

INTERNATIONAL TELECOMMUNICATION UNION

TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU

SERIES T: TERMINALS FOR TELEMATIC SERVICES

A document application profile for the interchange of Group 4 facsimile documents

Amendment 3: Annex C – Extension for colour and gray-scale image documents using Recommendation T.43

ITU-T Recommendation T.503 - Amendment 3

(Previously CCITT Recommendation)

ITU-T T-SERIES RECOMMENDATIONS TERMINALS FOR TELEMATIC SERVICES

For further details, please refer to ITU-T List of Recommendations.

ITU-T RECOMMENDATION T.503

A DOCUMENT APPLICATION PROFILE FOR THE INTERCHANGE OF GROUP 4 FACSIMILE DOCUMENTS

AMENDMENT 3

ANNEX C

Extension for colour and gray-scale image documents using Recommendation T.43

Summary

Recommendation T.503 defines the document application profile for the interchange of Group 4 facsimile documents. This amendment contains a new Annex C for colour and gray-scale extension using the lossless coding scheme defined in Recommendation T.43.

Source

Amendment 3 to ITU-T Recommendation T.503 was prepared by ITU-T Study Group 8 (1997-2000) and was approved under the WTSC Resolution No. 1 procedure on the 2nd of July 1997.

FOREWORD

ITU (International Telecommunication Union) is the United Nations Specialized Agency in the field of telecommunications. The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of the ITU. The ITU-T is responsible for studying technical, operating and tariff questions and issuing Recommendations on them with a view to standardizing telecommunications on a worldwide basis.

The World Telecommunication Standardization Conference (WTSC), which meets every four years, establishes the topics for study by the ITU-T Study Groups which, in their turn, produce Recommendations on these topics.

The approval of Recommendations by the Members of the ITU-T is covered by the procedure laid down in WTSC Resolution No. 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a telecommunication administration and a recognized operating agency.

INTELLECTUAL PROPERTY RIGHTS

The ITU draws attention to the possibility that the practice or implementation of this Recommendation may involve the use of a claimed Intellectual Property Right. The ITU takes no position concerning the evidence, validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others outside of the Recommendation development process.

As of the date of approval of this Recommendation, the ITU had/had not received notice of intellectual property, protected by patents, which may be required to implement this Recommendation. However, implementors are cautioned that this may not represent the latest information and are therefore strongly urged to consult the TSB patent database.

© ITU 1997

All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the ITU.

CONTENTS

		Page
ANNEX C-	Extension for colour and gray-scale image documents using Recommendation T.43	1
C.1	Introduction	1
C.2	References	1
C.3	Definitions	1
C.4	Characteristics supported by this document application profile	1
C.5	Definition of the document application profile	3
C.6	Definition of the document application profile for soft-copy communication	5
C.7	ASN.1 definition for Annex C/T.503	5

A DOCUMENT APPLICATION PROFILE FOR THE INTERCHANGE OF GROUP 4 FACSIMILE DOCUMENTS

AMENDMENT 3

ANNEX C

Extension for colour and gray-scale image documents using Recommendation T.43

(Geneva, 1997)

C.1 Introduction

This annex defines a document application profile in order to interchange colour and gray-scale image documents using the lossless coding scheme defined in Recommendation T.43 as an option of Group 4 facsimile documents.

Three types of image such as one bit per colour CMY(K) or RGB image, palettized colour image, and continuous-tone colour/gray-scale image are supported in this document application profile.

Its purpose is to specify an interchange format suitable for the interchange of Group 4 colour and gray-scale image facsimile documents using lossless coding schemes.

Colour and gray-scale image documents are interchanged in a formatted form, which enables the receiver to display or print the document as intended by the originator.

It is assumed that, when negotiation is performed by the service using this document application profile, all non-basic and additional features are subject to negotiation.

C.2 References

In addition to the references of Recommendation T.503, the following references are required in order to implement this annex.

