
INTERNATIONAL TELECOMMUNICATION UNION

)454 8����
TELECOMMUNICATION (07/94)
STANDARDIZATION SECTOR
OF ITU

$!4!��.%47/2+3��!.$��/0%.��3934%-
#/--5.)#!4)/.3

/3)��!00,)#!4)/.3�� ��2%-/4%��/0%2!4)/.3

).&/2-!4)/.��4%#(./,/'9��
2%-/4%��/0%2!4)/.3���#/.#%043���-/$%,
!.$��./4!4)/.

)454��Recommendation��8����
(Previously “CCITT Recommendation”)

FOREWORD

ITU (International Telecommunication Union) is the United Nations Specialized Agency in the field of
telecommunications. The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of the ITU.
Some 179 member countries, 84 telecom operating entities, 145 scientific and industrial organizations and
38 international organizations participate in ITU-T which is the body which sets world telecommunications standards
(Recommendations).

The approval of Recommendations by the Members of ITU-T is covered by the procedure laid down in WTSC
Resolution No. 1 (Helsinki, 1993). In addition, the World Telecommunication Standardization Conference (WTSC),
which meets every four years, approves Recommendations submitted to it and establishes the study programme for the
following period.

In some areas of information technology which fall within ITU-T’s purview, the necessary standards are prepared on a
collaborative basis with ISO and IEC. The text of ITU-T Recommendation X.880 was approved on 1st of July 1994. The
identical text is also published as ISO/IEC International Standard 13712-1.

NOTE

In this Recommendation, the expression “Administration” is used for conciseness to indicate both a telecommunication
administration and a recognized operating agency.

 ITU 1995

All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means, electronic or
mechanical, including photocopying and microfilm, without permission in writing from the ITU.

ITU-T X-SERIES RECOMMENDATIONS
DATA NETWORKS AND OPEN SYSTEM COMMUNICATIONS

(February 1994)

ORGANIZATION OF X-SERIES RECOMMENDATIONS

Subject area Recommendation
series

PUBLIC DATA NETWORKS

Services and Facilities X.1-X.19

Interfaces X.20-X.49

Transmission, Signalling and Switching X.50-X.89

Network Aspects X.90-X.149

Maintenance X.150-X.179

Administrative Arrangements X.180-X.199

OPEN SYSTEMS INTERCONNECTION

Model and Notation X.200-X.209

Service Definitions X.210-X.219

Connection-mode Protocol Specifications X.220-X.229

Connectionless-mode Protocol Specifications X.230-X.239

PICS Proformas X.240-X.259

Protocol Identification X.260-X.269

Security Protocols X.270-X.279

Layer Managed Objects X.280-X.289

Conformance Testing X.290-X.299

INTERWORKING BETWEEN NETWORKS

General X.300-X.349

Mobile Data Transmission Systems X.350-X.369

Management X.370-X.399

MESSAGE HANDLING SYSTEMS X.400-X.499

DIRECTORY X.500-X.599

OSI NETWORKING AND SYSTEM ASPECTS

Networking X.600-X.649

Naming, Addressing and Registration X.650-X.679

Abstract Syntax Notation One (ASN.1) X.680-X.699

OSI MANAGEMENT X.700-X.799

SECURITY X.800-X.849

OSI APPLICATIONS

Commitment, Concurrency and Recovery X.850-X.859

Transaction Processing X.860-X.879

Remote Operations X.880-X.899

OPEN DISTRIBUTED PROCESSING X.900-X.999

ITU-T Rec. X.880 (1994 E) i

CONTENTS
ITU-T Rec. X.880 (1994 E)

Page

1 Scope.. 1

2 Normative references ... 1
2.1 Identical Recommendations | International Standards .. 1
2.2 Paired Recommendations | International Standards equivalent in technical content 1
2.3 Additional references .. 2

3 Definitions.. 2
3.1 OSI reference model definitions ... 2
3.2 ASN.1 definitions ... 2
3.3 ROS definitions... 2

4 Abbreviations ... 3

5 Conventions.. 3

6 ROS model ... 3

7 Realization of ROS... 5

8 ROS concepts ... 6
8.1 Introduction... 6
8.2 Operation .. 6
8.3 Error ... 7
8.4 Operation package .. 8
8.5 Connection package .. 8
8.6 Association contract.. 9
8.7 ROS-object class ... 10
8.8 Code ... 11
8.9 Priority .. 11

9 Generic ROS protocol .. 11
9.1 Introduction... 11
9.2 ROS ... 11
9.3 Invoke ... 12
9.4 Return result.. 13
9.5 Return error... 14
9.6 Reject .. 15
9.7 Reject Problem.. 17
9.8 Invoke id ... 17
9.9 No invoke id.. 17
9.10 Errors .. 17
9.11 Bind ... 18
9.12 Unbind .. 18

10 Useful definitions ... 18
10.1 Introduction... 18
10.2 Empty bind.. 18
10.3 Empty unbind.. 18
10.4 Refuse ... 19
10.5 No-op .. 19
10.6 Forward ... 19
10.7 Reverse ... 19
10.8 Consumer performs... 19
10.9 Supplier performs.. 20
10.10 All operations.. 20

ii ITU-T Rec. X.880 (1994 E)

Page
10.11 recode.. 20
10.12 switch .. 20
10.13 combine... 21
10.14 ROS single abstract syntax ... 21
10.15 ROS consumer abstract syntax ... 21
10.16 ROS supplier abstract syntax .. 21

Annex A – ASN.1 modules .. 22

Annex B – Guidelines for the use of the notation .. 29
B.1 Examples of Operations and their Errors .. 29
B.2 Examples of Operation Packages and the use of switch{} ... 30
B.3 Examples of Bind and Unbind operations .. 31
B.4 Examples of Connection Packages ... 31
B.5 Example of an Association Contract... 32
B.6 Examples of ROS-objects ... 32
B.7 Example of the use of Forward{} and Reverse{}...32
B.8 Examples of ConsumerPerforms{}, SupplierPerforms{} and AllOperations{}................................. 33

Annex C – Migrating from the ROS macros .. 35
C.1 Introduction... 35
C.2 Operation .. 35
C.3 Error ... 36
C.4 Bind ... 36
C.5 Unbind .. 36

Annex D – Assignment of object identifier values... 37

ITU-T Rec. X.880 (1994 E) iii

Summary

This Recommendation | International Standard uses the Abstract Syntax Notation One (ASN.1) to define information
object classes corresponding to the fundamental concepts of the Remote Operations Service (ROS). This, in turn,
provides the notation that will allow application designers to specify instances of these classes. This Recommenda-
tion | International Standard also provides a collection of definitions for specifying the generic protocol between objects
that communicate using remote operations. A number of definitions of general utility to designers of ROS-based
applications is also provided.

iv ITU-T Rec. X.880 (1994 E)

Introduction

Remote operations (ROS) is a paradigm for interactive communication between objects. As such it can be used in the
design and specification of distributed applications. The basic interaction involved is the invocation of an operation by
one object (the invoker), its performance by another (the performer), possibly followed by a report of the outcome of the
operation being returned to the invoker.

The concepts of ROS are abstract, and may be realized in many ways. For example, objects whose interactions employ
ROS concepts may be separated by a software interface or by an OSI network.

This Recommendation | International Standard describes the concepts and model of ROS. It uses ASN.1 to specify
information object classes corresponding to the fundamental concepts of ROS, such as operation and error. This in turn
provides a notation so that designers can specify particular instances of those classes, e.g. particular operations and
errors.

This Recommendation | International Standard provides a generic set of PDUs which can be used in realizing the ROS
concepts between objects remote from one another. These PDUs are used in the OSI realization of ROS, which are
specified in the companion Recommendations | International Standards to this one.

This Recommendation | International Standard also provides a number of definitions of general utility to designers of
ROS-based applications.

Annex A forms an integral part of this Recommendation | International Standard.

Annexes B, C and D do not form an integral part of this Recommendation | International Standard.

ISO/IEC 13712-1 : 1995 (E)

ITU-T Rec. X.880 (1994 E) 1

INTERNATIONAL STANDARD
ISO/IEC 13712-1 : 1995 (E)
ITU-T Rec. X.880 (1994 E)

ITU-T RECOMMENDATION

INFORMATION TECHNOLOGY –
REMOTE OPERATIONS: CONCEPTS, MODEL AND NOTATION

1 Scope

This Recommendation | International Standard specifies the Remote Operations Service (ROS) using the Abstract
Syntax Notation (ASN.1) to define information object classes corresponding to the fundamental concepts of ROS. This,
in turn, provides the notation that will allow application designers to specify particular instances of these classes.

This Recommendation | International Standard also provides a collection of definitions for specifying the generic
protocol between objects that communicate using ROS concepts. These definitions are used in the companion
Recommendations | International Standards to this one to provide the protocol data units, the service primitives and the
application context definitions used in the OSI realization of ROS.

A number of definitions of general utility to designers of ROS-based applications is also provided.

No requirement is made for conformance to this Recommendation | International Standard.

2 Normative references

The following ITU-T Recommendations and International Standards contain provisions which, through reference in this
text, constitute provisions of this Specification. At the time of publication, the editions indicated were valid. All
Recommendations and Standards are subject to revision, and parties to agreements based on this Specification are
encouraged to investigate the possibility of applying the most recent editions of the Recommendations and Standards
indicated below. Members of IEC and ISO maintain registers of currently valid International Standards. The
Telecommunications Standardization Bureau of the ITU maintains a list of currently valid ITU-T Recommendations.

2.1 Identical Recommendations | International Standards

– ITU-T Recommendation X.680 (1994) | ISO/IEC 8824-1:1994, Information technology – Abstract Syntax
Notation One (ASN.1): Specification of basic notation.

– ITU-T Recommendation X.681 (1994) | ISO/IEC 8824-2:1994, Information technology – Abstract Syntax
Notation One (ASN.1): Information object specification.

– ITU-T Recommendation X.682 (1994) | ISO/IEC 8824-3:1994, Information technology – Abstract Syntax
Notation One (ASN.1): Constraint specification.

– ITU-T Recommendation X.683 (1994) | ISO/IEC 8824-4:1994, Information technology – Abstract Syntax
Notation One (ASN.1): Parameterization of ASN.1 specifications.

– ITU-T Recommendation X.200 (1994) | ISO/IEC 7498-1:1994, Information technology – Open Systems
Interconnection – Basic Reference Model: The basic model.

– ITU-T Recommendation X.881 (1994) | ISO/IEC 13712-2:1994, Information technology – Remote
Operations: OSI realizations – Remote Operations Service Element (ROSE) service definition.

– ITU-T Recommendation X.882 (1994) | ISO/IEC 13712-3:1994, Information technology – Remote
Operations: OSI realizations – Remote Operations Service Element (ROSE) protocol specification.

2.2 Paired Recommendations | International Standards equivalent in technical content

– CCITT Recommendation X.219 (1988), Remote Operations: Model, notation and service definition.

ISO/IEC 9072-1:1989, Information processing systems – Text communication – Remote Operations –
Part 1: Model, notation and service definition.

– CCITT Recommendation X.229 (1988), Remote Operations: Protocol specification.

ISO/IEC 9072-2:1989, Information processing systems – Text communication – Remote Operations –
Part 2: Protocol specification.

ISO/IEC 13712-1 : 1995 (E)

2 ITU-T Rec. X.880 (1994 E)

2.3 Additional references

– CCITT Recommendation X.407 (1988), Message handling systems: Abstract service definition
conventions.

3 Definitions

3.1 OSI reference model definitions

This Recommendation | International Standard makes use of the following terms defined in ITU-T Rec. X.200 |
ISO/IEC 7498-1:

a) abstract syntax;

b) protocol data unit;

c) quality of service.

3.2 ASN.1 definitions

This Recommendation | International Standard makes use of the following terms defined in ITU-T Rec. X.680 |
ISO/IEC 8824-1:

a) (data) type;

b) (data) value.

This Recommendation | International Standard makes use of the following terms defined in ITU-T Rec. X.681 |
ISO/IEC 8824-2:

a) field;

b) (information) object;

c) (information) object class;

d) (information) object set.

This Recommendation | International Standard makes use of the following terms defined in ITU-T Rec. X.682 |
ISO/IEC 8824-3:

a) constraint;

b) exception value.

This Recommendation | International Standard makes use of the following terms defined in ITU-T Rec. X.683 |
ISO/IEC 8824-4:

– parameterized.

3.3 ROS definitions

This Recommendation | International Standard defines the following terms:

3.3.1 argument: A data value accompanying the invocation of an operation.

3.3.2 association: A relationship between a pair of objects, serving as the context for the invocation and perfomance
of operations.

3.3.3 association contract: A specification of the roles of a pair of communicating objects who may have an
association with each other.

