objects, and embodies the ideas of obligation,
permission, prohibition and expectation associated with cooperating objects. Thus, it is a general concept for
characterizing and regulating the cooperation of objects.



ISO/IEC 10746-1 : 1997 (E)

ITU-T Rec. X.901 (1997 E) 15

Whenever objects cooperate (interact), there is some contract between them. In cases where the contract may be agreed at
some time and later terminated, it is a dynamic specification of the configuration of the objects. Though the potential
cooperation between the objects is constant, the rules provided by the contract constrain the potential cooperation to
some current, transitory behaviour.

However, contracts are often derivable from the viewpoint language rules and do not need to be stated explicitly. For
example, in the case of the computational language, a client is obliged not to invoke an operation which is not defined in
a server’s interface. Only contracts which specify additional constraints need to be expressed explicitly.

As an example, a contract can specify:

• the roles of objects and the obligations applying to roles, i.e. the expected cooperative behaviour;

• the Quality of Service aspects of object cooperation (issues of dependability, correctness, etc.);

• the kind of behaviour that invalidates the contract.

An environment contract is a particular kind of contract that applies between an object and its environment. This contract
describes the requirements placed by the object on its environment and vice versa. In particular, it is concerned with
Quality of Service (QOS) constraints.

7.3.4 Liaison and binding

Binding behaviour establishes a contractual context (a binding) between interfaces and enables object cooperation. A
binding can exist at several levels of abstraction.

A liaison is the relationship that exists between the objects cooperating under the auspices of a binding. When the liaison
is in place, an object knows that the other objects in the liaison obey the contract. An object can be involved in several
simultaneous liaisons: for each of these liaisons there is a corresponding contract.

NOTE – The following terms, used in the example in the next paragraph, belong to the OSI terminology: Bind, Bind Response,
Unbind, and Application Context.

An example of liaison establishment is provided by the OSI Association binding behaviour. The establishing behaviour is
provided by a Bind operation which includes the sending of contract parameters by the initiating application object to the
responding application object. The responding object responds with a Bind Response operation (with possibly different
contract parameters), thereby establishing the liaison. The contractual context for the liaison is given by the Application
Context agreed through the Bind and the Bind Response exchange. When either party wishes to terminate the liaison, it
initiates the terminating behaviour by invoking the Unbind operation.

8 Architecture

ITU-T Rec. X.903 | ISO/IEC 10746-3 makes the prescriptive statements which must hold for a system to be characterized
as an ODP system. Using the concepts and terminology defined by ITU-T Rec. X.902 | ISO/IEC 10746-2, it defines:

• an architectural framework for structuring the specification of ODP systems in terms of the concepts of
viewpoints and viewpoint specifications, and distribution transparencies;

• a set of languages in terms of which the different viewpoint specifications can be expressed;

• a system infrastructure providing distribution transparencies for system applications.

8.1 Architectural framework

Distributed systems can be very large and complex, and the many different considerations which influence their design
can result in a substantial body of specification, which needs to be given structure if it is to be managed successfully. A
good framework should allow different parts of the design to be worked on separately if they are independent, but should
identify clearly those places where different aspects of the design constrain one another. In order to achieve this, two
main structuring approaches are used in the ODP architecture: the definition of viewpoints and the definition of
transparencies.

8.1.1 Viewpoints

A viewpoint is a subdivision of the specification of a complete system, established to bring together those particular
pieces of information relevant to some particular area of concern during the design of the system. An ODP system is
anything of interest, so that, for example, it may equally well be an information processing system of an organization, or



ISO/IEC 10746-1 : 1997 (E)

16 ITU-T Rec. X.901 (1997 E)

a particular component (hardware or software) of such a system. The viewpoints are not completely independent: key
items in each are identified as related to items in the other viewpoints. However, the viewpoints are sufficiently
independent to simplify reasoning about the complete specification.

Each of the viewpoints in the set can be related to all the others. They do not form a fixed sequence like a set of protocol
layers, nor are they created in a fixed order according to some design methodology. The architecture is expressed in terms
of the complete set of related viewpoints, without laying down how a complete specification is to be constructed for any
given system.

The RM-ODP defines five viewpoints. These are:

a) The enterprise viewpoint: A viewpoint on the system and its environment that focuses on the purpose,
scope and policies for the system.

b) The information viewpoint: A viewpoint on the system and its environment that focuses on the semantics
of the information and information processing performed.

c) The computational viewpoint: A viewpoint on the system and its environment that enables distribution
through functional decomposition of the system into objects which interact at interfaces.

d) The engineering viewpoint: A viewpoint on the system and its environment that focuses on the
mechanisms and functions required to support distributed interaction between objects in the system.

e) The technology viewpoint: A viewpoint on the system and its environment that focuses on the choice of
technology in that system.

In order to represent an ODP system from a particular viewpoint, it is necessary to define a structured set of concepts in
terms of which that representation (or specification) can be expressed. This set of concepts provides a language for
writing specifications of systems from that viewpoint, and such a specification constitutes a model of a system in terms of
the concepts. The terms of each viewpoint language, and the rules applying to the use of those terms, are defined using
the object modelling concepts defined in ITU-T Rec. X.902 | ISO/IEC 10746-2. Each language has sufficient expressive
power to specify an ODP function, application or policy from the corresponding viewpoint. Where system specifications
conform to these languages, the systems designed are ODP systems, at least from an architectural point of view.

In the RM-ODP, the various viewpoint languages differ in the strengths of the constraints their use implies. Those
viewpoint languages concerned with organizing distribution and providing common solutions to its problems (the
computational and engineering viewpoints) place a significant number of constraints that must be observed, and in so
doing, give guarantees of interworking between, and portability of, components. On the other hand, since the RM-ODP is
generic, there are few rules to be stated in the enterprise and information languages, and these are limited to a set of basic
concepts and guidance about the scope of enterprise and information modelling for distributed systems.

More extensive constraints will be defined for the enterprise and information languages when these are used in the
specification of systems within particular fields of application and specific enterprises. For example, for any Trader
system the enterprise and information specifications are constrained by the provisions of the Trader standard.

8.1.2 Distribution transparencies

When designing a distributed system, a number of concerns become apparent which are a direct result of the distribution:
the system components are heterogeneous, they can fail independently, they are at different and, possibly, varying
locations, and so on. These concerns can either be solved directly as part of the application design, or standard solutions
can be selected, based on best practice.

If standard mechanisms are chosen, the application designer works in a world which is transparent to that particular
concern; the standard mechanism is said to provide a distribution transparency. Application designers simply select
which distribution transparencies they wish to assume and where in the design they are to apply.

The distribution transparency approach can lead directly to software reuse. Selection of distribution transparencies in the
system specification can lead to the automatic incorporation of well established implementations of the standard solutions
by the system building tools in use, such as compilers, linkers and configuration managers. The designer expresses system
requirements in the form of a simplified statement of the system required and the distribution transparency properties that
it should possess.



ISO/IEC 10746-1 : 1997 (E)

ITU-T Rec. X.901 (1997 E) 17

The distribution transparencies defined in the RM-ODP are:

a) access transparency, which masks differences in data representation and invocation mechanisms to enable
interworking between objects. This distribution transparency solves many of the problems of interworking
between heterogeneous systems, and will generally be provided by default.

b) failure transparency, which masks from an object the failure and possible recovery of other objects (or
itself) to enable fault tolerance. When this distribution transparency is provided, the designer can work in
an idealized world in which the corresponding class of failures does not occur.

c) location transparency, which masks the use of information about location in space when identifying and
binding to interfaces. This distribution transparency provides a logical view of naming, independent of
actual physical location.

d) migration transparency, which masks from an object the ability of a system to change the location of that
object. Migration is often used to achieve load balancing and reduce latency.

e) relocation transparency, which masks relocation of an interface from other interfaces bound to it.
Relocation allows system operation to continue even when migration or replacement of some objects
creates temporary inconsistencies in the view seen by their users.

f) replication transparency, which masks the use of a group of mutually behaviourally compatible objects to
support an interface. Replication is often used to enhance performance and availability.

g) persistence transparency, which masks from an object the deactivation and reactivation of other objects
(or itself). Deactivation and reactivation are often used to maintain the persistence of an object when the
system is unable to provide it with processing, storage and communication functions continuously.

h) transaction transparency, which masks coordination of activities amongst a configuration of objects to
achieve consistency.

In any system specification, the definition of the transparency involves both a set of requirements and a distribution
transparency that satisfies it. The set of requirements states where the distribution transparency is needed (i.e. which
interactions it affects). This may simply be a statement that it applies throughout a system, or may be a more selective
statement involving specific interfaces and defining, for example, the interactions which make up a transaction or
selecting the objects and interfaces to be supported by replication. The solution takes the form of a set of rules for
transforming the specification of the distribution transparency requested into a specification in which selected interactions
or objects are expanded to include mechanisms which provide that transparency.

8.2 Enterprise language

The enterprise language introduces basic concepts necessary to represent an ODP system in the context of the enterprise
in which it operates. The aim of an enterprise specification is to express the objectives and policy constraints on the
system of interest. In order to do this, the system is represented by one or more enterprise objects within a community of
enterprise objects that represents the enterprise, and by the roles in which these objects are involved. These roles
represent, for example, the users, owners and providers of information processed by the system. Creating a separate
viewpoint to convey this information decouples the specification of the objectives set for a system from the way in which
that system is to be realized.

One of the key ideas in the enterprise language is that of a contract, linking the performers of the various roles in a
community and expressing their mutual obligations. A contract can express the common goals and responsibilities which
distinguish roles in a community, such as a business and its customers or a government organization and its clients, as
being related in particular ways in a single enterprise.

Where appropriate, an enterprise specification will also express aspects of ownership of resources and responsibility for
payment for goods and services in order to identify, for example, constraints on accounting and security mechanisms
within the infrastructure which supports the system.

One particular kind of community is a federation, which is a coming together of a number of groups answering to
different authorities (and thus representable as distinct domains) in order that they may jointly cooperate to achieve some
objective. Since the evolution of distributed systems will repeatedly result in the merging of existing, separately managed
sub-systems to share information or support commercial interests, specification of the creation of federations, and
expression of the rules which are to govern them, form an important part of system specification in the enterprise
viewpoint.

The domains concerned in a federation may be administrative domains (each subject, for example, to particular security
or management controls) or technology domains (each subject, for example, to common choices of system hardware or



ISO/IEC 10746-1 : 1997 (E)

18 ITU-T Rec. X.901 (1997 E)

software). The specification of federation involves specification of the objectives for interworking between different
domains and of the policies governing that interworking.

Federation of administrative domains relates to interworking between domains in the same or different enterprises in
order to provide sharing, integration or partitioning of resources and applications across different systems and locations in
response to user needs. Federation of technology domains is concerned with integration of different system architectures,
and of systems with different resources and different performance; it provides modularity that allows incremental growth
without impacting existing applications. The two kinds of federation often coincide, since differences in administration
can lead to differences in choice of technology.

Between administrative domains, either or both administrations may wish to impose their own access controls for such
purposes as security, accounting, and monitoring, in addition to controls imposed by the objects themselves.
Administrative boundaries are also the points where changes of management responsibility take place for such things as
resource allocation and dependability guarantees.

Policies governing the operation of federation involve policies governing interworking. Thus, specification of federation
can relate to the need for specification of interceptor facilities in the engineering description, and the objectives and
policy for federation establish constraints on the provision of interceptor facilities.

An enterprise specification defines the policies governing the behaviour of the communities that it specifies. These
policies determine the actions of the enterprise objects that comprise those communities, and are concerned with the
placing and fulfilling of obligations (e.g. requesting delivery; making a delivery), and the permitting or forbidding of
actions (e.g. authorizing or rejecting access to system facilities). Policies may relate to:

a) The structuring of the community in terms of roles and the assignment of roles to enterprise objects. For
example, community rules may state:

• assignment of roles and responsibilities to enterprise objects within the community;

• how enterprise objects are related in the community structure (e.g. hierarchy or isocracy).

An enterprise specification may also include business rules that express:

• the enterprise as a business entity;

• accounting requirements;

• evolution of the business in order to fulfill its objectives.

b) Permitted interactions between enterprise objects holding different roles (i.e. access control). For example,
security rules may define:

• the role-activity-object relationships, and their integrity and confidentiality requirements for activities
and objects;

• the rules for detection of security threats;

• the rules for protection against security threats;

• the rules for limiting any damage caused by any security breaches.

c) The responsibility delegated to enterprise objects. For example, delineation of authority rules are used to
assign:

• privileges to enterprise objects (trust);

• permission or prohibition of actions of enterprise objects.

d) Accounting for resource usage. For example, resource usage rules define the constraints that may be
imposed by external:

• regulatory bodies;

• market demands;

• environment,

depending on whether the resource usage is:

• public;

• private;

• third-party.

e) The ownership of resources. For example, transfer rules may state the exchange of ownership and/or
responsibilities for resources between enterprise objects.



ISO/IEC 10746-1 : 1997 (E)

ITU-T Rec. X.901 (1997 E) 19

f) The membership of federations. For example, an enterprise specification can include domain rules that
specify:

• the membership rules of a domain;

• the interaction rules between domains of the same type;

• the domain naming rules.

It is expected that there will be different notations for expressing enterprise specifications for specific organizational
structures and business practices. The RM-ODP requires that an appropriate specification be generated, but places few
constraints on the form that organizations should take.

Assessment of conformance to the enterprise specification of a system involves relating the requirements (e.g. a response
time for fulfilling an obligation) expressed in the specification to sets of observations of the behaviour of the system at
conformance points identified in the engineering and technology specification, and assessing the degree of consistency
between the requirements and the observations.

8.3 Information language

The individual components of a distributed system must share a common understanding of the information they
communicate when they interact, or the system will not behave as expected. Some of these items of information are
handled, in one way or another, by many of the objects in the system. To ensure that the interpretation of these items is
consistent, the information language defines concepts for the specification of the meaning of information stored within,
and manipulated by, an ODP system, independently of the way the information processing functions themselves are to be
implemented.

Information held by the ODP system about entities in the real world, including the ODP system itself, is represented in an
information specification in terms of information objects, and their relationships and behaviour. Basic information
elements are represented by atomic information objects. More complex information is represented as composite
information objects each expressing relationships over a set of constituent information objects.

Just as in familiar data modelling, the information specification comprises a set of related schemata, namely, the
invariant, static and dynamic schemata.

An invariant schema expresses relationships between information objects which must always be true, for all valid
behaviour of the system. Thus, an invariant schema for a bank account might specify that the balance must always be non-
negative as the bank does not offer an overdraft facility.

A static schema expresses assertions which must be true at a single point in time. A common use of static schemata is to
specify the initial state of an information object. For example, the initial state of a bank account object consists of an
account balance of $0 and the amount withdrawn on that day which is also $0. Another static schema might be used to
describe how the amount withdrawn that day is $0 at midnight every night; note that this static schema makes no
restriction on the account balance at that point.

A dynamic schema specifies how the information can evolve as the system operates. For example, a bank account would
require a dynamic schema for depositing money, withdrawing money, paying interest, and charging account fees. A
dynamic schema might be applicable only in certain circumstances (which could be specified by the use of a static
schema). For example, the dynamic schema for withdrawing $N might specify that the account balance is decremented by
$N provided that the total amount withdrawn that day does not exceed $500. No dynamic schema can specify a resultant
state that violates the invariant constraint, i.e. only money in the account can be withdrawn.

In addition to describing state changes, dynamic schemata can also create and delete component objects. This allows an
entire information specification of an ODP system to be modelled as a single (composite) information object.

These schemata may apply to the whole system, or they may apply to particular domains within it. Particularly in large
and rapidly evolving systems, the reconciliation and federation of separate information domains will be one of the major
tasks to be undertaken in order to manage information.

Schemata for composite information objects do not need to reference all components of the information object. Schemata
for composite information objects can be composed from schemata for their component objects, provided such
composition is meaningful. Encapsulation of information objects is related to the level of abstraction of the description
concerned. Thus, at an appropriate level of abstraction, schemata for composite information objects can reference the



ISO/IEC 10746-1 : 1997 (E)

20 ITU-T Rec. X.901 (1997 E)

internals of their component objects, although at a higher level of abstraction, this may not be possible. This permits the
specification of such complex noun phrases as “the phone numbers of the customers with accounts that withdrew over
$400 today”.

Some elements visible from the enterprise viewpoint will be visible from the information viewpoint and vice versa. For
example, an activity seen from the enterprise viewpoint may appear in the information viewpoint as the specification of
some processing which causes a state transition of an information entity.

Different notations for information specifications model the properties of information in different ways. Emphasis may be
placed on classification and reclassification of information types, or on the states and behaviour of information objects. In
some specification languages, atomic information objects are represented as values. The approach to be taken will depend
on the modelling technique and notation being used.

Assessment of conformance to the information specification of a system involves relating the requirements expressed in
the specification (e.g. in an invariant schema) to sets of observations of the behaviour of the system at conformance
points identified in the engineering and technology specification, and assessing the degree of consistency between the
requirements and the observations.

8.4 Computational language

The computational viewpoint is directly concerned with the distribution of processing but not with the interaction
mechanisms that enable distribution to occur. The computational specification decomposes the system into objects
performing individual functions and interacting at well defined interfaces. It thus provides the basis for decisions on how
to distribute the jobs to be done, because interfaces can be located independently, assuming communications mechanisms
can be defined in the engineering specification to support the behaviour at those interfaces.

The heart of the computational language is the object model which defines:

• the form of interface an object can have;

• the way that interfaces can be bound and the forms of interaction which can take place at them;

• the actions an object can perform, in particular the creation of new objects and interfaces, and the
establishment of bindings.

The computational object model provides the basis for ensuring that specification languages, programming languages and
communication mechanisms all perform in a consistent way, thus allowing open interworking and portability of
components.

The computational language enables the specifier to express constraints on the distribution of an application (in terms of
environment contracts associated with individual interfaces and interface bindings) without specifying the actual degree
of distribution. This ensures that applications contain no unstated assumptions affecting the distribution of their
components. Because of this, the configuration and degree of distribution of the hardware on which ODP applications are
run can easily be altered, subject to the stated environment constraints, without having a major impact on application
software.

