GENERAL ASPECTS OF DIGITAL
 TRANSMISSION SYSTEMS;
 TERMINAL EQUIPMENTS

5-, 4-, 3- AND 2-BITS SAMPLE EMBEDDED ADAPTIVE DIFFERENTIAL PULSE CODE MODULATION (ADPCM)

Recommendation G. 727

FOREWORD

The CCITT (the International Telegraph and Telephone Consultative Committee) is a permanent organ of the International Telecommunication Union (ITU). CCITT is responsible for studying technical, operating and tariff questions and issuing Recommendations on them with a view to standardizing telecommunications on a worldwide basis.

The Plenary Assembly of CCITT which meets every four years, establishes the topics for study and approves Recommendations prepared by its Study Groups. The approval of Recommendations by the members of CCITT between Plenary Assemblies is covered by the procedure laid down in CCITT Resolution No. 2 (Melbourne, 1988).

Recommendation G. 727 was prepared by Study Group XV and was approved under the Resolution No. 2 procedure on the 14th of December 1990.

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a telecommunication Administration and a recognized private operating agency.

All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the ITU.

Recommendation G. 727

5-, 4-, 3- AND 2-bits SAMPLE EMBEDDED ADAPTIVE DIFFERENTIAL PULSE CODE MODULATION (ADPCM)

1 Introduction

This Recommendation contains the specification of an embedded Adaptive Differential Pulse Code Modulation (ADPCM) algorithms with 5-, 4-, 3- and 2-bits per sample (i.e., at rates of $40,32,24$ and $16 \mathrm{kbit} / \mathrm{s}$). The characteristics below are recommended for the conversion of $64 \mathrm{kbit} / \mathrm{s}$. A-law or μ-law PCM channels to/ from variable rate-embedded ADPCM channels.

The Recommendation defines the transcoding law when the source signal is a pulse-code modulation signal at a pulse rate of $64 \mathrm{kbit} / \mathrm{s}$ developed from voice frequency analog signals as fully specified by Blue Book Volume, Recommendation G.711.

Applications where the encoder is aware and the decoder is not aware of the way in which the ADPCM codeword bits have been altered, or when both the encoder and decoder are aware of the ways the codewords are altered, or where neither the encoder nor the decoder are aware of the ways in which the bits have been altered can benefit from other embedded ADPCM algorithms.

2
 General

The embedded ADPCM algorithms specified here are extensions of the ADPCM algorithms defined in Recommendation G. 726 and are recommended for use in packetized speech systems operating according to the Packetized Voice Protocol (PVP) specified in draft Recommendation G.764.

PVP is able to relieve congestion by modifying the size of a speech packet when the need arises. Utilizing the embedded property of the algorithm described here, the least significant bit(s) of each codeword can be disregarded at packetization points and/or intermediate nodes to relieve congestion. This provides for significantly better performance than by dropping packets during congestion.

Section 3 outlines a description of the ADPCM transcoding algorithm. Figure 1/G. 727 shows a simplified block diagram of the encoder and the decoder. Sections 4 and 5 provide the principles and functional descriptions of the ADPCM encoding and decoding algorithms, respectively. Section 6 contains the computational details of the algorithm. In this section, each sub-block in the encoder and decoder is precisely defined using one particular logical sequence. If other methods of computation are used, extreme care should be taken to ensure that they yield exactly the same value for the output processing variables. Any further departures from the processes detailed in Section 6 will incur performance penalties which may be severe.

FIGURE 1/G. 727
Simplified block diagrams

Embedded ADPCM algorithms are variable bit rate coding algorthms with the capability of bit dropping outside the encoder and decoder blocks. They consist of a series of algorithms such that the decision levels of the lower rates quantizers are subsets of the quantizer at the highest rate. This allows bit reductions at any point in the network without the need of coordination between the transmitter and the receiver. In contrast, the decision levels of the conventional ADPCM algorithms. such as those in Recommendation G.726, are not subsets of one another and therefore, the transmitter must inform the receiver of the coding rate the encoding algorithm.

Embedded algorithms can accommodate the unpredictable and bursty characteristics of traffic patterns that require congestion relief. Because congestion relief may occur after the encoding is performed, embedded coding is different from variable-rate coding where the encoder and decoder must use the same number of bits in each sample. In both cases, the decoder must be told the number of bits to use in each sample.

Embedded algorithms produce code words which contain enhancement bits and core bits. The Feed-Forward (FF) path utilizes enhancement and core bits, while the Feedback (FB) path uses core bits only. The inverse quantizer and the predictor of both the encoder and the decoder use the core bits. With this structure, enhancement bits can be discarded or dropped during network congestion. However, the number of core bits in the FB paths of both the encoder and decoder must remain the same to avoid mistracking.

The four embedded ADPCM rates are $40,32,24$ and $16 \mathrm{kbit} / \mathrm{s}$, where the decision levels for the 32,24 and $16 \mathrm{kbit} / \mathrm{s}$ quantizers are sub-sets of those for the $40 \mathrm{kbit} / \mathrm{s}$ quantizer. Embedded ADPCM algorithms are referred to by (x, y) pairs where x refers to the FF (enhancement and core) ADPCM bits and y refers to the FB (core) ADPCM bits. For example, if y is set to 2 bits, $(5,2)$ will represent the $40 \mathrm{kbits} / \mathrm{s}$ embedded algorithm, $(4,2)$ will represent the $32 \mathrm{kbit} / \mathrm{s}$ embedded algorithm, $(3,2)$ will represent the $24 \mathrm{kbit} / \mathrm{s}$ embedded algorithm and $(2,2)$ the $16 \mathrm{kbit} / \mathrm{s}$ algorithm. The bit rate is never less than $16 \mathrm{kbit} / \mathrm{s}$ because the minimum number of core bits is 2 . Simplified block diagrams of both the embedded ADPCM encoder and decoder are shown in Figure 1/G.727.

The Recommendation provides coding rates of $40,32,24$ and $16 \mathrm{kbit} / \mathrm{s}$ and core rates of 32,24 and $16 \mathrm{kbit} / \mathrm{s}$. This corresponds to the following pairs: $(5,2),(4,2),(3,2),(2,2) ;(5,3),(4,3),(3,3) ;(5,4),(4,4)$.

3.1 ADPCM encoder

Subsequent to the conversion of the A-law or μ-law PCM input signal to uniform PCM, a difference signal is obtained by subtracting an estimate of the input signal from the input signal itself. An adaptive $4-, 8$-, 16 - or 32 -level quantizer is used to assign $2,3,4$ or 5 binary digits to the value of the difference signal for transmission to the decoder. (Not all the bits necessarily arrive at the decoder since some of these bits can be dropped to relieve congestion in the packet network. For a given received sample, however, the core bits are guaranteed arrival if there are no transmission errors and the packets arrive at destination.) FB bits are fed to the inverse quantizer. The number of core bits depends on the embedded algorithm selected. For example, the $(5,2)$ algorithm will always contain 2 core bits. The inverse quantizer produces a quantized difference signal from these binary digits. The signal estimate is added to this quantized difference signal to produce the reconstructed version of the input signal. Both the reconstructed signal and the quantized difference signal are operated upon by an adaptive predictor which produces the estimate of the input signal, thereby completing the feedback loop.

3.2 ADPCM decoder

The decoder includes a structure identical to the FB portion of the encoder. In addition, there is also an FF path that contains a uniform PCM to A-law or μ-law conversion. The core as well as the enhancement bits are used by the synchronous coding adjustment block to prevent cumulative distortion on synchronous tandem codings (ADPCM-PCM-ADPCM, etc., digital connections) under certain conditions (see §5.10). The synchronous coding adjustment is achieved by adjusting the PCM output codes to eliminate quantizing distorsion in the next ADPCM encoding stage.

3.3 One's density requirements

These algorithms produce the all-zero code words. If requirements on one's density exist in national networks, other methods should be used to ensure that this requirement is satisfied.

In the anticipated application with G.764, the Coding Type (CT) field and the block Dropping Indicator (BDI) field in the packet header defined in G. 764 will inform the coder of what algorithm to use. For all other applications, the information that PVP supplies must be made known to the decoder.

4 ADPCM encoder principles

Figure $2 / \mathrm{G} .727$ is a block schematic of the encoder. For each variable to be described, k is the sampling index and samples are taken at 125μ s intervals. A description of each block is given in $\S \S 4.1$ to 4.9.

4.1 Input PCM format conversion

This block converts the input signal $s(k)$ from A-law or μ-law PCM to a uniform PCM signal $s_{l}(k)$.
4.2 Difference signal computation

This block calculates the difference signal $d(k)$ from the uniform PCM signal $s_{l}(k)$ and the signal estimate $s_{e}(k)$.

$$
\begin{equation*}
d(k)=s_{l}(k)-s_{e}(k) \tag{4-1}
\end{equation*}
$$

A 4-, 8-, 16- or 32-level non-uniform mid-rise adaptive quantizer is used to quantize the difference signal $d(k)$. Prior to quantization, $d(k)$ is converted to a base 2 logarithmic representation and scaled by $y(k)$ which is computed by the scale factor adaptation block. The normalized input/output characteristic (infinite precision values) of the quantizer is given in Tables 1/G. 727 through 4/G. 727 for the 16, 24, 32 and $40 \mathrm{kbit} / \mathrm{s}$ algorithms, respectively. Two, three, four or five binary digits are used to specify the quantized level representing $d(k)$ (the most significant bit represents the sign bit and the remaining bits represent the magnitude). The 2 -, 3 -, 4- or 5 -bit quantizer output $I(k)$ forms the $16,24,32$ or $40 \mathrm{kbit} / \mathrm{s}$ output signal and is also fed to the bit-masking block. $I(k)$ includes both the enhancement and core bits.

4.4 Bit masking

This block produces the core bits $I_{c}(k)$ by logically right-shifting the input signal $I(k)$ so as to mask the maximum droppable (least significant) bits. The number of bits to mask and the number of places to right shift depend on the embedded algorithm selected. For example, this block will mask the two least significant bits (LSB's) and shift the remaining bits two places to the right when the $(4,2)$ algorithm is selected. The output of the bit-masking block $I_{c}(k)$ is fed to the inverse adaptive quantizer, the quantizer scale factor adaptation and the adaptation speed control blocks.