3.3.4 asymmetrical: Describing an operation package (or association contract), where the sets of operations which
the two parties are capable of performing differ.

3.3.5 connection package: A specification of the roles of a pair of communicating objects in the dynamic
establishment and release of associations between them.

3.3.6 contract: A set of requirements on one or more objects prescribing a collective behaviour.

3.3.7 error: A report of the unsuccessful performance of an operation.

ISO/IEC 13712-1 : 1995 (E)

ITU-T Rec. X.880 (1994 E) 3

3.3.8 linked operation: An operation invoked during the performance of another operation by the (latter’s)
performer and intended to be performed by the (latter’s) invoker.

3.3.9 object: A model of (possibly a self-contained part of) a system, characterized by its initial state and its
behaviour arising from external interactions over well-defined interfaces.

3.3.10 operation: A function that one object (the invoker) can request of another (the performer).

3.3.11 operation package: A collection of related operations used to specify the roles of a pair of communicating
objects, each operation being invokable by one or both objects of the pair and performable by the partner.

3.3.12 parameter (of an error): A data value which may accompany the report of an error.

3.3.13 result: A data value which may accompany the report of the successful performance of an operation.

3.3.14 ROS-object: An object whose interactions with other objects are described using ROS concepts.

3.3.15 symmetrical: Describing an operation package (or assocation contract) in which both parties are capable of
performing the same set of operations.

3.3.16 synchronous: A characteristic of an operation that, once invoked, its invoker cannot invoke another
synchronous operation (with the same intended performer) until the outcome has been reported.

4 Abbreviations

For the purposes of this Recommendation | International Standard, the following abbreviations apply:

ASN.1 Abstract Syntax Notation One

PDU Protocol Data Unit

QOS Quality of Service

RO (or ROS) Remote Operations

5 Conventions

This Recommendation | International Standard employs ASN.1 to define:

a) Information object classes corresponding to the ROS concepts – These also provide notation with which
designers of ROS applications can specify particular instances of those classes.

b) Particular information objects of those classes.

c) The PDUs of the generic ROS protocol.

d) Data types needed in these definitions.

Many of these definitions are parameterized, so that their users must supply actual parameters in order to complete them.

6 ROS model

Remote operations (ROS) is a paradigm for interactive communication between objects. Objects whose interactions are
described and specified using ROS are ROS-objects. The basic interaction involved is the invocation of an operation by
one ROS-object (the invoker) and its performance by another (the performer).

Completion of the performance of the operation (whether successfully or unsuccessfully) may lead to the return, by the
performer to the invoker, of a report of its outcome. This is illustrated in Figure 1.

A report of the successful completion of an operation is a result; a report of unsuccessful completion an error.

During the performance of an operation, the performer can invoke linked operations, intended to be performed by the
invoker of the original operation.

For correct interworking, certain properties of the operation must be known by both invoker and performer. The
properties include:

whether reports are to be returned, and if so, which ones;

the types of the values, if any, to be conveyed with invocations of the operation or returns from it;

ISO/IEC 13712-1 : 1995 (E)

4 ITU-T Rec. X.880 (1994 E)

which operations, if any, can be linked to it;

the code value to be used to distinguish this operation from the others that might be invoked.

TISO4150-94/d01

Invoke

Return

Perform

ROS-object
(invoker)

ROS-object
(performer)

Figure 1 – Invocation, performance, and return of an operation

FIGURE 1/X.880...[D01] = 4 cm

The interworking capabilities of (pairs of) ROS-objects of some ROS-object class are defined in terms of sets of related
operations called operation packages. A package may be symmetrical, in which case it is defined by a single set of
operations which each ROS-object in the pair can invoke (of the other). Alternatively, a package may be asymmetrical,
in which case it is defined by two sets of operations, those which one ROS-object of the pair can invoke and those which
the other can invoke. For the purpose of defining an asymmetrical package, the two ROS-objects are (arbitrarily)
labelled the consumer and supplier respectively.

NOTE 1 – While these labels are, in general, arbitrary, it will often be the case that an intuitive assignment can be made,
given that frequently in such a pair of objects one will be supplying a service which the other consumes.

A pair of ROS-objects must have an association between them to serve as a context for the invocation and performance
of operations. Each such association is governed by an association contract. A contract is specified in terms of the set
of packages which (collectively) determine the operations which can be invoked during the association. If the contract
specification includes one or more asymmetrical packages then the contract is itself asymmetrical. For the purpose of
specifying an asymmetrical association contract, the two ROS-objects which establish an association with each other are
labelled the initiator and responder.

An association may be brought into and out of existence by “off-line” means. Alternatively, an association may be
established and released dynamically. One option, described in this Recommendation | International Standard, by which
an association may be established and released dynamically is, respectively, through the invocation and performance of
special bind and unbind operations. The contract for associations of the latter variety includes a connection package,
which includes the particular bind and unbind operations to be used.

NOTE 2 – The mechanism for the establishment and release of associations may also be done by other means described in
other Recommendations | International Standards.

An association requires a relationship between the objects, the existence of which corresponds to the mutual agreement
of the objects to the terms of some association contract.

NOTE 3 – This specification does not address the means by which these relationships are established or terminated.

In the foregoing, the only objects seen to be involved in an operation have been the invoker and performer. However, in
general, the invoker and performer of an operation are not directly attached to one another, but are connected by some
medium through which invocations and returns can be conveyed. This expanded view is illustrated in Figure 2.

TISO4160-94/d02

ROS-object
(invoker)

Medium ROS-object
(performer)

Figure 2 – Expanded view

FIGURE 2/X.880...[D02] = 5 cm

ISO/IEC 13712-1 : 1995 (E)

ITU-T Rec. X.880 (1994 E) 5

The medium may introduce delay and the possibility of failure or inaccuracy both in the conveyance of invocations and
returns, and in the establishment, release, and maintenance of associations. It may also introduce the possibility of the
security of the association and its operations being threatened. The extent of these (together with other factors) are
described as the quality-of-service (QOS).

Association contracts can now be seen as having three parties, the third party being the medium. The medium’s
obligation under the contract is to satisfy the QOS requirements.

NOTE 4 – In the future, target and minimum acceptable QOS requirements may form part of the specification of
operations, operation packages and of the association contract itself directly. Different aspects of QOS are applicable to these different
levels of specification.

7 Realization of ROS

A realization of ROS involves the definition of a suitable medium to convey invocations and returns between ROS-
objects. Such a medium may, for example, comprise:

a) a message-passing or procedure calling capability allowing the invoker and performer of an operation to
be implemented in separately developed software modules within a single computer system;

b) a communications capability, allowing the invoker and performer of an operation to be implemented in
separate computer systems.

A realization may be general-purpose, in which case it can be employed to support any association contract. Others are
special-purpose, accommodating only some particular contract(s).

Figure 3 depicts an approach to realizing ROS by communications means which is likely to be widely used.

TISO4170-94/d03

ROS-object stub information
transfer

stub ROS-object

medium

Figure 3 – Approach to communications realization of ROS

FIGURE 3/X.880...[D03] =

In this approach, the medium is composed of stub objects, one for each ROS-object, and an information transfer object.
The stub object associated with each ROS-object appears to play the role of the partner ROS-object. However, it does
not actually invoke or perform any operations, merely transforming invocations and returns into PDUs and vice versa, as
appropriate. These PDUs are exchanged between the stubs by means of the information transfer object.

Thus, to invoke an operation, the invoker invokes the operation of the associated stub, which forms a PDU describing
the invocation. The stub uses the information transfer capability to transfer the PDU to the other stub. The latter stub
interprets the PDU and then invokes the appropriate operation of the ROS-object with which it is associated, the
performer. When the operation has been performed, the performer conveys any return to its associated stub, which forms
a PDU describing it. The stub then, uses the information transfer capability to transfer the PDU to the other stub. The
latter stub interprets the PDU and then reports the return to the invoker.

Clause 9 defines a collection of suitable PDUs.

Various information transfer capabilities can be used in a ROS realization of this kind. Of particular importance are
the information transfer capabilities of OSI. The pair of companion Recommendations | International Standards,
ITU-T Rec. X.881 | ISO/IEC 13712-2 and ITU-T Rec. X.882 | ISO/IEC 13712 -3, describe a number of such
realizations.

ISO/IEC 13712-1 : 1995 (E)

6 ITU-T Rec. X.880 (1994 E)

8 ROS concepts

8.1 Introduction

8.1.1 This clause defines the information object classes corresponding to the basic concepts of ROS, specifying the
characteristics that objects of such classes have. The following information object classes are defined:

– OPERATION (describing operations);

– ERROR (describing errors);

– OPERATION-PACKAGE (describing operation packages);

– CONNECTION-PACKAGE (describing connection packages);

– CONTRACT (describing association contracts);

– ROS-OBJECT-CLASS (describing ROS-object classes).

8.1.2 The information object classes are defined using ASN.1. This provides notation which is available to designers
of ROS applications for specifying particular instances of those classes. Designers are encouraged, but not obliged, to
use this specification approach. If some other approach is employed, the resulting specification shall include or reference
a description of how a valid use of the notation provided could be derived.

NOTE – A number of existing specifications employ the ASN.1 MACRO notation (which were defined in previous
versions of this Recommendation | International Standard: see CCITT Rec. X.219 | ISO/IEC 9072-1) to specify operations, errors, and
other classes of information object relevant to ROS. Annex C describes how the use of these macros can be transformed onto the
notation provided. These macros should not be used for new applications.

8.2 Operation

8.2.1 An operation is a function that one object (the invoker) can request of another (the performer). The
information object class OPERATION, to which all operations belong, is specified as follows, the various fields being
described in 8.2.2 to 8.2.13:

8.2.2 The &ArgumentType field specifies the data type of the argument of the operation. If in some operation the
field is omitted, then that operation takes no argument value.

OPERATION ::= CLASS
{

&ArgumentType OPTIONAL,
&argumentTypeOptional BOOLEAN OPTIONAL,
&returnResult BOOLEAN DEFAULT TRUE,
&ResultType OPTIONAL,
&resultTypeOptional BOOLEAN OPTIONAL,
&Errors ERROR OPTIONAL,
&Linked OPERATION OPTIONAL,
&synchronous BOOLEAN DEFAULT FALSE,
&alwaysReturns BOOLEAN DEFAULT TRUE,
&InvokePriority Priority OPTIONAL,
&ResultPriority Priority OPTIONAL,
&operationCode Code UNIQUE OPTIONAL

}
WITH SYNTAX
{

[ARGUMENT &ArgumentType [OPTIONAL &argumentTypeOptional]]
[RESULT &ResultType [OPTIONAL &resultTypeOptional]]
[RETURN RESULT &returnResult]
[ERRORS &Errors]
[LINKED &Linked]
[SYNCHRONOUS &synchronous]
[ALWAYS RESPONDS &alwaysReturns]
[INVOKE PRIORITY &InvokePriority]
[RESULT-PRIORITY &ResultPriority]
[CODE &operationCode]

}

ISO/IEC 13712-1 : 1995 (E)

ITU-T Rec. X.880 (1994 E) 7

8.2.3 The &argumentTypeOptional field, which can be present only if the &ArgumentType field is present,
specifies if the data type of the operation argument may optionally be omitted. If this field is absent or takes the value
FALSE, the value of the &ArgumentType cannot be omitted from the Invoke{} PDU (see 9.3).

8.2.4 The &returnResult field specifies whether a result is returned in the event that the operation is performed
successfully, taking the value TRUE if it is, and FALSE otherwise.

8.2.5 The &ResultType field specifies the data type of the value returned with the result of the operation. If it is
omitted, then the operation returns no result value. It shall be omitted if the &returnResult field is FALSE.

8.2.6 The &resultTypeOptional field, which can be present only if the &ResultType field is present,
specifies if the data type of the value returned as the result of performing the operation may optionally be omitted. If this
field is absent or takes the value FALSE, the value of the &ResultType cannot be omitted from the
ReturnResult{} PDU (see 9.4).

8.2.7 The &Errors field specifies a set of errors, any one of which may be returned to report an unsuccessful
performance of the operation. If this field is omitted, then unsuccessful performance of the operation is either not
possible or not reported.

8.2.8 The &alwaysReturns field specifies whether the outcome of performing the operation is always returned,
taking the value TRUE if it is and FALSE otherwise. If this field is set to TRUE, at least one of the &returnResult
or &Errors field must be present.

8.2.9 The &Linked field, if present, specifies a set of operations, any of which may be invoked as linked operations
during the performance of the operation. If this field is omitted, then no operations may be linked to an invocation of this
one.

8.2.10 The &synchronous field specifies whether or not the operation is synchronous, taking the value TRUE if it
is, and FALSE otherwise. If the &returnResult field is FALSE, this field shall also take the value FALSE. When the
&synchronous field is set to TRUE, it implies that no other synchronous operation may be invoked by this side until
this operation has returned.

