

INTERNATIONAL TELECOMMUNICATION UNION

 X.680
TELECOMMUNICATION
STANDARDIZATION SECTOR
OF ITU

(12/97)

SERIES X: DATA NETWORKS AND OPEN SYSTEM
COMMUNICATIONS
OSI networking and system aspects – Abstract Syntax
Notation One (ASN.1)

Information technology – Abstract Syntax
Notation One (ASN.1): Specification of basic
notation

ITU-T Recommendation X.680
(Previously CCITT Recommendation)

ITU-T X-SERIES RECOMMENDATIONS

DATA NETWORKS AND OPEN SYSTEM COMMUNICATIONS

For further details, please refer to ITU-T List of Recommendations.

PUBLIC DATA NETWORKS

Services and facilities X.1–X.19
Interfaces X.20–X.49
Transmission, signalling and switching X.50–X.89
Network aspects X.90–X.149
Maintenance X.150–X.179
Administrative arrangements X.180–X.199

OPEN SYSTEM INTERCONNECTION
Model and notation X.200–X.209
Service definitions X.210–X.219
Connection-mode protocol specifications X.220–X.229
Connectionless-mode protocol specifications X.230–X.239
PICS proformas X.240–X.259
Protocol Identification X.260–X.269
Security Protocols X.270–X.279
Layer Managed Objects X.280–X.289
Conformance testing X.290–X.299

INTERWORKING BETWEEN NETWORKS
General X.300–X.349
Satellite data transmission systems X.350–X.399

MESSAGE HANDLING SYSTEMS X.400–X.499
DIRECTORY X.500–X.599
OSI NETWORKING AND SYSTEM ASPECTS

Networking X.600–X.629
Efficiency X.630–X.639
Quality of service X.640–X.649
Naming, Addressing and Registration X.650–X.679
Abstract Syntax Notation One (ASN.1) X.680–X.699

OSI MANAGEMENT
Systems Management framework and architecture X.700–X.709
Management Communication Service and Protocol X.710–X.719
Structure of Management Information X.720–X.729
Management functions and ODMA functions X.730–X.799

SECURITY X.800–X.849
OSI APPLICATIONS

Commitment, Concurrency and Recovery X.850–X.859
Transaction processing X.860–X.879
Remote operations X.880–X.899

OPEN DISTRIBUTED PROCESSING X.900–X.999

 ITU-T Rec. X.680 (1997 E) i

INTERNATIONAL STANDARD 8824-1

ITU-T RECOMMENDATION X.680

INFORMATION TECHNOLOGY –
ABSTRACT SYNTAX NOTATION ONE (ASN.1):

SPECIFICATION OF BASIC NOTATION

Summary

This Recommendation | International Standard provides a notation called Abstract Syntax Notation One (ASN.1) for
defining the syntax of information data. It defines a number of simple data types and specifies a notation for referencing
these types and for specifying values of these types.

The ASN.1 notations can be applied whenever it is necessary to define the abstract syntax of information without
constraining in any way how the information is encoded for transmission. It is particularly, but not exclusively, applicable
to application layer protocols.

Source

The ITU-T Recommendation X.680 was approved on the 12th of December 1997. The identical text is also published as
ISO/IEC International Standard 8824-1.

ii ITU-T Rec. X.680 (1997 E)

FOREWORD

ITU (International Telecommunication Union) is the United Nations Specialized Agency in the field of telecommuni-
cations. The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of the ITU. The ITU-T is
responsible for studying technical, operating and tariff questions and issuing Recommendations on them with a view to
standardizing telecommunications on a worldwide basis.

The World Telecommunication Standardization Conference (WTSC), which meets every four years, establishes the
topics for study by the ITU-T Study Groups which, in their turn, produce Recommendations on these topics.

The approval of Recommendations by the Members of the ITU-T is covered by the procedure laid down in WTSC
Resolution No. 1.

In some areas of information technology which fall within ITU-T’s purview, the necessary standards are prepared on a
collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a telecommunication
administration and a recognized operating agency.

INTELLECTUAL PROPERTY RIGHTS

The ITU draws attention to the possibility that the practice or implementation of this Recommendation may involve the
use of a claimed Intellectual Property Right. The ITU takes no position concerning the evidence, validity or applicability
of claimed Intellectual Property Rights, whether asserted by ITU members or others outside of the Recommendation
development process.

As of the date of approval of this Recommendation, the ITU had not received notice of intellectual property, protected by
patents, which may be required to implement this Recommendation. However, implementors are cautioned that this may
not represent the latest information and are therefore strongly urged to consult the TSB patent database.

� ITU 1998

All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means, electronic or
mechanical, including photocopying and microfilm, without permission in writing from the ITU.

 ITU-T Rec. X.680 (1997 E) iii

CONTENTS
Page

Introduction.. vi

1 Scope .. 1

2 Normative references .. 1
2.1 Identical Recommendations | International Standards ... 1
2.2 Paired Recommendations | International Standards equivalent in technical content 2
2.3 Additional references... 2

3 Definitions .. 3
3.1 Information object specification .. 3
3.2 Constraint specification ... 3
3.3 Parameterization of ASN.1 specification... 3
3.4 Presentation service definition... 3
3.5 Presentation protocol specification.. 3
3.6 Structure for identification of organizations .. 3
3.7 Universal Multiple-Octet Coded Character Set (UCS).. 3
3.8 Additional definitions .. 4

4 Abbreviations.. 8

5 Notation .. 8
5.1 Productions.. 8
5.2 The alternative collections... 9
5.3 Example of a production.. 9
5.4 Layout.. 9
5.5 Recursion... 9
5.6 References to a collection of sequences .. 9
5.7 References to an item .. 9
5.8 Short-hand notations.. 10

6 The ASN.1 model of type extension ... 10

7 Extensibility requirements on encoding rules ... 11

8 Tags .. 11

9 Use of the ASN.1 notation .. 12

10 The ASN.1 character set ... 13

11 ASN.1 items.. 13
11.1 General rules.. 13
11.2 Type references ... 13
11.3 Identifiers... 14
11.4 Value references .. 14
11.5 Module reference... 14
11.6 Comment ... 14
11.7 Empty item .. 14
11.8 Number item.. 14
11.9 Binary string item .. 14
11.10 Hexadecimal string item.. 15
11.11 Character string item ... 15
11.12 Assignment item .. 16
11.13 Range separator ... 16

iv ITU-T Rec. X.680 (1997 E)

Page
11.14 Ellipsis ... 16
11.15 Left version brackets ... 16
11.16 Right version brackets ... 16
11.17 Single character items.. 16
11.18 Reserved words ... 17

12 Module definition ... 17
13 Referencing type and value definitions ... 21
14 Notation to support references to ASN.1 components .. 22
15 Assigning types and values ... 23
16 Definition of types and values... 24
17 Notation for the boolean type ... 26
18 Notation for the integer type ... 26
19 Notation for the enumerated type.. 27
20 Notation for the real type .. 28
21 Notation for the bitstring type... 29
22 Notation for the octetstring type ... 30
23 Notation for the null type.. 31
24 Notation for sequence types.. 31
25 Notation for sequence-of types ... 34
26 Notation for set types.. 34
27 Notation for set-of types ... 35
28 Notation for choice types .. 35
29 Notation for selection types .. 36
30 Notation for tagged types.. 37
31 Notation for the object identifier type... 38
32 Notation for the embedded-pdv type .. 39
33 Notation for the external type ... 41
34 The character string types ... 42
35 Notation for character string types.. 43
36 Definition of restricted character string types ... 43
37 Naming characters and collections defined in ISO/IEC 10646... 47
38 Canonical order of characters ... 49
39 Definition of unrestricted character string types ... 50
40 Notation for types defined in clauses 41 to 43.. 52
41 Generalized time... 52
42 Universal time... 53
43 The object descriptor type .. 53
44 Constrained Types .. 54
45 The exception identifier .. 55
46 Element set specification .. 55
47 The extension marker.. 56
48 Subtype elements .. 58

48.1 General .. 58
48.2 Single Value .. 59
48.3 Contained Subtype... 59
48.4 Value Range .. 60

 ITU-T Rec. X.680 (1997 E) v

Page

48.5 Size Constraint... 60

48.6 Type Constraint ... 61

48.7 Permitted Alphabet .. 61

48.8 Inner Subtyping ... 61

Annex A – Use of ASN.1-88/90 notation .. 63

A.1 Maintenance .. 63

A.2 Mixing ASN.1-88/90 and current ASN.1 notation .. 63

A.3 Migration to the current ASN.1 notation ... 63

Annex B – Assignment of object identifier values ... 65

Annex C – Examples and hints .. 66

C.1 Example of a personnel record .. 66

C.2 Guidelines for use of the notation.. 67

C.3 Identifying abstract syntaxes.. 78

C.4 Subtypes .. 79

Annex D – Tutorial annex on ASN.1 character strings .. 82

D.1 Character string support in ASN.1... 82

D.2 The UniversalString, UTF8String and BMPString types .. 82

D.3 On ISO/IEC 10646-1 conformance requirements.. 83

D.4 Recommendations for ASN.1 users on ISO/IEC 10646-1 conformance ... 83

D.5 Adopted subsets as parameters of the abstract syntax ... 84

D.6 The CHARACTER STRING type... 84

Annex E – Superseded features.. 86

E.1 Use of identifiers now mandatory.. 86

E.2 The choice value.. 86

E.3 The any type .. 86

E.4 The macro capability ... 87

Annex F – Tutorial annex on the ASN.1 model of type extension... 88

F.1 Overview ... 88

F.2 Effects on version numbering, etc. .. 89

F.3 Requirements on encoding rules.. 90

Annex G – Summary of the ASN.1 notation.. 91

vi ITU-T Rec. X.680 (1997 E)

Introduction
This Recommendation | International Standard presents a standard notation for the definition of data types and values. A
data type (or type for short) is a class of information (for example, numeric, textual, still image or video information). A
data value (or value for short) is an instance of such a class. This Recommendation | International Standard defines
several basic types and their corresponding values, and rules for combining them into more complex types and values.

Although this standard notation is defined within the OSI framework, it can be used for many other purposes. In the lower
layers of the OSI Basic Reference Model (see ITU-T Rec. X.200 | ISO/IEC 7498-1) and in many other protocol
architectures, each message is specified as the binary value of a sequence of octets. In the Presentation layer of OSI (see
ITU-T Rec. X.216 | ISO/IEC 8822), the nature of user data parameters changes. However, Application layer standards
need to define quite complex data types to carry their messages, without concern for their binary representation. In order
to specify the data types, they require a notation which does not necessarily determine the representation of each value.
Such notation has to be supplemented by the specification of one or more algorithms called encoding rules which
determine the value of the lower layer octets that carry the Application data (called the transfer syntax). The
Presentation layer protocol of OSI (see ITU-T Rec. X.226 | ISO/IEC 8823-1) can negotiate which transfer syntaxes
(encodings) are to be used.

Outside the context of OSI there is increasing recognition of the notion of an abstract value of some class (e.g. a
particular 256-colour picture) divorced from the details of any particular encoding where in order to correctly interpret
the bit-pattern representation of the value, it is necessary to know (usually from the context), the type (class) of the value
being represented, as well as the encoding mechanism being employed. Thus, the identification of a type is an important
part of this Recommendation | International Standard.

A very general technique for defining a complicated type at the abstract level is to define a small number of simple types
by defining all possible values of the simple types, then combining these simple types in various ways. Some of the ways
of defining new types are as follows:

a) given an (ordered) list of existing types, a value can be formed as an (ordered) sequence of values, one
from each of the existing types; the collection of all possible values obtained in this way is a new type; (if
the existing types in the list are all distinct, this mechanism can be extended to allow omission of some
values from the list);

b) given an unordered set of (distinct) existing types, a value can be formed as an (unordered) set of values,
one from each of the existing types; the collection of all possible unordered sets of values obtained in this
way is a new type; (the mechanism can again be extended to allow omission of some values);

c) given a single existing type, a value can be formed as an (ordered) list or (unordered) set of zero, one or
more values of the existing type; the collection of all possible lists or sets of values obtained in this way is
a new type;

d) given a list of (distinct) types, a value can be chosen from any one of them; the set of all possible values
obtained in this way is a new type;

e) given a type, a new type can be formed as a subset of it by using some structure or order relationship
among the values.

An important aspect of combining types in this way is that encoding rules should recognize the combining constructs,
providing unambiguous encodings of the collection of values of the basic types. Thus, every basic type defined using the
notation specified in this Recommendation | International Standard is assigned a tag to aid in the unambiguous encoding
of values.

Four classes of tag are specified in the notation.

The first is the universal class. Universal class tags are only used as specified within this Recommendation | International
Standard, and each tag is either:

a) assigned to a single type; or

b) assigned to a construction mechanism.

Users of this notation are not allowed to explicitly specify universal class tags in their ASN.1 specifications, for these tags
are built-in and can be specified explicitly only in this Recommendation | International Standard.

The other three classes of tag are called application class tags, private class tags, and context-specific class tags. There
is no formal difference between use of tags from these three classes. Where application class tags are employed, a private
or context-specific class tag could generally be applied instead, as a matter of user choice and style. The presence of the
three classes is largely for historical reasons, but guidance is given in C.2.12 on the way in which the classes are usually
employed.

 ITU-T Rec. X.680 (1997 E) vii

Tags are mainly intended for machine use, and are not essential for the human notation defined in this Recommendation |
International Standard. Where, however, it is necessary to require that certain types be distinct, this is expressed by
requiring that they have distinct tags. The allocation of tags is therefore an important part of the use of this notation.

NOTE – Within this Recommendation | International Standard, tag values are assigned to all simple types and construction
mechanisms. The restrictions placed on the use of the notation ensure that tags can be used in transfer for unambiguous
identification of values.

An ASN.1 specification will initially be produced with a set of fully defined ASN.1 types. At a later stage, however, it
may be necessary to change those types (usually by the addition of extra components in a sequence or set type). If this is
to be possible in such a way that implementations using the old type definitions can interwork with implementations using
the new type definitions in a defined way, encoding rules need to provide appropriate support. The ASN.1 notation
supports the inclusion of an extension marker on a number of types. This signals to encoding rules the intention of the
designer that this type is one of a series of related types (i.e. versions of the same initial type) called an extension series,
and that the encoding rules are required to enable information transfer between implementations using different types that
are related by being part of the same extension series.

Clauses 10 to 31 (inclusive) define the simple types supported by ASN.1, and specify the notation to be used for
referencing simple types and for defining new types using them. Clauses 10 to 31 also specify the notation to be used for
specifying values of types defined using ASN.1.

Clauses 32 to 33 (inclusive) define the types supported by ASN.1 for carrying within them the complete encoding
of ASN.1 types.

Clauses 34 to 39 (inclusive) define the character string types.

Clauses 40 to 43 (inclusive) define certain types which are considered to be of general utility, but which require no
additional encoding rules.

Clauses 44 and 48 define a notation which enables subtypes to be defined from the values of a parent type.

Annex A forms an integral part of this Recommendation | International Standard, and gives guidance on how users of this
Recommendation | International Standard can refer to ASN.1 types and values defined using CCITT Rec. X.208 |
ISO/IEC 8824.

Annex B forms an integral part of this Recommendation | International Standard, and records object identifier and object
descriptor values assigned in this Recommendation | International Standard.

Annex C does not form an integral part of this Recommendation | International Standard, and provides examples and
hints on the use of the ASN.1 notation.

Annex D does not form an integral part of this Recommendation | International Standard, and provides a tutorial
on ASN.1 character strings.

Annex E does not form an integral part of this Recommendation | International Standard, and describes features of the
previous version of ASN.1 that have been superseded.

Annex F does not form an integral part of this Recommendation | International Standard, and provides a tutorial on
the ASN.1 model of type extension.

Annex G does not form an integral part of this Recommendation | International Standard, and provides a summary
of ASN.1 using the notation of clause 5.

 ISO/IEC 8824-1 : 1998 (E)

 ITU-T Rec. X.680 (1997 E) 1

INTERNATIONAL STANDARD

ITU-T RECOMMENDATION

INFORMATION TECHNOLOGY –
ABSTRACT SYNTAX NOTATION ONE (ASN.1):

SPECIFICATION OF BASIC NOTATION

1 Scope

This Recommendation | International Standard provides a standard notation called Abstract Syntax Notation One
(ASN.1) that is used for the definition of data types, values, and constraints on data types.

This Recommendation | International Standard

– defines a number of simple types, with their tags, and specifies a notation for referencing these types and
for specifying values of these types;

– defines mechanisms for constructing new types from more basic types, and specifies a notation for
defining such types and assigning them tags, and for specifying values of these types;

– defines character sets (by reference to other Recommendations and/or International Standards) for use
within ASN.1;

– defines a number of useful types (using ASN.1), which can be referenced by users of ASN.1;

The ASN.1 notation can be applied whenever it is necessary to define the abstract syntax of information. It is particularly,
but not exclusively, applicable to application protocols.

The ASN.1 notation is referenced by other standards which define encoding rules for the ASN.1 types.

2 Normative references

The following Recommendations and International Standards contain provisions which, through reference in this text,
constitute provisions of this Recommendation | International Standard. At the time of publication, the editions indicated
were valid. All Recommendations and Standards are subject to revision, and parties to agreements based on this
Recommendation | International Standard are encouraged to investigate the possibility of applying the most recent edition
of the Recommendations and Standards listed below. Members of IEC and ISO maintain registers of currently valid
International Standards. The Telecommunication Standardization Bureau of the ITU maintains a list of currently valid
ITU-T Recommendations.

2.1 Identical Recommendations | International Standards

– ITU-T Recommendation X.200 (1994) | ISO/IEC 7498-1:1994, Information technology – Open Systems
Interconnection – Basic Reference Model: The Basic Model.

– ITU-T Recommendation X.216 (1994) | ISO/IEC 8822:1994, Information technology – Open Systems
Interconnection – Presentation service definition.

– ITU-T Recommendation X.226 (1994) | ISO/IEC 8823-1:1994, Information technology – Open Systems
Interconnection – Connection-oriented presentation protocol: Protocol specification.

– ITU-T Recommendation X.660 (1992)/Amd.2(1997) | ISO/IEC 9834-1:1993/Amd.2:1998, Information
technology – Open Systems Interconnection – Procedures for the operation of OSI Registration
Authorities: General procedures (plus Amendments 1 and 2).

ISO/IEC 8824-1 : 1998 (E)

2 ITU-T Rec. X.680 (1997 E)

– ITU-T Recommendation X.681 (1997) | ISO/IEC 8824-2:1998, Information technology – Abstract Syntax
Notation One (ASN.1): Information object specification.

– ITU-T Recommendation X.682 (1997) | ISO/IEC 8824-3:1998, Information technology – Abstract Syntax
Notation One (ASN.1): Constraint specification.

– ITU-T Recommendation X.683 (1997) | ISO/IEC 8824-4:1998, Information technology – Abstract Syntax
Notation One (ASN.1): Parameterization of ASN.1 specifications.

– ITU-T Recommendation X.690 (1997) | ISO/IEC 8825-1:1998, Information technology – ASN.1 encoding
Rules: Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER), and
Distinguished Encoding Rules (DER).

– ITU-T Recommendation X.691 (1997) | ISO/IEC 8825-2:1998, Information technology – ASN.1 encoding
rules: Specification of Packed Encoding Rules (PER).

2.2 Paired Recommendations | International Standards equivalent in technical content

– CCITT Recommendation X.208 (1988), Specification of Abstract Syntax Notation One (ASN.1).

 ISO/IEC 8824:1990, Information technology – Open Systems Interconnection – Specification of Abstract
Syntax Notation One (ASN.1).

2.3 Additional references

– CCITT Recommendation T.61 (1988), Character repertoire and coded character sets for the
international teletex service.

– CCITT Recommendation T.100 (1988), International information exchange for interactive videotex.

– ITU-T Recommendation T.101 (1994), International interworking for videotex services.

– ISO International Register of Coded Character Sets to be used with Escape Sequences.

– ISO/IEC 646:1991, Information technology – ISO 7-bit coded character set for information interchange.

– ISO/IEC 2022:1994, Information technology – Character code structure and extension techniques.

– ISO 6523:1984, Data interchange – Structures for the identification of organizations.

– ISO/IEC 7350:1991, Information technology – Registration of repertoires of graphic characters from
ISO 10367.

– ISO 8601:1988, Data elements and interchange formats – Information interchange – Representation of
dates and times.

– ISO/IEC 10646-1:1993, Information technology – Universal Multiple-Octet Coded Character Set (UCS –
Part 1: Architecture and Basic Multilingual Plane.

– ISO/IEC 10646-1:1993/Amd.2:1996, Information technology – Universal Multiple-Octet Coded
Character Set (UCS) – Part 1: Architecture and Basic Multilingual Plane – Amendment 2: UCS
Transformation Format 8 (UTF-8).

 ISO/IEC 8824-1 : 1998 (E)

 ITU-T Rec. X.680 (1997 E) 3

3 Definitions
For the purposes of this Recommendation | International Standard, the following definitions apply.

3.1 Information object specification

This Recommendation | International Standard uses the following terms defined in ITU-T Rec. X.681 | ISO/IEC 8824-2:

a) information object;

b) information object class;

c) information object set;

d) instance-of type;

e) object class field type.

3.2 Constraint specification

This Recommendation | International Standard uses the following terms defined in ITU-T Rec. X.682 | ISO/IEC 8824-3:

a) component relation constraint;

b) table constraint.

3.3 Parameterization of ASN.1 specification

This Recommendation | International Standard uses the following terms defined in ITU-T Rec. X.683 | ISO/IEC 8824-4:

a) parameterized type;

b) parameterized value.

3.4 Presentation service definition

This Recommendation | International Standard uses the following terms defined in ITU-T Rec. X.216 | ISO/IEC 8822:

a) (an) abstract syntax;

b) abstract syntax name;

c) defined context set;

d) presentation data value;

e) (a) transfer syntax;

f) transfer syntax name.

3.5 Presentation protocol specification

This Recommendation | International Standard uses the following term defined in ITU-T Rec. X.226 | ISO/IEC 8823-1:

– presentation context identifier.

3.6 Structure for identification of organizations

This Recommendation | International Standard uses the following terms defined in ISO 6523:
a) issuing organization;
b) organization code;
c) International Code Designator.

3.7 Universal Multiple-Octet Coded Character Set (UCS)

This Recommendation | International Standard uses the following terms defined in ISO/IEC 10646-1:
a) Basic Multilingual Plane (BMP);
b) cell;
c) combining character;

ISO/IEC 8824-1 : 1998 (E)

4 ITU-T Rec. X.680 (1997 E)

d) graphic symbol;
e) group;
f) limited subset;
g) plane;
h) row;
i) selected subset.

3.8 Additional definitions

3.8.1 abstract character: The set of information associated with a cell in a table defining a character repertoire.
NOTE – The information will normally include some or all of the following items:
a) a graphic symbol;
b) a character name; or
c) the definition of functions associated with the character when used in particular environments.

3.8.2 abstract value: A value whose definition is based only on the type, independent of how it is represented in any
encoding rule.

NOTE – Use of the term "abstract value" is frequently an assertion that what is being said probably varies based upon the
encoding rules used.

3.8.3 ASN.1 character set: The set of characters, specified in clause 10, used in the ASN.1 notation.

3.8.4 ASN.1 specification: A collection of one or more ASN.1 modules.

3.8.5 associated type: A type which is used only for defining the value and subtype notation for a type.
NOTE – Associated types are defined in this Recommendation | International Standard when it is necessary to make it clear that
there may be a significant difference between how the type is defined in ASN.1 and how it is encoded. Associated types do not
appear in user specifications.

3.8.6 bitstring type: A simple type whose distinguished values are an ordered sequence of zero, one or more bits.
NOTE – Where there is a need to carry embedded encodings of an abstract value, the use of the embedded-pdv type will in general
provide a more flexible mechanism for announcement or agreement on the nature of the encodings than the bitstring type.

3.8.7 boolean type: A simple type with two distinguished values.

3.8.8 character: A member of a set of elements used for the organization, control or representation of data.
NOTE – For example, this implies that an accent combining character and lower case 'e' are two characters in the ISO 646 French
Version, and not the single character é.

3.8.9 character abstract syntax: Any abstract syntax whose values are specified as the set of character strings of
zero, one or more characters from some specified collection of characters.

3.8.10 character repertoire: The characters in a character set without any implication on how such characters are
encoded.

3.8.11 character string types: Simple types whose values are strings of characters from some defined character set.

3.8.12 character transfer syntax: Any transfer syntax for a character abstract syntax.
NOTE – ASN.1 does not support character transfer syntaxes which do not encode all character strings as an integral multiple
of 8 bits.

3.8.13 choice types: Types defined by referencing a list of distinct types; each value of the choice type is derived
from the value of one of the component types.

3.8.14 component type: One of the types referenced when defining a CHOICE, SET, SEQUENCE, SET OF, or
SEQUENCE OF.

3.8.15 constraint: A notation which can be used in association with a type, to define a subtype of that type.

3.8.16 control characters: Characters appearing in some character repertoires that have been given a name (and
perhaps a defined function in relation to certain environments) but which have not been assigned a graphic symbol, and
which are not spacing characters.

NOTE – NEWLINE and TAB are examples of control characters that have been assigned a formatting function in a printing
environment. DLE is an example of a control character that has been assigned a function in a communication environment.

 ISO/IEC 8824-1 : 1998 (E)

 ITU-T Rec. X.680 (1997 E) 5

3.8.17 Coordinated Universal Time (UTC): The time scale maintained by the Bureau International de l'Heure
(International Time Bureau) that forms the basis of a coordinated dissemination of standard frequencies and time signals.

NOTE 1 – The source of this definition is Recommendation 460-2 of the Consultative Committee on International Radio (CCIR).
CCIR has also defined the acronym for Coordinated Universal Time as UTC.

NOTE 2 – UTC and Greenwich Mean Time are two alternative time standards which for most practical purposes determine the
same time.

3.8.18 element: A member of an element class, distinguishable from all other elements of the same class.

3.8.19 element class: A type (whose elements are its values) or information object class (whose elements are all
possible objects of that class).

3.8.20 element set: One or more elements of the same element class.

3.8.21 embedded-pdv type: A type whose set of values is the union of the sets of values in all possible abstract
syntaxes. This type is a part of an ASN.1 specification that carries a value whose type may be defined externally to that
ASN.1 specification. It also carries an identification of the type of the value being carried as well as an identification of
the encoding rule used to encode the value.

3.8.22 encoding: The bit-pattern resulting from the application of a set of encoding rules to a value of a specific
abstract syntax.

3.8.23 (ASN.1) encoding rules: Rules which specify the representation during transfer of the values of ASN.1 types.
Encoding rules also enable the values to be recovered from the representation, given knowledge of the type.

NOTE – For the purpose of specifying encoding rules, the various referenced type (and value) notations, which can provide
alternative notations for built-in types (and values), are not relevant.

3.8.24 enumerated types: Simple types whose values are given distinct identifiers as part of the type notation.

3.8.25 extension addition: One of the added notations in an extension series. For set, sequence and choice types, each
extension addition is the addition of either a single extension addition group or a single component type. For enumerated
types it is the addition of a single further enumeration. For a constraint it is the addition of a subtype element.

NOTE – Extension additions are both textually ordered (following the extension marker) and logically ordered (having increasing
enumeration values, and, in the case of CHOICE alternatives, increasing tags.)

3.8.26 extension addition group: One or more components of a set, sequence or choice type grouped within version
brackets. An extension addition group is used to clearly identify the components of a set, sequence or choice type that were
added in a particular version of an ASN.1 module.

3.8.27 extension addition type: A type contained within an extension addition group or a single component type that is
itself an extension addition (in such case it is not contained within an extension addition group).

3.8.28 extensible constraint: A subtype constraint with an extension marker.

3.8.29 extension insertion point: The location within a type definition where extension additions are inserted. This
location is the end of the type notation of the immediately preceding type in the extension series if there is a single ellipsis in
the type definition, or immediately before the second ellipsis if there is an extension marker pair in the definition of the type.

3.8.30 extension marker: A syntactic flag (an ellipsis) that is included in all types that form part of an extension
series.

3.8.31 extension marker pair: A pair of extension markers between which extension additions are inserted.

3.8.32 extension-related: Two types that have the same extension root, where one was created by adding zero or
more extension additions to the other.

3.8.33 extension root: An extensible type that is the first type in an extension series. It carries either the extension
marker with no additional notation other than comments and white-space between the extension marker and the matching “}”
or “)”, or an extension marker pair with no additional notation other than a single comma, comments and white-space
between the extension markers.

NOTE – Only an extension root can be the first type in an extension series.

3.8.34 extension series: A series of ASN.1 types which can be ordered in such a way that each successive type in the
series is formed by the addition of text at the extension insertion point.

NOTE – Both nested and unnested types can be extended.

ISO/IEC 8824-1 : 1998 (E)

6 ITU-T Rec. X.680 (1997 E)

3.8.35 extensible type: A type with an extension marker.

3.8.36 external reference: A type reference, value reference, information object, etc., that is defined in some other
module than the one in which it is being referenced, and which is being referred to by prefixing the module name to the
referenced item.

EXAMPLE – ModuleName.TypeReference

3.8.37 external type: A type which is a part of an ASN.1 specification that carries a value whose type may be defined
externally to that ASN.1 specification. It also carries an identification of the type of the value being carried.

3.8.38 false: One of the distinguished values of the boolean type (see "true").

3.8.39 governing; governor: Relative to some object, object set, value set, value or subtype, the information object
class or type which controls its interpretation by restricting the items(s) involved to be value notation of that class or type,
respectively.

3.8.40 integer type: A simple type with distinguished values which are the positive and negative whole numbers,
including zero (as a single value).

NOTE – Particular encoding rules limit the range of an integer, but such limitations are chosen so as not to affect any user
of ASN.1.

3.8.41 items: Named sequences of characters from the ASN.1 character set, specified in clause 11, which are used to
form the ASN.1 notation.

3.8.42 module: One or more instances of the use of the ASN.1 notation for type, value, etc., encapsulated using the
ASN.1 module notation (see clause 12).

3.8.43 null type: A simple type consisting of a single value, also called null.

3.8.44 object: A well-defined piece of information, definition, or specification which requires a name in order to
identify its use in an instance of communication.

3.8.45 object descriptor type: A type whose distinguished values are human-readable text providing a brief
description of an object.

NOTE – An object descriptor value is usually associated with a single object. Only an object identifier value unambiguously
identifies an object.

3.8.46 object identifier: A value (distinguishable from all other such values) which is associated with an object.

3.8.47 object identifier type: A simple type whose distinguished values are the set of all object identifiers allocated
in accordance with the rules of ITU-T Rec. X.660 | ISO/IEC 9834-1.

NOTE – The rules of ITU-T Rec. X.660 | ISO/IEC 9834-1 permit a wide range of authorities to independently associate object
identifiers with objects.

3.8.48 octetstring type: A simple type whose distinguished values are an ordered sequence of zero, one or more
octets, each octet being an ordered sequence of eight bits.

3.8.49 open type notation: An ASN.1 notation used to denote a set of values from more than one ASN.1 type.
NOTE 1 – The term "open type" is used synonymously with "open type notation" in the body of this Recommendation |
International Standard.

NOTE 2 – All ASN.1 encoding rules provide unambiguous encodings for the values of a single ASN.1 type. They do not
necessarily provide unambiguous encodings for "open type notation", which carries values from ASN.1 types that are not normally
determined at specification time. Knowledge of the type of the value being encoded in the "open type notation" is needed before
the abstract value for that field can be unambiguously determined.

NOTE 3 – The only notation in this Recommendation | International Standard which is an open type notation is the
"ObjectClassFieldType" specified in ITU-T Rec. X.681 | ISO/IEC 8824-2, where the "FieldName" denotes either a type field or a
variable-type value field. The "ANY" notation which was defined in CCITT Rec. X.208 | ISO/IEC 8824 was an open type
notation.

3.8.50 parent type (of a subtype): The type that is being constrained when defining a subtype.
NOTE – The parent type may itself be a subtype of some other type.

3.8.51 production: A part of the formal notation used to specify ASN.1.

 ISO/IEC 8824-1 : 1998 (E)

 ITU-T Rec. X.680 (1997 E) 7

3.8.52 real type: A simple type whose distinguished values (specified in clause 20) are members of the set of real
numbers.

3.8.53 recursive definitions: A set of ASN.1 definitions which cannot be reordered so that all types used in a
construction are defined before the definition of the construction.

NOTE – Recursive definitions are allowed in ASN.1: the user of the notation has the responsibility for ensuring that those values
(of the resulting types) which are used have a finite representation.

3.8.54 restricted character string type: A character string type whose characters are taken from a fixed character
repertoire identified in the type specification.

3.8.55 selection types: Types defined by reference to a component type of a choice type, and whose values are
precisely the values of that component type.

3.8.56 sequence types: Types defined by referencing an ordered list of types (some of which may be declared to be
optional); each value of the sequence type is an ordered list of values, one from each component type.

NOTE – Where a component type is declared to be optional, a value of the sequence type need not contain a value of that
component type.

3.8.57 sequence-of types: Types defined by referencing a single component type; each value in the sequence-of type
is an ordered list of zero, one or more values of the component type.

3.8.58 set types: Types defined by referencing a fixed, unordered, list of distinct types (some of which may be
declared to be optional); each value in the set type is an unordered list of values, one from each of the component types.

NOTE – Where a component type is declared to be optional, the new type need not contain a value of that component type.

3.8.59 set-of types: Types defined by referencing a single component type; each value in the set-of type is an
unordered list of zero, one or more values of the component type.

3.8.60 simple types: Types defined by directly specifying the set of its values.

3.8.61 spacing character: A character in a character repertoire which is intended for inclusion with graphic
characters in the printing of a character string but which is represented in the physical rendition by empty space; it is not
normally considered to be a control character (see 3.8.16).

NOTE – There may be a single spacing character in the character repertoire, or there may be multiple spacing characters with
varying widths.

3.8.62 subtype (of a parent type): A type whose values are a subset (or the complete set) of the values of some other
type (the parent type).

3.8.63 tag: A type denotation which is associated with every ASN.1 type.

3.8.64 tagged types: A type defined by referencing a single existing type and a tag; the new type is isomorphic to the
existing type, but is distinct from it.

3.8.65 tagging: Replacing the existing (possibly the default) tag of a type by a specified tag.

3.8.66 true: One of the distinguished values of the boolean type (see "false").

3.8.67 type: A named set of values.

3.8.68 type reference name: A name associated uniquely with a type within some context.
NOTE – Reference names are assigned to the types defined in this Recommendation | International Standard; these are universally
available within ASN.1. Other reference names are defined in other Recommendations | International Standards, and are
applicable only in the context of that Recommendation | International Standard.

3.8.69 unrestricted character string type: A type whose values are values from a character abstract syntax
identified separately for each instance of use of that type.

3.8.70 user (of ASN.1): The individual or organization that defines the abstract syntax of a particular piece of
information using ASN.1.

3.8.71 value: A distinguished member of a set of values.

3.8.72 value reference name: A name associated uniquely with a value within some context.

3.8.73 value set: A collection of values of a type. Semantically equivalent to a subtype.