TABLE 1/G. 727

Quantizer normalized input/output

Characteristic for $16 \mathrm{kbit} / \mathrm{s}$ embedded operation

Normalized quantizer input range $\log _{2}\|d(k)\|-y(k)$	$\|I(k)\|$ $\left\|I_{c}(k)\right\|$	Normalized quantizer output
$(-\infty, 2.04)$		
$[2.04, \infty)$	0	0.91
$\log _{2}\left\|d_{q}(k)\right\|-y(k)$		

Note - In Tables 1/G. 727 through 4/G.727, "[" indicates that the endpoint value is included in the range, and "(" or ")" indicates that the endpoint value is excluded from the range.

TABLE 2/G. 727

Quantizer normalized input/output Characteristic for 24 kbit/s embedded operation

Normalized quantizer input range $\log _{2}\|d(k)\|-y(k)$	$\|I(k)\|$ $\left\|I_{c}(k)\right\|$	Normalized quantizer output $\log _{2}\left\|d_{q}(k)\right\|-y(k)$
$(-\infty, 0.96)$	0	-0.09
$[0.96,2.04)$	1	1.55
$[2.04,2.78)$	2	2.40
$[2.78, \infty)$	3	3.09

Quantizer normalized input/output
Characteristic for 32 kbit/s embedded operation

Normalized quantizer input range $\log _{2}\|d(k)\|-y(k)$	$\|I(k)\|$ $\left\|I_{c}(k)\right\|$	Normalized quantizer output $\log _{2}\left\|d_{q}(k)\right\|-y(k)$
$(-\infty,-0.05)$	0	-1.06
$[-0.05,0.96)$	1	0.53
$[0.96,1.58)$	2	1.29
$[1.58,2.04)$	3	1.81
$[2.04,2.42)$	4	2.23
$[2.42,2.78)$	5	2.59
$[2.78,3.16)$	6	2.95
$[3.16, \infty)$	7	3.34

TABLE 4/G. 727

Quantizer normalized input/output Characteristic for $40 \mathrm{kbit} / \mathrm{s}$ embedded operation

Normalized quantizer input range $\log _{2}\|d(k)\|-y(k)$	$\|I(k)\|$	Normalized quantizer output $\log _{2}\left\|d_{q}(k)\right\|-y(k)$
$(-\infty,-1.05)$	0	-2.06
$[-1.05,-0.05)$	1	-0.48
$[-0.05,0.54)$	2	0.27
$[0.54,0.96)$	3	0.76
$[0.96,1.30)$	4	1.13
$[1.30,1.58)$	5	1.44
$[1.58,1.82)$	6	1.70
$[1.82,2.04)$	7	1.92
$[2.04,2.23)$	8	2.13
$[2.23,2.42)$	9	2.33
$[2.42,2.60)$	10	2.51
$[2.60,2.78)$	11	2.69
$[2.78,2.97)$	12	2.87
$[2.97,3.16)$	13	3.05
$[3.16,3.43)$	14	3.27
$[3.43, \infty)$	15	3.56

The inverse quantizer uses the core bits to compute a quantized version $d_{q}(k)$ of the difference signal using the scale factor $y(k)$ and Table 1/G.727, 2/G.727, 3/G. 727 or 4/G. 727 and then taking the antilog to the base 2 of the result. The estimated difference $s_{e}(k)$ is added to $d_{q}(k)$ to produce the reconstructed version $s_{r}(k)$ of the input signal. Table 1/G.727, 2/G.727, 3/G. 727 or 4/G. 727 will be applicable only when there are $2,3,4$ or 5 bits, respectively, in the FF path.

4.6
 Quantizer scale factor adaptation

This bloc computes $y(k)$, the scaling factor for the quantizer and the inverse quantizer. (The scaling factor $y(k)$ is also fed to the adaptation speed control block.) The inputs are the bit-masked output $I_{c}(k)$ and the adaptation speed control parameter $\mathrm{a}_{l}(k)$.

The basic principle used in scaling the quantizer is bimodal adaptation:

- fast for signals (e.g., speech) that produce difference signals with large fluctuations,
- slow for signals (e.g., voiceband data, tones) that produce difference signals with small fluctuations.

The speed of adaptation is controlled by a combination of fast and slow scale factors.

The fast (unlocked) scale factor $y_{u}(k)$ is recursively computed in the base 2 logarithmic domain from the resultant logarithmic scale factor $y(k)$:

$$
\begin{equation*}
y_{u}(k)=\left(1-2^{-5}\right) y(k)+2^{-5} W\left[I_{c}(k)\right] \tag{4-2}
\end{equation*}
$$

where
$y_{u}(k)$ is limited by $1.06 \leq y_{u}(k) \leq 10.00$.

For 2-core-bit operation (1 sign bit), the discrete function $W\left[I_{c}(k)\right]$ is defined as follows (infinite precision values):

$\left\|I_{c}(k)\right\|$	1	0
$W\left[I_{c}(k)\right]$	27.44	-1.38

For 3-core-bit operation (1 sign bit), the discrete function $W\left[I_{c}(k)\right]$ is defined as follows (infinite precision values):

$\left\|I_{c}(k)\right\|$	3	2	1	0
$W\left[I_{c}(k)\right]$	36.38	8.56	1.88	-0.25

For 4-core-bit (1 sign bit) operation, the discrete function $W\left[I_{c}(k)\right]$ is defined as follows (infinite precision values):

$\left\|I_{c}(k)\right\|$	7	6	5	4	3	2	1	0
$W\left[I_{c}(k)\right]$	69.25	21.25	11.50	6.13	3.13	1.69	0.25	-0.75

The factor $\left(1-2^{-5}\right)$ introduces finite memory into the adaptive process so that the states of the encoder and decoder converge following transmission errors.

The slow (locked) scale factor $y_{l}(k)$ is derived from $y_{u}(k)$ with a low pass filter operation:

$$
\begin{equation*}
y_{l}(k)=\left(1-2^{-6}\right) y_{l}(k-1)+2^{-6} y_{u}(k) \tag{4-3}
\end{equation*}
$$

The fast and slow scale factors are then combined to form the resultant scale for:

$$
\begin{equation*}
y(k)=a_{l}(k) y_{u}(k-1)+\left[1-a_{l}(k)\right] y_{l}(k-1) \tag{4-4}
\end{equation*}
$$

where

$$
0 \leq a_{l}(k) \leq 1 .
$$

4.7 Adaptation speed control

The controlling parameter $a_{l}(k)$ can assume values in the range [0, 1]. It tends towards unity for speech signals and towards zero for voiceband data signals. It is derived from a measure of the rate-of-change of the difference signal values.

Two measures of the average magnitude of $I_{C}(k)$ are computed:

$$
\begin{equation*}
d_{m s}(k)=\left(1-2^{-5}\right) d_{m s}(k-1)+2^{-5} F\left[I_{\mathrm{c}}(k-1)\right] \tag{4-5}
\end{equation*}
$$

and

$$
\begin{equation*}
d_{m l}(k)=\left(1-2^{-7}\right) d_{m l}(k-1)+2^{-7} F\left[I_{c}(k-1)\right] \tag{4-6}
\end{equation*}
$$

where
$F\left[I_{c}(k)\right]$ is defined by

$\left\|I_{c}(k)\right\|$	1	0
$F\left[I_{c}(k)\right]$	7	0

for 2-core-bit (1 sign bit) operation; or

$\left\|I_{c}(k)\right\|$	3	2	1	0
$F\left[I_{c}(k)\right]$	7	2	1	0

for 3-core-bit (1 sign bit) operation; or

$\left\|I_{c}(k)\right\|$	7	6	5	4	3	2	1	0
$F\left[I_{c}(k)\right]$	7	3	1	1	1	0	0	0

for 4-core-bit (1 sign bit) operation.
Thus, $d_{m s}(k)$ is a relatively short term average of $F\left[I_{c}(k)\right]$ and $d_{m l}(k)$ is a relatively long term average of $F\left[I_{c}(k)\right]$.

Using these two averages, the variable $a_{p}(k)$ is defined:

$$
a_{p}(k)=\left\{\begin{array}{l}
\left(1-2^{-4}\right) a_{p}(k-1)+2^{-3}, \text { if }\left|d_{m s}(k)-d_{m l}(k)\right| \geq 2^{-3} d_{m l}(k) \tag{4-7}\\
\left(1-2^{-4}\right) a_{p}(k-1)+2^{-3}, \text { if } y(k)<3 \\
\left(1-2^{-4}\right) a_{p}(k-1)+2^{-3}, \text { if } t_{d}(k)=1 \\
1, \text { if } t_{r}(k)=1 \\
\left(1-2^{-4}\right) a_{p}(k-1), \text { otherwise }
\end{array}\right.
$$

Thus, $a_{p}(k)$ tends towards the value 2 if the difference between $d_{m s}(k)$ and $d_{m l}(k)$ is large (average magnitude $I_{c}(k)$ changing), for an idle channel [indicated by $y(k)<3$] or for partial band (indicated by $t_{d}(k)=1$ as described in \S 4.9) signals. The value of $a_{p}(k)$ tends towards the value 0 if the difference is small [average magnitude of $I_{c}(k)$ relatively constant]. Note that $a_{p}(k)$ is set to one upon detection of a partial band signal transition [indicated by $t_{r}(k)=1$, see $\S 4.9$].
$a_{p}(k-1)$ is then limited to yield $a_{l(k)}$ used in equation (4-4) above:

$$
a_{l}(k)= \begin{cases}1, & a_{p}(k-1)>1 \tag{4-8}\\ a_{p}(k-1), & a_{p}(k-1) \leq 1\end{cases}
$$

This asymmetrical limiting has the effect of delaying the start of a fast to slow state transition until the absolute value of $I_{c}(k)$ remains constant for some time. This tends to eliminate premature transitions for pulsed input signals such as switched carrier voiceband data.