NOTE – The combination of the &alwaysReturns and the &synchronous fields replaces the earlier concept of
“operation classes” defined in CCITT Rec. X.219 | ISO/IEC 9072-1.

8.2.11 The &InvokePriority field specifies the permitted Priority (see 8.9) levels at which this operation can
be invoked.

8.2.12 The &ResultPriority field specifies the permitted Priority (see 8.9) levels at which the result of this
operation can be returned. If the &returnResult field is FALSE, this field shall be omitted.

8.2.13 The &operationCode field, if present, specifies the Code value (see 8.8) which is used to identify this
operation, e.g. when it is to be invoked.

NOTE – An operation which does not have an &operationCode cannot be invoked using the Invoke{} PDU
(see 9.3). In practice, therefore, all operations should have &operationCodes assigned except when intended for use in some
special circumstances, e.g. as a bind operation.

8.3 Error

8.3.1 An error is a report of the unsuccessful performance of an operation. The information object class ERROR, to
which all errors belong, is specified as follows, the various fields being described in 8.3.2 to 8.3.5:

8.3.2 The &ParameterType field specifies the data type of the parameter of the error. If in some error the field is
omitted, then that error takes no parameter value.

ERROR ::= CLASS
{

&ParameterType OPTIONAL,
¶meterTypeOptional BOOLEAN OPTIONAL,
&ErrorPriority Priority OPTIONAL,
&errorCode Code UNIQUE OPTIONAL

}
WITH SYNTAX
{

[PARAMETER &ParameterType [OPTIONAL ¶meterTypeOptional]]
[PRIORITY &ErrorPriority]
[CODE &errorCode]

}

ISO/IEC 13712-1 : 1995 (E)

8 ITU-T Rec. X.880 (1994 E)

8.3.3 The ¶meterTypeOptional field, which can be.present only if the &ParameterType field is
present, specifies if the data type of the value returned as the parameter qualifying the error may optionally be present. If
this field is absent or takes the value FALSE, the value of the &ParameterType cannot be omitted from the
ReturnError{} PDU (see 9.5).

8.3.4 The &ErrorPriority field specifies the permitted Priority (see 8.9) levels at which the error can be
returned.

8.3.5 The &errorCode field, if present, specifies the Code value (see 8.8) which is used to identify this error, e.g.
when it is returned.

NOTE – An error which does not have an &errorCode cannot be returned using the ReturnError{} PDU defined
below. In practice, therefore, all errors should have their &errorCode fields assigned except when intended for use in some special
circumstances, e.g. as a bind error.

8.4 Operation package

8.4.1 An operation package is a specification of the roles of a pair of communicating objects, in terms of the
operations which they can invoke of each other. Where the package is asymmetrical, the terms “consumer” and
“supplier” are employed for the two objects involved. The information object class OPERATION-PACKAGE, to which
all such packages belong, is specified as follows, the various fields being described in 8.4.2 to 8.4.7:

8.4.2 The &Both field specifies a set of OPERATIONs which both objects shall be capable of performing. This field
may be omitted.

8.4.3 The &Consumer field specifies a set of OPERATIONs which one of the objects, known as the consumer, shall
be capable of performing. This field may be omitted, in which case the consumer shall only be capable of performing the
operations specified by the &Both field.

8.4.4 The &Supplier field specifies a set of OPERATIONs which one of the objects, known as the supplier, shall
be capable of performing. This field may be omitted, in which case the supplier shall only be capable of performing the
operations specified by the &Both field.

NOTE – A parameterized operation package, switch{}, is provided (see 10.12) to allow one operation package to be
derived by switching the roles of some other.

8.4.5 The &id field, if present, specifies the OBJECT IDENTIFIER value which is used to identify this package
e.g. if it is being announced or negotiated.

NOTE – A package which does not have an &id cannot be announced or negotiated.

8.4.6 All operations included (directly or indirectly) by the &Both, &Consumer, and &Supplier fields shall
have distinct &operationCode values.

8.4.7 All errors included in the &Errors field of all of the operations included (see 8.4.6), shall have distinct
&errorCode values.

8.5 Connection package

8.5.1 A connection package is a specification of the operations and QOS involved in dynamic establishment and
release of an association. The connection package shall be specified only if the bind and the unbind operations are used
to, respectively, dynamically establish and release an association. The information object class CONNECTION-

OPERATION-PACKAGE ::= CLASS
{

&Both OPERATION OPTIONAL,
&Consumer OPERATION OPTIONAL,
&Supplier OPERATION OPTIONAL,
&id OBJECT IDENTIFIER UNIQUE OPTIONAL

}
WITH SYNTAX
{

[OPERATIONS &Both]
[CONSUMER INVOKES &Supplier]
[SUPPLIER INVOKES &Consumer]
[ID &id]

}

ISO/IEC 13712-1 : 1995 (E)

ITU-T Rec. X.880 (1994 E) 9

PACKAGE, to which all such connection packages belong, is specified as follows, the various fields being described
in 8.5.2 to 8.5.6:

8.5.2 The &bind field specifies an OPERATION which is to be performed as part of the establishment of an
association. Such an operation must have its &returnResult and &alwaysReturns fields set to TRUE, and
have a single error, present in the &Errors field. If the association is successfully established, the bind operation will
return a result. If the association is not successfully established, the bind operation will report its error. If the &bind
field is not explicitly included, the connection package will include the emptyBind operation (see 10.2).

8.5.3 The &unbind field specifies an OPERATION which is to be performed as part of the release of an
association. Such an operation must have its &returnResult and &alwaysReturns fields set to TRUE, and must
have a single error, defined by the &Errors field. If the association is successfully released, the unbind operation will
return a result. If the association is not successfully released, the unbind operation will not return a result, and will report
its error. If the &unbind field is not explicitly included, the connection package will include the emptyUnbind
operation (see 10.3).

8.5.4 The &responderCanUnbind field indicates whether or not the association responder (as well as the
initiator) can invoke the &unbind operation.

8.5.5 The &unbindCanFail field indicates whether or not it is possible for the association to still exist after the
&unbind operation has signalled an error.

8.5.6 The &id field, if present, specifies the OBJECT IDENTIFIER value which is used to identify this
connection package e.g. if it is being announced or negotiated.

NOTE – A connection package which does not have an &id cannot be announced or negotiated.

8.6 Association contract

8.6.1 An association contract is a specification of the roles of a pair of communicating objects who may establish an
association with each other. The information object class CONTRACT, to which all such contracts belong, is specified as
follows, the various fields being described in 8.6.2 to 8.6.6:

CONNECTION-PACKAGE ::= CLASS
{

&bind OPERATION DEFAULT emptyBind,
&unbind OPERATION DEFAULT emptyUnbind,
&responderCanUnbind BOOLEAN DEFAULT FALSE,
&unbindCanFail BOOLEAN DEFAULT FALSE,
&id OBJECT IDENTIFIER UNIQUE OPTIONAL

}
WITH SYNTAX
{

[BIND &bind]
[UNBIND &unbind]
[RESPONDER UNBIND &responderCanUnbind]
[FAILURE TO UNBIND &unbindCanFail]
[ID &id]

}

CONTRACT ::= CLASS
{

&connection CONNECTION-PACKAGE OPTIONAL,
&OperationsOf OPERATION-PACKAGE OPTIONAL,
&InitiatorConsumerOf OPERATION-PACKAGE OPTIONAL,
&InitiatorSupplierOf OPERATION-PACKAGE OPTIONAL,
&id OBJECT IDENTIFIER UNIQUE OPTIONAL

}
WITH SYNTAX
{

[CONNECTION &connection]
[OPERATIONS OF &OperationsOf]
[INITIATOR CONSUMER OF &InitiatorConsumerOf]
[RESPONDER CONSUMER OF &InitiatorSupplierOf]
[ID &id]

}

ISO/IEC 13712-1 : 1995 (E)

10 ITU-T Rec. X.880 (1994 E)

8.6.2 The presence of the &connection field indicates that the associations governed by this association contract
are dynamically established and released by means of, respectively, the bind and the unbind operations specified as a
part of a connection package, and the contents of the field specify the connection package involved.

8.6.3 The &OperationsOf field, if present, specifies one or more operation packages applicable while the
association exists, and which are either symmetrical or in which the initiator of the association can play both consumer
and supplier roles.

8.6.4 The &InitiatorConsumerOf field, if present, specifies one or more operation packages applicable while
the association exists and in which the initiator of the association shall be considered to play the role of consumer.

NOTE – A parameterized operation package, switch{}, is provided (see 10.12) to allow one operation package to be
derived by switching the roles of some other.

8.6.5 The &InitiatorSupplierOf field, if present, specifies one or more operation packages applicable while
the association exists and in which the initiator of the association shall be considered to play the role of supplier.

8.6.6 The &id field, if present, specifies the OBJECT IDENTIFIER value which is used to identify this
association contract, e.g. if it is being announced or negotiated.

NOTE – An association contract which does not have an &id cannot be announced or negotiated.

8.7 ROS-object class

8.7.1 A ROS-object class defines the capabilities of a set of ROS-objects which have in common their ability to
interact with other ROS-objects using a particular set of contracts. The information object class ROS-OBJECT-CLASS
is specified as follows, the various fields being described in 8.7.2 to 8.7.6:

8.7.2 The &Is field, if present, specifies a set of ROS-object classes which are superclasses of the class being
defined. ROS-objects of the latter class are capable of supporting all of the contracts implied by their membership of
each of the specified superclasses, as well as those explicitly present in the fields defined in 8.7.3 to 8.7.5 below.

8.7.3 The &InitiatesAndResponds field specifies a set of CONTRACTs for which ROS-objects of the class
shall be capable of acting as initiator and responder. This field may be omitted.

8.7.4 The &Initiates field specifies a set of CONTRACTs for which ROS-objects of the class shall be capable of
playing the initiator. This field may be omitted, in which case the ROS-objects shall only be capable of initiating the
association contracts specified by the &InitiatesAndResponds field.

8.7.5 The &Responds field specifies a set of CONTRACTs for which object of the class shall be capable of playing
the responder. This field may be omitted, in which case the object shall only be capable of responding to the association
contracts specified by the &InitiatesAndResponds field.

8.7.6 The &id field specifies the OBJECT IDENTIFIER value which is used to identify this object class, e.g. if it
is being announced or negotiated.

ROS-OBJECT-CLASS ::= CLASS
{

&Is ROS-OBJECT-CLASS OPTIONAL,
&Initiates CONTRACT OPTIONAL,
&Responds CONTRACT OPTIONAL,
&InitiatesAndResponds CONTRACT OPTIONAL,
&id OBJECT IDENTIFIER UNIQUE

}
WITH SYNTAX
{

[IS &Is]
[BOTH &InitiatesAndResponds]
[INITIATES &Initiates]
[RESPONDS &Responds]]
ID &id

}

ISO/IEC 13712-1 : 1995 (E)

ITU-T Rec. X.880 (1994 E) 11

8.8 Code

The Code type provides the values for the &operationCode fields of operations and the &errorCode fields of
errors. It is specified as follows:

8.9 Priority

The Priority type is specified as follows:

This parameter defines the priority assigned to the transfer of the corresponding invocation (of an operation) or its return
with respect to the other invocations (and their returns) to be exchanged between the two ROS-objects.

The lower the value, the higher the priority.

9 Generic ROS protocol

9.1 Introduction

This clause provides a collection of definitions which can be used to specify protocols realizing the ROS concepts. The
primary definitions are:

a) a parameterized set of PDUs for invocations and returns of operations (ROS{});

b) a parameterized PDU for the invocation and return of a bind operation (Bind{});

c) a parameterized PDU for the invocation and return of an unbind operation (Unbind{}).

In addition, there are a number of secondary definitions which these rely on.

9.2 ROS

9.2.1 The parameterized type ROS{} provides a basis for the definition of an abstract syntax containing PDUs for
the invocation of operations, for the returning of results and errors, and for the rejection of invalid PDUs. It is specified
as follows:

NOTE – In an actual realization, the use of encoding rules which are not self-identifying and self-delimiting may not
permit the distinction between the outer-level and the inner-level constraint violations.

9.2.2 The ASN.1 parameters which must be supplied to produce a fully-defined type are as follows:

a) InvokeIdSet – This value set of type InvokeId defines the available values for identification of
invocations and thus for correlation of later reports. If in some realization the correlation function can be
carried out by other means, then it can be set to the value set NoInvokeId (see 9.9).

NOTES

1 The application designer may choose to leave this parameter as an unconstrained INTEGER, or provide the
exact range, or propogate it as one of the parameters of the abstract syntax (see 10.14, 10.15 and 10.16).