The computational language does not preclude the use in a distributed environment of software designed for centralized
systems. It allows for encapsulation of existing applications as (non distributed) components of a larger, distributed
application. This permits an evolutionary approach to the provision of distribution, thereby protecting investments in
existing software.

Interactions between computational objects are essentially asynchronous and can take three forms:

• operations, that are similar to procedures, and are invoked on designated interfaces;

• flows, that are abstractions of continuous sequences of data between interfaces;

• signals, that are elementary atomic interactions.

Operations reflect the client/server paradigm. An operation is an interaction between a client object and a server object
which requests (an invocation) the performance of some function by the server. There are two types of operation:

• an interrogation, in which the server returns a response (a termination) to the client request;

• an announcement, in which there is no response to the client request.

The notion of termination generalizes results and exceptions as found in many object-based and non-object-based
programming languages.



ISO/IEC 10746-1 : 1997 (E)

ITU-T Rec. X.901 (1997 E) 21

The performance of operations is extended in space and time. Consequently, when an operation fails, the failure need not
occur for all the participants and may be observed by them at different times. The ability of the client to observe and take
action on failures is different for interrogations and announcements.

In the case of an interrogation, the two-way handshake ensures both that the client has confirmation that the requested
function has been performed, and that, if a client thread of activity invokes a chain of interrogations, the requests are
responded to by the server in the order that they were issued by the client.

In the case of an announcement, any guarantees of the performance of requests, and the order of performance, are
determined by the environment contracts that apply to the operations.

Flows can be used to model, for example, the flow of audio or video information in a multimedia application or in voice-
based telecommunication services, or the continuous flow of periodic sensor readings in a process control application. A
flow is characterized by its name and its type, which specifies the nature and format of data exchanged. The exact
semantics of flows is left undefined in the computational model. In fact there can be many different semantics for flows,
depending on the application domain.

Signals are the lowest level of description of interactions between computational objects. A signal is a pairwise, atomic
shared action resulting in one-way communication from an initiating computational object to a responding computational
object (in this context “responding” means “accepting the communication”). This means:

• that the signal occurs at a defined point in time and, hence, is a point of reference for measurement
purposes (e.g. in QOS observations);

• that a failure is identical for, and visible to, all participants.

In many cases a signal will correspond, in implementation terms, to an observable event at some physical location,
however the definition of the concept does not preclude the implementation of signals through transaction mechanisms
which give the necessary behaviour guarantees.

An operation or a flow can be explained in terms of a combination of several signals. An interrogation, for instance, can
be understood as a sequence of signals: invocation emission (by the client object), invocation receipt (by the server
object), termination emission (by the server), termination receipt (by the client). In contrast, since the exact semantics of
flows is not given in the computational model, their mapping on signals is not defined. Modelling operations or flows in
terms of signals becomes necessary in order to define end-to-end QOS characteristics, and the operation of multiparty
binding and bindings between different kinds of interface (e.g. stream to operation interface bindings).

8.4.1 Computational interfaces

A computational interface is characterized by a signature, a behaviour; and an environmental contract.

The signature depends on the interface type which can be operation, stream or signal:

• An operation interface has a signature that defines the set of operations supported at the interface and
whether the interface has the role of client or server for that set of operations.

• A stream interface has a signature that defines the set of flows supported at the interface and, for each
flow, whether the interface has the role of producer or consumer.

• A signal interface has a signature that defines the set of signals supported at the interface and, for each
signal, whether the interface has the role of initiating or responding.

The behaviour is described by the allowed sequences of actions of the computational object that are associated with the
interface. The behaviour can include internal actions of the object and will be constrained by the environment of the
object, in particular by interactions at other interfaces.

Importantly, each interface specification also contains an environment contract which specifies a set of Quality of Service
(QOS) constraints placed on a computational object and its environment. If the environment (other computational objects
and the supporting infrastructure) delivers the required level of QOS, then the object itself is guaranteed (by design) to
provide a certain level of QOS. The QOS specified for an interface expresses both its requirements on its environment,
and the QOS exhibited by the object in an environment that meets the requirements. The particular notation for specifying
quality of service is not prescribed by the computational language.

8.4.2 Binding model

Interactions between given computational interfaces are only possible if a binding (i.e. some communication path) has
been established between them. The computational language specifies explicit binding actions for both operation and
stream interfaces. In the case of operation interfaces, it also specifies that binding can be implicit, in order to allow the



ISO/IEC 10746-1 : 1997 (E)

22 ITU-T Rec. X.901 (1997 E)

use of notations that do not provide for the expression of bind actions. Implicit binding can only occur for operation
interfaces since in other cases it is not self evident where the initiative in the binding is placed relative to subsequent
interactions.

Where binding is implicit, an invocation by the client object results in the binding of an appropriate client interface to the
server interface and the occurrence of the operation (interrogation or announcement). The computational language leaves
undefined whether or not the client interface is deleted at the end of the process. It should be noted that implicit binding
has no provision for reference to an environment contract for the binding.

Where binding is explicit, it is defined in terms of two kinds of binding actions: primitive binding actions and compound
binding actions. These binding actions are only applicable in the context of explicit binding.

A primitive binding action allows the binding of two interfaces of the same or of different computational objects. The
interfaces must be of the same type, but can be operation, stream or signal interfaces. A primitive binding action is carried
out by one of the objects concerned and has the effect of establishing at each interface the information necessary for
interaction to take place, i.e. the identity of the other interface concerned. No requirement is seen for defining an explicit
unbinding action, but deleting either interface, obviously, deletes the binding as well. A primitive binding action requires
that the interfaces concerned are of the same kind and have complementary signature type and roles (e.g. one is a client
and the other a server).

A compound binding action allows the binding of two or more interfaces of the same or different type by means of a
binding object (see Figure 2).

T0726170-96/d02

Binding object

Control interface

Computational
object

Computational
object

Computational
object

Figure 2 – Compound binding

FIGURE 2/X.901...[D02] = 6.9 CM

The action can be carried out by one of the computational objects involved in the binding or by a computational object
separate from the binding. It has the effect of instantiating a computational object to support the binding (the binding
object). The binding object instantiates an appropriate set of interfaces and uses primitive binding actions to bind them to
the interfaces to be bound. It also instantiates a set of control interfaces through which its operations can be controlled
and returns the interface identifiers for the interfaces to the initiating computational object.

Behaviours of binding objects reflect the communication semantics they support and the computational model does not
restrict the types of binding object, reflecting the fact that there is multiplicity of possible communication structures
between objects. Nevertheless, useful classes of binding object may be standardized depending upon classes of
applications. In particular, binding objects can specify the operation of multiway bindings and of complex bindings (e.g.
between operation and stream interfaces of different types, and between operation interfaces and stream interfaces).

As with any other object, binding objects can be qualified by QOS assertions that further constrain their correct behaviour
(e.g. to bound end-to-end communication delay or end-to-end delay jitter at a recipient interface). Where such



ISO/IEC 10746-1 : 1997 (E)

ITU-T Rec. X.901 (1997 E) 23

QOS assertions are made, the interfaces involved in the primitive bindings of a binding object must be signal interfaces,
since the atomic nature of signals makes it possible to specify of the points in space and time at which QOS observations
can be made.

Control interfaces for a binding object allow for deletion of the binding and can also allow control of its operation and of
the QOS that it offers. Examples of the facilities that could be provided are:

a) Control of notification of errors that disrupt the binding object: This would allow specification of an
interface at which the object invokes a notification operation if failures disrupt the binding.

b) Control of a dynamic multicast binding, allowing the addition of new consumers and removal of existing
consumers.

c) Group invocation, making atomic multicast invocations available in the computational language and
allowing members to be added to, or subtracted from, the group.

d) Control of the QOS associated with the binding, allowing manipulation of specific QOS characteristics:
This form of control would be particularly useful for stream bindings for multimedia applications.

e) Notification of events of interest to the application, for example, an event might be signalled at the start or
end of a period of silence in an audio flow.

In the case of binding of stream interfaces, the binding may abstract from application specific stream composition rules.
In the simplest case, the binding will represent a single flow from a producer interface to a consumer interface (e.g. from
an audio filing system to a speaker). However, the composition rules may be more complex:

a) A full duplex path may be created and managed as a single binding; the resultant flows link the producer
aspects of the interface on each computational object with the consumer aspects of the interface on the
other.

b) A number of full duplex interfaces may be linked by a binding object which encapsulates the rules of a
conference system for allowing the flow from a selected producer (the current talker) to be delivered to all
consumers. Varying degrees of application control might be exercised via the binding control interface to
provide explicit flow control.

c) Flows from a number of producers may be combined to provide a composite flow to a single consumer.
For example, a video flow from one source and an audio flow from another, might be combined into a
single television flow as image and associated commentary. Here the control interface might allow
manipulation of engineering flow synchronization mechanisms as part of the provision of lip synch.

An interface can be multiply bound. In the case of implicit binding, multiple binding of an interface requires that each
binding be identified by the server interface involved. In the case of explicit binding, multiple binding requires that each
binding be identified by the binding object involved.

8.4.3 Typing and subtyping for computational interfaces

Interfaces in the computational language are strongly typed to maximize early consistency checking of distributed
programs conforming to the ODP computational language. Interface types are related by a subtyping relation that defines
the minimal conditions to impose in order to provide for meaningful object interaction.

The signature type of an interface defines the form and kind of interactions available at the interface, and signature
subtyping specifies minimum requirements for one interface to substitute for another. The rules are based on the
interaction semantics of computational interfaces, and are sufficient to ensure that a substituted interface can consistently
interpret the structure of any interactions that occur. It is, of course, also necessary for interfaces to match in terms of the
semantics of data transferred but general rules cannot be defined for carrying out such matching.

A signal interface signature defines, for each signal in the interface, its name, the parameters and whether the interface
concerned is the initiator or responder. An operation interface signature defines, for each kind of operation in the
interface, the name of the operation, the number and types of its arguments, as well as, for interrogations, the set of
possible outcomes for the operation, (terminations). For each termination, the name of the termination, together with the
number and types of its arguments are defined.

Subtyping rules for signal and operation interfaces signatures are defined in Annex A of ITU-T Rec. X.903 |
ISO/IEC 10746-3. Note that the interaction semantics for other interfaces types in addition to operation and stream can be
expressed in terms of signals, since signals provide the basic building blocks from which to model any higher level
interaction types.



ISO/IEC 10746-1 : 1997 (E)

24 ITU-T Rec. X.901 (1997 E)

A stream interface is typed in terms of a set of component flows, each of which has a basic type capable of being
supported by the available underlying mechanisms. Examples of basic types are individual audio or video flows. Each
component flow has a unique direction, either into or out of the binding. The component flows are organized by the type
description into a stream signature (just as arguments are organized in a signature in an operation interface). A stream
interface may consist of a number of related flows, either in one single direction or in opposite directions. In the case of
streams, however, the interface type can itself be used to represent a more complex flow, so that in types constructed in a
series of stages the flows may form a multi-level hierarchy.

Examples of stream interfaces types are:

a) a single audio flow from an audio source;

b) a single audio flow into an audio sink;

c) a full duplex speech type in which there is one inward and one outward flow, to represent a user view of
the audio aspects of a telephony service;

d) a composite television signal consisting of both audio and video components;

e) a more complex application-oriented type in which several audio and video flows are combined to
represent flows in a virtual reality system.

The fact that the flows in a stream interface each have a direction implies that interface types will, in general, exist in
pairs which are related by reversal of all the flows involved. However, if the interface type has an equivalent set of inward
and outward flows, the two related types themselves become equivalent. A stream interface definition notation may allow
shorthand for asserting this, or for definition of the two related forms simultaneously.

Any stream interface type system will have an associated set of subtyping rules. These differ from the subtyping rules for
operational interfaces in that they are constructed to allow communication between computational objects whose stream
interfaces offer different capabilities. For example, an audio interface might be considered as a subtype of a composite
audio and video interface, so as to allow a remote telephone user to communicate with a user of a videophone system.
The optimum form of subtyping will depend on the application, so that selection of a suitable variant of subtyping is part
of the design process.

In general, the stream subtyping rules can be divided into two steps:

a) identification of correspondences between primitive flows in the two types, and decision on whether the
correspondences found are sufficient for a subtyping relationship to exist;

b) comparison of the types of each of the primitive flows, including comparison of QOS aspects, to determine
whether a subtype relationship exists.

It is not possible to define completely general subtyping rules for stream interfaces since these depend upon details of the
interactions that are abstracted in the definitions of the streams concerned.

8.4.4 Portability

The computational language defines the actions an object can perform, and enumerates the possible failure modes of
these actions. Thus, the computational language defines an object based programming model for a generic virtual
machine that is realized by the engineering and technology rules.

Different sets of portability rules can be defined, each of which specifies a particular subset of the actions defined by the
computational programming model. A set of portability rules identifies the requirements on a computational notation to
support the portability of objects between different environments that provide implementations of those rules. The RM-
ODP itself defines a basic portability environment and a complete portability environment, depending on the sets of
actions supported.

8.5 Engineering language

The engineering language focuses on the way object interaction is achieved and on the resources needed to do so. It
defines concepts for describing the infrastructure required to support selective distribution transparent interactions
between objects, and rules for structuring communication channels between objects and for structuring systems for the
purposes of resource management.

Thus the computational viewpoint is concerned with when and why objects interact, while the engineering viewpoint is
concerned with how they interact. In the engineering language, the main concern is the support of interactions between
computational objects. As a consequence, there are very direct links between the viewpoint descriptions: computational



ISO/IEC 10746-1 : 1997 (E)

ITU-T Rec. X.901 (1997 E) 25

objects are visible in the engineering viewpoint as basic engineering objects and computational bindings, whether
implicit or explicit, are visible as either channels or local bindings.

The concepts and rules are sufficient to enable specification of internal interfaces within the infrastructure, enabling the
definition of distinct conformance points for different transparencies, and the possibility of standardization of a generic
infrastructure into which standardized transparency modules can be placed.
ISO/IEC 10746-1 : 1997 (E)
ITU-T Rec. X.901 (1997 E)

8.5.1 Clusters, capsules and nodes

The engineering language deals with the basic engineering objects and with various other engineering objects which
support them. It relates these objects to the available system resources by identifying a nested series of groupings.

At the outer level, engineering objects are physically located and associated with processing resources by grouping them
into nodes, which can be thought of as representing independently managed computing systems. A node can be anything
which has a strongly integrated view of resources, as long as the system designer can consider it as a whole. Thus a
tightly coupled parallel processing system can be considered a node, so long as it has one scheduling and allocation
policy – one operating system.

The node is under the control of a nucleus which is responsible for initialization, for creating groups of engineering
objects, for making communications facilities available, and for providing basic services like timing and the source of
unique identifiers.

Within a node, there may be a number of capsules. A capsule owns storage and a share of the node’s processing
resources. It can be thought of in terms of a traditional protected process, with its own address space. A capsule is thus
the unit of protection and is generally the smallest unit of independent failure supported by the operating system. There is
a special engineering object, called the capsule manager, associated with each capsule, and for descriptive purposes, a
capsule is controlled by interactions with this manager.

A capsule will typically contain many engineering objects; the grouping of objects into capsules is done to reduce the cost
of object interaction. This is because communication between traditional processes is slow and expensive, because of the
checks which need to be performed; however, the compiling tools that build capsules can be trusted to validate and
structure the interactions between closely related engineering objects to a sufficient extent to let them share resources.
Resources within a capsule will be controlled by some kind of language specific runtime system.

The smallest grouping of engineering objects is into a set of clusters within a capsule. The objects in a cluster are grouped
together in order to reduce the cost of manipulating them. Clusters, capsules and nodes are shown in Figure 3. The
engineering objects in a cluster can be checkpointed together, transferred to persistent storage, reactivated or moved to
another node altogether. This manipulation of complete clusters as a single operation opens the way to the management
of very fine grain object-based systems at reasonable cost. For example, a geographical information system might
consider data about individual points on a map to be engineering objects, but could not sustain the cost of giving each of
these objects a completely separate existence. Communication between engineering objects in a cluster can be highly
optimized, since the objects are created together, in the same language, and are expected to stay together.

Interaction within a cluster might therefore be supported by a simple local method invocation or equivalent.

Clusters are controlled and actions on them are initiated by interaction with an associated cluster manager object.

8.5.2 Channels

When engineering objects in different clusters interact, there is a need for a good deal of supporting mechanism. Even if
the objects are currently within the same capsule or node, mechanisms are needed to cope with the possibility of one or
other of them, terminating, failing or moving elsewhere. The set of mechanisms needed to do this constitute a channel,
which is made up of a number of interacting engineering objects (see Figure 4).

The engineering objects within a channel are divided into three types, based on the job that they do. Stubs are concerned
with the information conveyed in an interaction, binders are concerned with maintaining the association between the set
of basic engineering objects linked by the channel, and protocol objects manage the actual communication.

Stubs interact directly with the basic engineering objects they support, and perform functions such as the marshalling and
unmarshalling of parameters, or the logging of information about the interaction being performed. Thus the stubs need
access to information about the type of the interaction, or, more generally, the type of the interface that is being
supported. This distinguishes them from binders and protocol objects, which transfer complete messages without concern
for their internal structure.

Depending on the design of the system, a stub may be directly associated with a particular basic engineering object, or it
may be shared between a number of such objects. Sharing generally implies the need to transfer some additional
information to identify, and thus distinguish between, the objects being supported.



ISO/IEC 10746-1 : 1997 (E)

26 ITU-T Rec. X.901 (1997 E)

T0726180-96/d03

0401
02

03

07 06

08

05

clm

nucleus

clm

cpm

cluster

capsule

capsule

node

cpm

cpm Capsule manager object
clm Cluster manager object

clm

Figure 3 – Capsules, clusters and nodes

T0726190-96/d04

Interceptor

Client half Server half

Client basic
engineering

object

Client
stub

Client
binder

Client
protocol
object

Server basic
engineering

object

Server
stub

Server
binder

Server
protocol
object

Figure 4 – An example of a client-server channel

FIGURE 4/X.901...[D04] = 11.3 CM



ISO/IEC 10746-1 : 1997 (E)

ITU-T Rec. X.901 (1997 E) 27

Binders are responsible for solving many of the problems of distribution. The binder establishes the binding when the
channel is created and subsequently maintains the end-to-end integrity of the channel. This means that it handles changes
of configuration and communication or object failures, and keeps track of the other endpoints if objects move or fail and
are replaced (the process of object relocation). Binders are thus involved in the provision of many of the distribution
transparencies.