- ITU-T Recommendation T.42 (1996), Continuous tone colour representation method for facsimile.
- ITU-T Recommendation T.43 (1997), Colour and gray-scale image representations using lossless coding scheme for facsimile.
- ITU-T Recommendation T.82 (1993) | ISO/IEC 11544:1993, Information technology Coded representation of picture and audio information – Progressive bi-level image compression. (Commonly referred to as JBIG standard)

C.3 Definitions

In addition to the definitions of Recommendation T.503, the definitions in Recommendations T.411, T.82, T.42 and T.43 apply to this annex, unless explicitly amended.

C.3.1 JBIG: Joint Bi-level Image Experts Group, and also shorthand for the encoding method, described in Recommendation T.82, which was defined by this group.

C.4 Characteristics supported by this document application profile

C.4.1 Overview

A lossless encoded Group 4 colour and gray-scale image facsimile document is the result of a formatting process and therefore the purpose of this document application profile is to allow transfer of the complete layout of the document using lossless coding schemes defined in Recommendation T.43.

Only one category of content is allowed within the same page, namely: raster graphics content as used by facsimile Group 4 apparatus.

The purpose of this document application profile is to allow transfer of the complete colour and gray-scale information of the lossless encoded colour and gray-scale image document.

This subclause specifies the functional description of colour and gray-scale related features supported by this document application profile. Other functional descriptions are specified in Recommendation T.503.

C.4.2 Colour representation and encoding methods

Three image types are used for this document application profile, namely, one bit per colour RGB/CMY(K) image, palettized colour image, and continuous-tone colour/gray-scale image. These images are encoded by the lossless coding scheme defined in Recommendation T.82 (JBIG). Colour representation, bit-plane decomposition and coding schemes of these types of images are defined in Recommendations T.43 and T.42.

C.4.2.1 One bit per colour CMY(K) or RGB image

This type of image is expressed by the precision of 1 bit/colour component using CMY(K) or RGB colour primaries. For this type of image, it is considered to be more desirable to map each colour onto one of the primary colours of receiver's side, rather than trying to reproduce the original colour by sending the coordinates in CIELAB space. The detail specification for this mode such as colour transmission order is defined in Recommendation T.43.

In one bit per colour image using three or four primaries [CMY(K) or RGB], 8 or 16 kinds of colours can be expressed. The colour representation is defined in Tables C.1/T.43 to C.3/T.43. Encoders can encode using either 3 or 4 bit-planes, and decoders shall support both 3 and 4 bit-planes. The bits per colour component attribute value of this mode shall be (1,1,1,1).

C.4.2.2 Palettized colour image

In this type of image, the colour image is expressed by colour indices of the palette table, in which each entry is expressed by the combination of three values of CIELAB colour components defined in Recommendation T.42. The number of indices of palettized colour is classified into two classes: 12 bits or less indices and up to 16 bits indices. Each colour component value precision is also classified into two classes, 8 bits/component precision and 12 bits/component precision.

The resultant coding sub-mode of palettized colour image is classified into two classes by the combination of these two parameters. The first one is basic palettized colour sub-mode, in which the number of indices of palettized colour is 12 bits or less and colour co-ordinate precision is 8 bits/component. The other is the extended palettized colour sub-mode, in which either the number of indices of palettized colour is 13 to 16 bits and 8 bits/component precision table or 16 bits or less and 12 bits/component precision table. A more detailed specification for the palettized colour image is defined in Recommendation T.43.

C.4.2.3 Continuous-tone colour and gray-scale image

In this type of image, the colour image is represented by CIELAB colour space specified in Recommendation T.42, and the gray-scale image is represented by only L* component of CIELAB colour space specified in Recommendation T.42. Two classes are specified for its data precision: 8 bits or less per component and 9 to 12 bits/component precision. In order to obtain high encoding efficiency, Gray code conversion is applied for this type of image in bit-plane coding. Detailed coding specification for this type of image is defined in Recommendation T.43.

C.4.3 Coding mode classification

As described above, the three types of image are further divided into 7 coding sub-mode classes as shown in Table C.1. However, for the sake of easy negotiation, the supporting rule for coding sub-mode classes are established as described in Table C.2, in which two coding mode classes are defined for colour and gray-scale modes respectively.

