# INTERNATIONAL TELECOMMUNICATION UNION 

# CCITT 

G. 726

THE INTERNATIONAL
TELEGRAPH AND TELEPHONE
CONSULTATIVE COMMITTEE

## GENERAL ASPECTS OF DIGITAL <br> TRANSMISSION SYSTEMS; <br> TERMINAL EQUIPMENTS

## 40, 32, 24, 16 kbit/s ADAPTIVE DIFFERENTIAL PULSE CODE MODULATION (ADPCM)

Recommendation G. 726

## FOREWORD

The CCITT (the International Telegraph and Telephone Consultative Committee) is a permanent organ of the International Telecommunication Union (ITU). CCITT is responsible for studying technical, operating and tariff questions and issuing Recommendations on them with a view to standardizing telecommunications on a worldwide basis.

The Plenary Assembly of CCITT which meets every four years, establishes the topics for study and approves Recommendations prepared by its Study Groups. The approval of Recommendations by the members of CCITT between Plenary Assemblies is covered by the procedure laid down in CCITT Resolution No. 2 (Melbourne, 1988).

Recommendation G. 726 was prepared by Study Group XV and was approved under the Resolution No. 2 procedure on the 14 of December 1990.

CCITT NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a telecommunication Administration and a recognized private operating agency.

All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the ITU.

## Recommendation G. 726

## 40, 32, 24, 16 kbit/s ADAPTIVE DIFFERENTIAL PULSE CODE MODULATION (ADPCM) ${ }^{1)}$

## 1

## General

The characteristics below are recommended for the conversion of a $64 \mathrm{kbit} / \mathrm{s}$ A-law or $\mu$-law pulse code modulation (PCM) channel to and from a 40, 32, 24 or $16 \mathrm{kbit} / \mathrm{s}$ channel. The conversion is applied to the PCM bit stream using an ADPCM transcoding technique. The relationship between the voice frequency signals and the PCM encoding/decoding laws is fully specified in Recommendation G.711.

The principal application of 24 and 16 kbit/s channels is for overload channels carrying voice in Digital Circuit Multiplication Equipment (DCME).

The principal application of $40 \mathrm{kbit} / \mathrm{s}$ channels is to carry data modem signals in DCME, especially for modems operating at greater than $4800 \mathrm{kbit} / \mathrm{s}$.

Sections 1.1 and 1.2 of this Recommendation provide an outline description of the ADPCM transcoding algorithm, §§ 2 and 3 provide the principles and functional descriptions of the ADPCM encoding and decoding algorithms respectively, whilst $\S 4$ is the precise specification for the algorithm computations. Networking aspects and digital test sequences are addressed in Appendices I and II, respectively, to this Recommendation.

Simplified block diagrams of both the ADPCM encoder and decoder are shown in Figure 1/G.726.
In § 4, each sub-block in the encoder and decoder is precisely defined using one particular logical sequence. If other methods of computation are used, extreme care should be taken to ensure that they yield exactly the same value for the output processing variables. Any further departures from the processes detailed in $\S 4$ will incur performance penalties which may be severe.

Note 1 - Prior to the definition of this Recommendation, other ADPCM algorithms of performance similar to the $40 \mathrm{kbit} / \mathrm{s}$ algorithm specified here have been incorporated in DCME designs and used in telecommunications networks. These algorithms may be considered by bilateral agreement for limited DCME applications under certain circumstances. Technical descriptions providing information on two such algorithm approaches can be found in COM XVIII No. 101 and COM XVIII No. 102 of the 1984-1988 Study Period.

Note 2 - The assignment of 16, 24, 32 and 40 kbit/s DCME channels and the associated selection of coding rates are beyond the scope of this Recommendation; see, for example, Recommendation G. 763 (revised, 1990).

Note 3 - Signalling and multiplexing considerations are beyond the scope of this Recommendation; see, for example, Recommendations G. 761 and G. 763 (revised, 1990).

[^0]

FIGURE 1/G. 726
Simplified block diagrams

### 1.1 ADPCM encoder

Subsequent to the conversion of the A-law or $\mu$-law PCM input signal to uniform PCM, a difference signal is obtained, by subtracting an estimate of the input signal from the input signal itself. An adaptive 31-, $15-, 7$-, or 4 -level quantizer is used to assign five, four, three or two binary digits, respectively, to the value of the difference signal for transmission to the decoder. An inverse quantizer produces a quantized difference signal from these same five, four, three or two binary digits, respectively. The signal estimate is added to this quantized difference signal to produce the reconstructed version of the input signal. Both the reconstructed signal and the quantized difference signal are operated upon by an adaptive predictor which produces the estimate of the input signal, thereby completing the feedback loop.

### 1.2 ADPCM decoder

The decoder includes a structure identical to the feedback portion of the encoder, together with a uniform PCM to A-law or $\mu$-law conversion and a synchronous coding adjustment.

The synchronous coding adjustment prevents cumulative distortion occurring on synchronous tandem codings (ADPCM-PCM-ADPCM, etc., digital connections) under certain conditions (see §3.7). The synchronous coding adjustment is achieved by adjusting the PCM output codes in a manner which attempts to eliminate quantizing distortion in the next ADPCM encoding stage.

## ADPCM encoder principles

Figure $2 / \mathrm{G} .726$ is a block schematic of the encoder. For each variable to be described, $k$ is the sampling index and samples are taken at $125 \mu$ s intervals. A fundamental description of each block is given below in §§ 2.1 to 2.8.


T1508200-92

FIGURE 2/G. 726
Encoder block schematic

### 2.1 Input PCM format conversion

This block converts the input signal $s(k)$ from A-law or $\mu$-law PCM to a uniform PCM signal $s_{l}(k)$.

### 2.2 Difference signal computation

This block calculates the difference signal $d(k)$ from the uniform PCM signal $s_{l}(k)$ and the signal estimate $s_{e}(k)$ :

$$
\begin{equation*}
d(k)=s_{l}(k)-s_{e}(k) \tag{2-1}
\end{equation*}
$$

### 2.3 Adaptive quantizer

A 31-, 15, 7- or 4-level non-uniform adaptive quantizer is used to quantize the difference signal $d(k)$ for operating at $40,32,24$ or $16 \mathrm{kbit} / \mathrm{s}$, respectively. Prior to quantization, $d(k)$ is converted to a base 2 logarithmic representation and scaled by $y(k)$ which is computed by the scale factor adaptation block. The normalized input/output characteristic (infinite precision values) of the quantizer is given in Tables 1/G. 726 through 4/G.726.

### 2.3.1 Operation at $40 \mathrm{kbit} / \mathrm{s}$

Five binary digits are used to specify the quantized level representing $d(k)$ (four for the magnitude and one for the sign). The 5-bit quantizer output $I(k)$ forms the $40 \mathrm{kbit} / \mathrm{s}$ output signal; $I(k)$ takes on one of 31 non-zero values, $I(k)$ is also fed to the inverse adaptive quantizer, the adaptation speed control and the quantizer scale factor adaptation blocks that operate on a 5-bit $I(k)$ having one of 32 possible values. $I(k)=00000$ is a legitimate input to these blocks when used in the decoder, due to transmission errors.

TABLE 1/G. 726

## Quantizer normalized input/output characteristic for 40 kbit/s operation

| Normalized quantizer <br> input range <br> $\log _{2}\|d(k)\|-y(k)$ | $\|I(k)\|$ | Normalized quantizer <br> output <br> $\log _{2}\left\|d_{q}(k)\right\|-y(k)$ |
| :---: | :---: | :---: |
| $[4.31,+\infty)$ | 15 | 4.42 |
| $[4.12,4.31)$ | 14 | 4.21 |
| $[3.91,4.12)$ | 13 | 4.02 |
| $[3.70,3.91)$ | 12 | 3.81 |
| $[3.47,3.70)$ | 11 | 3.59 |
| $[3.22,3.47)$ | 10 | 3.35 |
| $[2.95,3.22)$ | 9 | 3.09 |
| $[2.64,2.95)$ | 8 | 2.80 |
| $[2.32,2.64)$ | 7 | 2.48 |
| $[1.95,2.32)$ | 6 | 2.14 |
| $[1.54,1.95)$ | 5 | 1.75 |
| $[1.08,1.54)$ | 4 | 1.32 |
| $[0.52,1.08)$ | 3 | 0.81 |
| $[-0.13,0.52)$ | 2 | 0.22 |
| $[-0.96,-0.13)$ | 1 | -0.52 |
| $(-\infty,-0.96)$ | 0 | $-\infty$ |

Note - In Tables 1/G. 726 through 4/G.726, "[" indicates that the endpoint value is included in the range, and "(" or ")" indicates that the endpoint value is excluded from the range.

### 2.3.2 Operation at $32 \mathrm{kbit} / \mathrm{s}$

Four binary digits are used to specify the quantized level representing $d(k)$ (three for the magnitude and one for the sign). The 4-bit quantizer output $I(k)$ forms the $32 \mathrm{kbit} / \mathrm{s}$ output signal; it is also fed to the inverse adaptive quantizer, the adaptation speed control and the quantizer scale factor adaptation blocks. $I(k)=0000$ is a legitimate input to these blocks when used in the decoder, due to transmission errors.

TABLE 2/G. 726

## Quantizer normalized input/output characteristic

for $32 \mathrm{kbit} / \mathrm{s}$ operation

| Normalized quantizer <br> input range <br> $\log _{2}\|d(k)\|-y(k)$ | $\|I(k)\|$ | Normalized quantizer <br> output <br> $\log _{2}\left\|d_{q}(k)\right\|-y(k)$ |
| :---: | :---: | :---: |
| $[3.12,+\infty)$ | 7 | 3.32 |
| $[2.72,3.12)$ | 6 | 2.91 |
| $[2.34,2.72)$ | 5 | 2.52 |
| $[1.91,2.34)$ | 3 | 2.13 |
| $[1.38,1.91)$ | 2 | 1.66 |
| $[0.62,1.38)$ | 1 | 1.05 |
| $[-0.98,0.62)$ | 0 | 0.031 |
| $(-\infty,-0.98)$ | $-\infty$ |  |

### 2.3.3 Operation at $24 \mathrm{kbit} / \mathrm{s}$

Three binary digits are used to specify the quantized level representing $d(k)$ (two for the magnitude and one for the sign). The 3-bit quantizer output $I(k)$ forms the $24 \mathrm{kbit} / \mathrm{s}$ output signal, where $I(k)$ takes on one of sevel non-zero values. $I(k)$ is also fed to the inverse adaptive quantizer, the adaptation speed control and the quantizer scale factor adaptation blocks, each of which is modified to operate on a 3-bit $I(k)$ having any of the eight possible values. $I(k)=000$ is a legitimate input to these blocks when used in the decoder, due to transmission errors.