ISO/IEC 8824-1 : 1998 (E)

8 ITU-T Rec. X.680 (1997 E)

3.8.74 version brackets: A pair of adjacent left and right brackets ([[or]]) used to delineate the start and end of an
extension addition group.

3.8.75 white-space: Any formatting action that yields a space on a printed page, such as the SPACE or TAB
character, or multiple uses of such characters.

4 Abbreviations

For the purposes of this Recommendation | International Standard, the following abbreviations apply:

ASN.1 Abstract Syntax Notation One

BER Basic Encoding Rules of ASN.1

DCC Data Country Code

DNIC Data Network Identification Code

ICD International Code Designator

IEC International Electrotechnical Commission

ISO International Organization for Standardization

ITU-T International Telecommunication Union – Telecommunication Standardization Sector

PDV Presentation Data Value

PER Packed Encoding Rules of ASN.1

ROA Recognized Operating Agency

UCS Universal Multiple-Octet Coded Character Set

5 Notation

The ASN.1 notation consists of a sequence of characters from the ASN.1 character set specified in clause 10.

Each use of the ASN.1 notation contains characters from the ASN.1 character set grouped into items. Clause 11 specifies
all the sequences of characters forming ASN.1 items, and names each item.

The ASN.1 notation is specified in clause 12 (and following clauses) by specifying the collection of sequences of items
which form valid instances of the ASN.1 notation, and by specifying the semantics of each sequence.

In order to specify these collections, this Recommendation | International Standard uses a formal notation defined in the
following subclauses.

5.1 Productions

A new (more complex) collection of ASN.1 sequences is defined by means of a production. This uses the names of
collections of production sequences defined in this Recommendation | International Standard and forms a new collection
of production sequences by specifying either:

a) that the new collection of production sequences is to consist of any sequence contained in any of the
original collections; or

b) that the new collection is to consist of any production sequence which can be generated by taking exactly
one production sequence from each collection, and juxtaposing them in a specified order.

Each production consists of the following parts, on one or several lines, in order:

a) a name for the new collection of production sequences;

b) the characters

 ::=

c) one or more alternative collections of production sequences, defined as in 5.2, separated by the character
 |

 ISO/IEC 8824-1 : 1998 (E)

 ITU-T Rec. X.680 (1997 E) 9

A production sequence is present in the new collection if it is present in one or more of the alternative collections. The
new collection is referenced in this Recommendation | International Standard by the name in a) above.

NOTE – If the same production sequence appears in more than one alternative, any semantic ambiguity in the resulting notation is
resolved by other parts of the complete ASN.1 production sequence.

5.2 The alternative collections

Each of the alternative collections of production sequences in "one or more alternative collections of" [see 5.1.c)] is
specified by a list of names. Each name is either the name of an item, or is the name of a collection of production
sequences defined by a production in this Recommendation | International Standard.

The collection of production sequences defined by the alternative consists of all production sequences obtained by taking
any one of the production sequences (or the item) associated with the first name, in combination with (and followed by)
any one of the production sequences (or item) associated with the second name, in combination with (and followed by)
any one of the production sequences (or item) associated with the third name, and so on up to and including the last name
(or item) in the alternative.

5.3 Example of a production

 BitStringValue ::=
 bstring |
 hstring |
 "{" IdentifierList "}"

is a production which associates with the name "BitStringValue" the following production sequences:

a) any "bstring" (an item); or

b) any "hstring" (an item); or

c) any production sequence associated with "IdentifierList", preceded by a "{" and followed by a "}".
NOTE – "{" and "}" are the names of items containing the single characters { and } (see 11.17).

In this example, "IdentifierList" would be defined by a further production, either before or after the production defining
"BitStringValue".

5.4 Layout

Each production used in this Recommendation | International Standard is preceded and followed by an empty line. Empty
lines do not appear within productions. The production may be on a single line, or may be spread over several lines.
Layout is not significant.

5.5 Recursion

The productions in this Recommendation | International Standard are frequently recursive. In this case the productions are
to be continuously reapplied until no new sequences are generated.

NOTE – In many cases, such reapplication results in an unbounded collection of allowed sequences, some or all of which may
themselves be unbounded. This is not an error.

5.6 References to a collection of sequences

This Recommendation | International Standard references a collection of sequences (part of the ASN.1 notation) by
referencing the first name (that appears before the "::=") in a production; the name is surrounded by the double-quote
character (") to distinguish it from natural language text, unless it appears as part of a production.

5.7 References to an item

This Recommendation | International Standard references an item by referencing the name of the item; the name is
surrounded by the double-quote character (") to distinguish it from natural language text, unless it appears as part of a
production and is not a single character item, "::=", "..", or "...".

ISO/IEC 8824-1 : 1998 (E)

10 ITU-T Rec. X.680 (1997 E)

5.8 Short-hand notations

In order to make productions more concise and more readable, the following short-hand notations are used in the
definition of the collections of ASN.1 production sequences in ITU-T Rec. X.681 | ISO/IEC 8824-2, ITU-T Rec. X.682 |
ISO/IEC 8824-3 and ITU-T Rec. X.683 | ISO/IEC 8824-4 (it is not used anywhere in this Recommendation |
International Standard):

a) An asterisk (*) following two names, "A" and "B", denotes the empty item (see 11.7), or a production
sequence associated with "A", or an alternating series of production sequences associated with "A" and
"B" both starting and finishing with one associated with "A". Thus:

 C ::= A B *

is equivalent to:

 C ::= D | empty
 D ::= A | A B D

"D" being an auxiliary name not appearing elsewhere in the productions.

EXAMPLE – "C ::= A B *" is the shorthand notation for the following alternatives of C:

 empty
 A
 A B A
 A B A B A
 A B A B A B A
 ...

b) A plus sign(+) is similar to the asterisk in a), except that the empty item is excluded. Thus:

 E ::= A B +

is equivalent to:

 E ::= A | A B E

EXAMPLE – "E ::= A B +" is the shorthand notation for the following alternatives of E:

 A
 A B A
 A B A B A
 A B A B A B A
 ...

c) A question mark (?) following a name denotes either the empty item (see 11.7) or a production sequence
associated with "A". Thus:

 F ::= A ?

is equivalent to:

 F ::= empty | A

6 The ASN.1 model of type extension

When decoding an extensible type, a decoder may detect:

a) the absence of expected extension additions in a sequence or set type; or

b) the presence of arbitrary unexpected extension additions above those defined (if any) in a sequence or set
type, or of an unknown alternative in a choice type, or an unknown enumeration in an enumerated type, or
of an unexpected length or value of a type whose constraint is extensible.

In formal terms, an abstract syntax defined by the extensible type "X" contains not only the values of type "X", but also
the values of all types that are extension-related to "X". Thus, the decoding process never signals an error when either of
the above situations (a or b) is detected. The action that is taken in each situation is a matter for the application layer
designer to specify.

NOTE – Frequently the action will be to ignore the presence of unexpected additional extensions, and to use a default value or a
"missing" indicator for expected extension additions that are absent.

 ISO/IEC 8824-1 : 1998 (E)

 ITU-T Rec. X.680 (1997 E) 11

Unexpected extension additions detected by a decoder in an extensible type can later be included in a subsequent
encoding of that type (for transmission back to the sender, or to some third party), provided that the same transfer syntax
is used on the subsequent transmission.

7 Extensibility requirements on encoding rules

7.1 All ASN.1 encoding rules shall allow the encoding of values of an extensible type "X" in such a way that they
can be decoded using an extensible type "Y" that is extension-related to "X". Further, the encoding rules shall allow the
values that were decoded using "Y" to be re-encoded (using "Y") and decoded using a third extensible type "Z" that is
extension related to "Y" (and hence "X" also).

NOTE – Types "X", "Y" and "Z" may appear in any order in the extension series.

If a value of an extensible type "X" is encoded and then relayed (directly or through a relaying application using
extension-related type "Z") to another application that decodes the value using extensible type "Y" that is extension-
related to "X", then the decoder using type "Y" obtains an abstract value composed of:

a) an abstract value of the extension root type;

b) an abstract value of each extension addition that is present in both "X" and "Y";

c) delimited encoding for each extension addition (if any) that is in "X" but not in "Y".

The encodings in c) shall be capable of being included in a later encoding of a value of "Y", if so required by the
application. That encoding shall be a valid encoding of a value of "X".

Tutorial example: If system A is using an extensible root type (type "X") that is a sequence type or a set type with an
extension addition of an optional integer type, while system B is using an extension-related type (type "Y") that has two
extension additions where each is an optional integer type, then transmission by B of a value of "Y" which omits the
integer value of the first extension addition and includes the second must not be confused by A with the presence of the
first (only) extension addition of "X" that it knows about. Moreover, A must be able to re-encode the value of "X" with a
value present for the first integer type, followed by the second integer value received from B, if so required by the
application protocol.

7.2 All ASN.1 encoding rules shall specify the encoding and decoding of the value of an enumerated type and a
choice type in such a way that if a transmitted value is in the set of extension additions held in common by the encoder
and the decoder, then it is successfully decoded, otherwise it shall be possible for the decoder to delimit the encoding of it
and to identify it as a value of an (unknown) extension addition.

7.3 All ASN.1 encoding rules shall specify the encoding and decoding of types with extensible constraints in such a
way that if a transmitted value is in the set of extension additions held in common by the encoder and the decoder, then it
is successfully decoded, otherwise it shall be possible for the decoder to delimit the encoding of and to identify it as a
value of an (unknown) extension addition.

In all cases, the presence of extension additions shall not affect the ability to recognize later material when a type with an
extension marker is nested inside some other type.

NOTE – All variants of the Basic Encoding Rules of ASN.1 and the Packed Encoding Rules of ASN.1 satisfy all these
requirements.

8 Tags

8.1 A tag is specified by giving a class and a number within the class. The class is one of:

– universal;

– application;

– private;

– context-specific.

8.2 The number is a non-negative integer, specified in decimal notation.

Restrictions on tags assigned by the user of ASN.1 are specified in clause 30.

ISO/IEC 8824-1 : 1998 (E)

12 ITU-T Rec. X.680 (1997 E)

Table 1 summarizes the assignment of tags in the universal class which are specified in this Recommendation |
International Standard.

Table 1 – Universal class tag assignments

8.3 Some encoding rules require a canonical order for tags. To provide uniformity, a canonical order for tags is
defined in 8.4.

8.4 The canonical order for tags is defined as follows:

a) those elements or alternatives with universal class tags shall appear first, followed by those with
application class tags, followed by those with context-specific tags, followed by those with private class
tags;

b) within each class of tags, the elements or alternatives shall appear in ascending order of their tag numbers.

9 Use of the ASN.1 notation

9.1 The ASN.1 notation for a type definition shall be "Type" (see 16.1).

9.2 The ASN.1 notation for a value of a type shall be "Value" (see 16.7).

NOTE – It is not in general possible to interpret the value notation without knowledge of the type.

9.3 The ASN.1 notation for assigning a type to a type reference name shall be either "TypeAssignment" (see 15.1),
"ValueSetTypeAssignment" (see 15.4), "ParameterizedTypeAssignment" (see ITU-T Rec. X.683 | ISO/IEC 8824-4, 8.2),
or "ParameterizedValueSetTypeAssignment" (see ITU-T Rec. X.683 | ISO/IEC 8824-4, 8.2).

9.4 The ASN.1 notation for assigning a value to a value reference name shall be either "ValueAssignment"
(see 15.2) or "ParameterizedValueAssignment" (see ITU-T Rec. X.683 | ISO/IEC 8824-4, 8.2).

9.5 The production alternatives of the notation "Assignment" shall only be used within the notation
"ModuleDefinition" (except as specified in Note 2 of 12.1).

UNIVERSAL 0 Reserved for use by the encoding rules

UNIVERSAL 1 Boolean type

UNIVERSAL 2 Integer type

UNIVERSAL 3 Bitstring type

UNIVERSAL 4 Octetstring type

UNIVERSAL 5 Null type

UNIVERSAL 6 Object identifier type

UNIVERSAL 7 Object descriptor type

UNIVERSAL 8 External type and Instance-of type

UNIVERSAL 9 Real type

UNIVERSAL 10 Enumerated type

UNIVERSAL 11 Embedded-pdv type

UNIVERSAL 12 UTF8String type

UNIVERSAL 13-15 Reserved for future editions of this Recommendation | International Standard

UNIVERSAL 16 Sequence and Sequence-of types

UNIVERSAL 17 Set and Set-of types

UNIVERSAL 18-22, 25-30 Character string types

UNIVERSAL 23-24 Time types

UNIVERSAL 31-... Reserved for addenda to this Recommendation | International Standard

 ISO/IEC 8824-1 : 1998 (E)

 ITU-T Rec. X.680 (1997 E) 13

10 The ASN.1 character set

10.1 An ASN.1 item shall consist of a sequence of the characters listed in Table 2 except as specified in 10.2
and 10.3.

Table 2 – ASN.1 characters

NOTE – Where equivalent derivative standards are developed by national standards bodies, additional characters may appear in
the following items:

– typereference (see 11.2);

– identifier (see 11.3);

– valuereference (see 11.4);

– modulereference (see 11.5).

When additional characters are introduced to accommodate a language in which the distinction between upper-case and lower-
case letters is without meaning, the syntactic distinction achieved by dictating the case of the first character of certain of the above
ASN.1 items has to be achieved in some other way. This is to allow valid ASN.1 specifications to be written in various languages.

10.2 Where the notation is used to specify the value of a character string type, all graphic symbols for the defined
character set can appear in the ASN.1 notation, surrounded by the double quote characters (") (see 11.11).

10.3 Additional (arbitrary) graphic symbols may appear in the "comment" item (see 11.6).

10.4 There shall be no significance placed on the typographical style, size, colour, intensity, or other display
characteristics.

10.5 The upper and lower-case letters shall be regarded as distinct.

11 ASN.1 items

11.1 General rules

11.1.1 The following subclauses specify the characters in ASN.1 items. In each case the name of the item is given,
together with the definition of the character sequences which form the item.

11.1.2 Each item specified in the following subclauses (except "bstring", "hstring" and "cstring") shall appear on a
single line, and (except for the "comment", "bstring", "hstring" and "cstring" items) shall not contain white-space
(see 11.9, 11.10 and 11.11).

11.1.3 The length of a line is not restricted.

11.1.4 The items in the production sequences specified by this Recommendation | International Standard (the ASN.1
notation) may appear on one line or may appear on several lines, and may be separated by white-space, empty lines or
comments.

11.1.5 An item shall be separated from a following item by white-space, newline or comment, if the initial character
(or characters) of the following item is a permitted character (or characters) for inclusion at the end of the characters in
the earlier item.

11.2 Type references

Name of item – typereference

A to Z

a to z

0 to 9

: = , { } < . @ () [
] – ' " | & ^ * ; !

ISO/IEC 8824-1 : 1998 (E)

14 ITU-T Rec. X.680 (1997 E)

11.2.1 A "typereference" shall consist of an arbitrary number (one or more) of letters, digits, and hyphens. The initial
character shall be an upper-case letter. A hyphen shall not be the last character. A hyphen shall not be immediately
followed by another hyphen.

NOTE – The rules concerning hyphen are designed to avoid ambiguity with (possibly following) comment.

11.2.2 A "typereference" shall not be one of the reserved character sequences listed in 11.18.

11.3 Identifiers

Name of item – identifier

An "identifier" shall consist of an arbitrary number (one or more) of letters, digits, and hyphens. The initial character
shall be a lower-case letter. A hyphen shall not be the last character. A hyphen shall not be immediately followed by
another hyphen.

NOTE – The rules concerning hyphen are designed to avoid ambiguity with (possibly following) comment.

11.4 Value references

Name of item – valuereference

A "valuereference" shall consist of the sequence of characters specified for an "identifier" in 11.2. In analysing an
instance of use of this notation, a "valuereference" is distinguished from an "identifier" by the context in which it appears.

11.5 Module reference

Name of item – modulereference

A "modulereference" shall consist of the sequence of characters specified for a "typereference" in 11.2. In analysing an
instance of use of this notation, a "modulereference" is distinguished from a "typereference" by the context in which it
appears.

11.6 Comment

Name of item – comment

11.6.1 A "comment" is not referenced in the definition of the ASN.1 notation. It may, however, appear at any time
between other ASN.1 items, and has no syntactic significance.

NOTE – Nonetheless, in the context of a Recommendation | International Standard that uses ASN.1, an ASN.1 comment may
contain normative text related to the application semantics, or constraints on the syntax.

11.6.2 A "comment" shall commence with a pair of adjacent hyphens and shall end with the next pair of adjacent
hyphens or at the end of the line, whichever occurs first. A comment shall not contain a pair of adjacent hyphens other
than the pair which opens it and the pair, if any, which ends it. It may include graphic symbols which are not in the
character set specified in 10.1 (see 10.3).

11.7 Empty item

Name of item – empty

The "empty" item contains no characters. It is used in the notation of clause 5 when alternative sets of production
sequences are specified, to indicate that absence of all alternatives is possible.

11.8 Number item

Name of item – number

A "number" shall consist of one or more digits. The first digit shall not be zero unless the "number" is a single digit.
NOTE – The "number" item is always mapped to an integer value by interpreting it as decimal notation.

11.9 Binary string item

Name of item – bstring

 ISO/IEC 8824-1 : 1998 (E)

 ITU-T Rec. X.680 (1997 E) 15

A "bstring" shall consist of an arbitrary number (possibly zero) of zeros, ones, white-space or newlines, preceded by a
single quote (') and followed by the pair of characters:

 'B

White-space and newlines that appear within a binary string item have no significance.

EXAMPLE – '01101100'B

11.10 Hexadecimal string item

Name of item – hstring

11.10.1 An "hstring" shall consist of an arbitrary number (possibly zero) of the characters:

A B C D E F 0 1 2 3 4 5 6 7 8 9

or white-space or newlines, preceded by a single quote (') and followed by the pair of characters:

 'H

White-space and newlines that appear within a hexadecimal string item have no significance.

EXAMPLE – 'AB0196'H

11.10.2 Each character is used to denote the value of a semi-octet using a hexadecimal representation.

11.11 Character string item

Name of item – cstring

11.11.1 A "cstring" shall consist of an arbitrary number (possibly zero) of graphic symbols and spacing characters from
the character set referenced by the character string type, preceded and followed by double quotes ("). If the character set
includes a double quote, this character (if present in the character string being represented by the "cstring") shall be
represented in the "cstring" by a pair of double quotes on the same line with no intervening spacing character. The
"cstring" may span more than one line of text, in which case the character string being represented shall not include
spacing characters in the position prior to or following the end of line in the "cstring". White-space that appears
immediately prior to or following the end of line in the "cstring" have no significance.

NOTE 1 – The "cstring" can only be used to represent character strings for which every character in the string being represented
has either been assigned a graphic symbol, or is a spacing character. Where a character string containing control characters needs
to be denoted, alternative ASN.1 syntax is available. (See clause 34.)
NOTE 2 – The character string represented by a "cstring" consists of the characters associated with the printed graphic symbols
and spacing characters. Spacing characters immediately preceding or following any end of line in the "cstring" are not part of the
character string being represented (they are ignored). Where spacing characters are included in the "cstring", or where the graphic
symbols in the character repertoire are not unambiguous the character string denoted by "cstring" may be ambiguous.

EXAMPLE 1 – " "

EXAMPLE 2 – The "cstring":

 "ABCDE FGH

 IJK""XYZ"

can be used to represent a character string value of type IA5String. The value represented consists of the characters:

 ABCDE FGHIJK"XYZ

where the precise number of spaces intended between E and F can be ambiguous if a proportional spacing font (such as is
used above) is used in the specification.

11.11.2 When a character is a combining character it shall be denoted in the "cstring" as an individual character. It shall
not be overprinted with the characters with which it combines. (This ensures that the order of combining characters in the
string value is unambiguously defined.)

EXAMPLE – The accent combining character and lower case ’e’ are two characters in the ISO 646 French Version, and
thus in a corresponding "cstring" is written as two characters and not as the single character é.

11.11.3 The "cstring" shall not be used to represent character string values which contain control characters. Only
graphic and spacing characters are permitted in it.

ISO/IEC 8824-1 : 1998 (E)

16 ITU-T Rec. X.680 (1997 E)

11.12 Assignment item
Name of item – "::="

This item shall consist of the sequence of characters:

::=
NOTE – This sequence does not contain any white-space characters (see 11.1.2).

11.13 Range separator

Name of item – ".."

This item shall consist of the sequence of characters:

..

NOTE – This sequence does not contain any white-space characters (see 11.1.2).

11.14 Ellipsis

Name of item – "..."

This item shall consist of the sequence of characters:

...
NOTE – This sequence does not contain any white-space characters (see 11.1.2).

11.15 Left version brackets

Name of item – "[["

This item shall consist of the sequence of characters:

[[
NOTE – This sequence does not contain any white-space characters (see 11.1.2).

11.16 Right version brackets

Name of item – "]]"

This item shall consist of the sequence of characters:

]]
NOTE – This sequence does not contain any white-space characters (see 11.1.2).

11.17 Single character items

Names of items –

"{"
"}"
"<"
","
"."
"("
")"
"["
"]"
"-" (hyphen)
":"
";"
"@"
"|"
"!"
"^"

 ISO/IEC 8824-1 : 1998 (E)

 ITU-T Rec. X.680 (1997 E) 17

An item with any of the names listed above shall consist of the single character without the quotation marks.

11.18 Reserved words

Names of reserved words –

ABSENT END INSTANCE REAL

ABSTRACT-SYNTAX ENUMERATED INTEGER SEQUENCE

ALL EXCEPT INTERSECTION SET

APPLICATION EXPLICIT ISO646String SIZE

AUTOMATIC EXPORTS MAX STRING

BEGIN EXTENSIBILITY MIN SYNTAX

BIT EXTERNAL MINUS-INFINITY T61String

BMPString FALSE NULL TAGS

BOOLEAN FROM NumericString TeletexString

BY GeneralizedTime OBJECT TRUE

CHARACTER GeneralString ObjectDescriptor TYPE-IDENTIFIER

CHOICE GraphicString OCTET UNION

CLASS IA5String OF UNIQUE

COMPONENT IDENTIFIER OPTIONAL UNIVERSAL

COMPONENTS IMPLICIT PDV UniversalString

CONSTRAINED IMPLIED PLUS-INFINITY UTCTime

DEFAULT IMPORTS PRESENT UTF8String

DEFINITIONS INCLUDES PrintableString VideotexString

EMBEDDED PRIVATE VisibleString

 WITH

Items with the above names shall consist of the sequence of characters in the name, and are reserved character sequences.
NOTE 1 – White-space does not occur in these sequences.
NOTE 2 – The keywords CLASS, CONSTRAINED, INSTANCE, SYNTAX and UNIQUE are not used in this Recommendation |
International Standard; they are used in ITU-T Rec. X.681 | ISO/IEC 8824-2, ITU-T Rec. X.682 | ISO/IEC 8824-3 and ITU-T
Rec. X.683 | ISO/IEC 8824-4.

12 Module definition

12.1 A "ModuleDefinition" is specified by the following productions:

 ModuleDefinition ::=
 ModuleIdentifier
 DEFINITIONS
 TagDefault
 ExtensionDefault
 "::="
 BEGIN
 ModuleBody
 END

 ModuleIdentifier ::=
 modulereference
 DefinitiveIdentifier

ISO/IEC 8824-1 : 1998 (E)

18 ITU-T Rec. X.680 (1997 E)

 DefinitiveIdentifier ::=
 "{" DefinitiveObjIdComponentList "}" | empty

 DefinitiveObjIdComponentList ::=
 DefinitiveObjIdComponent |
 DefinitiveObjIdComponent DefinitiveObjIdComponentList

 DefinitiveObjIdComponent ::=
 NameForm |
 DefinitiveNumberForm |
 DefinitiveNameAndNumberForm

 DefinitiveNumberForm ::= number

 DefinitiveNameAndNumberForm ::= identifier "(" DefinitiveNumberForm ")"

 TagDefault ::=
 EXPLICIT TAGS |
 IMPLICIT TAGS |
 AUTOMATIC TAGS |
 empty

 ExtensionDefault ::=
 EXTENSIBILITY IMPLIED |
 empty

 ModuleBody ::=
 Exports Imports AssignmentList |
 empty

 Exports ::=
 EXPORTS SymbolsExported ";" |
 empty

 SymbolsExported ::=
 SymbolList |
 empty

 Imports ::=
 IMPORTS SymbolsImported ";" |
 empty

 SymbolsImported ::=
 SymbolsFromModuleList |
 empty

 SymbolsFromModuleList ::=
 SymbolsFromModule |
 SymbolsFromModuleList SymbolsFromModule

 SymbolsFromModule ::=
 SymbolList FROM GlobalModuleReference

 GlobalModuleReference ::=
 modulereference AssignedIdentifier

 AssignedIdentifier ::=
 ObjectIdentifierValue |
 DefinedValue |
 empty

 SymbolList ::=
 Symbol |
 SymbolList "," Symbol

 ISO/IEC 8824-1 : 1998 (E)

 ITU-T Rec. X.680 (1997 E) 19

 Symbol ::=
 Reference |
 ParameterizedReference

 Reference ::=
 typereference |
 valuereference |
 objectclassreference |
 objectreference |
 objectsetreference

 AssignmentList ::=
 Assignment |
 AssignmentList Assignment

 Assignment ::=
 TypeAssignment |
 ValueAssignment |
 ValueSetTypeAssignment |
 ObjectClassAssignment |
 ObjectAssignment |
 ObjectSetAssignment |
 ParameterizedAssignment

NOTE 1 – The use of a ParameterizedReference in the EXPORTS and IMPORTS lists is specified in ITU-T Rec. X.683 |
ISO/IEC 8824-4.
NOTE 2 – For examples (and for the definition in this Recommendation | International Standard of types with universal class
tags), the "ModuleBody" can be used outside of a "ModuleDefinition".
NOTE 3 – "TypeAssignment" and "ValueAssignment" productions are specified in clause 15.
NOTE 4 – The grouping of ASN.1 data types into modules does not necessarily determine the formation of presentation data
values into named abstract syntaxes for the purpose of presentation context definition.
NOTE 5 – The value of "TagDefault" for the module definition affects only those types defined explicitly in the module. It does
not affect the interpretation of imported types.
NOTE 6 – The character semicolon does not appear in the assignment list specification or any of its subordinate productions, and
is reserved for use by ASN.1 tool developers.

12.2 The "TagDefault" is taken as "EXPLICIT TAGS" if it is "empty".
NOTE – Clause 30 gives the meaning of "EXPLICIT TAGS", "IMPLICIT TAGS", and "AUTOMATIC TAGS".

12.3 When the "AUTOMATIC TAGS" alternative of "TagDefault" is selected, automatic tagging is said to be
selected for the module, otherwise it is said to be not selected. Automatic tagging is a syntactical transformation which is
applied (with additional conditions) to the "ComponentTypeLists" and "AlternativeTypeLists" productions occurring
within the definition of the module. This transformation is formally specified by 24.7 to 24.9, 26.3 and 28.2 regarding the
notations for sequence types, set types and choice types, respectively.

12.4 The "EXTENSIBILITY IMPLIED" option is equivalent to the textual insertion of an extension marker (...) in
the definition of each type in the module for which it is permitted. The location of the implied extension marker is the last
position in the type where an explicitly specified extension marker is allowed. The absence of "EXTENSIBILITY
IMPLIED" means that extensibility is only provided for those types within the module where an extension marker is
explicitly present.

NOTE – "EXTENSIBILITY IMPLIED" affects only types. It has no effect on object sets.

12.5 The "modulereference" appearing in the "ModuleIdentifier" production is called the module name.
NOTE – The possibility of defining a single ASN.1 module by the use of several occurrences of "ModuleBody" assigned the same
"modulereference" was (arguably) permitted in earlier specifications. It is not permitted by this Recommendation | International
Standard.

12.6 Module names shall be used only once (except as specified in 12.9) within the sphere of interest of the
definition of the module.

12.7 If the "DefinitiveIdentifier" is not empty, the denoted object identifier value unambiguously and uniquely
identifies the module being defined. No defined value may be used in defining the object identifier value.

NOTE – The question of what changes to a module require a new "DefinitiveIdentifier" is not addressed in this Recommendation |
International Standard.

ISO/IEC 8824-1 : 1998 (E)

20 ITU-T Rec. X.680 (1997 E)

12.8 If the "AssignedIdentifier" is not empty, the "ObjectIdentifierValue" and the "DefinedValue" alternatives
unambiguously and uniquely identify the module from which items are being imported. When the "DefinedValue"
alternative of "AssignedIdentifier" is used, it shall be a value of type object identifier. Each "valuereference" which
textually appears within an "AssignedIdentifier" shall satisfy one of the following rules:

a) It is defined in the "AssignmentList" of the module being defined, and all "valuereferences" which
textually appear on the right side of the assignment statement also satisfy this rule (rule "a") or the next
rule (rule "b").

b) It appears as a "Symbol" in a "SymbolsFromModule" whose "AssignedIdentifier" does not textually
contain any "valuereferences".

NOTE – It is recommended that an object identifier be assigned so that others can unambiguously refer to the module.

12.9 The "GlobalModuleReference" in a "SymbolsFromModule" shall appear in the "ModuleDefinition" of another
module, except that if it includes a non-empty "DefinitiveIdentifier", the "modulereference" may differ in the two cases.

NOTE – A different "modulereference" from that used in the other module should only be used when symbols are to be imported
from two modules with the same name (the modules being named in disregard of 12.6). The use of alternative distinct names
makes these names available for use in the body of the module (see 12.15).

12.10 When both a "modulereference" and a non-empty "AssignedIdentifier" are used in referencing a module, the
latter shall be considered definitive.

12.11 When the referenced module has a non-empty "DefinitiveIdentifier", the "GlobalModuleReference" referencing
that module shall not have an empty "AssignedIdentifier".

12.12 When the "SymbolsExported" alternative of "Exports" is selected:

a) each "Symbol" in "SymbolsExported" shall satisfy one and only one of the following conditions:

i) is only defined in the module being constructed; or

ii) only appears exactly once in the "SymbolsImported" alternative of "Imports";

b) every "Symbol" to which reference from outside the module is appropriate shall be included in the
"SymbolsExported" and only these "Symbol"s may be referenced from outside the module; and

c) if there are no such "Symbol"s, then the empty alternative of "SymbolsExported" (not of "Exports") shall
be selected.

12.13 When the "empty" alternative of "Exports" is selected, every "Symbol" defined in the module may be
referenced from other modules.

NOTE – The "empty" alternative of "Exports" is included for backwards compatibility.

12.14 Identifiers that appear in a "NamedNumberList", "Enumeration" or "NamedBitList" are implicitly exported if
the typereference that defines them is exported or appears as a component (or subcomponent) within an exported type.

12.15 When the "SymbolsImported" alternative of "Imports" is selected:

a) Each "Symbol" in "SymbolsFromModule" shall either be defined in the module body, or be present in the
IMPORTS clause, of the module denoted by the "GlobalModuleReference" in "SymbolsFromModule".
Importing a "Symbol" present in the IMPORTS clause of the referenced module is only allowed if there is
only one occurrence of the "Symbol" in that clause, and the "Symbol" is not defined in the referenced
module.

NOTE 1 – This does not prohibit the same symbol name defined in two different modules from being imported
into another module. However, if the same "Symbol" name appears more than once in the IMPORTS clause of
module A, that "Symbol" name cannot be exported from A for import to another module B.

b) If the "SymbolsExported" alternative of "Exports" is selected in the definition of the module denoted by
the "GlobalModuleReference" in "SymbolsFromModule" the "Symbol" shall appear in its
"SymbolsExported".

c) Only those "Symbol"s that appear amongst the "SymbolList" of a "SymbolsFromModule" may appear as
the symbol in any "External<X>Reference" which has the "modulereference" denoted by the
"GlobalModuleReference" of that "SymbolsFromModule" (where <X> is "value", "type", "object",
"objectclass", or "objectset").

d) If there are no such "Symbol"s, then the "empty" alternative of "SymbolsImported" shall be selected.
NOTE 2 – An effect of c) and d) is that the statement "IMPORTS;" implies that the module cannot contain an
"External<X>Reference".

 ISO/IEC 8824-1 : 1998 (E)

 ITU-T Rec. X.680 (1997 E) 21

e) All the "SymbolsFromModule" in the "SymbolsFromModuleList" shall include occurrences of
"GlobalModuleReference" such that:

i) the "modulereference" in them are all different from each other and from the "modulereference"
associated with the referencing module; and

ii) the "AssignedIdentifier", when non-empty, denotes object identifier values which are all different
from each other and from the object identifier value (if any) associated with the referencing module.

12.16 When the "empty" alternative of "Imports" is selected, the module may still reference "Symbols" defined in
other modules by means of an "External<X>Reference".

NOTE – The "empty" alternative of "Imports" is included for backwards compatibility.

12.17 Identifiers that appear in a NamedNumberList, Enumeration or NamedBitList are implicitly imported if the
typereference that defines them is imported or appears as a component (or subcomponent) within an exported type.

12.18 A "Symbol" in a "SymbolsFromModule" may appear in "ModuleBody" as a "Reference". The
meaning associated with the "Symbol" is that which it has in the module denoted by the corresponding
"GlobalModuleReference".

12.19 Where the "Symbol" also appears in an "AssignmentList" (deprecated), or appears in one or more other
instances of "SymbolsFromModule", it shall only be used in an "External<X>Reference". Where it does not so appear, it
shall be used directly as a "Reference".

12.20 The various alternatives for "Assignment" are defined in the following clauses in this Recommendation |
International Standard, except as noted otherwise:

Assignment alternative Defining subclause

"TypeAssignment" 15.1

"ValueAssignment" 15.2

"ValueSetTypeAssignment" 15.4

"ObjectClassAssignment" ITU-T Rec. X.681 | ISO/IEC 8824-2, 9.1

"ObjectAssignment" ITU-T Rec. X.681 | ISO/IEC 8824-2, 11.1

"ObjectSetAssignment" ITU-T Rec. X.681 | ISO/IEC 8824-2, 12.1

"ParameterizedAssignment" ITU-T Rec. X.683 | ISO/IEC 8824-4, 8.1

The first symbol of every "Assignment" is one of the alternatives of "Reference", denoting the reference name being
defined. In no two assignments within an "AssignmentList" shall the reference names be the same.

13 Referencing type and value definitions

13.1 The defined type and value productions:

 DefinedType ::=
 Externaltypereference |
 typereference |
 ParameterizedType |
 ParameterizedValueSetType

 DefinedValue ::=
 Externalvaluereference |
 valuereference |
 ParameterizedValue

specify the sequences which shall be used to reference type and value definitions. The type identified by a
"ParameterizedType" and "ParameterizedValueSetType", and the value identified by a "ParameterizedValue" are
specified in ITU-T Rec. X.683 | ISO/IEC 8824-4.

13.2 Except as specified in 12.18, the "typereference", "valuereference", "ParameterizedType",
"ParameterizedValueSetType" or "ParameterizedValue" alternatives shall not be used unless the reference is within the
"ModuleBody" in which a type or value is assigned (see 15.1 and 15.2) to the typereference or valuereference.