Image type	Coding sub-mode class	Image specification	Number of bit-planes to be coded
One bit per colour image	One bit per colour image	One bit per colour image using RGB or CMY(K) primaries	CMYK image: 4 bit-planes CMY image: 3 bit-planes RGB image: 3 bit-planes
Palettized colour image	Basic palettized colour	Palettized image using 12 bits or less entries and 8 bits/comp. precision table	1 to 12 bit-planes (palette-table: up to 4096 entries 3 octets/entry)
	Extended palettized colour	Palettized image using 13 to 16 bits entries and 8 bits/comp. precision table or 16 bits or less entries and 12 bits/comp. precision table	13 to 16 bit-planes (palette-table: 4097 to 65 536 entries 3 octets/entries) or 1 to 16 bit-planes (palette-table: up to 65 536 entries 6 octets/entry)
Continuous-tone image	Colour 8 bits/comp. colour 12 bits/comp. colour Gray-scale 8 bits gray-scale 12 bits gray-scale	2 to 8 bits/comp. 9 to 12 bits/comp. colour image 2 to 8 bits 9 to 12 bits gray-scale image	2*3 to 8*3 bit-planes 9*3 to 12*3 bit-planes 2 to 8 bit-planes 9 to 12 bit-planes

Table C.1/T.503 – Image mode and bits per colour component attribute

Table C.2/T.503 – Colour and gray-scale coding mode classification

Coding		Bits per colour component value	Mode class	Supporting coding sub-mode classes	
Gray-scale	8 bits	(8,0,0)	Basic and default	8 bits gray-scale image	
	12 bits	(12,0,0)	Optional	8 bits gray-scale image 12 bits gray-scale image	
Colour	8 bits	(8,8,8)	Optional	One bit per colour image Basic palette colour image 8 bits gray-scale image 8 bits/comp. colour image	
	12 bits	(12,12,12)	Optional	One bit per colour image Basic palette colour image 8 bits gray-scale image 8 bits/comp. colour image Extended palettized colour image 12 bits gray-scale image 12 bits/comp. colour image	

C.5 Definition of the document application profile

C.5.1 Overview

The document architecture level is defined as in Recommendation T.503.

The content architecture level is raster graphics formatted content architecture level. In this annex, it is defined in Table 5/T.503 and Table C.3

The coding scheme to be used is defined in Recommendation T.43 in which Recommendation T.82 (JBIG) coding method is used for lossless coding. It is indicated as Recommendation T.43 in the document profile.

The document profile level used in this document application profile is defined in Table C.3. Every document interchanged in accordance with this document application profile must include a document profile. Every non-basic and additional attribute value used in a document must be indicated in the document profile.

The interchange format class used in this document application profile is "B", as defined in Recommendation T.415.

Document structure, the attributes applicable to layout components, and the allowable attribute values for object descriptions are defined in Table C.3.

Attribute	Class	Permissible value	Default
Document profile descriptor	М		
Specific layout structure	m	Present	-
Document characteristics	М		
Document application profile	m	Group 4 fax colour extension for lossless coding 08H (Note 1)	-
Document architecture class	m	Formatted	-
Non-basic document characteristics	М		
Type of coding	m	Rec. T.43	(Note 2)
Page dimensions	nm	(Table 1/T.503)	ISO A4 (9920, 14 030 fixed or variable)
Raster graphics coding attributes	NM		
Bit per colour component	nm	(8,8,8): 8 bits colour (12,0,0): 12 bits gray-scale (12,12,12): 12 bits colour	(8,0,0) 8 bits gray-scale
Interleaving	nm	Plane	Stripe (128 line) (Note 3)
Raster graphics presentation attributes	NM		
Pel transmission density	nm	(Table 1/T.503)	6 BMU
Additional document characteristics	NM		
Colour space list	NM		
Colour space	NM		
Colour space id	m	1	_
Colour space type	m	CIELAB	_
Colour data scaling	nm	(Table B.4)	(Table B.4)
Calibration data	nm	(Table B.4)	(Table B.4)

Table C.3/T.503 – Document profile attributes

NOTE 1 – The identifier "08H" means colour or gray-scale extension using the lossless coding scheme defined in Recommendation T.43 for Group 4 facsimile, and it shall be used as "0208H". In the case where the terminal can use JPEG colour extension and Recommendation T.43 extension, the identifier shall be used as "020508H".