TABLE 3/G. 726

## Quantizer normalized input/output characteristic <br> for 24 kbit/s operation

| Normalized quantizer <br> input range <br> $\log _{2}\|d(k)\|-y(k)$ | $\|I(k)\|$ | Normalized quantizer <br> output <br> $\log _{2}\left\|d_{q}(k)\right\|-y(k)$ |
| :---: | :---: | :---: |
| $[2.58,+\infty)$ | 3 | 2.91 |
| $[1.70,2.58)$ | 2 | 2.13 |
| $[0.06,1.70)$ | 1 | 1.05 |
| $(-\infty,-0.06)$ | 0 | $-\infty$ |

### 2.3.4 Operation at $16 \mathrm{kbit} / \mathrm{s}$

Two binary digits are used to specify the quantized level representing $d(k)$ (one for the magnitude and one for the sign). The 2-bit quantizer output $I(k)$ forms the $16 \mathrm{kbit} / \mathrm{s}$ output signal; it is also fed to the inverse adaptive quantizer, the adaptation speed control and the quantizer scale factor adaptation blocks.

TABLE 4/G. 726

## Quantizer normalized input/output characteristic <br> for $16 \mathrm{kbit} / \mathrm{s}$ operation

| Normalized quantizer <br> input range <br> $\log _{2}\|d(k)\|-y(k)$ | $\|I(k)\|$ | Normalized quantizer <br> output <br> $\log _{2}\left\|d_{q}(k)\right\|-y(k)$ |
| :---: | :---: | :---: |
| $[2.04,+\infty)$ | 1 | 2.85 |
| $(-\infty,-2.04)$ | 0 | 0.91 |

Unlike the quantizers described in § 2.3.1 for operation at $40 \mathrm{kbit} / \mathrm{s}$, in § 2.3.2 for operation at $32 \mathrm{kbit} / \mathrm{s}$ and in $\S 2.3 .3$ for operation at $24 \mathrm{kbit} / \mathrm{s}$, the quantizer for operation at $16 \mathrm{kbit} / \mathrm{s}$ is an even-level (4-level) quantizer. The evenlevel quantizer for the $16 \mathrm{kbit} / \mathrm{s}$ ADPCM has been selected because of its superior performance over a corresponding oddlevel (3-level) quantizer.

### 2.4 Inverse adaptive quantizer

A quantized version $d_{q}(k)$ of the difference signal is produced by scaling, using $y(k)$, specific values selected from the normalized quantizing characteristic given in Tables 1/G. 726 through 4/G. 726 and then transforming the result from the logarithmic domain.

### 2.5 Quantizer scale factor adaptation

This block computes $y(k)$, the scaling factor for the quantizer and the inverse quantizer. The inputs are the 5-bit, 4-bit, 3-bit, 2-bit quantizer output $I(k)$ and the adaptation speed control parameter $a_{l}(k)$.

The basic principle used in scaling the quantizer is bimodal adaptation:

- fast for signals (e.g. speech) that produce difference signals with large fluctuations;
- slow for signals (e.g. voiceband data, tones) that produce difference signals with small fluctuations.

The speed of adaptation is controlled by a combination of fast and slow scale factors.

The fast (unlocked) scale factor $y_{u}(k)$ is recursively computed in the base 2 logarithmic domain from the resultant logarithmic scale factor $y(k)$ :

$$
\begin{equation*}
y_{u}(k)=\left(1-2^{-5}\right) y(k)+2^{-5} W[I(k)], \tag{2-2}
\end{equation*}
$$

where $y_{u}(k)$ is limited by $1.06 \leq y_{u}(k) \leq 10.00$.

For $40 \mathrm{kbit} / \mathrm{s}$ ADPCM, the discrete function $W(I)$ is defined as follows (infinite precision values):

| $\|\mathrm{I}(\mathrm{k})\|$ | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{~W}[\mathrm{I}(\mathrm{k})]$ | 43.50 | 33.06 | 27.50 | 22.38 | 17.50 | 13.69 | 11.19 | 8.81 |


| $\|\mathrm{I}(\mathrm{k})\|$ | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{~W}[\mathrm{I}(\mathrm{k})]$ | 6.29 | 3.63 | 2.56 | 2.50 | 2.44 | 1.50 | 0.88 | 0.88 |

For 32 kbit/s ADPCM, the discrete function $W(I)$ is defined as follows (infinite precision values):

| $\|\mathrm{I}(\mathrm{k})\|$ | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{~W}[\mathrm{I}(\mathrm{k})]$ | 70.13 | 22.19 | 12.38 | 7.00 | 4.00 | 2.56 | 1.13 | -0.75 |

For $24 \mathrm{kbit} / \mathrm{s}$ ADPCM, the discrete function $W(I)$ is defined as follows (infinite precision values):

| $\|\mathrm{I}(\mathrm{k})\|$ | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{~W}[\mathrm{I}(\mathrm{k})]$ | 36.38 | 8.56 | 1.88 | -0.25 |

For $16 \mathrm{kbit} / \mathrm{s}$ APDCM, the discrete function $W(I)$ is defined as follows (infinite precision values):

| $\|\mathrm{I}(\mathrm{k})\|$ | 1 | 0 |
| :---: | :---: | :---: |
| $\mathrm{~W}[\mathrm{I}(\mathrm{k})]$ | 27.44 | -1.38 |

The factor $\left(1-2^{-5}\right)$ introduces finite memory into the adaptive process so that the states of the encoder and decoder converge following transmission errors.

The slow (locked) scale factor $y_{l}(k)$ is derived from $y_{u}(k)$ with a low pass-filter operation:

$$
\begin{equation*}
y_{l}(k)=\left(1-2^{-6}\right) y_{l}(k-1)+2^{-6} y_{u}(k) \tag{2-3}
\end{equation*}
$$

The fast and slow scale factors are then combined to form the resultant scale factor:

$$
\begin{equation*}
y(k)=a_{l}(k) y_{u}(k-1)+\left[1-a_{l}(k)\right] y_{l}(k-1) \tag{2-4}
\end{equation*}
$$

where $0 \leq a_{l}(k) \leq 1$ (see § 2.6).

The controlling parameter $a_{l}(k)$ can assume values in the range [ 0,1$]$. It tends towards unity for speech signals and towards zero for voiceband data signals. It is derived from a measure of the rate-of-change of the difference signal values.

Two measures of the average magnitude of $I(k)$ are computed:

$$
\begin{equation*}
d_{m s}(k)=\left(1-2^{-5}\right) d_{m s}(k-1)+2^{-5} F[I(k)] \tag{2-5}
\end{equation*}
$$

and

$$
\begin{equation*}
d_{m l}(k)=\left(1-2^{-7}\right) d_{m l}(k-1)+2^{-7} F[I(k)] \tag{2-6}
\end{equation*}
$$

For $40 \mathrm{kbit} / \mathrm{s}$ ADPCM, $F[I(k)]$ is defined by:

| $\|\mathrm{I}(\mathrm{k})\|$ | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{~F}[\mathrm{I}(\mathrm{k})]$ | 6 | 6 | 5 | 4 | 3 | 2 | 1 | 1 |


| $\|\mathrm{I}(\mathrm{k})\|$ | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{~F}[\mathrm{I}(\mathrm{k})]$ | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 |

For $32 \mathrm{kbit} / \mathrm{s}$ ADPCM, $F[I(k)]$ is defined by:

| $\|\mathrm{I}(\mathrm{k})\|$ | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{~F}[\mathrm{I}(\mathrm{k})]$ | 7 | 3 | 1 | 1 | 1 | 0 | 0 | 0 |

For $24 \mathrm{kbit} / \mathrm{s}$ ADPCM, $F[I(k)]$ is defined by:

| $\|\mathrm{I}(\mathrm{k})\|$ | 3 | 2 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{~F}[\mathrm{I}(\mathrm{k})]$ | 7 | 2 | 1 | 0 |

For $16 \mathrm{kbit} / \mathrm{s}$ ADPCM, $F[I(k)]$ is defined by:

| $\|\mathrm{I}(\mathrm{k})\|$ | 1 | 0 |
| :--- | :--- | :--- |
| $\mathrm{~F}[\mathrm{I}(\mathrm{k})]$ | 7 | 0 |

Thus $d_{m s}(k)$ is a relatively short term average of $F[I(k)]$ and $d_{m l}(k)$ is a relatively long term average of $F[I(k)]$.

Using these two averages, the variable $a_{p}(k)$ is defined:

$$
a_{p}(k)=\left\{\begin{array}{l}
\left(1-2^{-4}\right) a_{p}(k-1)+2^{-3}, \text { if }\left|d_{m s}(k)-d_{m l}(k)\right| \geq 2^{-3} d_{m l}(k)  \tag{2-7}\\
\left(1-2^{-4}\right) a_{p}(k-1)+2^{-3}, \text { if } y(k)<3 \\
\left(1-2^{-4}\right) a_{p}(k-1)+2^{-3}, \text { if } t_{d}(k)=1 \\
1, \text { if } t_{r}(k)=1 \\
\left(1-2^{-4}\right) a_{p}(k-1), \text { otherwise }
\end{array}\right.
$$

Thus, $a_{p}(k)$ tends towards the value 2 if the difference between $d_{m s}(k)$ and $d_{m l}(k)$ is large (average magnitude of $I(k)$ changing) and $a_{p}(k)$ tends towards the value 0 if the difference is small (average magnitude of $I(k)$ relatively constant). $a_{p}(k)$ also tends towards 2 for idle channel (indicated by $\left.y(k)<3\right)$ or partial band signals (indicated by $t_{d}(k)=$ 1 as described in §2.8). Note that $a_{p}(k)$ is set to 1 upon detection of a partial band signal transition (indicated by $t_{r}(k)=$ 1 , see § 2.8).
$a_{p}(k-1)$ is then limited to yield $a_{l}(k)$ used in Equation (2-4) above:

$$
a_{l}(k)= \begin{cases}1, & a_{p}(k-1)>1  \tag{2-8}\\ a_{p}(k-1), & a_{p}(k-1) \leq 1\end{cases}
$$

This asymmetrical limiting has the effect of delaying the start of a fast to slow state transition until the absolute value of $I(k)$ remains constant for some time. This tends to eliminate premature transitions for pulsed input signals such as switched carrier voiceband data.

### 2.7 Adaptive predictor and reconstructed signal calculator

The primary function of the adaptive predictor is to compute the signal estimate $s_{e}(k)$ from the quantized difference signal $d_{q}(k)$. Two adaptive predictor structures are used, a sixth order section that models zeros and a second order section that models poles in the input signal. This dual structure effectively caters for the variety of input signals which might be encountered.