ISO/IEC 8824-1 : 1998 (E)

22 ITU-T Rec. X.680 (1997 E)

13.3 The "Externaltypereference" and "Externalvaluereference" shall not be used unless the corresponding
"typereference" or "valuereference":

a) has been assigned a type or value respectively (see 15.1 and 15.2); or

b) are present in the IMPORTS clause,

within the "ModuleBody" used to define the corresponding "modulereference". Referencing an item in the IMPORTS
clause of another module shall only be allowed if there is no more than one occurrence of the "Symbol" in that clause.

NOTE – This does not prohibit the same "Symbol" defined in two different modules from being imported into another module.
However, if the same "Symbol" appears more than once in the IMPORTS clause of a module A, then that "Symbol" cannot be
referenced using module A in an external reference.

13.4 An external reference shall be used in a module only to refer to an item which is defined in a different module,
and is specified by the following productions:

 Externaltypereference ::=
 modulereference
 "."
 typereference

 Externalvaluereference ::=
 modulereference
 "."
 valuereference

NOTE – Additional external reference productions (ExternalClassReference, ExternalObjectReference and
ExternalObjectSetReference) are specified in ITU-T Rec. X.681 | ISO/IEC 8824-2.

13.5 When the referencing module is defined using the "SymbolsImported" alternative of "Imports", the
"modulereference" in the external reference shall appear in the "GlobalModuleReference" of exactly one of the
"SymbolsFromModule" in the "SymbolsImported". When the referencing module is defined using the "empty" alternative
of "Imports", the "modulereference" in the external reference shall appear in the "ModuleDefinition" of the module
(different from the referencing module) where the "Reference" is defined.

14 Notation to support references to ASN.1 components

14.1 There is a requirement for formal reference to components of ASN.1 types, values, etc. for many purposes. One
such instance is the need to write text to identify a specific type within some ASN.1 module. This clause defines a
notation which can be used to provide such references.

14.2 The notation enables any component of a set or sequence type (which is either mandatorily or optionally
present in the type) to be identified.

14.3 Any part of any ASN.1 type definition can be referenced by use of the "AbsoluteReference" syntactic construct:

 AbsoluteReference ::= "@" GlobalModuleReference
 "."
 ItemSpec

 ItemSpec ::=
 typereference |
 ItemId "." ComponentId

 ItemId ::= ItemSpec
 ComponentId ::=
 identifier | number | "*"

NOTE – The AbsoluteReference production is not used elsewhere in this Recommendation | International Standard. It is provided
for the purposes stated in 14.1.

14.4 The "GlobalModuleReference" identifies an ASN.1 module (see 12.1).

 ISO/IEC 8824-1 : 1998 (E)

 ITU-T Rec. X.680 (1997 E) 23

14.5 The "typereference" references any ASN.1 type defined in the module identified by "GlobalModuleReference".

14.6 The "ComponentId" in each "ItemSpec" identifies a component of the type which has been identified by the
"ItemId". It shall be the last "ComponentId" if the component it identifies is not a set, sequence, set-of, sequence-of, or
choice type.

14.7 The "identifier" form of "ComponentId" can be used if the parent "ItemId" is a set or sequence type, and is
required to be one of the "identifier"s of the "NamedType" in the "ComponentTypeLists" of that set or sequence. It can
also be used if the "ItemId" identifies a choice type, and is then required to be one of the "identifier"s of a "NamedType"
in the "AlternativeTypeLists" of that choice type. It cannot be used in any other circumstance.

14.8 The number form of "ComponentId" can be used only if the "ItemId" is a sequence-of or set-of type. The value
of the number identifies the instance of the type in the sequence-of or set-of, with the value "1" identifying the first
instance of the type. The value zero identifies a conceptual integer type component (not explicitly present in transfer, and
called the iteration count) that contains a count of the number of instances of the type in the sequence-of or set-of that
are present in the value of the enclosing type.

14.9 The "*" form of "ComponentId" can be used only if the "ItemId" is a sequence-of or set-of. Any semantics
associated with the use of the "*" form of "ComponentId" apply to all components of the sequence-of and set-of.

NOTE – In the following example:

 M DEFINITIONS ::= BEGIN
 T ::= SEQUENCE {
 a BOOLEAN,
 b SET OF INTEGER
 }
 END

the components of "T" could be referenced by text outside an ASN.1 module (or in a comment), such as:

 if (@M.T.b.0 is odd) then:
 (@M.T.b.* shall be an odd integer)

which is used to state that if the number of components in "b" is odd, all components of "b" must be odd.

15 Assigning types and values

15.1 A "typereference" shall be assigned a type by the notation specified by the "TypeAssignment" production:

 TypeAssignment ::=
 typereference
 "::="
 Type

The "typereference" shall not be an ASN.1 reserved word (see 11.18).

15.2 A "valuereference" shall be assigned a value by the notation specified by the "ValueAssignment" production:

 ValueAssignment ::=
 valuereference
 Type
 "::="
 Value

The "Value" being assigned to the "valuereference" shall be a notation for a value of the type defined by "Type" (as
specified in 15.3).

15.3 "Value" is a notation for a value of a type if either:

a) "Value" is a "BuiltinValue" notation for the type (see 16.8); or

b) "Value" is a "DefinedValue" notation for a value of that type.

ISO/IEC 8824-1 : 1998 (E)

24 ITU-T Rec. X.680 (1997 E)

15.4 A "typereference" can be assigned a value set by the notation specified by the "ValueSetTypeAssignment"
production:

 ValueSetTypeAssignment ::= typereference
 Type
 "::="
 ValueSet

This notation assigns to "typereference" the type defined as a subtype of the type denoted by "Type" and which contains
exactly the values which are specified in or allowed by "ValueSet". The "typereference" shall not be an ASN.1 reserved
word (see 11.18), and may be referenced as a type. "ValueSet" is defined in 15.5.

15.5 A value set governed by some type shall be specified by the notation "ValueSet":

 ValueSet ::= "{" ElementSetSpecs "}"

The value set comprises all of the values, of which there shall be at least one, specified by "ElementSetSpecs" (see
clause 46).

16 Definition of types and values

16.1 A type shall be specified by the notation "Type":

 Type ::= BuiltinType | ReferencedType | ConstrainedType

16.2 The built-in types of ASN.1 are specified by the notation "BuiltinType", defined as follows:

 BuiltinType ::=
 BitStringType |
 BooleanType |
 CharacterStringType |
 ChoiceType |
 EmbeddedPDVType |
 EnumeratedType |
 ExternalType |
 InstanceOfType |
 IntegerType |
 NullType |
 ObjectClassFieldType |
 ObjectIdentifierType |
 OctetStringType |
 RealType |
 SequenceType |
 SequenceOfType |
 SetType |
 SetOfType |
 TaggedType

The various "BuiltinType" notations are defined in the following clauses (in this Recommendation | International
Standard unless otherwise stated):

 BitStringType 21
BooleanType 17
CharacterStringType 35
ChoiceType 28
EmbeddedPDVType 32
EnumeratedType 19
ExternalType 33
InstanceOfType ITU-T Rec. X.681 | ISO/IEC 8824-2, Annex C
IntegerType 18
NullType 23
ObjectClassFieldType ITU-T Rec. X.681 | ISO/IEC 8824-2, 14.1
ObjectIdentifierType 31
OctetStringType 22

 ISO/IEC 8824-1 : 1998 (E)

 ITU-T Rec. X.680 (1997 E) 25

RealType 20
SequenceType 24
SequenceOfType 25
SetType 26
SetOfType 27
TaggedType 30

16.3 The referenced types of ASN.1 are specified by the notation "ReferencedType":

 ReferencedType ::=
 DefinedType |
 UsefulType |
 SelectionType |
 TypeFromObject |
 ValueSetFromObjects

The "ReferencedType" notation provides an alternative means of referring to some other type (and ultimately to a built-in
type). The various "ReferencedType" notations, and the way in which the type to which they refer is determined, are
specified in the following places in this Recommendation | International Standard unless otherwise stated):

 DefinedType 13.1
UsefulType 40.1
SelectionType 29
TypeFromObject ITU-T Rec. X.681 | ISO/IEC 8824-2, clause 15
ValueSetFromObjects ITU-T Rec. X.681 | ISO/IEC 8824-2, clause 15

16.4 The "ConstrainedType" is defined in clause 44.

16.5 This Recommendation | International Standard requires the use of the notation "NamedType" in specifying the
components of the set type, sequence type and choice types. The notation for "NamedType" is:

 NamedType ::= identifier Type

16.6 The "identifier" is used to unambiguously refer to components of a set type, sequence type or choice type in the
value notation and in component relation constraints (see ITU-T Rec. X.682 | ISO/IEC 8824-3). It is not part of the type,
and has no effect on the type.

16.7 A value of some type shall be specified by the notation "Value":

 Value ::= BuiltinValue | ReferencedValue | ObjectClassFieldValue
NOTE – ObjectClassFieldValue is defined in ITU-T Rec. X.681 | ISO/IEC 8824-2, 14.6.

16.8 Values of the built-in types of ASN.1 can be specified by the notation "BuiltinValue", defined as follows:

 BuiltinValue ::=
 BitStringValue |
 BooleanValue |
 CharacterStringValue |
 ChoiceValue |
 EmbeddedPDVValue |
 EnumeratedValue |
 ExternalValue |
 InstanceOfValue |
 IntegerValue |
 NullValue |
 ObjectIdentifierValue |
 OctetStringValue |
 RealValue |
 SequenceValue |
 SequenceOfValue |
 SetValue |
 SetOfValue |
 TaggedValue

Each of the various "BuiltinValue" notations is defined in the same clause as the corresponding "BuiltinType" notation,
as listed in 16.2 above.

ISO/IEC 8824-1 : 1998 (E)

26 ITU-T Rec. X.680 (1997 E)

16.9 The referenced values of ASN.1 are specified by the notation "ReferencedValue":

 ReferencedValue ::=
 DefinedValue |
 ValueFromObject

The "ReferencedValue" notation provides an alternative means of referring to some other value (and ultimately to a built-
in value). The various "ReferencedValue" notations, and the way in which the value to which they refer is determined, are
specified in the following places (in this Recommendation | International Standard unless otherwise stated):

 DefinedValue 13.1
 ValueFromObject ITU-T Rec. X.681 | ISO/IEC 8824-2, clause 15

16.10 Regardless of whether or not a type is a "BuiltinType", "ReferencedType" or "ConstrainedType", its values can
be specified by either a "BuiltinValue" or "ReferencedValue" of that type.

16.11 The value of a type referenced using the "NamedType" notation shall be defined by the notation
"NamedValue":

 NamedValue ::= identifier Value

where the "identifier" is the same as that used in the "NamedType" notation.
NOTE – The "identifier" is part of the notation, it does not form part of the value itself. It is used to unambiguously refer to the
components of a set type, sequence type or choice type.

16.12 The implied or explicit presence of an extension marker in the definition of a type has no effect on the value
notation. That is, the value notation for a type with an extension marker is exactly the same as if the extension marker was
absent.

17 Notation for the boolean type

17.1 The boolean type (see 3.8.7) shall be referenced by the notation "BooleanType":

 BooleanType ::= BOOLEAN

17.2 The tag for types defined by this notation is universal class, number 1.

17.3 The value of a boolean type (see 3.8.66 and 3.8.38) shall be defined by the notation "BooleanValue":

 BooleanValue ::= TRUE | FALSE

18 Notation for the integer type

18.1 The integer type (see 3.8.40) shall be referenced by the notation "IntegerType":

 IntegerType ::=
 INTEGER |
 INTEGER "{" NamedNumberList "}"

 NamedNumberList ::=
 NamedNumber |
 NamedNumberList "," NamedNumber

 NamedNumber ::=
 identifier "(" SignedNumber ")" |
 identifier "(" DefinedValue ")"

 SignedNumber ::= number | "-" number

18.2 The second alternative of "SignedNumber" shall not be used if the "number" is zero.

18.3 The "NamedNumberList" is not significant in the definition of a type. It is used solely in the value notation
specified in 18.9.

 ISO/IEC 8824-1 : 1998 (E)

 ITU-T Rec. X.680 (1997 E) 27

18.4 The "valuereference" in "DefinedValue" shall be of type integer.
NOTE – Since an "identifier" cannot be used to specify the value associated with "NamedNumber", the "DefinedValue" can never
be misinterpreted as an "IntegerValue". Therefore in the following case

 a INTEGER ::= 1
 T1 ::= INTEGER { a(2) }
 T2 ::= INTEGER { a(3), b(a) }
 c T2 ::= b
 d T2 ::= a

"c" denotes the value 1, since it cannot be a reference to the second nor the third occurrence of "a", and "d" denotes the value 3.

18.5 The value of each "SignedNumber" or "DefinedValue" appearing in the "NamedNumberList" shall be different,
and represents a distinguished value of the integer type.

18.6 Each "identifier" appearing in the "NamedNumberList" shall be different.

18.7 The order of the "NamedNumber" sequences in the "NamedNumberList" is not significant.

18.8 The tag for types defined by this notation is universal class, number 2.

18.9 The value of an integer type shall be defined by the notation "IntegerValue":

 IntegerValue ::=
 SignedNumber |
 identifier

18.10 The "identifier" in "IntegerValue" shall be one of the "identifier"s in the "IntegerType" with which the value is
associated, and shall represent the corresponding number.

NOTE – When referencing an integer value for which an "identifier" has been defined, use of the "identifier" form of
"IntegerValue" should be preferred.

19 Notation for the enumerated type

19.1 The enumerated type (see 3.8.24) shall be referenced by the notation "EnumeratedType":

 EnumeratedType ::=
 ENUMERATED "{" Enumerations "}"

 Enumerations ::= RootEnumeration |
 RootEnumeration "," "..." |
 RootEnumeration "," "..." "," AdditionalEnumeration

 RootEnumeration ::= Enumeration

 AdditionalEnumeration ::= Enumeration

 Enumeration ::=
 EnumerationItem | EnumerationItem "," Enumeration

 EnumerationItem ::=
 identifier | NamedNumber

NOTE 1 – Each value of an "EnumeratedType" has an identifier which is associated with a distinct integer. However, the values
themselves are not expected to have any integer semantics. Specifying the "NamedNumber" alternative of "EnumerationItem"
provides control of the representation of the value in order to facilitate compatible extensions.
NOTE 2 – The numeric values inside the "NamedNumber"s in the "RootEnumeration" are not necessarily ordered or contiguous,
and the numeric values inside the "NamedNumber"s in the "AdditionalEnumeration" are ordered but not necessarily contiguous.

19.2 For each "NamedNumber", the "identifier" and the "SignedNumber" shall be distinct from all other
"identifier"s and "SignedNumber"s in the "Enumeration". Subclauses 18.2 and 18.4 also apply to each "NamedNumber".

19.3 Each "EnumerationItem" (in an "EnumeratedType") which is an "identifier" is successively assigned a distinct
non-negative integer. For this purpose, the successive integers starting with 0, but excluding any which are employed in
"EnumerationItem"s which are "NamedNumber"s, are assigned.

NOTE – An integer value is associated with an "EnumerationItem" to assist in the definition of encoding rules. It is not otherwise
used in the ASN.1 specification.

ISO/IEC 8824-1 : 1998 (E)

28 ITU-T Rec. X.680 (1997 E)

19.4 The value of each new "AdditionalEnumeration" shall be greater than all previously defined
"AdditionalEnumeration"s in the type.

19.5 When a "NamedNumber" is used in defining an "AdditionalEnumeration" the value associated with it shall be
different from the value of all previously defined "EnumerationItem"s (in this type) regardless of whether the previously
defined "EnumerationItem"s occur in the enumeration root or not. For example:

 A ::= ENUMERATED {a, b, ..., c(0)} -- invalid, since both 'a' and 'c' equal 0
 B ::= ENUMERATED {a, b, ..., c, d(2)} -- invalid, since both 'c' and 'd' equal 2
 C ::= ENUMERATED {a, b(3), ..., c(1)} -- valid, 'c' = 1
 D ::= ENUMERATED {a, b, ..., c(2)} -- valid, 'c' = 2

19.6 The value associated with the first "AdditionalEnumeration" alternative that is an "identifier" (not a
"NamedNumber") shall be the smallest value for which an "EnumerationItem" is not defined in the "RootEnumeration"
and all preceding "EnumerationItem"s in the "AdditionalEnumeration" (if any) are smaller. For example, the following
are all valid:

 A ::= ENUMERATED {a, b, ..., c} -- c = 2
 B ::= ENUMERATED {a, b, c(0), ..., d} -- d = 3
 C ::= ENUMERATED {a, b, ..., c(3), d} -- d = 4
 D ::= ENUMERATED {a, z(25), ..., d} -- d = 1

19.7 The enumerated type has a tag which is universal class, number 10.

19.8 The value of an enumerated type shall be defined by the notation "EnumeratedValue":

 EnumeratedValue ::= identifier

19.9 The "identifier" in "EnumeratedValue" shall be equal to that of an "identifier" in the "EnumeratedType"
sequence with which the value is associated.

20 Notation for the real type

20.1 The real type (see 3.8.52) shall be referenced by the notation "RealType":

 RealType ::= REAL

20.2 The real type has a tag which is universal class, number 9.

20.3 The values of the real type are the values PLUS-INFINITY and MINUS-INFINITY together with the real
numbers capable of being specified by the following formula involving three integers, M, B and E:

M x BE

where M is called the mantissa, B the base, and E the exponent.

20.4 The real type has an associated type which is used to give precision to the definition of the abstract values of
the real type and is also used to support the value and subtype notations of the real type.

NOTE – Encoding rules may define a different type which is used to specify encodings, or may specify encodings without
reference to the associated type. In particular, the encoding in BER and PER provides a Binary-Coded Decimal (BCD) encoding if
"base" is 10, and an encoding which permits efficient transformation to and from hardware floating point representations if "base"
is 2.

20.5 The associated type for value definition and subtyping purposes is (with normative comments):

 SEQUENCE {
 mantissa INTEGER,
 base INTEGER (2|10),
 exponent INTEGER
 -- The associated mathematical real number is "mantissa"
 -- multiplied by "base" raised to the power "exponent"
 }

NOTE 1 – Values represented by "base" 2 and by "base" 10 are considered to be distinct abstract values even if they evaluate to
the same real numbers value, and may carry different application semantics.

 ISO/IEC 8824-1 : 1998 (E)

 ITU-T Rec. X.680 (1997 E) 29

NOTE 2 – The notation "REAL (WITH COMPONENTS { ... , base (10)})" can be used to restrict the set of values to base 10
abstract values (and similarly for base 2 abstract values).

NOTE 3 – This type is capable of carrying an exact finite representation of any number which can be stored in typical floating
point hardware, and of any number with a finite character-decimal representation.

20.6 The value of a real type shall be defined by the notation "RealValue":

 RealValue ::=
 NumericRealValue | SpecialRealValue

 NumericRealValue ::= 0 |
 SequenceValue -- Value of the associated sequence type

 SpecialRealValue ::=
 PLUS-INFINITY | MINUS-INFINITY

The form "0" shall be used for zero values, the alternate form for "NumericRealValue" shall not be used for zero values.

21 Notation for the bitstring type

21.1 The bitstring type (see 3.8.6) shall be referenced by the notation "BitStringType":

 BitStringType ::=
 BIT STRING
 BIT STRING "{" NamedBitList "}"

 NamedBitList ::=
 NamedBit |
 NamedBitList "," NamedBit

 NamedBit ::=
 identifier "(" number ")" |
 identifier "(" DefinedValue ")"

21.2 The first bit in a bit string is called bit zero. The final bit in a bit string is called the trailing bit.
NOTE – This terminology is used in specifying the value notation and in defining encoding rules.

21.3 The "DefinedValue" shall be a reference to a non-negative value of type integer.

21.4 The value of each "number" or "DefinedValue" appearing in the "NamedBitList" shall be different, and is the
number of a distinguished bit in a bitstring value.

21.5 Each "identifier" appearing in the "NamedBitList" shall be different.
NOTE 1 – The order of the "NamedBit" production sequences in the "NamedBitList" is not significant.

NOTE 2 – Since an "identifier" that appears within the "NamedBitList" cannot be used to specify the value associated with a
"NamedBit", the "DefinedValue" can never be misinterpreted as an "IntegerValue". Therefore in the following case:

 a INTEGER ::= 1

 T1 ::= INTEGER { a(2) }

 T2 ::= BIT STRING { a(3), b(a) }

the last occurrence of "a" denotes the value 1, as it cannot be a reference to the second nor the third occurrence of "a".

21.6 The presence of a "NamedBitList" has no effect on the set of abstract values of this type. Values containing
1 bit other than the named bits are permitted.

21.7 When a "NamedBitList" is used in defining a bitstring type ASN.1 encoding rules are free to add (or remove)
arbitrarily many trailing 0 bits to (or from) values that are being encoded or decoded. Application designers should
therefore ensure that different semantics are not associated with such values which differ only in the number of trailing
0 bits.

21.8 This type has a tag which is universal class, number 3.

ISO/IEC 8824-1 : 1998 (E)

30 ITU-T Rec. X.680 (1997 E)

21.9 The value of a bitstring type shall be defined by the notation "BitStringValue":

 BitStringValue ::=
 bstring |
 hstring |
 "{" IdentifierList "}" |
 "{" "}"

 IdentifierList ::=
 identifier |
 IdentifierList "," identifier

21.10 Each "identifier" in "BitStringValue" shall be the same as an "identifier" in the "BitStringType" production
sequence with which the value is associated.

21.11 The "BitStringValue" notation denotes a bitstring value with ones in the bit positions specified by the numbers
corresponding to the "identifier"s, and with all other bits zero.

NOTE – The "{" "}" production sequence is used to denote the bitstring which contains no one bits.

21.12 In specifying the encoding rules for a bitstring, the bits shall be referenced by the terms first bit and trailing
bit where the first bit is bit zero (see 21.2).

21.13 When using the "bstring" notation, the first bit is on the left, and the trailing bit is on the right.

21.14 When using the "hstring" notation, the most significant bit of each hexadecimal digit corresponds to the
leftmost bit in the bitstring.

NOTE – This notation does not, in any way, constrain the way encoding rules place a bitstring into octets for transfer.

21.15 The "hstring" notation shall not be used unless the bitstring value consists of a multiple of four bits.

EXAMPLE

'A8A'H
and

'1010100110001010'B

are alternative notations for the same bitstring value. If the type was defined using a "NamedBitList", the (single) trailing
zero does not form part of the value, which is thus 15 bits in length. If the type was defined without a "NamedBitList",
the trailing zero does form part of the value, which is thus 16 bits in length.

22 Notation for the octetstring type

22.1 The octetstring type (see 3.8.48) shall be referenced by the notation "OctetStringType":

 OctetStringType ::= OCTET STRING

22.2 This type has a tag which is universal class, number 4.

22.3 The value of an octetstring type shall be defined by the notation "OctetStringValue":

 OctetStringValue ::=
 bstring |
 hstring

22.4 In specifying the encoding rules for an octetstring, the octets are referenced by the terms first octet and trailing
octet, and the bits within an octet are referenced by the terms most significant bit and least significant bit.

22.5 When using the "bstring" notation, the left-most bit shall be the most significant bit of the first octet. If the
"bstring" is not a multiple of eight bits, it shall be interpreted as if it contained additional zero trailing bits to make it the
next multiple of eight.

22.6 When using the "hstring" notation, the left-most hexadecimal digit shall be the most significant semi-octet of
the first octet.

22.7 If the "hstring" is not an even number of hexadecimal digits, it shall be interpreted as if it contained a single
additional trailing zero hexadecimal digit.

 ISO/IEC 8824-1 : 1998 (E)

 ITU-T Rec. X.680 (1997 E) 31

23 Notation for the null type

23.1 The null type (see 3.8.43) shall be referenced by the notation "NullType":

 NullType ::= NULL

23.2 This type has a tag which is universal class, number 5.

23.3 The value of a null type shall be referenced by the notation "NullValue":

 NullValue ::= NULL

24 Notation for sequence types

24.1 The notation for defining a sequence type (see 3.8.56) shall be the "SequenceType":

 SequenceType ::= SEQUENCE "{" "}" |
 SEQUENCE "{" ExtensionAndException OptionalExtensionMarker "}" |
 SEQUENCE "{" ComponentTypeLists "}"

 ExtensionAndException ::= "…" | "…" ExceptionSpec

 OptionalExtensionMarker ::= "," "…" | empty

 ComponentTypeLists ::= RootComponentTypeList |
 RootComponentTypeList "," ExtensionAndException ExtensionAdditions OptionalExtensionMarker |
 RootComponentTypeList "," ExtensionAndException ExtensionAdditions ExtensionEndMarker ","
 RootComponentTypeList |
 ExtensionAndException ExtensionAdditions ExtensionEndMarker "," RootComponentTypeList

 RootComponentTypeList ::= ComponentTypeList

 ExtensionEndMarker ::= "," "…"

 ExtensionAdditions ::= "," ExtensionAdditionList | empty

 ExtensionAdditionList ::= ExtensionAddition |
 ExtensionAdditionList "," ExtensionAddition

 ExtensionAddition ::= ComponentType | ExtensionAdditionGroup

 ExtensionAdditionGroup ::= "[[" ComponentTypeList "]]"

 ComponentTypeList ::=
 ComponentType |
 ComponentTypeList "," ComponentType

 ComponentType ::=
 NamedType |
 NamedType OPTIONAL |
 NamedType DEFAULT Value |
 COMPONENTS OF Type

24.2 When the "ComponentTypeLists" production occurs within the definition of a module for which automatic
tagging is selected (see 12.3), and none of the occurrences of "NamedType" in any of the first three alternatives for
"ComponentType" contains a "TaggedType", then automatic tagging transformation is selected for the entire
"ComponentTypeLists", otherwise it is not.

NOTE 1 – The use of the "TaggedType" notation within the definition of the list of components for a sequence type gives control
of tags to the specifier, as opposed to automatic assignment by the automatic tagging mechanism. Therefore, in the following case:
 T ::= SEQUENCE { a INTEGER, b [1] BOOLEAN, c OCTET STRING }
no automatic tagging is applied to the list of components a, b, c, even if this definition of sequence type T occurs within a module
for which automatic tagging is selected.
NOTE 2 – Only those occurrences of the "ComponentTypeLists" production appearing within a module where automatic tagging
is selected are candidates for transformation by automatic tagging.

ISO/IEC 8824-1 : 1998 (E)

32 ITU-T Rec. X.680 (1997 E)

24.3 The decision to apply the automatic tagging transformation is taken individually for each occurrence of
"ComponentTypeLists" and prior to the COMPONENTS OF transformation specified by 24.4. However, as specified
in 24.7 to 24.9, the automatic tagging transformation (if applied) is applied after the COMPONENTS OF transformation.

NOTE – The effect of this is that the application of automatic tags is suppressed by tags explicitly present in the
"ComponentTypeLists", but not by tags present in the "Type" following "COMPONENTS OF".

24.4 “Type” in the “COMPONENTS OF Type” notation shall be a sequence type. The “COMPONENTS OF Type”
notation shall be used to define the inclusion, at this point in the list of components, of all the components types of the
referenced type, except for any extension marker and extension additions that may be present in the “Type”. (Only the
“RootComponentTypeList” of the “Type” in the “COMPONENTS OF Type” is included; extension markers and
extension additions, if any, are ignored by the “COMPONENTS OF Type” notation.)

NOTE – This transformation is logically completed prior to the satisfaction of the requirements in the following subclauses.

24.5 The following subclauses each identify a series of occurrences of “ComponentType” in either the root or the
extension additions or both. The rule of 24.5.1 shall apply to all such series.

24.5.1 Where there are one or more consecutive occurrences of “ComponentType” that are all marked OPTIONAL or
DEFAULT, the tags of those “ComponentType”s and of any immediately following component type in the series shall be
distinct (see clause 30). If automatic tagging was selected, the requirement that tags be distinct applies only after
automatic tagging has been performed, and will always be satisfied if automatic tagging has been applied.

24.5.2 Subclause 24.5.1 shall apply to the series of “ComponentTypes” in the root.

24.5.3 Subclause 24.5.1 shall apply to the complete series of “ComponentTypes” in the root or in the extension
additions, in the textual order of their occurrence in the type definition (ignoring all version brackets and ellipsis
notation).

24.6 All “ComponentTypes” in extension additions shall have tags which are distinct from the tags of all textually
following “ComponentTypes” that are in the root, up to and including the first such “ComponentType” that is not marked
OPTIONAL or DEFAULT (if any).

24.7 The automatic tagging transformation of an occurrence of "ComponentTypeLists" is logically performed after
the transformation specified by 24.4, but only if 24.2 determines that it shall apply to that occurrence of
"ComponentTypeLists". Automatic tagging transformation impacts each "ComponentType" of the
"ComponentTypeLists" by replacing the "Type" originally in the "NamedType" production with a replacement
"TaggedType" occurrence specified in 24.9.

24.8 If automatic tags is in effect and the “ComponentType”s in the extension root have no tags, then no
“ComponentType” within the “ExtensionAdditionList” shall be a tagged type.

24.9 The replacement "TaggedType" is specified as follows:

a) the replacement "TaggedType" notation uses the "Tag Type" alternative;

b) the "Class" of the replacement "TaggedType" is empty (i.e. tagging is context-specific);

c) the “ClassNumber” in the replacement “TaggedType” is tag value zero for the first “ComponentType” in
the “RootComponentTypeList” or “NamedType” in the “AlternativeTypeLists”, one for the second, and so
on, proceeding with increasing tag numbers;

d) the “ClassNumber” in the replacement “TaggedType” of the first “ComponentType” in the
“ExtensionAdditionList” is zero if the “RootComponentTypeList” is missing, else it is one greater than the
largest “ClassNumber” in the “RootComponentTypeList”, with the next “ComponentType” in the
“ExtensionAdditionList” having a “ClassNumber” one greater than the first, and so on, proceeding with
increasing tag numbers;

e) the "Type" in the replacement "TaggedType" is the original "Type" being replaced.
NOTE 1 – The rules governing specification of implicit tagging or explicit tagging for replacement "TaggedTypes" are provided
by 30.6. Automatic tagging is always implicit tagging unless the "Type" is a choice type or an open type notation, or a
"DummyReference" (see ITU-T Rec. X.683 | ISO/IEC 8824-4, 8.3), in which case it is explicit tagging.
NOTE 2 – Once 24.7 is satisfied, the tags of the components are completely determined, and are not modified even when the
sequence type is referenced in the definition of a component within another "ComponentTypeLists" for which automatic tagging
transformation applies. Thus, in the following case:
 T ::= SEQUENCE { a Ta, b Tb, c Tc }
 E ::= SEQUENCE { f1 E1, f2 T, f3 E3 }
the tags attached to a, b and c are not impacted by the possible automatic tagging applied to components of E.

 ISO/IEC 8824-1 : 1998 (E)

 ITU-T Rec. X.680 (1997 E) 33

NOTE 3 – When a sequence type appears as the "Type" in "COMPONENTS OF Type", each occurrence of "ComponentType" in
it is duplicated by the application of 24.4 prior to the possible application of automatic tagging to the referencing sequence type.
Thus, in the following case:
 T ::= SEQUENCE { a Ta, b SEQUENCE { b1 T1, b2 T2, b3 T3}, c Tc }
 W ::= SEQUENCE { x Wx, COMPONENTS OF T, y Wy }
the tags of a, b, and c within T need not be the same as the tags of a, b, and c within W if W has been defined in an automatic
tagging environment, but the tags of b1, b2 and b3 are the same in both T and W. In other words, the automatic tagging
transformation is only applied once to a given "ComponentTypeLists".
NOTE 4 – Subtyping has no impact on automatic tagging.
NOTE 5 – When automatic tagging is in place, insertion of new components may result in changes to other components due to the
side effect of modifying the tags.

24.10 If "OPTIONAL" or "DEFAULT" are present, the corresponding value may be omitted from a value of the new
type.

24.11 If "DEFAULT" occurs, the omission of a value for that type shall be exactly equivalent to the insertion of the
value defined by "Value", which shall be a value notation for a value of the type defined by "Type" in the "NamedType"
production sequence.

24.12 The value corresponding to an “ExtensionAdditionGroup” (all components together) is optional. However, if
such a value is present, then the value corresponding to the components within the bracketed “ComponentTypeList” that
are not marked OPTIONAL or DEFAULT shall be present.

24.13 The "identifier"s in all "NamedType" production sequences of the "ComponentTypeLists" (together with those
obtained by expansion of COMPONENTS OF) shall all be distinct.

24.14 A value for a given extension addition type shall not be specified unless there are values specified for all
extension addition types not marked OPTIONAL or DEFAULT that lie logically between the extension addition type and
the extension root.

NOTE 1 –Where the type has grown from the extension root (version 1) through version 2 to version 3 by the addition of
extension additions, the presence in an encoding of any addition from version 3 requires the presence of an encoding of all
additions in version 2 that are not marked OPTIONAL or DEFAULT.
NOTE 2 –“ComponentType”s that are extension additions but not contained within an “ExtensionAdditionGroup” should always
be encoded if they are not marked OPTIONAL or DEFAULT, except when the presentation data value is being relayed from a
sender that is using an earlier version of the abstract syntax in which the “ComponentType” is not defined.
NOTE 3 – Use of the “ExtensionAdditionGroup” production is recommended because:
 a) it can result in more compact encodings depending on the encoding rules (e.g. PER);
 b) the syntax is more precise in that it clearly indicates that a value of a type defined in the “ExtensionAdditionList”

and not marked OPTIONAL or DEFAULT should always be present in an encoding if the extension addition group
in which it is defined is encoded (compare with Note 1);

 c) the syntax makes it clear which types in an “ExtensionAdditionList” must as a group be supported by an application.

24.15 All sequence types have a tag which is universal class, number 16.
NOTE – Sequence-of types have the same tag as sequence types (see 25.2).

24.16 The notation for defining a value of a sequence type shall be "SequenceValue":

 SequenceValue ::=
 "{" ComponentValueList "}" |
 "{" "}"

 ComponentValueList ::=

 NamedValue |
 ComponentValueList "," NamedValue

24.17 The "{" "}" notation shall only be used if:

a) all "ComponentType" sequences in the "SequenceType" are marked "DEFAULT" or "OPTIONAL", and
all values are omitted; or

b) the type notation was "SEQUENCE{}".

24.18 There shall be one "NamedValue" for each "NamedType" in the "SequenceType" which is not marked
OPTIONAL or DEFAULT, and the values shall be in the same order as the corresponding "NamedType" sequences.

ISO/IEC 8824-1 : 1998 (E)

34 ITU-T Rec. X.680 (1997 E)

25 Notation for sequence-of types
25.1 The notation for defining a sequence-of type (see 3.8.57) from another type shall be the "SequenceOfType".

 SequenceOfType ::= SEQUENCE OF Type

25.2 All sequence-of types have a tag which is universal class, number 16.
NOTE – Sequence types have the same tag as sequence-of types (see 24.15).

25.3 The notation for defining a value of a sequence-of type shall be the "SequenceOfValue":

 SequenceOfValue ::= "{" ValueList "}" | "{" "}"

 ValueList ::=
 Value |
 ValueList "," Value

The "{" "}" notation is used when the SequenceOfValue is an empty list.