2 An OSI realization does not support the value noInvokeId (see 9.9.1) for the Invoke,
ReturnResult, and ReturnError PDUs.

b) The Invokable parameter specifies an object set that describes those operations which may be invoked;

Code ::= CHOICE
{

local INTEGER,
global OBJECT IDENTIFIER

}

Priority ::= INTEGER (0..MAX)

ROS {InvokeId:InvokeIdSet, OPERATION:Invokable, OPERATION:Returnable} ::= CHOICE
{

invoke [1] Invoke {{InvokeIdSet}, {Invokable}},
returnResult [2] ReturnResult {{Returnable}},
returnError [3] ReturnError {{Errors{{Returnable}}}},
reject [4] Reject

}
(CONSTRAINED BY { -- must conform to the above definition -- }
! RejectProblem : general-unrecognizedPDU)

ISO/IEC 13712-1 : 1995 (E)

12 ITU-T Rec. X.880 (1994 E)

c) The Returnable parameter specifies an object set that describes those operations for which responses
may need to be generated.

NOTE – This parameter is provided to highlight the asymmetry of the abstract syntax (see 10.15 and 10.16). It
can be derived from the Invokable information object set. Operations in the Invokable information object set
whose &alwaysReturns field is not FALSE shall be included in this parameter.

9.2.3 If the receiver of a PDU does not recognize it as one of those defined, a Reject{} PDU is generated whose
problem component takes the exception value: general-unrecognizedPDU.

9.3 Invoke

9.3.1 The parameterized type Invoke{} provides a PDU for the invocation of operations. It is specified as follows:

NOTE – In an actual realization, the use of encoding rules which are not self-identifying and self-delimiting may not
permit the distinction between the outer-level and the inner-level constraint violations.

9.3.2 The ASN.1 parameters which must be supplied to produce a fully-defined type are as follows:

a) InvokeIdSet – This value set of type InvokeId defines the available values for identification of
invocations and thus for correlation of later reports [see 9.2.2 a)].

b) Operations – Those which may be invoked.

9.3.3 The resulting PDU has up to four components, as follows:

a) invokeId – This component identifies the particular invocation. It shall be one of those allowed by the
InvokeIdSet parameter. The invokeId shall not be one which is already in use (the rule for
determining this is a characteristic of the specific mapping); otherwise, a Reject{} PDU (see 9.6) shall
be generated, whose problem component takes the exception value: invoke-
duplicateInvocation.

Invoke {InvokeId:InvokeIdSet, OPERATION:Operations} ::= SEQUENCE
{

invokeId InvokeId (InvokeIdSet)
(CONSTRAINED BY {-- must be unambiguous --}
! RejectProblem : invoke-duplicateInvocation),

linkedId CHOICE {
present [0] IMPLICIT present < InvokeId,
absent [1] IMPLICIT NULL

}
(CONSTRAINED BY {-- must identify an outstanding operation --}
! RejectProblem : invoke-unrecognizedLinkedId)
(CONSTRAINED BY {-- which has one or more linked operations--}
! RejectProblem : invoke-linkedResponseUnexpected)

OPTIONAL,
opcode OPERATION.&operationCode

({Operations}
! RejectProblem : invoke-unrecognizedOperation)

argument OPERATION.&ArgumentType
({Operations} {@opcode}
! RejectProblem : invoke-mistypedArgument)

OPTIONAL
}
(CONSTRAINED BY {-- must conform to the above definition --}
! RejectProblem : general-mistypedPDU)
(

WITH COMPONENTS
{...,

linkedId ABSENT
}

| WITH COMPONENTS
{...,

linkedId PRESENT,
opcode
(CONSTRAINED BY {-- must be in the &Linked field of the associated operation --}
! RejectProblem : invoke-unexpectedLinkedOperation)

}
)

ISO/IEC 13712-1 : 1995 (E)

ITU-T Rec. X.880 (1994 E) 13

b) linkedId – This component, if present, indicates that this invocation is linked to a previous invocation
in the opposite direction. It shall be the InvokeId of a previous invocation for which no outcome has
been reported; if it is not, then a Reject{} PDU shall be generated, whose problem component
takes the exception value:invoke-unrecognizedLinkedID. The previous invocation shall be of
an operation which allows linked operations; if not, a Reject{}PDU shall be generated, whose
problem component will take the exception value: invoke-linkedResponseUnexpected.

NOTE – For an OSI realization, the value absent:NULL for the linkedID is not used.

c) opcode – This component shall identify, by means of its &operationCode, one of the
Operations; if not, then a Reject{} PDU shall be generated, whose problem component takes the
exception value: invoke-unrecognizedOperation. If the linkedId component is present, then
the previous invocation shall be of an operation which allowed this particular operation to be linked to it;
if not, a Reject{} PDU shall be generated, whose problem component takes the exception value:
invoke-unexpectedLinkedOperation.

d) argument – This component shall be present and of the type forming the &ArgumentType field of the
operation identified by the opcode component, unless that field is omitted or the
&argumentTypeOptional field omitted. If this condition is not met, then a Reject {} PDU
shall be generated, whose problem component takes the exception value: invoke-
mistypedArgument.

9.3.4 If the receiver of such a PDU finds it to be mistyped, a Reject{} PDU is generated whose problem
component takes the exception value: general-mistypedPDU.

9.4 Return result

9.4.1 The parameterized type ReturnResult{} provides a PDU for reporting the successful performance of
operations. It is specified as follows:

NOTE – In an actual realization, the use of encoding rules which are not self-identifying and self-delimiting may not
permit the distinction between the outer-level and the inner-level constraint violations.

9.4.2 A single ASN.1 parameter must be supplied to produce a fully-defined type, namely Operations, those
whose result may be returned.

9.4.3 The resulting PDU has up to three components, as follows:

a) invokeId – This component identifies the particular invocation whose successful performance
is being reported. It shall be the InvokeId of a previous invocation for which no outcome has
yet been reported; if it is not, then a Reject{} PDU shall be generated, whose
problem component takes the exception value: returnResult-unrecognizedInvocation.
The previous invocation shall be of an operation which returns a result; if not, then a Reject{} PDU
shall be generated, whose problem component takes the exception value: returnResult-
resultResponseUnexpected.

ReturnResult {OPERATION:Operations}::= SEQUENCE
{

invokeId InvokeId
(CONSTRAINED BY {-- must be that for an outstanding operation --}
! RejectProblem : returnResult-unrecognizedInvocation)
(CONSTRAINED BY {-- which returns a result --}
! RejectProblem : returnResult-resultResponseUnexpected),

result SEQUENCE
{
opcode OPERATION.&operationCode

({Operations})(CONSTRAINED BY {-- identified by invokeId --}
! RejectProblem : returnResult-unrecognizedInvocation),

result OPERATION.&ResultType ({Operations} {@opcode}
! RejectProblem : returnResult-mistypedResult)

}
OPTIONAL

}
(CONSTRAINED BY {-- must conform to the above definition --}
! RejectProblem : general-mistypedPDU)

ISO/IEC 13712-1 : 1995 (E)

14 ITU-T Rec. X.880 (1994 E)

b) opcode – This component, present if and only if the result component is present, shall identify, by
means of its &operationCode, one of the Operations, specifically, that indicated by the
invokeId; if not, then a Reject{} PDU shall be generated, whose problem component takes
the exception value: returnResult-unrecognizedInvocation.

c) result – This component shall be present and of the type forming the &ResultType field of the
operation identified by the opcode component, unless that field is omitted, in which case this component
shall itself be omitted. If this condition is not met, then a Reject{} PDU shall be generated, whose
problem component takes the exception value: returnResult-mistypedResult.

9.4.4 If the receiver of such a PDU finds it to be mistyped, a Reject{} PDU is generated whose problem
component takes the exception value: general-mistypedPDU.

9.5 Return error

9.5.1 The parameterized type ReturnError{} provides a PDU for reporting the unsuccessful performance of
operations. It is specified as follows:

NOTE – In an actual realization, the use of encoding rules which are not self-identifying and self-delimiting may not
permit the distinction between the outer-level and the inner-level constraint violations.

9.5.2 A single ASN.1 parameter must be supplied to produce a fully-defined type, namely Errors, which is the set
of errors for those operations whose errors may be returned (see 9.10).

9.5.3 The resulting PDU has up to three components, as follows:

a) invokeId – This component identifies the particular invocation whose unsuccessful performance is
being reported. It shall be the InvokeId of a previous invocation for which no outcome has yet been
reported; if it is not, then a Reject{} PDU shall be generated, whose problem component takes the
exception value: returnError-unrecognizedInvocation. The previous invocation shall be of
an operation which returns an error; if not, then a Reject{} PDU shall be generated, whose problem
component takes the exception value: returnError-errorResponseUnexpected.

b) errcode – This component shall identify, by means of its &errorCode, one of the errors of the
Errors; if not, then a Reject{} PDU shall be generated, whose problem component takes the
exception value: returnError-unrecognizedError. The error shall be one of those appearing in
the &Errors field of the operation identified by the invokeId; if not, then a Reject{} PDU shall be
generated, whose problem component takes the exception value: returnError-
unexpectedError.

c) parameter – This component shall be present and of the type forming the &ParameterType field of
the error identified by the errcode component, unless that field is omitted, in which case this
component shall itself be omitted. If this condition is not met, then a Reject{} PDU shall be generated,
whose problem component takes the exception value: returnError-mistypedParameter.

9.5.4 If the receiver of such a PDU finds it to be mistyped a Reject{} PDU is generated whose problem
component takes the exception value: general-mistypedPDU.

ReturnError {ERROR:Errors} ::= SEQUENCE
{

invokeId InvokeId
(CONSTRAINED BY {-- must be that for an outstanding operation --}
! RejectProblem : returnError-unrecognizedInvocation)
(CONSTRAINED BY {-- which returns an error --}
! RejectProblem : returnError-errorResponseUnexpected),

errcode ERROR.&errorCode
({Errors}
! RejectProblem : returnError-unrecognizedError)
(CONSTRAINED BY {-- must be in the &Errors field of the associated operation --}
! RejectProblem : returnError-unexpectedError),

parameter ERROR.&ParameterType
({Errors}{@errcode}
! RejectProblem : returnError-mistypedParameter)

OPTIONAL
}
(CONSTRAINED BY { -- must conform to the above definition -- }
! RejectProblem : general-mistypedPDU)

ISO/IEC 13712-1 : 1995 (E)

ITU-T Rec. X.880 (1994 E) 15

9.6 Reject

9.6.1 The type Reject provides a PDU for reporting erroneous use of the other ROS{} PDUs. It is specified as
follows:

NOTE – In an actual realization, the use of encoding rules which are not self-identifying and self-delimiting may not
permit the distinction between the outer-level and the inner-level constraint violations.

9.6.2 The resulting PDU has two components, as follows:

a) invokeId – This component is the InvokeId appearing in the PDU being rejected, except that if the
invokeId cannot be determined, then the value noInvokeId (see 9.9) is sent instead.

b) problem – This component identifies the particular problem with the rejected PDU. There are four
possible categories, as specified in 9.6.3 to 9.6.6.

9.6.3 A GeneralProblem is a fundamental problem with the form or structure of a ROS{} PDU. The
possibilities are specified as follows:

and indicate the following:

a) unrecognizedPDU – The tag of the PDU indicates that it is not one of the alternatives allowed by 9.2;

b) mistypedPDU – The structure of the PDU does conform to the appropriate definition;

c) badlyStructuredPDU – The structure of the PDU cannot be determined based on the expected
abstract syntax.

NOTE – In some mappings, these problems will be identified and handled within the communications infrastructure.

9.6.4 An InvokeProblem indicates that some component of an Invoke{} PDU was erroneous. The possibilities
are specified as follows:

Reject ::= SEQUENCE
{

invokeId InvokeId,
problem CHOICE

{
general [0] GeneralProblem,
invoke [1] InvokeProblem,
returnResult [2] ReturnResultProblem,
returnError [3] ReturnErrorProblem

}
}
(CONSTRAINED BY {-- must conform to the above definition --}
! RejectProblem : general-mistypedPDU)

GeneralProblem ::= INTEGER
{

unrecognizedPDU (0),
mistypedPDU (1),
badlyStructuredPDU (2)

}

InvokeProblem ::= INTEGER
{

duplicateInvocation (0),
unrecognizedOperation (1),
mistypedArgument (2),
resourceLimitation (3),
releaseInProgress (4),
unrecognizedLinkedId (5),
linkedResponseUnexpected (6),
unexpectedLinkedOperation (7)

}

ISO/IEC 13712-1 : 1995 (E)

16 ITU-T Rec. X.880 (1994 E)

and indicate the following:

a) duplicateInvocation [see 9.3.3 a)];

b) unrecognizedOperation [see 9.3.3 c)];

c) mistypedArgument [see 9.3.3 d)];

d) resourceLimitation – The intended performer is not willing to perform the operation due to a
resource limitation;

e) releaseInProgress – The intended performer is not willing to perform the operation because it is
about to release the association;

f) unrecognizedLinkedId [see 9.3.3 b)];

g) linkedResponseUnexpected [see 9.3.3 b)];

h) unexpectedLinkedOperation [see 9.3.3 c)].