The signal estimate is computed by:

$$
\begin{equation*}
s_{e}(k)=\sum_{i=1}^{2} a_{i}(k-1) s_{r}(k-i)+s_{e z}(k), \tag{2-9}
\end{equation*}
$$

where

$$
s_{e z}(k)=\sum_{i=1}^{6} b_{i}(k-1) d_{q}(k-i),
$$

and the reconstructed signal is defined as

$$
s_{r}(k-i)=s_{e}(k-i)+d_{q}(k-i) .
$$

Both sets of predictor coefficients are updated using a simplified gradient algorithm:
for the second order predictor:

$$
\begin{gather*}
a_{1}(k)=\left(1-2^{-8}\right) a_{1}(k-1)+\left(3 \cdot 2^{-8}\right) \operatorname{sgn}[p(k)] \operatorname{sgn}[p(k-1)],  \tag{2-10}\\
a_{2}(k)=\left(1-2^{-7}\right) a_{2}(k-1)+2^{-7}\{\operatorname{sgn}[p(k)] \operatorname{sgn}[p(k-2)]  \tag{2-11}\\
\left.\quad-f\left[a_{1}(k-1)\right] \operatorname{sgn}[p(k)] \operatorname{sgn}[p(k-1)]\right\},
\end{gather*}
$$

where

$$
\begin{gathered}
p(k)=d_{q}(k)+s_{e z}(k), \\
f\left(a_{1}\right)= \begin{cases}4 a_{1}, & \left|a_{1}\right| \leq 2^{-1} \\
2 \operatorname{sgn}\left(a_{1}\right), & \left|a_{1}\right|>2^{-1},\end{cases}
\end{gathered}
$$

and $\operatorname{sgn}[0]=1$, except $\operatorname{sgn}[p(k-i]$ is defined to be 0 only if $p(k-i)=0$ and $i=0$;
with the stability constraints:

$$
\left|a_{2}(k)\right| \leq 0.75 \text { and }\left|a_{1}(k)\right| \leq 1-2^{-4}-a_{2}(k) .
$$

If $t_{r}(k)=1($ see $\S 2.8)$, then $a_{1}(k)=a_{2}(k)=0$.
For the sixth order predictor:

$$
\begin{equation*}
b_{i}(k)=\left(1-2^{-8}\right) b_{i}(k-1)+2^{-7} \operatorname{sgn}\left[d_{q}(k)\right] \operatorname{sgn}\left[d_{q}(k-i)\right], \tag{2-12~A}
\end{equation*}
$$

for $i=1,2, \ldots, 6$.

For $40 \mathrm{kbit} / \mathrm{s}$ coding, the adaptive predictor is changed to decrease the leak factor used for zeros coefficient operation. In this case, Equation 2.12A becomes:

$$
\begin{equation*}
b_{i}(k)=\left(1-2^{-9}\right) b_{i}(k-1)+2^{-7} \operatorname{sgn}\left[d_{q}(k)\right] \operatorname{sgn}\left[d_{q}(k-i)\right] . \tag{2-12B}
\end{equation*}
$$

If $t_{r}(k)=1($ see $\S 2.8)$, then $b_{1}(k)=b_{2}(k)=\ldots=b_{6}(k)=0$.

As above, $\operatorname{sgn}[0]=1$, except $\operatorname{sgn}\left[d_{q}(k-i)\right]$ is defined to be 0 only if $d_{q}(k-i)=0$ and $i=0$. Note that $b_{i}(k)$ is implicitly limited to $\pm 2$.

### 2.8 Tone and transition detector

In order to improve performance for signals originating from frequency shift keying (FSK) modems operating in the character mode, a two-step detection process is defined. First, partial band signal (e.g. tone) detection is invoked so that the quantizer can be driven into the fast mode of adaptation:

$$
t_{d}(k)=\left\{\begin{array}{l}
1, a_{2}(k)<-0.71875  \tag{2-13}\\
0, \text { otherwise }
\end{array}\right.
$$

In addition, a transition from a partial band signal is defined so that the predictor coefficients can be set to zero and the quantizer can be forced into the fast mode of adaptation:

$$
t_{r}(k)=\left\{\begin{array}{l}
1, a_{2}(k)<-0.71875 \text { and }\left|d_{q}(k)\right|>24 \cdot 2^{\mathrm{y}_{l}(k)}  \tag{2-14}\\
0, \text { otherwise }
\end{array}\right.
$$

## 3 ADPCM decoder principles

Figure 3/G. 726 is a block schematic of the decoder. A functional description of each block is given in $\S \S 3.1$ to 3.7 below.
3.1 Inverse adaptive quantizer

The function of this block is described in $\S 2.4$.
3.2 Quantizer scale factor adaptation

The function of this block is described in $\S 2.5$.
3.3 Adaptation speed control

The function of this block is described in $\S 2.6$.
3.4 Adaptive predictor and reconstructed signal calculator

The functions of this block are described in § 2.7.


FIGURE 3/G. 726
Decoder block schematic

### 3.5 Tone and transition detector

The function of this block is described in $\S 2.8$.

### 3.6 Output PCM format conversion

This block converts the reconstructed uniform PCM signal $s_{r}(k)$ into an A-law or $\mu$-law PCM signal $s_{p}(k)$ as required.

### 3.7 Synchronous coding adjustment

The synchronous coding adjustment prevents cumulative distortion occurring on synchronous tandem codings (ADPCM-PCM-ADPCM, etc. digital connections), when:
i) the transmission of the ADPCM and the intermediate $64 \mathrm{kbit} / \mathrm{s}$ PCM signals is error free, and,
ii) the ADPCM and intermediate $64 \mathrm{kbit} / \mathrm{s}$ PCM bit streams are not disturbed by digital signal processing devices.

If the coder and decoder have different initial conditions, as may occur after switching for example, then the synchronous tandeming may take time to establish. Furthermore, if this property is disturbed or not acquired initially then it may be recovered for those signals of sufficient level with spectra that occupy the majority of the 200 to 3400 Hz band (e.g. speech, $4800 \mathrm{bit} / \mathrm{s}$ voiceband data).

When a decoder is synchronously connected to an encoder, the synchronous coding adjustment block estimates quantization in the encoder. If all state variables in both the decoder and the encoder have identical values and there are no transmission errors, the forced equivalence of both 4-bit quantizer output sequences for all values of $k$ guarantees the property of non-accumulation of distortion.

This is accomplished by first converting the A-law or $\mu$-law signal $s_{p}(k)$ to a uniform PCM signal $s_{t x}(k)$ and then computing a difference signal $d_{x}(k)$ :

$$
\begin{equation*}
d_{x}(k)=s_{l x}(k)-s_{e}(k) . \tag{3-1}
\end{equation*}
$$

The difference signal $d_{x}(k)$ is then compared to the ADPCM quantizer decision interval determined by $I(k)$ and $y(k)$. The signal $s_{d}(k)$ is then defined as follows:

$$
s_{d}(k)=\left\{\begin{array}{l}
s_{p}^{+}(k), d_{x}(k)<\text { lower interval boundary }  \tag{3-2}\\
s_{p}^{-}(k), d_{x}(k) \geq \text { upper interval boundary } \\
s_{p}(k), \text { otherwise }
\end{array}\right.
$$

where

$$
\begin{aligned}
& s_{d}(k) \quad \text { is the output PCM code word of the decoder, } \\
& s^{+}{ }_{p}(k) \quad \text { is the PCM code word that represents the next more positive PCM output level (when } s_{p}(k) \\
& \text { represents the most positive output level, then } s^{+},_{p}(k) \text { : is constrained to be the value } s_{p}(k) \text { ), } \\
& s^{-}{ }_{p}(k) \quad \text { is the PCM code word that represents the next more negative PCM output level (when } s_{p}(k) \\
& \text { represents the most negative output level, then } s^{-},{ }_{p}(k) \text { : is constrained to be the value } s_{p}(k) \text { ). }
\end{aligned}
$$

## 4 Computational details

Sections 4.1 and 4.2 provide the computational details for each of the encoder and decoder elements.

Proper timing for the encoder and decoder is obtained by executing all of the delay blocks simultaneously and proceeding to calculate the signals which can be derived using this information. For example, SE signal of Figure 9/G. 726 is calculated using delay values and then SE signal is used as shown in Figure 4/G.726.

Implementations of the algorithm may be confirmed with a reasonable level of confidence by using the digital test sequences described in Appendix II to this Recommendation. The sequences are given in terms of encoder PCM input words, ADPCM words and decoder PCM output words.

### 4.1 Input and output signals

Table 2/G. 726 defines the input and output signals for the encoder and decoder.

An optional signal R represents a reset function that sets all internal memory elements to a specified condition so that an encoder or decoder can be forced into a known state, for applications which require an immediate reset function (e.g. digital circuit multiplication equipment, in which case the reset is mandatory, not optional).

Input and output signals

| ENCODER |  |  |  |
| :---: | :---: | :---: | :---: |
|  | Name | Number of bits | Description |
| Input | S | 8 | PCM input word |
| Input | LAW | 1 | $\begin{aligned} & \text { PCM law select, } 0=\mu \text {-law, } \\ & 1=\text { A-law } \end{aligned}$ |
| Input | R (optional) | 1 | Reset |
| Output | I | 5 | $40 \mathrm{kbit} / \mathrm{s} \mathrm{ADPCM} \mathrm{word}$ |
| Output | I | 4 | $32 \mathrm{kbit} / \mathrm{s}$ ADPCM word |
| Output | I | 3 | $24 \mathrm{kbit} / \mathrm{s}$ ADPCM word |
| Output | I | 2 | $16 \mathrm{kbit} / \mathrm{s}$ ADPCM word |
|  |  |  |  |
| DECODER |  |  |  |
|  | Name | Number of bits | Description |
| Input | I | 5 | $40 \mathrm{kbit} / \mathrm{s}$ ADPCM word |
| Input | I | 4 | $32 \mathrm{kbit} / \mathrm{s}$ ADPCM word |
| Input | I | 3 | $24 \mathrm{kbit} / \mathrm{s}$ ADPCM word |
| Input | I | 2 | $16 \mathrm{kbit} / \mathrm{s}$ ADPCM word |
| Input | LAW | 1 | $\begin{aligned} & \text { PCM law select, } 0=\mu \text {-law, } \\ & 1=\text { A-law } \end{aligned}$ |
| Input | R (optional) | 1 | Reset |
| Output | SD | 8 | Decoder PCM output word |

This section contains a detailed expansion of all blocks in Figures 2/G. 726 and 3/G. 726 described in $\S \S 2$ and 3. The expansions are illustrated in Figures 4/G. 726 to 11/G. 726 with the internal processing variables as defined in Table 6/G.726. A brief functional description and full specification is given for each sub-block.

The notations used in the sub-block descriptions are as follows:
$\ll n$ denotes an $n$-bit shift left operation (zero fill),
>> $n$ denotes an $n$-bit shift right operation (in the direction of the least significant bit and zero fill),
\& denotes the logical "and" operation,

+ denotes arithmetic addition,
_ denotes arithmetic subtraction,
* denotes arithmetic multiplication,
** denotes the logical "exclusive or" operation,
delineates comments to equations.