4.8 Adaptive predictor and feedback reconstructed signal calculator

The primary function of the adaptive predictor is to compute the signal estimate $s_{e}(k)$ from the quantized difference signal $d q(k)$. Two adaptive predictor structures are used, a sixth order section that models zeroes and a second order section that models poles in the input signal. This dual structure effectively caters for the variety of input signals which might be encountered.

The signal estimate is computed by:

$$
\begin{equation*}
s_{e}(k)=\sum_{i=1}^{2} a_{i}(k-1) s_{r}(k-i)+s_{e z}(k) \tag{4-9}
\end{equation*}
$$

where

$$
s_{e z}(k)=\sum_{i=1}^{6} b_{i}(k-1) d_{q}(k-i)
$$

and the reconstructed signal is defined as

$$
s_{r}(k-i)=s_{e}(k-i)+d_{q}(k-i)
$$

Both sets of predictor coefficients are updated using a simplified gradient algorithm.

For the second order predictor:

$$
\begin{equation*}
a_{1}(k)=\left(1-2^{-8}\right) a_{1}(k-1)+\left(3 \cdot 2^{-8}\right) \operatorname{sgn}[p(k)] \operatorname{sgn}[p(k-1)] \tag{4-10}
\end{equation*}
$$

$$
\begin{align*}
& a_{2}(k)=\left(1,-2^{-7}\right) a_{2}(k-1)+2^{-7}\{\operatorname{sgn}[p(k)] \operatorname{sgn}[p(k-2)] \tag{4-11}\\
& \left.-f\left[a_{1}(k-1)\right] \operatorname{sgn}[p(k)] \operatorname{sgn}[p(k-1)]\right\}
\end{align*}
$$

where

$$
\begin{aligned}
& p(k)=d_{q}(k)+s_{e z}(k) \\
& f\left(a_{1}\right)= \begin{cases}4 a_{1}, & \left|a_{1}\right| \leq 2^{-1} \\
2 \operatorname{sgn}\left(a_{1}\right), & \left|a_{1}\right|>2^{-1}\end{cases}
\end{aligned}
$$

and $\operatorname{sgn}[0]=1$, except $\operatorname{sgn}[p(k-i)]$ is defined to be 0 only if $p(k-i)=0$ and $i=0$; with the stability constraints;

$$
\left|a_{2}(k)\right| \leq 0.75 \text { and }\left|a_{1}(k)\right| \leq 1-2^{-4}-a_{2}(k)
$$

If $t_{r}(k)=1($ see $\S 4.9)$, then $a_{1}(k)=a_{2}(k)=0$.

For the sixth order predictor:

$$
\begin{equation*}
b_{i}(k)=\left(1-2^{-8}\right) b_{i}(k-1)+2^{-7} \operatorname{sgn}\left[d_{q}(k)\right] \operatorname{sgn}\left[d_{q}(k-i)\right] \tag{4-12}
\end{equation*}
$$

for $i=1,2, \ldots, 6$.

If $t_{r}(k)=1($ see $\S 4.9)$, then $b_{1}(k)=b_{2}(k)=\ldots=b_{6}(k)=0$.

As above, $\operatorname{sgn}[0]=1$, except $\left.\operatorname{sgn}\left[d_{q}(k)-i\right)\right]$ is defined to be 0 only if $d_{q}(k-i)=0$ and $i=0$. Note that $\mathrm{b}_{\mathrm{i}}(k)$ is implicitly limited to ± 2.

4.9 Tone and transition detector

In order to improve performance for signals originating from Frequency Shift Keying (FSK) modems operating in the character mode, a two-step detection process is defined. First, partial band signal (e.g. tone) detection is invoked to that the quantizer can be driven into the fast mode of adaptation:

$$
t_{d}(k)=\left\{\begin{array}{l}
1, \quad a_{2}(k)<-0.71875 \tag{4-13}\\
0, \text { otherwise }
\end{array}\right.
$$

In addition, a transition from a partial band signal is defined so that the predictor coefficients can be set to zero and the quantizer can be forced into the fast mode of adaptation:

$$
t_{r}(k)= \begin{cases}1, & a_{2}(k)<-0.71875 \text { and }\left|d_{q}(k)\right|>24 \cdot 2^{\mathrm{y} l(k)} \tag{4-14}\\ 0, \text { otherwise }\end{cases}
$$

$5 \quad$ ADPCM decoder principles

Figure 3/G. 727 is a block schematic of the decoder. A functional description of each block is given in $\S \S 5.1$ to 5.10 below. There is an FB path and an FF path. The FB path uses the core bits to calculate the signal estimate. The FF path contains the core and enhanced bits and reconstructs the output PCM code word.

5.1 Bit masking

The function of this block is described in \S 4.4.
5.2 Feedback inverse adaptive quantizer

The function of this block is described in $\S 4.5$.
5.3 Feed-forward inverse adaptive quantizer

A quantized difference signal $d_{q}(k)$ of the difference signal is produced from the input $I^{\prime}(k)$ which contains the core and enhanced bits.
5.4 Quantizer scale factor adaptation

The function of this block is described in § 4.6.
5.5 Adaptation speed control

The function of this block is described in $\S 4.7$.

The functions of this block are described in § 4.8.
5.7 Feed-forward reconstructed signal calculator

This block receives input from the FF inverse adaptive quantizer and the adaptive predictor to reconstruct the uniform PCM signal that is fed to the PCM format conversion block.

5.8 Tone and transition detector

The function of this block is described in § 4.9.

Output PCM format conversion

This block converts the reconstructed uniform PCM signal $s_{r}(k)_{F F}$ into an A-law or μ-law PCM signal $s_{p}(k)$ as required.

The synchronous coding adjustment prevents cumulative distorsion occurring on synchronous tandem codings (ADPCM-PCM-ADPCM, etc., digital connections) for:

- error-free transmission,
- instances when the embedded ADPCM and intermediate $64 \mathrm{kbit} / \mathrm{s}$ PCM bit streams are not disturbed by digital signal processing devices.

If the coder and decoder have different initial conditions, as may occur after switching for example, then the synchronous tandeming may take time to establish. Furthermore, if this property is disturbed or not acquired initially, then it may be recovered for those signals of sufficient level with spectra that occupy the majority of the 200 to 3400 Hz band (e.g., speech, $4800 \mathrm{bit} / \mathrm{s}$ voiceband data).

When a decoder is synchronously connected to an encoder, the synchronous coding adjustment block estimates quantization in the encoder. If all state variables in both the decoder and encoder have identical values and there are no transmission errors, the forced equivalence of both feed-forward quantizer output sequences for all values of k guarantees the non-accumulation of distortion.

This is accomplished by first converting the A-law or μ-law signal $s_{p}(k)$ to a uniform PCM signal $s_{t x}(k)$ and then computing a difference signal $d_{x}(k)$:

$$
\begin{equation*}
d_{x}(k)=s_{l x}(k)-s_{e}(k) \tag{5-1}
\end{equation*}
$$

The difference signal $d_{x}(k)$ is then examined to see if it falls in the ADPCM quantizer decision interval determined by $I(k)$ and $y(k)$. The signal $s_{d}(k)$ is then defined as follows:

$$
s_{d}(k)=\left\{\begin{array}{l}
s_{p}^{+}(k), d_{x}(k)<\text { lower interval boundary } \tag{5-2}\\
s_{p}^{-}(k), d_{x}(k) \geq \text { upper interval boundary } \\
s_{p}(k), \text { otherwise }
\end{array}\right.
$$

where

$$
s_{d}(k): \quad \text { the output PCM code word of the decoder; }
$$

$$
s_{p}^{+}(k): \quad \text { the PCM code word that represents the next more positive PCM output level (when } s_{p}(k)
$$ represents the most positive output level, then $s^{+}{ }_{p}(k)$ is constrained to be the value $s_{p}(k)$;

$s_{p}^{-}(k)$: the code word that represents the next more negative PCM output level (when $s_{p}(k)$ represents the most negative output level, then $s_{p}^{-}(k)$: is constrained to be the value $s_{p}(k)$.

6

Computational details

Computational details for each of the encoder and decoder elements are provided in §§ 6.1 and 6.2.

Proper timing for the encoder and decoder is obtained by executing all of the delay blocks simultaneously and proceeding to calculate the signals which can be derived using this information. For example, the Signal Estimate (SE) of Figure 10/G. 727 is calculated using delay values and then SE is used as shown in Figure 4/G.727.

6.1 Input and output signals

Table 5/G. 727 defines the input and output signals for the encoder and decoder. Table 6/G. 727 defines control variables for the algorithm.

An optional signal R represents a reset function that sets all internal memory elements to a specified condition so that an encoder or decoder can be forced into a known state. For applications that require an immediate reset function (e.g. digital circuit multiplication equipment), the reset is mandatory, not optional.

TABLE 5/G. 727
Input and output signals

ENCODER			
	Name	Number of bits	Description
Input Input Input Output	S LAW R (optional) I	$\begin{gathered} 1 \\ \\ 1 \\ \mathrm{E}+\mathrm{C} \end{gathered}$	PCM input word PCM law select, $0=\mu$-law, 1 = A-law Reset $\mathrm{C}=$ core bits, $\mathrm{E}=$ Enhancement bits
DECODER			
	Name	Number of bits	Description
Input	I^{\prime}	C + E	$\begin{aligned} & \mathrm{C}=\text { core bits, } \\ & \mathrm{E}=\text { Enhancement bits } \end{aligned}$
Input	LAW	1	PCM law select, $0=\mu$-law, 1 = A-law
Input	R (optional)	1	Reset
Output	SD	8	Decoder PCM output word

TABLE 6/G. 727
Control variables

Coding rate kbit/s	Core bits (C)	Enhancement bits (E)
16	2	0
24	2	1
32	3	0
	2	2
3	4	1
40	2	0
	3	3
	4	2

Note - For 16-kbit/s, $24-\mathrm{kbit} / \mathrm{s}$ and $32 \mathrm{kbit} / \mathrm{s}$ operation, $\mathrm{E}=0$ corresponds to the algorithm at higher rates with all the enhancement bits dropped. For 40 -kbit/s operation, $\mathrm{E}=0$ is invalid because no higher rate embedded algorithm has been defined.