The protocol objects provide for communication of sufficient quality and reliability between the binders they serve. In
addition to handling whatever peer protocols are in use, they provide access to supporting services, such as directory
services for translating addresses, where necessary.

Any of these three kinds of engineering object may itself need to communicate with other parts of the system, in order to
obtain the information it needs to do its job, or to supply management information to other engineering objects. Such
communication may itself need the various distribution transparencies, and so the communication from these objects to
elsewhere is by means of a channel; from this point of view, the engineering objects within one channel play the role of
basic engineering objects in another. Similarly, any of these objects can support control interfaces, via which they can be
managed. For example, a protocol object may provide a control interface through which the target quality of service for
the channel can be adjusted.

In cases where the channel crosses some technical or organizational boundary, there may be a need for additional checks
or transformations to match the requirements on the two sides. These functions are performed by interceptors (described
later in 8.5.7), which form part of the channel. They may need to perform format or protocol conversion, or may provide
accounting or access control checks. An interceptor may be built up from protocol objects, binders and stubs, depending
on the nature of the job it has to do.

For simplicity, Figure 4 has been drawn showing a configuration of stubs, binders, protocol objects and interceptor
supporting a single channel between two basic engineering objects. However, in general, such a configuration could
support channels between multiple pairs of basic engineering objects (see Figure 5), or channels with many endpoints,
supporting various forms of group communication (see Figure 6) or multicast. In this latter case, the binders are
responsible for coordinating communication, but the multicast mechanisms may be provided by either binders or protocol
objects, depending on the technology available. Multi-endpoint channels are used to support replication transparency.

T0726200-96/d05

Basic
engineering

object

Basic
engineering

object

Basic
engineering

object

Basic
engineering

object

Client
stub

Server
stub

Interceptor

Client half

Client
binder

Client
protocol
object

Server
protocol
object

Server
binder

Server half

Figure 5 – An example of a multiple channel configuration

FIGURE 5/X.901...[D05] = 12.2 CM



ISO/IEC 10746-1 : 1997 (E)

28 ITU-T Rec. X.901 (1997 E)

T0726210-96/d06

Binder

Interceptor

Binder

Protocol
object

Protocol
object

Stub Stub

Basic
engineering

object

Basic
engineering

object

Basic
engineering

object

Basic
engineering

object

Basic
engineering

object

Figure 6 – An example of a group channel configuration

FIGURE 6/X.901...[D06] = 12.3 CM

8.5.3 Interface references

When an interface is created, an interface reference for it is generated. The nucleus is involved in this process, so as to
make the reference unambiguous, and sufficient resources are allocated and initialized for the engineering objects in that
node to participate in bindings if asked to do so.

The interface reference is the key for access to a large amount of information. Given such a reference, it is possible to
discover the type of the interface, a communications address at which binding to it can be initiated, and other information
about the expected behaviour of stubs, binders and protocol objects within the channel, which is needed for a subsequent
binding to succeed. It is also the starting point for calling upon the functions needed to handle errors; knowledge of an
interface reference makes it possible to contact an appropriate relocator.

This does not imply, however, that the information is all encoded as part of the interface reference; to do so might make it
a very big item to manipulate. The architectural requirement is that there should be some prescription for obtaining the
necessary information, starting from the interface reference, but the exact prescription, in terms of decoding and enquiry
from other engineering objects, can be chosen differently in different system designs.

In addition to these design variations, there can also be variations arising from the existence of multiple naming domains
and the allocation of references with respect to these domains. For both these reasons, it can be necessary for interceptors,
or other engineering objects in the channel, to transform interface references when they are passed across domain
boundaries.



ISO/IEC 10746-1 : 1997 (E)

ITU-T Rec. X.901 (1997 E) 29

8.5.4 Binding

There are two kinds of engineering binding. Within a cluster, or between the engineering objects which cooperate within
a node to provide a channel, there are local bindings, which are provided by system-specific mechanisms. Such bindings
are regarded as primitive in the architecture. On the other hand, the bindings supported by channels provide appropriate
distribution transparencies; these are called distributed bindings, and creating them will generally involve some
interaction between a number of nodes to establish the channel.

8.5.5 Channel establishment

In order to establish a binding between engineering objects, it is necessary to be able to identify and describe the
interfaces of those objects. An interface reference is used to identify and describe an engineering interface in sufficient
detail to enable that interface to be bound. An interface reference can be passed through one or more interactions between
engineering objects. It enables any object which receives that interface reference to initiate a binding to that interface
without any additional information.

An engineering object which wishes to pass an interface reference to one of its interfaces, asks its nucleus to create an
interface reference (via an operation on its node management interface). An interface reference identifies the interface
and provides the information necessary to create a binding to it.

The type of an engineering interface conveys the computational interface type that it implements in addition to the
channel configuration of stubs, binders, protocol objects, and interceptors (described later in 8.5.7) needed to support it.
When engineering interfaces with compatible computational interface types are bound together, the binding establishment
negotiates the exact configuration of the channel needed to support all the interfaces it encompasses. It might be possible
to optimize this configuration. For example, if the interfaces support the same representation of data, then there is no need
for the channel to be configured with engineering objects to convert between the data representations, although it will still
be necessary to marshal a copy of the arguments or results into a message.

Bindings between interfaces are created through the interaction of the nucleus objects (usually, those nodes at which the
interfaces are located). Therefore, when a nucleus creates an interface reference, it supplies sufficient instructions on how
to be contacted in order to establish a binding to the referenced interface. In engineering language terms, the nucleus
identifies the communication interface(s) at which the nucleus-nucleus interaction must occur. The identification of a
communication interface might require information about the communication protocols supported at that communication
interface.

Typically, the nucleus nominates one of its own communication interfaces for binding-establishment interactions, but a
more general approach is also permitted. The communication interface (and its communication protocol) used in the
binding-establishment interaction do not imply anything about the communication interface (and communication
protocol) used to support the binding once it is created. An analogy is that a telephone conversation can be used to initiate
the sending of paper documents through the postal system.

The interface reference conveys highly complex information which is interpretable throughout the ODP system. The
detailed structure of an interface reference is, therefore, the subject of separate standardization. The RM-ODP does not
prescribe whether the interface reference physically contains the information described here, or is simply a key used for
accessing this information through interaction with other engineering objects (e.g. a name to be resolved by a name
server).

As an example of channel establishment, consider the establishment of a stream channel between two engineering objects.
This takes place in several steps.

* Step 1

One of the two engineering objects initiates the configuration of a channel by interaction with its nucleus. The interaction
syntax may have the following format:

InitChannel (StreamChannel, producer/consumer, IFPC1, result IFrefStreamchannel)

where StreamChannel is of type “StreamChannel” and Streamchannel is the type of channel to be created;
producer/consumer indicates that the concerned engineering object will have both a producer and consumer role for the
stream channel; IFPC1 is the interface of the engineering object to be bound to the stream channel.



ISO/IEC 10746-1 : 1997 (E)

30 ITU-T Rec. X.901 (1997 E)

When this interaction occurs, the nucleus creates a stub object, a binding object and a protocol object corresponding to
the channel type and the role. These engineering objects are bound to create a first part of a stream channel. The
presentation interface of the stub object is bound to the IFPC1 interface. The stub object is then bound to the binding
object that is bound to the protocol object. The result of this interaction is an interface reference (IFrefStreamchannel).
The interface reference will be communicated to the engineering objects that want to bind to the channel.

* Step 2

The interface reference of the channel is communicated to the second engineering object. This object interacts with its
nucleus to bind to the channel by means of the following interaction:

BindChannel (StreamChannel, producer/consumer, IFPC2, IFrefStreamchannel)

where StreamChannel is the type of channel; producer/consumer indicates that the second engineering object will have
both a producer and consumer role for the stream channel; IFPC2 is the interface of the second object to be bound to the
stream channel.

The nucleus determines from the interface reference IFrefStreamchannel, the channel type and location of the protocol
objects for the other participants in the stream channel. The nucleus creates a stub object, a binding object and a protocol
object corresponding to the channel type of the other participants and the role. These objects are bound to the part of the
stream channel already established and to the second engineering object. Then the binders in the channel interact with
each other to enable communication across the channel.

* Step 3

Other objects may bind to the existing channel using the same BindChannel () interaction.

8.5.6 Management interfaces

Only an object can modify its own behaviour. An object may respond to requests from a management application to
modify its behaviour and may, in consequence, delegate responsibility for some part of its management to the
management application.

Resource management requires that it should be possible to invoke management operations on individual services, the
engineering objects that contain them, the cluster that contains the engineering object, the capsule that contains the cluster
and the node that supports the capsule.

8.5.7 Interceptors

Interceptors are specified to meet requirements, identified in an enterprise specification, for the federation of technology
or administrative domains. Interceptors correspond to the notions of “gateway”, “agent”, or “monitor” objects which
stand between two domains and enable or permit interactions on the basis of a contract between the Administrations that
specifies the basis for their federation.

Within a technology domain, the nucleus objects have identical data representations and functionality of protocols,
naming and addressing. When two technology domains meet, there is an opportunity to merge the domains – i.e.
computational objects in each domain are extended to use both their own and the foreign domain’s technology (or both
switch to a more generic common technology). Where this occurs, the technology boundary dissolves and access
transparency is sufficient. Interceptors cover the case in which it is not possible to modify the technology of one or both
of the domains and, in consequence, interception must occur at the boundary, providing protocol conversion and name
translation.

Protocol and data translation over technology boundaries are carried out by in-line interceptors and these are involved in
all object interactions over the boundary. For efficiency, only one in-line interceptor would be used for each technology
boundary (see Figure 7).

Administrative boundary interceptors exist entirely within an Administration and fulfill protection responsibilities for an
Administration. For instance, an administrative boundary interceptor could be used in the translation of security
information containing permissions. Such an interceptor could be used before an interaction by the invoking
computational object infrastructure. An administrative interceptor may communicate with the similar interceptor in the
other domain to exchange information, such as cryptographic keys, and to check administrative information before
translating it (see Figure 8). The translations carried out by administrative interceptors may be used by several successive
interactions between computational objects without further use of the interceptor.



ISO/IEC 10746-1 : 1997 (E)

ITU-T Rec. X.901 (1997 E) 31

T0726220-96/d07

Boundary

Interceptor

Figure 7 – In-line Interceptor – Technology boundary

FIGURE 7/X.901...[D07] = 4.8 CM

T0726230-96/d08
Boundary

Interceptor Interceptor

Figure 8 – Split Interceptor – Administrative boundary

FIGURE 8/X.901...[D08] = 6 CM

Where an administrative and a technology boundary coexist, then both in-line and off-line interceptors would be used
(combination of Figures 7 and 8). Alternatively, the in-line interceptor may be split, so that there are two in-line
interceptors, one in each administrative domain to support the trust relationships (see Figure 9).

T0726240-96/d09

Boundary

InterceptorInterceptor

Figure 9 – Split Interceptor – Combined technology and administrative boundary

FIGURE 9/X.901...[D09] = 4.4 CM



ISO/IEC 10746-1 : 1997 (E)

32 ITU-T Rec. X.901 (1997 E)

In general, boundaries are N-way because more than two subsystems may meet at the same location, logically however an
N-way boundary can always be modelled as N 2-way boundaries and thus, architecturally, only the 2-way interceptor case
needs to be considered.

Special conditions arise where federation requires that the traders in each domain be linked. If a trader is accessible
through an in-line interceptor, then that trader can be used to access subsequent traders, but the interceptor must provide
special initialization functions to allow access to at least an initial trader across itself in both directions. This initialization
can be done by having the interceptor federate traders on either side of its boundary, by having the interceptor become a
proxy trader, or by building a trader into the interceptor itself.

8.5.8 Conformance points

The structuring of the engineering specification into clusters, capsules and nodes, and the support of interaction by
structured channels gives rise to a large number of interfaces, any of which can be selected as a conformance point,
allowing for observation and conformance testing.

The various interfaces involve different kinds of conformance. The interface between protocol objects is an interworking
conformance point, providing for familiar methods, like OSI testing, based on observation of the communication
behaviour. Most of the other interfaces are internal to a node, and represent boundaries between software modules; they
are programmatic reference points and allow testing for software compatibility and portability. Some of the interfaces to
basic engineering objects may allow other forms of conformance testing, for interchange or perceptual conformance
(correct interaction with the real world), they may, also, be conformance points at which behaviour is assessed for
consistency with requirements in the enterprise and information specifications.

8.6 Technology language

The technology specification describes the implementation of the ODP system in terms of a configuration of technology
objects representing the hardware and software components of the implementation. It is constrained by cost and
availability of technology objects (hardware and software products) that would satisfy this specification. These may
conform to implementable standards which are effectively templates for technology objects. Thus, the technology
viewpoint provides a link between the set of viewpoint specifications and the real implementation, by listing the standards
used to provide the necessary basic operations in the other viewpoint specifications, and the aim of the technology
specification is to provide the extra information needed for implementation and testing by selecting standard solutions for
basic components and communication mechanisms. Such a selection is necessary to complete the system specification,
but is largely divorced from the rest of the design process.

There are consequences of the technology selection, however. One area in which the selections in the technology
specification feed back to other aspects of the system design is in the provision of a specific quality of service. The
selections in the technology viewpoint determine the performance costs of interactions and thus, indirectly, the quality of
service which can be achieved by the behaviour defined in other viewpoint specifications.

The technology specification plays a major role in the conformance testing process. It identifies the conformance points
in the real system at which a tester can make observations of its behaviour and it supplies the information needed to
interpret the observations a tester can make in terms of the vocabulary and concepts used in the other viewpoints of the
system specifications. For example, it allows valid interactions to be recognized, so that their appropriateness can be
checked against some specified technology object behaviour. The information required for this purpose is called
Implementation Extra Information for Testing (IXIT).

8.7 Consistency between viewpoints

The five viewpoint specifications for a system are linked by statements defining the relations between key terms in them
and establish that:

• the specifications relate to a single system and are not independent;

• the specifications are self consistent;

• observable behaviour at conformance points in the technology specification can be related to requirements
in the other viewpoint specifications.

Many of the links needed will be provided implicitly by the notations used, resulting from correspondences between
names. However, some of the key constraints need to be stated explicitly. In the architecture, constraints are placed on the
relations between terms in the viewpoint languages themselves, establishing some limits on the mappings which can



ISO/IEC 10746-1 : 1997 (E)

ITU-T Rec. X.901 (1997 E) 33

be established. Most of the constraints placed are between terms in the computational and engineering languages, and are
defined so as to create consistent interpretations when system components, such as those supporting the ODP functions,
are specified separately.

Clear mappings between viewpoints are necessary if the processes of identifying interfaces and of providing
transparencies are to be supported automatically by development tools. For example, a computational object may be
realized as a set of linked engineering objects, but a single engineering object cannot represent multiple computational
objects; a computational interface cannot be divided into separate engineering interfaces except where they are related by
replication functions; computational interfaces are identified unambiguously by engineering identifiers. These kinds of
constraint help to ensure that common engineering mechanisms will be able to support the full range of possible
computational behaviours.

In order to illustrate the nature of the correspondences that may apply, suppose, for example, that a certain specification
of a given system may be represented as a set of interacting Viewpoint 1 (V1) objects, as represented in Figure 10.

T0726250-96/d10

Figure 10 – A V1 view of a system

FIGURE 10/X.901...[D10] = 5 CM

The same system might be described from another Viewpoint (V2) as a different set of different interacting V2 objects, as
represented in Figure 11.

T0726260-96/d11

Figure 11 – A V2 view of a system

FIGURE 11/X.901...[D11] = 4.9 CM



ISO/IEC 10746-1 : 1997 (E)

34 ITU-T Rec. X.901 (1997 E)

Since these are two descriptions of the same system, it is possible to group objects in the two preceding pictures, in order
to verify that the correspondence rules are satisfied between groups. This process is depicted in Figure 12.

T0726270-96/d12

V2  view

V1 view

Correspondences

Figure 12 – Correspondences between different viewpoints of a system

FIGURE 12/X.901...[D12] = 11.3 CM

If such a correspondence cannot be established, then the two different descriptions are not consistent, and should be
refined until a correspondence can be demonstrated.

Configurations of objects that are compared (the configurations of boxes in Figure 12) are, in general, defined for the sole
purpose of finding a correspondence between two specifications.

In other words, in order to compare a specification SpecA written in a given viewpoint language L1, and another
specification SpecC of the same system, written in another viewpoint language L2, in the general case it is necessary to:

a) Transform SpecA into another specification in L2. Call this specification SpecB. Note that the RM-ODP
does not define any transformation algorithms.

NOTE – It may sometimes be convenient, in order to carry out this transformation, to derive from SpecA another
specification of the same system, still written in L1, that is equivalent to SpecA, in order to better verify
correspondences. This corresponds, for example, to grouping the objects defined in the system of Figure 12 into
other objects (the boxes).

b) Verify that there are no conflicts between SpecB and SpecC.

Correspondences apply between specifications expressed in different viewpoint languages, not between terms of those
languages. In other words, there is no direct translation from one viewpoint language into another one.

8.7.1 Enterprise viewpoint consistency with other viewpoints

The enterprise language should serve as the basis for specifying enterprise goals which must be reflected directly or
indirectly in all other viewpoint specifications. The enterprise viewpoint describes, explicitly, the objectives of the system
in the context of the organization in terms of members, roles, actions, purposes, usage and policies.