9.6.5 A ReturnResultProblem indicates that some component of a ReturnResult{} PDU was erroneous.
The possibilities are specified as follows:

and indicate the following:

a) unrecognizedInvocation [see 9.4.3 a)];

b) resultResponseUnexpected [see 9.4.3 a)];

c) mistypedResult [see 9.4.3 b) and 9.4.3 c)].

9.6.6 A ReturnErrorProblem indicates that some component of a ReturnError{} PDU was erroneous. The
possibilities are specified as follows:

and indicate the following:

a) unrecognizedInvocation [see 9.5.3 a)];

b) errorResponseUnexpected [see 9.5.3 a)];

c) unrecognizedError [see 9.5.3 b)];

d) unexpectedError [see 9.5.3 b)];

c) mistypedParameter [see 9.5.3 c)].

9.6.7 If the receiver of such a PDU finds it to be mistyped, no new Reject{} PDU shall be generated.

ReturnResultProblem ::= INTEGER
{

unrecognizedInvocation (0),
resultResponseUnexpected (1),
mistypedResult (2)

}

ReturnErrorProblem ::= INTEGER
{

unrecognizedInvocation (0),
errorResponseUnexpected (1),
unrecognizedError (2),
unexpectedError (3),
mistypedParameter (4)

}

ISO/IEC 13712-1 : 1995 (E)

ITU-T Rec. X.880 (1994 E) 17

9.7 Reject Problem

The integer RejectProblem describes the error code value generated in the event of some type or constraint in a PDU
definition being violated.

9.7.1 The reaction to the signalling of an error is the sending of a Reject{} PDU. Where the error signalled is
denoted by the RejectProblem identifier “α-β” for some strings α and β, the problem component of the
Reject{} PDU shall take the value “α:β”.

9.8 Invoke id

9.8.1 The InvokeId type defines the values that may be used to identify a particular invocation of an operation. It
is specified as follows:

InvokeId ::= CHOICE
{

present INTEGER,
absent NULL

}

9.8.2 Where the InvokeId is present, it is a value of type INTEGER. When it is absent, a NULL value is used
in its place.

9.9 No invoke id

9.9.1 noInvokeId is the value of InvokeId used when an INTEGER value is either not needed or not available.
It is specified as follows:

noInvokeId InvokeId ::= absent:NULL

9.9.2 NoInvokeId is a value set of type InvokeId consisting only of the value noInvokeId. It is specified as
follows:

NoInvokeId InvokeId ::= {noInvokeId}

9.10 Errors

The parameterized error set Errors{}, given a set of Operations as its ASN.1 parameter, is the set of all errors in
the &Errors fields of those Operations. It is specified as follows:

Errors {OPERATION:Operations} ERROR ::= {Operations.&Errors}

RejectProblem ::= INTEGER
{

general-unrecognizedPDU (0),
general-mistypedPDU (1),
general-badlyStructuredPDU (2),
invoke-duplicateInvocation (10),
invoke-unrecognizedOperation (11),
invoke-mistypedArgument (12),
invoke-resourceLimitation (13),
invoke-releaseInProgress (14),
invoke-unrecognizedLinkedId (15),
invoke-linkedResponseUnexpected (16),
invoke-unexpectedLinkedOperation (17),
returnResult-unrecognizedInvocation (20),
returnResult-resultResponseUnexpected (21),
returnResult-mistypedResult (22),
returnError-unrecognizedInvocation (30),
returnError-errorResponseUnexpected (31),
returnError-unrecognizedError (32),
returnError-unexpectedError (33),
returnError-mistypedParameter (34)

}

ISO/IEC 13712-1 : 1995 (E)

18 ITU-T Rec. X.880 (1994 E)

9.11 Bind

The parameterized type Bind{}, given a single bind operation as its ASN.1 parameter, provides PDUs for the
invocation of that operation, for the returning of the result of that operation, and for the reporting of an error. It is
specified as follows:

9.12 Unbind

The parameterized type Unbind{}, given a single unbind operation as its ASN.1 parameter, provides PDUs for the
invocation of that operation for the returning of the result of that operation, and for the reporting of an error. It is
specified as follows:

10 Useful definitions

10.1 Introduction

This clause provides a collection of definitions which may prove useful to designers of ROS-based applications. They
include:

a) generally useful operations, (emptyBind, emptyUnbind, no-op), and their associated errors;

b) parameterized definitions which deliver the sets of operations involved in some operation package
(ConsumerPerforms{}, SupplierPerforms{}, AllOperations{}) and some auxiliary
definitions;

c) a parameterized definition which allows one operation to be derived from another by changing the
operation code (recode{});

d) parameterized definitions which allow operation packages to be defined either by switching the roles of
another, or by combining several others (switch{}, combine{});

e) parameterized types which can be used to define abstract syntaxes corresponding to an operation package
(ROS-SingleAS{}, ROS-ConsumerAS{}, ROS-SupplierAS{}).

10.2 Empty bind

The emptyBind operation provides the simplest bind operation, which stands as the default should a bind operation not
be explicitly specified for some connection package. This operation has no argument or result values, and has a single
possible error, refuse (see 10.4), corresponding to refusal of the association. The operation is synchronous, meaning
that no synchronous operations can be invoked until the result of the bind operation has been returned. The emptyBind
operation is specified as follows:

emptyBind OPERATION ::= {ERRORS {refuse} SYNCHRONOUS TRUE}

10.3 Empty unbind

The emptyUnbind operation provides the simplest unbind operation, which stands as the default should an unbind
operation not be explicitly specified for some connection package. This operation has no argument, result or error
values. The operation is synchronous, meaning that the unbind operation can not be invoked until the result of any
outstanding synchronous operation has been returned.The emptyUnbind operation is specified as follows:

emptyUnbind OPERATION ::= {SYNCHRONOUS TRUE}

Bind {OPERATION:operation} ::= CHOICE
{

bind-invoke [16] OPERATION.&ArgumentType({operation}),
bind-result [17] OPERATION.&ResultType({operation}),
bind-error [18] OPERATION.&Errors.&ParameterType({operation})

}

Unbind {OPERATION:operation} ::= CHOICE
{

unbind-invoke [19] OPERATION.&ArgumentType({operation}),
unbind-result [20] OPERATION.&ResultType({operation}),
unbind-error [21] OPERATION.&Errors.&ParameterType({operation})

}

ISO/IEC 13712-1 : 1995 (E)

ITU-T Rec. X.880 (1994 E) 19

10.4 Refuse

The refuse error provides for a refusal of some request, without any reason being provided. It is specified as follows:

refuse ERROR ::= {CODE local:-1}

10.5 No-op

10.5.1 The no-op operation does nothing. It is specified as follows:

10.5.2 The operation does not return.

10.6 Forward

The parameterized operation set Forward{}, given an OperationSet as its ASN.1 parameter, is the expanded
operation set formed by adding any operations indirectly linked to operations in the set, and with the same directionality.
It is specified as follows:

It is assumed that there are no operations in the fifth or later level of linkage which are not also present at earlier levels.
If for some OperationSet this assumption is not valid, then some other method of identifying the full set of implied
operations would be required.

10.7 Reverse

The parameterized operation set Reverse{}, given an OperationSet as its ASN.1 parameter is that consisting of
all operations directly or indirectly linked to operations in the set, and with opposite directionality. It is specified as
follows:

Reverse {OPERATION:OperationSet} OPERATION ::= {Forward{{OperationSet.&Linked}}}

It is assumed that there are no operations in the sixth or later level of linkage which are not also present at earlier levels.
If for some OperationSet this assumption is not valid, then some other method of identifying the full set of implied
operations would be required.

10.8 Consumer performs

The parameterized operation set ConsumerPerforms{}, given an operation package package as its ASN.1
parameter, is that which contains all operations which the consumer needs to be capable of performing. It is specified as
follows:

This can only be used if the assumptions associated with Forward{} and Reverse{} concerning the linked
operations are valid.

no-op OPERATION ::=
{

ALWAYS RESPONDS FALSE
CODE local:-1

}

Forward {OPERATION:OperationSet} OPERATION ::=
{

OperationSet |
OperationSet.&Linked.&Linked |
OperationSet.&Linked.&Linked.&Linked.&Linked

}

ConsumerPerforms {OPERATION-PACKAGE:package} OPERATION ::=
{

Forward{{package.&Consumer}} |
Forward{{package.&Both}} |
Reverse{{package.&Supplier}} |
Reverse{{package.&Both}}

}

ISO/IEC 13712-1 : 1995 (E)

20 ITU-T Rec. X.880 (1994 E)

10.9 Supplier performs

The parameterized operation set SupplierPerforms{}, given an operation package package as its ASN.1
parameter, is that which contains all operations which the supplier needs to be capable of performing. It is specified as
follows:

This can only be used if the assumptions associated with Forward{} and Reverse{} concerning the linked
operations are valid.

10.10 All operations

The parameterized operation set AllOperations{}, given an operation package package as its ASN.1 parameter,
is that which contains all operations involved in the package. It is specified as follows:

This can only be used if the assumptions associated with Forward{} and Reverse{} concerning the linked
operations are valid.

10.11 recode

The parameterized operation recode{}, given an operation as its first ASN.1 parameter, is identical in all respects
to that operation, except that its &code field has the value of the second ASN.1 parameter, code. It is specified as
follows:

10.12 switch

The parameterized package switch{}, given a package as its first ASN.1 parameter, is identical in all respects to
that package, except that the consumer and supplier roles are reversed and its &id field has the value of the second
ASN.1 parameter, id. It is specified as follows:

switch {OPERATION-PACKAGE:package, OBJECT IDENTIFIER:id} OPERATION-PACKAGE ::=
{

OPERATIONS {package.&Both}
SUPPLIER INVOKES {package.&Supplier}
CONSUMER INVOKES {package.&Consumer}
ID id

}

SupplierPerforms {OPERATION-PACKAGE:package} OPERATION ::=
{

Forward{{package.&Supplier}} |
Forward{{package.&Both}} |
Reverse{{package.&Consumer}} |
Reverse{{package.&Both}}

}

AllOperations {OPERATION-PACKAGE:package} OPERATION ::=
{

ConsumerPerforms {package} | SupplierPerforms {package}
}

recode {OPERATION:operation, Code:code} OPERATION ::=
{

ARGUMENT operation.&ArgumentType
OPTIONAL operation.&argumentTypeOptional

RETURN RESULT operation.&returnResult
RESULT operation.&ResultType,

OPTIONAL operation.&resultTypeOptional
ERRORS {operation.&Errors}
ALWAYS RESPONDS operation.&alwaysReturns
LINKED {operation.&Linked}
SYNCHRONOUS operation.&synchronous
INVOKE PRIORITY {operation.&InvokePriority}
RESULT-PRIORITY {operation.&ResultPriority}
CODE code

}

ISO/IEC 13712-1 : 1995 (E)

ITU-T Rec. X.880 (1994 E) 21

10.13 combine

10.13.1 The parameterized operation package combine{}, combines a number of operation packages into one. It is
specified as follows:

combine {OPERATION-PACKAGE:ConsumerConsumes, OPERATION-PACKAGE:ConsumerSupplies,
OPERATION-PACKAGE:base} OPERATION-PACKAGE ::=
{

OPERATIONS {ConsumerConsumes.&Both | ConsumerSupplies.&Both}
SUPPLIER INVOKES {ConsumerConsumes.&Supplier | ConsumerSupplies.&Consumer}
CONSUMER INVOKES {ConsumerConsumes.&Consumer | ConsumerSupplies.&Supplier}
ID base.&id

}

10.13.2 The ASN.1 parameters which must be supplied to produce a fully-defined operation package are as follows:

a) ConsumerConsumes – The set of operation packages in which the consumer of the resulting operation
package will play the consumer role.

b) ConsumerSupplies – The set of operation packages in which the consumer of the resulting operation
package will play the supplier role.

c) base – An operation package, typically incompletely defined, whose &id field is used in defining the
resulting operation package.

NOTE – The base package will not normally have any operations defined; even if it does, they will not appear
in the resulting operation package unless they also appear in ConsumerConsumes or SupplierSupplies.