TABLE 7/G. 727
Internal processing variables

Name	Bits	Binary representation	Optional reset values	Description
$\mathrm{Al}^{\text {a }}$, $\mathrm{A}^{\text {a }}{ }^{\text {a }}$	16 TC	S, $0, .,-14$	0	Delayed predictor second order coefficients
A1P, A2P	16 TC	S, $0, .,-14$		Second order predictor coefficients
A1R, A2R	16 TC	S, $0, .,-14$		Triggered second order predictor coefficients
A1T	16 TC	S, $0, .,-14$		Unlimited a_{1} coefficient
A2T	16 TC	S, $0, . .,-14$		Unlimited a_{2} unlimited
AL	7 SM	0,.., -6		Limited speed control parameter
$\mathrm{APa}^{\text {a }}$	10 SM	1,.., -8	0	Delayed unlimited speed control parameter
APP	10 SM	1,.., -8		Unlimited speed control parameter
APR	10 SM	1,.., -8		Triggered unlimited speed control parameter
AX	1 SM	1		Speed control parameter update
B1a),..., $\mathrm{B6}^{\text {a }}$	16 TC	S, $0, . .,-14$	0	Delayed sixth order predictor coefficients
B1P,..., B6P	16 TC	S, $0, .,-14$		Sixth order predictor coefficients
B1R,...,B6R	16 TC	S, $0, . .,-14$		Triggered sixth order predictor coefficients
D	16 TC	S,14,.., 0		Difference signal, only in encoder
DL	11 SM	$3, . .,-7$		$\log _{2}$ (difference signal), only in encoder
DLN	12 TC	S,3,..., -7		$\log _{2}$ (normalized difference), only in encoder
DLNX	12 TC	S,3,..., 7		$\log _{2}$ (normalized difference), only in decoder
DLX	11 SM	3,..,-7		$\log _{2}$ (difference signal), only in decoder
DMLa)	14 SM	2,.., -11	0	Delayed long term average of $\mathrm{F}(\mathrm{I})$ sequence
DMLP	14 SM	2,...,-11		Long term average of $\mathrm{F}(\mathrm{I})$ sequence
DMSa)	12 SM	2,..,-9	0	Delayed short term average of $\mathrm{F}(\mathrm{I})$ sequence
DMSP	12 SM	2,..,-9		Short term average of $\mathrm{F}(\mathrm{I})$ sequence
DQ ${ }_{\text {Fb }}$	15 SM	S,13,.., 0		Feed-back (FB) quantized difference signal
DQFF	15 SM	S,13,.., 0		Feed-forward (FF) quantized difference signal
DQ0	11 FL	S,4e, 6 m		Quantized difference signal with delay 0
DQ1a),..., ${ }^{\text {DQ6 }}{ }^{\text {a }}$	11 FL	S,4e, 6m	32	Quantized difference signal with delays 1 to 6
$\mathrm{DQL}_{\text {Fb }}$	12 TC	S,3,..., -7		Log_{2} (FB quantized difference signal)
$\mathrm{DQL}_{\text {FF }}$	12 TC	S,3,..., 7		$\log _{2}$ (FF quantized difference signal)
$\mathrm{DQLN}_{\text {FB }}$	12 TC	S,3,..., 7		$\log _{2}$ (FB normalized quantized difference)
$\mathrm{DQLN}_{\mathrm{FF}}$	12 TC	S,3,..., 7		$\log _{2}$ (FF normalized quantized difference)
$\mathrm{DQS}_{\text {Fb }}$	1 TC	S		Sign bit of FB quantized difference signal
$\mathrm{DQS}_{\text {FF }}$	1 TC	S		Sign bit of FF quantized difference signal

TABLE 7/G. 727 (Cont.)

Name	Bits	Binary representation	Optional reset values	Description
DS	1 TC	S		Sign bit of difference signal, only in encoder
DSX	1 TC	S		Sign bit of difference, signal, only in decoder
DX	16 TC	S, 14,.., 0		Difference signal, only in decoder
FI	3 SM	2,.., 0		Output of F(I)
I_{c}	2 SM	S,0		2 bit core ADPCM bits
I_{c}	3 SM	S,1,0		3 bit core ADPCM bits
I_{c}	4 SM	S,2,.., 0		4 bit core ADPCM bits
PK0	1 TC	S		Sign of DQ + SEZ with delay 0
PK1 ${ }^{\text {a }}$, PK2 ${ }^{\text {a }}$	1 TC	S	0	Sign of DQ + SEZ with delays 1 and 2
SE	15 TC	S, 13,.., 0		Signal estimate
SEZ	15 TC	S, 13,.., 0		Sixth order predictor partial signal estimate
SIGPK	1 TC	0		$\operatorname{sgn}[p(k)]$ flag
SL	14 TC	S, 12,.., 0		Linear input signal, only in encoder
SLX	14 TC	S,12,.., 0		Quantized reconstructed, signal, only in decoder
SP	8			PCM reconstructed signal, only in decoder
$\mathrm{SR}_{\text {FF }}$	16 TC	S,14,..,0		Reconstructed signal
$\mathrm{SR}_{\text {FB }}$	16 TC	S,14,..., 0		Reconstructed signal
SR0	11 FL	S,4e, 6 m		Reconstructed signal with delay 0
SR1 ${ }^{\text {a }}$, SR2 ${ }^{\text {a }}$	11 FL	S,4e, 6 m	32	Reconstructed signal with delays 1 and 2
TDa)	1 TC	0	0	Delayed tone detect
TDP	1 TC	0		Tone detect
TDR	1 TC	0		Triggered tone detect
TR	1 TC	0		Transition detect
U1,..., U6	1 TC	S		Sixth order predictor coefficient update sign bit
WA1,WA2	16 TC	S,13,.., -1		Partial product of signal estimate
WB1,...,WB6	16 TC	S,13,.., -1		Partial product of signal estimate
WI	12 TC	S,6,..., 4		Quantizer multiplier
Y	13 SM	3,..,-9		Quantizer scale factor
YLa)	19 SM	3,...,-15	34816	Delayed slow quantizer scale factor
YLP	19 SM	3,...,-15		Slow quantizer scale factor
YUa)	13 SM	3,..,-9	544	Delayed fast quantizer scale factor
YUP	13 SM	3,..,-9		Fast quantizer scale factor
YUT	13 SM	3,..,-9		Unlimited fast quantizer scale factor

a) Indicates variables that are set to specific values by the reset. When reset is invoked, the output of the DELAY sub-block (see § 7.2.5) is given in column 4.
TC Two's complement
e Exponent bits
SM Signed magnitude
m Mantissa bits
FL Floating point S
Sign bit

This section contains a detailed expansion off all blocks in Figures 2/G. 727 and 3/G.727, described in §§ 4 and 5. The expansions are illustrated in Figures 4/G. 727 to $13 / \mathrm{G} .727$ with the internal processing variables as defined in Table 7/G.727. A brief functional description and full specification is given for each sub-block.

The notations used in the sub-block descriptions are as follows:
$\ll n \quad n$-bit shift left operation (zero fill);
$\gg n \quad n$-bit shift right operation (in the direction of the least significant bit and zero fill);
\& Logical "and" operation;
$+\quad$ Arithmetic addition;

- Arithmetic subtraction;
* Arithmetic multiplication;
** Logical "exclusive or" operation;

I
| Comments to equations.
I
6.2.1 Input PCM format conversion and difference signal computation

FIGURE 4/G. 727
Input PCM format conversion and difference signal computation

EXPAND

Input: $\quad \mathrm{S}(\mathrm{SP}$ in decoder), LAW
Output: \quad SL (SLX in decoder)
Function: \quad Convert either A-law or μ-law PCM to uniform PCM.
Decode PCM code word, S, according to Recommendation G. 711 using character signals (column 6, before inversion of even bits for A-law) and values at decoder output (column 7). The values at decoder output, SS, must be represented in 13-bit signed magnitude form for A-law PCM and 14-bit signed magnitude form for μ-law PCM (the sign bit is equal to one for negative values).

Note - For A-law S (and SP) includes even bit inversion (see Note 2 below Table 1/G.711).

$$
\begin{aligned}
& \text { when } L A W=0, S S S=S S \gg 13 \\
& S S Q=S S \& 8191
\end{aligned}
$$

when $L A W=1, S S S=S S \gg 12$
$S S M=S S \& 4095$

$$
S S Q=S S M \ll 1
$$

then
$S L= \begin{cases}S S Q, & S S S=0 \\ (16384-S S Q) \& 16383, & S S S=1\end{cases}$
| μ-law
|
|
| A-law
|
| Convert signed
| magnitude
| to two'scomplement

SUBTA

Inputs: \quad SL (SLX in decoder), SE
Output: $\quad \mathrm{D}$ (DX in decoder)
Function: Compute difference signal by subtracting signal estimate from input signal (or quantized reconstructed signal in decoder).
$S L S=S L \gg 13$
$S L I= \begin{cases}S L, & S L S=0 \\ 49152+S L, & S L S=1\end{cases}$
$S E S=S E \gg 14$
$S E I= \begin{cases}S E, & S E S=0 \\ 32768+S E, & S E S=1\end{cases}$

| Sign extension
,
$D=(S L I+65536-S E I) \& 65535$
6.2.2 Adaptive quantizer

FIGURE 5/G. 727
Adaptive quantizer

Input: $\quad \mathrm{D}$ (DX in decoder)
Outputs: DL (DLX in decoder), DS (DSX in decoder)
Function: Convert difference signal from the linear to the logarithmic domain.
$D S=D \gg 15$
$D Q M= \begin{cases}D, & \left.\left\lvert\, \begin{array}{ll}D S & =0 \\ & \text { Convert D from two's } \\ (65536-D) \& 32767, D S=1 & \mid \text { magnitude }\end{array}\right.\right)\end{cases}$

MANT $=((D Q M \ll 7) \gg E X P) \& 127$
| Compute approximation
$\mid \log _{2}(1+x)=x$
$D L=(E X P \ll 7)+M A N T$
| Combine 7 mantissa bits and | 4 exponent bits into one | 11-bit word

QUAN (encoder only)
Inputs: DLN, DS
Output: I
Function: Quantize difference signal in logarithmic domain.