ISO/IEC 10746-1 : 1997 (E)

ITU-T Rec. X.901 (1997 E) 35

Therefore, an information, computational, engineering or technology viewpoint specification is consistent with an
enterprise specification if all the roles, activities, and policies described in the enterprise specification, are correctly
reflected. For instance, dynamic schemata defined in an information specification must obey the policies described in the
enterprise specification. Different roles identified in the enterprise specification may be supported by different
computational objects, having different transparency requirements. Thus, transparency needs for each role in the
enterprise specification should be reflected by the use of the corresponding transparency mechanism in the engineering
specification. A flexibility requirement or policy in the enterprise specification can lead to the choice of specific
technologies for implementation of a distributed system.

8.7.2 Correspondences between computational and engineering specifications

A correspondence exists between the computational specification and an engineering specification to be executed. This
engineering specification exhibits the behaviour described in the computational specification. Figure 13 is an example of
this correspondence.

T0726280-96/d13

stub

protocol

stub

binder

ClusterCapsule
Cluster

Capsule

Node 2
Nucleus

Computational

Engineering

Binding objectComputational
object

Computational
object

Basic
Engineering

Object Channel
controller

Basic
Engineering

Object

Capsule
manager

Cluster
manager

protocol

binder

Channel

Node 1
Nucleus

interceptor

Cluster
manager

Capsule
manager

Figure 13 – Example of correspondence between computational and engineering viewpoints

FIGURE 13/X.901...[D13] = 13 CM

The basic engineering objects correspond to computational objects. Basic engineering objects are grouped into clusters
that could represent, for instance, executable pieces of code in C or C++. Clusters are organized into a capsule that could
represent, for instance, a UNIX process. The capsule is bound to a nucleus object (representing, for instance, a particular
operating system) that belongs to a node (representing, for instance, a work station). Basic engineering objects are
supported by additional engineering supporting objects as shown in Figure 13.



ISO/IEC 10746-1 : 1997 (E)

36 ITU-T Rec. X.901 (1997 E)

The refinement of computational templates into engineering templates corresponds to the notion of compiling programs
to produce object code. The refinement of engineering templates into cluster templates corresponds to the notion of
linking modules to form an executable program image. The concept of capsule corresponds to the notion of address
space or process in most operating systems.

The binding object in the computational specification represented in Figure 13 corresponds to a channel configuration in
the engineering specification. The environments constraints specific to the interfaces that are being bound (e.g. security,
QOS) are taken into account while establishing a channel between the basic engineering objects concerned.

The control interface of the binding object in the computational specification corresponds to interfaces to stubs and
binders in different nodes in the engineering representation. A channel controller object could be introduced that is in
charge of the dispatching of the control operations. The communication between the channel controller object and the
stub and binders takes place through channels established for this purpose (not shown in Figure 13). Supporting
engineering objects may be created (e.g. synchronization objects) to manage and control a set of interrelated channels.

More generally, a computational specification describes the functionality of a system as a set of interacting computational
objects. The engineering specification is constrained by the computational specification in that it has to respect the
computational objects and their interfaces. Each computational object must be represented as one basic engineering
object or as a group of basic engineering objects. In the simplest case, a single engineering object is equated to a
computational object. For example, an application program, when compiled, corresponds to an engineering object to be
loaded as a load module in a cluster, after link-editing with other engineering objects like stub, binders, etc. This
configuration is depicted in Figure 14.

T0726290-96/d14

Corresponds to

Cluster

Capsule

Computational
Object

Engineering
Object

Figure 14 – One-to-one correspondence

FIGURE 14/X.901...[D14] = 10.2 CM

For each computational interface there must be one corresponding engineering interface, except where transparencies
which replicate objects are involved. In this case, the same computational interface can be associated with different
engineering interface identifiers, so allowing replication, e.g. for performance reasons. The computational interface is
associated with a set of engineering interface references, corresponding to different engineering objects. The activities of
these engineering objects must be coordinated by replication objects in order to ensure that the system maintains a



ISO/IEC 10746-1 : 1997 (E)

ITU-T Rec. X.901 (1997 E) 37

consistent global state. An example of this case is in Figure 15, which shows two basic engineering objects, located in
two different nodes, that replicate the functionalities offered at a computational interface. Since the engineering objects
are in different nodes, replication coordination is ensured by two replication objects, one on each node, that communicate
through a channel.

Cluster

T0726300-96/d15

Capsule

Cluster

Node B

Corresponds to

Computational
Object

Engineering
Object

Engineering
Object

Replication
Object

Node A

Channel
Capsule

Replication
Object

Cluster

Figure 15 – Many-to-one correspondence

FIGURE 15/X.901...[D15] = 10.5 CM

The refinement process between the computational specification and the engineering specification may simply consist of
the identification of suitable supporting objects to populate channels that represent binding objects in the computational
specification. In other cases, there may be significant transformation of the templates for the computational objects
themselves, replacing declarative statements about behaviour (e.g. synchronization constraints) with explicit use of
appropriate ODP functions (e.g. the transaction function).

Given sufficient knowledge of the system’s configuration, particular optimizations can be engineered back in cases where
full generality of the engineering structure is not required. Thus, an implementor can short-circuit interactions between
basic engineering objects at the same node (for example, by using local procedure calls for increased performance)
provided that such short-circuits do not affect the interworking through interfaces visible to objects at other nuclei. In this
way, the architecture copes with distribution without requiring a multiplicity of mechanisms to cater for local and remote
interactions, and yet without sacrificing execution efficiency.

8.8 ODP functions

ITU-T Rec. X.903 | ISO/IEC 10746-3 provides outline descriptions of a set of ODP functions. These functions are either
fundamental or widely applicable to the construction of ODP systems. Detailed specifications for these functions will be
the subject to specific standardization activities and the resultant standards may combine specifications of ODP functions
to provide specifications for components of ODP systems.



ISO/IEC 10746-1 : 1997 (E)

38 ITU-T Rec. X.901 (1997 E)

The complete set of ODP functions is divided into four groups:

a) management functions;

b) coordination functions;

c) repository functions;

d) security functions.

8.8.1 Management functions

The management functions comprise:

• the node management function;

• the object management function;

• the cluster management function; and

• the capsule management function.

The node management function is provided by the nucleus of a node, and is concerned with control of processing, storage
and communications functions within a node. It provides for:

• management of processing threads;

• clock access and timer management;

• channel creation and the handling of engineering interface references;

• capsule template instantiation and capsule deletion.

The object management function is provided, where required, by any object and allows for the checkpointing and
deletion of the object.

The cluster management function is provided by a cluster manager and allows for the checkpointing, recovery, migration,
deactivation or deletion of the cluster.

The capsule management function is provided by a capsule manager and allows for the instantiation (including recovery
and reactivation), checkpointing, deactivating or deleting of all clusters in a capsule, and deletion of the capsule itself.

8.8.2 Coordination functions

The coordination functions comprise:

• the event notification function;

• the checkpoint and recovery function;

• the deactivation and reactivation function;

• the group function;

• the replication function;

• the migration function;

• the transaction function; and

• the engineering interface reference tracking function.

The event notification function records and makes available event histories. Event producers interact with the function to
create event histories and the function notifies registered event consumers of the availability of event histories.

The checkpoint and recovery function coordinates the checkpointing of clusters and the recovery of failed clusters from
checkpoints. It is governed by policies covering when clusters should be checkpointed and where the associated
checkpoints should be stored, when and where clusters should be recovered, and which checkpoint should be recovered.

The deactivation and reactivation function coordinates the deactivation and reactivation of clusters. It is governed by
policies covering when clusters should be deactivated and where the associated checkpoints should be stored, when and
where clusters should be reactivated, and which checkpoint should be used for reactivation.

The group function provides the necessary mechanisms to coordinate the interactions of objects in a multiparty binding.

The replication function is concerned with the special case of a group in which the objects in the group are behaviourally
compatible. It provides the necessary mechanisms to ensure that the group appears to other objects as if it were a single



ISO/IEC 10746-1 : 1997 (E)

ITU-T Rec. X.901 (1997 E) 39

object and also allows the membership of the group to be increased or decreased. The function can be used at the level of
a cluster, in conjunction with the group function, to form a coordinated set of replica groups where the objects in each
cluster form a replica group.

The migration function coordinates the migration of a cluster from one capsule to another. It can operate either by
replicating the cluster, making use of the replication function, or by deactivating the cluster and reactivating it in another
cluster, using the deactivation and reactivation function.

The transaction function coordinates and controls a set of transactions to achieve a specified level of visibility and
permanence, subject to policies that determine the actions of interest for the transaction. The ACID transaction is a
special case of the transaction function for which the transactions have the properties of being atomic, consistent, isolated
and durable.

The engineering interface tracking function monitors the transfer of engineering interface references between engineering
objects in different clusters in order to determine when the supporting infrastructure for the reference is no longer
required because no object in any other cluster can bind to the referenced interface.

8.8.3 Repository functions

The repository functions comprise:

• the storage function;

• an information organization function;

• the relocation function;

• the type repository function; and

• the trading function.

The storage function stores data.

The information organization function manages a repository of information described by information schema and allows
modification and updating of both the schema and the repository, and querying the repository.

The relocation function manages a repository of locations for interfaces and management functions for clusters
supporting those interfaces.

The type repository manages a repository of type specifications and type relationships.

The trading function supports the export of service offers by service providers in the form of information about the
interface at which the service is provided, and the import by service users of service offers matching specific
requirements.

8.8.4 Security functions

Security functions address requirements for confidentiality, integrity, availability and accountability. They comprise:

• the access control function;

• the security audit function;

• the authentication function;

• the integrity function;

• the confidentiality function;

• the non-repudiation function; and

• the key management function.

The access control function prevents unauthorized interactions with an object.

The security audit function monitors and collects information about security related actions, and allows the analysis of the
information to review policies, controls and procedures.

The authentication function provides assurance of the claimed identity of an object.

The integrity function detects and/or prevents the unauthorized creation, alteration or deletion of data.

The confidentiality function prevents the unauthorized disclosure of information.



ISO/IEC 10746-1 : 1997 (E)

40 ITU-T Rec. X.901 (1997 E)

The non-repudiation function prevents one object in an interaction from denying its involvement in the interaction.

The key management function provides facilities for the management of cryptographic keys.

The functions provide services that can be applied both to objects themselves and to the interactions between objects. The
mechanisms for providing security services themselves require protection, since an intelligent and malicious threat is a
characteristic of environments in which security is required. Engineering encapsulation can help to provide such
protection. In many cases security services can be provided without requiring reference in computational specifications.

8.9 ODP distribution transparencies

As described in 8.5, engineering objects interact with one another via stubs, binders, protocol objects, interceptors and
nuclei. The engineering objects cooperate to provide a transparency by bringing uniformity to some aspect of the
distribution of the basic engineering objects they support. For example, they may translate invocations into exchanges of
messages using a common data format to mask differences in data encoding.

Some forms of transparency require supporting functions. For example, if engineering objects can move from one
location to another, a means of recording and discovering the current location of a component is required (the relocation
function).

Supporting functions may themselves have transparency requirements. For example, a relocation function may be
replicated to increase its availability.

Supporting functions are modelled as engineering objects so that the architecture provides the maximum degree of
configuration flexibility and reuse of architectural concepts in defining the distribution of these functions. In an
implementation, supporting functions may be, for example, collocated with one another for efficient interaction or
replicated for reliability.

Distribution transparency is the property of hiding the properties of distribution from end users and specifiers in the
enterprise, information, and computational languages. “Component composition” standards will contain precise recipes
for using functions and other base components to provide transparencies.

8.9.1 Access transparency

Access transparency enables interworking across heterogeneous computer architectures and programming languages.

Access transparency is critical in building distributed systems using heterogeneous computer architectures, programming
languages, etc.

8.9.2 Failure transparency

Failure transparency hides from a computational object the failure and possible recovery of other computational objects
or the object itself, to enable fault tolerance. It can be provided by an appropriate infrastructure. Otherwise, it is
supported by the checkpoint and recovery function or by the replication function, together with the relocation function.

A service which relies on checkpointing alone for failure transparency must provide, as part of that service, means for
clients to detect that there has been a restart from a checkpoint and that state information held by the client about the
service may be out-of-date. If there is a requirement for consistency between multiple computational objects, then
transaction transparency should be specified.

8.9.3 Location transparency

Location transparency hides from a computational object the locations in space at which the computational objects with
which it interacts reside. This implies that interfaces can be identified and accessed without specifying their location in
space.

8.9.4 Migration transparency

Migration transparency hides from a computational object the fact that it has moved. It is supported by the migration
function.

Migration transparency may be combined with persistence transparency or with failure transparency, so that a cluster is
not reactivated at its original site but the cluster template is transferred directly to the new location and the cluster is
reactivated there.



ISO/IEC 10746-1 : 1997 (E)

ITU-T Rec. X.901 (1997 E) 41

8.9.5 Persistence transparency

Persistence transparency hides from computational objects the allocation and deallocation of resources to clusters or their
templates, and provides for the sharing of resources. It is supported by the reactivation and deactivation functions.

A basic engineering object in a cluster can interact with other objects. When the cluster is deactivated, the basic
engineering object is saved in a cluster template, with its activities frozen, and cannot interact with other objects.
Persistence transparency hides the deactivation and reactivation of cluster templates, so that basic engineering objects
always appear to be available for interaction. This implies that an object has a lifetime of its own, independent of its
supporting environment.

8.9.6 Relocation transparency

Relocation transparency hides from a computational object the fact that interfaces to which that object is bound have
changed their location. This implies the ability to re-establish binding if necessary. The relocation transparency is
supported by the relocation function.

8.9.7 Replication transparency

Replication transparency masks the use of a group of computational objects to support a single computational interface. It
is supported by the replication function and the relocation function.

8.9.8 Transaction transparency

The coordination of transactions involves the scheduling, monitoring, and recovery of the actions of interest within those
transactions. To achieve this control requires interaction between the computational objects involved in the execution of
the actions of interest and the computational objects that realize the transaction function. It is not generally possible to
coordinate the actions of interest simply by configuring engineering objects in the channels to intercept the actions of
interest. In particular, internal actions such as the start and completion of a transaction are not detectable by monitoring
the interactions between computational objects.

Therefore, transaction monitoring and control will usually require computationally visible interactions between
computational objects representing the information objects or dynamic schemata (i.e. application objects) on the one
hand, and computational objects providing the transaction function on the other hand. However, transaction processing is
very complex and it is undesirable to complicate the specification of application functionality by the addition of the
complex interactions needed for transaction control.

Transaction transparency is the provision of an automatic process that refines a computational specification without
transaction control into a computational specification with transaction control.

The nature of the refinement, and the extent of involvement of the specifier in the refinement process, will depend on the
particular transaction mechanism to be used. Typically, there will be the need for additional computational interfaces to
be bound to the computational objects involved in the transaction function with interactions on these computational
interfaces to coordinate the scheduling, monitoring and recovery of actions of interest to the transaction function. The
computational object’s behaviour will need to be extended to add recovery actions and the interfaces giving access to its
normal functionality might be extended or replaced.

9 Conformance assessment

9.1 Conformance assessment and the development process

Product development extends from the initial realization of one or more requirements for an ODP system to the final
provision of an example of an ODP system that fulfils those requirements. The development process potentially involves
the production of a number of specifications. One specification may be responsible for the generation of a number of
subsequent specifications using one of a number of types of step (“transformations”) including:

• translation; and

• refinement.

Specifications are expressed in some natural or formal language. Translation produces a specification with the same
meaning (usually in a different language). Refinement, on the other hand, produces a specification with new details that
serve to define the product more closely. If each specification is characterized by the set of potential products that it
could specify, translation leaves the set unchanged but refinement results in a subset.



ISO/IEC 10746-1 : 1997 (E)

42 ITU-T Rec. X.901 (1997 E)

After installation and commissioning, an instance of the ODP system then enters a phase of operational use, during which
it should meet the needs expressed in the document specifying its requirements. The product’s ability to do so depends
upon a number of practices during each of these development phases. Standards for providing “quality” describe
consistent sets of such practices along with the organization of people, documentation, and life cycle stages to which they
apply. Typically, some measurement of quality is made at each phase and changes are made if the quality is found to be
lacking. Conformance assessment provides such a measure of quality, usually in the phase during which the
implementation specification is realized. However, it may also be used in or have implication for other phases.

9.2 Conformance assessment: Relevant relationships

The relationships between specifications and real implementations that are relevant to conformance are divided into two
groups:

i) relationships between specifications and real implementations (conformance); and

ii) relationships between specifications alone (compliance, refinement, consistency and internal validity).

Conformance is a relation between a specification and a real implementation, such as an example of a product. It holds
when specific requirements in the specification (the conformance requirements) are met by the implementation.
Conformance assessment is the process through which this relation is determined.

Compliance is a relation between two specifications, A and B, that holds when specification A makes requirements which
are all fulfilled by specification B (when B complies with A).

Conformance of a real implementation is not always assessed against the “lowest level” (i.e. implementation)
specification in a product’s development process. It is possible for a “higher level” specification to be used (for example,
the one whose refinement resulted in the implementation specification). In either case, the correspondence between
consecutive specifications can be important. One such correspondence is determined by the rules of refinement.

Two specifications are related by the refinement relation when one is a refinement of the other and all the products that
could conform to the refinement also conform to the specification from which it was refined. This ensures that all the
constraints of the more generic specification are present in the refined one.

Specifications are not always related by being derived from the same set of requirements. Sometimes they have been
developed from two or more quite separate points of view (e.g. separate viewpoint language specifications). In this case,
consistency between the specifications can be an issue – it is important that the requirements of one specification do not
contradict those of another. Consistency is a relation between two specifications that holds when it is possible for at least
one example of a product to exist that can conform to both of the specifications.

A specification is valid when there are no conflicts between its properties and those implicit properties required of the
specification (e.g. a protocol specification may be expected to be free from deadlock), and when there is at least one
example of a product that could conform to it (i.e. it is not self-contradictory).

Conformance assessment is the determination of these relationships either by testing (conformance) or by specification
checking (compliance, refinement verification, consistency checking and internal consistency checking).

9.3 Conformance points and related concepts

When the conformance of a realization of an ODP specification is assessed using conformance testing, its behaviour is
evaluated (by delivering stimuli and monitoring any resulting events) at specific (interaction) points. The points used are
called “conformance points”, and they are usually chosen from a number of such points whose location is specified in the
RM-ODP Architecture. These potential conformance points are termed reference points.