NOTE 2 – The coding scheme in Recommendation T.43 is indicated by object ID {0 0 20 43 0}.

NOTE 3 – If stripe interleave is specified, it indicates that the terminal has the capability to interchange the coded image data in stripe interleave format with equal or less than 128 lines per stripe. In order to use more than 128 lines per stripe format, plane interleave shall be specified.

C.5.2 Content architecture for colour and gray-scale image using the lossless coding scheme

The following raster graphics content architecture is used in this document application profile.

C.5.2.1 Raster graphic content architecture level

The type of coding to be used is Recommendation T.43.

Its use is agreed by prior negotiation and is indicated in the document profile.

The presentation attributes that may be used are defined in Recommendation T.503.

C.5.2.2 Coding attributes

Attributes applicable to content portions are defined in Table C.4.

Colour and gray-scale raster graphic contents are coded by Recommendation T.43. Recommendation T.43 is the permissible and basic value. Coding procedure is defined in Recommendation T.43.

Attribute	Qualifier	Basic value	Default value	Non-basic value
Content identifier	nm	As defined in Rec. T.412	None	None
Type of coding	m	Rec. T.43	None	None
Raster graphics coding attribute				
Number of pels per line	d	As defined in Table 3/T.563	As defined in Table 3/T.563	None
Number of discarded pels	d	As defined in Table 3/T.563	As defined in Table 3/T.563	None
Bit per colour component	d	(8,0,0)	(8,0,0)	(8,8,8), (12,0,0), (12,12,12)
Interleaving	d	Stripe	Stripe	Plane (Note)
Content information	m	Octet strings (T.43)	None	None

Table C.4/T.503 – Attributes applicable to content portions

NOTE - If stripe interleave is specified, it indicates that the terminal has the capability to interchange the coded image data in stripe interleave format with equal or less than 128 lines per stripe. In order to use more than 128 lines per stripe format, plane interleave shall be specified.

C.6 Definition of the document application profile for soft-copy communication

For further study.

C.7 ASN.1 definition for Annex C/T.503

This abstract syntax definition of user data conveyed by session PDU is used for Group 4 colour and gray-scale facsimile document communication, using this annex, Recommendation T.521 "Communication Application Profile BTO for Document Bulk Transfer based on The Session service", and Recommendation T.563 "Terminal Characteristics for Group 4 Facsimile Apparatus".

In this subclause, one part different from B.9/T.503 is defined. Another part is identical with B.9/T.503.

In the coded example, "LL" means octet length of the object that contains variable length data such as coded image data.