TABLE 6/G. 726
Internal processing variables

| Name | Bits | Binary representation | Optional reset values | Description |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{Al}^{\text {a }}$, $\mathrm{A}^{\text {a }}{ }^{\text {a }}$ | 16 TC | S, $0, \ldots,-14$ | 0 | Delayed predictor second order coefficients |
| A1P, A2P | 16 TC | S, $0, . .,-14$ |  | Second order predictor coefficients |
| A1R, A2R | 16 TC | S, $0, . .,-14$ |  | Triggered second order predictor coefficients |
| A1T | 16 TC | S, $0, \ldots,-14$ |  | Unlimited $a_{1}$ coefficient |
| A2T | 16 TC | S, $0, \ldots,-14$ |  | Unlimited $a_{2}$ coefficient |
| AL | 7 SM | $0, . .,-6$ |  | Limited speed control parameter |
| APa) | 10 SM | 1,.., -8 | 0 | Delayed unlimited speed control parameter |
| APP | 10 SM | 1,.., -8 |  | Unlimited speed control parameter |
| APR | 10 SM | 1,.., -8 |  | Triggered unlimited speed control parameter |
| AX | 1 SM | 1 |  | Speed control parameter update |
| B1a), ..., B6a) | 16 TC | S, $0, \ldots,-14$ | 0 | Delayed sixth order predictor coefficients |
| B1P,..., B6P | 16 TC | S, $0, . .,-14$ |  | Sixth order predictor coefficients |
| B1R,..., B6R | 16TC | S, $0, \ldots,-14$ |  | Triggered sixth order predictor coefficients |
| D | 16 TC | S, 14,... 0 |  | Difference signal, only in encoder |
| DL | 11 SM | 3,.., -7 |  | $\log _{2}$ (difference signal), only in encoder |
| DLN | 12 TC | S, 3,.., -7 |  | $\log _{2}$ (normalized difference), only in encoder |
| DLNX | 12 TC | S, 3,.., -7 |  | $\log _{2}$ (normalized difference), only in decoder |
| DLX | 11 SM | 3,... -7 |  | $\log _{2}$ (difference signal), only in decoder |
| DMLa) | 14SM | 2,... -11 | 0 | Delayed long term average of $\mathrm{F}(\mathrm{I})$ sequence |
| DMLP | 14 SM | 2,..., -11 |  | Long term average of $\mathrm{F}(\mathrm{I})$ sequence |
| DMSa) | 12 SM | 2,... -9 | 0 | Delayed short term average of $\mathrm{F}(\mathrm{I})$ sequence |
| DMSP | 12 SM | 2,... -9 |  | Short term average of $\mathrm{F}(\mathrm{I})$ sequence |
| DQ ${ }^{\text {b }}$ | 15 SM | S, 13,... 0 |  | Quantized difference signal ( 16,24 or $32 \mathrm{kbit} / \mathrm{s}$ operation) |
| DQ ${ }^{\text {b) }}$ | 16 SM | S, 14,... 0 |  | Quantized difference signal (16, 24, 32 or $40 \mathrm{kbit} / \mathrm{s}$ operation) |
| DQ0 | 11 FL | S, $4 \mathrm{e}, 6 \mathrm{~m}$ |  | Quantized difference signal with delay 0 |
| DQ1a), ..., DQ6 ${ }^{\text {a }}$ | 11 FL | S, $4 \mathrm{e}, 6 \mathrm{~m}$ | 32 | Quantized difference signal with delays 1 to 6 |
| DQL | 12 TC | S, 3,.., -7 |  | $\log _{2}$ (quantized difference signal) |

a) Indicates variables that are set to specific values by the optional reset. When reset is invoked, the output of the DELAY sub-block (see § 4.2.4) is given in column 4.
b) For $40 \mathrm{kbit} / \mathrm{s}$ ADPCM, DQ must be implemented as a 16 bit signed magnitude. For 16,24 and $32 \mathrm{kbit} / \mathrm{s}$, DQ may be implemented as a 15 or 16 bit signed magnitude.

TC denotes two's complement
SM denotes signed magnitude
FL denotes floating pointS
e denotes exponent bits
$m$ denotes mantissa bits denotes sign bit

TABLE 6/G. 726 (continued)

| Name | Bits | Binary representation | Optional reset <br> values | Description |
| :---: | :---: | :---: | :---: | :---: |
| DQLN | 12 TC | S, 3,.., -7 |  | $\log _{2}$ (normalized quantized difference) |
| DQS | 1 TC | S |  | Sign bit of quantized difference signal |
| DS | 1TC | S |  | Sign bit of difference signal, only in encoder |
| DSX | 1TC | S |  | Sign bit of difference signal, only in decoder |
| DX | 16 TC | S, 14,... 0 |  | Difference signal, only in decoder |
| FI | 3 SM | 2,.., 0 |  | Output of F(I) |
| PK0 | 1 TC | S |  | Sign of DQ + SEZ with delay 0 |
| PK1 ${ }^{\text {a }}$, $\mathrm{PK} 2^{\text {a }}$ ) | 1 TC | S | 0 | Sign of DQ + SEZ with delays 1 and 2 |
| SE | 15 TC | S, $13, . ., 0$ |  | Signal estimate |
| SEZ | 15 TC | S, 13,... 0 |  | Sixth order predictor partial signal estimate |
| SIGPK | 1 TC | 0 |  | $\operatorname{Sgn}[\mathrm{p}(\mathrm{k})$ ] flag |
| SL | 14 TC | S, 12,.., 0 |  | Linear input signal, only in encoder |
| SLX | 14 TC | S, 12,.., 0 |  | Quantized reconstructed, signal, only in decoder |
| SP | 8 |  |  | PCM reconstructed signal, only in decoder |
| SR | 16 TC | S, 14,... 0 |  | Reconstructed signal |
| SR0 | 11 FL | S, $4 \mathrm{e}, 6 \mathrm{~m}$ |  | Reconstructed signal with delay 0 |
| SR1a), SR2 ${ }^{\text {a }}$ | 11 FL | S, $4 \mathrm{e}, 6 \mathrm{~m}$ | 32 | Reconstructed signal with delays 1 and 2 |
| TDa) | 1 TC | 0 | 0 | Delayed tone detect |
| TDP | 1 TC | 0 |  | Tone detect |
| TDR | 1 TC | 0 |  | Triggered tone detect |
| TR | 1 TC | 0 |  | Transition detect |
| U1,..., U6 | 1 TC | S |  | Sixth order predictor coefficient update sign bit |
| WA1,WA2 | 16 TC | S, 13,..., -1 |  | Partial product of signal estimate |
| WB1,...,WB6 | 16 TC | S, 13,..., -1 |  | Partial product of signal estimate |
| WI | 12 TC | S, 6,.., -4 |  | Quantizer multiplier |
| Y | 13 SM | 3,... -9 |  | Quantizer scale factor |
| YLa) | 19 SM | 3,... -15 | 34816 | Delayed slow quantizer scale factor |
| YLP | 19 SM | 3,.., -15 |  | Slow quantizer scale factor |
| YUa) | 13 SM | 3,... -9 | 544 | Delayed fast quantizer scale factor |
| YUP | 13 SM | 3,..., -9 |  | Fast quantizer scale factor |
| YUT | 13 SM | 3,... -9 |  | Unlimited fast quantizer scale factor |

a) Indicates variables that are set to specific values by the optional reset. When reset is invoked, the output of the DELAY sub-block (see § 4.2.4) is given in column 4.

TC denotes two's complement
SM denotes signed magnitude
FL denotes floating pointS
e denotes exponent bits
m denotes mantissa bits denotes sign bit

### 4.2.1 Input PCM format conversion and difference signal computation



FIGURE 4/G. 726
Input PCM format conversion and difference signal computation

## EXPAND

| Input: | S (SP in decoder), LAW |
| :--- | :--- |
| Output: | SL (SLX in decoder) |
| Function: | Convert either A-law or $\mu$-law PCM to uniform PCM. |

Decode PCM code word, S, according to Recommendation G. 711 using character signals (column 6, before inversion of even bits for A-law) and values at decoder output (see column 7). The values at decoder output, SS, must be represented in 13-bit signed magnitude form for A-law PCM and 14-bit signed magnitude form for $\mu$-law PCM (the sign bit is equal to one for negative values).

Note - For A-law S (and SP) includes even bit inversion (see Note 2 below Table 1/G.711).

| $\begin{array}{ll} \text { when } L A W=0, & \\ & S S S=S S \gg 13 \\ & S S Q=S S \& 8191 \end{array}$ | $\mid \mu \text {-law }$ |
| :---: | :---: |
| $\text { when } \quad L A W=1, \quad \begin{aligned} S S S & =S S \\ >S M & \gg 12 \\ S S Q & =S 095 \\ S S Q & =S S M \ll 1 \end{aligned}$ | A-law |
| then |  |
| $S L= \begin{cases}S S Q, & S S S=0 \\ (16384-S S Q) \& & 16383, \\ S S S=1\end{cases}$ | \| Convert signed | magnitude | to two'scomplement |

## SUBTA

| Inputs: | SL (SLX in decoder), SE |
| :--- | :--- |
| Output: | D (DX in decoder) |
| Function: | Compute difference signal by subtracting <br> signal estimate from input signal (or quantized |
|  | reconstructed signal in decoder). |

$S L S=S L \gg 13$
$S L I=\left\{\begin{array}{ll|l}S L, & S L S=0 & \mid \text { Sign extension } \\ 49152+S L, & S L S=1 & \mid\end{array}\right.$
$S E S=S E \gg 14$
$S E I=\left\{\begin{array}{ll|l}S E, & S E S=0 & \text { Sign extension } \\ 32768+S E, & S E S=1 & \end{array}\right.$
$D=(S L I+65536-S E I) \& 65535$

### 4.2.2 Adaptive quantizer



FIGURE 5/G. 726
Adaptive quantizer

## LOG

Input: $\quad \mathrm{D}$ ( DX in decoder)
Outputs: DL (DLX in decoder), DS (DSX in decoder)
Function: Convert difference signal from the linear to the logarithmic domain.
$D S=D \gg 15$
$D Q M= \begin{cases}D, & D S=0 \\ (65536-D) \& 32767, D S=1 & \mid \text { Convert D from two's } \\ \text { complement to signed }\end{cases}$



QUAN (encoder only)

Inputs: DLN, DS
Output:
I
Function:
Quantize difference signal in logarithmic domain.