In order to comply with the RM-ODP, standard ODP specifications are obliged to contain a conformance statement
which must (amongst other things) state which reference points should be used during conformance testing. It is intended
that every conformance point given in a specification will be one of the reference points defined in the Architecture.

In addition to the concepts of conformance point, reference point and interaction point outlined above, the OSI
conformance testing methodology and framework standard [ISO/IEC 9646] also defines the notion of a Point of Control
and Observation (PCO), which is not the point at which conforming behaviour is defined to exist (i.e. a conformance
point), but the point at which the behaviour at a conformance point is controlled and observed.



ISO/IEC 10746-1 : 1997 (E)

ITU-T Rec. X.901 (1997 E) 43

A conformance point is specified in ODP specifications to which conformance is likely to be claimed. A point of control
and observation is specified when documenting a specific means of testing the implementation. Different methods may
involve the identification of different sets of PCOs.

The processing system used to perform testing can be described using ODP nomenclature. It should be noted that PCOs
of the tested application are essentially the conformance points of the system that tests it. The reference points of the
testing system are potential PCOs, that may previously have been specified for consideration when defining a test
method.

The Foundations and Architecture in ITU-T Rec. X.902 | ISO/IEC 10746-2 and ITU-T Rec. X.903 | ISO/IEC 10746-3 do
not define PCOs or potential PCOs separately – the notions of the conformance points and reference points of the testing
system can be used instead. Positioning potential PCOs only at reference points would ensure that testing systems are
themselves ODP systems and would limit the range of test methods that might require specification. As the use of ODP
becomes more widespread, since there will be no practical distinction between potential PCOs and reference points, the
term PCO may then become redundant.

9.4 ODP conformance specifications

9.4.1 Level of abstraction

Conformance testers may require additional information when testing an implementation of some ODP specification.
Such information is called Implementation Extra Information for Testing (IXIT) and it includes information that is
required to relate the concepts in ODP Implementation Conformance Statements (ICS) to their realization in an
implementation.

The level of abstraction at which a conformance point is specified has implications on the work required to provide an
IXIT mapping, the constraints imposed on the implementation process, and the amount of implementation independence:

• There is a requirement for additional extra information about the specification to implementation mapping
at higher levels of abstraction. Since the provision of this information and the implementation process both
involve the linking of specification terms to implementation artefacts, the provision of the IXIT mapping
can require a level of effort proportional to that required in the whole of the implementation process. For
conformance points defined using a particularly high level of abstraction, this can represent an
unreasonable cost and may make conformance testing unattractive.

• It is also noted that all PCOs must have some explicit and accessible realization in a real implementation, a
feature not necessarily shared with other aspects of a specification.

The specification of conformance points (for which PCOs must be allocated) therefore represents a
constraint on the implementation process that will be greater than the larger the number of points defined.
The less related to an implementation a conformance point’s specification is (e.g. the higher its level of
abstraction), the greater the inconvenience of providing an explicit representation in the real
implementation.

• The use of a lower level of abstraction in the specification of a conformance point implies that fewer
details have been “abstracted away” from an implementation and therefore that the specification is less
implementation-independent. The greater detail also implies that a greater effort may be required in the
conformance assessment process to assess each detail (although less interpretation is necessary in
providing IXIT).

9.4.2 Use of multiple reference points

The definition of many, as opposed to a single, conformance points in a specification can be required for purposes other
than simply increasing the number of prescriptive aspects of a specification.

An object’s specification may define a number of different types of interface to its environment. For example, it may have
interfaces to people, to other objects, to communication mechanisms or to storage mechanisms. Each of these can be
characterized by reference points of different classes (perceptual, programmatic, interworking and interchange classes),
each of which has different conformance testing consequences. This implies that different conformance points will need
to be identified when interfaces of these different types are present.

Even when only one type of interface is considered, the implementation of an object may be intended to be accessible at
physically or logically separated points. Associating separate conformance points with each of these recognizes these
details of the implementation and so lowers the level of abstraction at which the conformance points are specified



ISO/IEC 10746-1 : 1997 (E)

44 ITU-T Rec. X.901 (1997 E)

(because more details of an implementation are prescribed), which has the implications outlined in 9.4.1 above. Separate
conformance points also make the “intention” to have separate points of access a prescriptive, rather than a descriptive
detail (and thus ensure that the intention is realized).

When an object is specified in terms of a number of components with different interfaces between each other, it is not
always clear whether the internal detail exists to prescribe the external behaviour of the object by implication or whether
it is intended to be prescriptive (mandating the way in which the object should be built). However, when the components
are considered to be a prescriptive detail, additional conformance points need to be defined (e.g. at each of the inter-
component interfaces).

9.5 Conformance implications of viewpoint languages

The use of ODP viewpoint languages in ODP specifications has a number of implications:

• conformance testers are expected to evaluate the effect of specifications in terms of the engineering
specification of an implementation under test, which, together with other factors requires extra information
for testing to be provided by a testing laboratory client, including:

i) IXIT+ICS relating the implementation of the concepts and structures of an implementation’s
enterprise specification to the implementation of its engineering specification;

ii) IXIT+ICS relating the implementation of the concepts and structures of an implementation’s
information specification to the implementation of its engineering specification;

iii) IXIT+ICS relating the implementation of the concepts and structures of an implementation’s
computational specification to the implementation of its engineering specification;

iv) IXIT+ICS relating the implementation of the concepts and structures of an implementation’s
engineering specification to the implementation of the choices made in its technology specification
(this is to be provided as part of the technology specification);

• each viewpoint language enables the separate specification of different types of requirement so that, for
example, business goals, system design and use of technology can be addressed separately – this implies
that parallel development of separate specifications is possible;

• checking parallel development of specifications requires the consistency of specifications to be evaluated
against each other from time to time during a development process.

Because specifications provided from different viewpoints may be independent and may therefore not be related by
refinement, refinement checking does not supply a complete check on the parallel progress of the different specifications
during their development. Some such check is nonetheless clearly desirable. This requirement is met by consistency
checking (see 8.7). The objects described by viewpoint specifications are often from the same universe of discourse: the
information object in an information specification may appear as an argument to a function in the interface to a
computational object, for example; the conformance points of the enterprise specification may reappear as conformance
points in the computational and engineering specifications; and so on.

9.6 Conformance assessment activities

The activities for use during the conformance assessment process include:

• refinement checking, between specifications;

• internal validity checking of a single specification;

• consistency checking of a number of specifications;

• testing of a realization or animation, between a real implementation and a specification.

10 Management of ODP systems

An ODP system comprises a number of ODP applications together with supporting services. The supporting services
include services like processing, file storage, user access and communications as provided by a traditional operating
system in a centralized system, but they also include services necessary for system distribution such as directory and
name management, trading and the services supporting distribution transparencies. All these services need to be managed,
together with the ODP applications: the nature of the management functions needed to do this will depend on the services
or applications concerned.



ISO/IEC 10746-1 : 1997 (E)

ITU-T Rec. X.901 (1997 E) 45

Management of an ODP system will itself be carried out by one or more management applications interacting with the
system services and ODP applications through interfaces offering a level of management granularity determined by the
specification of the management application of concern. Where necessary, the management application will interact with
the ODP functions via the management functions defined for them.

Management applications in an ODP system will reflect interrelationships between management functions, for example,
the fact that it may be necessary to perform reconfiguration in order to maintain QOS demonstrates that management
functions are inter-related. Accounting is also normally included in management applications, reflecting the fact that most
services need internal accounting for management purposes even if users are not billed for the service.

Security functions are not included in the set of management functions even though management interactions are
expected to be subject to policy control, for example, authentication and access control are generally essential to prevent
unauthorized users or managers from performing management actions on components of a service or application. Thus,
all services in an ODP environment need the use of a security service just as they need the use of a communications
service, nevertheless security management is not a generic management service required for managing other services.

10.1 Management domains

In order to cope with the complexity of management and the issues of scale, especially within large ODP systems, it is
essential to provide a common framework for partitioning overall management. Within the ODP environment, there is a
multiplicity of coexisting management views and boundaries of responsibility, each based on different structuring criteria.

Management domains provide a flexible and pragmatic means of specifying boundaries of management responsibility and
authority that reflect these different views. A domain identifies a set of objects, each of which is related by a
characterizing relationship to a domain controlling object. The member objects may be resources, workstations, modems,
processes, etc., depending on the purpose for which a particular management domain is defined. The controlling object
has an attribute which identifies member objects. An object is referred to as a member object if its identity is known to
the management domain controlling object.

Management domains permit a set of managed objects to be controlled under a common policy, providing a basis for
coping with the complexity of large scale ODP systems. They simplify management activity because policy and the set
membership can be modified through interactions with a single object – the management domain controlling object –
rather than by forcing managers to interact individually with the multiplicity of managed objects within the environment.

Management domains do not encapsulate the member objects – external objects may interact directly with an object in a
domain. Management domains are persistent even if, at some points in time, they do not contain any object since it must
be possible to create an empty management domain and later include objects in it.

10.2 Management policy

In enterprise terms, the characterizing relation for a domain embodies the policy associated with the domain. Thus,
management domains provide the means for specifying management policy for a group of managed objects rather than
having to do this for each individual object. The overall management objective and external constraints relating to laws
(e.g. a national Data Protection Act), regulations, or higher level policies are two aspects of the policy for a management
domain. These examples show that it may be difficult to specify some policies formally.

Internal constraints place restrictions on the operations which can be performed on objects in a management domain.
These can be expressed declaratively in terms of obligations on potential members of the domain.

An important aspect of management policy is to specify what management operations managers may perform on the
objects they manage. An access rule is an authority relationship which specifies the set of permitted interactions between
a domain of managers and a domain of managed objects. For example, all members of the domain “SysProgrammers” are
allowed to start and stop the objects in the “DepartmentServices” domain. The permitted interactions may be a subset of
the management interactions defined by the interfaces to the objects in the domain.

10.3 Modelling management structures

Domain relationships can be used to model management structures. Two management domains are defined to be disjoint
if they have no member objects in common. Two management domains overlap if there are objects which are members of
both domains. An example is the shared management of a gateway interconnecting two networks by the management
centres of each network. This can be accomplished by referencing the object from both management domains.



ISO/IEC 10746-1 : 1997 (E)

46 ITU-T Rec. X.901 (1997 E)

Implicit overlap may occur between two management domains containing managed objects of different type but referring
to the same real-world entity. An example is scheduling and maintenance domains in which putting a workstation out of
service in the maintenance domain makes it unavailable in the scheduling domain. Implicit overlap is likely to occur
where there is a functional partitioning of management into different management domains.

11 The use of standards in ODP systems

The objective of this clause is to illustrate, by means of a simple example, the use of standards, other than specifically
ODP standards, in an ODP system and where such use is defined in an ODP system specification. In order to do this, the
example describes, in outline, the content of each viewpoint specification of an example system and, for each viewpoint
specification, discusses the types of standard that are relevant to meeting the requirements identified by it.

The example system is illustrated in Figure 16. This represents a server system with a local operator, linked by a
telecommunications facility to a workstation client system with two local operators. The system description considers one
workstation application that provides access for its local operators to a picture provider application on the server system.
It is assumed that both the server system and the workstation provide other services and that organizations to which they
belong are distinct, i.e. subject to separate administrative policies.

The viewpoint descriptions identify requirements for common specifications. These common specifications will, in
general, correspond to standards at different levels.

T0726310-96/d16

Operator
1

Server
system

Client
system

Operator
3

Operator
2

Figure 16 – Example system configuration

FIGURE 16/X.901...[D16] = 8 CM

11.1 Enterprise viewpoint

11.1.1 Enterprise specification

Figure 17 illustrates the object model for the enterprise specification of the system represented in Figure 16, where:

• Picture user n is an enterprise object representing a person and is fulfilling the role “Picture user n”;

• Picture provider is an enterprise object representing an IT system and is fulfilling the role “Picture
provider”;

• Picture accessor is an enterprise object representing an IT system and is fulfilling the role “Picture
accessor”.



ISO/IEC 10746-1 : 1997 (E)

ITU-T Rec. X.901 (1997 E) 47

T0726320-96/d17

Policy domain 1

Policy domain 2

Picture
user 1

Picture
provider

Picture
accessor

Picture
user 2

Picture
user 3

Figure 17 – Enterprise viewpoint

FIGURE 17/X.901...[D17] = 9 CM

The objective of the enterprise represented by the configuration of enterprise objects governs the nature of the behaviour
associated with the roles fulfilled by those objects. For example, meeting the objective might only require that there is a
fixed picture display for Picture users 2 and 3, or it might require that the Picture accessor supports manipulation of the
picture information, addition of picture information and feedback to Picture provider.

Thus, the enterprise specification defines the objective of the configuration of enterprise objects, and hence:

• the picture information needs of Picture users 1, 2 and 3;

• the interactions of Picture user 1 with Picture provider;

• the interactions of Picture user 2 and Picture user 3 with Picture accessor;

• the interactions between Picture accessor and Picture provider;

• the policies (including security) governing the interactions between enterprise objects;

• the QOS requirements for Picture users 1, 2 and 3.

11.1.2 The application of standards

In the enterprise description, common specifications could be developed for industry or business function specifics, such
as a security policy, that must be upheld in terms of access controls and strength of protection. Such standards would
relate to the business and application area of concern.

11.2 Information viewpoint

11.2.1 Information specification

The system is visible from the information viewpoint in terms of:

• the information object classes involved in the application;

• the information activities (changes of state of information objects) that constitute the application;

• the constraints on the changes of state that can take place in the information objects.



ISO/IEC 10746-1 : 1997 (E)

48 ITU-T Rec. X.901 (1997 E)

The information specification includes:

• Specification of the information object classes themselves, for example:

– picture information object templates that determine the picture information object classes that are
available;

– picture display object templates that determine the picture display object classes that can be available.
A picture display object template defines a composition of picture information objects;

– a request information object template, where a request information object comprises the information
necessary to request a display, including control information (e.g. for security);

– an access control information object comprising the information necessary to validate a request
information object.

• Constraints on the configurations of information objects, for example:

– the set of template classes of picture information objects for the Picture accessor is the same as that
for the Picture provider;

– the set of template classes of picture display objects for Picture user 1 is a subset of the set for the
Picture provider;

– the sets of template classes of picture display objects for Picture users 2 and 3 are subsets of the set
for the Picture accessor.

For the system concerned, a (simplified) example of an information activity could be:

• creation of request information object with status invalidated;

• interaction of request information object and access control information object and change of status of
request information object to validated;

• interaction of request information object with picture information objects and creation of picture display
objects.

11.2.2 The application of standards

In the information description, common specifications could be developed for information objects. Standards would
relate to the business and application area of concern.

11.3 Computational viewpoint

11.3.1 Computational specification

Figure 18 illustrates the object model for the computational specification of the system represented in Figure 16. The
object model comprises a configuration of:

• computational objects User 1, 2 and 3, Picture display 1 and 2, Picture compose and Picture database;

• primitive bindings, for which there is no explicit statement of environment contracts, between interfaces
of:

– User 1 and Picture display 1 (up1);

– Users 2 and 3, and Picture display 2 (up2 and up3);

– Picture display 1 and Picture compose (pc);

– Picture database and Picture compose (dc);

• a compound binding involving a binding object (Binding) between the interfaces of Picture display 2 and
Picture compose, with a statement of the environment contracts;

• the activities specified for the configuration of computational objects that realize the requirements
specified in the enterprise and information specifications. The interfaces are reference points for
conformance in ODP terms.



ISO/IEC 10746-1 : 1997 (E)

ITU-T Rec. X.901 (1997 E) 49

T0726330-96/d18

User 1 User 2

User 3

Binding

up1 up2

up3

pc cb pb

dc

Picture
display 1

Picture
compose

Picture
database

Picture
display 2

Figure 18 – Computational viewpoint

FIGURE18/X.901...[D18] = 8.8 CM

ISO/IEC 10746-1 : 1997 (E)

ITU-T Rec. X.901 (1997 E)

The system is visible from the computational viewpoint in terms of:

• specifications of the computational objects in terms of abstract specifications of the operations and
behaviour that they support at their interfaces;

• a specification of the binding object template – this includes:

– an abstract specification of the interface operations involved;

– a specification of environmental contracts consistent with the enterprise QOS requirements;

• a specification of the abstract data types that correspond to the information objects identified from the
information viewpoint;

• specifications of the activities that can occur to support the application.

11.3.2 The application of standards

In the computational description, common specifications could be developed for the interfaces identified in Figure 18,
and would be defined in terms of abstract operations and abstract data types (corresponding to the information objects in
the information description). Standards for the abstract operations could be common to several areas of application;
standards for the abstract data types would be defined for the application area of concern. For example, a specification
which is based on OMG/CORBA and is described in OMG/CORBA IDL is a computational description.

11.4 Engineering viewpoint

11.4.1 Engineering specification

Figure 19 illustrates (part of) the object model for the engineering specification of the system represented in Figure 16. In
this object model:

• the basic engineering object User 1 represents Operator 1;

• the basic engineering objects Picture display, Picture compose and Picture database correspond to the
computational objects Picture display, Picture compose and Picture database;



ISO/IEC 10746-1 : 1997 (E)

50 ITU-T Rec. X.901 (1997 E)

• the Stub, Binder and Protocol objects comprise part of a channel corresponding to the binding object in
the Computational description;

• Node corresponds to the Server system in Figure 16 (although Figure 19 only illustrates part of the full
configuration of capsules, clusters, channels, etc., for the Node).

T0726340-96/d19

Stub

Binder

Node

Picture 
display

Picture 
compose

Picture 
database

Programmatic 
reference points

Programmatic 
reference points

Perceptual
reference point

Interworking  
reference point

User 1

Cluster

Protocol

Capsule

Figure 19 – Engineering viewpoint (part)

FIGURE 19/X.901...[D19] = 12.6 CM

The system is visible from the engineering viewpoint in terms of:

• specifications of the behaviour of the engineering objects in the channel corresponding to the binding
object in the computational viewpoint including:

– specification of the protocols at the interworking reference point between the protocol objects (or
between protocol object and interceptor);

– specification of the concrete representation of the abstract data types identified in the computational
description;

– QOS requirements;

• for each reference point, a specification of the syntax in terms of which the behaviour at that reference
point is expressed;

• constraints between the behaviour at the reference points that reflect the specified computational activities.