25.4 Each "Value" in the "ValueList" shall be of the type specified in the "SequenceOfType".
NOTE – Semantic significance may be placed on the order of these values.

26 Notation for set types
26.1 The notation for defining a set type (see 3.8.58) from other types shall be the "SetType":

 SetType ::= SET "{" "}" |
 SET "{" ExtensionAndException OptionalExtensionMarker "}" |
 SET "{" ComponentTypeLists "}"

"ComponentTypeLists", “ExtensionAndException” and “OptionalExtensionMarker” are specified in 24.1.

26.2 “Type” in the “COMPONENTS OF Type” notation shall be a set type. The “COMPONENTS OF Type”
notation shall be used to define the inclusion, at this point in the list of components, of all the component types of the
referenced type, except for any extension marker and extension additions that may be present in the “Type”. (Only the
“RootComponentTypeList” of the “Type” in the “COMPONENTS OF Type” is included; extension markers and
extension additions, if any, are ignored by the “COMPONENTS OF Type” notation.)

NOTE – This transformation is logically completed prior to the satisfaction of the requirements in the following subclauses.

26.3 The "ComponentType" types in a set type shall all have different tags. (See clause 30.) The tag of each new
"ComponentType" added to the "AdditionalComponentTypeList" shall be canonically greater (see 6.4) than those of the
other components in the "AdditionalComponentTypeList".

NOTE – Where the "TagDefault" for the module in which this notation appears is "AUTOMATIC TAGS", this is achieved
regardless of the actual "ComponentType"s, as a result of the application of 24.7.

26.4 Subclauses 24.2 and 24.7 to 24.13 also apply to set types.

26.5 All set types have a tag which is universal class, number 17.
NOTE – Set-of types have the same tag as set types (see 27.2).

26.6 There shall be no semantics associated with the order of values in a set type.

26.7 The notation for defining the value of a set type shall be "SetValue":

 SetValue ::= "{" ComponentValueList "}" | "{" "}"

"ComponentValueList" is specified in 24.16.

26.8 The "SetValue" shall only be "{" "}" if:
a) all "ComponentType" sequences in the "SetType" are marked "DEFAULT" or "OPTIONAL", and all

values are omitted; or
b) the type notation was "SET{}".

26.9 There shall be one "NamedValue" for each "NamedType" in the "SetType" which is not marked "OPTIONAL"
or "DEFAULT".

NOTE – These "NamedValues" may appear in any order.

 ISO/IEC 8824-1 : 1998 (E)

 ITU-T Rec. X.680 (1997 E) 35

27 Notation for set-of types

27.1 The notation for defining a set-of type (see 3.8.59) from another type shall be the "SetOfType":

 SetOfType ::=
 SET OF Type

27.2 All set-of types have a tag which is universal class, number 17.
NOTE – Set types have the same tag as set-of types (see 26.5).

27.3 The notation for defining a value of a set-of type shall be the "SetOfValue":

 SetOfValue ::= "{" ValueList "}" | "{" "}"

"ValueList" is specified in 25.3.

The "{" "}" notation is used when the SetOfValue is an empty list.

27.4 Each "Value" sequence in the "ValueList" shall be the notation for a value of the "Type" specified in the
"SetofType".

NOTE 1 – Semantic significance should not be placed on the order of these values.
NOTE 2 – Encoding rules are not required to preserve the order of these values.
NOTE 3 – The set-of type is not a mathematical set of values, thus, as an example, for "SET OF INTEGER" the values "{ 1 }" and
"{ 1 1 }" are distinct.

28 Notation for choice types

28.1 The notation for defining a choice type (see 3.8.13) from other types shall be the "ChoiceType":

 ChoiceType ::= CHOICE "{" AlternativeTypeLists "}"

 AlternativeTypeLists ::=
 RootAlternativeTypeList |
 RootAlternativeTypeList ","
 ExtensionAndException ExtensionAdditionAlternatives OptionalExtensionMarker

 RootAlternativeTypeList ::= AlternativeTypeList

 ExtensionAdditionAlternatives ::= "," ExtensionAdditionAlternativesList | empty

 ExtensionAdditionAlternativesList ::= ExtensionAdditionAlternative |
 ExtensionAdditionAlternativesList "," ExtensionAdditionAlternative

 ExtensionAdditionAlternative ::= ExtensionAdditionAlternatives | NamedType

 ExtensionAdditionAlternatives ::= "[[" AlternativeTypeList "]]"

 AlternativeTypeList ::=
 NamedType |
 AlternativeTypeList "," NamedType

NOTE – T ::= CHOICE { a A } and A are not the same type, and may be encoded differently by encoding rules.

28.2 The types defined in the "AlternativeTypeList" productions in an “AlternativeTypeLists” shall all have distinct
tags (see clause 30). If automatic tags is in effect and the "NamedType"s in the extension root have no tags, then no
"NamedType"within the "ExtensionAdditionAlternativesList"shall be tagged.

NOTE – Where the "TagDefault" for the module in which this notation appears is "AUTOMATIC TAGS", the tags are made
distinct as a result of the application of 24.7.

28.3 When the "AlternativeTypeLists" production occurs within the definition of a module for which automatic
tagging is selected (see 12.3), and none of the occurrences of "NamedType" in it contain a "Type" which is an occurrence
of "TaggedType", then automatic tagging transformation is selected for the entire "AlternativeTypeLists", otherwise it is
not. When selected, the automatic tagging transformation of an "AlternativeTypeLists" is applied to each "NamedType"
of the "AlternativeTypeLists" by replacing each "Type" originally in the "NamedType" production with a replacement
"TaggedType" occurrence specified in 24.9.

ISO/IEC 8824-1 : 1998 (E)

36 ITU-T Rec. X.680 (1997 E)

28.4 The tag of each new “NamedType” added to the “ExtensionAdditionAlternativesList” shall be canonically
greater (see 8.4) than those of the other alternatives in the “ExtensionAdditionAlternativesList”, and shall be the last
“NamedType” in the "ExtensionAdditionAlternativesList".

28.5 The choice type contains values which do not all have the same tag. (The tag depends on the alternative which
contributed the value to the choice type.)

28.6 When this type does not have an extension marker and is used in a place where this Recommendation |
International Standard requires the use of types with distinct tags (see 24.5 to 24.6, 26.3 and 28.2), all possible tags of
values of the choice type shall be considered in such requirement. The following examples which assume that the
"TagDefault" is not "AUTOMATIC TAGS" illustrate this requirement.

EXAMPLES

1 A ::= CHOICE
 {b B,
 c NULL}

 B ::= CHOICE
 {d [0] NULL,
 e [1] NULL}

2 A ::= CHOICE
 {b B,
 c C}

 B ::= CHOICE
 {d [0] NULL,
 e [1] NULL}

 C ::= CHOICE
 {f [2] NULL,
 g [3] NULL}

3 (INCORRECT)
 A ::= CHOICE
 {b B,
 c C}

 B ::= CHOICE
 {d [0] NULL,
 e [1] NULL}

 C ::= CHOICE
 {f [0] NULL,
 g [1] NULL}

Examples 1 and 2 are correct uses of the notation. Example 3 is incorrect without automatic tagging, as the tags for
types d and f are identical, as well as for e and g.

28.7 The "identifier"s of all "NamedTypes" in the "AlternativeTypeLists" shall differ from those of the other
"NamedTypes" in that list.

28.8 The notation for defining the value of a choice type shall be the "ChoiceValue":

 ChoiceValue ::= identifier ":" Value

28.9 "Value" shall be a notation for a value of the type in the "AlternativeTypeLists" that is named by the
"identifier".

29 Notation for selection types

29.1 The notation for defining a selection type (see 3.8.55) shall be "SelectionType":

 SelectionType ::= identifier "<" Type

 ISO/IEC 8824-1 : 1998 (E)

 ITU-T Rec. X.680 (1997 E) 37

where "Type" denotes a choice type, and "identifier" is that of some "NamedType" appearing in the
"AlternativeTypeLists" of the definition of that choice type.

29.2 Where the "SelectionType" is used as a "NamedType", the "identifier" of the "NamedType" is present, as well
as the "identifier" of the "SelectionType".

29.3 Where the "SelectionType" is used as a "Type", the "identifier" is retained and the type denoted is that of the
selected alternative.

29.4 The notation for a value of a selection type shall be the notation for a value of the type referenced by the
"SelectionType".

30 Notation for tagged types
A tagged type (see 3.8.64) is a new type which is isomorphic with an old type, but which has a different tag. The tagged
type is mainly of use where this Recommendation | International Standard requires the use of types with distinct tags (see
24.5 to 24.6, 26.3 and 28.2). The use of a "TagDefault" of "AUTOMATIC TAGS" in a module allows this to be
accomplished without the explicit appearance of tagged type notation in that module.

NOTE – Where a protocol determines that values from several data types may be transmitted at any moment in time, distinct tags
may be needed to enable the recipient to correctly decode the value.

30.1 The notation for a tagged type shall be "TaggedType":

 TaggedType ::=
 Tag Type |
 Tag IMPLICIT Type |
 Tag EXPLICIT Type

 Tag ::= "[" Class ClassNumber "]"

 ClassNumber ::=
 number |
 DefinedValue

 Class ::=
 UNIVERSAL |
 APPLICATION |
 PRIVATE |
 empty

30.2 The "valuereference" in "DefinedValue" shall be of type integer, and assigned a non-negative value.

30.3 The new type is isomorphic with the old type, but has a tag with class "Class" and number "ClassNumber",
except when "Class" is "empty", in which case the tag is context-specific class and number is "ClassNumber".

30.4 The "Class" shall not be "UNIVERSAL" except for types defined in this Recommendation | International
Standard.

NOTE 1 – Use of universal class tags are agreed from time to time by ITU-T and ISO.
NOTE 2 – Subclause C.2.12 contains guidance and hints on stylistic use of tag classes.

30.5 All application of tags is either implicit tagging or explicit tagging. Implicit tagging indicates, for those
encoding rules which provide the option, that explicit identification of the original tag of the "Type" in the "TaggedType"
is not needed during transfer.

NOTE – It can be useful to retain the old tag where this was universal class, and hence unambiguously identifies the old type
without knowledge of the ASN.1 definition of the new type. Minimum transfer octets is, however, normally achieved by the use of
IMPLICIT. An example of an encoding using IMPLICIT is given in ITU-T Rec. X.690 | ISO/IEC 8825-1.

30.6 The tagging construction specifies explicit tagging if any of the following holds:

a) the "Tag EXPLICIT Type" alternative is used;

b) the "Tag Type" alternative is used and the value of "TagDefault" for the module is either "EXPLICIT
TAGS" or is empty;

c) the "Tag Type" alternative is used and the value of "TagDefault" for the module is "IMPLICIT TAGS" or
"AUTOMATIC TAGS", but the type defined by "Type" is a choice type, open type, or a
"DummyReference" (see ITU-T Rec. X.683 | ISO/IEC 8824-4, 8.3).

ISO/IEC 8824-1 : 1998 (E)

38 ITU-T Rec. X.680 (1997 E)

The tagging construction specifies implicit tagging otherwise.

30.7 If the "Class" is "empty", there are no restrictions on the use of "Tag", other than those implied by the
requirement for distinct tags in 24.5 to 24.6, 26.3 and 28.2.

30.8 The "IMPLICIT" alternative shall not be used if the type defined by "Type" is a choice type or an open type or
a "DummyReference" (see ITU-T Rec. X.683 | ISO/IEC 8824-4, 8.3).

30.9 The notation for a value of a "TaggedType" shall be "TaggedValue":

 TaggedValue ::= Value

where "Value" is a notation for a value of the "Type" in the "TaggedType".
NOTE – The "Tag" does not appear in this notation.

31 Notation for the object identifier type

31.1 The object identifier type (see 3.8.47) shall be referenced by the notation "ObjectIdentifierType":

 ObjectIdentifierType ::=
 OBJECT IDENTIFIER

31.2 This type has a tag which is universal class, number 6.

31.3 The value notation for an object identifier shall be "ObjectIdentifierValue":

 ObjectIdentifierValue ::=
 "{" ObjIdComponentList "}" |
 "{" DefinedValue ObjIdComponentList "}"

 ObjIdComponentList ::=
 ObjIdComponent |
 ObjIdComponent ObjIdComponentList

 ObjIdComponent ::= NameForm |
 NumberForm |
 NameAndNumberForm

 NameForm ::= identifier

 NumberForm ::= number | DefinedValue

 NameAndNumberForm ::=
 identifier "(" NumberForm ")"

31.4 The "valuereference" in "DefinedValue" of "NumberForm" shall be of type integer, and assigned a non-
negative value.

31.5 The "valuereference" in "DefinedValue" of "ObjectIdentifierValue" shall be of type object identifier.

31.6 The "NameForm" shall be used only for those object identifier components whose numeric value and identifier
are specified in Annexes A to C of ITU-T Rec. X.660 | ISO/IEC 9834-1, and shall be one of the identifiers specified in
Annexes A to C of ITU-T Rec. X.660 | ISO/IEC 9834-1. Where ITU-T Rec. X.660 | ISO/IEC 9834-1 specifies
synonymous identifiers, any synonym may be used with the same semantics. Where the same name is both an identifier
specified in ITU-T Rec. X.660 | ISO/IEC 9834-1 and an ASN.1 value reference within the module containing the
“NameForm”, the name within the object identifier value shall be treated as an ITU-T Rec. X.660 | ISO/IEC 9834-1
identifier.

31.7 The "number" in the "NumberForm" shall be the numeric value assigned to the object identifier component.

31.8 The "identifier" in the "NameAndNumberForm" shall be specified when a numeric value is assigned to the
object identifier component.

NOTE – The authorities allocating numeric values to object identifier components are identified in ITU-T Rec. X.660 |
ISO/IEC 9834-1.

31.9 The semantics associated with an object identifier value are specified in ITU-T Rec. X.660 | ISO/IEC 9834-1.

 ISO/IEC 8824-1 : 1998 (E)

 ITU-T Rec. X.680 (1997 E) 39

31.10 The significant part of the object identifier component is the “NameForm” or “NumberForm” which it reduces
to, and which provides the numeric value for the object identifier component. Except for the arcs specified in Annexes A
to C of ITU-T Rec. X.660 | ISO/IEC 9834-1, the numeric value of the object identifier component is always present in an
instance of object identifier value notation.

31.11 Where the "ObjectIdentifierValue" includes a "DefinedValue" for an object identifier value, the list of object
identifier components to which it refers is prefixed to the components explicitly present in the value.

NOTE – ITU-T Rec. X.660 | ISO/IEC 9834-1 recommends that whenever an object identifier value is assigned to identify an
object, an object descriptor value is also assigned.

EXAMPLES

With identifiers assigned as specified in ITU-T Rec. X.660 | ISO/IEC 9834-1, the values:

 { iso standard 8571 pci (1) }
and

 { 1 0 8571 1 }

would each identify an object, "pci", defined in ISO 8571.

With the following additional definition:

 ftam OBJECT IDENTIFIER ::= { iso standard 8571 }

the following value is equivalent to those above:

 { ftam pci(1) }

32 Notation for the embedded-pdv type
32.1 The embedded-pdv type (see 3.8.21) shall be referenced by the notation "EmbeddedPDVType":

 EmbeddedPDVType ::= EMBEDDED PDV

32.2 This type has a tag which is universal class, number 11.
NOTE – Where presentation layer negotiation is in use, the same functionality as EXTERNAL is provided by EMBEDDED PDV
(together with added functionality), but the bits on the line will be different. It is recommended in this case that further version
changes to application protocols should incorporate the replacement of EXTERNAL by CHOICE{external EXTERNAL,
embedded-pdv EMBEDDED PDV}. Additional replacements to use of EXTERNAL where Presentation layer negotiation is not in
use are given in ITU-T Rec. X.681 | ISO/IEC 8824-2, Annex C.

32.3 The type consists of values representing:

a) an encoding of a single data value that may, but need not, be the value of an ASN.1 type; and

b) identification (separately or together) of:

1) a class of values containing that data value (an abstract syntax); and

2) the encoding used (the transfer syntax) to distinguish that data value from other values in the same
class.

NOTE 1 – The data value may be the value of an ASN.1 type, or may, for example, be the encoding of a still image or a moving
picture. The identification consists of either one or two object identifiers, or references an OSI presentation context for
identification of the abstract and transfer syntaxes.
NOTE 2 – The identification of the abstract syntax and/or the encoding may also be determined by the application designer as a
fixed value, in which case it may not be encoded in an instance of communication.

32.4 The embedded-pdv type has an associated type. This associated type is used to support the value and subtype
notations of the embedded-pdv type.

32.5 The associated type for value definition and subtyping, assuming an automatic tagging environment, is (with
normative comments):

 SEQUENCE {
 identification CHOICE {
 syntaxes SEQUENCE {
 abstract OBJECT IDENTIFIER,
 transfer OBJECT IDENTIFIER }
 -- Abstract and transfer syntax object identifiers --,

ISO/IEC 8824-1 : 1998 (E)

40 ITU-T Rec. X.680 (1997 E)

 syntax OBJECT IDENTIFIER
 -- A single object identifier for identification of the class and encoding --,

 presentation-context-id INTEGER
 -- (Applicable only to OSI environments)
 -- The negotiated presentation context identifies the class of the value and its encoding --,

 context-negotiation SEQUENCE {
 presentation-context-id INTEGER,
 transfer-syntax OBJECT IDENTIFIER }
 -- (Applicable only to OSI environments)
 -- Context-negotiation in progress for a context to identify the class of the value
 -- and its encoding --,

 transfer-syntax OBJECT IDENTIFIER
 -- The class of the value (for example, specification that it is the value of an ASN.1 type)
 -- is fixed by the application designer (and hence known to both sender and receiver). This
 -- case is provided primarily to support selective-field-encryption (or other encoding
 -- transformations) of an ASN.1 type --,

 fixed NULL
 -- The data value is the value of a fixed ASN.1 type (and hence known to both sender
 -- and receiver) -- },

 data-value-descriptor ObjectDescriptor OPTIONAL
 -- This provides human-readable identification of the class of the value --,
 data-value OCTET STRING }

 (WITH COMPONENTS {
 ... ,
 data-value-descriptor ABSENT })

NOTE – The embedded-pdv type does not allow the inclusion of a "data-value-descriptor" value. However, the definition of the
associated type provided here underlies the commonalities which exist between the embedded-pdv type, the external type and the
unrestricted character string type.

32.6 For the "presentation-context-id" alternative, the integer value shall be a presentation context identifier in the
defined context set. This alternative shall not be used on the P-CONNECT request nor on the P-ALTER-CONTEXT
request for a presentation context that is being proposed for addition or deletion by those request primitives.

NOTE – Even if there is a single transfer syntax being proposed for a presentation context in the presentation context definition
list, the "presentation-context-id" alternative cannot be used for that presentation context.

32.7 The "context-negotiation" alternative shall only be used on the P-CONNECT request or on the P-ALTER-
CONTEXT request, and the integer value shall be a presentation context identifier proposed for addition to the defined
context set. The object identifier "transfer-syntax" shall identify a proposed transfer syntax for that presentation context
which is used to encode the value.

32.8 The notation for a value of the embedded-pdv type shall be the value notation for the associated type defined in
32.5, where the value of the “data-value” OCTET STRING represents an encoding using the transfer syntax specified in
“identification”.

 EmbeddedPdvValue ::= SequenceValue -- value of associated type defined in 32.5

32.9 EXAMPLE 1 – Where an application designer wishes the encoding to be independent of any presentation
environment (and hence to be capable of being relayed or stored and retrieved without modification), it is necessary to
forbid the use of the "presentation-context-id" and "context-negotiation" alternatives. This can be done by writing:

 EMBEDDED PDV (WITH COMPONENTS {
 ... ,
 identification (WITH COMPONENTS {
 ... ,
 presentation-context-id ABSENT,
 context-negotiation ABSENT }) })

 ISO/IEC 8824-1 : 1998 (E)

 ITU-T Rec. X.680 (1997 E) 41

32.10 EXAMPLE 2 – If a single option is to be enforced, such as use of "syntaxes", then this can be done by writing:

 EMBEDDED PDV (WITH COMPONENTS {
 ... ,
 identification (WITH COMPONENTS {
 syntaxes PRESENT }) })

33 Notation for the external type

33.1 The external type (see 3.8.37) shall be referenced by the notation "ExternalType":

 ExternalType ::= EXTERNAL

33.2 This type has a tag which is universal class, number 8.

33.3 The type consists of values representing:

a) an encoding of a single data value that may, but need not, be the value of an ASN.1 type; and

b) identification of:

1) a class of values containing that data value (an abstract syntax); and

2) the encoding used (the transfer syntax) to distinguish that data value from other values in the same
class; and

c) (optionally) an object descriptor which provides a human-readable description of the class of the data
value. The optional object descriptor shall not be present unless explicitly permitted by comment
associated with use of the "ExternalType" notation.

NOTE – Note 1 on 32.3 also applies to the external type.

33.4 The external type has an associated type. This type is used to give precision to the definition of the abstract
values of the external type and is also used to support the value and subtype notations of the external type.

NOTE – Encoding rules may define a different type which is used to derive encodings, or may specify encodings without
reference to any associated type. In particular, the encoding in BER uses an equivalent sequence type identical to that which was
present in the definition of the external type in CCITT Rec. X.208 | ISO/IEC 8824, and encodings of external values by BER are
unchanged.

33.5 The associated type for value definition and subtyping, assuming an automatic tagging environment, is (with
normative comments):

 SEQUENCE {
 identification CHOICE {
 syntaxes SEQUENCE {
 abstract OBJECT IDENTIFIER,
 transfer OBJECT IDENTIFIER }
 -- Abstract and transfer syntax object identifiers --,

 syntax OBJECT IDENTIFIER
 -- A single object identifier for identification of the class and encoding --,

 presentation-context-id INTEGER
 -- (Applicable only to OSI environments)
 -- The negotiated presentation context identifies the class of the value and its encoding --,

 context-negotiation SEQUENCE {
 presentation-context-id INTEGER
 transfer-syntax OBJECT IDENTIFIER }
 -- (Applicable only to OSI environments)
 -- Context-negotiation in progress for a context to identify the class of the value
 -- and its encoding --,

 transfer-syntax OBJECT IDENTIFIER
 -- The class of the value (for example, specification that it is the value of an ASN.1 type)
 -- is fixed by the application designer (and hence known to both sender and receiver). This
 -- case is provided primarily to support selective-field-encryption (or other encoding
 -- transformations) of an ASN.1 type --,

ISO/IEC 8824-1 : 1998 (E)

42 ITU-T Rec. X.680 (1997 E)

 fixed NULL
 -- The data value is the value of a fixed ASN.1 type (and hence known to both sender
 -- and receiver) -- },

 data-value-descriptor ObjectDescriptor OPTIONAL
 -- This provides human-readable identification of the class of the value --,
 data-value OCTET STRING }
 (WITH COMPONENTS {
 ... ,
 identification (WITH COMPONENTS {
 ... ,
 syntaxes ABSENT,
 transfer-syntax ABSENT,
 fixed ABSENT }) })

NOTE – The external type does not allow the "syntaxes", "transfer-syntax" or "fixed" alternatives of "identification". These
alternatives cannot be allowed for the external type because of the need to maintain backwards compatibility with the external type
of CCITT Rec. X.208 | ISO/IEC 8824. Application designers requiring these options should use the embedded pdv type. The
definition of the associated type provided here underlies the commonalities which exist between the external type, the unrestricted
character string type and the embedded-pdv type.

33.6 The text of 32.6 and 32.7 also applies to the external type.

33.7 The notation for a value of the external type shall be the value notation for the associated type defined in 33.5,
where the value of the “data-value” OCTET STRING represents an encoding using the transfer syntax specified in
“identification”.

 ExternalValue ::= SequenceValue -- value of associated type defined in 33.5
NOTE – For historical reasons, encoding rules are able to transfer embedded values in EXTERNAL whose encodings are not an
exact multiple of eight bits. Such values cannot be represented in value notation using the above associated type.

34 The character string types

These types consist of strings of characters from some specified character repertoire. It is normal to define a character
repertoire and its encoding by use of cells in one or more tables, each cell corresponding to a character in the repertoire.
A graphic symbol and a character name are also usually assigned to each cell, although in some repertoires, cells are left
empty, or have names but no shapes (examples of cells with names but no shape include control characters such as EOF
in ISO/IEC 646 and spacing characters such as THIN-SPACE and EN-SPACE in ISO/IEC 10646-1).

The term abstract character denotes the totality of information associated with a cell in a character repertoire table. The
information associated with a cell denotes a distinct abstract character in the repertoire even if that information is null (no
graphic symbol or name is assigned to that cell).

The ASN.1 value notation for character string types has three variants (which can be combined), specified formally
below:

a) A printed representation of the characters in the string using the assigned graphic symbol, possibly
including spacing characters; this is the "cstring" notation.

NOTE 1 – Such a representation can be ambiguous when the same graphic symbol is used for more than one
character in the repertoire.

NOTE 2 – Such a representation can be ambiguous when spacing characters are used or the specification is
printed with a proportional-spacing font.

b) A listing of the characters in the character string value by giving a series of ASN.1 value references that
have been assigned the character; a set of such value references is defined in the module
ASN1-CHARACTER-MODULE in clause 37 for the ISO/IEC 10646-1 character repertoire and for the
IA5String character repertoire; this form is not available for other character repertoires unless the user
assigns to such value references using the value notation described in a) above or c) below.

c) A listing of the characters in the character string value by identifying each abstract character by the
position of its cell in the character repertoire table(s); this form is available only for IA5String,
UniversalString, UTF8String and BMPString.

 ISO/IEC 8824-1 : 1998 (E)

 ITU-T Rec. X.680 (1997 E) 43

35 Notation for character string types

35.1 The notation for referencing a character string type (see 3.8.11) shall be:

 CharacterStringType ::= RestrictedCharacterStringType | UnrestrictedCharacterStringType

"RestrictedCharacterStringType" is the notation for a restricted character string type and is defined in clause 36.
"UnrestrictedCharacterStringType" is the notation for the unrestricted character string type and is defined in 39.1.

35.2 The tag of each restricted character string type is specified in 36.1. The tag of the unrestricted character string
type is specified in 39.2.

35.3 The notation for a character string value shall be:

 CharacterStringValue ::= RestrictedCharacterStringValue | UnrestrictedCharacterStringValue

"RestrictedCharacterStringValue" is defined in 36.7. "UnrestrictedCharacterStringValue" is notation for an unrestricted
character string value and it is defined in 39.6.

36 Definition of restricted character string types

This clause defines types whose values are restricted to sequences of zero, one or more characters from some
specified collection of characters. The notation for referencing a restricted character string type shall be
"RestrictedCharacterStringType":

 RestrictedCharacterStringType ::= BMPString |
 GeneralString |
 GraphicString |
 IA5String |
 ISO646String |
 NumericString |
 PrintableString |
 TeletexString |
 T61String |
 UniversalString |
 UTF8String |
 VideotexString |
 VisibleString

Each "RestrictedCharacterStringType" alternative is defined by specifying:

a) the tag assigned to the type; and

b) a name (e.g. NumericString) by which the type is referenced; and

c) the characters in the collection of characters used in defining the type, by reference to a table listing the
character graphics or by reference to a registration number in the ISO International Register of Coded
Character Sets (see ISO International Register of Coded Character Sets to be used with Escape
Sequences), or by reference to ISO/IEC 10646-1.

36.1 Table 3 lists the name by which each restricted character string type is referenced, the number of the universal
class tag assigned to the type, the defining registration number or table, or the defining text clause, and, where necessary,
identification of a Note relating to the entry in the table. Where a synonymous name is defined in the notation, this is
listed in parentheses.

NOTE – The tag assigned to character string types unambiguously identifies the type. Note, however, that if ASN.1 is used to
define new types from this type (particularly using IMPLICIT), it may be impossible to recognize these types without knowledge
of the ASN.1 type definition.

ISO/IEC 8824-1 : 1998 (E)

44 ITU-T Rec. X.680 (1997 E)

Table 3 – List of restricted character string types

36.2 Table 4 lists the characters which can appear in the NumericString type and NumericString character abstract
syntax.

Table 4 – NumericString

36.3 The following object identifier and object descriptor values are assigned to identify and describe the
NumericString character abstract syntax:

 { joint-iso-itu-t asn1(1) specification(0) characterStrings(1) numericString(0) }

and

 "NumericString character abstract syntax"

NOTE 1 – This object identifier value can be used in CHARACTER STRING values and in other cases where there is a need to
carry the identification of the character string type separate from the value.

Name for referencing the type Universal
class number

Defining registration numbera), table number,
or ITU-T Rec. X.680 | ISO/IEC 8824-1 clause Notes

UTF8String 12 Subclause 36.13

NumericString 18 Table 4 Note 1

PrintableString 19 Table 5 Note 1

TeletexString (T61String) 20 6, 87, 102, 103, 106, 107, 126, 144, 150, 153, 156,
164, 165, 168 + SPACE + DELETE

Note 2

VideotexString 21 1, 13, 72, 73, 87, 89, 102, 108, 126, 128, 129, 144,
150, 153, 164, 165, 168 + SPACE + DELETE

Note 3

IA5String 22 1, 6 + SPACE + DELETE

GraphicString 25 All G sets + SPACE

VisibleString (ISO646String) 26 6 + SPACE Note 4

GeneralString 27 All G and all C sets + SPACE + DELETE

UniversalString 28 See 36.6

BMPString 30 See 36.12

a) The defining registration numbers are listed in ISO International Register of Coded Character Sets to be used with Escape
Sequences.

NOTE 1 – The type-style, size, colour, intensity, or other display characteristics are not significant.

NOTE 2 – The entries corresponding to these registration numbers reference CCITT Rec. T.61 for rules concerning their use.
Register entries 6 and 156 can be used instead of 102 and 103.

NOTE 3 – The entries corresponding to these registration numbers provide the functionality of CCITT Rec. T.100 and ITU-T
Rec. T.101.

NOTE 4 – The reference to register 6 of “ISO International Register of Coded Character Sets to be used with Escape Sequences”
constitutes an indirect reference to ISO/IEC 646:1991. This is a change from CCITT Rec. X.208 | ISO/IEC 8824, which referenced
the register 2 (indirect reference to ISO 646:1973). Applications wishing to reference register number 2 should use other means of
doing so [e.g. use the unrestricted character string (see clause 39)] to carry the old definition of VisibleString or reference CCITT
Rec. X.208 | ISO/IEC 8824.

Name Graphic

Digits 0, 1, ... 9

Space (space)

 ISO/IEC 8824-1 : 1998 (E)

 ITU-T Rec. X.680 (1997 E) 45

NOTE 2 – A value of a NumericString character abstract syntax may be encoded by:

 a) One of the rules given in ISO/IEC 10646-1 for encoding the abstract characters. In this case the character transfer
syntax is identified by the object identifier associated with those rules in ISO/IEC 10646-1, Annex M.

 b) The ASN.1 encoding rules for the built-in type NumericString. In this case the character transfer syntax is identified by
the object identifier value {joint-iso-itu-t asn1(1) basic-encoding(1)}.

36.4 Table 5 lists the characters which can appear in the PrintableString type and PrintableString character abstract
syntax.

Table 5 – PrintableString

36.5 The following object identifier and object descriptor values are assigned to identify and describe the
PrintableString character abstract syntax:

 { joint-iso-itu-t asn1(1) specification(0) characterStrings(1) printableString(1) }

and

 "PrintableString character abstract syntax"

NOTE 1 – This object identifier value can be used in CHARACTER STRING values and in other cases where there is a need to
carry the identification of the character string type separate from the value.

NOTE 2 – A value of a PrintableString character abstract syntax may be encoded by:

 a) One of the rules given in ISO/IEC 10646-1 for encoding the abstract characters. In this case the character transfer
syntax is identified by the object identifier associated with those rules in ISO/IEC 10646-1, Annex M.

 b) The ASN.1 encoding rules for the built-in type PrintableString. In this case the character transfer syntax is identified
by the object identifier { joint-iso-itu-t asn1(1) basic-encoding(1) }.

36.6 The characters which can appear in the UniversalString type are any of the characters allowed by
ISO/IEC 10646-1, and use of this type invokes the conformance requirements specified in ISO/IEC 10646-1, especially
with regard to the restricted use zone of ISO/IEC 10646-1.

NOTE 1 – Use of this type without a constraint is deprecated, as conformance will generally be impractical.

NOTE 2 – Clause 37 defines an ASN.1 module containing a number of subtypes of this type for the "Collections of graphics
characters for subsets" defined in Annex A of ISO/IEC 10646-1.

Name Graphic

Capital letters A, B, ... Z

Small letters a, b, ... z

Digits 0, 1, ... 9

Space (space)

Apostrophe '

Left Parenthesis (

Right Parenthesis)

Plus sign +

Comma ,

Hyphen -

Full stop .

Solidus /

Colon :

Equal sign =

Question mark ?

ISO/IEC 8824-1 : 1998 (E)

46 ITU-T Rec. X.680 (1997 E)

36.7 The value notation for the restricted character string types shall be "cstring" (see 11.11), "CharacterStringList",
"Quadruple", or "Tuple". "Quadruple" is only capable of defining a character string of length one, and can only be used
in value notation for UniversalString, UTF8String or BMPString types. "Tuple" is only capable of defining a character
string of length one, and can only be used in value notation for IA5String types.
 RestrictedCharacterStringValue ::= cstring | CharacterStringList | Quadruple | Tuple

 CharacterStringList ::= "{" CharSyms "}"
 CharSyms ::= CharsDefn | CharSyms "," CharsDefn
 CharsDefn ::= cstring | Quadruple | Tuple | DefinedValue

 Quadruple ::= "{" Group "," Plane "," Row "," Cell "}"
 Group ::= number
 Plane ::= number
 Row ::= number
 Cell ::= number

 Tuple ::= "{" TableColumn "," TableRow "}"
 TableColumn ::= number
 TableRow ::= number

NOTE 1 – The "cstring" notation can only be used on a medium capable of displaying the graphic symbols for the characters
which are present in the value. Conversely, if the medium has no such capability, the only means of specifying a character string
value that uses such graphic symbols is by means of the "CharacterStringList" notation, and only if the type is UniversalString,
UTF8String, BMPString or IA5String, and the "DefinedValue" alternative of "CharsDefn" is used (see 37.1.2).
NOTE 2 – Clause 37 defines a number of "valuereference"s which denote single characters (strings of size 1) of type BMPString
(and hence UniversalString and UTF8String) and IA5String.

 EXAMPLE – Suppose that we wish to specify a value of "abcΣdef" for a UniversalString where the character "Σ" is not
representable on the available medium, this value can also be expressed as:

 IMPORTS BasicLatin, greekCapitalLetterSigma FROM ASN1-CHARACTER-MODULE

 { joint-iso-itu-t asn1(1) specification(0) modules(0) iso10646(0) };

 MyAlphabet ::= UniversalString (FROM (BasicLatin | greekCapitalLetterSigma))

 mystring MyAlphabet ::= { "abc" , greekCapitalLetterSigma , "def" }
NOTE 3 – When specifying the value of a UniversalString, UTF8String or BMPString type, the "cstring" notation should not be
used unless ambiguities arising from different graphic characters with similar shapes have been resolved.