## Quantizer decision levels and 5-bit outputs

 for 40 kbit/s ADPCM| DS | DLN | I |  |
| :---: | :---: | :---: | :---: |
|  |  | 12345 |  |
| 0 | 553-2047 | 01111 |  |
| 0 | 528-552 | 01110 |  |
| 0 | 502-527 | 01101 |  |
| 0 | 475-501 | 01100 |  |
| 0 | 445-474 | 01011 |  |
| 0 | 413-444 | 01010 |  |
| 0 | 378-412 | 01001 |  |
| 0 | 339-377 | 01000 |  |
| 0 | 298-338 | 00111 |  |
| 0 | 250-297 | 00110 |  |
| 0 | 198-249 | 00101 |  |
| 0 | 139-197 | 00100 |  |
| 0 | 68-138 | 00011 |  |
| 0 | 0-67 | 00010 | - - Positive portion of interval |
| 0 | 4080-4095 | 00010 | --\| Negative portion of interval |
| 0 | 3974-4079 | 00001 |  |
| 0 | 2048-3973 | 11111 |  |
| 1 | 2048-3973 | 11111 |  |
| 1 | 3974-4079 | 11110 |  |
| 1 | 4080-4095 | 11101 | --\| Negative portion of interval |
| 1 | 0-67 | 11101 | - - Positive portion of interval |
| 1 | 68-138 | 11100 |  |
| 1 | 139-197 | 11011 |  |
| 1 | 198-249 | 11010 |  |
| 1 | 250-297 | 11001 |  |
| 1 | 298-338 | 11000 |  |
| 1 | 339-377 | 10111 |  |
| 1 | 378-412 | 10110 |  |
| 1 | 413-444 | 10101 |  |
| 1 | 445-474 | 10100 |  |
| 1 | 475-501 | 10011 |  |
| 1 | 502-527 | 10010 |  |
| 1 | 528-552 | 10001 |  |
| 1 | 553-2047 | 10000 |  |

[^1]TABLE 8/G. 726
Quantizer decision levels and 4-bit outputs for $32 \mathrm{kbit} / \mathrm{s}$ ADPCM

| DS | DLN | I |
| :---: | :---: | :---: |
|  |  | 1234 |
| 0 | $400-2047$ | 0111 |
| 0 | $349-399$ | 0110 |
| 0 | $300-348$ | 0101 |
| 0 | $246-299$ | 0100 |
| 0 | $178-245$ | 0011 |
| 0 | $80-177$ | 0010 |
| 0 | $0-79$ | 0001 |
| 0 | $3972-4095$ | 0001 |
| 0 | $2048-3971$ | 1111 |
| 0 | $2048-3971$ | 1111 |
| 1 | $3972-4095$ | 1110 |
| 1 | $0-79$ | 1110 |
| 1 | $80-177$ | 1101 |
| 1 | $178-245$ | 1100 |
| 1 | $246-299$ | 1011 |
| 1 | $300-348$ | 1010 |
| 1 | $349-399$ | 1001 |
| 1 | $400-2047$ | 1000 |
| 1 |  |  |
| 1 |  |  |

Note - The I values are transmitted starting with bit 1.

TABLE 9/G. 726

## Quantizer decision levels and 3-bit outputs for $24 \mathrm{kbit} / \mathrm{s}$ ADPCM

| DS | DLN | I |  |
| :---: | :---: | :---: | :---: |
|  |  | 123 |  |
| 0 | 331-2047 | 011 |  |
| 0 | 218-330 | 010 |  |
| 0 | 8-217 | 001 |  |
| 0 | $0-7$ | 111 | - - Positive portion of interval |
| 0 | 2048-4095 | 111 | --\| Negative portion of interval |
| 1 | 2048-4095 | 111 | --\| Negative portion of interval |
| 1 | 0-7 | 111 | - - Positive portion of interval |
| 1 | 8-217 | 110 |  |
| 1 | 218-330 | 101 |  |
| 1 | 331-2047 | 100 |  |

[^2]TABLE 10/G. 726

## Quantizer decision levels and 2-bit outputs for 16 kbit/s ADPCM

| DS | DLN | I |
| :--- | :--- | :--- |
|  |  | 12 |
| 0 | $261-2047$ | 01 |
| 0 | $0-260$ | 00 |
| 0 | $2048-4095$ | 00 |
| 0 | $2048-4095$ | 11 |
| 1 | $0-260$ | 11 |
| 1 | $261-2047$ | 10 |
| 1 | $--\mid$ Positive portion of interval |  |

## SUBTB

Inputs:
DL (DLX in decoder), Y
Output:
DLN (DLNX in decoder)
Function: Scale logarithmic version of difference signal by subtracting scale factor.
$D L N=(D L+4096-(Y \gg 2)) \& 4095$
4.2.3 Inverse adaptive quantizer


FIGURE 6/G. 726
Inverse adaptive quantizer

Inputs: DQLN, Y
Output: DQL
Function: Addition of scale factor to logarithmic version of quantized difference signal.
$D Q L=(D Q L N+(Y \gg 2)) \& 4095$

Inputs: DQL, DQS
Output: DQ
Function: Convert quantized difference signal from the logarithmic to the linear domain.
$D S=D Q L \gg 11$ | Extract 4-bit exponent
$D E X=(D Q L \gg 7) \& 15$
$D M N=D Q L \& 127 \quad \mid$ Extract 7-bit mantissa
$D Q T=(1 \ll 7)+D M N \quad \mid$ Convert mantissa to linear using
$D Q M A G= \begin{cases}(D Q T \ll 7) \gg(14-D E X), & D S=0 \\ 0, & D S=1\end{cases}$
$D Q=\left\{\begin{array}{l}(D Q S \ll 14)+D Q M A G: \text { for } 15 S M D Q \\ (D Q S \ll 15)+D Q M A G: \text { for } 16 S M D Q\end{array}\right.$
| Attach sign bit to signed
| magnitude word

## RECONST

Input:
Outputs: DQLN, DQS
Function: Reconstruction of quantized difference signal in the logarithmic domain.

For 40 kbit/s ADPCM:
$D Q S=I \gg 4$

TABLE 11/G. 726
Quantizer output levels for 40 kbit/s ADPCM

| I | DQS | DQLN |
| :---: | :---: | :---: |
| 12345 |  |  |
| 01111 | 0 | 566 |
| 01110 | 0 | 539 |
| 01101 | 0 | 514 |
| 01100 | 0 | 488 |
| 01011 | 0 | 459 |
| 01010 | 0 | 429 |
| 01001 | 0 | 395 |
| 01000 | 0 | 358 |
| 00111 | 0 | 318 |
| 00110 | 0 | 274 |
| 00101 | 0 | 224 |
| 00100 | 0 | 169 |
| 00011 | 0 | 104 |
| 00010 | 0 | 28 |
| 00001 | 0 | 4030 |
| 00000 | 0 | 2048 |
| 11111 | 1 | 2048 |
| 11110 | 1 | 4030 |
| 11101 | 1 | 28 |
| 11100 | 1 | 104 |
| 11011 | 1 | 169 |
| 11010 | 1 | 224 |
| 11001 | 1 | 274 |
| 11000 | 1 | 318 |
| 10111 | 1 | 358 |
| 10110 | 1 | 395 |
| 10101 | 1 | 429 |
| 10100 | 1 | 459 |
| 10011 | 1 | 488 |
| 10010 | 1 | 514 |
| 10001 | 1 | 539 |
| 10000 | 1 | 566 |

Note 1 - The I values are received starting with bit 1 .
Note 2 - It is possible for the decoder to receive the code word 00000 because of transmission disturbances (e.g., line bit errors).

For 32 kbit/s ADPCM:
$D Q S=I \gg 3$

TABLE 12/G. 726

Quantizer output levels for $32 \mathrm{kbit} / \mathrm{s}$ ADPCM

| I | DQS | DQLN |
| :---: | :---: | :---: |
| 1234 |  |  |
| 0111 | 0 | 425 |
| 0110 | 0 | 373 |
| 0101 | 0 | 323 |
| 0100 | 0 | 273 |
| 0011 | 0 | 213 |
| 0010 | 0 | 135 |
| 0001 | 0 | 4 |
| 0000 | 0 | 2048 |
| 1111 | 1 | 2048 |
| 1110 | 1 | 4 |
| 1101 | 1 | 135 |
| 1100 | 1 | 213 |
| 1011 | 1 | 273 |
| 1010 | 1 | 323 |
| 1001 | 1 | 373 |
| 1000 | 1 | 425 |

Note 1 - The I values are received starting with bit 1 .

Note 2 - It is possible for the decoder to receive the code word 0000 because of transmission disturbances (e.g., line bit errors).

For 24 kbit/s ADPCM:
$D Q S=I \gg 2$

TABLE 13/G. 726
Quantizer output levels
for 24 kbit/s ADPCM

| I | DQS | DQLN |
| :---: | :---: | :---: |
| 123 |  |  |
| 011 | 0 | 373 |
| 010 | 0 | 273 |
| 001 | 0 | 135 |
| 000 | 0 | 2048 |
| 111 | 1 | 2048 |
| 110 | 1 | 135 |
| 101 | 1 | 273 |
| 100 | 1 | 373 |

Note 1 - The I values are received starting with bit 1 .

Note 2 - It is possible for the decoder to receive the code word 000 because of transmission disturbance (e.g. line bit errors).

For 16 kbit/s ADPCM
$D Q S=I \gg 1$

TABLE 14/G. 726

Quantizer output levels for 16 kbit/s

| I | DQS | DQLN |
| :---: | :---: | :---: |
| 12 |  |  |
| 01 | 0 | 365 |
| 00 | 0 | 116 |
| 11 | 1 | 116 |
| 10 | 1 | $365 \S$ |

Note 1 - The I values are received starting with bit 1 .

### 4.2.4 Quantizer scale factor adaptation



FIGURE 7/G. 726

## Quantizer scale factor adaptation

## DELAY

Inputs: $\quad \mathrm{x}, \mathrm{R}$ (optional)
Output: y
Function: Memory block. For the input x, the output is given by:
$y(k)=\left\{\begin{array}{l}x(k-1), \\ \text { optional reset value given in column } 4 \text { of Table 6/G.726, } \\ R=1\end{array}\right.$
| optional reset

FILTD

Inputs:
WI, Y
Output: YUT
Function: Update of fast quantizer scale factor.
$D I F=((W I \ll 5)+131072-Y) \& 131071$, DIFS $=$ DIF $\gg 16$
| Compute difference
|
$D I F S X=\left\{\begin{array}{lr}D I F \gg 5, & D I F S=0 \\ (D I F \gg 5)+4096, & D I F S=1\end{array}\right.$
| Time constant is $1 / 32$,
| Sign extension
$Y U T=(Y+D I F S X) \& 8191$

## FILTE

Inputs:
Output: YUP, YL

Function: Update of slow quantizer scale factor.
$D I F=(Y U P+((1048576-Y L) \gg 6)) \& 16383$
| Compute difference
DIFS $=$ DIF $\gg 13$
| Time constant is $1 / 64$

DIFSX $=\left\{\begin{array}{l}\text { DIF, } \quad \text { DIFS }=0 \\ D I F+507904, D I F S=1\end{array}\right.$

| Sign extension |
$Y L P=(Y L+D I F S X) \& 524287$

## FUNCTW

Input:
Output:
Function: Map quantizer output into logarithmic version of scale factor multiplier.