ISO/IEC 10746-1 : 1997 (E)

ITU-T Rec. X.901 (1997 E) 51

11.4.2 The application of standards

In the engineering description, common specifications could be developed for application at the reference points
identified in Figure 19:

• for protocol specifications, and abstract and concrete transfer syntax specifications, that apply at the
interworking reference point within the channel (that corresponds to the binding object in the
Computational description), for example:

– OSI profiles (e.g. an RDA A-profile, an appropriate T-profile and appropriate F-profiles) can be
applied for the protocols and for the abstract and concrete transfer syntaxes for the establishment and
maintenance of the channel;

– standards and F-profiles for the abstract and concrete syntaxes corresponding to the abstract data
types in the Computational description must be defined for the application area of concern.

NOTE – The protocols and concrete syntaxes at the interworking reference point include those
necessary to establish and maintain the channel as well as those that correspond to the abstract
operations and abstract data types specified for the binding object.

• for API specifications (including abstract syntax specifications for data) that apply at the programmatic
reference points, for example:

– an SQL profile can be applied at the reference point between Picture compose and Picture database;

– an API profile for the service supported by the RDA profile can be applied at the reference point
between Picture compose and Stub;

– an API profile for a windowing service can be applied at the reference point between Picture
compose and Picture display - this could include graphics standards;

• for HCI specifications that apply at the perceptual reference point – a GUI standard for example.

11.5 Technology viewpoint

11.5.1 Technology specification

The system is visible in the technology viewpoint in terms of statements by the supplier about the conformance of his
system. This will be expressed by:

• identifying conformance points for the system supplied that correspond to reference points in the
Engineering description;

• stating the extra information for testing the conformance of the system to the behaviour specified for those
conformance points.

Note that the supplier need not be required to make all reference points visible as conformance points.

T0726350-96/d20

Perceptual
conformance

point

Picture
provision

Interworking
conformance

points

Picture
access

Perceptual
conformance

points

Figure 20 – Technology viewpoint (part)

FIGURE 20/X.901...[D20] = 6.6 CM



ISO/IEC 10746-1 : 1997 (E)

52 ITU-T Rec. X.901 (1997 E)

11.5.2 The application of standards

In the technology description:

• an implementation of a specific OSI protocol is an example of the application of OSI standards;

• the conformance points identify the points at which the behaviour of the system can be observed;

• the standards that apply at those conformance points specify the syntax and order of exchanges in terms of
which the behaviour is expressed.

There are, in addition, constraints placed on the behaviour at the conformance points by the requirement that the
behaviour of the system is consistent with the standards specified for the other reference points in the Engineering
description.

12 Examples of ODP specifications

This clause describes several examples of the use in system specification of the concepts and rules described in ITU-T
Rec. X.902 | ISO/IEC 10746-2 and ITU-T Rec. X.903 | ISO/IEC 10746-3. The examples are simplifications and
incomplete descriptions of real life systems but they serve to provide insight into the use of the ODP framework, they
illustrate at a high level the application of key concepts from each viewpoint language and they illustrate the relationship
between the viewpoint descriptions.

The example in 12.1 uses RM-ODP concepts and rules to design a Multimedia Conferencing System (MMCS) in the
five viewpoints. The MMCS of concern allows real-time interworking between several users using multimedia
information like text, video and audio.

The example in 12.2 specifies multiparty audio/video exchange in distributed systems – a specific component of an
MMCS. It uses the “stream binding” concept as a basis for multiparty audio and video flow exchange, and provides a
specification using the five ODP viewpoint languages. Special attention is paid to correspondences between the five
viewpoint specifications, to ensure consistency between the specifications.

The example in 12.3 positions management concepts in the RM-ODP framework.

The example in 12.4 gives an overview of specification of a Distributed Database.

The following concepts are illustrated in the different viewpoint specifications of the examples:

Enterprise:

• communication/federation;

• the association of roles with enterprise objects;

• contract, template and policy.

Information:

• static schema;

• dynamic schema;

• invariant schema.

Computational:

• computational object specification including environment contract, behaviour;

• operation and stream interface specification;

• binding concept;

• interface references and interaction rules;

• transparencies.

Engineering:

• channel establishment (protocol, binder and stub objects);

• use of the engineering structuring rules and functions to specify the infrastructure compliant with the
enterprise, information and computational specifications.



ISO/IEC 10746-1 : 1997 (E)

ITU-T Rec. X.901 (1997 E) 53

Technology:

• choices of specific hardware and software components compliant with the other viewpoint specifications;

• identification of conformance points implied by the technology choices.

12.1 Multimedia Conferencing System

12.1.1 Introduction

The Multimedia Conferencing System (MMCS) allows real-time interworking between several Users using multimedia
information like text, video and audio. The service enables a group of persons that are physically distributed, to work
together on a (multimedia) document and to communicate with one another. During a session new participants may join
the conference or current participants may leave.

Furthermore, the service gives a User control over several service attributes, e.g. desired information types(s), quality of
an information type, etc. The MMCS also provides a framework for various applications which have to cooperate.

Applications like video/audio conferencing, joint editing and electronic mail should be integrated from the Users’
perspective. Extensions to the MMCS should be possible to achieve openness.

The MMCS configuration in Figure 21 may consist of workstations for representing video, text and audio. Furthermore
cameras, microphones and a multimedia database (possibly distributed) are connected to a wide area network.

To specify this example, the relevant concepts and rules to specify MMCS will be applied for each ODP viewpoint. It is
beyond the scope of this example to describe all aspects of a MMCS but rather to illustrate each viewpoint language to
specify an open distributed application or an open distributed system. An object oriented analysis method OMT
[Rumbaugh 91] is used to express the ODP enterprise and information specifications.

x 
x 

b 

x 

T0726360-96/d21

Camera

Wide area Network 

Camera

Camera

Figure 21 – Configuration of a Multimedia Conferencing System

FIGURE 21/X.901...[D21] = 8.7 CM



ISO/IEC 10746-1 : 1997 (E)

54 ITU-T Rec. X.901 (1997 E)

12.1.2 Enterprise specification

The enterprise specification describes the objectives, policies and requirements of the concerned MMCS. The
requirements and policies of the MMCS service are derived from the parties involved. They can be classified according
to their role:

• User: A person or machine who uses services in order to satisfy some communication needs.

• Customer or subscriber: A person or organization that contracts services offered by Service providers.

• Service provider: An organization that commercially manages services offered to Customers according to
contractual agreement.

To structure the requirements of a particular service according to roles, specialization of the generic roles introduced
above may be needed. For example, for the MMCS the following two types of Users can be distinguished: session
participant and session leader.

Then, the question arises “what should be described for each role involved in the service?”. The RM-ODP provides
indications which cover a broad range of policies and rules that are of interest for the description of distributed services.
Generic rules and policies of interest are: resource usage, domain rules, conflict resolution rules, organization rules,
business rules, transfer rules, security rules, QOS rules and management rules.

Figure 22 illustrates a simple enterprise specification using ODP enterprise concepts and expressed in OMT graphical
notation.

T0726370-96/d22

MMCS

Is authorized by

Class

Attributes

Operations

Agent

Agreement

Ternary association
Association attribute
described as a class

Service Provider
(PTT Telecom)

Information about:
- Accounting;
- Maintenance;
- Security;
- QOS;
- Provisioning.

Customer
(Insurance
Company)

User
(Employee)

ODP
Contract

Contract

Telecom Federation

Agreement
between different

Telecom Operators

User
Community

Figure 22 – ODP Enterprise specification using OMT graphical notation

FIGURE 22/X.901...[D22] = 12.8 CM



ISO/IEC 10746-1 : 1997 (E)

ITU-T Rec. X.901 (1997 E) 55

A multimedia conferencing service takes place in a number of different countries. This can be interpreted as a number of
Users interacting with their home Telecom Operator (Service Provider). For the purpose of expressing the MMCS in
ODP terms, this can be represented by using the community and federation concepts. It can be stated that the Users exist
in the User community and the Telecom Operators belong to a federation. The relationships and interactions between the
two can be explored and, with respect to MMCS, agreement established by means of a contract.

The User, Service Provider and MMCS can all be described, in ODP terms, as enterprise objects with associated roles.
For example, the User can be engaged in performative actions with the MMCS via the Customer and vice versa. These
interactions change the so-called obligation, permission and prohibition relations between the User and MMCS. The
group of Users interact with each other to form an ODP community because the Users have a common contract of
obligation between roles fulfilled by the enterprise objects and a set of activities.

12.1.3 Information specification

In the information specification, the semantics and requirements for the processing of the service information are
specified.

This is done using the schema concept. A local schema for each User role is defined, and a global schema, that represents
information that holds for every User role and represents information concerning the service, is specified. Note that this
information specification provides an example for a static schema, but does not provide examples of invariant and
dynamic schemata.

Focusing on the MMCS class identified in the enterprise specification, a static schema for the system at the time when a
session exists is represented by the OMT information specification shown in Figure 23.

For the Customer configuration parameters of MMCS are described. Also, information is included about limits to
bandwidth allocation, list of registered end-Users enabled to initiate a teleconference, list of options allowed for
registered end-Users, etc. Such Customer information can be regarded as attributes of a Customer in an OMT object
model. A User information object is connected to a Customer information object in the sense that it can participate in a
conference only if in the Enterprise specification the corresponding end-User is authorized by the corresponding
Customer. The Leading user is the User controlling the conference.

12.1.4 Computational specification

The information specification is developed to be consistent with the enterprise and information specifications. The
mapping between information objects and computational objects is not necessarily one-to-one. The information
specification is essentially different from a computational specification: in particular, computational objects are specified
in terms of interfaces and information objects are not.

The correspondences between the information specification and the computational specification must be specified in each
case so that consistency between the specifications can be ascertained. This is an important task to be performed by the
service designer. Figure 24 illustrates the mapping for MMCS.

The OMT analysis is used to identify and design the computational objects. Those computational objects are identified
while regrouping elements that are functionally linked. The OMT analysis also enables some choices to be made for the
engineering configuration and the technological support.

The grouping of classes into computational objects is a decision taken by the service designer not concerned with
distribution aspects:

• the OMT objects, classes and associations concerning the User and the Leading user are taken into account
for the design of the computational User object;

• the OMT objects, classes and associations concerning the conference (e.g. MMCS, Session, Subsession)
are taken into account for the design of the computational conference object;

• the OMT objects, classes and associations concerning the connection (e.g. connection manager) are taken
into account for the design of the computational bindings and will be helpful in choosing the engineering
configuration (e.g. multicast facilities).

For each computational object identified resulting from this analysis it is necessary to define interfaces for its interactions
with other computational objects (e.g. conference operations or operations to send audio/video flows). In general, objects
and interfaces can be graphically represented as shown in Figure 25.



ISO/IEC 10746-1 : 1997 (E)

56 ITU-T Rec. X.901 (1997 E)

T0726380-96/d23

Data VideoVoice

Customer User Subsession

Built from

Bandwidth allocation
Registered users

Configuration params

Change configuration
operations

Participating users
Status of Session

Multimedia
Connection

Simple
Connection

Leader
connected to Leading

User

Built from
one of

MMCS

Session

Connected to

Participates in Consists of

Uses

Aggregation

Generalization

<class name>

<attributes>

<operation>

Class

Connected users
Status information

QOS Info
Billing Info

Configure
Create session

Connection
Manager

Connection
Group

Uses

Compression type
Quality

Colour
Compression type

Quality

Figure 23 – Information specification

FIGURE 23/X.901...[D23] = 18 CM



ISO/IEC 10746-1 : 1997 (E)

ITU-T Rec. X.901 (1997 E) 57

T0726390-96/d24

MMCS

Conference Object

Subsession Session

User Leading
user Connection

manager

User
Object

Figure 24 – Computational configuration of MMCS

FIGURE 24/X.901...[D24] = 5.6 CM

T0726400-96/d25

Object A
Binding 

Interface 2
Operations a, b c ... 

Interface 3
Operations a, b, c... 

Interface 1
Operations a1, b1, c1... Interface 4

Operations a4, b4, c4...

Object B

Figure 25 – A computational representation of objects and interfaces

FIGURE 25/X.901...[D25] = 5 CM

Focusing on interactions that are possible via binding objects, these are established by explicit binding actions that allow
the User to specify the binding required between the computational objects. A binding object resulting from explicit
binding can support operation interchange between computational objects or a stream if the interchange concerns
continuous information flows.

Figure 26 shows the graphical notation to represent an explicit binding, in this case a stream binding. The binding object
controls and manages the interactions between the computational objects interfaces it encompasses. Control operations
are performed through the binding control interface.

T0726410-96/d26

Stream control interface

Consumer

Consumer

Producer

Stream interface

Stream

Figure 26 – Representation of an explicit binding (e.g. stream)

FIGURE 26/X.901...[D26] = 5.9 CM



ISO/IEC 10746-1 : 1997 (E)

58 ITU-T Rec. X.901 (1997 E)

The computational representation of computational objects involved in audio/video interchange in MMCS is shown in
Figure 27. Two main objects are identified: the User object and the Conference object.

T0726420-96/d27

User
Stream 1

Conference object

Stream 2

Audio/video
interchange

manager

Audio/video
interchange

manager

Conference
shared

workspace

User
Stream 3Audio/video

interchange
manager

Figure 27 – MMCS configuration of objects involved in audio/video interchange

FIGURE 27/X.901...[D27] = 7.9 CM

The User object enables the connection of end-Users to the conference and provides the tools necessary for end-Users to
interact with each other via the conference object and other User objects. The User object provides end-Users with
operations like joining the conference, editing facilities, tools to exchange video and audio.

The conference object contains the functionalities required for a multimedia conference. It contains, in particular, a
conference shared workspace which is in charge of dispatching audio and video flows between User objects.

The audio/video interchange managers are in charge of sending and receiving audio/video during the conference.

Stream 1 and stream 3 objects represent the audio/video flow from User objects to the shared workspace. Stream 2
represents multicasting of audio/video flows to all User objects.

Different control actions on the flows, like dynamic control of QOS and synchronization between audio and video flows,
are performed through the stream control interfaces.

12.1.5 Engineering specification

The ODP engineering language enables the modelling of the service machine that supports the execution of the
computational specification. Figure 28 shows a simplified engineering architecture. The major element of this
architecture is the nucleus that controls resource utilization and enables communication between different engineering
objects. Some functions, called ODP functions, common to a broad range of distributed services like trading or
management functions, are available for distributed applications.

The distributed service is composed of basic engineering objects that are the run-time representation (e.g. C++ executable
piece of code) of a computational specification. A binding between objects located in different nuclei is reflected by
means of a channel between those objects. Focusing on the audio/video managers and stream 2 of Figure 27, the
corresponding engineering support is represented in Figure 28.

A multipoint channel (engineering representation of the stream) is established between the audio/video interchange
managers. This channel is linked to the nuclei concerned.

The stub objects provide adaptation functions to support distribution transparency (e.g. data format conversion from one
video signal coding to a different one).



ISO/IEC 10746-1 : 1997 (E)

ITU-T Rec. X.901 (1997 E) 59

T0726430-96/d28

ODP functions

Transparency

Security

Management

ODP functions

Transparency

Security

Management

Nucleus

Distributed application

Node 2Node 1 Nucleus

Figure 28 – Engineering support

FIGURE 28/X.901...[D28] = 7.2 CM

The binding objects verify the compatibility of the interfaces to be linked and maintain the integrity of the binding
between the audio/video interchange managers.

Protocol objects interact with each other to convey information necessary to support distribution transparent interactions
between the audio/video interchange managers. The protocol objects are chosen to respect the QOS constraints (e.g. real-
time, security).

T0726440-96/d29

Stub

Producer

Stub

Binder

Consumer

Stub

Consumer

Binder

Audio/video
interchange

manager

Audio/video
interchange

manager

Audio/video
interchange

manager

Protocol
object

Multipoint channel

Binder

Protocol
object

Multicast
Protocol
object

Figure 29 – Multipoint channel for stream 2

FIGURE 29/X.901...[D29] = 11.1 CM



ISO/IEC 10746-1 : 1997 (E)

60 ITU-T Rec. X.901 (1997 E)

12.1.6 Technology specification

The technology specification of MMCS specifies the implementation of the system in terms of hardware and software
components. Reference points identified in the other viewpoint specifications are defined as conformance points at which
the behaviour of the MMCS can be verified.

The technology specification also expresses requirements for adequate workstations to represent video, audio and text.
High speed and Wide Area Networks are required to support the communication needs by providing sufficient bandwidth
to transport video/audio and text to the participants located in different places.

12.2 Multiparty audio/video stream binding

This example is concerned with the specification of the multiparty stream binding used in the system introduced in the
previous example.

The approach followed in this example is to outline the problem domain in computational terms and then provide the five
corresponding viewpoint specifications.

First, some additional concepts and rules applicable to this problem are defined. In the enterprise specification, the roles
of stakeholders1) (user, customer, provider) are introduced to structure the problem domain in more detail. OMT
[Rumbaugh 91] and IDL were used as particular notations to express information and computational specifications,
respectively.

For the information specification, a number of relations are introduced between classes of the invariant schema. These
relations are derived from a set of basic relations of OMT and are usually parameterized with text to make their meaning
precise.

In the computational specification, the audio/video controller and dispatcher is introduced to handle the multiparty
audio/video stream binding.

For the engineering specification, a specialized stream channel is introduced to transport continuous flows. A
configuration of engineering objects is presented for the support of the multiparty audio/video stream binding, including
objects to control and coordinate multiple stream channels. It would have been possible to specify the controller and
dispatcher in a distributed way. However, this additional complexity was not introduced in this example.

The implementation described in the technology viewpoint is used to validate the modelling process along the ODP
viewpoints. It is likely that more specific hardware/software would be used in a operating environment to meet, e.g. the
strict performance requirements on multimedia applications.