 EXAMPLE – The following "cstring" notation should not be used because the graphic symbols 'H', 'O', 'P' and 'E' occur in
the BASIC LATIN, CYRILLIC and BASIC GREEK alphabets and thus are ambiguous.

 IMPORTS BasicLatin, Cyrillic, BasicGreek FROM ASN1-CHARACTER-MODULE

 { joint-iso-itu-t asn1(1) specification(0) modules(0) iso10646(0) };

 MyAlphabet ::= UniversalString (FROM (BasicLatin | Cyrillic | BasicGreek))

 mystring MyAlphabet ::= "HOPE"

36.8 The "DefinedValue" in "CharsDefn" shall be a reference to a value of that type.

36.9 The "number" in the "Plane", "Row" and "Cell" productions shall be less than 256, and in the “Group”
production it shall be less than 128.

36.10 The "Group" specifies a group in the coding space of the UCS, the "Plane" specifies a plane within the group,
the "Row" specifies a row within the plane, and the "Cell" specifies a cell within the row. The abstract character
identified by this notation is the abstract character for the cell specified by the "Group", "Plane", "Row", and "Cell"
values. In all cases, the set of permitted characters may be restricted by subtyping.

NOTE – Application designers should consider carefully the conformance implications when using open-ended character string
types such as GeneralString, GraphicString, and UniversalString without the application of constraints. Careful text on
conformance is also needed for bounded but large character string types such as TeletexString.

36.11 The "number" in the "TableColumn" production shall be in the range zero to seven, and the "number" in the
"TableRow" production shall be in the range zero to fifteen. The "TableColumn" specifies a column and the "TableRow"
specifies a row of a character code table in accordance with Figure 1 of ISO/IEC 2022. This notation is used only for
IA5String when the code table contains Register Entry 1 in columns 0 and 1 and Register Entry 6 in columns 2 to 7 (see
the ISO International Register of Coded Character Sets to be used with Escape Sequences).

36.12 BMPString is a subtype of UniversalString that has its own unique tag and models the Basic Multilingual Plane
(the first 64K-2 cells) of ISO/IEC 10646-1. It has an associated type defined as:

 UniversalString (Bmp)

 ISO/IEC 8824-1 : 1998 (E)

 ITU-T Rec. X.680 (1997 E) 47

where Bmp is defined in the ASN.1 module ASN1-CHARACTER-MODULE (see clause 37) as the subtype of
UniversalString corresponding to the "BMP" collection name defined in ISO/IEC 10646-1, Annex A.

NOTE 1 – Since BMPString is a built-in type, it is not defined in ASN1-CHARACTER-MODULE.
NOTE 2 – The purpose of defining BMPString as a built-in type is to enable encoding rules (such as BER) that do not take
account of constraints to use 16-bit rather than 32-bit encodings.
NOTE 3 – In the value notation all BMPString values are valid UniversalString and UTF8String values.

36.13 UTF8String is synonymous with UniversalString at the abstract level and can be used wherever UniversalString
is used (subject to rules requiring distinct tags) but has a different tag and is a distinct type.

NOTE – The encoding is different from that of UniversalString, and for most text will be less verbose.

37 Naming characters and collections defined in ISO/IEC 10646
This clause specifies an ASN.1 built-in module which contains the definition of a value reference name for each character
from ISO/IEC 10646-1, where each name references a UniversalString value of size 1. This module also contains the
definition of a type reference name for each collection of characters from ISO/IEC 10646-1, where each name references
a subset of UniversalString.

NOTE – These values are available for use in the value notation of the UniversalString type and types derived from it. All of the
value and type references defined in the module specified in 37.1 are exported and must be imported by any module that uses
them.

37.1 Specification of the ASN.1 Module "ASN1-CHARACTER-MODULE"

The module is not printed here in full. Instead, the means by which it is defined is specified.

37.1.1 The module begins as follows:

 ASN1-CHARACTER-MODULE { joint-iso-itu-t asn1(1) specification(0) modules(0) iso10646(0) }
 DEFINITIONS ::= BEGIN
 -- All of the value references and type references defined within this module are implicitly exported,
 -- and are available for import by any module.
 -- ISO/IEC 646 control characters:

 nul IA5String ::= {0, 0}
 soh IA5String ::= {0, 1}
 stx IA5String ::= {0, 2}
 etx IA5String ::= {0, 3}
 eot IA5String ::= {0, 4}
 enq IA5String ::= {0, 5}
 ack IA5String ::= {0, 6}
 bel IA5String ::= {0, 7}
 bs IA5String ::= {0, 8}
 ht IA5String ::= {0, 9}
 lf IA5String ::= {0,10}
 vt IA5String ::= {0,11}
 ff IA5String ::= {0,12}
 cr IA5String ::= {0,13}
 so IA5String ::= {0,14}
 si IA5String ::= {0,15}
 dle IA5String ::= {1, 0}
 dc1 IA5String ::= {1, 1}
 dc2 IA5String ::= {1, 2}
 dc3 IA5String ::= {1, 3}
 dc4 IA5String ::= {1, 4}
 nak IA5String ::= {1, 5}
 syn IA5String ::= {1, 6}
 etb IA5String ::= {1, 7}
 can IA5String ::= {1, 8}
 em IA5String ::= {1, 9}
 sub IA5String ::= {1,10}
 esc IA5String ::= {1,11}
 is4 IA5String ::= {1,12}
 is3 IA5String ::= {1,13}
 is2 IA5String ::= {1,14}
 is1 IA5String ::= {1,15}
 del IA5String ::= {7,15}

ISO/IEC 8824-1 : 1998 (E)

48 ITU-T Rec. X.680 (1997 E)

37.1.2 For each entry in each list of character names for the graphic characters (glyphs) shown in clauses 24 and 25 of
ISO/IEC 10646-1, the module includes a statement of the form:

 <namedcharacter> BMPString ::= <tablecell>
 -- represents the character <iso10646name>, see ISO/IEC 10646-1
where:

a) <iso10646name> is the character name derived from one listed in ISO/IEC 10646-1;
b) <namedcharacter> is a string obtained by applying to <iso10646name> the procedures specified in 37.2;
c) <tablecell> is the glyph in the table cell in ISO/IEC 10646-1 corresponding to the list entry.

EXAMPLE

 latinCapitalLetterA BMPString ::= {0, 0, 0, 65}
 -- represents the character LATIN CAPITAL LETTER A, see ISO/IEC 10646-1
 greekCapitalLetterSigma BMPString ::= {0, 0, 3, 145}
 -- represents the character GREEK CAPITAL LETTER SIGMA, see ISO/IEC 10646-1

37.1.3 For each name for a collection of graphic characters specified in ISO/IEC 10646-1, Annex A, a statement is
included in the module of the form:

 <namedcollectionstring> ::= BMPString
 (FROM (<alternativelist>))
 -- represents the collection of characters <collectionstring>,
 -- see ISO/IEC 10646-1.
where:

a) <collectionstring> is the name for the collection of characters assigned in ISO/IEC 10646-1;
b) <namedcollectionstring> is formed by applying to <collectionstring> the procedures of 37.3;
c) <alternativelist> is formed by using the <namedcharacter>s as generated in 37.2 for each of the characters

specified by ISO/IEC 10646-1.

The resulting type reference, <namedcollectionstring>, forms a limited subset. (See the tutorial in Annex D.)
NOTE – A limited subset is a list of characters in a specified subset. Contrast this to a selected subset, which is a collection of
characters listed in ISO/IEC 10646-1, Annex A, plus the BASIC LATIN collection.

EXAMPLE (partial)

 space BMPString ::= {0, 0, 0, 32}
 exclamationMark BMPString ::= {0, 0, 0, 33}
 quotationMark BMPString ::= {0, 0, 0, 34}
 ... -- and so on
 tilde BMPString ::= {0, 0, 0, 126}

 BasicLatin ::= BMPString
 (FROM (space
 | exclamationMark
 | quotationMark
 | ... -- and so on
 | tilde)
)
 -- represents the collection of characters BASIC LATIN, see ISO/IEC 10646-1.
 -- The ellipsis in this example is used for brevity and means "and so on";
 -- you cannot use this in an actual ASN.1 module.

37.1.4 ISO/IEC 10646-1 defines three levels of implementation. By default all types defined in ASN1-CHARACTER-
MODULE, except for "Level1" and "Level2" conform to implementation level 3, since such types have no restriction on
use of combining characters. "Level1" indicates that implementation level 1 is required, "Level2" indicates that
implementation level 2 is required, and "Level3" indicates that implementation level 3 is required. Thus, the following
are defined in ASN1-CHARACTER-MODULE:

 Level1 ::= BMPString (FROM (ALL EXCEPT CombiningCharacters))

 Level2 ::= BMPString (FROM (ALL EXCEPT CombiningCharactersB-2))

 Level3 ::= BMPString
NOTE 1 – "CombiningCharacters" and "CombiningCharactersB-2" are the <namedcollectionstring>s corresponding to
"COMBINING CHARACTERS" and "COMBINING CHARACTERS B-2", respectively, defined in ISO/IEC 10646-1, Annex A.

 ISO/IEC 8824-1 : 1998 (E)

 ITU-T Rec. X.680 (1997 E) 49

NOTE 2 – "Level1" and "Level2" will be used either following an "IntersectionMark" (see clause 46) or as the only constraint in a
"ConstraintSpec". See C.2.7.1 for an example.
NOTE 3 – See D.2.5 for more information on this topic.

37.1.5 The module is terminated by the statement:

 END

37.1.6 A user-defined equivalent of the example in 37.1.3 is:

 BasicLatin ::= BMPString (FROM (space..tilde))
 -- represents the collection of characters BASIC LATIN, see ISO/IEC 10646-1.

37.2 A <namedcharacter> is the string obtained by taking an <iso10646name> (see 37.1.2) and applying the
following algorithm:

a) each upper-case letter of the <iso10646name> is transformed into the corresponding lower-case letter,
unless the upper-case letter is preceded by a SPACE, in which case the upper-case letter is kept
unchanged;

b) each digit and each HYPHEN-MINUS is kept unchanged;

c) each SPACE is deleted.
NOTE – The above algorithm, taken in conjunction with the character naming guidelines in Annex K of ISO/IEC 10646-1 will
always result in unambiguous value notation for every character name listed in ISO/IEC 10646-1.

EXAMPLE – The character from ISO/IEC 10646-1, row 0, cell 60, which is named "LESS-THAN SIGN" and has the
graphic representation "<" can be referenced using the "DefinedValue" of:

 less-thanSign

37.3 A <namedcollectionstring> is the string obtained by taking <collectionstring> and applying the following
algorithm:

a) each upper-case letter of the ISO/IEC 10646-1 collection name is transformed into the corresponding
lower-case letter, unless the upper-case letter is preceded by a SPACE or it is the first letter of the name, in
which case the upper case letter is kept unchanged;

b) each digit and each HYPHEN-MINUS is kept unchanged;

c) each SPACE is deleted.

EXAMPLES

1 The collection identified in Annex A of ISO/IEC 10646-1 as:

 BASIC LATIN

has the ASN.1 type reference

 BasicLatin

2 A character string type consisting of the characters in the BASIC LATIN collection, together with the BASIC
ARABIC collection, could be defined as follows:

 My-Character-String ::= BMPString (FROM (BasicLatin | BasicArabic))
NOTE – The above construction is necessary because the apparently simpler construction of:

 My-Character-String ::= BMPString (BasicLatin | BasicArabic)
would allow only strings which were entirely BASIC LATIN or BASIC ARABIC but not a mixture of both.

38 Canonical order of characters
38.1 For the purpose of "ValueRange" subtyping and for possible use by encoding rules, a canonical ordering of
characters is specified for UniversalString, BMPString, NumericString, PrintableString, VisibleString, and IA5String.

38.2 For the purpose of this clause only, a character is in one-to-one correspondence with a cell in a code table,
whether that cell has been assigned a character name or shape, and whether it is a control character or printing character,
combining or non-combining character.

38.3 The canonical order of an abstract character is defined by the canonical order of its cell.

ISO/IEC 8824-1 : 1998 (E)

50 ITU-T Rec. X.680 (1997 E)

38.4 For UniversalString, the canonical order of the cells is defined (see ISO/IEC 10646-1) as:

 256*(256*(128*(Group Number)+(Plane Number))+(Row Number))+(Cell Number)

The entire character set contains precisely 128*256*256*256 characters. Endpoints of "ValueRanges" within
"PermittedAlphabet" notations (or individual characters) can be specified using either the ASN.1 value reference defined
in the module ASN1-CHARACTER-MODULE or (where the graphic symbol is unambiguous in the context of the
specification) by giving the graphic symbol in a "cstring" (ASN1-CHARACTER-MODULE is defined in 37.1). It is not
possible to specify a cell as an end-point of a range or to identify an individual character where there have been no names
or graphic symbols assigned to that cell.

38.5 For BMPString, the canonical order of the cells is defined (see ISO/IEC 10646-1) as:

 256*(Row Number)+(Cell Number)

The entire character set contains precisely 256*256 characters. Endpoints of "ValueRanges" within "PermittedAlphabet"
notations (or individual characters) can be specified using either the ASN.1 value reference defined in the module ASN1-
CHARACTER-MODULE or (where the graphic symbol is unambiguous in the context of the specification) by giving the
graphic symbol in a "cstring". It is not possible to specify a cell as an end-point of a range or to identify an individual
character where there have been no names or graphic symbols assigned to that cell.

38.6 For NumericString, the canonical ordering, increasing from left to right, is defined (see Table 4 of 36.2) as:

 (space) 0 1 2 3 4 5 6 7 8 9

The entire character set contains precisely 11 characters. The endpoint of a "ValueRange" (or individual characters) can
be specified using the graphic symbol in a "cstring".

NOTE – This order is the same as the order of the corresponding characters in the BASIC LATIN collection of ISO/IEC 10646-1.

38.7 For PrintableString, the canonical ordering, increasing from left to right and top to bottom, is defined (see
Table 5 of 36.4) as:

(Space) (Apostrophe) (Left Parenthesis) (Right Parenthesis) (Plus Sign) (Comma) (Hyphen) (Full Stop)
(Solidus) 0123456789 (Colon) (Equal Sign) (Question Mark)
ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz

The entire character set contains precisely 74 characters. The endpoint of a "ValueRange" (or individual characters) can
be specified using the graphic symbol in a "cstring".

NOTE – This order is the same as the order of the corresponding characters in the BASIC LATIN collection of ISO/IEC 10646-1.

38.8 For VisibleString, the canonical order of the cells is defined from the ISO 646 encoding (called ISO 646
ENCODING) as follows:

 (ISO 646 ENCODING) - 32
NOTE – That is, the canonical order is the same as the characters in cells 2/0-7/14 of the ISO 646 code table.

The entire character set contains precisely 95 characters. The endpoint of a "ValueRange" (or individual characters) can
be specified using the graphic symbol in a "cstring".

38.9 For IA5String, the canonical order of the cells is defined from the ISO 646 encoding as follows:

 (ISO 646 ENCODING)

The entire character set contains precisely 128 characters. The endpoint of a "ValueRange" (or individual characters) can
be specified using the graphic symbol in a "cstring" or an ISO 646 control character value reference defined in 37.1.1.

39 Definition of unrestricted character string types

This clause defines a type whose values are the values of any character abstract syntax. This abstract syntax may be part
of the defined context set in an instance of communication, or may be referenced directly for each instance of use of the
unrestricted character string type.

NOTE 1 – A character abstract syntax (and one or more corresponding character transfer syntaxes) can be defined by any
organization able to allocate ASN.1 OBJECT IDENTIFIERs.

 ISO/IEC 8824-1 : 1998 (E)

 ITU-T Rec. X.680 (1997 E) 51

NOTE 2 – Profiles produced by a community of interest will normally determine the character abstract syntaxes and character
transfer syntaxes that are to be supported for specific instances or groups of instances of CHARACTER STRING. It will be usual
to include reference to supported syntaxes in a PICS proforma (Protocol Implementation Conformance Statement). Note that
grouping of instances for the purpose of application layer specification can be achieved using different ASN.1 type references (all
of which would be references for the CHARACTER STRING type).

39.1 The unrestricted character string type (see 3.8.69) shall be referenced by the notation "CharacterStringType":

 UnrestrictedCharacterStringType ::= CHARACTER STRING

39.2 This type has a tag which is universal class, number 29.

39.3 The type consists of values representing:

a) a character string value that may, but need not, be the value of an ASN.1 character string type; and

b) identification (separately or together) of:

1) a class of values containing that character string value (a character abstract syntax); and

2) the encoding used (the character transfer syntax) to distinguish that character string value from other
values in the same class.

39.4 The unrestricted character string type has an associated type. This associated type is used to support its value
and subtype notations.

39.5 The associated type for value definition and subtyping, assuming an automatic tagging environment, is (with
normative comments):

 SEQUENCE {
 identification CHOICE {
 syntaxes SEQUENCE {
 abstract OBJECT IDENTIFIER,
 transfer OBJECT IDENTIFIER }
 -- Abstract and transfer syntax object identifiers --,

 syntax OBJECT IDENTIFIER
 -- A single object identifier for identification of the class and encoding --,
 presentation-context-id INTEGER
 -- (Applicable only to OSI environments)
 -- The negotiated presentation context identifies the class of the value and its encoding --,

 context-negotiation SEQUENCE {
 presentation-context-id INTEGER,
 transfer-syntax OBJECT IDENTIFIER }
 -- (Applicable only to OSI environments)
 -- Context-negotiation in progress for a context to identify the class of the value
 -- and its encoding --,

 transfer-syntax OBJECT IDENTIFIER
 -- The class of the value (for example, specification that it is the value of an ASN.1 type)
 -- is fixed by the application designer (and hence known to both sender and receiver). This
 -- case is provided primarily to support selective-field-encryption (or other encoding
 -- transformations) of an ASN.1 type --,

 fixed NULL
 -- The data value is the value of a fixed ASN.1 type (and hence known to both sender
 -- and receiver) -- },

 data-value-descriptor ObjectDescriptor OPTIONAL
 -- This provides human-readable identification of the class of the value --,
 string-value OCTET STRING }
 (WITH COMPONENTS {
 ... ,
 data-value-descriptor ABSENT })

NOTE – The unrestricted character string type does not allow the inclusion of a "data-value-descriptor" value together with the
"identification". However, the definition of the associated type provided here underlies the commonalities which exist between the
embedded-pdv type, the external type and the unrestricted character string type.

ISO/IEC 8824-1 : 1998 (E)

52 ITU-T Rec. X.680 (1997 E)

39.6 The value notation shall be the value notation for the associated type, where the value of the “string-value”
OCTET STRING represents an encoding using the transfer syntax specified in “identification”.

 UnrestrictedCharacterStringValue ::= SequenceValue -- value of associated type defined in 39.5

39.7 An example of the unrestricted character string type is in C.2.8.

40 Notation for types defined in clauses 41 to 43
40.1 The notation for referencing a type defined in clauses 41 to 43 shall be:

 UsefulType ::= typereference

where "typereference" is one of those defined in clauses 41 to 43 using the ASN.1 notation.

40.2 The tag of each "UsefulType" is specified in clauses 41 to 43.

41 Generalized time
41.1 This type shall be referenced by the name:

 GeneralizedTime

41.2 The type consists of values representing:

a) a calendar date, as defined in ISO 8601; and

b) a time of day, to any of the precisions defined in ISO 8601, except for the hours value 24 which shall not
be used; and

c) the local time differential factor as defined in ISO 8601.

41.3 The type is defined, using ASN.1, as follows:

 GeneralizedTime ::= [UNIVERSAL 24] IMPLICIT VisibleString

with the values of the "VisibleString" restricted to strings of characters which are either
a) a string representing the calendar date, as specified in ISO 8601, with a four-digit representation of the

year, a two-digit representation of the month and a two-digit representation of the day, without use of
separators, followed by a string representing the time of day, as specified in ISO 8601, without separators
other than decimal comma or decimal period (as provided for in ISO 8601), and with no terminating Z (as
provided for in ISO 8601); or

b) the characters in a) above followed by an upper-case letter Z; or
c) the characters in a) above followed by a string representing a local time differential, as specified in

ISO 8601, without separators.

In case a), the time shall represent the local time. In case b), the time shall represent coordinated universal time. In
case c), the part of the string formed as in case a) represents the local time (t1), and the time differential (t2) enables
coordinated universal time to be determined as follows:

 coordinated universal time is t1 − t2

EXAMPLES

 Case a)

 "19851106210627.3"
 local time 6 minutes, 27.3 seconds after 9 pm on 6 November 1985.

 Case b)

 "19851106210627.3Z"
 coordinated universal time as above.

 Case c)

 "19851106210627.3-0500"
 local time as in example a), with local time 5 hours retarded in relation to coordinated universal time.

 ISO/IEC 8824-1 : 1998 (E)

 ITU-T Rec. X.680 (1997 E) 53

41.4 The tag shall be as defined in 41.3.

41.5 The value notation shall be the value notation for the "VisibleString" defined in 41.3.

42 Universal time
42.1 This type shall be referenced by the name:

 UTCTime

42.2 The type consists of values representing:
a) calendar date; and
b) time to a precision of one minute or one second; and
c) (optionally) a local time differential from coordinated universal time.

42.3 The type is defined, using ASN.1, as follows:

 UTCTime ::= [UNIVERSAL 23] IMPLICIT VisibleString

with the values of the "VisibleString" restricted to strings of characters which are the juxtaposition of:
a) the six digits YYMMDD where YY is the two low-order digits of the Christian year, MM is the month

(counting January as 01), and DD is the day of the month (01 to 31); and
b) either:

1) the four digits hhmm where hh is hour (00 to 23) and mm is minutes (00 to 59); or
2) the six digits hhmmss where hh and mm are as in 1) above, and ss is seconds (00 to 59); and

c) either:
1) the character Z; or

2) one of the characters + or −, followed by hhmm, where hh is hour and mm is minutes.

The alternatives in b) above allow varying precisions in the specification of the time.

In alternative c) 1), the time is coordinated universal time. In alternative c) 2), the time (t1) specified by a) and b) above is
the local time; the time differential (t2) specified by c) 2) above enables the coordinated universal time to be determined
as follows:

 Coordinated universal time is t1 − t2

EXAMPLE 1 – If local time is 7am on 2 January 1982 and coordinated universal time is 12 noon on 2 January 1982, the
value of UTCTime is either of:

– "8201021200Z"; or
– "8201020700-0500".

EXAMPLE 2 – If local time is 7am on 2 January 2001 and coordinated universal time is 12 noon on 2 January 2001, the
value of UTCTime is either of:

– "0101021200Z"; or
– "0101020700-0500".

42.4 The tag shall be as defined in 42.3.

42.5 The value notation shall be the value notation for the "VisibleString" defined in 42.3.

43 The object descriptor type
43.1 This type shall be referenced by the name:

 ObjectDescriptor

43.2 The type consists of human-readable text which serves to describe an object. The text is not an unambiguous
identification of the object, but identical text for different objects is intended to be uncommon.

NOTE – It is recommended that an authority assigning values of type "OBJECT IDENTIFIER" to an object should also assign
values of type "ObjectDescriptor" to that object.

ISO/IEC 8824-1 : 1998 (E)

54 ITU-T Rec. X.680 (1997 E)

43.3 The type is defined, using ASN.1, as follows:

 ObjectDescriptor ::= [UNIVERSAL 7] IMPLICIT GraphicString

The "GraphicString" contains the text describing the object.

43.4 The tag shall be as defined in 43.3.

43.5 The value notation shall be the value notation for the "GraphicString" defined in 43.3.

44 Constrained Types

44.1 The "ConstrainedType" notation allows a constraint to be applied to a (parent) type, either to restrict its set of
values to some subtype of the parent or (within a set or sequence type) to specify that component relations apply to values
of the parent type and to values of some other component in the same set or sequence value. It also allows an exception
identifier to be associated with a constraint.

 ConstrainedType ::=
 Type Constraint |
 TypeWithConstraint

In the first alternative, the parent type is "Type", and the constraint is specified by "Constraint" as defined in 44.5. The
second alternative is defined in 44.4.

44.2 When the "Constraint" notation follows a set-of or sequence-of type notation, it applies to the "Type" in the
(innermost) set-of or sequence-of notation, not to the set-of or sequence-of type.

NOTE – For example, in the following the constraint "(SIZE(1..64))" applies to the VisibleString, not the SEQUENCE OF:

 NamesOfMemberNations ::= SEQUENCE OF VisibleString (SIZE(1..64))

44.3 When the "Constraint" notation follows a "TaggedType" notation, the interpretation of the overall notation is
the same regardless of whether the "TaggedType" or the "Type" is considered as the parent type.

44.4 As a consequence of the interpretation specified in 44.2, special notation is provided to allow a constraint to be
applied to a set-of or sequence-of type. This is "TypeWithConstraint":

 TypeWithConstraint ::=
 SET Constraint OF Type |
 SET SizeConstraint OF Type |
 SEQUENCE Constraint OF Type |
 SEQUENCE SizeConstraint OF Type

In the first and second alternatives the parent type is "SET OF Type", while in the third and fourth it is "SEQUENCE OF
Type". In the first and third alternatives, the constraint is "Constraint" (see 44.5), while in the second and fourth it is
"SizeConstraint" (see 48.5).

NOTE – Although the "Constraint" alternatives encompass the corresponding "SizeConstraint" alternatives, the latter, which have
no enclosing brackets, are provided for backwards-compatibility with CCITT Rec. X.208 | ISO/IEC 8824.

44.5 A constraint is specified by the notation "Constraint":

 Constraint ::= "(" ConstraintSpec ExceptionSpec ")"

 ConstraintSpec ::=
 SubtypeConstraint |
 GeneralConstraint

"ExceptionSpec" is defined in clause 45. Unless it is used in conjunction with an "extension marker" (see clause 47), it
shall only be present if the "ConstraintSpec" includes an occurrence of "DummyReference" (see ITU-T Rec. X.683 |
ISO/IEC 8824-4, 8.3) or is a "UserDefinedConstraint" (see ITU-T Rec. X.682 | ISO/IEC 8824-3, clause 9).

44.6 The notation "SubtypeConstraint" is the general-purpose "ElementSetSpec" notation (see clause 46):

 SubtypeConstraint ::= ElementSetSpecs

In this context, the elements are values of the parent type (the governor of the element set is the parent type). There shall
be at least one element in the set.

 ISO/IEC 8824-1 : 1998 (E)

 ITU-T Rec. X.680 (1997 E) 55

45 The exception identifier

45.1 In a complex ASN.1 specification, there are a number of places where it is specifically recognized that decoders
have to handle material that is not completely specified in it. These cases arise in particular from use of a constraint that is
defined using a parameter of the abstract syntax (see ITU-T Rec. X.683 | ISO/IEC 8824-4, clause 10).

45.2 In such cases, the application designer needs to identify the actions to be taken when some implementation-
dependent constraint is violated. The exception identifier is provided as an unambiguous means of referring to parts of an
ASN.1 specification in order to indicate the actions to be taken. The identifier consists of a "!" character, followed by an
optional ASN.1 type and a value of that type. In the absence of the type, INTEGER is assumed as the type of the value.

45.3 If an ExceptionSpec is present, it indicates that there is text in the body of the standard saying how to handle the
constraint violation associated with the "!". If it is absent, then the implementors will either need to identify text that
describes the action that they are to take, or will take implementation-dependent action when a constraint violation
occurs.

45.4 The "ExceptionSpec" notation is defined as follows:

 ExceptionSpec ::= "!" ExceptionIdentification | empty

 ExceptionIdentification ::= SignedNumber |
 DefinedValue |
 Type ":" Value

The first two alternatives denote exception identifiers of type integer. The third alternative denotes an exception identifier
("Value") of arbitrary type ("Type").

45.5 Where a type is constrained by multiple constraints, more than one of which has an exception identifier, the
exception identifier in the outermost constraint shall be regarded as the exception identifier for that type.

45.6 Where an exception marker is present on types that are used in set arithmetic, the exception identifier is ignored
and is not inherited by the type being constrained as a result of the set arithmetic.

46 Element set specification
46.1 In some notations a set of elements of some identified element class (the governor) can be specified. In such
cases, the notation "ElementSetSpec" is used:

 ElementSetSpecs ::=
 RootElementSetSpec |
 RootElementSetSpec "," "..." |
 "..." "," AdditionalElementSetSpec |
 RootElementSetSpec "," "..." "," AdditionalElementSetSpec

 RootElementSetSpec ::= ElementSetSpec

 AdditionalElementSetSpec ::= ElementSetSpec

 ElementSetSpec ::= Unions |
 ALL Exclusions

 Unions ::= Intersections |
 UElems UnionMark Intersections

 UElems ::= Unions

 Intersections ::= IntersectionElements |
 IElems IntersectionMark IntersectionElements

 IElems ::= Intersections

 IntersectionElements ::= Elements | Elems Exclusions

 Elems ::= Elements

 Exclusions ::= EXCEPT Elements

 UnionMark ::= "|" | UNION

 IntersectionMark ::= "^" | INTERSECTION

ISO/IEC 8824-1 : 1998 (E)

56 ITU-T Rec. X.680 (1997 E)

NOTE 1 – The caret character "^" and the word INTERSECTION are synonymous. The character "|" and the word UNION are
synonymous. It is recommended that, as a stylistic matter, either the characters or the words be used throughout a user
Specification. EXCEPT can be used with either style.

NOTE 2 – The order of precedence from highest to lowest is: "EXCEPT", "^", "|". Notice that "ALL EXCEPT" is specified so
that it cannot be interspersed with the other constraints without the use of parentheses around "ALL EXCEPT xxx".

NOTE 3 – Anywhere that "Elements" occurs, either a constraint without parentheses [e.g. INTEGER (1..4)] or a parenthesized
subtype constraint [e.g. INTEGER ((1..4 | 9))] can appear.

NOTE 4 – Note that two "EXCEPT" operators must have either "|", "^", "(" or ")" separating them, so (A EXCEPT B
EXCEPT C) is not permitted. This must be changed to ((A EXCEPT B) EXCEPT C) or (A EXCEPT (B EXCEPT C)).

NOTE 5 – Note that ((A EXCEPT B) EXCEPT C) is the same as (A EXCEPT (B | C)).

NOTE 6 – The elements that are referenced by "ElementSetSpecs" is the union of the elements referenced by the
"RootElementSetSpec" and "AdditionalElementSetSpec".

46.2 The elements forming the set are:

a) if the first alternative of the "ElementSetSpec" is selected, those specified in the "Unions" [see b)],
otherwise all elements of the governor except those specified in the "Elements" notation of the
"Exclusions";

b) if the first alternative of "Unions" is selected, then those specified in the "Intersections" [see c)], otherwise
those specified at least once either in the "UElems" or "Intersections";

c) if the first alternative of "Intersections" is selected, those specified in the "IntersectionElements" [see d)],
otherwise those specified by "IElems" which also are specified by "IntersectionElements";

d) if the first alternative of "IntersectionElements" is selected, those specified in the "Elements", otherwise
those specified in the "Elems" except those specified in the "Exclusions".

46.3 The "Elements" notation is defined as follows:

 Elements ::=
 SubtypeElements |
 ObjectSetElements |
 "(" ElementSetSpec ")"

The elements specified by this notation are:

a) As described in clause 48 below if the "SubtypeElements" alternative is used. This notation shall only be
used when the governor is a type, and the actual type involved will further constrain the notational
possibilities. In this context, the governor is referred to as the parent type.

b) As described in ITU-T Rec. X.681 | ISO/IEC 8824-2, 12.6, if the "ObjectSetElements" notation is used.
This notation shall only be used when the governor is an information object class.

c) Those specified by the "ElementSetSpec" if the third alternative is used.

47 The extension marker
NOTE – Like the constraint notation in general, the extension marker has no effect on some encoding rules of ASN.1, such as the
Basic Encoding Rules, but does on others, such as the Packed Encoding Rules.

47.1 The extension marker, ellipsis, is an indication that extension additions are expected. It makes no statement as
to how such additions should be handled other than that they shall not be treated as an error during the decoding process.

47.2 The joint use of the extension marker and an exception identifier is an indication that extension additions are
expected and thus should not be treated as an error in the decoding process, and that the application standards prescribe
specific action to be taken by the application if there is a constraint violation. It is recommended that this notation be used
in those situations where store and forward or any other form of relaying is in use, so as to indicate that any unrecognized
extension additions are to be returned to the application for possible re-encoding and relaying.

47.3 Set arithmetic, if any, in the "ElementSetSpecs" notation shall be performed without consideration given to the
presence of the extension marker.

NOTE – In other words, the presence of an extension marker has no effect on set arithmetic.

 ISO/IEC 8824-1 : 1998 (E)

 ITU-T Rec. X.680 (1997 E) 57

47.4 If a type defined with an extensible constraint is referenced in a "ContainedSubtype", the newly defined type
does not inherit the extension marker or any of its extension additions. If the newly defined type is meant to be
extensible, then an extension marker shall be explicitly added to its "ElementSetSpecs". For example:

 A ::= INTEGER (0..10, …, 12) -- A is extensible.

 B ::= INTEGER (A) -- B is inextensible and is constrained to 0-10.

 C ::= INTEGER (A, …) -- C is extensible and is constrained to 0-10.

47.5 If a type defined with an extensible constraint is further constrained with an "ElementSetSpecs" that does not
contain an extension marker, the resulting type is one whose constraint is not extensible and which does not inherit any
extension additions that may be present in the parent type. For example:

 A ::= INTEGER (0..10, ...) -- A is extensible.

 B ::= A (2..5) -- B is inextensible.

 C ::= A -- C is extensible.

47.6 Components of a set, sequence or choice type that are constrained to be absent shall not be present, regardless
of whether the set, sequence or choice type is an extensible type.

NOTE – Inner type constraints have no effect on extensibility.

For example:

 A ::= SEQUENCE {
 a INTEGER
 b BOOLEAN OPTIONAL,
 ...
 }

 B ::= A (WITH COMPONENTS {b ABSENT}) -- B is extensible, but 'b' shall not be
 -- present in any of its values.

47.7 Where this Recommendation | International Standard requires distinct tags (see 24.5 to 24.6, 26.3 and 28.2), the
following transformation shall conceptually be applied before performing the check for tag uniqueness:

47.7.1 A new element or alternative (called the conceptually-added element, see 47.7.2) is conceptually added at the
extension insertion point if:

a) there are no extension markers but extensibility is implied in the module heading, and then an extension
marker is added and the new element is added as the first addition after that extension marker; or

b) there is a single extension marker in a CHOICE or SEQUENCE or SET, and then the new element is
added at the end of the CHOICE or SEQUENCE or SET immediately prior to the closing brace; or

c) there are two extension markers in a CHOICE or SEQUENCE or SET, and then the new element is added
immediately before the second extension marker.

47.7.2 This conceptually-added element is solely for the purposes of checking legality through the application of rules
requiring distinct tags (see 24.5 to 24.6, 26.3 and 28.2). It is conceptually-added after the application of automatic
tagging (if applicable) and the expansion of COMPONENTS OF.

47.7.3 The conceptually-added element is defined to have a tag which is distinct from the tag of all normal ASN.1
types, but which matches the tag of all such conceptually-added elements and matches the indeterminate tag of the open
type, as specified in 14.2, Note 2 of ITU-T Rec. X.681 | ISO/IEC 8824-2.