10.14 ROS single abstract syntax

The parameterized type ROS-SingleAS{} is the basis of an abstract syntax which allows the invocation and reporting
of all of the operations in some package, using invoke ids from InvokeIdSet. It is specified as follows:

ROS-SingleAS {InvokeId:InvokeIdSet, OPERATION-PACKAGE:package} ::=
ROS {{InvokeIdSet}, {AllOperations{package}}, {AllOperations{package}}}

10.15 ROS consumer abstract syntax

The parameterized type ROS-ConsumerAS{} is the basis of an abstract syntax which allows the invocation of all of
the consumer-performed operations, and reporting of all supplier-performed operations in some package, using invoke
ids from InvokeIdSet. It is specified as follows:

ROS-ConsumerAS {InvokeId:InvokeIdSet, OPERATION-PACKAGE:package} ::=
ROS {{InvokeIdSet}, {ConsumerPerforms{package}}, {SupplierPerforms{package}}}

10.16 ROS supplier abstract syntax

The parameterized type ROS-SupplierAS{} is the basis of an abstract syntax which allows the invocation of all of
the supplier-performed operations, and reporting of all consumer-performed operations in some package, using invoke
ids from InvokeIdSet. It is specified as follows:

ROS-SupplierAS {InvokeId:InvokeIdSet, OPERATION-PACKAGE:package} ::=
ROS {{InvokeIdSet}, {SupplierPerforms{package}}, {ConsumerPerforms{package}}}

ISO/IEC 13712-1 : 1995 (E)

22 ITU-T Rec. X.880 (1994 E)

Annex A

ASN.1 modules

(This annex forms an integral part of this Recommendation | International Standard)

Remote-Operations-Information-Objects {joint-iso-itu-t remote-operations(4) informationObjects(5) version1(0)}
DEFINITIONS ::=
BEGIN
-- exports everything
IMPORTS emptyBind, emptyUnbind FROM Remote-Operations-Useful-Definitions {joint-iso-itu-t remote-operations(4)
useful-definitions(7) version1(0)};

OPERATION ::= CLASS
{

&ArgumentType OPTIONAL,
&argumentTypeOptional BOOLEAN OPTIONAL,
&returnResult BOOLEAN DEFAULT TRUE,
&ResultType OPTIONAL,
&resultTypeOptional BOOLEAN OPTIONAL,
&Errors ERROR OPTIONAL,
&Linked OPERATION OPTIONAL,
&synchronous BOOLEAN DEFAULT FALSE,
&alwaysReturns BOOLEAN DEFAULT TRUE,
&InvokePriority Priority OPTIONAL,
&ResultPriority Priority OPTIONAL,
&operationCode Code UNIQUE OPTIONAL

}
WITH SYNTAX
{

[ARGUMENT &ArgumentType [OPTIONAL &argumentTypeOptional]]
[RESULT &ResultType [OPTIONAL &resultTypeOptional]]
[RETURN RESULT &returnResult]
[ERRORS &Errors]
[LINKED &Linked]
[SYNCHRONOUS &synchronous]
[ALWAYS RESPONDS &alwaysReturns]
[INVOKE PRIORITY &InvokePriority]
[RESULT-PRIORITY &ResultPriority]
[CODE &operationCode]

}
ERROR ::= CLASS
{

&ParameterType OPTIONAL,
¶meterTypeOptional BOOLEAN OPTIONAL,
&ErrorPriority Priority OPTIONAL,
&errorCode Code UNIQUE OPTIONAL

}
WITH SYNTAX
{

[PARAMETER &ParameterType [OPTIONAL ¶meterTypeOptional]]
[PRIORITY &ErrorPriority]
[CODE &errorCode]

}
OPERATION-PACKAGE ::= CLASS
{

&Both OPERATION OPTIONAL,
&Consumer OPERATION OPTIONAL,
&Supplier OPERATION OPTIONAL,
&id OBJECT IDENTIFIER UNIQUE OPTIONAL

}
-- continued on the next page

ISO/IEC 13712-1 : 1995 (E)

ITU-T Rec. X.880 (1994 E) 23

WITH SYNTAX
{

[OPERATIONS &Both]
[CONSUMER INVOKES &Supplier]
[SUPPLIER INVOKES &Consumer]
[ID &id]

}
CONNECTION-PACKAGE ::= CLASS
{

&bind OPERATION DEFAULT emptyBind,
&unbind OPERATION DEFAULT emptyUnbind,
&responderCanUnbind BOOLEAN DEFAULT FALSE,
&unbindCanFail BOOLEAN DEFAULT FALSE,
&id OBJECT IDENTIFIER UNIQUE OPTIONAL

}
WITH SYNTAX
{

[BIND &bind]
[UNBIND &unbind]
[RESPONDER UNBIND &responderCanUnbind]
[FAILURE TO UNBIND &unbindCanFail]
[ID &id]

}
CONTRACT ::= CLASS
{

&connection CONNECTION-PACKAGE OPTIONAL,
&OperationsOf OPERATION-PACKAGE OPTIONAL,
&InitiatorConsumerOf OPERATION-PACKAGE OPTIONAL,
&InitiatorSupplierOf OPERATION-PACKAGE OPTIONAL,
&id OBJECT IDENTIFIER UNIQUE OPTIONAL

}
WITH SYNTAX
{

[CONNECTION &connection]
[OPERATIONS OF &OperationsOf]
[INITIATOR CONSUMER OF &InitiatorConsumerOf]
[RESPONDER CONSUMER OF &InitiatorSupplierOf]
[ID &id]

}
ROS-OBJECT-CLASS ::= CLASS
{

&Is ROS-OBJECT-CLASS OPTIONAL,
&Initiates CONTRACT OPTIONAL,
&Responds CONTRACT OPTIONAL,
&InitiatesAndResponds CONTRACT OPTIONAL,
&id OBJECT IDENTIFIER UNIQUE

}
WITH SYNTAX
{

[IS &Is]
[BOTH &InitiatesAndResponds]
[INITIATES &Initiates]
[RESPONDS &Responds]
ID &id

}
Code ::= CHOICE
{

local INTEGER,
global OBJECT IDENTIFIER

}
Priority ::= INTEGER (0..MAX)
END -- end of Information Object specifications

ISO/IEC 13712-1 : 1995 (E)

24 ITU-T Rec. X.880 (1994 E)

Remote-Operations-Generic-ROS-PDUs {joint-iso-itu-t remote-operations(4) generic-ROS-PDUs(6) version1(0)}
DEFINITIONS IMPLICIT TAGS ::=
BEGIN
-- exports everything
IMPORTS OPERATION, ERROR FROM Remote-Operations-Information-Objects {joint-iso-itu-t remote-operations(4)
informationObjects(5) version1(0)};

ROS {InvokeId:InvokeIdSet, OPERATION:Invokable, OPERATION:Returnable} ::= CHOICE
{

invoke [1] Invoke {{InvokeIdSet}, {Invokable}},
returnResult [2] ReturnResult {{Returnable}},
returnError [3] ReturnError {{Errors{{Returnable}}}},
reject [4] Reject

}
(CONSTRAINED BY {-- must conform to the above definition --}
! RejectProblem : general-unrecognizedPDU)

Invoke {InvokeId:InvokeIdSet, OPERATION:Operations} ::= SEQUENCE
{

invokeId InvokeId (InvokeIdSet)
(CONSTRAINED BY {-- must be unambiguous --}
! RejectProblem : invoke-duplicateInvocation),

linkedId CHOICE {
present [0] IMPLICIT present < InvokeId,
absent [1] IMPLICIT NULL

}
(CONSTRAINED BY {-- must identify an outstanding operation --}
! RejectProblem : invoke-unrecognizedLinkedId)
(CONSTRAINED BY {-- which has one or more linked operations--}
! RejectProblem : invoke-linkedResponseUnexpected)

OPTIONAL,
opcode OPERATION.&operationCode

({Operations}
! RejectProblem : invoke-unrecognizedOperation),

argument OPERATION.&ArgumentType
({Operations} {@opcode}
! RejectProblem : invoke-mistypedArgument)

OPTIONAL
}
(CONSTRAINED BY {-- must conform to the above definition --}
! RejectProblem : general-mistypedPDU)
(

WITH COMPONENTS
{...,
 linkedId ABSENT
}

| WITH COMPONENTS
{...,
 linkedId PRESENT,
 opcode
 (CONSTRAINED BY {-- must be in the &Linked field of the associated operation --}
 ! RejectProblem : invoke-unexpectedLinkedOperation)
}

)
-- continued on the next page

ISO/IEC 13712-1 : 1995 (E)

ITU-T Rec. X.880 (1994 E) 25

ReturnResult {OPERATION:Operations}::= SEQUENCE
{

invokeId InvokeId
(CONSTRAINED BY {-- must be that for an outstanding operation --}
! RejectProblem : returnResult-unrecognizedInvocation)
(CONSTRAINED BY {-- which returns a result --}
! RejectProblem : returnResult-resultResponseUnexpected),

result SEQUENCE
{
opcode OPERATION.&operationCode

({Operations})(CONSTRAINED BY {-- identified by invokeId --}
! RejectProblem : returnResult-unrecognizedInvocation),

result OPERATION.&ResultType
({Operations} {@opcode}
! RejectProblem : returnResult-mistypedResult)

}
OPTIONAL

}
(CONSTRAINED BY {-- must conform to the above definition --}
! RejectProblem : general-mistypedPDU)

ReturnError {ERROR:Errors} ::= SEQUENCE
{

invokeId InvokeId
(CONSTRAINED BY {-- must be that for an outstanding operation --}
! RejectProblem : returnError-unrecognizedInvocation)
(CONSTRAINED BY {-- which returns an error --}
! RejectProblem : returnError-errorResponseUnexpected),

errcode ERROR.&errorCode
({Errors}
! RejectProblem : returnError-unrecognizedError)
(CONSTRAINED BY {-- must be in the &Errors field of the associated operation --}
! RejectProblem : returnError-unexpectedError),

parameter ERROR.&ParameterType
({Errors}{@errcode}
! RejectProblem : returnError-mistypedParameter) OPTIONAL

}
(CONSTRAINED BY {-- must conform to the above definition --}
! RejectProblem : general-mistypedPDU)

Reject ::= SEQUENCE
{

invokeId InvokeId,
problem CHOICE
 {

general [0] GeneralProblem,
invoke [1] InvokeProblem,
returnResult [2] ReturnResultProblem,
returnError [3] ReturnErrorProblem

 }
}
(CONSTRAINED BY {-- must conform to the above definition --}
! RejectProblem : general-mistypedPDU)

GeneralProblem ::= INTEGER
{

unrecognizedPDU (0),
mistypedPDU (1),
badlyStructuredPDU (2)

}

-- continued on the next page

ISO/IEC 13712-1 : 1995 (E)

26 ITU-T Rec. X.880 (1994 E)

InvokeProblem ::= INTEGER
{

duplicateInvocation (0),
unrecognizedOperation (1),
mistypedArgument (2),
resourceLimitation (3),
releaseInProgress (4),
unrecognizedLinkedId (5),
linkedResponseUnexpected (6),
unexpectedLinkedOperation (7)

}

ReturnResultProblem ::= INTEGER
{

unrecognizedInvocation (0),
resultResponseUnexpected (1),
mistypedResult (2)

}

ReturnErrorProblem ::= INTEGER
{

unrecognizedInvocation (0),
errorResponseUnexpected (1),
unrecognizedError (2),
unexpectedError (3),
mistypedParameter (4)

}

RejectProblem ::= INTEGER
{

general-unrecognizedPDU (0),
general-mistypedPDU (1),
general-badlyStructuredPDU (2),
invoke-duplicateInvocation (10),
invoke-unrecognizedOperation (11),
invoke-mistypedArgument (12),
invoke-resourceLimitation (13),
invoke-releaseInProgress (14),
invoke-unrecognizedLinkedId (15),
invoke-linkedResponseUnexpected (16),
invoke-unexpectedLinkedOperation (17),
returnResult-unrecognizedInvocation (20),
returnResult-resultResponseUnexpected (21),
returnResult-mistypedResult (22),
returnError-unrecognizedInvocation (30),
returnError-errorResponseUnexpected (31),
returnError-unrecognizedError (32),
returnError-unexpectedError (33),
returnError-mistypedParameter (34)

}

InvokeId ::= CHOICE
{

present INTEGER,
absent NULL

}

noInvokeId InvokeId ::= absent:NULL

NoInvokeId InvokeId ::= {noInvokeId}

Errors {OPERATION:Operations} ERROR ::= {Operations.&Errors}

-- continued on the next page

ISO/IEC 13712-1 : 1995 (E)

ITU-T Rec. X.880 (1994 E) 27

Bind {OPERATION:operation} ::= CHOICE
{

bind-invoke [16] OPERATION.&ArgumentType({operation}),
bind-result [17] OPERATION.&ResultType ({operation}),
bind-error [18] OPERATION.&Errors.&ParameterType ({operation})