12.2.1 General description

The exchange of continuous media in distributed multimedia applications is complex. For example, in a real-time
multimedia conferencing application, the participants are separated geographically and communicate by exchanging real-
time video and audio. The audio-visual exchange should be as natural and flexible as possible. This implies that
requirements like lip synchronization and synchronization of display across multiple workstations need to be taken into
account while specifying the multimedia conferencing application.

To fulfill these requirements, the multimedia conferencing application has stringent network performance and
synchronization requirements on the exchange of audio and video flows. Furthermore, the number of exchanged flows
and corresponding quality can change during the lifetime of the conference. This is due to the fact that the application
provides control operations to join or leave the conference, and to modify the QOS of flows.

To address this complex functionality, RM-ODP defines the notion of binding object in the computational language. RM-
ODP provides the theoretical computational concept without the specific refinements required in a given problem area. In
this example the binding object is specified in terms of five ODP viewpoint specifications of a particular binding object,
i.e. multiparty audio/video binding object have been provided [Gay 95]. This object manages the stream interfaces which
are used for the real-time multiparty audio/video interactions. Also control operations can be performed on the multiparty
binding object.

Figure 30 shows the computational representation of the multiparty audio/video binding object and its environment.

_______________
1) Stakeholder is a telecommunication concept that denotes an organization or person that has a commercial or regulatory interest in

telecommunication services.



ISO/IEC 10746-1 : 1997 (E)

ITU-T Rec. X.901 (1997 E) 61

The rectangle in the middle denotes the multiparty audio/video binding object. Its environment (gray areas) consists of
application and system parts and the supporting network infrastructure. The ⊥ symbols denote stream interfaces via which
audio/video producers and consumers exchange audio and/or video (1). The multiparty audio/video binding object
manages the interactions between the stream interfaces it encompasses. It encapsulates the mechanisms that are used for
this, and it abstracts away from distribution aspects. The ⊥ symbol on top of the rectangle, denotes the stream control
interface of the binding object. Via this interface, the multiparty audio/video binding object provides operations, 3 and 4,
to the environment that controls its functioning.

1

3

4

1

3

2

3

2

1

2
T0726450-96/d30

Application and
supporting system

Management

Management

Management

Stream control interface
e.g. ChangeQosStreamBinding()

Supporting network
Infrastructure (Provider)

Audio and/or
video flows

Management
operations

Audio/video
producer/consumer

Multiparty audio/video
stream binding

Audio/video
flows

Audio/video
producer/consumer

Management

Application and
supporting system

Stream interface
e.g. Audio OUT, Audio IN,

Video OUT, Video IN

Audio/video
producer/consumer

Operational interface
e.g. StartFlow()

Application and
supporting system

Figure 30 – Multiparty audio/video stream binding

FIGURE 30/X.901...[D30] = 15.4 CM

12.2.2 Enterprise specification

The enterprise specification provides a description of the requirements and objectives that the environment imposes on
the system to be designed. It justifies the design of a system. The enterprise concepts of enterprise objects fulfilling roles
of performative actions are used to describe the multiparty audio/video binding.



ISO/IEC 10746-1 : 1997 (E)

62 ITU-T Rec. X.901 (1997 E)

The roles that stakeholders in telecommunication can play with respect to a service (i.e. user, customer and provider) are
used in the specification of the binding object. For the application and supporting system, this results in the identification
of audio/video producer/consumer objects (users) and objects managing these users (customers). For the supporting
network infrastructure, a management object (provider) is distinguished that manages the binding object.

12.2.2.1 User: Producer/consumer of audio/video flows

A user is an enterprise object in the application and supporting system having a role for which the objective is to produce
and/or consume flows via its stream interface (see Figure 30, 1). Examples of users are microphones, speakers, cameras,
and monitors. A user indicates the type of flows it can handle and the coding formats it requires. Furthermore, it defines
the values of QOS parameters it requires. These parameters specify audio/video quality in terms of broadcast television
quality, HDTV, telephone audio quality, hi-fi or CD quality. Furthermore, QOS requirements between flows are defined
which describe, for example, that lip synchronization between audio and video is required and that simultaneous delivery
of audio/video to multiple users is desired.

12.2.2.2 Customer: Local application and supporting system

A customer is an enterprise object with a role for which the objective is to manage and support the audio/video
producer/consumer. It takes into account the user’s policies which it has to support and manage. Customers can invoke
performative actions (see Figure 30, 2) to create users, delete users or adjust policies of existing users.

A customer carries out performative actions dealing with configuration and resource management. For instance, it has to
manage the priority of flows. In case of network congestion or local resource problems, the flow with the lowest priority
is either removed or delayed. The customer also performs end-to-end (re)negotiations with other customers to determine
acceptable, preferred, and unacceptable values of QOS parameters. The latter is reflected in the 'binding contract'
(see Figure 31). A binding contract describes the agreed outcome of the negotiations between the user, customer, and
provider which should be followed during the existence of the multiparty binding object. The customer can execute
performative actions (see Figure 30, 3) on the binding object that are related to the management of the multiparty stream
binding. These actions deal for example with set-up, removal, and adjustment of a stream binding in accordance with the
(re)negotiated end-to-end QOS requirements. Performative actions can also be initiated by the binding object to indicate,
for instance, that it cannot maintain the negotiated QOS values.

12.2.2.3 Binding and Provider

The binding is an enterprise object that enables the exchange of audio and video flows between users who are
geographically separated. The provider is an enterprise object that offers an infrastructure of connections that is used by
the binding and manages the binding in accordance with the status of the infrastructure.

The provider is responsible for the flow topology, billing aspects, security aspects, fault management, and QOS provided
by the underlying network and resources. The provider is concerned with the management of the network so that the
binding contract is guaranteed. For instance, it selects an appropriate routing for the audio/video channel and reserves
resources on each node on that route. If the provider can no longer guarantee the binding contract, it performs actions
(see Figure 30, 4) that affect the binding with respect to the (re)negotiation of the binding contract.

12.2.3 Information specification

The information specification of the multiparty audio/video stream binding describes the information relevant to the
stakeholders in the binding. It takes into account the requirements and objectives outlined in the enterprise specification.

12.2.3.1 From enterprise to information

The information relevant to users, customers, and provider is specified in the binding contract. This contract is the
outcome of an agreement between users, customers, and provider. It satisfies their requirements and objectives from the
enterprise specification. Figure 31 shows the relation between enterprise and information specification in terms of OMT.

12.2.3.2 Invariant schema of the binding contract

The binding contract, as shown in Figure 31, is considered as an attribute between stakeholders and described as a single
class. However, at a more detailed level, the information specification is more complex. Figure 32 shows the invariant
schema of the multiparty audio/video stream binding contract.



ISO/IEC 10746-1 : 1997 (E)

ITU-T Rec. X.901 (1997 E) 63

T0726460-96/d31

Agreement

Ternary association

Information

Enterprise

User requirements
and objectives

Customer requirements
and objectives

Association attribute
described as a class

Provider requirements
and objectives

Multiparty audio/video
stream binding contract

Figure 31 – The binding contract between users, customers and provider

FIGURE 31/X.901...[D31] = 6.2 CM

1+

1+

1+

1+

T0726470-96/d32

Class
<class name>
<attributes>
<operation>

Aggregation

Generalization

Flow

User

Stream interfaces

Multiparty audio/video stream
binding

Flow topology
QOS parameter = (end-to-end delay,
end-to-end violation probability,
end-to-end delay bounds, priority,
out of sequence probability)

ChangeStreamBinding()
CreateStreamBinding()
DeleteStreamBinding()
StreamBindingControl operations

AddNewUser()
RemoveUser()
UserControl operations

AddInterface(),
RemoveInterface()
InterfaceControl operations

Direction {IN, OUT}
QOS parameters = (throughput, out of
sequence probability, perception)

AddFlow(), RemoveFlow(),
StartFlow(), PauseFlow(), StopFlow()

Audio flow Composite flow

Coding (e.g. MPEG)

Video flow

Coding (e.g. H.242, G.721, G.711)
Audio QOS parameters (e.g. Hifi, CD,
Compression, Frame rate)

ChangeAudioQosFlow()
AudioFlowControl operations

ChangeCompositeQos
Flow(),
CompositeFlowControl
operations

Coding (e.g. JPEG, H.261)
Video QOS parameters (e.g. HDTV,TV,
Resolution, Compression, Frame rate)

ChangeVideoQosFlow()
VideoFlowControl operations

Figure 32 – Invariant schema of binding contract

FIGURE 32/X.901...[D32] = 14.9 CM



ISO/IEC 10746-1 : 1997 (E)

64 ITU-T Rec. X.901 (1997 E)

The structure common to every contract between the customers, users, and provider is specified as an invariant schema.
For a binding contract, it contains information about the users in the binding (User information objects), the stream
interfaces involved in the binding (Stream interface information objects), and the operations that stakeholders can invoke.
Furthermore, the contract specifies the multiparty audio/video stream binding between stream interfaces. The information
in the binding is modelled by means of the multiparty audio/video stream binding information object. The invariant
schema for this information object specifies all the operations that stakeholders can invoke.

A user may have of one or more stream interfaces which implies that each user information object consists of one or more
stream interface information objects. A stream interface consists of one or more flows which results in a stream interface
information object consisting of one or more (audio, video, or composite) flow information objects. A flow information
object consists of attributes indicating, amongst others the direction of the flows and QOS parameters. The QOS
parameters defined in the information specification will be manipulated in the computational specification.

Information regarding the binding is captured by the multiparty audio/video stream binding information object. This
information object relates two or more stream interface information objects. It contains information about the flow
topology and describes the QOS that needs to be maintained while exchanging audio/video flows between interfaces.

12.2.3.3 Static schema of the binding contract

A specific binding contract that exists between stakeholders at some point in time is specified as a static schema. A
binding contract should satisfy its invariant schema, and consists of user information objects, stream interface information
objects, flow information objects, and multiparty audio/video stream binding information objects. Other information
objects can also be part of the contract, as long as they do not contradict the invariant schema.

12.2.3.4 Dynamic schema of the binding contract

A dynamic schema for a binding contract has two aspects. Firstly, the effect that invoking operations have on the contract
and secondly, the conditions under which these operations can be invoked by the stakeholders. Both aspects are discussed
below.

The effect of operations on the binding contract information depends heavily on the implementation choices. In general
the effects can be classified into three categories: notification effect, negotiation effect, and no effect.

An operation having a notification effect is an operation by which a stakeholder informs the binding contract of a newly
created computational object. The effect on the contract is that a new information object is added. For example, the
operation AddNewUser results in a new user information object, one or more stream interface information objects, and
one or more flow information objects.

An operation having a negotiation effect is an operation by which a stakeholder negotiates with the binding object and
other stakeholders about a change in the binding contract. If the negotiation is successful, changes are made to the
binding contract. For example, a successful RemoveUser operation results in the removal of a user information object and
related stream interface and flow information objects. Furthermore, the binding information object that relates the
interfaces of the removed user to the interfaces of other users will be modified or removed.

An operation having no effect is an operation that does not affect the information objects in the binding contract. These
operations are mainly control operations. For example, the operation PauseFlow will have the effect that the concerned
flow is paused. This does not have consequences for the binding contract information.

The dynamic schema also describes conditions for invoking operations on the binding contract. The invariant and static
schema do not impose a specific ordering of operations that stakeholders can invoke. However, to obtain a meaningful
binding contract, it is necessary to define conditions with respect to the invocation of operations. Some examples are
listed below:

– A customer can only invoke an AddNewUser operation on an existing stream binding.

– Customers can only invoke ChangeAudioQOSFlow and RemoveFlow on existing flows.

– Customers and providers can only invoke a ChangeStreamBinding operation or a DeleteStreamBinding on
an existing binding.

12.2.4 Computational specification

This subclause specifies the signature of the stream binding control interface. To have a complete interface description,
the behaviour and environment contracts should also be described.



ISO/IEC 10746-1 : 1997 (E)

ITU-T Rec. X.901 (1997 E) 65

12.2.4.1 From information to computational

The mapping between information objects and computational objects is not necessarily a one-to-one mapping. The
correspondences between the information and computational specifications must be specified in each case so that
consistency between the specifications can be ascertained. The grouping of classes into objects is a decision taken by the
service designer. Distribution aspects need not be taken into account at this stage.

Figure 33 indicates the mapping of several information classes on to computational interfaces. For the control interface
(see Figure 33, 3 and 4) of the multiparty audio/video stream binding the operations of the multiparty audio/video stream
binding class are taken into account. The operation interface of the audio/video producer/consumer, 2, will be reflected in
the operations defined in the Flow class. The stream interface, 1, has the characteristics of the attributes of the Flow
subclass. The attributes specified in the information specification will be represented by parameters in computational
operations. Operation and parameter naming in both viewpoints are independent.

2
3, 4

2

11

1

2

T0726480-96/d33

Flow

Information

Composite flow

Audio flow

Video flow

Computational

Multimedia
audio/video stream

binding contract

Audio/video
producer
consumer

Multiparty audio/video
stream binding

Audio/video
producer
consumer

Audio/video
producer
consumer

Figure 33 – Information to computational mapping

FIGURE 33/X.901...[D33] = 9.9 CM

12.2.4.2 Specification in IDL

NOTE – The following is closely related to OMG-IDL [OMG IDL].

RM-ODP describes a computational model applicable for distributed applications, but it does not provide a specific
specification language for computational objects and interfaces. Therefore, an additional specification language, IDL, is
used here to derive a computational specification of the stream binding control interface (see Table 1). IDL provides the
means to express telecommunication and multimedia oriented computational specifications. The derived IDL
specifications are based on the information specification.



ISO/IEC 10746-1 : 1997 (E)

66 ITU-T Rec. X.901 (1997 E)

Table 1 – IDL specification of Stream Binding Control Interface

12.2.4.3 Computational choice for the multiparty audio/video exchange configuration

The multiparty audio/video stream binding can be refined to arrive at an engineering configuration. Several solutions are
possible, but the one chosen is used in many distributed multimedia systems. Several implementations of distributed
multiparty systems have a functional component, referred to as audio/video controller and dispatcher, that manages
audio/video flows. It receives all audio/video flows of the producers and reflects the flows (after possible manipulation)
to all consumers. This approach has been adapted for the multiparty audio/video stream binding as in Figure 34.

The audio/video controller and dispatcher is in charge of redirecting stream control operations 3 and 4 to each sub-stream
binding, 5. It also deals with the set-up, control and release of the audio/video bindings between the producers and
consumers. It negotiates the requirements and objectives identified in the enterprise specification (e.g. encoding and
compression algorithms, frame rate). An audio/video stream binding links each of the audio/video producer/consumer
object to the audio/video controller and dispatcher.

T0726490-96/d34

2
1

3, 4

5 5

1

51

1

1 2

1

2

A u d io /v id e o
c o n tro lle r a n d

d is p a tc h e r

A u d io /v id e o
s tre a m  b in d in g

A u d io

A u d io /v id e o
p ro d u ce r
c o n s u m e r

M u lt ip a rty
a u d io /v id e o
s tre a m
b in d in g

A u d io
v ideo
s tre a m
b in d in g

V id e o

A u d io /v id e o
s tre a m  b in d in g

A u d io

V
id

e
o

A
u

d
io

A u d io /v id e o
p ro d u ce r

c o n s u m e r
V id e o

A u d io /v id e o
p ro d u ce r
c o n s u m e r

Figure 34 – Objects involved in a multiparty audio/video exchange

FIGURE 34/X.901...[D34] = 10 CM

interface template StreamBindingControlInterface; /* (3), (4) operation interface type*/

typedef sequence < Flow> StreamInterface;

operations

void ChangeQosStreamBinding (in StreamBindingId Binding,

in QOS RequestedQos, out QOS ProvidedQos);

void RemoveStreamBinding (in StreamBindingId Binding,

out StreamBindingId RemainingBindings);

void AddNewUser (in AVuserId Newuser, in StreamInterface NewFlows,

in QOS RequestedQos, out QOS ProvidedQos, out ResultReport StatusBinding);

/* Additional stream binding control operations are possible determined by the application, system and network
management part. */

/* behaviour ’An instance of this interface template provides other computational objects to perform control actions on the
Multiparty binding object.’ */



ISO/IEC 10746-1 : 1997 (E)

ITU-T Rec. X.901 (1997 E) 67

12.2.5 Engineering specification

This subclause provides an engineering specification of the multiparty audio/video binding object as defined in the
computational specification.

12.2.5.1 From computational to engineering

The computational specification has to be mapped onto an engineering specification to be executed. This engineering
specification preserves the behaviour described in the computational specification.

The engineering transformation of a stream interface (see Figure 35, 1) leads to the creation of a producer/consumer
stream channel specialized for continuous flows. The QOS parameters associated with the audio/video flow defined in the
computational specification influence the choice of the stream channel components.

An operation interface (see Figure 35, 2) is reflected in the engineering specification as a client-server channel
configuration, as defined in RM-ODP. The environment contracts specific for the interfaces (e.g. security) are taken into
account while establishing a channel between the concerned computational objects.

The computational stream binding control interface (see Figure 35, 3, 4 and 5) is located in different nodes in the
engineering representation. Their communication (not reflected in Figure 35) occurs through control channels that have
the same structure as operation channels. Furthermore, supporting objects may be created (e.g. synchronization object) to
manage and control a set of inter-related stream channels.

The audio/video producer and consumer object as well as the audio/video controller and dispatcher object are
transformed into basic engineering objects. If those objects are distributed over different nodes, further decomposition
has to be made and several engineering objects and channel parts must be created. Figure 35 illustrates the mapping of
two computational audio/video producers and consumers onto an engineering specification.