C.7.1 User data conveyed by SUD in CDCL/RDCLP

APDU ::= CHOIC [4] IMPLICIT	CE { ' ApplicationCapabili	ities }		
ApplicationCapabilities documentApplicati '0208'H doct	::= SET { ionProfile [0] IMP ument application p	PLICIT OCTET STRING, rofile for T.503 and this annex		
documentArchitect '00'H FDA	tureClass [1] IMF -	PLICIT OCTET STRING,		
nonBasicDocChara additional-doc-cha	acteristics [2] IMP racteristics [9] IMP	PLICIT NonBasicDocCharacteristics, PLICIT Additional-Doc-Characteristi	cs OPTIONAL }	
NonBasicDocCharacteris	stics::= SET {			
page-dimensions	[2] IMP	PLICIT SET OF Dimension-Pair	OPTIONAL,	
ra-gr-presentation	-features [4] IMP	PLICIT SET OF Ra-Gr-Presentation-	Features OPTIONAL,	
types-of-coding	[29] IMF	PLICIT SET OF Type-of-Coding	}	
Dimension-Pair ::= SEQ	UENCE {			
horizontal vertical	[0] IMPI CHOICI	LICIT INTEGER, F {		
fixed	choici	[0] IMPLICIT INTEGER,		
variable		[1] IMPLICIT INTEGER } }		
Nor	th American letter	= (10200,13200 fixed or variable)	
ISO	<i>B4</i>	= (11811,16677 fixed or variable)	
ISO	A3	= (14030,19840 fixed or variable)		
Jap	anese legal	= (12141,17196 fixed or variable)		
Jap	anese letter	= (8598,12141 fixed or variable)		
Nor	th American legal	= (10200,16800 fixed or variable)	
Nor	th American ledger	= (13200, 20400 fixed or variable))	
ISO	0 A4	= (9920,14030 fixed or variable)		
default value is ISO A	4	= (9920,14030 fixed)		
basic value is ISO A4	!	= (9920,14030 fixed or variable)		
Ra-Gr-Coding-Attribute	::= CHOICE {			
bit-per-colour-con	nponent [4] B	Sit-Per-Colour-Component	OPTIONAL,	
interleaving	[5] [default and basic	MPLICIT INTEGER { plane(2), strip	e(3) } OPTIONAL,	
	If strine interlea	c value is simpe(5).	erminal has the canability to	
	interchange the	coded image data in stripe interleav	e format with equal or less	
	than 128 lines pe	er stripe. In order to use more than	128 lines per stripe format,	
	plane interleave	shall be specified.		
subsampling	[10]]	IMPLICIT Subsampling	OPTIONAL}	
Bit-Per-Colour-Compone	ent::= CHOICE {			
single-integer		INTEGER, SEQUENCE OF INTECED)		
component-list	grav-scale 8 hits	= (800)		
	colour 8 hits	=(8,8,8)		
	oray-scale 12 hits	=(0,0,0) = (12,0,0)		
	colour 12 bits	=(12,12,12)		
default an	d basic value is gra	y-scale 8 bits for this annex.		
Subsampling	··= OCTFT STRIN	GS		
1:1:1	((1,1),(1,1),(1,1))	: '11 11 11'H		
this version onl	y support 1:1:1 ((1,	1, $(1,1)$, $(1,1)$) for continuous-tone c	olour mode	

Ra-Gr-Presentation-Features ::= CHOICE {
 pel-transmission-density [11] IMPLICIT Pel-Transmission-Density }

6

Pel-Transmission-Density ::= INTEGER {

Pel-Transmission-Density ::= IN	VTEGER {					
	p4 (3),	4 BMU (300 pels/25.4 mm)				
	p3 (4),	3 BMU (400 pels/25.4 mm)				
	(p6 (1))}	6 BMU (200 pels/25.4 mm)				
defau	lt and basic value is p	рб (1)				
Type-of-Coding ::= CHOIO	CE { [6] IMPLICIT O	BJECT IDENTIFIER }				
t.43	{0 0 20 43 0}					
basi	c value is t.43 for this	s annex				
Additional-Doc-Characteristics	::= SET {					
colour-spaces-list	[1] IMPLICIT SET C	OF Colour-Spaces OP HONAL}				
Colour-Space	::= SET {					
colour-space-id	[0] IMPLICIT	INTEGER,				
colour-space-type	[1] IMPLICIT Colour-Space-Type,					
colour-data-scaling	[4] IMPLICIT Colour-Data-Scaling OPTIONAL }					
Colour-Space-Type	::= INTEGER { cie	lab(4)}				
Colour-Data-Scaling	::= SET {					
first-component	[0] IMPLICIT	Scale-and-Offset,				
second-component	[1] IMPLICIT	Scale-and-Offset,				
third-component	[2] IMPLICIT	Scale-and-Offset }				
Scale-and-Offset	::= SET {					
colour-scale	[0] REAL,					
colour-offset	[1] REAL }					
default and basic values for	or CIELAB componer	its are as follows:				
	scale	offset				
first-component	2.55(255/100)	0				
second-component	1.5(255/170)	128				
third-component	1.275(255/200)	96				