For 40 kbit/s ADPCM:
$I S=I \gg 4$
$I M=\left\{\begin{array}{lr}I \& 15, & I S=0 \\ (31-I) \& 15, I S=1\end{array}\right.$
$W I=\left\{\begin{aligned} 696, I M & =15 \\ 529, I M & =14 \\ 440, I M & =13 \\ 358, I M & =12 \\ 280, I M & =11 \\ 219, I M & =10 \\ 179, I M & =9 \\ 141, I M & =8 \\ 100, I M & =7 \\ 58, I M & =6 \\ 41, I M & =5 \\ 40, I M & =4 \\ 39, I M & =3 \\ 24, I M & =2 \\ 14, I M & =1 \\ 14, I M & =0\end{aligned}\right.$

For 32 kbit/s ADPCM:
$I S=I \gg 3$
$I M=\left\{\begin{array}{lr}I \& 7, & I S=0 \\ (15-I) \& 7, I S=1\end{array}\right.$
$W I=\left\{\begin{array}{r}1122, I M=7 \\ 355, I M=6 \\ 198, I M=5 \\ 112, I M=4 \\ 64, I M=3 \\ 41, I M=2 \\ 18, I M=1 \\ 4084, I M=0\end{array}\right.$
Scale factor multipliers
|
I
I

For 24 kbit/s ADPCM:
$I S=I \gg 2$
$I M=\left\{\begin{array}{lr}I \& 3, & I S=0 \\ (7-I) \& 3, & I S=1\end{array}\right.$
$W I=\left\{\begin{aligned} 582, I M & =3 \\ 137, I M & =2 \\ 30, I M & =1 \\ 4092, I M & =0\end{aligned}\right.$


For 16 kbit/s ADPCM:
$I S=I \gg 1$
$I M=\left\{\begin{array}{lr}I \& 1, & I S=0 \\ (3-I) \& 1, & I S=1\end{array}\right.$
$W I=\left\{\begin{array}{r}439, I M=1 \\ 4074, I M=0\end{array}\right.$

[^3]| Input: | YUT |
| :--- | :--- |
| Output: | YUP |
| Function: | Limit quantizer scale fact |
|  |  |
| GEUL $=((Y U T+11264) \& 16383) \gg 13$ |  |
| $G E L L=((Y U T+15840) \& 16383) \gg 13$ |  |

$Y U P=\left\{\begin{array}{c}544, G E L L=1 \\ 5120, G E U L=0 \\ \text { YUT, otherwise }\end{array}\right.$
| Set lower limit to 1.06
| Set upper limit to 10.00

MIX
Inputs: AL, YU, YL
Output: Y
Function:
Form linear combination of fast and slow quantizer scale factors.
$Y=((Y L \gg 6)+P R O D) \& 8191$
4.2.5 Adaptation speed control


FIGURE 8/G. 726
Adaptation speed control

## DELAY

See § 4.2.4 for specification.

FILTA
Inputs: FI, DMS
Output: DMSP
Function: Update of short-term average of $\mathrm{F}(\mathrm{I})$.

```
DIF =((FI<< 9)+8192-DMS)& 8191 | Compute difference
DIFS = DIF >> 12
```


$D M S P=(D I F S X+D M S) \& 4095$

## FILTB

Inputs: $\quad$ FI, DML
Output: DMLP
Function: Update of long-term average of $\mathrm{F}(\mathrm{I})$.

DIF $=((F I \ll 11)+32768-D M L) \& 32767 \quad \mid$ Compute difference
DIFS $=$ DIF $\gg 14$

DIFSX $= \begin{cases}\text { DIF } \gg 7, & \mid \\ & \\ (D I F \gg 7)+16128, D I F S=1 & \mid \text { Time constant is } 1 / 28, \\ \text { Sign extension }\end{cases}$
$D M L P=(D I F S X+D M L) \& 16383$

FILTC
Inputs: AX, AP
Output: APP
Function: Low pass filter of speed control parameter.

DIF $=((A X \ll 9)+2048-A P) \& 2047$
| Compute difference
DIFS $=$ DIF $\gg 10$

DIFSX $=\left\{\begin{array}{l|l}\text { DIF } \gg 4, & \text { DIFS }=0 \\ & \left\lvert\, \begin{array}{l}\text { Time constant is } 1 / 16, \\ (D I F>4)+896, \\ \text { DIFS }=1\end{array}\right. \\ \mid \text { Sign extension }\end{array}\right.$
$A P P=(D I F S X+A P) \& 1023$

Input: I
Output: FI
Function: Map quantizer output into the $\mathrm{F}(\mathrm{I})$ function.
For 40 kbit/s ADPCM:
$I S=I \gg 4$
$I M=\left\{\begin{array}{ll}I \& 15, & I S\end{array}=0\right.$
$F I=\left\{\begin{array}{l}0,0 \leq I M \leq 4 \\ 1,5 \leq I M \leq 9 \\ 2, I M=10 \\ 3, I M=11 \\ 4, I M=12 \\ 5, I M=13 \\ 6, I M=14 \\ 6, I M=15\end{array}\right.$

For 32 kbit/s ADPCM:
$I S=I \gg 3$
$I M=\left\{\begin{array}{lr}I \& 7, & I S=0 \\ (15-I) \& 7, I S=1\end{array}\right.$
$F I=\left\{\begin{array}{l}0,0 \leq I M \leq 2 \\ 1,3 \leq I M \leq 5 \\ 3, I M=6 \\ 7, I M=7\end{array}\right.$

For 24 kbit/s ADPCM:
$I S=I \gg 2$
$I M=\left\{\begin{array}{lr}I \& 3, & I S=0 \\ (7-I) \& 3, & I S=1\end{array}\right.$
$F I=\left\{\begin{array}{l}0, I M=0 \\ 1, I M=1 \\ 2, I M=2 \\ 7, I M=3\end{array}\right.$

For 16 kbit/s ADPCM:
$I S=I \gg 1$
$I M=\left\{\begin{array}{lr}I \& 1, & I S=0 \\ (3-I) \& & 1, I S=1\end{array}\right.$
$F I=\left\{\begin{array}{l}7, I M=1 \\ 0, I M=0\end{array}\right.$

Input: AP
Output: AL
Function: Limit speed control parameter.
$A L=\left\{\begin{array}{lr}64, & A P \geq 256 \\ A P \gg & 2, \\ A P \leq 255\end{array}\right.$

## SUBTC

Inputs: $\quad$ DMSP, DMLP, TDP, Y
Output:
AX
Function: Compute magnitude of the difference of short and long term functions of quantizer output sequence and then perform threshold comparison for quantizing speed control parameter.

DIF $=((D M S P \ll 2)+32768-D M L P) \& 32767 \quad \mid$ Compute difference
DIFS $=$ DIF >> 14

DIFM $=\left\{\begin{array}{lr}\text { DIF, } & \text { DIFS }=0 \\ (32768-D I F) \& 16383, D I F S & =1\end{array}\right.$

DTHR $=$ DMLP >> 3
$A X= \begin{cases}0, & Y \geq 1536 \text { and } D I F M<D T H R \text { and } T D P=0 \\ 1, & \text { otherwise }\end{cases}$

## TRIGA




FIGURE 9/G. 726
Adaptive predictor and reconstructed signal calculator

## ADDB

Inputs: DQ, SE
Output: SR
Function: Addition of quantized difference signal and signal estimate to form reconstructed signal.
$D Q S=\left\{\begin{array}{l}D Q \gg 14: \text { for } 15 S M D Q \\ D Q \gg 15: \text { for } 16 S M D Q\end{array}\right.$
$D Q I=\left\{\begin{array}{l}D Q, \quad D Q S=0 \\ (65536-(D Q \& 16383)) \& 65535, D Q S=1: \text { for } 15 S M D Q \\ (65536-(D Q \& 32767)) \& 65535, D Q S=1: \text { for } 16 S M D Q\end{array}\right.$
| Convert signed
magnitude to
| two'scomplement
|
$S E S=S E \gg 14$
$S E I= \begin{cases}S E, & S E S=0 \\ (1 \ll 15)+S E, S E S=1 & \text { Sign extension }\end{cases}$
$S R=(D Q I+S E I) \& 65535$

ADDC
Inputs: DQ, SEZ
Output: PK0, SIGPK
Function: Obtain sign of addition of quantized difference signal and partial signal estimate.
$D Q S=\left\{\begin{array}{l}(D Q \gg 14): \text { for } 15 S M D Q \\ (D Q \gg 15): \text { for } 16 S M S Q\end{array}\right.$
$D Q I=\left\{\begin{array}{l}D Q, \quad D Q S=0 \\ (65536-(D Q \& 16383)) \& 65535, D Q S=1: \text { for } 15 S M D Q \\ (65536-(D Q \& 32767)) \& 65535, D Q S=1: \text { for } 16 S M D Q\end{array}\right.$
| Convert signed
| magnitude to
| two'scomplement
$S E Z S=S E Z \gg 14$

SEZI $=\left\{\begin{array}{l}\text { SEZ, } \quad \text { SEZS }=0 \\ (1 \ll 15)+S E Z, S E Z S=1\end{array}\right.$
| Sign extension
$D Q S E Z=(D Q I+S E Z I) \& 65535$
$P K 0=D Q S E Z \gg 15$
$S I G P K=\left\{\begin{array}{l}1, D Q S E Z=0 \\ 0, \text { otherwise }\end{array}\right.$

DELAY
See § 4.2.4 for specification.