16 kbit/s quantizer decision levels and 2-bit outputs

DS	DLN	I
		12
0	$261-2047$	01
0	$0-260$	00
0	$2048-4095$	00
1	$2048-4095$	11
1	$0-260$	11
1	$261-2047$	10

TABLE 9/G. 727
24 kbit/s quantizer decision levels and 3-bit outputs

DS	DLN	I
		123
0	$356-2047$	011
0	$261-355$	010
0	$123-260$	001
0	$0-122$	000
0	$2048-4095$	000
1	$2048-4095$	111
1	$0-122$	111
1	$123-260$	110
1	$261-355$	101
1	$356-2047$	100
1		

32 kbit/s quantizer decision levels and 4-bit outputs

DS	DLN	I
		1234
0	$405-2047$	0111
0	$356-404$	0110
0	$310-355$	0101
0	$261-309$	0100
0	$202-260$	0011
0	$123-201$	0010
0	$0-122$	0001
0	$4089-4095$	0001
0	$2048-4088$	0000
0	$2048-4088$	1111
1	$4089-4095$	1110
1	$0-122$	1110
1	$123-201$	1101
1	$202-260$	1100
1	$261-309$	1011
1	$310-355$	1010
1	$356-404$	1001
1	$405-2047$	1000
1		
1		

40 kbit/s quantizer decision levels and 5-bit outputs

Note - The I values are transmitted starting with bit 1.

SUBTB

Inputs: $\quad \mathrm{DL}(\mathrm{DLX}$ in decoder), Y

Output: DLN (DLNX in decoder)
Function: Scale logarithmic version of difference signal by subtracting scale factor.
$D L N=(D L+4096-(Y \gg 2)) \& 4095$
6.2.3 Bit masking

FIGURE 6/G. 727
Bit masking

Input: $\quad \mathrm{I}(\mathrm{k})$ or $\mathrm{I}^{\prime}(\mathrm{k})$

Outputs: $\quad \mathrm{I}_{\mathrm{c}}(\mathrm{k})$

Function: Masking of quantized difference signal to extract the core bits.

Note: \quad Figure 6/G. 727 and equations are given for the encoder. They are also valid when substituting I' (k) for $\mathrm{I}(\mathrm{k})$ for the decoder.

$$
\mathrm{I}_{\mathrm{c}}=\mathrm{I} \gg \mathrm{E}, \mathrm{E}=\text { Enhancement Bits. }
$$

6.2.4 Inverse adaptive quantizer

FIGURE 7/G. 727
Inverse adaptive quantizer

RECONST

Input: $\quad \mathrm{I}_{c}$ or $\mathrm{I}^{\prime}(\mathrm{k})$
Outputs: $\quad \mathrm{DQS}_{\mathrm{FB}}$ or $\mathrm{DQS}_{\mathrm{FF}}, \mathrm{DQLN}_{\mathrm{FB}}$ or $\mathrm{DQLN}_{\mathrm{FF}}$
Function: Reconstruction of quantized difference signal in the logarithmic domain.
Note: \quad Figure 7/G.727, equations and tables are given for the feed-back path. They are also valid when substituting $I^{\prime}(k)$ for $I_{c}(k), D Q S_{F F}$ for $\mathrm{DQS}_{\mathrm{FB}}$ and $\mathrm{DQLN}_{\mathrm{FF}}$ for $\mathrm{DQLN}_{\mathrm{FB}}$.
$D Q S_{F B}=I_{C} \gg(C-1)$
$D Q S_{F F}=I^{\prime} \gg(E+C-1)$

TABLE 12/G. 727
16 kbit/s quantizer output levels

I^{\prime} or I_{c}	$\mathrm{DQS}_{\mathrm{FF} \text { or }}$	$\mathrm{DQLN}_{\mathrm{FF}}$ or $\mathrm{DQSS}_{\mathrm{FB}}$
12	$\mathrm{DQLN}_{\mathrm{FB}}$	
01	0	365
00	0	116
11	1	116
10	1	365

TABLE 13/G. 727
24 kbit/s quantizer output levels

I^{\prime} or I_{c}	$\mathrm{DQS}_{\mathrm{FF}}$ or	DQLN $_{\mathrm{FF}}$ or $\mathrm{DQLN}_{\mathrm{FB}}$
123	DQS $_{\mathrm{FB}}$	
011	0	395
010	0	307
001	0	199
000	0	4085
111	1	4085
110	1	199
101	1	307
100	1	395

TABLE 14/G. 727
32 kbit/s quantizer output levels

I^{\prime} or I_{c}	DQS $_{\mathrm{FF}}$ or	$\mathrm{DQLN}_{\mathrm{FF}}$ or
1234	$\mathrm{DQS}_{\mathrm{FB}}$	$\mathrm{DQLN}_{\mathrm{FB}}$
0111	0	428
0110	0	377
0101	0	332
0100	0	285
0011	0	232
0010	0	165
0001	0	68
0000	0	3961
1111	1	3961
1110	1	68
1101	1	165
1100	1	232
1011	1	285
1010	1	332
1001	1	377
1000	1	428

TABLE 15/G. 727

40 kbit/s quantizer output levels

I^{\prime}	$\mathrm{DQS}_{\text {FF }}$	$\mathrm{DQLN}_{\text {FF }}$
12345		
01111	0	456
01110	0	419
01101	0	391
01100	0	367
01011	0	344
01010	0	321
01001	0	298
01000	0	273
00111	0	246
00110	0	217
00101	0	184
00100	0	145
00011	0	97
00010	0	34
00001	0	4035
00000	0	3832
11111	1	3832
11110	1	4035
11101	1	34
11100	1	97
11011	1	145
11010	1	184
11001	1	217
11000	1	246
10111	1	273
10110	1	298
10101	1	321
10100	1	344
10011	1	367
10010	1	391
10001	1	419
10000	1	456

Note 1 - The I values are received starting with bit 1 .

ADDA

Inputs: $\quad \mathrm{DQLN}_{\mathrm{FB}}$ or $\mathrm{DQLN}_{\mathrm{FF}}, \mathrm{Y}$
Output: $\quad D_{\text {QL }}$ or $D_{\text {FL }}$
Function: Addition of scale factor to logarithmic version of quantized difference signal.
Note: \quad Subscripts are given for the feed-back path. Figure 7/G. 727 and equation are also valid when substituting $\mathrm{DQLN}_{\mathrm{FF}}$ for $\mathrm{DQLN}_{\mathrm{FB}}$ and $\mathrm{DQL}_{\mathrm{FF}}$ for $\mathrm{DQL}_{\mathrm{FB}}$.
$D Q L_{F B}=\left(D Q L N_{F B}+(Y \gg 2)\right) \& 4095$

ANTILOG

Inputs: $\quad \mathrm{DQL}_{\mathrm{FB}}, \mathrm{DQS}_{\mathrm{FB}}$
Output: $\quad \mathrm{DQ}_{\mathrm{FB}}$
Function: Convert quantized difference signal from the logarithmic to the linear domain.
Note: \quad Figure 7/G. 727 and equations are given for the feed-back path. The equations are also valid when substituting $\mathrm{DQL}_{\mathrm{FF}}$ for $\mathrm{DQL}_{\mathrm{FB}}, \mathrm{DQS}_{\mathrm{FF}}$ for $\mathrm{DQS}_{\mathrm{FB}}$ and $\mathrm{DQ}_{\mathrm{FF}}$ for $\mathrm{DQ}_{\mathrm{FB}}$.
$D S=D Q L_{F B} \gg 11 \quad \mid$ Extract 4-bit exponent
$D E X=\left(D Q L_{F B} \gg 7\right) \& 15$
$D M N=D Q L_{F B} \& 127$
| Extract 7-bit mantissa
$D Q T=(1 \ll 7)+D M N$
$D Q M A G= \begin{cases}(D Q T \ll 7) \gg(14-D E X), & D S=0 \\ 0, & D S=1\end{cases}$
$D Q_{F B}=(D Q S \ll 14)+D Q M A G$
| Convert mantissa to linear using
| approximation $2^{x}=1+x$
\|
| Attach sign bit to signed
| magnitude word

6.2.5 Quantizer scale factor adaptation

FIGURE 8/G. 727
Quantizer scale factor adaptation

DELAY

Inputs: x, R (Optional)
Output: y
Function: Memory block. For the input x, the output is given by:
$y(k)=\left\{\begin{array}{lr}x(k-1), & R=0 \\ \text { reset value given in column } 4 \text { of Table 3/G.727, } \\ R=1\end{array}\right.$
| reset

FILTD

Inputs: WI, Y
Output: YUT
Function: Update of fast quantizer scale factor.
$D I F=((W I \ll 5)+131072-Y) \& 131071 \quad \mid$ Compute difference
DIFS $=$ DIF $\gg 16$
$D I F S X=\left\{\begin{array}{l}\text { DIF } \gg 5, \quad \text { DIFS }=0 \\ (D I F \gg 5)+4096, D I F S=1\end{array}\right.$
| Time constant is $1 / 32$,
| Sign extension
$Y U T=(Y+D I F S X) \& 8191$

FILTE

Inputs: YUP, YL
Output: YLP
Function: Update of slow quantizer scale factor.
$\begin{array}{ll}D I F=(Y U P+((1048576-Y L) \gg 6)) \& 16383 & \text { | Compute difference }\end{array}$
DIFS $=$ DIF $\gg 13 \mid$ Time constant is $1 / 64$
$D I F S X=\left\{\begin{array}{l|l}\text { DIF, } & \text { DIFS }=0 \\ \text { DIF }+507904, \text { DIFS }=1 & \text { Sign extension }\end{array}\right.$
$Y L P=(Y L+D I F S X) \& 524287$

FUNCTW

Input: $\quad I_{c}$
Output: WI
Function: Map quantizer output into logarithmic version of scale factor multiplier.
$I S=I_{C} \gg(C-1), C=2,3,4$.