Coded example [8 bits colour mode (one bit/colour, basic palettized colour and 8 bit/colour continuous-tone image mode) using Recommendation T.43 coding and CIELAB space]:

A4	81	80			I	Applie	cation	Capat	oilities	length =	= 128		
	80	02	02	08		documentApplicationProfile = T.503 and this annex							
	81	01	00			documentArchitectureClass = FDA							
	A2	3A				nonBasicDocCharacteristics							
			A2	14		page-dimensions							
				30	08				SEÇ	UENCE	ļ	(ISO B4 variable)	
					80	02	2F2	3	hori	zontal =	11811	BMU	
					81	02	412	5	verti	ical = vai	riable	16677 BMU	
				30	08			_	SEÇ	UENCE		(ISO A3 variable)	
					80	02	36C	E		horizo	ontal =	= 14030 BMU	
				10	81	02	4D8	80		vertic	$al = v_i$	ariable 19840 BMU	
			A3	12	ΛD	20	00	ra	-gr-codii	ng-attribu	ites	(9, 9)	
				A4	0D	30	09	01	08	on-pe		$\frac{1}{2} = \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \right) \left(\frac{1}{2}$	
							02	01	08				
							02	01	08				
				8A	03	111	111	subs	ampling	= '11 11	11'H	[((1,1),(1,1),(1,1))	
			A4	06				ra-gi	r-present	ation-fea	tures		
				8B	01	03		U	pel-tra	ansmissio	on-dei	nsity = 3 (300 pels/25.4 mm)	
				8B	01	04			pel-tra	ansmissio	on-der	nsity = 4 (400 pels/25.4 mm)	
			BD	06				type	-of codir	ıg			
				86	04	00 1	14 2B	00		=	= {0 0	20 43 00} (t.43)	
									2B is	the hexa	decim	al notation of rec. number 43 of T.43	
		A9	3C				ade	ditiona	al-doc-ch	naracteris	stics		
			A1	3A				colou	r-space-l	ist			
				30	38			col	lour spac	e SET			
					80	01	02			colour	r-spac	e-id = 1	
					81	01	04			colou	r-spac	e-type = 4 (CIELAB)	
					A4	30				colou	r-data	-scaling (non basic value case)	
						A0	0C	0.6			first	t-component $L^* = [0, 95]$	
							A0	06	0.4	10	ED	colour-scale = 2.684 (255/95)	
		рг	AT 1-	nath-	-1 hi-	0.00	noodi	09 ha(hac	04	AU	FD	2A F2	
		RE	LAL IE	ngui=	- - + 011	ary e		1g(Das 02	sc=10) es	xponent=	-5 1112	$colour_offset = 0$	
							Л	02	00				
		RF	EAL le	nøth=	=0 (th	is me	ans re	al valı	ue is '0')				
				-0,	. (ui	Al	0F				seco	ond-component $a^* = [-85, 85]$	
							A0	06				colour-scale = 1.5 (255/170)	
								09	04	A0	FD	18 00	
							A1		05			colour-offset = 128	
								09	03	A0	00	80	
						A2	0F				thir	d-component $b^* = [-75, 125]$	
							A0	06				colour-scale = 1.275 (255/200)	
								09	04	A0	FD	14 66	
							A1	05				colour-offset = 96	
								09	03	A0	00	60	

C.7.2 User data conveyed by SUD in CDS

S-ACTIVITY-START-user-data::= CHOICE {

[4] IMPLICIT DocumentCharacteristics }

DocumentCharacteristics ::= SET {		
documentApplicationProfile	[0] IMPLICIT OCTET STRING,	
'08'H for this annex		
documentArchitectureClass	[1] IMPLICIT OCTET STRING,	
'00'H FDA		
nonBasicDocCharacteristics	[2] IMPLICIT NonBasicDocCharacteristics,	
additional-doc-characteristics	[9] IMPLICIT Additional-Doc-Characteristics	OPTIONAL }
	See Sec. C.7.1 (except documentApplicationH	Profile)