## FLOATA

Input: $\quad \mathrm{DQ}$
Output: DQ0
Function: Convert 15-bit or 16-bit signed magnitude to floating point.
$D Q S=\left\{\begin{array}{l}D Q \gg 14: \text { for } 15 S M D Q \\ D Q \gg 15: \text { for } 16 S M D Q\end{array}\right.$
$M A G=\left\{\begin{array}{l}D Q \& \text { 16383: for } 15 \text { SM DQ } \\ D Q \& 32767: \text { for } 16 S M D Q\end{array}\right.$
$E X P=\left\{\begin{array}{lc}15, & 16384 \leq M A G: \text { for } 16 S M D Q \\ 14,8192 \leq M A G \leq 16383: \text { for } 16 S M D Q \\ 14, & 8192 \leq M A G: \text { for } 15 S M D Q \\ 13, & 4096 \leq M A G \leq 8191 \\ \cdot & \cdot \\ \cdot & \cdot \\ \cdot & \cdot \\ 2, & 2 \leq M A G \leq 3 \\ 1, & M A G=1 \\ 0, & M A G=0\end{array}\right.$
$M A N T=\left\{\begin{array}{lr}1 \ll 5, & M A G=0 \\ (M A G \ll 6) \gg E X P, & \text { otherwise }\end{array}\right.$
| Compute mantissa with a
| 1 in the most
| significant bit
$D Q 0=(D Q S \ll 10)+(E X P \ll 6)+M A N T$

[^4]
## FLOATB

Input: $\quad$ SR
Output: SR0
Function: Convert 16-bit two's complement to floating point.
$S R S=S R \gg 15$
$M A G=\left\{\begin{array}{lr}S R, & S R S=0 \\ (65536-S R) \& 32767, S R S=1\end{array}\right.$

$M A N T=\left\{\begin{array}{lr}1 \ll 5, & M A G=0 \\ (M A G \ll 6) \gg E X P, & \text { otherwise }\end{array}\right.$
$S R 0=(S R S \ll 10)+(E X P \ll 6)+$ MANT
| Compute magnitude |

```
|
|
|
|
| Compute exponent
|
|
|
|
```

Compute mantissa with a
| in the most
| significant bit
| Combine sign bit, 4 exponent
| bits and 6 mantissa bits
| into one 11-bit word

Inputs: $\quad$ An or $\mathrm{Bn}, \mathrm{SRn}$ or DQn
Output: WAn or WBn
Note: $\quad$ Equations are given for $\mathrm{An}, \mathrm{SRn}$ and WAn. The equations are also valid when substituting Bn for An, DQn for SRn and WBn for WAn.
Function: Multiply predictor coefficients with corresponding quantized difference signal or reconstructed signal. Multiplication is done in floating point format.
$A n S=A n \gg 15$
$A n M A G= \begin{cases}A n \gg 2 & A n S=0 \\ (16384-(A n \gg 2)) \& 8191 & A n S=1\end{cases}$
$A n E X P=\left\{\begin{array}{lc}13, & 4096 \leq A n M A G \\ 12, & 2048 \leq A n M A G \leq 4095 \\ \cdot & \cdot \\ \cdot & \cdot \\ \cdot & \cdot \\ 2 ; & 2 \leq A n M A G \leq 3 \\ 1, & A n M A G=1 \\ 0, & A n M A G=0\end{array}\right.$
AnMANT $=\left\{\begin{array}{l}1 \ll 5, \\ (A n M A G \ll 6) \gg A n E X P, \text { otherwise }\end{array}\right.$
$S R n S=S R n \gg 10$
$S R n E X P=(S R n \gg 6) \& 15$
SRnMANT $=$ SRn \& 63
$W A n S=S R n S * * A n S$
$W A n E X P=S R n E X P+A n E X P$
$W A n M A N T=((S R n M A N T * A n M A N T)+48) \gg 4$
$W A n M A G=\left\{\begin{array}{lr}(W A n M A N T \ll 7) \gg(26-W A n E X P), & W A n E X P \leq 26 \\ ((W A n M A N T \ll 7) \ll(W A n E X P-26)) \& 32767, W A n E X P>26\end{array}\right.$
$W A n=\left\{\begin{array}{lr}W A n M A G, & W A n S=0 \\ (65536-W A n M A G) \& 65535, W A n S=1\end{array}\right.$
| Convert mag. to
| two'scomplement

## LIMC

| Input: | A2T |
| :--- | :--- |
| Output: | A2P |
| Function: | Limits on $a_{2}$ coefficient of second order predictor. |

$A 2 U L=12288 \quad$ | Upper limit of +0.75
$A 2 L L=53248$
| Lower limit of -0.75
$A 2 P=\left\{\begin{array}{l}A 2 L L, \quad 32768 \leq A 2 T \leq A 2 L L \\ A 2 U L, A 2 U L \leq A 2 T \leq 32767 \\ A 2 T, \quad \text { otherwise }\end{array}\right.$

## LIMD

Inputs: A1T, A2P
Output: A1P
Function: Limits on $a_{1}$ coefficient of second order predictor.
$O M E=15360$
| (1 - epsilon) where
| epsilon=1/16

| $A 1 U L=(O M E+65536-A 2 P) \& 65535$ | $\mid$ Compute upper limit |
| :--- | :--- |
| $A 1 L L=(A 2 P+65536-$ OME $\& 65535$ | $\mid$ Compute lower limit |

$A 1 P=\left\{\begin{array}{l}A 1 L L, \quad 32768 \leq A 1 T \text { and } A 1 T \leq A 1 L L \\ A 1 U L, A 1 U L \leq A 1 T \text { and } A 1 T \leq 32767 \\ A 1 T, \quad \text { otherwise }\end{array}\right.$

TRIGB
Inputs: $\quad \mathrm{TR}, \mathrm{AnP}$ or BnP or TDP
Output: AnR or BnR or TDR
Note: $\quad$ Equation is given for AnP and AnR. Equation is also valid when substituting BnP and BnR or TDP and TDR for AnP and AnR respectively.
Function: Predictor trigger block.
$A n R= \begin{cases}A n P, & T R=0 \\ 0, & T R=1\end{cases}$

```
Inputs: PK0, PK1, A1, SIGPK
Output: A1T
Function: Update al coefficient of second order predictor.
```

```
\(P K S=P K 0 * * P K 1 \quad \mid 1\)-bit "exclusive or"
```

$P K S=P K 0 * * P K 1 \quad \mid 1$-bit "exclusive or"
$U G A 1= \begin{cases}192, & P K S=0 \text { and } S I G P K=0 \\ 65344, & P K S=1 \text { and } S I G P K=0 \\ 0, & S I G P K=1\end{cases}$

```
\(U G A 1= \begin{cases}192, & P K S=0 \text { and } S I G P K=0 \\ 65344, & P K S=1 \text { and } S I G P K=0 \\ 0, & S I G P K=1\end{cases}\)
```




```
A1S=A1>> 15
ULA1={}{\begin{array}{ll}{65536-(\textrm{A}1>>8))&65535,}&{A1S=0}\\{(65536-((A1>> 8)+65280))& 65535,}&{A1S=1}
UA1 = (UGA1 +ULA1) & 65535
| Compute update
A1T = (A1 + UA1) & 65535
```


## UPA2

Inputs: PK0, PK1, PK2, A1, A2, SIGPK
Output: A2T
Function: Update $a_{2}$ coefficient of second order predictor.

| $P K S 1=P K 0 * * P K 1$ | \| 1-bit "exclusive or" |
| :--- | :--- |
| $P K S 2=P K 0 * * P K 2$ | $\mid 1$-bit "exclusive or", |

$U G A 2 A=\left\{\begin{array}{l}16384, P K S 2=0 \\ 114688 P K S 2=1\end{array}\right.$
$A 1 S=A 1 \gg 15$
If $A 1 S=0$ then
$F A 1=\left\{\begin{array}{l}A 1 \ll 2, \quad A 1 \leq 8191 \\ 8191 \ll 2, A 1 \geq 8192\end{array}\right.$
$\mid$ Implement $f\left(a_{1}\right)$
| with limiting
| at $+1 / 2$

If $A 1 S=1$, then

$A 2 S=A 2 \gg 15$
$U L A 2= \begin{cases}(65536-(A 2 \gg 7)) \& 65535, & A 2 S=0 \\ & \text { Leak factor is } \\ (65536-((A 2 \gg 7)+65024)) \& 65535, A 2 S=1 & 1 / 128\end{cases}$
$U A 2=(U G A 2+U L A 2) \& 65535$
| Compute update
$A 2 T=(A 2+U A 2) \& 65535$

| Inputs: | Un, Bn, DQ |
| :--- | :--- |
| Output: | BnP |
| Function: | Update for coefficients of sixth order predictor. |

For 40 kbit/s ADPCM (16 SM DQ):
$D Q M A G=D Q \& 32767$
$U G B n=\left\{\begin{array}{l}128, \quad U n=0 \text { and } D Q M A G \neq 0 \\ 65408, \quad U n=1 \text { and } D Q M A G \neq 0 \\ 0, \quad D Q M A G=0\end{array}\right.$

```
I
| Gain \(= \pm 1 / 128\) or 0
|
|
```

$B n S=B n \gg 15$
$U L B n=\left\{\begin{array}{lr}(65536-(B n \gg 9)) \& 65535, & B n S=0 \\ (65536-((B n \gg 9)+65408)) \& 65535 & B n S=1\end{array}\right.$
$U B n=(U G B n+U L B n) \& 65535$
| Compute update
$B n P=(B n+U B n) \& 65535$

For 32, 24 and 16 kbit/s ADPCM (15 or 16 SM DQ):
$D Q M A G=\left\{\begin{array}{l}D Q \& 16383: \text { for } 15 S M D Q \\ D Q \& 32767: \text { for } 16 S M D Q\end{array}\right.$
$U G B n= \begin{cases}128, & U n=0 \text { and } D Q M A G \neq 0 \\ 65408, & U n=1 \text { and } D Q M A G \neq 0 \\ 0, & D Q M A G=0\end{cases}$
Gain $= \pm 1 / 128$ or 0
|
$B n S=B n \gg 15$
$U L B n= \begin{cases}(65536-(B n \gg 8)) \& 65535, & B n S=0 \\ (65536-((B n \gg 8)+65280)) \& 65535 & B n S=1\end{cases}$
$U B n=(U G B n+U L B n) \& 65535$
$B n P=(B n+U B n) \& 65535$

```
| Compute update
|
| Leak factor=1/256
|
Compute update
```

$B n P=(B n+U B n) \& 65535$

## XOR

Inputs:
Output:
Function: One bit "exclusive or" of sign of difference signal and sign of delayed difference signal.
$D Q S=\left\{\begin{array}{l}D Q \gg 14: \text { for } 15 S M D Q \\ D Q \gg 15: \text { for } 16 S M D Q\end{array}\right.$
$D Q n S=D Q n \gg 10$
$U n=D Q S$ ** $D Q n S \quad$ | 1-bit "exclusive or"
4.2.7 $\quad$ Tone and transition detector


FIGURE 10/G. 726
Tone and transition detector

## DELAY

See § 4.2.4 for specification.

## TONE

Input: A2P
Output: TDP
Function: Partial band signal detection.
$T D P=\left\{\begin{array}{l}1,32768 \leq A 2 P \text { and } A 2 P<53760 \\ 0, \text { otherwise }\end{array}\right.$

## TRANS

Inputs TD, YL, DQ
Output: TR
Function: Transition detector.

```
DQMAG={ lQ & 16383: for 15 SM DQ 
YLINT = YL >> 15
```

$Y L F R A C=(Y L \gg 10) \& 31$
THR $1=(32+$ YLFRAC $) \ll$ YLINT
THR $2=\left\{\begin{array}{l}31 \ll 9, \quad \text { YLINT }>8: \text { for } 15 \text { SM DQ } \\ 31 \ll 10, \text { YLINT }>9: \text { for } 16 \text { SM DQ } \\ \text { THR 1, otherwise }\end{array}\right.$
$D Q T H R=(T H R 2+(T H R 2 \gg 1)) \gg 1$
$T R=\left\{\begin{array}{l}1, D Q M A G>D Q T H R \text { and } T D=1 \\ 0, \text { otherwise }\end{array}\right.$

See § 4.2.6 for specification.