For $\mathrm{C}=2$:
$I M= \begin{cases}I_{c} \& 1, & I S=0 \\ \left(3-I_{c}\right) \& 1, & I S=1\end{cases}$
$W I=\left\{\begin{array}{l}439, \quad I M=1 \\ 4074, I M=0\end{array}\right.$
I
| Scale factor multipliers
|

For $\mathrm{C}=3$:
$I M= \begin{cases}I_{c} \& 3, & I S=0 \\ \left(7-I_{c}\right) \& 3, & I S=1\end{cases}$
$W I=\left\{\begin{aligned} 582, I M & =3 \\ 137, I M & =2 \\ 30, I M & =1 \\ 4092, I M & =0\end{aligned}\right.$

For $\mathrm{C}=4$:
$I M=\left\{\begin{array}{lr}I_{c} \& 7, & I S=0 \\ \left(15-I_{c}\right) \& 7, I S & =1\end{array}\right.$
$W I=$
1108, $I M=7$
$340, I M=6$
$184, I M=5$
$98, I M=4$
$50, I M=3$
$27, I M=2$
$4, I M=1$
4084, $I M=0$
Input: \quad YUT
Output: \quad YUP
Function: Limit quantizer scale factor
GEUL $=((Y U T+11264) \& 16383) \gg 13$
GELL $=((Y U T+15840) \& 16383) \gg 13$
$Y U P= \begin{cases}544, G E L L=1 & \mid \text { Set lower limit to } 1.06 \\ 5120, G E U L=0 & \mid \text { Set upper limit to } 10.00 \\ \text { YUT, otherwise } & \end{cases}$

MIX

Inputs: $\mathrm{AL}, \mathrm{YU}, \mathrm{YL}$
Output: $\quad \mathrm{Y}$
Function: Form linear combination of fast and slow quantizer scale factors.

```
DIF = (YU + 16384-(YL >> 6)) & 16383
DIFS = DIF >> 13
DIFM={}{\begin{array}{lr}{\mathrm{ DIF, DIFS = 0}}\\{(16384-DIF)& 8191, DIFS = 1}
PRODM=(DIFM * AL)>> 6
PROD \(=\left\{\begin{array}{lr}\text { PRODM, } & D I F S=0 \\ (16384-P R O D M) \& 16383, D I F S=1\end{array}\right.\)
```

| Compute magnitude | of product
| Compute difference
I
| Compute magnitude
| of difference
|
,

[^0]$Y=((Y L \gg 6)+P R O D) \& 8191$

Adaptation speed control

DELAY
See § 6.2.5 for specification.

FILTA
Inputs: FI, DMS
Output: DMSP
Function: Update of short-term average of $\mathrm{F}(\mathrm{I})$.
$D I F=((F I \ll 9)+8192-D M S) \& 8191$
| Compute difference
DIFS $=$ DIF >> 12
$D I F S X=\left\{\begin{array}{lr}D I F \gg 5, & D I F S=0 \\ (D I F \gg 5)+3840, D I F S=1\end{array}\right.$
Time constant is $1 / 32$,
Sign extension
$D M S P=(D I F S X+D M S) \& 4095$

FILTB

Inputs: \quad FI, DML
Output: DMLP
Function: Update of long-term average of $\mathrm{F}(\mathrm{I})$.

DIF $=((F I \ll 11)+32768-D M L) \& 32767 \quad \mid$ Compute difference
DIFS $=$ DIF >> 14
$D I F S X= \begin{cases}\text { DIF } \gg 7, & \left\lvert\, \begin{array}{l}\text { Time constant is } 1 / 28, \\ \\ (D I F \gg 7)+16128, \\ \\ \text { DIFS }=1\end{array}\right. \\ \left\lvert\, \begin{array}{l}\text { Sign extension }\end{array}\right.\end{cases}$
$D M L P=(D I F S X+D M L) \& 16383$

FILTC

Inputs: AX, AP
Output: APP
Function: Low pass filter of speed control parameter.

DIF $=((A X \ll 9)+2048-A P) \& 2047$
| Compute difference
DIFS $=$ DIF >> 10

DIFSX $=\left\{\begin{array}{lr}D I F>4, & D I F S=0 \\ (D I F \gg 4)+896, D I F S & =1\end{array}\right.$
|
| Time constant is $1 / 16$,
| Sign extension
|
$A P P=(D I F S X+A P) \& 1023$

Input: $\quad I_{c}$
Output: FI
Function: Map quantizer output into the $\mathrm{F}(\mathrm{I})$ function.
$I S=I_{C} \gg(C-1), C=2,3,4$.

For $\mathrm{C}=2$:
$I M= \begin{cases}I_{c} \& 1, & I S=0 \\ \left(3-I_{c}\right) \& & 1, \\ & I S=1\end{cases}$
$F I=\left\{\begin{array}{l}7, I M=1 \\ 0, I M=0\end{array}\right.$

For $\mathrm{C}=3$:
$I M=\left\{\begin{array}{lr}I_{c} \& 3, & I S=0 \\ \left(7-I_{c}\right) \& 3, & I S=1\end{array}\right.$
$F I=\left\{\begin{array}{l}7, I M=3 \\ 2, I M=2 \\ 1, I M=1 \\ 0, I M=0\end{array}\right.$

For $\mathrm{C}=4$:
$I M=\left\{\begin{array}{lr}I_{c} \& 7, & I S=0 \\ \left(15-I_{c}\right) \& 7, I S=1\end{array}\right.$
$F I=\left\{\begin{array}{l}0,0 \leq I M \leq 2 \\ 1,3 \leq I M \leq 5 \\ 3, I M=6 \\ 7, I M=7\end{array}\right.$

Input: AP
Output: AL
Function: Limit speed control parameter.
$A L=\left\{\begin{array}{lr}64, & A P \geq 256 \\ A P \gg & 2, \\ A P \leq 255\end{array}\right.$

SUBTC

Inputs: \quad DMSP, DMLP, TDP, Y
Output: AX
Function: Compute magnitude of the difference of short and long term functions of quantizer output sequence and then perform threshold comparison for quantizing speed control parameter.
$D I F=((D M S P \ll 2)+32768-D M L P) \& 32767 \quad \mid$ Compute difference
DIFS $=$ DIF $\gg 14$ |

DIFM $=\left\{\begin{array}{l|l}\text { DIF, } & \text { DIFS }=0 \\ & \mid \text { Compute magnitude } \\ (32768-\text { DIF }) \& 16383, \text { DIFS }=1 & \mid \text { of difference }\end{array}\right.$

DTHR $=$ DMLP >> 3
$A X= \begin{cases}0, & Y \geq 1536 \text { and } D I F M<D T H R \text { and } T D P=0 \\ 1, & \text { otherwise }\end{cases}$

TRIGA

Inputs: TR, APP
Output: APR
Function: Speed control trigger block.
$A P R= \begin{cases}A P P, & T R=0 \\ 256, & T R=1\end{cases}$
6.2.7 Adaptive predictor and reconstructed signal calculator (feedback path)

ACCUM

Inputs: WA1, WA2, WB1, WB2, WB3, WB4, WB5, WB6
Outputs: SE, SEZ
Function: Addition of predictor outputs to form the partial signal estimate (from the sixth order predictor) and the signal estimate.

$S E Z I$	$=(((()((((W B 1+W B 2) \& 65535)+W B 3) \& 65535)$		
	$+W B 4) \& 65535)+W B 5) \& 65535)+W B 6) \& 65535$		
$S E I$	$=(((S E Z I+W A 2) \& 65535)+W A 1) \& 65535$		
$S E Z$	$=S E Z I \gg 1$	signal estimate for partial	

Inputs: $\quad \mathrm{DQ}_{\mathrm{FB}}$ or $\mathrm{DQ}_{\mathrm{FF}}, \mathrm{SE}$

Output: $\quad \mathrm{SR}_{\mathrm{FB} \text { or }} \mathrm{DQ}_{\mathrm{FF}}$
Function: Addition of quantized difference signal and signal estimate to form reconstructed signal.
Note: \quad Subscripts are given for the feed-back path. Equation is also valid when substituting $\mathrm{DQ}_{\mathrm{FF}}$ for $\mathrm{DQ}_{\mathrm{FB}}$ and $D_{F F}$ for $D_{F B}$.
$D Q S_{F B}=D Q_{F B} \gg 14$
$D Q I= \begin{cases}D Q_{F B}, & D Q S_{F B}=0 \\ & \mid \text { Convert signed magnitude } \\ \left(65536-\left(D Q_{F B} \& 16383\right)\right) \& 65535, D Q S_{F B}=1 & \mid \text { to two'scomplement }\end{cases}$
$S E S=S E \gg 14$
$S E I=\left\{\begin{array}{lr}S E, & S E S=0 \\ (1 \ll 15)+S E, & S E S=1\end{array}\right.$
\|
| Sign extension
|
$S R_{F B}=(D Q I+S E I) \& 65535$

ADDC
Inputs: $\quad \mathrm{DQ}_{\mathrm{FB}}, \mathrm{SEZ}$
Output: PK0, SIGPK
Function: Obtain sign of addition of quantized difference signal and partial signal estimate.
$D Q S_{F B}=D Q_{F B} \gg 14$
$D Q I= \begin{cases}D Q_{F B}, & D Q S_{F B}=0 \\ \left(65536-\left(D Q_{F B} \& 16383\right)\right) \& 65535, & D Q S_{F B}=1:\end{cases}$
|
| Convert signed
| magnitude to | two'scomplement
$S E Z S=S E Z \gg 14$
$S E Z I=\left\{\begin{array}{l}S E Z, \quad S E Z S=0 \\ (1 \ll 15)+S E Z, S E Z S=1\end{array}\right.$
$D Q S E Z=(D Q I+S E Z I) \& 65535$
$P K 0=D Q S E Z \gg 15$
$S I G P K=\left\{\begin{array}{l}1, D Q S E Z=0 \\ 0, \text { otherwise }\end{array}\right.$

DELAY
See § 6.2.5 for specification.

FLOATA

Input:	DQFB
Output:	DQ0
Function:	Convert 15-bit signed magnitude to floating point.