NOTE – The rules concerning tag uniqueness relating to the conceptually added element and to the open type, together with the
rules requiring distinct tags (see 24.5 to 24.6, 26.3 and 28.2) are necessary and sufficient to ensure that:

 a) any unknown extension addition can be unambiguously attributed to a single insertion point when a BER encoding is
decoded; and

 b) unknown extension additions can never be confused with OPTIONAL elements.

In PER the above rules are sufficient but are not necessary to ensure these properties. They are nonetheless imposed as rules
of ASN.1 to ensure independence of the notation from encoding rules.

ISO/IEC 8824-1 : 1998 (E)

58 ITU-T Rec. X.680 (1997 E)

47.7.4 If, with these conceptually-added elements, the rules requiring distinct types are violated, then the specification
has made illegal use of the extensibility notation.

NOTE –The purpose of the above rules is to make precise restrictions arising from the use of insertion points (particularly those
which are not at the end of SEQUENCEs or SETs or CHOICEs). The restrictions are designed to ensure that in BER, DER and
CER it is possible to attribute an unknown element received by a version 1 system unambiguously to a specific insertion point.
This would be important if the exception handling of such added items was different for different insertion points.

47.8 Examples

47.8.1 Example 1

 A ::= SET {
 a A,
 b CHOICE {
 c C,
 ... ,
 ... ,
 d D
 }
 }

is legal, for there is no ambiguity as any added material must be part of "b".

47.8.2 Example 2

 A ::= SET {
 a A,
 b CHOICE {
 c C,
 ... ,
 ... ,
 d D
 },
 ... ,
 e E
 }

is illegal, for added material may be part of "b", or may be at the outer level of "A", and a version 1 system cannot tell
which.

47.8.3 Example 3

 A ::= SET {
 a A,
 b CHOICE {
 c C,
 ...
 } ,
 d CHOICE {
 e E,
 ...
 }
 }

is also illegal, for added material may be part of "b" or "d".

47.8.4 More complex examples can be constructed, with extensible choices inside extensible choices, or extensible
choices within elements of a sequence marked OPTIONAL or DEFAULT, but the above rules are necessary and
sufficient to ensure that an element not present in version 1 can be unambiguously attributed by a version 1 system to
precisely one insertion point.

48 Subtype elements

48.1 General

A number of different forms of notation for "SubtypeElements" are provided. They are identified below, and their syntax
and semantics are defined in the following subclauses. Table 6 summarizes which notations can be applied to which
parent types.

 ISO/IEC 8824-1 : 1998 (E)

 ITU-T Rec. X.680 (1997 E) 59

 SubtypeElements ::=
 SingleValue |
 ContainedSubtype |
 ValueRange |
 PermittedAlphabet |
 SizeConstraint |
 TypeConstraint |
 InnerTypeConstraints

Table 6 – Applicability of subtype value sets

48.2 Single Value

48.2.1 The "SingleValue" notation shall be:

 SingleValue ::= Value

where "Value" is the value notation for the parent type.

48.2.2 A "SingleValue" specifies the single value of the parent type specified by "Value".

48.3 Contained Subtype

48.3.1 The "ContainedSubtype" notation shall be:

 ContainedSubtype ::= Includes Type
 Includes ::= INCLUDES | empty

Type Single
Value

Contained
Subtype

Value
Range

Size
Constraint

Permitted
Alphabet

Type
constraint

Inner
Subtyping

Bit String Yes Yes No Yes No No No

Boolean Yes Yes No No No No No

Choice Yes Yes No No No No Yes

Embedded-pdv Yes No No No No No Yes

Enumerated Yes Yes No No No No No

External Yes No No No No No Yes

Instance-of Yes Yes No No No No Yes

Integer Yes Yes Yes No No No No

Null Yes Yes No No No No No

Object class field type Yes Yes No No No No No

Object Identifier Yes Yes No No No No No

Octet String Yes Yes No Yes No No No

open type No No No No No Yes No

Real Yes Yes Yes No No No Yes

Restricted Character
String Types

Yes Yes Yesa) Yes Yes No No

Sequence Yes Yes No No No No Yes

Sequence-of Yes Yes No Yes No No Yes

Set Yes Yes No No No No Yes

Set-of Yes Yes No Yes No No Yes

Unrestricted Character
String Type

Yes No No Yes No No Yes

a) Allowed only within the "PermittedAlphabet" of BMPString, IA5String, NumericString, PrintableString, VisibleString and
UniversalString

ISO/IEC 8824-1 : 1998 (E)

60 ITU-T Rec. X.680 (1997 E)

The "empty" alternative of the "Includes" production shall not be used when "Type" in "ContainedSubtype" is the
notation for the null type.

48.3.2 A "ContainedSubtype" specifies all of the values in the parent type resulting from the intersection of the parent
type and "Type". "Type" is required to be derived from the same built-in type as the parent type.

48.4 Value Range

48.4.1 The "ValueRange" notation shall be:

 ValueRange ::= LowerEndpoint ".." UpperEndpoint

48.4.2 A "ValueRange" specifies all the values in a range of values which are designated by specifying the values of
the endpoints of the range. This notation can only be applied to integer types, the PermittedAlphabet of certain restricted
character string types (IA5String, NumericString, PrintableString, VisibleString, BMPString and UniversalString only)
and real types.

NOTE – For the purpose of subtyping, "PLUS-INFINITY" exceeds all "NumericReal" values and "MINUS-INFINITY" is less
than all "NumericReal" values.

48.4.3 Each endpoint of the range is either closed (in which case that endpoint is specified) or open (in which case the
endpoint is not specified). When open, the specification of the endpoint includes a less-than symbol ("<"):

 LowerEndpoint ::= LowerEndValue | LowerEndValue "<"

 UpperEndpoint ::= UpperEndValue | "<" UpperEndValue

48.4.4 An endpoint may also be unspecified, in which case the range extends in that direction as far as the parent type
allows:

 LowerEndValue ::= Value | MIN

 UpperEndValue ::= Value | MAX

48.5 Size Constraint

48.5.1 The "SizeConstraint" notation shall be:

 SizeConstraint ::= SIZE Constraint

48.5.2 A "SizeConstraint" can only be applied to bit string types, octet string types, character string types, set-of types
or sequence-of types, or types formed from any of those types by tagging.

48.5.3 The "Constraint" specifies the permitted integer values for the length of the specified values, and takes the form
of any constraint which can be applied to the following parent type:

 INTEGER (0 .. MAX)

The "Constraint" shall use the "SubtypeConstraint" alternative of "ConstraintSpec".

48.5.4 The unit of measure depends on the parent type, as follows:

Type Unit of measure

bit string bit

octet string octet

character string character

set-of component value

sequence-of component value

NOTE – The count of the number of characters specified in this subclause for determining the size of a character string value shall
be clearly distinguished from a count of octets. The count of characters shall be interpreted according to the definition of the
collection of characters used in the type, in particular, in relation to references to the standards, tables or registration numbers in a
register which can appear in such a definition.

 ISO/IEC 8824-1 : 1998 (E)

 ITU-T Rec. X.680 (1997 E) 61

48.6 Type Constraint

48.6.1 The "TypeConstraint" notation shall be:

 TypeConstraint ::= Type

48.6.2 This notation is only applied to an open type notation and restricts the open type to values of "Type".

48.7 Permitted Alphabet

48.7.1 The "PermittedAlphabet" notation shall be:

 PermittedAlphabet ::= FROM Constraint

48.7.2 A "PermittedAlphabet" specifies all values which can be constructed using a sub-alphabet of the parent string.
This notation can only be applied to restricted character string types.

48.7.3 The "Constraint" is any which could be applied to the parent type (see Table 6), except that it shall use the
"SubtypeConstraint" alternative of "ConstraintSpec". The sub-alphabet includes precisely those characters which appear
in one or more of the values of the parent string type which are allowed by the "Constraint".

48.8 Inner Subtyping

48.8.1 The "InnerTypeConstraints" notation shall be:

 InnerTypeConstraints ::=
 WITH COMPONENT SingleTypeConstraint |
 WITH COMPONENTS MultipleTypeConstraints

48.8.2 An "InnerTypeConstraints" specifies only those values which satisfy a collection of constraints on the presence
and/or values of the components of the parent type. A value of the parent type is not specified unless it satisfies all of the
constraints expressed or implied (see 48.8.6). This notation can be applied to the set-of, sequence-of, set, sequence and
choice types, or types formed from them by tagging.

48.8.3 For the types which are defined in terms of a single other (inner) type (set-of and sequence-of), a constraint
taking the form of a subtype value specification is provided. The notation for this is "SingleTypeConstraint":

 SingleTypeConstraint ::= Constraint

The "Constraint" defines a subtype of the single other (inner) type. A value of the parent type is specified if and only if
each inner value belongs to the subtype obtained by applying the "Constraint" to the inner type.

48.8.4 For the types which are defined in terms of multiple other (inner) types (choice, set, and sequence), a number of
constraints on these inner types can be provided. The notation for this is "MultipleTypeConstraints":

 MultipleTypeConstraints ::= FullSpecification | PartialSpecification

 FullSpecification ::= "{" TypeConstraints "}"

 PartialSpecification ::= "{" "..." "," TypeConstraints "}"

 TypeConstraints ::=
 NamedConstraint |
 NamedConstraint "," TypeConstraints

 NamedConstraint ::=
 identifier ComponentConstraint

48.8.5 The "TypeConstraints" contains a list of constraints on the component types of the parent type. For a sequence
type, the constraints must appear in order. The inner type to which the constraint applies is identified by means of its
identifier. For a given component, there shall be at most one "NamedConstraint".

48.8.6 The "MultipleTypeConstraints" comprises either a "FullSpecification" or a "PartialSpecification". When
"FullSpecification" is used, there is an implied presence constraint of "ABSENT" on all inner types which can be
constrained to be absent (see 48.8.9) and which is not explicitly listed. Where "PartialSpecification" is employed, there
are no implied constraints, and any inner type can be omitted from the list.

48.8.7 A particular inner type may be constrained in terms of its presence (in values of the parent type), its value, or
both. The notation is "ComponentConstraint":

 ComponentConstraint ::= ValueConstraint PresenceConstraint

ISO/IEC 8824-1 : 1998 (E)

62 ITU-T Rec. X.680 (1997 E)

48.8.8 A constraint on the value of an inner type is expressed by the notation "ValueConstraint":

 ValueConstraint ::= Constraint | empty

The constraint is satisfied by a value of the parent type if and only if the inner value belongs to the subtype specified by
the "Constraint" applied to the inner type.

48.8.9 A constraint on the presence of an inner type shall be expressed by the notation "PresenceConstraint":

 PresenceConstraint ::= PRESENT | ABSENT | OPTIONAL | empty

The meaning of these alternatives, and the situations in which they are permitted are defined in 48.8.9.1 to 48.8.9.3.

48.8.9.1 If the parent type is a sequence or set, a component type marked "OPTIONAL" may be constrained to be
"PRESENT" (in which case the constraint is satisfied if and only if the corresponding component value is present) or to
be "ABSENT" (in which case the constraint is satisfied if and only if the corresponding component value is absent) or to
be "OPTIONAL" (in which case no constraint is placed upon the presence of the corresponding component value).

48.8.9.2 If the parent type is a choice, a component type can be constrained to be "ABSENT" (in which case the
constraint is satisfied if and only if the corresponding component type is not used in the value), or "PRESENT" (in which
case the constraint is satisfied if and only if the corresponding component type is used in the value); there shall be at most
one "PRESENT" keyword in a "MultipleTypeConstraints".

NOTE – See C.4.6 for a clarifying example.

48.8.9.3 The meaning of an empty "PresenceConstraint" depends on whether a "FullSpecification" or a
"PartialSpecification" is being employed:

a) in a "FullSpecification", this is equivalent to a constraint of "PRESENT" for a set or sequence component
marked OPTIONAL and imposes no further constraint otherwise;

b) in a "PartialSpecification", no constraint is imposed.

 ISO/IEC 8824-1 : 1998 (E)

 ITU-T Rec. X.680 (1997 E) 63

Annex A

Use of ASN.1-88/90 notation
(This annex forms an integral part of this Recommendation | International Standard)

A.1 Maintenance

The term ASN.1-88/90 notation is used to refer to that ASN.1 notation specified in CCITT Rec. X.208 | ISO/IEC 8824.
The term current ASN.1 notation is used to refer to that specified in this Recommendation | International Standard.

At the time of publication of this Recommendation | International Standard, CCITT Rec. X.208 | ISO/IEC 8824 was still
being maintained. This continued maintenance depends on an annual Resolution by ISO/IEC/JTC1/SC21, and cannot be
expected to be indefinite. It is provided in order to give users of ASN.1 time to replace features (particularly ANY and
use of the macro notation) of the ASN.1-88/90 notation with current ASN.1 notation. (This can be done with no change
to bits on the line.)

A.2 Mixing ASN.1-88/90 and current ASN.1 notation

Both the ASN.1-88/90 and the current ASN.1 notation specify a top-level syntactic construct which is an ASN.1 module.
A user of ASN.1 writes a collection of ASN.1 modules, and may import definitions from other ASN.1 modules.

For any given module, the notation used is required to conform (completely) to either the ASN.1-88/90 notation or to the
current ASN.1 notation, and a user Specification should clearly identify which notation is being used (by reference to the
appropriate Recommendation | International Standard) for each module textually included in the user Specification.

Note that it might happen that a user wishes to modify part of a module to use the new notation, but to leave other parts in
the old notation. This can (only) be achieved by splitting the module into two modules.

Where a module conforms to the ASN.1-88/90 notation, type and value references may be imported from a module that
was defined using the current notation. Such types and values must be associated with types that can be defined using
only the ASN.1-88/90 notation. For example, a module written using the ASN.1-88/90 notation cannot import a value of
type UniversalString, since this type is defined in the current notation but not in ASN.1-88/90; it can, however, import
values whose types are, for example, INTEGER, IA5String, etc.

Where a module conforms to the current ASN.1 notation, type and value references may be imported from a module that
was defined using the ASN.1-88/90 notation. No ASN.1 macro shall be imported. Value notation for an imported type
shall only be used in the importing module if identifiers for SET and SEQUENCE and CHOICE values used in the value
notation are present, and if there is no requirement in the value notation for a value of the ANY type. An inner type
constraint shall not be applied to an imported type if the component being constrained does not have an identifier.

A.3 Migration to the current ASN.1 notation

When modifying a module (originally written to conform to the ASN.1-88/90 notation) to conform to the current
notation, the following points should be noted:

a) All components of SET and SEQUENCE and CHOICE shall be given identifiers that are unambiguous
within that SET, SEQUENCE or CHOICE, and such identifiers shall be included in the value notation.

NOTE 1 – The value notation for a CHOICE type contains a colon (":").

b) All uses of ANY and ANY DEFINED BY shall be supported by a suitable information object class
definition, with the ANY and ANY DEFINED BY (and the referenced component) replaced by
appropriate references to fields of that object class. In most cases the specification can be greatly improved
by careful attention to the insertion of table and component relation constraints. In many cases the
specification can be further improved if the table or component relation constraint is made a parameter of
the type.

c) All macro definitions shall be replaced by either the definition of an information object class, a
parameterized type or a parameterized value. If the WITH SYNTAX clause is carefully designed in the
definition of an information object class, the notation used to define an object of that class can be made
very similar to the notation defined by the old use of the macro notation.

ISO/IEC 8824-1 : 1998 (E)

64 ITU-T Rec. X.680 (1997 E)

d) All instances of use of a macro shall be replaced by either equivalent information object definitions, or by
references to equivalent "ObjectClassFieldType"s, parameterized types or parameterized values. In most
cases the specification of information objects can be greatly improved by grouping such definitions into
information object sets, and by giving clear guidance on whether it is mandatory to support all information
objects in the set, and on whether implementation-dependent extensions to that information object set are
to be accommodated by receiving implementations, and if so, how they are to handle receipt of "unknown"
values. It may also be desirable to consider the possibility that a later version of the user Specification may
extend the information object set, and to give guidance to current implementors on how such extensions
are to be treated.

e) All occurrences of EXTERNAL should be carefully examined; while such notation is still legal in the
current ASN.1, a user Specification can probably be improved by doing the following:

1) Consider the use of the INSTANCE OF notation (preferably with a table constraint that may be as a
parameter of the type, as discussed above for ANY and ANY DEFINED BY) in place of the
EXTERNAL notation; in many cases this will not change the bits on the line.

2) Where EXTERNAL is retained, use of inner subtyping of the associated type (see 33.5) can help to
give precision to the specification of whether use of presentation context identifiers is or is not
permitted. Earlier comments (see clause 33) that give guidance about what values of EXTERNAL are
to be supported, and what implementations should do if unsupported values are received also apply
here.

3) Consider a change to:

 CHOICE {external EXTERNAL, embedded-pdv EMBEDDED PDV}

(again with inner subtyping if appropriate) to allow a phased migration of distributed peer
applications to the current notation. This can affect the bits on the line, and would normally be done
as part of a version change in the protocol. The use of EMBEDDED PDV (particularly for new
specifications) will normally give more flexibility, as can be seen by comparison of the associated
types; further, EMBEDDED PDV is encoded more efficiently than EXTERNAL by all the encoding
rules specified in ITU-T Rec. X.690 | ISO/IEC 8825-1.

f) It may be possible to improve the readability of the notation in existing ASN.1 modules (with no change to
bits on the line) by insertion of AUTOMATIC TAGS in the module header and deletion of some or all
tags.

NOTE 2 – This must be done with care, and with understanding of the way automatic tagging works, since if this
is incorrectly applied, the bits on the line will change.

g) If AUTOMATIC TAGS is not applied to existing modules as described in f) above, it will normally be
desirable not to add new type definitions to the existing module, but rather to create a new module (with
automatic tagging) for new type definitions. This makes it possible for the benefits of automatic tagging to
be enjoyed without affecting the bits on the line.

h) Attention should be given to fields that contain character strings to see whether the CHARACTER
STRING, BMPString, or UniversalString notation should be employed. This would normally, however,
change the bits on the line, and would be done as part of a version change.

i) The identifiers "mantissa", "base", and "exponent" need to be added to any real value notation that uses
the "NumericRealValue" alternative of the "RealValue" production. Consideration should be given to
restricting "base" to 2 or 10 in the type notation.

In general, there can be significant improvements in readability, efficiency, precision, and flexibility by use of the new
ASN.1 notation (particularly if full advantage is taken of the use of table and component relation constraints and
parameterization, and of the new character string types). All users of ASN.1-88/90 are urged to undertake migration
whenever a Specification is revised, or as a separate activity if no revision is expected for some time.

It is generally regarded as a mistake to make additions to existing modules using notation which does not conform to the
current ASN.1 specification, even if references to the ASN.1-88/90 specifications are retained for such modules. In
particular, new uses of macros and ANY or ANY DEFINED BY, or new SET, SEQUENCE, or CHOICE constructs
without unambiguous identifiers should be avoided.

 ISO/IEC 8824-1 : 1998 (E)

 ITU-T Rec. X.680 (1997 E) 65

Annex B

Assignment of object identifier values
(This annex forms an integral part of this Recommendation | International Standard)

The following values are assigned in this Recommendation | International Standard:

 Subclause Object Identifier Value

 36.3 { joint-iso-itu-t asn1(1) specification(0) characterStrings(1) numericString(0) }

 Object Descriptor Value

 "NumericString ASN.1 type"

 Subclause Object Identifier Value

 36.5 { joint-iso-itu-t asn1(1) specification(0) characterStrings(1) printableString(1) }

 Object Descriptor Value

 "PrintableString ASN.1 type"

 Subclause Object Identifier Value

 37.1 { joint-iso-itu-t asn1(1) specification(0) modules(0) iso10646(0) }

 Object Descriptor Value

 "ASN1 Character Module"

ISO/IEC 8824-1 : 1998 (E)

66 ITU-T Rec. X.680 (1997 E)

Annex C

Examples and hints
(This annex does not form an integral part of this Recommendation | International Standard)

This annex contains examples of the use of ASN.1 in the description of (hypothetical) data structures. It also contains
hints, or guidelines, for the use of the various features of ASN.1. Unless otherwise stated, an environment of
AUTOMATIC TAGS is assumed.

C.1 Example of a personnel record

The use of ASN.1 is illustrated by means of a simple, hypothetical personnel record.

C.1.1 Informal description of Personnel Record

The structure of the personnel record and its value for a particular individual are shown below.

 Name: John P Smith

 Title: Director

 Employee Number: 51

 Date of Hire: 17 September 1971

 Name of Spouse: Mary T Smith

 Number of Children: 2

 Child Information

 Name: Ralph T Smith

 Date of Birth 11 November 1957

 Child Information

 Name: Susan B Jones

 Date of Birth 17 July 1959

C.1.2 ASN.1 description of the record structure

The structure of every personnel record is formally described below using the standard notation for data types.

 PersonnelRecord ::= [APPLICATION 0] SET
 { name Name,
 title VisibleString,
 number EmployeeNumber,
 dateOfHire Date,
 nameOfSpouse Name,
 children SEQUENCE OF ChildInformation DEFAULT {}

 }

 ChildInformation ::= SET
 { name Name,
 dateOfBirth Date
 }

 Name ::= [APPLICATION 1] SEQUENCE
 { givenName VisibleString,
 initial VisibleString,
 familyName VisibleString
 }

 EmployeeNumber ::= [APPLICATION 2] INTEGER

 Date ::= [APPLICATION 3] VisibleString -- YYYY MMDD

 ISO/IEC 8824-1 : 1998 (E)

 ITU-T Rec. X.680 (1997 E) 67

This example illustrates an aspect of the parsing of the ASN.1 syntax. The syntactic construct "DEFAULT" can only be
applied to a component of a "SEQUENCE" or a "SET", it cannot be applied to an element of a "SEQUENCE OF". Thus,
the "DEFAULT { }" in "PersonnelRecord" applies to "children", not to "ChildInformation".

C.1.3 ASN.1 description of a record value

The value of John Smith’s personnel record is formally described below using the standard notation for data values.

 { name {givenName "John", initial "P", familyName "Smith"},
 title "Director",
 number 51,
 dateOfHire "19710917",
 nameOfSpouse {givenName "Mary", initial "T", familyName "Smith"},
 children
 { {name {givenName "Ralph", initial "T", familyName "Smith"} ,
 dateOfBirth "19571111"},
 {name {givenName "Susan", initial "B", familyName "Jones"} ,
 dateOfBirth "19590717" }
 }
 }

C.2 Guidelines for use of the notation

The data types and formal notation defined by this Recommendation | International Standard are flexible, allowing a wide
range of protocols to be designed using them. This flexibility, however, can sometimes lead to confusion, especially when
the notation is approached for the first time. This annex attempts to minimize confusion by giving guidelines for, and
examples of, the use of the notation. For each of the built-in data types, one or more usage guidelines are offered. The
character string types (for example, VisibleString) and the types defined in clauses 41 to 43 are not dealt with here.

C.2.1 Boolean

C.2.1.1 Use a boolean type to model the values of a logical (that is, two-state) variable, for example, the answer to a
yes-or-no question.

 EXAMPLE

 Employed ::= BOOLEAN

C.2.1.2 When assigning a reference name to a boolean type, choose one that describes the true state.

 EXAMPLE

 Married ::= BOOLEAN

 not

 MaritalStatus ::= BOOLEAN

C.2.2 Integer

C.2.2.1 Use an integer type to model the values (for all practical purposes, unlimited in magnitude) of a cardinal or
integer variable.

 EXAMPLE

 CheckingAccountBalance ::= INTEGER -- in cents; negative means overdrawn.

 balance CheckingAccountBalance ::= 0

C.2.2.2 Define the minimum and maximum allowed values of an integer type as named numbers.

 EXAMPLE

 DayOfTheMonth ::= INTEGER {first(1), last(31)}

 today DayOfTheMonth ::= first

 unknown DayOfTheMonth ::= 0

Note that the named numbers "first" and "last" were chosen because of their semantic significance to the reader, and does
not exclude the possibility of DayOfTheMonth having other values which may be less than 1, greater than 31 or
between 1 and 31.

ISO/IEC 8824-1 : 1998 (E)

68 ITU-T Rec. X.680 (1997 E)

To restrict the value of DayOfTheMonth to just "first" and "last", one would write:

 DayOfTheMonth ::= INTEGER {first(1), last(31)} (first | last)

and to restrict the value of the DayOfTheMonth to all values between 1 and 31, inclusive, one would write:

 DayOfTheMonth ::= INTEGER {first(1), last(31)} (first .. last)

 dayOfTheMonth DayOfTheMonth ::= 4

C.2.3 Enumerated

C.2.3.1 Use an enumerated type to model the values of a variable with three or more states. Assign values starting with
zero if their only constraint is distinctness.

 EXAMPLE

 DayOfTheWeek ::= ENUMERATED {sunday(0), monday(1), tuesday(2),
 wednesday(3), thursday(4), friday(5), saturday(6)}

 firstDay DayOfTheWeek ::= sunday

Note that while the enumerations "sunday", "monday", etc., were chosen because of their semantic significance to the
reader, DayOfTheWeek is restricted to assuming one of these values and no other. Further, only the name "sunday",
"monday", etc., can be assigned to a value; the equivalent integer values are not allowed.

C.2.3.2 Use an extensible enumerated type to model the values of a variable that has just two states now, but that may
have additional states in a future version of the protocol.

 EXAMPLE

 MaritalStatus ::= ENUMERATED {single, married} -- First version of MaritalStatus

in anticipation of

 MaritalStatus ::= ENUMERATED {single, married, …, widowed} -- Second version of MaritalStatus

and later yet:

 MaritalStatus ::= ENUMERATED {single, married, …, widowed, divorced} -- Third version of MaritalStatus

C.2.4 Real

C.2.4.1 Use a real type to model an approximate number.

 EXAMPLE

 AngleInRadians ::= REAL

 pi REAL ::= {mantissa 3141592653589793238462643383279, base 10, exponent −−−−30}

C.2.4.2 Application designers may wish to ensure full interworking with real values despite differences in floating point
hardware, and in implementation decisions to use (for example) single or double length floating point for an application.
This can be achieved by the following:

 App-X-Real ::= REAL (WITH COMPONENTS {
 mantissa (−−−−16777215..16777215),
 base (2),
 exponent (−−−−125..128) })
 -- Senders shall not transmit values outside these ranges
 -- and conforming receivers shall be capable of receiving
 -- and processing all values in these ranges.

 girth App-X-Real ::= {mantissa 16, base 2, exponent 1}

C.2.5 Bit string

C.2.5.1 Use a bit string type to model binary data whose format and length are unspecified, or specified elsewhere, and
whose length in bits is not necessarily a multiple of eight.

 EXAMPLE

 G3FacsimilePage ::= BIT STRING
 -- a sequence of bits conforming to Recommendation T.4.

 ISO/IEC 8824-1 : 1998 (E)

 ITU-T Rec. X.680 (1997 E) 69

 image G3FacsimilePage ::= '100110100100001110110'B

 trailer BIT STRING ::= '0123456789ABCDEF'H

 body1 G3FacsimilePage ::= '1101'B

 body2 G3FacsimilePage ::= '1101000'B

Note that "body1" and "body2" are distinct abstract values because trailing 0 bits are significant (due to there being no
"NamedBitList" in the definition of G3FacsimilePage).

C.2.5.2 Use a bit string type with a size constraint to model the values of a fixed sized bit field.

 EXAMPLE

 BitField ::= BIT STRING (SIZE (12))

 map1 BitField ::= '100110100100'B

 map2 BitField ::= '9A4'H

 map3 BitField ::= '1001101001'B -- Illegal - violates size constraint.

Note that "map1" and "map2" are the same abstract value, for the four trailing bits of "map2" are not significant.

C.2.5.3 Use a bit string type to model the values of a bit map, an ordered collection of logical variables indicating
whether a particular condition holds for each of a correspondingly ordered collection of objects.

 DaysOfTheWeek ::= BIT STRING {
 sunday(0), monday (1), tuesday(2),
 wednesday(3), thursday(4), friday(5),
 saturday(6) } (SIZE (0..7))

 sunnyDaysLastWeek1 DaysOfTheWeek ::= {sunday, monday, wednesday}
 sunnyDaysLastWeek2 DaysOfTheWeek ::= '1101'B
 sunnyDaysLastWeek3 DaysOfTheWeek ::= '1101000'B

 sunnyDaysLastWeek4 DaysOfTheWeek ::= '11010000'B -- Illegal - violates size constraint.

Note that if the bit string value is less than 7 bits long, then the missing bits indicate a cloudy day for those days, hence
the first three values above have the same abstract value.

C.2.5.4 Use a bit string type to model the values of a bit map, a fixed-size ordered collection of logical variables
indicating whether a particular condition holds for each of a correspondingly ordered collection of objects.

 DaysOfTheWeek ::= BIT STRING {
 sunday(0), monday (1), tuesday(2),
 wednesday(3), thursday(4), friday(5),
 saturday(6) } (SIZE (7))
 sunnyDaysLastWeek1 DaysOfTheWeek ::= {sunday, monday, wednesday}
 sunnyDaysLastWeek2 DaysOfTheWeek ::= '1101'B -- Illegal - violates size constraint.
 sunnyDaysLastWeek3 DaysOfTheWeek ::= '1101000'B

 sunnyDaysLastWeek4 DaysOfTheWeek ::= '11010000'B -- Illegal - violates size constraint.

Note that the first and third values have the same abstract value.

C.2.5.5 Use a bit string type with named bits to model the values of a collection of related logical variables.

 EXAMPLE

 PersonalStatus ::= BIT STRING
 {married(0), employed(1), veteran(2), collegeGraduate(3)}

 billClinton PersonalStatus ::= {married, employed, collegeGraduate}

 hillaryClinton PersonalStatus ::= '110100'B

Note that "billClinton" and "hillaryClinton" have the same abstract values.

ISO/IEC 8824-1 : 1998 (E)

70 ITU-T Rec. X.680 (1997 E)

C.2.6 Octet string

C.2.6.1 Use an octet string type to model binary data whose format and length are unspecified, or specified elsewhere,
and whose length in bits is a multiple of eight.

 EXAMPLE

 G4FacsimileImage ::= OCTET STRING
 -- a sequence of octets conforming to
 -- Recommendations T.5 and T.6.

 image G4FacsimilePage ::= '3FE2EBAD471005'H

C.2.6.2 Use a restricted character string type in preference to an octet string type, where an appropriate one is available.

 EXAMPLE

 Surname ::= PrintableString

 president Surname ::= "Clinton"

C.2.7 UniversalString and BMPString

Use the BMPString type to model any string of information which consists solely of characters from the
ISO/IEC 10646-1 Basic Multilingual Plane (BMP), and UniversalString to model any string which consists of
ISO/IEC 10646-1 characters not confined to the BMP.

C.2.7.1 Use "Level1" or "Level2" to denote that the implementation level places restrictions on the use of combining
characters.

 EXAMPLE

 RussianName ::= Cyrillic (Level1) -- RussianName uses no combining characters.

 SaudiName ::= BasicArabic (SIZE (1..100) ^ Level2) -- SaudiName uses a subset of combining characters.

C.2.7.2 A collection can be expanded to be a selected subset (i.e. include all characters in the BASIC LATIN
collection) by use of the "UnionMark" (see clause 46).

 EXAMPLE

 KatakanaAndBasicLatin ::= UniversalString (FROM(Katakana | BasicLatin))

C.2.8 CHARACTER STRING

Use the unrestricted character string type to model any string of information which cannot be modelled using one of the
restricted character string types. Be sure to specify the repertoire of characters and their coding into octets.

 EXAMPLE

 PackedBCDString ::= CHARACTER STRING (WITH COMPONENTS {
 identification (WITH COMPONENTS {
 fixed PRESENT })
 -- The abstract and transfer syntaxes shall be packedBCDStringAbstractSyntax and
 -- packedBCDStringTransferSyntax defined below.
 })

 -- object identifier value for a character abstract syntax (character set) whose alphabet
 -- is the digits 0 through 9.
 packedBCDStringAbstractSyntaxId OBJECT IDENTIFIER ::=
 { joint-iso-itu-t xxx(999) yyy(999) zzz(999) packedBCD(999) charSet(0) }

 -- object identifier value for a character transfer syntax that packs two
 -- digits per octet, each digit encoded as 0000 to 1001, 11112 used for padding.
 packedBCDStringTransferSyntaxId OBJECT IDENTIFIER ::=
 { joint-iso-itu-t xxx(999) yyy(999) zzz(999) packedBCD(999) characterTransferSyntax(1) }

 ISO/IEC 8824-1 : 1998 (E)

 ITU-T Rec. X.680 (1997 E) 71

 -- The encoding of PackedBCDString will contain only the defined encoding of the characters, with any
 -- necessary length field, and in the case of BER with a field carrying the tag. The object identifier values are
 -- not carried, as "fixed" has been specified.

NOTE – Encoding rules do not necessarily encode values of the type CHARACTER STRING in a form that always includes the
object identifier values, although they do guarantee that the abstract value is preserved in the encoding.

C.2.9 Null

Use a null type to indicate the effective absence of a component of a sequence.

 EXAMPLE

 PatientIdentifier ::= SEQUENCE {
 name VisibleString,
 roomNumber CHOICE {
 room INTEGER,
 outPatient NULL -- if an out-patient --
 }
 }

 lastPatient PatientIdentifier ::= {
 name "Jane Doe",
 roomNumber outPatient : NULL
 }

C.2.10 Sequence and sequence-of

C.2.10.1 Use a sequence-of type to model a collection of variables whose types are the same, whose number is large or
unpredictable, and whose order is significant.

 EXAMPLE

 NamesOfMemberNations ::= SEQUENCE OF VisibleString
 -- in alphabetical order

 firstTwo NamesOfMemberNations ::= {"Australia", "Austria"}

C.2.10.2 Use a sequence type to model a collection of variables whose types are the same, whose number is known and
modest, and whose order is significant, provided that the make-up of the collection is unlikely to change from one version
of the protocol to the next.

 EXAMPLE

 NamesOfOfficers ::= SEQUENCE {
 president VisibleString,
 vicePresident VisibleString,
 secretary VisibleString}

 acmeCorp NamesOfOfficers ::= {
 president "Jane Doe",
 vicePresident "John Doe",
 secretary "Joe Doe"}

C.2.10.3 Use an inextensible sequence type to model a collection of variables whose types differ, whose number is
known and modest, and whose order is significant, provided that the make-up of the collection is unlikely to change from
one version of the protocol to the next.