}

Unbind {OPERATION:operation} ::= CHOICE
{

unbind-invoke [19] OPERATION.&ArgumentType({operation}),
unbind-result [20] OPERATION.&ResultType ({operation}),
unbind-error [21] OPERATION.&Errors.&ParameterType ({operation})

}

END -- end of generic ROS PDU definitions

Remote-Operations-Useful-Definitions {joint-iso-itu-t remote-operations(4) useful-definitions(7) version1(0)}
DEFINITIONS IMPLICIT TAGS ::=
BEGIN
-- exports everything
IMPORTS OPERATION, ERROR, OPERATION-PACKAGE, Code FROM Remote-Operations-Information-Objects
{joint-iso-itu-t remote-operations(4) informationObjects(5) version1(0)}
InvokeId, ROS{}, FROM Remote-Operations-Generic-ROS-PDUs {joint-iso-itu-t remote-operations(4)
generic-ROS-PDUs(6) version1(0)};

emptyBind OPERATION ::= {ERRORS {refuse} SYNCHRONOUS TRUE}

emptyUnbind OPERATION ::= { SYNCHRONOUS TRUE }

refuse ERROR ::= {CODE local:-1}

no-op OPERATION ::=
{

ALWAYS RESPONDS FALSE
CODE local:-1

}

Forward {OPERATION:OperationSet} OPERATION ::=
{

OperationSet |
OperationSet.&Linked.&Linked |
OperationSet.&Linked.&Linked.&Linked.&Linked

}

Reverse {OPERATION:OperationSet} OPERATION ::=
{Forward{{OperationSet.&Linked}}}

ConsumerPerforms {OPERATION-PACKAGE:package} OPERATION ::=
{

Forward{{package.&Consumer}} |
Forward{{package.&Both}} |
Reverse{{package.&Supplier}} |
Reverse{{package.&Both}}

}

SupplierPerforms {OPERATION-PACKAGE:package} OPERATION ::=
{

Forward{{package.&Supplier}} |
Forward{{package.&Both}} |
Reverse{{package.&Consumer}} |
Reverse{{package.&Both}}

}

AllOperations {OPERATION-PACKAGE:package} OPERATION ::=
{

ConsumerPerforms {package} |
SupplierPerforms {package}

}
-- continued on the next page

ISO/IEC 13712-1 : 1995 (E)

28 ITU-T Rec. X.880 (1994 E)

recode {OPERATION:operation, Code:code} OPERATION ::=
{

ARGUMENT operation.&ArgumentType
OPTIONAL operation.&argumentTypeOptional

RETURN RESULT operation.&returnResult
RESULT operation.&ResultType

OPTIONAL operation.&resultTypeOptional
ERRORS {operation.&Errors}
ALWAYS RESPONDS operation.&alwaysReturns
LINKED {operation.&Linked}
SYNCHRONOUS operation.&synchronous
INVOKE PRIORITY {operation.&InvokePriority}
RESULT-PRIORITY {operation.&ResultPriority}
CODE code

}

switch {OPERATION-PACKAGE:package, OBJECT IDENTIFIER:id} OPERATION-PACKAGE ::=
{

OPERATIONS {package.&Both}
SUPPLIER INVOKES {package.&Supplier}
CONSUMER INVOKES {package.&Consumer}
ID id

}

combine {OPERATION-PACKAGE:ConsumerConsumes, OPERATION-PACKAGE:ConsumerSupplies,
OPERATION-PACKAGE:base} OPERATION-PACKAGE ::=
{

OPERATIONS {ConsumerConsumes.&Both | ConsumerSupplies.&Both}
SUPPLIER INVOKES {ConsumerConsumes.&Supplier | ConsumerSupplies.&Consumer}
CONSUMER INVOKES {ConsumerConsumes.&Consumer | ConsumerSupplies.&Supplier}
ID base.&id

}

ROS-SingleAS {InvokeId:InvokeIdSet, OPERATION-PACKAGE:package} ::=
ROS {{InvokeIdSet}, {AllOperations{package}}, {AllOperations{package}}}

ROS-ConsumerAS {InvokeId:InvokeIdSet, OPERATION-PACKAGE:package} ::=
ROS {{InvokeIdSet}, {ConsumerPerforms{package}}, {SupplierPerforms{package}}}

ROS-SupplierAS {InvokeId:InvokeIdSet, OPERATION-PACKAGE:package} ::=
ROS {{InvokeIdSet}, {SupplierPerforms{package}}, {ConsumerPerforms{package}}}

END -- end of useful definitions.

ISO/IEC 13712-1 : 1995 (E)

ITU-T Rec. X.880 (1994 E) 29

Annex B

Guidelines for the use of the notation
(This annex does not form an integral part of this Recommendation | International Standard)

This annex provides examples and guidelines for application protocol designers on the use of the information object
classes corresponding to the basic concepts of ROS, and on the application of the set of parameterized useful definitions.

B.1 Examples of Operations and their Errors

This subclause provides some examples of information objects belonging to the class OPERATION and ERROR.

The asynchronous remote operation operationExample1, which carries an argument of type ArgumentType1,
always responds (as implied by the absence of the key words ALWAYS RESPONDS), returning, in the case of the
successful performance of the operation, a result value of type ResultType1, or, if the operation is unsuccessful, one
of the errors errorExample1 or errorExample2 depending on the circumstances of the failure. The operation
operationExample2 is “linked” to this operation, which means that operationExample2 can be invoked in
response to this operation at any time prior to the completion of this operation. This operationExample1 is
identified by its code, the integer 1.

The asynchronous remote operation operationExample2 carries an argument ArgumentType2. It is an operation
which either never fails or, should it fail, the failure is not reported. When the result of successfully performing this
operation is reported, the result value of type ResultType2 may optionally be omitted by the performer. The
operation operationExample4 is “linked” to this operation, which means that operationExample4 can be
invoked in response to operationExample2 at any time before the completion of the latter. This operation is
identified by the integer value 2.

The synchronous remote operation operationExample3, identified by the integer value 3 and carrying an argument
of type ArgumentType3, always reports its outcome. Should the operation be performed successfully, an indication is
returned but no value of the result is returned. If the operation fails, an error errorExample3 is returned.

NOTE – As this is a synchronous operation, the application designer must ensure that this operation always returns,
particularly if further synchronous operations are expected to be invoked by the invoker.

operationExample1 OPERATION ::=
{
ARGUMENT ArgumentType1
RESULT ResultType1
ERRORS {errorExample1 | errorExample2}
LINKED {operationExample2}
CODE local:1
}

operationExample2 OPERATION ::=
{
ARGUMENT ArgumentType2
RESULT ResultType2 OPTIONAL TRUE
LINKED {operationExample4}
ALWAYS RESPONDS FALSE
CODE local:2
}

operationExample3 OPERATION ::=
{
ARGUMENT ArgumentType3
ERRORS {errorExample3}
SYNCHRONOUS TRUE
CODE local:3
}

operationExample4 OPERATION ::=
{
ARGUMENT ArgumentType4
RETURN RESULT FALSE
ALWAYS RESPONDS FALSE
CODE local:4
}

ISO/IEC 13712-1 : 1995 (E)

30 ITU-T Rec. X.880 (1994 E)

The asynchronous operation operationExample4, identified by the integer value 4, and whose invocation is
accompanied by an argument of type ArgumentType4, does not return.

The following are instances of the (information object) class ERROR which are used to report the unsuccessful
performance of (some of) the operations defined just above:

errorExample1, which can be used to report the unsuccessful performance of either operationExample1 or
operationExample2, is identified by the integer value 1. An error diagnostic parameter value of type
ParameterType1 accompanies this error.

errorExample2, which can be used to report the unsuccessful completion of operationExample1, is
accompanied by a value of type ParameterType2. At the discretion of the performer, this value may sometimes be
omitted. It is identified by the integer 2.

errorExample3, which is identified by the integer value 3, is used to report the unsuccessful performance of
operationExample3. No parameter value (i.e. error diagnostic) is returned with this error.

B.2 Examples of Operation Packages and the use of switch{}

The operations and errors defined in section B.1 can be grouped into an operation package, package1 as follows:

Of the two ROS-objects that interact, one of them, arbitrarly called the “consumer”, can invoke
operationExample1 and operationExample3. The other ROS-object, designated the “supplier”, may only
invoke operationExample2. This particular combination is identified globally by the value
objectIdentifierOfPackage1.

NOTE – The terms “consumer” and “supplier”, which distinguish the two interacting ROS objects, have to be defined with
reference to something outside remote operations. The simplest case is to define them with respect to their roles in forming an
association contract (see B.5).

A different combination of the same collection of operations forms package2, defined as follows:

In package2, either object may invoke operationExample3, the consumer may invoke
operationExample1, while neither side may invoke operationExample2.

A third operation package, package3, can be derived from package1 by using the parameterized definition
switch{}.

package3 OPERATION-PACKAGE ::= switch{OPERATION:package1, objectIdentifierOfPackage3}

errorExample1 ERROR ::=
{
PARAMETER ParameterType1
CODE local:1
}

errorExample2 ERROR ::=
{
PARAMETER ParameterType2 OPTIONAL TRUE
CODE local:2

errorExample3 ERROR
{
CODE local:3
}

package1 OPERATION-PACKAGE ::=
{
CONSUMER INVOKES {operationExample1 | operationExample3}
SUPPLIER INVOKES {operationExample2}
ID objectIdentifierOfPackage1
}

package2 OPERATION-PACKAGE ::=
{
BOTH {operationExample3}
CONSUMER INVOKES {operationExample1}
ID objectIdentifierOfPackage2
}

ISO/IEC 13712-1 : 1995 (E)

ITU-T Rec. X.880 (1994 E) 31

The use of switch{} reverses the operations that can be invoked by the “consumer” and “supplier” in package1 and
allocate a new object identifier value to this combination. Thus, package3 written out in full is as follows:

B.3 Examples of Bind and Unbind operations

An association can be established dynamically by invoking a bind operation, an example of which is:

The synchronous operation bindExample1 is used to establish an association between two ROS-objects. The
invocation of the operation is accompanied by an argument value of type BindArgumentType1 and the successful
establishment of the establishment of the binding is accompanied by a result value of type BindResultType1. In case
the association is not successfully established, an error bindError1 will be returned with the accompanying
diagnostic parameter BindErrorType1 optionally present.

The release of the association is accomplished by the invocation of another synchronous operation unBindExample1
defined as follows.

B.4 Examples of Connection Packages

The examples bindExample1 and unBindExample1 can be used to define a connection package
connectionPackage1, which may be used to dynamically establish or release an association between two ROS-
objects.

package3 OPERATION-PACKAGE ::=
{
CONSUMER INVOKES {operationExample2}
SUPPLIER INVOKES {operationExample1 | operationExample3}
ID objectIdentifierOfPackage3
}

bindExample1 OPERATION ::=
{
ARGUMENT BindArgumentType1
RESULT BindResultType1
ERRORS {bindError1}
SYNCHRONOUS TRUE
}

bindError1 ERROR ::=
{
PARAMETER BindErrorType1 OPTIONAL TRUE
}

unBindExample1 OPERATION ::=
{
ARGUMENT UnBindArgumentType1
RESULT UnBindResultType1 OPTIONAL TRUE
ERRORS {unBindError1}
SYNCHRONOUS TRUE
}

unBindError1 ERROR ::=
{
PARAMETER UnBindErrorType1 OPTIONAL TRUE
}

connectionPackage1 CONNECTION-PACKAGE ::=
{
BIND bindExample1
UNBIND unBindExample1
RESPONDER UNBIND TRUE
FAILURE TO UNBIND TRUE
ID objectIdentifierOfConnectionPackage1
}

ISO/IEC 13712-1 : 1995 (E)

32 ITU-T Rec. X.880 (1994 E)

connectionPackage1, which is identified globally by the value objectIdentifierOfConnection-
Package1 when the association between the two ROS-objects is dynamically established or announced, uses the
operations bindExample1 and unBindExample1 to, respectively, establish and terminate the association. It allows
the association establishment responder to unbind and permits the association to remain even if the unBindExample1
operation fails.

An example of a very simple connection package which defaults to the use of the operations emptyBind and
emptyUnbind (see 10.2 and 10.3) to, respectively, establish and terminate an association is given below.

For this connection package, only the association establishment initiator may invoke the binding and the association is
released even if the attempt at unbinding fails.

B.5 Example of an Association Contract

The association contract contract1 defined as

shows that the connection package connectionPackage1 is used to establish and terminate the association and that
the ROS-object initiating the association establishment plays the role of the “consumer” in the operation package
package1. This contract is identified by the value objectIdentifierOfContract1.