$D Q S_{F B}=D Q_{F B} \gg 14$
$M A G=D Q_{F B} \& 16383$

$M A N T= \begin{cases}1 \ll 5, & M A G=0 \\ (M A G \ll 6) \gg E X P, & \text { otherwise }\end{cases}$
$D Q 0=\left(D Q S_{F B} \ll 10\right)+(E X P \ll 6)+M A N T$

| Compute magnitude
| Compute mantissa with a
| 1 in the most
| significant bit

[^1]
FLOATB

Input: $\quad \mathrm{SR}_{\mathrm{FB}}$
Output: SR0
Function: Convert 16-bit two's complement to floating point.
$S R S=S R_{F B} \gg 15$
$M A G=\left\{\begin{array}{lr}S R_{F B}, & S R S=0 \\ \left(65536-S R_{F B}\right) \& 32767, & S R S=1\end{array}\right.$

$M A N T=\left\{\begin{array}{lr}1 \ll 5, & M A G=0 \\ (M A G \ll 6) \gg E X P, & \text { otherwise }\end{array}\right.$
$S R 0=(S R S \ll 10)+(E X P \ll 6)+M A N T$

I
|
| Compute exponent
|
|
|
| Compute magnitude
I
| Compute mantissa with a
| 1 in the most
| significant bit
| combine sign bit, 4 exponent
| bits and 6 mantissa bits
| into one 11-bit word

FMULT

Inputs: $\quad \mathrm{An}$ or $\mathrm{Bn}, \mathrm{SRn}$ or DQn
Output: WAn or WBn
Note: \quad Equations are given for $\mathrm{An}, \mathrm{SRn}$ and WAn. The equations are also valid when substituting Bn for An, DQn for SRn and WBn for WAn.

Function: Multiply predictor coefficients with corresponding quantized difference signal or reconstructed signal. Multiplication is done in floating point format.
$A n S=A n \gg 15$
$A n M A G=\left\{\begin{array}{ll}A n \gg 2 & A n S=0 \\ (16384-(A n \gg 2)) \& 8191 & A n S\end{array}\right)$

AnMANT $= \begin{cases}1 \ll 5, & \text { AnMAG }=0 \\ (\text { AnMAG } \ll 6) \gg A n E X P, & \text { otherwise }\end{cases}$
$S R n S=S R n \gg 10$
$S R n E X P=(S R n \gg 6) \& 15$
$S R n M A N T=S R n \& 63$
$W A n S=S R n S * * A n S$
$W A n E X P=S R n E X P+A n E X P$
$W A n M A N T=((S R n M A N T * A n M A N T)+48) \gg 4$
$W A n M A G=\left\{\begin{array}{lr}(W A n M A N T \ll 7) \gg(26-W A n E X P), & W A n E X P \leq 26 \\ ((W A n M A N T \ll 7) \ll(W A n E X P-26)) \& 32767, W A n E X P>26\end{array}\right.$
$W A n=\left\{\begin{array}{lr}W A n M A G, & W A n S=0 \\ (65536-W A n M A G) \& 65535, W A n S=1\end{array}\right.$
| Split floating point
| word into sign bit,
| exponent and mantissa
| Convert two's
| complement to
| signed magnitude

```
1
I
1
I
Compute exponent
|
I
I
1
```

| Compute mantissa with a
| 1 in the most
| significant bit
| Perform floating
| point multiplication
|
| Convert
| floating
| point to
| magnitude
| Convert mag. to
| two'scomplement

LIMC

Input:	A2T
Output:	A2P
Function:	Limits on a_{2} coefficient of second order predictor.

$A 2 U L=12288$	\| Upper limit of +0.75
$A 2 L L=53248$	\| Lower limit of -0.75

$A 2 P=\left\{\begin{array}{l}A 2 L L, \quad 32768 \leq A 2 T \leq A 2 L L \\ A 2 U L, A 2 U L \leq A 2 T \leq 32767 \\ A 2 T, \quad \text { otherwise }\end{array}\right.$

LIMD

Inputs: A1T, A2P
Output: A1P
Function: Limits on a_{1} coefficient of second order predictor.
$O M E=15360$
| (1-epsilon) where | epsilon=1/16
$A 1 U L=(O M E+65536-A 2 P) \& 65535$
| Compute upper limit
$A 1 L L=(A 2 P+65536-O M E) \& 65535$
| Compute lower limit
$A 1 P=\left\{\begin{array}{l}A 1 L L, \quad 32768 \leq A 1 T \text { and } A 1 T \leq A 1 L L \\ A 1 U L, A 1 U L \leq A 1 T \text { and } A 1 T \leq 32767 \\ A 1 T, \quad \text { otherwise }\end{array}\right.$

TRIGB

Inputs: $\quad \mathrm{TR}, \mathrm{AnP}$ or BnP or TDP
Output: AnR or BnR or TDR
Note: \quad Equation is given for AnP and AnR . Equation is also valid when substituting BnP and BnR or TDP and TDR for AnP and AnR respectively.

Function: Predictor trigger block
$A n R= \begin{cases}A n P, & T R=0 \\ 0, & T R=1\end{cases}$

UPA1

Inputs: PK0, PK1, A1, SIGPK
Output: A1T
Function: Update a_{1} coefficient of second order predictor.
$P K S=P K 0$ ** PK1 | 1-bit "exclusive or"

UGA1 $= \begin{cases}192, & P K S=0 \text { and } S I G P K=0 \\ 65344, & P K S=1 \text { and } \text { SIGPK }=0 \\ 0, & S I G P K=1\end{cases}$
$A 1 S=A 1 \gg 15$
$U L A 1= \begin{cases}(65536-(\mathrm{A} 1 \gg 8)) \& 65535, & A 1 S=0 \\ (65536-((A 1 \gg 8)+65280)) \& & 65535, \\ & A 1 S=1\end{cases}$
$U A 1=(U G A 1+U L A 1) \& 65535$
$A 1 T=(A 1+U A 1) \& 65535$
|
| Gain $= \pm 3 / 256$
|
| Compute update

|

UPA2

Inputs: PK0, PK1, PK2, A1, A2, SIGPK

Output: A2T

Function: Update a_{2} coefficient of second order predictor.

$P K S 1$	\| 1-bit "exclusive or"
$P K S 2,=P K 0 * * P K 1$	$\mid 1-b i t " e x c l u s i v e ~ o r ", ~$

$U G A 2 A=\left\{\begin{array}{c}16384, P K S 2=0 \\ 114688, P K S 2=1\end{array}\right.$
$A 1 S=A 1 \gg 15$
If $A 1 S=0$ then
$F A 1=\left\{\begin{array}{l}A 1 \ll 2, \quad A 1 \leq 8191 \\ 8191 \ll 2, A 1 \geq 8192\end{array}\right.$

If $A 1 S=1$ then
$F A 1= \begin{cases}(A 1 \ll 2) \& 131071, & A 1 \geq 57345 \\ 24577 \ll 2, & A 1 \leq 57344\end{cases}$
$F A= \begin{cases}F A 1, & P K S 1=1 \\ (131072-F A 1) \& 131071, P K S 1=0\end{cases}$
$\begin{array}{ll}U G A 2 B & =(U G A 2 A+F A) \& 131071 \\ U G A 2 S & =U G A 2 B \gg 16\end{array} \quad \begin{array}{ll}U G A 2 B \gg 7, & U G A 2 S=0 \text { and } S I G P K=0 \\ (U G A 2 B \gg 7)+64512, & U G A 2 S=1 \text { and } S I G P K=0 \\ 0, & S I G P K=1\end{array}$
$A 2 S=A 2 \gg 15$
$U L A 2= \begin{cases}(65536-(A 2 \gg 7)) \& 65535, & A 2 S=0 \\ (65536-((A 2 \gg 7)+65024)) \& 65535, & A 2 S=1\end{cases}$
$U A 2=(U G A 2+U L A 2) \& 65535$
$A 2 T=(A 2+U A 2) \& 65535$

$|$| Leak factor is |
| :--- |
| $1 / 128$ |

| Compute update

> Implement $f\left(a_{1}\right)$
> with limiting
> at $+1 / 2$
| Implement $f\left(a_{1}\right)$
| with limiting
| at $-1 / 2$
Attach sign to
result of $f\left(a_{1}\right)$
|

UPB

Inputs: Un, Bn, DQFB		
Output: BnP		
Function: Update for coefficients of sixth order predictor.		
$D Q M A G=D Q_{F B} \& 16383$		
$U G B n= \begin{cases}128, & U n=0 \text { and } D Q M A G \neq 0 \\ 65408, & U n=1 \text { and } D Q M A G \neq 0 \\ 0, & D Q M A G=0\end{cases}$		
$B n S=B n \gg 15$		
$U L B n= \begin{cases}(65536-(B n \gg 8)) \& 65535, & B n S=0 \\ (65536-((B n \gg 8)+65280)) \& 65535 & B n S=1\end{cases}$	$\text { Leak factor = } 1 / 256$	
$\begin{aligned} & U B n=(U G B n+U L B n) \& 65535 \\ & B n P=(B n+U B n) \& 65535 \end{aligned}$	\| Compute update	

XOR

Inputs: $\quad \mathrm{DQn}, \mathrm{DQ}_{\mathrm{FB}}$
Output: Un
Function: One bit "exclusive or" of sign of difference signal and sign of delayed difference signal.
$D Q S_{F B}=D Q_{F B} \gg 14$
$D Q n S=D Q n \gg 10$
$U n=D Q S_{F B} * * D Q n S$
| 1-bit "exclusive or"

6.2.8 Reconstructed signal calculator (feed-forward path)

See § 6.2.7 for specification.

FIGURE 11/G. 727

Reconstructed signal calculator (feed-forward path)

6.2 .9

Tone and transition detector

FIGURE 12/G. 727
Tone and transition detector

DELAY
See § 6.2.5 for specification.