 EXAMPLE

 Credentials ::= SEQUENCE {
 userName VisibleString,
 password VisibleString,
 accountNumber INTEGER}

ISO/IEC 8824-1 : 1998 (E)

72 ITU-T Rec. X.680 (1997 E)

C.2.10.4 Use an extensible sequence type to model a collection of variables whose order is significant, whose number
currently is known and is modest, but which is expected to be increased:

 EXAMPLE

 Record ::= SEQUENCE { -- First version of Record
 userName VisibleString,
 password VisibleString,
 accountNumber INTEGER,
 ...,
 …
 }

in anticipation of:

 Record ::= SEQUENCE { -- Second version of Record
 userName VisibleString,
 password VisibleString,
 accountNumber INTEGER,
 ...,
 [[-- Extension addition added in version 2
 lastLoggedIn GeneralizedTime OPTIONAL,
 minutesLastLoggedIn INTEGER
]],
 …
 }

and later yet:

 Record ::= SEQUENCE { -- Third version of Record
 userName VisibleString,
 password VisibleString,
 accountNumber INTEGER,
 ...,
 [[-- Extension addition added in version 2
 lastLoggedIn GeneralizedTime OPTIONAL,
 minutesLastLoggedIn INTEGER
]],
 [[-- Extension addition added in version 3

 certificate Certificate,
 thumb ThumbPrint OPTIONAL
]],
 …
 }

C.2.11 Set and set-of

C.2.11.1 Use a set type to model a collection of variables whose number is known and modest and whose order is
insignificant. If automatic tagging is not in effect, identify each variable by context-specifically tagging it as shown
below. (With automatic tagging, the tags are not needed.)

 EXAMPLE

 UserName ::= SET {
 personalName [0] VisibleString,
 organizationName [1] VisibleString,
 countryName [2] VisibleString}

 user UserName ::= {
 countryName "Nigeria",
 personalName "Jonas Maruba",
 organizationName "Meteorology, Ltd."}

 ISO/IEC 8824-1 : 1998 (E)

 ITU-T Rec. X.680 (1997 E) 73

C.2.11.2 Use a set type with "OPTIONAL" to model a collection of variables that is a (proper or improper) subset of
another collection of variables whose number is known and reasonably small and whose order is insignificant. If
automatic tagging is not in effect, identify each variable by context-specifically tagging it as shown below. (With
automatic tagging, the tags are not needed.)

 EXAMPLE

 UserName ::= SET {
 personalName [0] VisibleString,
 organizationName [1] VisibleString OPTIONAL
 -- defaults to that of the local organization -- ,
 countryName [2] VisibleString OPTIONAL
 -- defaults to that of the local country -- }

C.2.11.3 Use an extensible set type to model a collection of variables whose make-up is likely to change from one
version of the protocol to the next. The following assumes AUTOMATIC TAGS was specified in the module definition.

 EXAMPLE

 UserName ::= SET {
 personalName VisibleString, -- First version of UserName
 organizationName VisibleString OPTIONAL ,
 countryName VisibleString OPTIONAL,
 …,
 …
 }

 user UserName ::= { personalName "Jonas Maruba" }

in anticipation of:

 UserName ::= SET { -- Second version of UserName
 personalName VisibleString,
 organizationName VisibleString OPTIONAL,
 countryName VisibleString OPTIONAL,
 ...,
 [[-- Extension addition added in version 2
 internetEmailAddress VisbleString,
 faxNumber VisibleString OPTIONAL
]],
 …
 }

 user UserName ::= {
 personalName "Jonas Maruba",
 internetEmailAddress "jonas@meteor.ngo.com"
 }

and later yet:

 UserName ::= SET { -- Third version of UserName
 personalName VisibleString,
 organizationName VisibleString OPTIONAL,
 countryName VisibleString OPTIONAL,
 ...,
 [[-- Extension addition added in version 2
 internetEmailAddress VisbleString,
 faxNumber VisibleString OPTIONAL
]],
 phoneNumber VisibleString OPTIONAL, -- Extension addition added in version 3
 …
 }

 user UserName ::= {
 personalName "Jonas Maruba",
 internetEmailAddress "jonas@meteor.ngo.com"
 }

ISO/IEC 8824-1 : 1998 (E)

74 ITU-T Rec. X.680 (1997 E)

C.2.11.4 Use a set-of type to model a collection of variables whose types are the same and whose order is insignificant.

 EXAMPLE

 Keywords ::= SET OF VisibleString -- in arbitrary order

 someASN1Keywords Keywords ::= {"INTEGER", "BOOLEAN", "REAL"}

C.2.12 Tagged

Prior to the introduction of the AUTOMATIC TAGS construct, ASN.1 specifications frequently contained tags. The
following subclauses describe the way in which tagging was typically applied. With the introduction of AUTOMATIC
TAGS, new ASN.1 specifications need make no use of the tag notation, although those modifying old notation may have
to concern themselves with tags.

C.2.12.1 Universal class tags are used only within this Recommendation | International Standard. The notation
[UNIVERSAL 30] (for example) is provided solely to enable precision in the definition of the Internationally
Standardized Useful Types. It should not be used elsewhere.

C.2.12.2 A frequently encountered style for the use of tags is to assign an application class tag precisely once in the
entire specification, using it to identify a type that finds wide, scattered, use within the specification. An application class
tag is also frequently used (once only) to tag the types in the outermost CHOICE of an application, providing
identification of individual messages by the application class tag. The following is an example use in the former case:

 EXAMPLE

 FileName ::= [APPLICATION 8] SEQUENCE {
 directoryName VisibleString,
 directoryRelativeFileName VisibleString}

C.2.12.3 Context-specific tagging is frequently applied in an algorithmic manner to all components of a SET,
SEQUENCE, or CHOICE. Note, however, that the AUTOMATIC TAGS facility does this easily for you.

 EXAMPLE

 CustomerRecord ::= SET {
 name [0] VisibleString,
 mailingAddress [1] VisibleString,
 accountNumber [2] INTEGER,
 balanceDue [3] INTEGER -- in cents --}

 CustomerAttribute ::= CHOICE {
 name [0] VisibleString,
 mailingAddress [1] VisibleString,
 accountNumber [2] INTEGER,
 balanceDue [3] INTEGER -- in cents --}

C.2.12.4 Private class tagging should normally not be used in Internationally Standardized specifications (although this
cannot be prohibited). Applications produced by an enterprise will normally use application and context-specific tag
classes. There may be occasional cases, however, where an enterprise-specific specification seeks to extend an
Internationally Standardized specification, and in this case use of private class tags may give some benefits in partially
protecting the enterprise-specific specification from changes to the Internationally Standardized specification.

 EXAMPLE

 AcmeBadgeNumber ::= [PRIVATE 2] INTEGER

 badgeNumber AcmeBadgeNumber ::= 2345

C.2.12.5 Textual use of IMPLICIT with every tag is generally found only in older specifications. BER produces a less
compact representation when explicit tagging is used than when implicit tagging is used. PER produces the same compact
encoding in both cases. With BER and explicit tagging, there is more visibility of the underlying type (INTEGER, REAL,
BOOLEAN, etc.) in the encoded data. These guidelines use implicit tagging in the examples

 ISO/IEC 8824-1 : 1998 (E)

 ITU-T Rec. X.680 (1997 E) 75

whenever it is legal to do so. This may, depending on the encoding rules, result in a compact representation, which is
highly desirable in some applications. In other applications, compactness may be less important than, for example, the
ability to carry out strong type-checking. In the latter case, explicit tagging can be used.

 EXAMPLE

 CustomerRecord ::= SET {
 name [0] IMPLICIT VisibleString,
 mailingAddress [1] IMPLICIT VisibleString,
 accountNumber [2] IMPLICIT INTEGER,
 balanceDue [3] IMPLICIT INTEGER -- in cents --}

 CustomerAttribute ::= CHOICE {
 name [0] IMPLICIT VisibleString,
 mailingAddress [1] IMPLICIT VisibleString,
 accountNumber [2] IMPLICIT INTEGER,
 balanceDue [3] IMPLICIT INTEGER -- in cents --}

C.2.12.6 Guidance on use of tags in new ASN.1 specifications referencing this Recommendation | International Standard
is quite simple: DON’T USE TAGS. Put AUTOMATIC TAGS in the module header, then forget about tags. If you need
to add new components to the SET, SEQUENCE or CHOICE in a later version, add them to the end.

C.2.13 Choice

C.2.13.1 Use a CHOICE to model a variable that is selected from a collection of variables whose number are known and
modest.

 EXAMPLE

 FileIdentifier ::= CHOICE {
 relativeName VisibleString,
 -- name of file (for example, "MarchProgressReport")
 absoluteName VisibleString,
 -- name of file and containing directory
 -- (for example, "<Williams>MarchProgressReport")
 serialNumber INTEGER
 -- system-assigned identifier for file --}

 file FileIdentifier ::= serialNumber : 106448503

C.2.13.2 Use an extensible CHOICE to model a variable that is selected from a collection of variables whose make-up is
likely to change from one version of the protocol to the next.

 EXAMPLE

 FileIdentifier ::= CHOICE { -- First version of FileIdentifier
 relativeName VisibleString,

 absoluteName VisibleString,

 …, …
 }

 fileId1 FileIdentifier ::= relativeName : "MarchProgressReport.doc"

in anticipation of:

 FileIdentifier ::= CHOICE { -- Second version of FileIdentifier
 relativeName VisibleString,
 absoluteName VisibleString,
 ...,
 serialNumber INTEGER, -- Extension addition added in version 2
 ...
 }

 fileId1 FileIdentifier ::= relativeName : "MarchProgressReport.doc"

 fileId2 FileIdentifier ::= serialNumber : 214

ISO/IEC 8824-1 : 1998 (E)

76 ITU-T Rec. X.680 (1997 E)

and later yet:

 FileIdentifier ::= CHOICE { -- Third version of FileIdentifier
 relativeName VisibleString,
 absoluteName VisibleString,
 ...,
 serialNumber INTEGER, -- Extension addition added in version 2
 [[-- Extension addition added in version 3
 vendorSpecific VendorExt,
 unidentified NULL
]],
 ...
 }

 fileId1 FileIdentifier ::= relativeName : "MarchProgressReport.doc"

 fileId2 FileIdentifier ::= serialNumber : 214

 fileId3 FileIdentifier ::= unidentified : NULL

C.2.13.3 Use an extensible CHOICE of only one type where the possibility is envisaged of more than one type being
permitted in the future.

 EXAMPLE

 Greeting ::= CHOICE { -- First version of Greeting
 postCard VisibleString,
 …,
 …
 }

in anticipation of:

 Greeting ::= CHOICE { -- Second version of Greeting
 postCard VisibleString,
 …,
 [[-- Extension addition added in version 2
 audio Audio,
 video Video
]],
 …
 }

C.2.13.4 Multiple colons are required when a choice value is nested within another choice value.

 EXAMPLE

 Greeting ::= [APPLICATION 12] CHOICE {
 postCard VisibleString,
 recording Voice }

 Voice ::= CHOICE {
 english OCTET STRING,
 swahili OCTET STRING }

 myGreeting Greeting ::= recording : english : '019838547E0'H

C.2.14 Selection type

C.2.14.1 Use a selection type to model a variable whose type is that of some particular alternatives of a previously
defined CHOICE.

C.2.14.2 Consider the definition:

 FileAttribute ::= CHOICE {
 date-last-used INTEGER,
 file-name VisibleString}

then the following definition is possible:

 AttributeList ::= SEQUENCE {
 first-attribute date-last-used < FileAttribute,
 second-attribute file-name < FileAttribute }

 ISO/IEC 8824-1 : 1998 (E)

 ITU-T Rec. X.680 (1997 E) 77

with a possible value notation of:

 listOfAttributes AttributeList ::= {
 first-attribute 27,
 second-attribute "PROGRAM" }

C.2.15 Object class field type

C.2.15.1 Use an object class field type to identify a type defined by means of an information object class (see ITU-T
Rec. X.681 | ISO/IEC 8824-2). For example, fields of the information object class ATTRIBUTE may be used in defining
a type, Attribute.

 EXAMPLE

 ATTRIBUTE ::= CLASS
 {
 &AttributeType,
 &attributeId OBJECT IDENTIFIER UNIQUE
 }

 Attribute ::= SEQUENCE {
 attributeID ATTRIBUTE.&attributeId, -- this is normally constrained.
 attributeValue ATTRIBUTE.&AttributeType -- this is normally constrained.
 }

Both ATTRIBUTE.&attributeId and ATTRIBUTE.&AttributeType are object class field types, in that they are types
defined by reference to an information object class (ATTRIBUTE). The type ATTRIBUTE.&attributeId is fixed because
it is explicitly defined in ATTRIBUTE as an OBJECT IDENTIFIER. However, the type ATTRIBUTE.&AttributeType
can carry a value of any type defined using ASN.1, since its type is not fixed in the definition of ATTRIBUTE. Notations
that possess this property of being able to carry a value of any type are termed "open type notation", hence
ATTRIBUTE.&AttributeType is an open type.

C.2.16 Embedded-pdv

C.2.16.1 Use an embedded-pdv type to model a variable whose type is unspecified, or specified elsewhere with no
restriction on the notation used to specify the type.

 EXAMPLE

 FileContents ::= EMBEDDED PDV

 DocumentList ::= SEQUENCE OF EMBEDDED PDV

C.2.17 External

The external type is similar to the embedded-pdv type, but has fewer identification options. New specifications will
generally prefer to use embedded-pdv because of its greater flexibility and the fact that some encoding rules encode its
values more efficiently.

C.2.18 Instance-of

C.2.18.1 Use an instance-of to specify a type containing an object identifier field and an open type whose value is
of a type determined by the object identifier. The instance-of type is restricted to carrying a value from the class
TYPE-IDENTIFIER (see Annex A and Annex C of ITU-T Rec. X.681 | ISO/IEC 8824-2).

 EXAMPLE

 ACCESS-CONTROL-CLASS ::= TYPE-IDENTIFIER

 Get-Invoke ::= SEQUENCE {
 objectClass ObjectClass,
 objectInstance ObjectInstance,
 accessControl INSTANCE OF ACCESS-CONTROL-CLASS, -- this is normally constrained.
 attributeID ATTRIBUTE.&attributeId
 }

ISO/IEC 8824-1 : 1998 (E)

78 ITU-T Rec. X.680 (1997 E)

Get-Invoke is then equivalent to:

 Get-Invoke ::= SEQUENCE {
 objectClass ObjectClass,
 objectInstance ObjectInstance,
 accessControl [UNIVERSAL 8] IMPLICIT SEQUENCE {
 type-id ACCESS-CONTROL-CLASS.&id, -- this is normally constrained.
 value [0] ACCESS-CONTROL-CLASS.&Type -- this is normally constrained.
 },
 attributeID ATTRIBUTE.&attributeId
 }

The true utility of the instance-of type is not seen until it is constrained using an information object set, but such an
example goes beyond the scope of this Recommendation | International Standard. See ITU-T Rec. X.682 | ISO/IEC 8824-
3 for the definition of information object set, and Annex A of that Recommendation | International Standard for how to
use an information object set to constrain an instance-of type. Note that the encoding of the INSTANCE OF ACCESS-
CONTROL-CLASS is the same as that for an EXTERNAL value that has only an object identifier and a data value.

C.3 Identifying abstract syntaxes

C.3.1 Use of the presentation service ITU-T Rec. X.216 | ISO/IEC 8822 requires the specification of values called
presentation data values and the grouping of those presentation data values into sets which are called abstract syntaxes.
Each of these sets is given an abstract syntax name of ASN.1 type object identifier.

C.3.2 ASN.1 can be used as a general tool in the specification of presentation data values and their grouping into
named abstract syntaxes.

C.3.3 In the simplest such use, there is a single ASN.1 type such that every presentation data value in the named
abstract syntax is a value of that ASN.1 type. This type will normally be a choice type, and every presentation data value
will be an alternative type from this choice type. In this case it is recommended that the ASN.1 module notation be used
to contain this choice type as the first defined type, followed by the definition of those (non-universal) types referenced
directly or indirectly by this choice type.

NOTE – This is not intended to exclude references to types defined in other modules.

C.3.4 It is recommended that the assignment of an object identifier and object descriptor to an abstract syntax be done
using the useful information object class ABSTRACT-SYNTAX which is defined in ITU-T Rec. X.681 | ISO/IEC 8824-
2. It is also recommended that all uses of ABSTRACT-SYNTAX be grouped into a single "root" module that identifies
all abstract syntaxes used by an application standard.

C.3.5 The following is an example of text which might appear in an application standard:

 EXAMPLE

 ISOxxxx-yyyy {iso standard xxxx asn1-modules(...) yyyy-pdu(...)} DEFINITIONS ::=
 BEGIN
 EXPORTS YYYY-PDU;

 YYYY-PDU ::= CHOICE {
 connect-pdu ,
 data-pdu CHOICE {
 ,

 },

 }

 END

 ISOxxxx-yyyy-Abstract-Syntax-Module {iso standard xxxx asn1-modules(...) } DEFINITIONS ::=
 BEGIN
 IMPORTS YYYY-PDU FROM ISOxxxx-yyyy {iso standard xxxx asn1-modules(...) yyyy-pdu(...)};

 -- This Recommendation | International Standard defines the following abstract syntax:

 YYYY-Abstract-Syntax ABSTRACT-SYNTAX ::=
 { YYYY-PDU IDENTIFIED BY yyyy-abstract-syntax-object-id }

 yyyy-abstract-syntax-object-id OBJECT IDENTIFIER ::= {iso standard yyyy(xxxx) abstract-syntax(...) }

 ISO/IEC 8824-1 : 1998 (E)

 ITU-T Rec. X.680 (1997 E) 79

 -- The corresponding object descriptor is:

 yyyy-abstract-syntax-descriptor ObjectDescriptor ::= "..................."

 -- The ASN.1 object identifier and object descriptor values:
 -- encoding rule object identifier
 -- encoding rule object descriptor
 -- assigned to encoding rules in ITU-T Rec. X.690 | ISO/IEC 8825-1 and ITU-T Rec. X.691 |
 -- ISO/IEC 8825-2 can be used as the transfer syntax identifier in conjunction with this transfer syntax,
 -- ISOxxxx-yyyy-Abstract-Syntax.

 END

C.3.6 In order to ensure interworking, the standard may additionally make mandatory the support of the transfer
syntax obtained by applying the encoding rules mentioned in its abstract syntax module.

C.4 Subtypes

C.4.1 Use subtypes to limit the values of an existing type which are to be permitted in a particular situation.

 EXAMPLES

 AtomicNumber ::= INTEGER (1..104)

 TouchToneString ::= IA5String
 (FROM ("0123456789" | "*" | "#")) (SIZE (1..63))

 ParameterList ::= SET SIZE (1..63) OF Parameter

 SmallPrime ::= INTEGER (2|3|5|7|11|13|17|19|23|29)

C.4.2 Use an extensible subtype constraint to model an INTEGER type whose set of permitted values is small and
well defined, but which is expected to increase.

 EXAMPLE

 SmallPrime ::= INTEGER (2 | 3, ...) -- First version of SmallPrime

in anticipation of:

 SmallPrime ::= INTEGER (2 | 3, ..., 5 | 7 | 11) -- Second version of SmallPrime

and later yet:

 SmallPrime ::= INTEGER (2 | 3, ..., 5 | 7 | 11 | 13 | 17 | 19) -- Third version of SmallPrime
NOTE – For certain types, some encoding rules (e.g. PER) provide a highly optimized encoding for subtype constraint extension
root values (i.e. values appearing before the “...”) and a less optimized encoding for subtype constraint extension addition values
(i.e., values appearing after the “...”), while in some other encoding rules (e.g. BER) subtype constraints have no effect on the
encoding.

C.4.3 Where two or more related types have significant commonality, consider explicitly defining their common
parent as a type and use subtyping for the individual types. This approach makes clear the relationship and the
commonality, and encourages (though does not force) this to continue as the types evolve. It thus facilitates the use of
common implementation approaches to the handling of values of these types.

 EXAMPLE

 Envelope ::= SET {
 typeA TypeA,
 typeB TypeB OPTIONAL,
 typeC TypeC OPTIONAL}
 -- the common parent

 ABEnvelope ::= Envelope (WITH COMPONENTS
 {... ,
 typeB PRESENT, typeC ABSENT})
 -- where typeB must always appear and typeC must not

 ACEnvelope ::= Envelope (WITH COMPONENTS
 {... ,
 typeB ABSENT, typeC PRESENT})
 -- where typeC must always appear and typeB must not

ISO/IEC 8824-1 : 1998 (E)

80 ITU-T Rec. X.680 (1997 E)

The latter definitions could alternatively be expressed as:

 ABEnvelope ::= Envelope (WITH COMPONENTS {typeA, typeB})

 ACEnvelope ::= Envelope (WITH COMPONENTS {typeA, typeC})

The choice between the alternatives would be made upon such factors as the number of components in the parent type,
and the number of those which are optional, the extent of the difference between the individual types, and the likely
evolution strategy.

C.4.4 Use subtyping to partially define a value, for example, a protocol data unit to be tested for in a conformance
test, where the test is concerned only with some components of the PDU.

 EXAMPLE

 Given:

 PDU ::= SET
 {alpha INTEGER,
 beta IA5String OPTIONAL,
 gamma SEQUENCE OF Parameter,
 delta BOOLEAN}

then in composing a test which requires the Boolean to be false and the integer to be negative, write:

 TestPDU ::= PDU (WITH COMPONENTS
 {... ,
 delta (FALSE),
 alpha (MIN..<0)})

and if, further, the IA5String, beta, is to be present and either 5 or 12 characters in length, write:

 FurtherTestPDU ::= TestPDU (WITH COMPONENTS {... , beta (SIZE (5|12)) PRESENT })

C.4.5 If a general-purpose data type has been defined as a SEQUENCE OF, use subtyping to define a restricted
subtype of the general type.

 EXAMPLE

 Text-block ::= SEQUENCE OF VisibleString

 Address ::= Text-block (SIZE (1..6)) (WITH COMPONENT (SIZE (1..32)))

C.4.6 If a general-purpose data type had been defined as a CHOICE, use subtyping to define a restricted subtype of
the general type.

 EXAMPLE

 Z ::= CHOICE {
 a A,
 b B,
 c C,
 d D,
 e E
 }

 V ::= Z (WITH COMPONENTS { ..., a ABSENT, b ABSENT }) -- 'a' and 'b' must be absent, either 'c',
 -- 'd' or 'e' may be present in a value.

 W ::= Z (WITH COMPONENTS { ..., a PRESENT }) -- only 'a' can be present (see 48.8.9.2).

 X ::= Z (WITH COMPONENTS { a PRESENT }) -- only 'a' can be present (see 48.8.9.2).

 Y ::= Z (WITH COMPONENTS { a ABSENT, b, c }) -- 'a', 'd' and 'e' must be absent, either
 -- 'b' or 'c' may be present in a value.

 NOTE – W and X are semantically identical.

 ISO/IEC 8824-1 : 1998 (E)

 ITU-T Rec. X.680 (1997 E) 81

C.4.7 Use contained subtypes to form new subtypes from existing subtypes.

 EXAMPLE

 Months ::= ENUMERATED {
 january (1),
 february (2),
 march (3),
 april (4),
 may (5),
 june (6),
 july (7),
 august (8),
 september (9),
 october (10),
 november (11),
 december (12) }

 First-quarter ::= Months (
 january |
 february |
 march)

 Second-quarter ::= Months (
 april |
 may |
 june)

 Third-quarter ::= Months (
 july |
 august |
 september)

 Fourth-quarter ::= Months (
 october |
 november |
 december)

 First-half ::= Months (First-quarter | Second-quarter)

 Second-half ::= Months (Third-quarter | Fourth-quarter)

ISO/IEC 8824-1 : 1998 (E)

82 ITU-T Rec. X.680 (1997 E)

Annex D

Tutorial annex on ASN.1 character strings
(This annex does not form an integral part of this Recommendation | International Standard)

D.1 Character string support in ASN.1

D.1.1 There are four groups of character string support in ASN.1. The four groups are:

a) Character string types based on ISO International Register of Coded Character Sets to be used with
Escape Sequences (that is, the structure of ISO/IEC 646) and the associated International Register of
Coded Character Sets, and provided by the types VisibleString, IA5String, TeletexString, VideotexString,
GraphicString, and GeneralString.

b) Character string types based on ISO/IEC 10646-1, and provided by subsetting the type UniversalString,
UTF8String or BMPString with subsets defined in ISO/IEC 10646-1 or by using named characters.

NOTE 1 – Use of these types unconstrained leads to violation of the conformance requirements for information
interchange specified in ISO/IEC 10646-1, as no adopted subset has been specified.

NOTE 2 – Despite the above, use of this type with a simple subtype constraint which uses a parameter of the
abstract syntax (restricted to a defined subtype of UniversalString) can provide a powerful and flexible provision
for character handling, relying on profiles to determine the value of the parameter to meet the needs of particular
communities of interest. In general, however, the use of CHARACTER STRING is to be preferred in
Recommendations | International Standards (see below).

c) Character string types providing a simple small collection of characters specified in this Recommendation |
International Standard, and intended for specialized use; these are the NumericString and PrintableString
types.

d) Use of the type CHARACTER STRING, with negotiation of the character set to be used (or
announcement of the set being used); this permits an implementation to use any collection of characters
and encodings for which OBJECT IDENTIFIERs have been assigned, including those of ISO
International Register of Coded Character Sets to be used with Escape Sequences, ISO/IEC 7350,
ISO/IEC 10646-1, and private collections of characters and encodings; (profiles may impose requirements
or restrictions on the character sets – the character abstract syntaxes – to be used).

D.2 The UniversalString, – UTF8String and BMPString types

D.2.1 The UniversalString and UTF8String types carry any character from ISO/IEC 10646-1. The set of characters in
ISO/IEC 10646-1 is generally too large for meaningful conformance to be required, and should normally be subsetted to
a combination of the standard collections of characters in Annex A of ISO/IEC 10646-1.

D.2.2 The BMPString type carries any character from the Basic Multilingual Plan of ISO/IEC 10646-1 (the first 62K
characters). The Basic Multilingual Plane is normally subsetted to a combination of the standard collections of characters
in Annex A of ISO/IEC 10646-1.

D.2.3 For the collections defined in Annex A of ISO/IEC 10646-1, there are type references defined in the built-in
ASN.1 module "ASN1-CHARACTER-MODULE" (see clause 37). The "subtype constraint" mechanism allows new
subtypes of UniversalString that are combinations of existing subtypes to be defined.

D.2.4 Examples of type references defined in ASN1-CHARACTER-MODULE and their corresponding
ISO/IEC 10646-1 collection names are:

 BasicLatin BASIC LATIN

 Latin-1Supplement LATIN-1 SUPPLEMENT

 LatinExtended-a LATIN EXTENDED-A

 LatinExtended-b LATIN EXTENDED-B

 IpaExtensions IPA EXTENSIONS

 SpacingModifierLetters SPACING MODIFIER LETTERS

 CombiningDiacriticalMarks COMBINING DIACRITICAL MARKS

 ISO/IEC 8824-1 : 1998 (E)

 ITU-T Rec. X.680 (1997 E) 83

D.2.5 ISO/IEC 10646-1 specifies three "levels of implementation", and requires that all uses of ISO/IEC 10646-1
specify the implementation level.

The implementation level relates to the extent to which support is given for combining characters in the character
repertoire, and hence, in ASN.1 terms, defines a subset of the UniversalString and BMPString restricted character string
types.

In implementation level 1, combining characters are not allowed, and there is normally a one-to-one correspondence
between abstract characters (cell references) in ASN.1 character strings and printed characters in a physical rendition of
the string.

In implementation level 2, certain combining characters (listed in ISO/IEC 10646-1, Annex B) are available for use, but
there are others whose use is prohibited.

In implementation level 3, there are no restrictions on the use of combining characters.

D.2.6 A BMPString or UniversalString can be restricted to exclude all control functions by use of the subtype
notation as follows:

 VanillaBMPString ::= BMPString(FROM (ALL EXCEPT ({0,0,0,0}..{0,0,0,31} | {0,0,0,128}..{0,0,0,159})))

or equivalently:

 C0 ::= BMPString (FROM ({0,0,0,0} .. {0,0,0,31})) -- C0 control functions

 C1 ::= BMPString (FROM ({0,0,0,128} .. {0,0,0,159})) -- C1 control functions
 VanillaBMPString ::= BMPString (FROM (ALL EXCEPT (C0 | C1)))

D.3 On ISO/IEC 10646-1 conformance requirements

Use of UniversalString, BMPString or UTF8String (or subtypes of these) in an ASN.1 type definition requires that the
conformance requirements of ISO/IEC 10646-1 be addressed.

These conformance requirements demand that implementors of a standard (X say) using such ASN.1 types provide (in the
Protocol Implementation Conformance Statement) a statement of the adopted subset of ISO/IEC 10646-1 for their
implementation of standard X, and of the level (support for combining characters) of the implementation.

The use of an ASN.1 subtype of UniversalString, UTF8String or BMPString in a specification requires that an
implementation support all the ISO/IEC 10646-1 characters that are included in that ASN.1 subtype, and hence that (at
least) those characters be present in the adopted subset for the implementation. It is also a requirement that the stated
level be supported for all such ASN.1 subtypes.

NOTE – An ASN.1 specification (in the absence of parameters of the abstract syntax and exception specifications) determines
both the (maximum) set of characters that can be transmitted and the (minimum) set of characters that have to be handled on
receipt. The adopted set of ISO/IEC 10646-1 requires that characters beyond this set not be transmitted, and that all characters
within this set be supported on receipt. The adopted set therefore needs to be precisely the set of all characters permitted by the
ASN.1 specification. The case where a parameter of the abstract syntax is present is discussed below.

D.4 Recommendations for ASN.1 users on ISO/IEC 10646-1 conformance

Users of ASN.1 should make clear the set of ISO/IEC 10646-1 characters that will form the adopted subset of
implementations (and the required implementation level) if the requirements of their standard are to be met.

This can conveniently be done by defining an ASN.1 subtype of UniversalString, UTF8String or BMPString that contains
all the characters needed for the standard, and by restricting it to "Level1" or "Level2" if appropriate. A convenient name
for this type might be "ISO-10646-String".

EXAMPLE

 ISO-10646-String ::= BMPString

 (FROM(Level2 INTERSECTION (BasicLatin UNION HebrewExtended UNION Hiragana)))
 -- This is the type that defines the minimum set of characters in the adopted subset for an
 -- implementation of this standard. The implementation level is required to be at least level 2.

ISO/IEC 8824-1 : 1998 (E)

84 ITU-T Rec. X.680 (1997 E)

The PICS would then contain a simple statement that the adopted subset of ISO/IEC 10646-1 is the limited subset (and
the level) defined by "ISO-10646-String", and "ISO-10646-String" (possibly subtyped) would be used throughout the
standard where ISO/IEC 10646-1 strings were to be included.

 EXAMPLE PICS

 The adopted subset of ISO/IEC 10646-1 is the limited subset consisting of all the characters in the ASN.1 type
"ISO-10646-String" defined in module <your module name goes here>, with an implementation level of 2.

EXAMPLE USE IN PROTOCOL

 Message ::= SEQUENCE {
 first-field ISO-10646-String, -- all characters in the adopted subset can appear
 second-field ISO-10646-String (FROM (latinSmallLetterA .. latinSmallLetterZ)), -- lower case latin
 -- letters only
 third-field ISO-10646-String (FROM (digitZero .. digitNine)) -- digits only

 }

D.5 Adopted subsets as parameters of the abstract syntax

ISO/IEC 10646-1 requires that the adopted subset and level of an implementation be explicitly defined. Where an ASN.1
user does not wish to constrain the range of ISO/IEC 10646-1 characters in some part of the standard being defined, this
can be expressed by defining "ISO-10646-String" (for example) as a subtype of UniversalString, BMPString or
UTF8String with a subtype constraint consisting of (or including) "ImplementorsSubset" which is left as a parameter of
the abstract syntax.

Users of ASN.1 are warned that in this case a conforming sender may transmit to a conforming receiver characters that
cannot be handled by the receiver because they fall outside the (implementation-dependent) adopted subset or level of the
receiver, and it is recommended that an exception-handling specification be included in the definition of "ISO-10646-
String" in this case.

EXAMPLE

 ISO-10646-String {UniversalString : ImplementorsSubset, ImplementationLevel} ::=
 UniversalString (FROM((ImplementorsSubset UNION BasicLatin)
 INTERSECTION ImplementationLevel) !characterSetProblem)
 -- The adopted subset of ISO/IEC 10646-1 shall include "BasicLatin", but may also include
 -- any additional characters specified in "ImplementorsSubset", which is a parameter
 -- of the abstract syntax. "ImplementationLevel", which is a parameter of the abstract
 -- syntax defines the implementation level. A conforming receiver must be prepared to
 -- recieve characters outside of its adopted subset and implementation level. In this case
 -- the exception handling specified in clause <add your clause number here> for
 -- "characterSetProblem" is invoked. Note that this can never be invoked by a conforming
 -- receiver if the actual characters used in an instance of communication are restricted
 -- to "BasicLatin".

 My-Level2-String ::= ISO-10646-String { { HebrewExtended UNION Hiragana }, Level2 }

D.6 The CHARACTER STRING type

D.6.1 The CHARACTER STRING type gives complete flexibility in the choice of character set and encoding
method. Where a single connection provides end-to-end data transfer (no application relaying), then negotiation of the
character sets to be used and the encoding can be accomplished as part of the definition of the presentation contexts for
character abstract syntaxes.

D.6.2 It is important to understand that a character abstract syntax is an ordinary abstract syntax with some
restrictions on the possible values (they are all character strings, and indeed are all the character strings formed from
some collection of characters). Thus registration of such syntaxes, and negotiation of a presentation context, is performed
in the normal way.

D.6.3 The encoding of CHARACTER STRING also permits announcement of the abstract and transfer syntax used,
without negotiation, for environments where this is appropriate.

NOTE 1 – Application designers may forbid use of presentation negotiation for these fields, or may require it, or may leave the
option to the sender.

 ISO/IEC 8824-1 : 1998 (E)

 ITU-T Rec. X.680 (1997 E) 85

NOTE 2 – Where announcement rather than negotiation is employed, the application designer should both consider how the
sender can determine what character abstract syntaxes (and transfer syntaxes) might be acceptable to the receiver (for example by
use of the Directory Service or as a result of profiling), and also consider the actions a receiver is to take if a CHARACTER
STRING value is received from a Character Abstract Syntax that it does not support.

D.6.4 If negotiation is used, the application layer designer may control such negotiation, specifying when such
presentation contexts are to be established, and specifying the user data parameter of the P-ALTER-CONTEXT
primitives, or may simply assume that some profile will have determined which character abstract syntax to use,
establishing a presentation context for it at the time of P-CONNECT.

D.6.5 The presentation service context management facilities enable an initiator (in a P-CONNECT or within an
established connection using P-ALTER-CONTEXT) to propose a list of new abstract syntaxes (which can include
character abstract syntaxes), or to remove abstract syntaxes from use, and for the responder to select from that list.

D.6.6 The initiator can express preference by the order of the abstract syntax in the list, or by use of the user-data
parameter, which is available for use by the application designer in order to clarify the purpose of proposing the use of
the new abstract syntax. It could, for example, indicate that all the (character) abstract syntaxes are being proposed for
use for some single purpose, or that the intent is to allow the selection of a single (character) abstract syntax to be used
for a number of purposes.

D.6.7 Character abstract syntaxes (and corresponding character transfer syntaxes) have been defined in a number of
ITU-T Recommendations and International Standards, and additional character abstract syntaxes (and/or character
transfer syntaxes) can be defined by any organization able to allocate object identifiers.