B.6 Examples of ROS-objects

One may define a ROS-object, object1,

object1, which is identified by objectIdentifierOfROSObject1, is one of a set of objects that can interact
with other ROS-objects by initiating the interaction using the association contract contract1.

Similarly, object2, defined as

is one of a set of objects which can interact with other ROS-objects by responding to initiation of the interactions offered
by the association contract contract1.

B.7 Example of the use of Forward{} and Reverse{}

The information object set ConsumerInvokes, derived from package1.&Supplier defined in B.2 as follows:

ConsumerInvokes OPERATION ::= {package1.&Supplier}

gives rise to the set {operationExample1 | operationExample2} which lists the operations that may be
invoked by the “consumer.” In turn,

simpleConnectionPackage CONNECTION-PACKAGE ::=
{
ID objectIdentifierOfSimpleConnectionPackage
}

contract1 CONTRACT ::=
{
CONNECTION connectionPackage1
INITIATOR CONSUMER OF {package1}
ID objectIdentifierOfContract1
}

object1 ROS-OBJECT-CLASS ::=
{
INITIATES {contract1}
ID objectIdentifierofROSObject1
}

object2 ROS-OBJECT-CLASS ::=
{
RESPONDS {contract1}
ID objectIdentifierOf ROSObject2
}

ISO/IEC 13712-1 : 1995 (E)

ITU-T Rec. X.880 (1994 E) 33

SupplierLinkedInvokes OPERATION ::= {ConsumerInvokes.&Linked}

produces {operationExample2} which is the set of operations which may be invoked in the “reverse” direction,
i.e. by the “supplier”, while

ConsumerLinkedInvokes OPERATION ::= {SupplierLinkedInvokes.&Linked}

produces {operationExample4} which is the operation set indirectly linked to the set formed by
package1.&Consumer and is invoked by the “consumer”.

The operation set Forward{OPERATION: ConsumerInvokes} is the set of operations which include the original
operation set ConsumerInvokes together with any indirectly-linked operations with the same “directionality”, i.e. in
our example, the ones that may be invoked by the “consumer”. Thus:

Forward {OPERATION:ConsumerInvokes} OPERATION ::=
{operationExample1 | operationExample3 | operationExample4}

On the other hand, the operation set Reverse{OPERATION:ConsumerInvokes} is the collection of operations
that are a part of the set formed by package1.&Consumer.&Linked, which are the operations that can be invoked
by the “supplier” in response to those in the set of operations given by ConsumerInvokes, together with those
indirectly linked to it and with the same “directionality”, i.e., from “consumer” to “supplier”. That is,

Reverse{OPERATION:ConsumerInvokes} OPERATION ::=
Forward{OPERATION:SupplierLinkedInvokes}

which, when written out explicitly, is

Reverse{OPERATION:ConsumerInvokes} OPERATION ::= {operationExample2}

On the other hand, for the operation set SupplierInvokes derived as follows

SupplierInvokes OPERATION ::= {package1.&Consumer}

we obtain {operationExample2}.

Thus, we have

B.8 Examples of ConsumerPerforms{}, SupplierPerforms{} and AllOperations{}

With the help of the examples in B.7, given the operation package package1, the “consumer” can perform all the
operations in the set

ConsumerPerforms{OPERATION-PACKAGE:package1} OPERATION ::=
{Forward{OPERATION:ConsumerInvokes} |
{Reverse{OPERATION:SupplierInvokes}}

which produces the operation set {operationExample1 | operationExample3 | operationExample4}.

Similarly, in package1, all the operations that the “supplier” should be capable of performing are

SupplierPerforms{OPERATION-PACKAGE:package1} OPERATION ::=
{{Forward{OPERATION:SupplierInvokes} |

{Reverse{OPERATION:ConsumerInvokes}}

which is the set {operationExample2}.

The usefulness of the ConsumerPerforms{} and SupplierPerforms{} constructs is that it permits an
application designer to see, in a complex situation consisting many nested linkages between the operations in that
package, those with the same “directionality”, i.e. those that can be invoked by the consumer and those by the supplier,
without regard to the nature of their linkages.

Forward{OPERATION:SupplierInvokes} OPERATION ::= {operationExample2}

Reverse{OPERATION:SupplierInvokes} OPERATION ::= {operationExample4}

ISO/IEC 13712-1 : 1995 (E)

34 ITU-T Rec. X.880 (1994 E)

The set AllOperations{OPERATION-PACKAGE:package1} lists all the operations both implicitly (i.e. via
linkages) and explicitly cited by package1 that can be invoked by either side in some instance of the use of this
package.

AllOperations{OPERATION-PACKAGE:package1} OPERATION ::=
{ConsumerPerforms{package1} |

{SupplierPerforms{package1}}

which produces the operation set {operationExample1 | operationExample2 | operationExample3
| operationExample4}.

ISO/IEC 13712-1 : 1995 (E)

ITU-T Rec. X.880 (1994 E) 35

Annex C

Migrating from the ROS macros
(This annex does not form an integral part of this Recommendation | International Standard)

In previous versions of ROS, ASN.1 macros were provided to allow ROS application designers to specify their
operations, errors, bind-operations, application-service-elements, etc. In addition, and closely affiliated to ROS, CCITT
Recommendation X.407, provided further macros which designers could use in the object-based specification of
distributed applications. The macro capability is being phased out from ASN.1, and accordingly, the ROS notation
provided by the present Specification makes use instead of the ASN.1 “macro replacement” notation, including
information object classes and parameterization.

C.1 Introduction

However, there are a significant number of specifications in existence which use the macro approach. Accordingly, this
annex shows how the use of these macros could be transformed into the use of the replacement notation. In many cases
the replacement notation is more comprehensive than the macro it replaces; however, such features are not generally
pointed out in this annex, which is concerned only with understanding existing macro usage. The macros should not be
used for new specifications.

This annex is organized with one subclause devoted to each existing macro. The subclause describes the purpose of the
macro, gives an example of its use together with the equivalent in the newer notation, and then explains any aspects not
clear from the example. In the examples using the macro notation, symbols underlined are to be deleted to form the
new notation, while symbols in BOLD ITALICS are to be inserted.

One particular approach to using macros, “two-stage definition” has been widely employed in the existing specifications.
In this approach, the “identifiers” for various kinds of information object (e.g. the operation or error code) is assigned in
the second stage. However the interpretation of such specifications by the reader sometimes requires taking into account
such normally irrelevant factors as the similarity of spelling of distinct ASN.1 references, and the proximity of ASN.1
definitions. This is not acceptable with the replacement notation. Accordingly, this annex describes the mapping only of
the second or only stage of the definition using macros.

C.2 Operation

The OPERATION macro was used to specify operations (except for bind and unbind operations). The changes as we go
from defining an instance, called get, of the OPERATION macro to a member of the OPERATION information object
class is shown below as we go, respectively, from right to left. Looking at the macro notation on the left hand side,
symbols underlined twice are to be deleted from the old notation while symbols in bold italics are to be inserted into the
old notation to form the new notation (as seen on the right hand side).

NOTES

1 Omission of the RESULT clause in the macro notation ⇒ RETURN RESULT FALSE in the new notation.
2 Presence of RESULT without data type in the macro notation ⇒ omission of RESULT clause in the new notation (the

keywords RETURN RESULT TRUE is the default and hence omitted).

3 As a result of the above assumption concerning 2-stage definition, the names of individual errors and linked
operations start with lower-case letters.

4 The following operation fields permitted by the information object class definition could not be specified with the
macro, but, if needed, would have to be specified in text: &synchronous, &InvokePriority, &ResultPriority.

5 It is possible to state in the new notation, through the use of the &argumentTypeOptional and
&resultTypeOptional fields, if, respectively, the argument or result value may, as a user option, be omitted.

get OPERATION ::=
{ ARGUMENT Descriptor

RESULT Information
ERRORS {unknown , / noAccess}
LINKED {getPassword}
::= CODE local:73

}
⇒

get OPERATION ::=
{

ARGUMENT Descriptor
RESULT Information
ERRORS {unknown | noAccess}
LINKED {getPassword}
CODE local:73

}

ISO/IEC 13712-1 : 1995 (E)

36 ITU-T Rec. X.880 (1994 E)

C.3 Error

The ERROR macro was used to specify errors (except for those of bind and unbind operations).

NOTES

1 The &ErrorPriority field could not be specified with the macro, but, if needed, would be specified in text.

2 It is possible to state in the new notation, through the use of the ¶meterTypeOptional field, if the
parameter value, if any, defined to accompany the report of an error may, as a user option, be omitted.

C.4 Bind

The BIND macro was used to specify bind operations.

NOTE – The absence of the key word CODE in the new notation indicates that this is a special operation which cannot be
invoked using the Invoke{} PDU.

C.5 Unbind

The UNBIND macro was used to specify unbind operations.

NOTE – The absence of the key word CODE in the new notation indicates that this is a special operation which cannot be
invoked using the Invoke{} PDU.

unknown ERROR ::=
{ PARAMETER Descriptor

::= CODE local:14
}

⇒
unknown ERROR ::=
{

PARAMETER Descriptor
CODE local:14

}

Hallohallo ::= BIND OPERATION::=
{ ARGUMENT HowAreYou

RESULT Fine-AndYou
BIND-ERRORS { GgoAway}

}

⇒
hallo OPERATION::=
{

ARGUMENT HowAreYou
RESULT Fine-AndYou
ERRORS {goAway}

}

Byebye ::= UNBIND OPERATION ::=
{ ARGUMENT SeeYouSoon

RESULT LetsDoLunch
BIND-ERRORS { DdontGo}

}

⇒
bye OPERATION ::=
{

ARGUMENT SeeYouSoon
RESULT LetsDoLunch
ERRORS {dontGo}

}

ISO/IEC 13712-1 : 1995 (E)

ITU-T Rec. X.880 (1994 E) 37

Annex D

Assignment of object identifier values
(This annex does not form an integral part of this Recommendation | International Standard)

The following object identifier values are assigned in this Recommendation | International Standard:

Clause Object Identifier Value

Annex A {joint-iso-itu-t remote-operations(4) informationObjects(5) version1(0)}

{joint-iso-itu-t remote-operations(4) generic-ROS-PDUs(6) version1(0)}

{joint-iso-itu-t remote-operations(4) useful-definitions(7) version1(0)}

	Return to Menu
	Return to Series X Menu
	====================
	ITU-T Rec. X.880 (07/94) INFORMATION TECHNOLOGY … REMOTE OPERATIONS: CONCEPTS, MODEL AND NOTATION
	FOREWORD
	CONTENTS
	Summary
	Introduction
	INFORMATION TECHNOLOGY … REMOTE OPERATIONS: CONCEPTS, MODEL AND NOTATION
	1 Scope
	2 Normative references
	2.1 Identical Recommendations | International Standards
	2.2 Paired Recommendations | International Standards equivalent in technical content
	2.3 Additional references

	3 Definitions
	3.1 OSI reference model definitions
	3.2 ASN.1 definitions
	3.3 ROS definitions

	4 Abbreviations
	5 Conventions
	6 ROS model
	7 Realization of ROS
	8 ROS concepts
	8.1 Introduction
	8.2 Operation
	8.3 Error
	8.4 Operation package
	8.5 Connection package
	8.6 Association contract
	8.7 ROS-object class
	8.8 Code
	8.9 Priority

	9 Generic ROS protocol
	9.1 Introduction
	9.2 ROS
	9.3 Invoke
	9.4 Return result
	9.5 Return error
	9.6 Reject
	9.7 Reject Problem
	9.8 Invoke id
	9.9 No invoke id
	9.10 Errors
	9.11 Bind
	9.12 Unbind

	10 Useful definitions
	10.1 Introduction
	10.2 Empty bind
	10.3 Empty unbind
	10.4 Refuse
	10.5 No-op
	10.6 Forward
	10.7 Reverse
	10.8 Consumer performs
	10.9 Supplier performs
	10.10 All operations
	10.11 recode
	10.12 switch
	10.13 combine
	10.14 ROS single abstract syntax
	10.15 ROS consumer abstract syntax
	10.16 ROS supplier abstract syntax

	Annex A
	ASN.1 modules
	Annex B
	Guidelines for the use of the notation
	B.1 Examples of Operations and their Errors
	B.2 Examples of Operation Packages and the use of switch{}
	B.3 Examples of Bind and Unbind operations
	B.4 Examples of Connection Packages
	B.5 Example of an Association Contract
	B.6 Examples of ROS-objects
	B.7 Example of the use of Forward{} and Reverse{}
	B.8 Examples of ConsumerPerforms{}, SupplierPerforms{} and AllOperations{}
	Annex C
	Migrating from the ROS macros
	C.1 Introduction
	C.2 Operation
	C.3 Error
	C.4 Bind
	C.5 Unbind
	Annex D
	Assignment of object identifier values