2

1

5

1

3, 4 1

5

1
2

1 1

2

1

2

T0726500-96/d35

Computational

Video

engineering

Stub

Binder

Protocol

Stream channel

Audio/video
producer
consumer

Audio/video
stream binding

Audio

Audio/video
controller &
dispatcher

Audio
video

stream
binding

Audio/video
producer
consumer

Audio/video
producer
consumer Stream

stub

Control
interfaces

3, 4, 5 Stream
stub

Stream
binder

Stream
protocol

Stub

Binder

Stream channel

Operational channel

Protocol

Stream
binder

Stream
protocol

Bidirectional
connection

Audio/video
controller &
dispatcher

Audio/video
producer
consumer

Figure 35 – Computational to engineering mapping

FIGURE 35/X.901...[D35] = 11.7 CM



ISO/IEC 10746-1 : 1997 (E)

68 ITU-T Rec. X.901 (1997 E)

12.2.5.2 The engineering stream channel

The ODP channel concept provides the engineering mechanisms to assure distribution transparent interactions between
basic engineering objects. The channel consists of three engineering objects, namely: protocol, binder, and stub objects.
Two different types of information are transported through channels. Firstly, the control operations enabling for example
QOS negotiation. These operations require small bandwidth, but they demand high reliability. Secondly, the real-time
interactions, such as voice and video exchange, that need high bandwidth but a lower reliability. Therefore, the channels
are divided into an operation channel and stream channel, each with their own characteristics. This subclause first
presents the concepts of stub, binder and protocol objects and then describes how a particular stream channel is
established.

The stub object provides adaptation functions to support interaction between basic engineering object interfaces in
different nodes. For operation invocations the stub object provides marshalling/unmarshalling of operation parameters to
enable access transparent interactions. Streams require different functionality of the stub object due to the different nature
of information that is exchanged. It should provide the mechanisms to encode and decode video/audio information.
Furthermore, data available for the audio/video producer or consumer should be notified, and the stream stub objects
provide controlling operations to local resources (e.g. increase buffer size) and notification of events concerning the
stream (e.g. QOS changes, no buffer space available, data drop out, etc.). A stub object has a presentation interface for
use by the object that is bound to the channel and a control interface, e.g. for QOS management.

Binders interact with one another to maintain the integrity of the binding. Information is maintained about the channel.
Binders are also responsible for validating the interface reference and for interacting with the relocator object to recover
information about the interface location after a binding error. For streams, information is maintained with respect to the
required QOS. A binder has a control interface which enables changes in the configuration of the channel and destruction
of all, or part, of the channel.

The protocol object assures that computational objects can interact remotely with each other. Protocol objects are
needed if the computational objects that have to be bound are located in different nodes. In general, the RPC mechanism
is used where an operation is sent in the form of a message to a remote protocol object that is able to receive it. The
object for which the call is meant executes the procedure and sends back a reply message. For the multiparty video/audio
stream binding, the RPC type of protocol objects is suitable for computational objects that invoke operation invocations,
e.g. for the control/management channel (see Figure 35, 3, 4 and 5). However, for the exchange of continuous flows,
another specialized protocol (called stream protocol) without the RPC mechanism is necessary. RPC requires that each
element of buffered data to be transferred be associated with a separate action, i.e. no particular relationship exists
between previous and future RPC calls. Continuous flows require relationships between calls and a stream protocol is
applied which creates a virtual channel between two protocol objects for the duration of audio/video flow exchange. In
this case, relations between audio/video data can be defined specifically. Protocol objects can interact with objects
outside a channel to obtain the information they need (e.g. Trader).

12.2.6 Technology specification

This subclause describes an initial implementation of a stream binding using ANSAware which is based on an
architecture similar to the ODP architecture. ANSAware is used as a distributed platform that provides the advantage that
several engineering mechanisms are realized (e.g. operation interfaces are supported by ANSAware). The technology
specification presented here corresponds to an implementation of a multiparty videophone service which enables end-
users to exchange audio-visual information via their desktop computer. Users can be added or removed dynamically from
the ongoing session.

The technology specification is determined by the other viewpoint specifications but the implementation is mainly based
on the engineering specification. The technology specification consists of a description of hardware and software that can
implement the engineering specification taking additional enterprise requirements into account (e.g. which hardware and
software is available).

Figure 36 indicates a mapping between engineering objects and technological solutions. It focuses on the implementation
of the stream channel and operation channel and shows how the engineering objects are realized in hardware and software
components.

12.3 A management example – Metric Object

ISO/IEC 10164-11 (Metric Objects and Attributes) specifies a mean monitor metric object, which scans the same
attribute value from an identified observed object at regular interval of time (granularity period, GP), updates an estimate
of the moving average of the observed attribute value, and applies a threshold mechanism on the average value of the
mean which emits a notification when the threshold is exceeded.



ISO/IEC 10746-1 : 1997 (E)

ITU-T Rec. X.901 (1997 E) 69

T0726510-96/d36

Engineering

Technology

ANSAware code

Stub

ANSAware

Stream channel

Stream stub

Stream binder

Table

Stream protocol

Receive Q table()  C/ANSA code

Stub control interface (3, 4, 5)

Bind() Close() C/ANSA code

Binder control interface (3, 4, 5)

Audio/video
producer consumer

PARALLAX
Q table

ANSAware

Binder

REX/MPS

Protocol

TCP/IP

Operational channel

Figure 36 – Engineering to technology mapping

FIGURE 36/X.901...[D36] = 8.5 CM

12.3.1 Enterprise specification

Communities:

Metric operation community – involves the following roles:

– Scanner role – Client object role which is responsible for initiating scans of an associated observed object
having observed role.

– Observed role – Server object role which responds to a scan of an observed attribute value.

Metric control community – involves the following roles:

– Metric controller role – Client object role for managing object responsible for initiating metric control
operations for one or more metric objects.

– Metric control role – Server object role for metric object which responds to control operations to change
the state of the metric object pertaining to algorithm parameters associated with metric behaviour.

Metric notification community – involves the following roles:

– Metric notifier role – Client object role of metric object which emits notifications relating to the metric
algorithm operating on scanned observed attribute values.

– Notification distribute role – Server object role which receives emitted notifications for subsequent
distribution.

Policies:

Scanner policy – the scanner object must initiate scans at a regular time interval, set by the granularity period control
attribute.

Observation policy – the observed object must respond with the observed value within a granularity period of when the
scan request is received. If it cannot respond, an error is raised and the scan is invalidated for that observation.

Metric control policy – the metric object must reflect changes to algorithm parameters made through the metric control
role in the processing behaviour of its moving average metric algorithm. Control of the following algorithm parameters is
required: granularity period, moving time period, observed object instance relationship pointer, observed attribute
identifier, notification trigger threshold, re-arm threshold.

Metric notification policy – the metric object must emit a notification when the moving average of the observed value
crosses the notification trigger threshold. A hysteresis mechanism supplies a re-arm threshold, which when crossed in a
negative going direction re-arms the upper threshold for subsequent notifications.



ISO/IEC 10746-1 : 1997 (E)

70 ITU-T Rec. X.901 (1997 E)

12.3.2 Information specification

The information objects of most interest are the metric object, and the observed object.

meanMonitorMetricObject InfoDescription {

Attributes:

observed attribute id – id for use in getting observed attribute value.

granularity period – time between subsequent scans of observed attribute value of related observed object.

moving time period – effective length of time over which moving average of observed attribute value is calculated.

derived gauge – the current value the moving average derived by the metric object scanning and algorithm update
behaviour.

notification trigger threshold – value to be compared to derived gauge at end of each algorithm update, with notification
emitted when trigger is armed and when derived gauge value is greater than trigger value. The trigger is disarmed upon
notification, until subsequent re-arm via hysteresis mechanism.

re-arm threshold – value to be compared to derived gauge at end of each algorithm update, with notification trigger re-
armed when derived gauge value is less than re-arm value.

States:

operational state – reflects whether metric object is working.

scan state - values are:

waiting (for next GP interval start)

scanning (waiting for observed object scan result)

threshold arm state – values are armed, disarmed

Invariants:

moving time period must be greater than granularity period.

re-arm threshold value must be less than notification trigger threshold value.

State transitions:

Given the operational state is enabled, the following information state transitions can occur:

waiting -> scanning – occurs when the metric object reaches the next granularity period.

scanning -> waiting – occurs:

a) when the observed attribute value is returned and the algorithm has updated the derived value and
applied the threshold processing; or

b) when scan is invalidated.

armed -> disarmed – occurs when the threshold processing detects notification trigger crossing (which causes
notification emission).

disarmed -> armed – occurs when threshold processing detects re-arm threshold crossing.

Relationships:

Observed object instance – a pointer to the observed object which has its observed attribute id scanned each granularity
period.

}

The “Observed object” information object is any object which has an identifiable attribute which has a scannable value.
The only state of interest for the observed object is the current value of its observed attributes.

observedObject InfoDescription {

Attributes:

observed attribute – any identified attribute which has an integer or a real value type.

}



ISO/IEC 10746-1 : 1997 (E)

ITU-T Rec. X.901 (1997 E) 71

The following information object models the contents of a quality of service alarm record object, associated with a
positive crossing event for the notification trigger threshold:

qualityOfServiceAlarmRecord InfoDescription {

Attributes:

metric object instance id

observed object instance id

observed attribute id

notifyTime

derivedGaugeValue

}

12.3.3 Computational specification

Distribution of a metric object in a different system from the observed object is out of scope for the Metric Objects
Systems management function standard.

The following computational object and interface templates demonstrate the decomposition of computational objects to
allow distributed scanning of an observed object by a metric object.

meanMonitorMetric ComputationalObject {

Server interfaces:

meanMonitorControl_Server

Client interfaces:

scanObservedObjectValue_Client

qualityOfServiceAlarm_Client

BEHAVIOUR – see ISO/IEC 10164-11

}

Interface Templates:

meanMonitorControl Interface {

OPERATIONS (attributes, all have get and replace methods):

observed object instance

observed attribute id

granularity period

moving time period

derived gauge

notification trigger threshold

re-arm threshold

operational state

Environment Contract:

the control operations must affect the parameterised behaviour of the metric algorithm for scans originating after the
attributes are set.

}

scanObservedObjectValue Interface {



ISO/IEC 10746-1 : 1997 (E)

72 ITU-T Rec. X.901 (1997 E)

OPERATIONS:

the client invokes a get operation on the observed object instance to obtain the current observed attribute value.

Environment Contract:

if the scan operation has not resulted in the return of the observed object value before the start of the next granularity
periods, then that scan is invalidated, and is not usable for the metric algorithm update process.

}

qualityOfServiceAlarm Interface {

OPERATIONS:

"ISO/IEC 10164-4":qualityOfServiceAlarmNotification

Environment contract:

the values of the quality of service alarm notification are set with the values shown in the information object
specification for the alarm record.

}

12.4 Database example

This example is based on a (very simplified) order processing system, which supports the business activities of a sales
organization (or part of a more complex organization) concerned with the supply of certain products to customers.

The sales organization has a number of warehouses which are used to stock arrange of products. These products are sold
to customers, which are other organizations that have been accepted as credit-worthy trading partners. A sale involves a
customer submitting an order for a specified quantity of one or more products; the required products are supplied from a
warehouse to the customer; the customer is invoiced for the cost of the products; finally, receipt of the customer payment
is recorded.

12.4.1 Enterprise specification

The following enterprise objects may be identified for this system:

• sales organization: A community that is empowered to trade;

• customer liaison: An entity within the sales organization enabling customers to place orders;

• warehouse management: An entity within the sales organization responsible for the operation of a
warehouse;

• accounts: An entity within the sales organization responsible for financial matters;

• order-processing: An entity within the sales organization responsible for processing and maintaining
records of orders;

• customer: An organization that trades (places orders) with the sales organization.

Examples of these enterprise objects are represented in Figure 37.

12.4.2 Information specification

A possible invariant schema for this example is given in Figure 38 expressed using OMT notation with sample attributes
and operations. It represents the state, behaviour and relationships between the information objects relevant to the sales
organization. In particular, a Customer information object represents the information about the Customer enterprise
object that is required by the sales organization to support its trading with customer organizations.

12.4.3 Computational specification

The computational specification for this example has two essential characteristics:

• there are many users, each corresponding to one of the enterprise objects (customer liaison, warehouse
management and accounts), and each requiring services that relate to some part of the information schema;

• all occurrences of the information schema need to have a shared, persistent representation.

These two requirements can be satisfied by a database system, and a possible computational model for this example, is
shown in Figure 39.



ISO/IEC 10746-1 : 1997 (E)

ITU-T Rec. X.901 (1997 E) 73

T0726520-96/d37

Customer A Customer B Customer C

Customer liaison

Sales organization community

Accounts

Order-processing

Warehouse
management X

Warehouse
management Y

Figure 37 – Order processing system – Enterprise specification

FIGURE 37/X.901...[D37] = 12.2 CM



ISO/IEC 10746-1 : 1997 (E)

74 ITU-T Rec. X.901 (1997 E)

T0726530-96/d38

Customer

Product

Warehouse

Places Stocks
Supplies

QuantityInStock

CustomerIdentifier
Name

Address
CreditLimit

CheckDetails
ChangeAddress

ModifyCreditLimit

ListStocks
SupplyOrder

ProductCode
Description

UpdateStock
StockLevel

Order

Includes

QuantityOrdered

OrderNumber
OrderDate

TotalCost
ProductsOrdered

WarehouseName
Address

TelephoneNumber
Manager

Figure 38 – Order processing system – Information specification

FIGURE 38/X.901...[D38] = 13.5 CM



ISO/IEC 10746-1 : 1997 (E)

ITU-T Rec. X.901 (1997 E) 75

T0726540-96/d39

1

2

User A

User B

Schema

Database

Schema

Database

User
process W

User
process X

Database
controller

Database
controller

User C

User D

User
process Y

User
process Z

Figure 39 – Order processing system – Computational specification

FIGURE 39/X.901...[D39] = 9.9 CM

In this computational model, each of the user objects is of a type corresponding to one of customer liaison, warehouse
management or accounts. Each of the user processes provides services appropriate to its client user type, which involves
some, but unlikely to be all, of the information schema objects. All occurrences of the information schema (but not their
operations) are contained within the database objects, and different policies for their allocation between the different
databases may be applied, as for example:

• allocation of objects according to type, such as all customer and order objects in one database and all
warehouse and product objects in the other;

• allocation of objects according to some property, such as one database keeping instances of all types of
object for one warehouse (say for electrical products) and another database keeping instances of all types
for another warehouse (say for building materials);

• both of the above policies may be combined with replication of some objects in order to support various
kinds of processing requirements (and further decomposition of objects is also possible).



ISO/IEC 10746-1 : 1997 (E)

76 ITU-T Rec. X.901 (1997 E)

Annex  A

Bibliography
(This annex does not form an integral part of this Recommendation | International Standard)

[Gay 95] V. GAY, P. LEYDEKKERS and R. HUIS IN ’T VELD: Specification of Multiparty Audio and Video
Interaction Based on the Reference Model of Open Distributed Processing, Computer Networks and
ISDN Systems – Special issue on RM-ODP, 1995.

[OMG IDL] The Common Object Request Broker: Architecture and Specification, OMG Document
Number 91.12.1, Draft edition, December 1991.

[Rumbaugh 91] J. RUMBAUGH et al.: Object oriented modelling and design, Prentice Hall, 1991.



ITU-T  RECOMMENDATIONS  SERIES

Series A Organization of the work of the ITU-T

Series B Means of expression: definitions, symbols, classification

Series C General telecommunication statistics

Series D General tariff principles

Series E Overall network operation, telephone service, service operation and human factors

Series F Non-telephone telecommunication services

Series G Transmission systems and media, digital systems and networks

Series H Audiovisual and multimedia systems

Series I Integrated services digital network

Series J Transmission of television, sound programme and other multimedia signals

Series K Protection against interference

Series L Construction, installation and protection of cables and other elements of outside
plant

Series M TMN and network maintenance: international transmission systems, telephone
circuits, telegraphy, facsimile and leased circuits

Series N Maintenance: international sound programme and television transmission circuits

Series O Specifications of measuring equipment

Series P Telephone transmission quality, telephone installations, local line networks

Series Q Switching and signalling

Series R Telegraph transmission

Series S Telegraph services terminal equipment

Series T Terminals for telematic services

Series U Telegraph switching

Series V Data communication over the telephone network

Series X Data networks and open system communication

Series Z Programming languages


	Return to Menu
	Return to Series X Menu
	====================
	ITU-T Rec. X.901 (08/97) INFORMATION TECHNOLOGY - OPEN DISTRIBUTED PROCESSING - REFERENCE MODEL: OVERVIEW
	Summary
	Source
	FOREWORD
	CONTENTS
	INFORMATION TECHNOLOGY - OPEN DISTRIBUTED PROCESSING - REFERENCE MODEL: OVERVIEW
	1 Scope and field of application
	2 Normative references
	2.1 Identical Recommendations | International Standards
	2.2 Paired Recommendations | International Standards equivalent in technical content
	2.3 International Standards

	3 Definitions
	3.1 Definitions in this Recommendation | International Standard
	3.2 Definitions from other Recommendations | International Standards

	4 Abbreviations
	5 Conventions
	6 ODP standardization
	6.1 Objectives and motivation
	6.2 Realization
	6.3 Standards

	7 Foundations
	7.1 Basic modelling concepts
	7.2 Specification concepts
	7.3 Structuring concepts

	8 Architecture
	8.1 Architectural framework
	8.2 Enterprise language
	8.3 Information language
	8.4 Computational language
	8.5 Engineering language
	8.6 Technology language
	8.7 Consistency between viewpoints
	8.8 ODP functions
	8.9 ODP distribution transparencies

	9 Conformance assessment
	9.1 Conformance assessment and the development process
	9.2 Conformance assessment: Relevant relationships
	9.3 Conformance points and related concepts
	9.4 ODP conformance specifications
	9.5 Conformance implications of viewpoint languages
	9.6 Conformance assessment activities

	10 Management of ODP systems
	10.1 Management domains
	10.2 Management policy
	10.3 Modelling management structures

	11 The use of standards in ODP systems
	11.1 Enterprise viewpoint
	11.2 Information viewpoint
	11.3 Computational viewpoint
	11.4 Engineering viewpoint
	11.5 Technology viewpoint

	12 Examples of ODP specifications
	12.1 Multimedia Conferencing System
	12.2 Multiparty audio/video stream binding
	12.3 A management example - Metric Object
	12.4 Database example

	Annex A - Bibliography