C.7.3 Content Portion conveyed by CSUI/CDUI

Interchange-Data-Element	::= CHOICE {
content-portion	[3] IMPLICIT Text-Unit }
Text-Unit	::= SEQUENCE {
content-portion-attributes	Content-Portion-Attributes OPTIONAL,
content-information	Content-Information}
Content-Portion-Attributes	::= SET {
content-identifier-layout	Content-Portion-Identifier OPTIONAL,
type-of-coding	Type-of-Coding, mandatory for this annex
coding-attributes	CHOICE {
raster-gr-coding-attribu	tes [2] IMPLICIT Raster-Gr-Coding-Attributes}
	OPTIONAL }

Content-Portion-Identifier ::= [APPLICATION 0] IMPLICIT PrintableString

-- only digits and space are used in the present version of the

-- standard; other characters are reserved for extensions.

Type-of-Coding

::= CHOICE { [6] IMPLICIT OBJECT IDENTIFIER }

-- *t.43* {0 0 20 43 00}

-- basic and permissible value is t.43 for this annex

Raster-Gr-Coding-Attributes ::= SET {		
number-of-pels-per-line	[0] IMPLICIT INTEGER	OPTIONAL,
number-of-discarded-pels	[3] IMPLICIT INTEGER	OPTIONAL,
bit-per-colour-component	[4] Bit-Per-Colour-Component	OPTIONAL,
interleaving	[5] IMPLICIT INTEGER {plane(2)	, stripe(3)}

OPTIONAL,

-- default and basic value is stripe(3) for this annex.

-- If stripe interleave is specified, it indicates that the terminal has the capability to interchange

- -- the coded image data in stripe interleave format with equal or less than 128 lines per stripe.
- -- In order to use more than 128 lines per stripe format, plane interleave shall be specified.

subsampling

[10] IMPLICIT Subsampling OPTIONAL }

Bit-Per-Colour-Component::= CHOICE {

single-integer		INTEGER,
component-list		SEQUENCE OF INTEGER }
	gray-scale 8 bits	=(8,0,0)
	colour 8 bits	=(8,8,8)
	gray-scale 12 bits	=(12,0,0)
	colour 12 bits	= (12,12,12)

-- default and basic value is gray-scale 8 bits for this annex.

Subsampling ::= OCTET STRINGS

--1:1:1 ((1,1),(1,1),(1,1)): '11 11 11'H

-- this version only support 1:1:1 ((1,1),(1,1),(1,1)) for continuous-tone colour mode --

Coded example 1 (lossless continuous-tone colour 8 bits/component case, plane interleave):

12	тт		aont	content-portion Text-Unit										
AS		~ (com	Jinem-portion Text-Offic										
	31	24		conte	content-portion-attributes									
		86	04	00 1	4 2B 00	ty	pe-of-c	oding =	= {0 0 20 43 00}	(t.43)				
		A2	1C		coding	-attri	butes							
				80	02	09	80		number-of-pel	s-per-line = 2432(ISO	A3)			
				83	01	2F			number-of-dis	carded-pels = 47	(ISO A3)			
				A4	0B	30	09		bit-per-co	olour-component = (8,8	3,8) (colour 8 bits)			
							02	01	08					
							02	01	08					
							02	01	08					
				A5	01	02			interleaving-fo	ormat = 2 (plane)				
				8A	03	11	11	11	subsampling =	· 11 11 11'H (1:1:1)				
	24		80		conten	t-info	ormatio	n OC	TET STRING (co	onstructed)				
			04	LL		XX	XX(t.4	3 string	g)XXXX	OCTET STRIN	١G			
											(primitive)			
			04	LL		XX	XX(t.4	3 string	g)XXXX	OCTET STRIN	٩G			
											(primitive)			
			00	00			EOC							
			00	00			EOC							
				(no si	ubsample	ed Re	ecomm	endatio	on T.43 coded 8 l	oits/comp. colour data)			