D.6.8 In ISO/IEC 10646-1, there is a character abstract syntax defined (and object identifiers assigned) for the entire
collection of characters, for each of the defined collection of characters for subsets (BASIC LATIN, BASIC
SYMBOLS, etc.), and for every possible combination of the defined collections of characters. There are also two
character transfer syntaxes defined to identify the various options (particularly 16-bit and 32-bit) in ISO/IEC 10646-1.

ISO/IEC 8824-1 : 1998 (E)

86 ITU-T Rec. X.680 (1997 E)

Annex E

Superseded features
(This annex does not form an integral part of this Recommendation | International Standard)

A number of features which were included in previous editions of this Recommendation | International Standard (namely
CCITT Rec. X.208 | ISO/IEC 8824) have been replaced and do not now form a part of ASN.1. They may, however, be
encountered in some existing ASN.1 modules. This annex describes these features, and how their capabilities can be
achieved by the use of those which replace them.

E.1 Use of identifiers now mandatory

The notation for a NamedType and a NamedValue were originally:

 NamedType ::= identifier Type | Type | SelectionType
 NamedValue ::= identifier Value | Value

but this has been changed to:

 NamedType ::= identifier Type
 NamedValue ::= identifier Value

because the former could result in ambiguous grammar.

Identifiers can be added to "NamedType"s in old ASN.1 specifications without affecting the encoding of the type
(although changes to the ASN.1 will be needed for any use of related value notation). Such change should be done either
under a defect report or as part of a new revision of the Recommendation | International Standard being modified.

E.2 The choice value

The value notation for the choice type was originally:

 ChoiceValue ::= NamedValue

 NamedValue ::= identifier Value | Value

but this has been changed to:

 ChoiceValue ::= identifier ":" Value

because the former could result in ambiguous grammar.

E.3 The any type

The any type was defined in some earlier versions of this Recommendation | International Standard.

The normal use of the any type was to leave a "hole" in the specification which would be filled in by some other
specification. The notation was "AnyType", allowed as an alternative for "Type", and specified as:

 AnyType ::= ANY | ANY DEFINED BY identifier

It was strongly recommended that the second alternative of the notation be used. In this alternative, only allowed where
the any type was one of the component types of a set or sequence type, some other component of the set or sequence (that
with the referenced "identifier") would indicate, by its integer or object identifier value (or a choice of these), the actual
type governing the any component. The mapping from such values to particular ASN.1 types could be viewed as some
sort of "table" which would form part of the abstract syntax. In the absence of the "DEFINED BY identifier" (the first
notational alternative), there would be no indication within the notation of how the type of the field could be determined.
This frequently led to specifications where the "hole" continued to exist even at the stage where implementations were
expected.

The any type has now been superseded by the ability to specify information object classes and then to refer to the fields
of information object classes from within type definitions (see ITU-T Rec. X.681 | ISO/IEC 8824-2). Since fields may be
defined to allow an arbitrary ASN.1 type, the basic ability to leave "holes" is provided. However, the new feature also
permits the specification of a "table constraint", wherein a particular "information object set" (a set of information objects
of the appropriate information object class) is explicitly cited as constraining the type. This latter capability encompasses
that offered by "ANY DEFINED BY identifier".

 ISO/IEC 8824-1 : 1998 (E)

 ITU-T Rec. X.680 (1997 E) 87

In addition, some pre-defined uses of the new capabilities are provided (see ITU-T Rec. X.681 | ISO/IEC 8824-2), which
correspond to various commonly occurring patterns of use of the any type. For example, a sequence containing an object
identifier and an any, often used previously to convey some arbitrary value together with an indication of its type, can
now be described as:

 INSTANCE OF MUMBLE

where MUMBLE is defined as an information object class (not as an ASN.1 type):

 MUMBLE ::= TYPE-IDENTIFIER

This notation causes "INSTANCE OF MUMBLE" to be replaced by an object identifier for an object of class
MUMBLE, together with the type identified by the object identifier. See C.2.18 for an example.

Particular pairings of object identifier and type are defined as information objects of class MUMBLE, and, if required,
particular sets of these can also be defined and used to constrain the INSTANCE OF construct so that only those objects
in the set can appear.

The macro capability was often used as a semi-formal way of defining tables of information objects to govern an
associated use of an any type, and is also superseded by the new capabilities.

E.4 The macro capability

The macro capability allowed the user of ASN.1 to extend the notation by defining macros.

The predominant usage of the macro capability was to define notation for specifying information objects. This capability
has now been included in ASN.1 directly (see ITU-T Rec. X.681 | ISO/IEC 8824-2) without the need for the full
generality (and attendant dangers) of user-defined notation.

Besides this, the only other usage for macros seems to be in defining expressions which must be supplied with some
parameters before they are fully-defined ASN.1 types. This is now provided through the more general parameterization
capability (see ITU-T Rec. X.683 | ISO/IEC 8824-4).

ISO/IEC 8824-1 : 1998 (E)

88 ITU-T Rec. X.680 (1997 E)

Annex F

Tutorial annex on the ASN.1 model of type extension
(This annex does not form an integral part of this Recommendation | International Standard)

F.1 Overview

F.1.1 It can happen that an ASN.1 type evolves over time from an extension root type by means of a series of
extensions called extension additions.

F.1.2 An ASN.1 type available to a particular implementation may be the extension root type, or may be the
extension root type plus one or more extension additions. Each such ASN.1 type that contains an extension addition also
contains all previously defined extension additions.

F.1.3 The ASN.1 type definitions in this series are said to be extension-related (see 3.8.32 for a more precise
definition of "extension-related"), and encoding rules are required to encode extension-related types in a such a way that
if two systems are using two different types which are extension-related, transmissions between the two systems will
successfully transfer the information content of those parts of the extension-related types that are common to the two
systems. It is also required that those parts that are not common to both systems can be delimited and retransmitted
(perhaps to a third party) on a subsequent transmission, provided the same transfer syntax is used.

NOTE – The sender may be using a type that is either earlier or later in the series of extension additions.

F.1.4 The series of types obtained by progressively adding to a root type is called an extension series. In order for
encoding rules to make appropriate provision for transmissions of extension-related types (which may require more bits
on the line), such types (including the extension root type) need to be syntactically flagged. The flag is an ellipsis (...),
and is called an extension marker.

EXAMPLE

Extension root type 1st extension 2nd extension 3rd extension

A ::= SEQUENCE { A ::= SEQUENCE { A ::= SEQUENCE { A ::= SEQUENCE {
 a INTEGER, a INTEGER, a INTEGER, a INTEGER,
 … …, …, …,
} b BOOLEAN, b BOOLEAN, b BOOLEAN,
 c INTEGER c INTEGER, c INTEGER,
 } d SEQUENCE { d SEQUENCE {
 e INTEGER, e INTEGER,
 …, …,
 …, g BOOLEAN OPTIONAL,
 f IA5String h BMPString,
 } …,
 } f IA5String
 }
 }
F.1.5 All extension additions are inserted between pairs of extension markers. A single extension marker is allowed if
in the extension root type it appears as the last item in the type, in which case a matching extension marker is assumed to
exist just before the closing brace of the type; in such cases all extension additions are inserted at the end of the type.

F.1.6 A type that has an extension marker can be nested inside a type that has none, or it can be nested within a type
in an extension root, or it can be nested in an extension addition type. In such cases the extension series are treated
independently, and the nested type with the extension marker has no impact on the type within which it is nested. Only
one extension insertion point (the end of the type if a single extension marker is used, or just before the second
extension marker if a pair of extension markers is used) can appear in any specific construct.

F.1.7 A new extension addition in the extension series is defined in terms of a single extension addition group (one
or more types nested within “[[“ “]]”) or a single type added at the extension insertion point. In the following example
the 1st extension defines an extension addition group where b and c must either be both present or both absent in a value
of type “A”. The second extension defines a single component type, d, which may be absent in a value of type “A”. The
third extension defines an extension addition group in which h must be present in a value of type “A” whenever the newly
added extension addition group is present in a value.

 ISO/IEC 8824-1 : 1998 (E)

 ITU-T Rec. X.680 (1997 E) 89

EXAMPLE

Extension root type 1st extension 2nd extension 3rd extension

A ::= SEQUENCE { A ::= SEQUENCE { A ::= SEQUENCE { A ::= SEQUENCE {
 a INTEGER, a INTEGER, a INTEGER, a INTEGER,
 … …, …, …,
} [[[[[[
 b BOOLEAN, b BOOLEAN, b BOOLEAN,
 c INTEGER c INTEGER c INTEGER
]]]],]],
 } d SEQUENCE { d SEQUENCE {
 e INTEGER, e INTEGER,
 …, …,
 …, [[
 f IA5String g BOOLEAN OPTIONAL,
 } h BMPString
 }]],
 …,
 f IA5String
 }
 }

F.1.8 While the normal practice will be for extension additions to be added over time, the underlying ASN.1 model
and specification does not involve time. Two types are extension-related if one can be "grown" from the other by
extension additions. That is, one contains all the components of the other. There may be types that have to be "grown" in
the opposite direction (although this is unlikely). It could even be that, over time, a type starts with a lot of extension
additions which were progressively removed! All that ASN.1 and its encoding rules care about is whether a pair of type
specifications are extension-related or not. If they are, then all ASN.1 encoding rules will ensure interworking between
their users.

F.1.9 We start with a type and then decide whether we are going to want interworking with earlier versions if we later
have to extend it. If so, we include the extension marker now. We can then add later extension additions to the type
without changing the bits on the line for earlier values, and with defined handling of extended values by earlier systems. It
is, however, important to note that adding an extension marker to a type that was previously without one (or removing an
extension marker) will in general change the bits on the line and will prevent interworking. Such a change generally
requires a version number change in all affected protocols.

F.1.10 Table F.1 shows the ASN.1 types that can form the extension root type of an ASN.1 extension series, and the
nature of the single extension addition that is permitted for that type (multiple extension additions can of course be made
in succession or together).

Table F.1 – Extension additions

F.2 Effects on version numbering, etc.

F.2.1 Where an ASN.1 specification is re-issued with type definitions changed in terms of extension-related type
definitions, then for all purposes, these changes do not in themselves require a change in the object identifier of the
module or the version number of the protocol.

Extension root type Nature of extension addition

ENUMERATED Addition of a single further enumeration at the end of the "AdditionalEnumeration"s, with an
enumeration value greater than that of any enumeration already added.

SEQUENCE and SET Addition of a single type or extension addition group to the end of the “ExtensionAdditionList”.
“ComponentType”s that are extension additions (not contained in an extension addition group) are not
required to be marked OPTIONAL or DEFAULT, although this will often be the case.

CHOICE Addition of a single "NamedType" to the end of the "ExtensionAdditionAlternativesList"

Constraint notation Addition of a single "AdditionalElementSetSpec" to the "ElementSetSpecs" notation

ISO/IEC 8824-1 : 1998 (E)

90 ITU-T Rec. X.680 (1997 E)

F.2.2 It may be that for other reasons such changes might be accompanied by version number changes, but this is not
a requirement.

F.2.3 By contrast, the addition of an extension marker to a type that previously had none, or the addition of
components to a sequence or set type (for example) with no extension marker, creates a new type which is not extension-
related to the old type, and the module containing it should be given a new object identifier, and a new version number
would be appropriate in the associated protocol.

F.3 Requirements on encoding rules

F.3.1 An abstract syntax can be defined as the values of a single ASN.1 type that is an extensible type. It then
contains all the values that can be obtained by the addition or removal of extension-additions. Such an abstract syntax is
called an extension-related abstract syntax.

F.3.2 A set of well-formed encoding rules for an extension-related abstract syntax satisfies the additional
requirements stated in F.3.3 to F.3.5.

NOTE – All ASN.1 encoding rules satisfy these requirements.

F.3.3 The definition of the procedures for transforming an abstract value into an encoding for transfer, and for
transforming a received encoding into an abstract value shall recognize the possibility that the sender and receiver are
using abstract syntaxes that are not identical, but are extension-related.

F.3.4 In this case, the encoding rules shall ensure that where the sender has a type specification that is earlier in the
extension series than that of the receiver, values of the sender shall be transferred in such a way that the receiver can
determine that extension additions are not present.

F.3.5 The encoding rules shall ensure that where the sender has a type specification that is later in the extension series
than that of the receiver, transfer of values of that type to the receiver shall be possible.

 ISO/IEC 8824-1 : 1998 (E)

 ITU-T Rec. X.680 (1997 E) 91

Annex G

Summary of the ASN.1 notation
(This annex does not form an integral part of this Recommendation | International Standard)

The following items are defined in clause 11:

typereference

identifier

valuereference

modulereference

comment

empty

number

bstring

hstring

cstring

"::="

[[

]]

".."

"..."

"{"

"}"

"<"

","

"."

"("

")"

"["

"]"

"-"

":"

";"

"@"

"|"

"!"

"^"

ABSENT

ABSTRACT-SYNTAX

ALL

APPLICATION

AUTOMATIC

BEGIN

BIT

BMPString

BOOLEAN

BY

CHARACTER

CHOICE

CLASS

COMPONENT

COMPONENTS

CONSTRAINED

DEFAULT

DEFINITIONS

EMBEDDED

END

ENUMERATED

EXCEPT

EXPLICIT

EXPORTS

EXTENSIBILITY

EXTERNAL

FALSE

FROM

GeneralizedTime

GeneralString

GraphicString

IA5String

IDENTIFIER

IMPLICIT

IMPLIED

IMPORTS

INCLUDES

INSTANCE

INTEGER

INTERSECTION

ISO646String

MAX

MIN

MINUS-INFINITY

NULL

NumericString

OBJECT

ObjectDescriptor

OCTET

OF

OPTIONAL

PDV

PLUS-INFINITY

PRESENT

PrintableString

PRIVATE

REAL

SEQUENCE

SET

SIZE

STRING

SYNTAX

T61String

TAGS

TeletexString

TRUE

TYPE-IDENTIFIER

UNION

UNIQUE

UNIVERSAL

UniversalString

UTCTime

UTF8String

VideotexString

VisibleString

WITH

ISO/IEC 8824-1 : 1998 (E)

92 ITU-T Rec. X.680 (1997 E)

The following productions are used in this Recommendation | International Standard, with the above items as terminal
symbols:

 ModuleDefinition ::= ModuleIdentifier
 DEFINITIONS
 TagDefault
 ExtensionDefault
 "::="
 BEGIN
 ModuleBody
 END

 ModuleIdentifier ::= modulereference
 DefinitiveIdentifier

 DefinitiveIdentifier ::= "{" DefinitiveObjIdComponentList "}" |
 empty

 DefinitiveObjIdComponentList ::=
 DefinitiveObjIdComponent |
 DefinitiveObjIdComponent DefinitiveObjIdComponentList

 DefinitiveObjIdComponent ::=
 NameForm |
 DefinitiveNumberForm |
 DefinitiveNameAndNumberForm

 DefinitiveNumberForm ::= number

 DefinitiveNameAndNumberForm ::= identifier "(" DefinitiveNumberForm ")"

 TagDefault ::= EXPLICIT TAGS |
 IMPLICIT TAGS |
 AUTOMATIC TAGS |
 empty

 ExtensionDefault ::=
 EXTENSIBILITY IMPLIED | empty

 ModuleBody ::= Exports Imports AssignmentList |
 empty

 Exports ::= EXPORTS SymbolsExported ";" |
 empty

 SymbolsExported ::= SymbolList |
 empty

 Imports ::= IMPORTS SymbolsImported ";" |
 empty

 SymbolsImported ::= SymbolsFromModuleList |
 empty

 SymbolsFromModuleList ::=
 SymbolsFromModule |
 SymbolsFromModuleList SymbolsFromModule

 SymbolsFromModule ::= SymbolList FROM GlobalModuleReference

 GlobalModuleReference ::= modulereference AssignedIdentifier

 AssignedIdentifier ::= ObjectIdentifierValue |
 DefinedValue |
 empty

 SymbolList ::= Symbol | Symbol "," SymbolList

 Symbol ::= Reference | ParameterizedReference

 Reference ::=
 typereference |
 valuereference |
 objectclassreference |
 objectreference |
 objectsetreference

 ISO/IEC 8824-1 : 1998 (E)

 ITU-T Rec. X.680 (1997 E) 93

 AssignmentList ::= Assignment | AssignmentList Assignment

 Assignment ::=
 TypeAssignment |
 ValueAssignment |
 ValueSetTypeAssignment |
 ObjectClassAssignment |
 ObjectAssignment |
 ObjectSetAssignment |
 ParameterizedAssignment

 Externaltypereference ::=
 modulereference
 "."
 typereference

 Externalvaluereference ::=
 modulereference
 "."
 valuereference

 DefinedType ::=
 Externaltypereference |
 typereference |
 ParameterizedType |
 ParameterizedValueSetType

 DefinedValue ::=
 Externalvaluereference |
 valuereference |
 ParameterizedValue

 AbsoluteReference ::= "@" GlobalModuleReference
 "."
 ItemSpec

 ItemSpec ::=
 typereference |
 ItemId "." ComponentId

 ItemId ::= ItemSpec

 ComponentId ::=
 identifier | number | "*"

 TypeAssignment ::= typereference
 "::="
 Type

 ValueAssignment ::= valuereference
 Type
 "::="
 Value

 ValueSetTypeAssignment ::= typereference
 Type
 "::="
 ValueSet

 ValueSet ::= "{" ElementSetSpecs "}"

 Type ::= BuiltinType | ReferencedType | ConstrainedType

 BuiltinType ::=
 BitStringType |
 BooleanType |
 CharacterStringType |
 ChoiceType |
 EmbeddedPDVType |
 EnumeratedType |
 ExternalType |
 InstanceOfType |
 IntegerType |
 NullType |

ISO/IEC 8824-1 : 1998 (E)

94 ITU-T Rec. X.680 (1997 E)

 ObjectClassFieldType |
 ObjectIdentifierType |
 OctetStringType |
 RealType |
 SequenceType |
 SequenceOfType |
 SetType |
 SetOfType |
 TaggedType

 NamedType ::= identifier Type

 ReferencedType ::=
 DefinedType |
 UsefulType |
 SelectionType |
 TypeFromObject |
 ValueSetFromObjects

 Value ::= BuiltinValue | ReferencedValue

 BuiltinValue ::=
 BitStringValue |
 BooleanValue |
 CharacterStringValue |
 ChoiceValue |
 EmbeddedPDVValue |
 EnumeratedValue |
 ExternalValue |
 InstanceOfValue |
 IntegerValue |
 NullValue |
 ObjectClassFieldValue |
 ObjectIdentifierValue |
 OctetStringValue |
 RealValue |
 SequenceValue |
 SequenceOfValue |
 SetValue |
 SetOfValue |
 TaggedValue

 ReferencedValue ::=
 DefinedValue |
 ValueFromObject

 NamedValue ::= identifier Value

 BooleanType ::=BOOLEAN

 BooleanValue::= TRUE | FALSE

 IntegerType ::=
 INTEGER |
 INTEGER "{" NamedNumberList "}"

 NamedNumberList ::=
 NamedNumber |
 NamedNumberList "," NamedNumber

 NamedNumber ::=
 identifier "(" SignedNumber ")" |
 identifier "(" DefinedValue ")"

 SignedNumber ::= number | "-" number

 IntegerValue ::= SignedNumber | identifier

 EnumeratedType ::=
 ENUMERATED "{" Enumerations "}"

 Enumerations ::= RootEnumeration |
 RootEnumeration "," "..." |
 RootEnumeration "," "..." "," AdditionalEnumeration

 ISO/IEC 8824-1 : 1998 (E)

 ITU-T Rec. X.680 (1997 E) 95

 RootEnumeration ::= Enumeration

 AdditionalEnumeration ::= Enumeration

 Enumeration ::=
 EnumerationItem | EnumerationItem "," Enumeration

 EnumerationItem ::=
 identifier | NamedNumber

 EnumeratedValue ::=
 identifier

 RealType ::= REAL

 RealValue ::=
 NumericRealValue | SpecialRealValue

 NumericRealValue ::= 0 |
 SequenceValue -- Value of the associated sequence type

 SpecialRealValue ::=
 PLUS-INFINITY | MINUS-INFINITY

 BitStringType ::= BIT STRING | BIT STRING "{" NamedBitList "}"

 NamedBitList::= NamedBit | NamedBitList "," NamedBit

 NamedBit ::= identifier "(" number ")" |
 identifier "(" DefinedValue ")"

 BitStringValue ::= bstring | hstring | "{" IdentifierList "}" | "{" "}"

 IdentifierList ::= identifier | IdentifierList "," identifier

 OctetStringType ::= OCTET STRING

 OctetStringValue ::= bstring | hstring

 NullType ::= NULL

 NullValue ::= NULL

 SequenceType ::= SEQUENCE “{” “}” |
 SEQUENCE “{” ExtensionAndException OptionalExtensionMarker “}” |
 SEQUENCE “{” ComponentTypeLists “}”

 ExtensionAndException ::= “…” | “…” ExceptionSpec

 OptionalExtensionMarker ::= “,” “…” | empty

 ComponentTypeLists ::= RootComponentTypeList |
 RootComponentTypeList “,” ExtensionAndException ExtensionAdditions OptionalExtensionMarker |
 RootComponentTypeList “,” ExtensionAndException ExtensionAdditions ExtensionEndMarker “,”
 RootComponentTypeList |
 ExtensionAndException ExtensionAdditions ExensionEndMarker “,” RootComponentTypeList

 RootComponentTypeList ::= ComponentTypeList

 ExtensionEndMarker ::= “,” “…”

 ExtensionAdditions ::= “,” ExtensionAdditionList | empty

 ExtensionAdditionList ::= ExtensionAddition |
 ExtensionAdditionList “,” ExtensionAddition

 ExtensionAddition ::= ComponentType | ExtensionAdditionGroup

 ExtensionAdditionGroup ::= “[[” ComponentTypeList “]]”

 ComponentTypeList ::= ComponentType |
 ComponentTypeList "," ComponentType

 ComponentType ::= NamedType |
 NamedType OPTIONAL |
 NamedType DEFAULT Value |
 COMPONENTS OF Type

ISO/IEC 8824-1 : 1998 (E)

96 ITU-T Rec. X.680 (1997 E)

 SequenceValue ::= "{" ComponentValueList "}" | "{" "}"

 ComponentValueList ::= NamedValue |
 ComponentValueList "," NamedValue

 SequenceOfType ::= SEQUENCE OF Type

 SequenceOfValue ::= "{" ValueList "}" | "{" "}"

 ValueList ::= Value | ValueList "," Value

 SetType ::= SET “{” “}” |
 SET “{” ExtensionAndException OptionalExtensionMarker “}” |
 SET “{” ComponentTypeLists “}”

 SetValue ::= "{" ComponentValueList "}" | "{" "}"

 SetOfType ::= SET OF Type

 SetOfValue ::= "{" ValueList "}" | "{" "}"

 ChoiceType ::= CHOICE "{" AlternativeTypeLists "}"

 AlternativeTypeLists ::=
 RootAlternativeTypeList |
 RootAlternativeTypeList “,”
 ExtensionAndException ExtensionAdditionAlternatives OptionalExtensionMarker

 RootAlternativeTypeList ::= AlternativeTypeList

 ExtensionAdditionAlternatives ::= “,” ExtensionAdditionAlternativesList | empty

 ExtensionAdditionAlternativesList ::= ExtensionAdditionAlternative |
 ExtensionAdditionAlternativesList “,” ExtensionAdditionAlternative

 ExtensionAdditionAlternative ::= ExtensionAdditionAlternatives | NamedType

 ExtensionAdditionAlternatives ::= “[[” AlternativeTypeList “]]”

 AlternativeTypeList ::= NamedType |
 AlternativeTypeList "," NamedType

 ChoiceValue ::= identifier ":" Value

 SelectionType ::= identifier "<" Type

 TaggedType ::= Tag Type |
 Tag IMPLICIT Type |
 Tag EXPLICIT Type

 Tag ::= "[" Class ClassNumber "]"

 ClassNumber ::= number | DefinedValue

 Class ::= UNIVERSAL |
 APPLICATION |
 PRIVATE |
 empty

 TaggedValue ::= Value

 EmbeddedPDVType ::= EMBEDDED PDV

 EmbeddedPDVValue ::= SequenceValue

 ExternalType ::= EXTERNAL

 ExternalValue ::= SequenceValue

 ObjectIdentifierType ::= OBJECT IDENTIFIER

 ObjectIdentifierValue ::= "{" ObjIdComponentList "}" |
 "{" DefinedValue ObjIdComponentList "}"

 ObjIdComponentList ::= ObjIdComponent |
 ObjIdComponent ObjIdComponentList

 ISO/IEC 8824-1 : 1998 (E)

 ITU-T Rec. X.680 (1997 E) 97

 ObjIdComponent ::= NameForm |
 NumberForm |
 NameAndNumberForm

 NameForm ::= identifier

 NumberForm ::= number | DefinedValue

 NameAndNumberForm ::= identifier "(" NumberForm ")"

 CharacterStringType ::= RestrictedCharacterStringType | UnrestrictedCharacterStringType

 RestrictedCharacterStringType ::= BMPString |

 GeneralString |
 GraphicString |
 IA5String |
 ISO646String |
 NumericString |
 PrintableString |
 TeletexString |
 T61String |
 UniversalString |
 UTF8String |
 VideotexString |
 VisibleString

 RestrictedCharacterStringValue ::= cstring | CharacterStringList | Quadruple | Tuple

 CharacterStringList ::= "{" CharSyms "}"
 CharSyms ::= CharsDefn | CharSyms "," CharsDefn
 CharsDefn ::= cstring | Quadruple | Tuple | DefinedValue

 Quadruple ::= "{" Group "," Plane "," Row "," Cell "}"
 Group ::= number
 Plane ::= number
 Row ::= number
 Cell ::= number

 Tuple ::= "{" TableColumn "," TableRow "}"
 TableColumn ::= number
 TableRow ::= number

 UnrestrictedCharacterStringType ::= CHARACTER STRING

 CharacterStringValue ::= RestrictedCharacterStringValue | UnrestrictedCharacterStringValue

 UnrestrictedCharacterStringValue ::= SequenceValue

 UsefulType ::= typereference

The following character string types are defined in 36.1:

 NumericStringVisibleString

 PrintableString ISO646String

 TeletexString IA5String

 T61String GraphicString

 VideotexString GeneralString

 UniversalString BMPString

The following useful types are defined in clauses 41 to 43:

 GeneralizedTime

 UTCTime

 ObjectDescriptor

The following productions are used in clauses 44 to 48:

 ConstrainedType ::=
 Type Constraint |
 TypeWithConstraint

ISO/IEC 8824-1 : 1998 (E)

98 ITU-T Rec. X.680 (1997 E)

 TypeWithConstraint ::=
 SET Constraint OF Type |
 SET SizeConstraint OF Type |
 SEQUENCE Constraint OF Type |
 SEQUENCE SizeConstraint OF Type

 Constraint ::= "(" ConstraintSpec ExceptionSpec ")"

 ConstraintSpec ::=
 SubtypeConstraint |
 GeneralConstraint

 ExceptionSpec ::= "!" ExceptionIdentification | empty

 ExceptionIdentification ::= SignedNumber |
 DefinedValue |
 Type ":" Value

 SubtypeConstraint ::= ElementSetSpecs

 ElementSetSpecs ::=
 RootElementSetSpec |
 RootElementSetSpec "," "..." |
 "..." "," AdditionalElementSetSpec |
 RootElementSetSpec "," "..." "," AdditionalElementSetSpec

 RootElementSetSpec ::= ElementSetSpec

 AdditionalElementSetSpec ::= ElementSetSpec

 ElementSetSpec ::= Unions | ALL Exclusions

 Unions ::= Intersections |
 UElems UnionMark Intersections

 UElems ::= Unions

 Intersections ::= IntersectionElements |
 IElems IntersectionMark IntersectionElements

 IElems ::= Intersections

 IntersectionElements ::= Elements | Elems Exclusions

 Elems ::= Elements

 Exclusions ::= EXCEPT Elements

 UnionMark ::= "|" | UNION

 IntersectionMark ::= "^" | INTERSECTION

 Elements ::=
 SubtypeElements |
 ObjectSetElements |
 "(" ElementSetSpec ")"

 SubtypeElements ::=
 SingleValue |
 ContainedSubtype |
 ValueRange |
 PermittedAlphabet |
 SizeConstraint |
 TypeConstraint |
 InnerTypeConstraints

 SingleValue ::= Value

 ContainedSubtype ::= Includes Type

 Includes ::= INCLUDES | empty

 ValueRange ::= LowerEndpoint ".." UpperEndpoint

 LowerEndpoint ::= LowerEndValue | LowerEndValue "<"

 UpperEndpoint ::= UpperEndValue | "<" UpperEndValue

 ISO/IEC 8824-1 : 1998 (E)

 ITU-T Rec. X.680 (1997 E) 99

 LowerEndValue ::= Value | MIN

 UpperEndValue ::= Value | MAX

 SizeConstraint ::= SIZE Constraint

 PermittedAlphabet ::= FROM Constraint

 TypeConstraint ::= Type

 InnerTypeConstraints ::=
 WITH COMPONENT SingleTypeConstraint |
 WITH COMPONENTS MultipleTypeConstraints

 SingleTypeConstraint::= Constraint

 MultipleTypeConstraints ::= FullSpecification | PartialSpecification

 FullSpecification ::= "{" TypeConstraints "}"

 PartialSpecification ::= "{" "..." "," TypeConstraints "}"

 TypeConstraints ::=
 NamedConstraint |
 NamedConstraint "," TypeConstraints

 NamedConstraint ::=
 identifier ComponentConstraint

 ComponentConstraint ::= ValueConstraint PresenceConstraint

 ValueConstraint ::= Constraint | empty

 PresenceConstraint ::= PRESENT | ABSENT | OPTIONAL | empty

ITU-T RECOMMENDATIONS SERIES

Series A Organization of the work of the ITU-T

Series B Means of expression: definitions, symbols, classification

Series C General telecommunication statistics

Series D General tariff principles

Series E Overall network operation, telephone service, service operation and human factors

Series F Non-telephone telecommunication services

Series G Transmission systems and media, digital systems and networks

Series H Audiovisual and multimedia systems

Series I Integrated services digital network

Series J Transmission of television, sound programme and other multimedia signals

Series K Protection against interference

Series L Construction, installation and protection of cables and other elements of outside plant

Series M TMN and network maintenance: international transmission systems, telephone circuits,
telegraphy, facsimile and leased circuits

Series N Maintenance: international sound programme and television transmission circuits

Series O Specifications of measuring equipment

Series P Telephone transmission quality, telephone installations, local line networks

Series Q Switching and signalling

Series R Telegraph transmission

Series S Telegraph services terminal equipment

Series T Terminals for telematic services

Series U Telegraph switching

Series V Data communication over the telephone network

Series X Data networks and open system communications

Series Y Global information infrastructure

Series Z Programming languages

	Return to Menu
	Return to Series X menu
	====================
	ITU-T Rec. X.680 (12/97) INFORMATION TECHNOLOGY - ABSTRACT SYNTAX NOTATION ONE (ASN.1): SPECIFICATION OF BASIC NOTATION
	Summary
	Source
	FOREWORD
	CONTENTS
	Introduction
	INFORMATION TECHNOLOGY - ABSTRACT SYNTAX NOTATION ONE (ASN.1): SPECIFICATION OF BASIC NOTATION
	1 Scope
	2 Normative references
	2.1 Identical Recommendations | International Standards
	2.2 Paired Recommendations | International Standards equivalent in technical content
	2.3 Additional references

	3 Definitions
	3.1 Information object specification
	3.2 Constraint specification
	3.3 Parameterization of ASN.1 specification
	3.4 Presentation service definition
	3.5 Presentation protocol specification
	3.6 Structure for identification of organizations
	3.7 Universal Multiple-Octet Coded Character Set (UCS)
	3.8 Additional definitions

	4 Abbreviations
	5 Notation
	5.1 Productions
	5.2 The alternative collections
	5.3 Example of a production
	5.4 Layout
	5.5 Recursion
	5.6 References to a collection of sequences
	5.7 References to an item
	5.8 Short-hand notations

	6 The ASN.1 model of type extension
	7 Extensibility requirements on encoding rules
	8 Tags
	9 Use of the ASN.1 notation
	10 The ASN.1 character set
	11 ASN.1 items
	11.1 General rules
	11.2 Type references
	11.3 Identifiers
	11.4 Value references
	11.5 Module reference
	11.6 Comment
	11.7 Empty item
	11.8 Number item
	11.9 Binary string item
	11.10 Hexadecimal string item
	11.11 Character string item
	11.12 Assignment item
	11.13 Range separator
	11.14 Ellipsis
	11.15 Left version brackets
	11.16 Right version brackets
	11.17 Single character items
	11.18 Reserved words

	12 Module definition
	13 Referencing type and value definitions
	14 Notation to support references to ASN.1 components
	15 Assigning types and values
	16 Definition of types and values
	17 Notation for the boolean type
	18 Notation for the integer type
	19 Notation for the enumerated type
	20 Notation for the real type
	21 Notation for the bitstring type
	22 Notation for the octetstring type
	23 Notation for the null type
	24 Notation for sequence types
	25 Notation for sequence-of types
	26 Notation for set types
	27 Notation for set-of types
	28 Notation for choice types
	29 Notation for selection types
	30 Notation for tagged types
	31 Notation for the object identifier type
	32 Notation for the embedded-pdv type
	33 Notation for the external type
	34 The character string types
	35 Notation for character string types
	36 Definition of restricted character string types
	37 Naming characters and collections defined in ISO/IEC 10646
	38 Canonical order of characters
	39 Definition of unrestricted character string types
	40 Notation for types defined in clauses 41 to 43
	41 Generalized time
	42 Universal time
	43 The object descriptor type
	44 Constrained Types
	45 The exception identifier
	46 Element set specification
	47 The extension marker
	48 Subtype elements
	48.1 General
	48.2 Single Value
	48.3 Contained Subtype
	48.4 Value Range
	48.5 Size Constraint
	48.6 Type Constraint
	48.7 Permitted Alphabet
	48.8 Inner Subtyping

	Annex A - Use of ASN.1-88/90 notation
	A.1 Maintenance
	A.2 Mixing ASN.1-88/90 and current ASN.1 notation
	A.3 Migration to the current ASN.1 notation
	Annex B - Assignment of object identifier values
	Annex C - Examples and hints
	C.1 Example of a personnel record
	C.2 Guidelines for use of the notation
	C.3 Identifying abstract syntaxes
	C.4 Subtypes
	Annex D - Tutorial annex on ASN.1 character strings
	D.1 Character string support in ASN.1
	D.2 The UniversalString, - UTF8String and BMPString types
	D.3 On ISO/IEC 10646-1 conformance requirements
	D.4 Recommendations for ASN.1 users on ISO/IEC 10646-1 conformance
	D.5 Adopted subsets as parameters of the abstract syntax
	D.6 The CHARACTER STRING type
	Annex E - Superseded features
	E.1 Use of identifiers now mandatory
	E.2 The choice value
	E.3 The any type
	E.4 The macro capability
	Annex F - Tutorial annex on the ASN.1 model of type extension
	F.1 Overview
	F.2 Effects on version numbering, etc.
	F.3 Requirements on encoding rules
	Annex G - Summary of the ASN.1 notation