TONE
Input: A2P
Output: TDP
Function: Partial band signal detection
$T D P=\left\{\begin{array}{l}1,32768 \leq A 2 P \text { and } A 2 P<53760 \\ 0, \text { otherwise }\end{array}\right.$

Inputs: $\quad \mathrm{TD}, \mathrm{YL}, \mathrm{DQ}_{\mathrm{FB}}$
Output: TR
Function: Transition detector.
$D Q M A G=D Q_{F B} \& 16383$

YLINT $=Y L \gg 15$
$Y L F R A C=(Y L \gg 10) \& 31$

THR $1=(32+Y L F R A C) \ll Y L I N T$

THR2 $=\left\{\begin{array}{lc}31 \ll 9, & \text { YLINT }>8 \\ \text { THR } 1, & \text { otherwise }\end{array}\right.$

DQTHR $=($ THR $2+($ THR $2 \gg 1)) \gg 1$
$T R=\left\{\begin{array}{l}1, D Q M A G>D Q T H R \text { and } T D=1 \\ 0, \text { otherwise }\end{array}\right.$

TRIGB
See § 6.2.7 for specification.
6.2.10 Output PCM format conversion and synchronous coding adjustment

Output PCM format conversion and synchronous coding adjustment

Input: $\quad \mathrm{SR}_{\mathrm{FF}}$, LAW
Output: SP
Function: \quad Convert from uniform PCM to either A-law or μ-law PCM.
$I S=S R_{F F} \gg 15$
$I M= \begin{cases}S R_{F F}, & I S=0 \\ & \left\lvert\, \begin{array}{l}\text { Convert two's } \\ \\ \left(65536-S R_{F F}\right) \& 32767, I S=1\end{array}\right. \\ \text { complement to } \\ \text { signed magnitude }\end{cases}$
$I M A G= \begin{cases}I M, & L A W=0 \\ I M \gg 1 & L A W=1 \text { and } I S=0 \\ (I M+1) \gg 1, & L A W=1 \text { and } I S=1\end{cases}$
| μ-law
| A-law
|
then quantize IMAG (see note below) according to Recommendation G. 711 using decision values (column 5 of Tables 1a/G.711, 1b/G.711, 2a/G. 711 and 2b/G.711) in the following way:
$S P= \begin{cases}\text { character signal after even bit inversion deduced } & \\ \text { from Table 1a/G.711 (column 6), } & I S=0 \text { and } L A W=1 \\ \text { character signal after even bit inversion deduced } & \\ \text { from Table 1b/G.711 (column 6), } & I S=1 \text { and } L A W=1 \\ \text { character signal of Table 2a/G.711 (column 6), } & I S=0 \text { and } L A W=0 \\ \text { character signal of Table 2b/G.711 (column 6), } & I S=1 \text { and } L A W=0\end{cases}$

Note - When IMAG is outside the range defined by the virtual decision level, SP must be set equal to the maximum PCM code word. For the purpose of clarification, examples of conversion for both A-law (after even bit inversion) and μ-law in the vicinity of the origin are given in the table below:

TABLE 16/G. 727
Conversion for A-law and μ-law examples

IS	IMAG	PCM code word SP	
		A-law	μ-law
0	3	11010100	11111101
0	2	11010100	11111110
0	1	11010101	11111110
0	0	11010101	11111111
1	1	01010101	01111110
1	2	01010101	01111110
1	3	01010100	01111101

EXPAND

See § 6.2.1 for specification. Substitute SP for S as input and SLX for SL as output.

SUBTA

See § 6.2.1 for specification. Substitute SLX for SL as input and DX for D as output.

LOG

See § 6.2.2 for specification. Substitute DX for D as input, DLX for DL and DSX for DS as outputs.

SUBTB

See § 6.2.2 for specification. Substitute DLX for DL as input and DLNX for DLN as output.

SYNC (decoder only)

Inputs: I', SP, DLNX, DSX, LAW

Output: SD

Function: Re-encode output PCM sample in decoder for synchronous tandem coding.
$I S=I^{\prime} \gg(E+C-1)$

For $\mathrm{E}+\mathrm{C}=2$:
$I M=\left\{\begin{array}{l}I^{\prime}+2, I S=0 \\ I^{\prime} \& 1, I S=1\end{array}\right.$

ID is defined according to the following table:

TABLE 17/G. 727
ID definition for $\mathbf{E}+\mathbf{C}=2$

DSX	DLNX	ID
0	$261-2047$	3
0	$0-260$	2
0	$2048-4095$	2
1	$2048-4095$	1
1	$0-260$	1
1	$261-2047$	0

| Positive portion of decision interval
| Negative portion of decision interval
| Negative portion of decision interval
| Positive portion of decision interval

For $(\mathrm{E}+\mathrm{C}=3)$:
$I M=\left\{\begin{array}{l}I^{\prime}+4, I S=0 \\ I^{\prime} \& 3, I S=1\end{array}\right.$

ID is defined according to the following table:

TABLE 18/G. 727
ID definition for $\mathbf{E}+\mathbf{C}=\mathbf{3}$

DSX	DLNX	ID
0	$356-2047$	7
0	$261-355$	6
0	$123-260$	5
0	$0-122$	4
0	$2048-4095$	4
1	$2048-4095$	3
1	$0-122$	3
1	$123-260$	2
1	$261-355$	1
1	$356-2047$	0

| Positive portion of decision interval
| Negative portion of decision interval
| Negative portion of decision interval
| Positive portion of decision interval

For $(E+C=4)$:
$I M=\left\{\begin{array}{l}I^{\prime}+8, I S=0 \\ I^{\prime} \& 7, I S=1\end{array}\right.$

ID is defined according to the following table:

TABLE 19/G. 727

ID definition for $\mathrm{E}+\mathrm{C}=4$

DSX	DLNX	ID	
0	405-2047	15	
0	356-404	14	
0	310-355	13	
0	261-309	12	
0	202-260	11	
0	123-201	10	
0	0-122	9	-- Positive portion of decision interval
0	4089-4095	9	-- Negative portion of decision interval
0	2048-4088	8	
1	2048-4088	7	
1	4089-4095	6	-- Negative portion of decision interval
1	0-122	6	--\| Positive portion of decision interval
1	123-201	5	
1	202-260	4	
1	261-309	3	
1	310-355	2	
1	356-404	1	
1	405-2047	0	

For $(\mathrm{E}+\mathrm{C}=5)$:
$I M=\left\{\begin{array}{l}I^{\prime}+16, I S=0 \\ I^{\prime} \& 15, I S=1\end{array}\right.$

ID is defined according to the following table:

TABLE 20/G. 727
ID definition for $E+C=5$

DSX	DLNX	ID		
0	439-2047	31		
0	405-438	30		
0	380-404	29		
0	356-379	28		
0	333-355	27		
0	310-332	26		
0	286-309	25		
0	261-285	24		
0	233-260	23		
0	202-232	22		
0	166-201	21		
0	123-165	20		
0	69-122	19		
0	0- 68	18	-	Positive portion of decision interval
0	4089-4095	18	-	Negative portion of decision interval
0	3961-4088	17		
0	2048-3960	16		
1	2048-3960	15		
1	3961-4088	14		
1	4089-4095	13	-	Negative portion of decision interval
1	0-68	13	-	Positive portion of decision interval
1	69-122	12		
1	123-165	11		
1	166-201	10		
1	202-232	9		
1	233-260	8		
1	261-285	7		
1	286-309	6		
1	310-332	5		
1	333-355	4		
1	356-379	3		
1	380-404	2		
1	405-438	1		
1	439-2047	0		

$S D=\left\{\begin{array}{l}S P^{+}, I D<I M \\ S P, \quad I D=I M \\ S P_{-}^{-}, I D>I M\end{array}\right.$
where
$S P^{+}=$the PCM code word that represents the next more positive PCM output level (when $S P$ represents the most positive PCM output level, then $S P^{+}$is constrained to be $S P$).
$S P^{-}=$the PCM code word that represents the next more negative PCM output level (when $S P$ represents the most negative PCM output level, then $S P^{-}$is constrained to be $S P$).

For the purposes of clarification, examples of re-encoding for both A-law (after even bit inversion) and μ-law in the vicinity of the origin are given in the table below:

TABLE 21/G. 727
Re-encoding for A-law and μ-law

	A-law		μ-law	
Comparison of ID and IM	SP	SD	SP	SD
ID > IM	11010101	01010101	11111110	11111111
ID = IM	$"$	11010101	$"$	11111110
ID < IM	$"$	11010100	$"$	11111101
ID > IM	01010101	01010100	11111111	01111110
ID = IM	$"$	01010101	$"$	11111111
ID < IM	$"$	11010101	$"$	11111110
ID > IM	01010100	01010111	01111110	01111101
ID = IM	$"$	01010100	$"$	01111110
ID < IM	$"$	01010101	$"$	01111111

Note - SP (and SD) represent character signals defined according to Tables 1/G. 711 and 2/G.711. See sub-block COMPRESS above for the exact representation of SP (and SD).

APPENDIX I

(to Recommendation G.727)

Digital test sequences for the verification of the algorithms in G. 727

This Appendix gives information on the digital test sequences which have been chosen to verify implementations of the algorithms in G.727. Copies of the sequences on flexible diskettes together with a detailed description can be ordered from the ITU sales services (Please refer to collective letter No. 12/XV, 1991).

I. $1 \quad$ Purpose of digital test sequences

Digital sequences are used to verify the conformance of an implementation of a digital transcoding algorithm. The sequences are chosen to exercise the major arithmetic components and thus given a reasonable level of confidence of the compliance of an implementation with this Recommendation. Note that with a limited number of test sequences it is not possible to demonstrate 100% coverage of all states of the implementation. The more general issues involved in testing such algorithms are the subject of active research in the areas of VLSI testing and protocol conformance testing.

I. 2 Diskette interface and format

Copies of the digital test sequences are available from the ITU on twelve 5-1/4"diskettes. The diskettes were created under MS-DOS operating system (version 3.2 or newer), and are of the 1.2 Mbyte high density double-sided 96 tracks per inch 51/4 MS-DOS format.

[^0]: |
 | Convert magnitude to | two's complement

[^1]: | Combine sign bit, 4 exponent
 | bits and 6 mantissa bits
 | into one 11-bit word