Coded example 2 (continuous-tone colour, stripe interleave):

- actual number of bit-planes are 11, 8 and 8 for L*, a* and b* respectively
- use 12 bits/comp. mode

A3	LL		con	tent-po	ortion T	ext-Uı	nit						
	31	18		content-portion-attributes									
		86	04	00 1	4 2B 00	tyj	pe-of-c	oding :	$= \{0\ 0\ 20\ 43\ 00\}\ (t.43)$				
		A2	10		codin	g-attri	butes						
				A4	0B	30	09		bit-per-colour-component = (12,12,12) (colour 12 bits)				
							02	01	0C				
							02	01	0C				
							02	01	0C				
				A5	01	03			interleaving-format = 3 (stripe (128 lines))				
	04		LL		XXX	XXX(t.43)X	XXXX	XX OCTET STRING				
									(primitive)				
			(no s total	ubsamp 27 bit-j	pled Rec planes)	comme	endatio	on T.43	coded colour data: 11, 8 and 8 bit-planes for L*, a* and b* respectively,				

Coded example 3 (one bit per colour and stripe interleave case):

-													
A3	LL		content-portion Text-Unit										
	31	15		content-portion-attributes									
		86	04	00 1	4 2B (00	type-of-	coding =	= {0 0 20 43 00} (t.43)				
		A2	0D		codi	ng-att	ributes						
			A4	0B	30	09		bit-p	er-colour-component = (8,8,8)				
						02	01	08	(8 bits per component colour mode)				
						02	01	08					
						02	01	08					
	04	LL		XXX	XXX(t.	43 stri	ng)XXXX	XX	OCTET STRING				
									(primitive)				
	(one bit per colour image Recommendation T.43 coded data)												

Coded example 4 (extended palettized colour image, stripe interleave):

- number of palette colour table entries is 200, then number of bit-planes is 8
- use 12 bits/comp. precision palette table

A3	LL		cont	ent-po	rtion T	Text-Un	nit						
	31	1A		content-portion-attributes									
		86	04	4 00 14 2B 00 type-of-coding = $\{0 \ 0 \ 20 \ 43 \ 00\}$ (t.43)									
		A2	10		codi	ng-attri	butes						
			A4	0B	30	09			bit-per-colour-component = $(12, 12, 12)$ (colour 12 bits)				
						02	01	0C					
						02	01	0C					
						02	01	0C					
			A5	01	03			interl	leaving-format = 3 (stripe (128 lines))				
	04	LL		XXX	XXXX	(t.43 st	ring)XX	XXXX	OCTET STRING				
									(primitive)				
			(Rec pale	comme	ndatio le)	on T.43	coded 8	bit-plan	es palettized colour image data with 200 entries 12 bit/comp. precision				

ITU-T RECOMMENDATIONS SERIES

- Series A Organization of the work of the ITU-T
- Series B Means of expression: definitions, symbols, classification
- Series C General telecommunication statistics
- Series D General tariff principles
- Series E Overall network operation, telephone service, service operation and human factors
- Series F Non-telephone telecommunication services
- Series G Transmission systems and media, digital systems and networks
- Series H Audiovisual and multimedia systems
- Series I Integrated services digital network
- Series J Transmission of television, sound programme and other multimedia signals
- Series K Protection against interference
- Series L Construction, installation and protection of cables and other elements of outside plant
- Series M Maintenance: international transmission systems, telephone circuits, telegraphy, facsimile and leased circuits
- Series N Maintenance: international sound programme and television transmission circuits
- Series O Specifications of measuring equipment
- Series P Telephone transmission quality, telephone installations, local line networks
- Series Q Switching and signalling
- Series R Telegraph transmission
- Series S Telegraph services terminal equipment
- Series T Terminals for telematic services
- Series U Telegraph switching
- Series V Data communication over the telephone network
- Series X Data networks and open system communication
- Series Z Programming languages