FIGURE 11/G. 726
Output PCM format conversion and synchronous coding adjustment

COMPRESS (decoder only)
Inputs: SR, LAW
Output:
SP
Function: Convert from uniform PCM to either A-law or $\mu$-law PCM.
$I S=S R \gg 15$
$I M=\left\{\begin{array}{lll}S R, & I S=0 & \left\lvert\, \begin{array}{l}\text { Convert two's } \\ \\ (65536-S R) \& 32767, I S=1\end{array}\right. \\ \mid \text { complement to } \\ \text { signed magnitude }\end{array}\right.$
$I M A G= \begin{cases}I M, & L A W=0 \\ I M \gg 1 & L A W=1 \text { and } I S=0 \\ (I M+1) \gg & L A W=1 \text { and } I S=1\end{cases}$
| $\mu$-law
| A-law
I
then quantize IMAG (see note below) according to Recommendation G. 711 using decision values (column 5 of Tables 1a, $1 \mathrm{~b}, 2 \mathrm{a}$ and $2 \mathrm{~b} / \mathrm{G} .711$ ) in the following way:
$\mathrm{SP}= \begin{cases}\text { character signal after even bit inversion deduced } \\ \text { from Table 1a/G.711 (column 6), } & I S=0 \text { and } L A W=1 \\ \text { character signal after even bit inversion deduced } & \\ \text { from Table 1b/G.711 (column 6), } & I S=1 \text { and } L A W=1 \\ \text { character signal of Table 2a/G.711 (column 6), } & I S=0 \text { and } L A W=0 \\ \text { character signal of Table 2b/G.711 (colum 6), } & I S=1 \text { and } L A W=0\end{cases}$

Note - When IMAG is outside the range defined by the virtual decision level, SP must be set equal to the maximum PCM code word. For the purpose of clarification, examples of conversion for both A-law (after even bit inversion) and $\mu$-law in the vicinity of the origin are given in the table below:

TABLE 15/G. 726
Conversion for A-law and $\mu$-law examples

| IS | IMAG | PCM code word SP |  |
| :---: | :---: | :---: | :---: |
|  |  | A-law | $\mu$-law |
| 0 | 3 | 11010100 | 11111101 |
| 0 | 2 | 11010100 | 11111110 |
| 0 | 1 | 11010101 | 11111110 |
| 0 | 0 | 11010101 | 11111111 |
| 1 | 1 | 01010101 | 01111110 |
| 1 | 2 | 01010101 | 01111110 |
| 1 | 3 | 01010100 | 01111101 |

## EXPAND

See § 4.2.1 for specification. Substitute SP for S as input and SLX for SL as output.

## LOG

See § 4.2.2 for specification. Substitute DX for D as input, DLX for DL and DSX for DS as outputs.

## SUBTA

See $\S 4$ 4.2.1 for specification. Substitute SLX for SL as input and DX for D as output.

SUBTB
See § 4.2.2 for specification. Substitute DLX for DL as input and DLNX for DLN as output.

Inputs: I, SP, DLNX, DSX, LAW
Output: SD
Function: Re-encode output PCM sample in decoder for synchronous tandem coding.

For 40 kbit/s ADPCM:
$I S=\mathrm{I} \gg 4$
$I M=\left\{\begin{array}{l}I+16, I S=0 \\ I \& 15, I S=1\end{array}\right.$
$S D=\left\{\begin{array}{l}S P^{+}, I D<I M \\ S P, I D=I M \\ S P^{-}, I D>I M\end{array}\right.$
where
$S P^{+}=$the PCM code word that represents the next more positive PCM output level (when SP represents the most positive PCM output level, then $S P^{+}$is constrained to be SP ).
and
$S P^{-}=$the PCM code word that represents the next more negative PCM output level (when SP represents the most negative PCM output level, then $S P^{-}$is constrained to be SP ).

For 32 kbit/s ADPCM:
$I S=\mathrm{I} \gg 3$
$I M=\left\{\begin{array}{l}I+8, I S=0 \\ I \& 7, I S=1\end{array}\right.$

ID is defined according to the following table:

TABLE 16/G. 726
ID definition for 40 kbit/s ADPCM

| DSX | DLNX | ID |  |
| :---: | :---: | :---: | :---: |
| 0 | 553-2047 | 31 |  |
| 0 | 528-552 | 30 |  |
| 0 | 502-527 | 29 |  |
| 0 | 475-501 | 28 |  |
| 0 | 445-474 | 27 |  |
| 0 | 413-444 | 26 |  |
| 0 | 378-412 | 25 |  |
| 0 | 339-377 | 24 |  |
| 0 | 298-338 | 23 |  |
| 0 | 250-297 | 22 |  |
| 0 | 198-249 | 21 |  |
| 0 | 139-197 | 20 |  |
| 0 | 68-138 | 19 |  |
| 0 | 0- 67 | 18 | - - Positive portion of decision interval |
| 0 | 4080-4095 | 18 | --\| Negative portion of decision interval |
| 0 | 3974-4079 | 17 |  |
| 0 | 2048-3973 | 15 |  |
| 1 | 2048-3973 | 15 |  |
| 1 | 3974-4079 | 14 |  |
| 1 | 4080-4095 | 13 | - - Negative portion of decision interval |
| 1 | 0- 67 | 13 | - - Positive portion of decision interval |
| 1 | 68-138 | 12 |  |
| 1 | 139-197 | 11 |  |
| 1 | 198-249 | 10 |  |
| 1 | 250-297 | 9 |  |
| 1 | 298-338 | 8 |  |
| 1 | 339-377 | 7 |  |
| 1 | 378-412 | 6 |  |
| 1 | 413-444 | 5 |  |
| 1 | 445-474 | 4 |  |
| 1 | 475-501 | 3 |  |
| 1 | 502-527 | 2 |  |
| 1 | 528-552 | 1 |  |
| 1 | 553-2047 | 0 |  |

ID is defined according to the following table:

TABLE 17/G. 726
ID definition for 32 kbit/s ADPCM

| DSX | DLNX | ID |
| :---: | ---: | :---: |
| 0 | $400-2047$ | 15 |
| 0 | $349-399$ | 14 |
| 0 | $300-348$ | 13 |
| 0 | $246-299$ | 12 |
| 0 | $178-245$ | 11 |
| 0 | $80-177$ | 10 |
| 0 | $0-79$ | 9 |
| 0 | $3972-4095$ | 9 |
| 0 | $2048-3971$ | 7 |
| 1 | $2048-3971$ | 7 |
| 1 | $3972-4095$ | 6 |
| 1 | $0-79$ | 6 |
| 1 | $80-177$ | 5 |
| 1 | $178-245$ | 4 |
| 1 | $246-299$ | 3 |
| 1 | $300-348$ |  |
| 1 | 3 |  |
| 1 | $349-399$ | 1 |
| 1 | $400-2047$ | 0 |
| 1 |  |  |

$S D=\left\{\begin{array}{ll}S P^{+}, & I D<I M \\ S P, & I D=I M, S P^{-} \\ I D>I M\end{array}\right.$,
where
$S P^{+}=$the PCM code word that represents the next more positive PCM output level (when SP represents the most positive PCM output level, then $S P^{+}$is constrained to be SP ).
and
$S P^{-}=$the PCM code word that represents the next more negative PCM output level (when SP represents the most negative PCM output level, then $S P^{-}$is constrained to be SP ).

For 24 kbit/s ADPCM:
$I S=I \gg 2$
$I M=\left\{\begin{array}{l}I+4, I S=0 \\ I \& 3, I S=1\end{array}\right.$

ID is defined according to the following table:

TABLE 18/G. 726
ID definition for 24 kbit/s ADPCM

| DSX | DLNX | ID |
| :---: | :---: | :---: |
| 0 | $331-2047$ | 7 |
| 0 | $218-330$ | 6 |
| 0 | $8-217$ | 5 |
| 0 | $0-7$ | 3 |
| 0 | $2048-4095$ | 3 |
| 1 | $2048-4095$ | 3 |
| 1 | $0-7$ | 3 |
| 1 | $8-217$ | $-\mid$ Positive portion of decision interval |
| 1 | 2 | $--\mid$ Negative portion of decision interval |
| 1 | $218-330$ | 1 |
| 1 | $331-2047$ | 0 |

$S D=\left\{\begin{array}{l}S P^{+}, I D<I M \\ S P, I D=I M \\ S P^{-}, I D>I M\end{array}\right.$
where
$S P^{+}=$the PCM code word that represents the next more positive PCM output level (when SP represents the most positive PCM output level, then $S P^{+}$is constrained to be SP ).
and
$S P^{-}=$the PCM code word that represents the next more negative PCM output level (when SP represents the most negative PCM output level, then $S P^{-}$is constrained to be SP).

For 16 kbit/s ADPCM:
$I S=\mathrm{I} \gg 1$
$I M=\left\{\begin{array}{l}I+2, I S=0 \\ I \& 1, I S=1\end{array}\right.$

ID is defined according to the following table:

TABLE 19/G. 726

## ID definition for 16 kbit/s ADPCM

| DSX | DLNX | ID |
| :---: | :---: | :---: |
| 0 | $261-2047$ | 3 |
| 0 | $0-260$ | 2 |
| 0 | $2048-4095$ | 2 |
| 1 | $2048-4095$ | 1 |
| 1 | $0-260$ | 1 |

For the purposes of clarification, examples of re-encoding for both A-law (after even bit inversion) and $\mu$-law in the vicinity of the origin are given in the table below:

TABLE 20/G. 726

## Re-encoding for A-law and $\mu$-law: ADPCM

|  | A-law |  | $\mu$-law |  |
| :---: | :---: | :---: | :---: | :---: |
| Comparison of <br> ID and IM | SP | SD | SP | SD |
| ID > IM | 11010101 | 01010101 | 11111110 | 11111111 |
| ID = IM | $"$ | 11010101 | $"$ | 11111110 |
| ID < IM | $"$ | 11010100 | $"$ | 11111101 |
| ID > IM | 01010101 | 01010100 | 11111111 | 01111110 |
| ID = IM | $"$ | 01010101 | $"$ | 11111111 |
| ID < IM | $"$ | 11010101 | $"$ | 11111110 |
| ID > IM | 01010100 | 01010111 | 01111110 | 01111101 |
| ID = IM | $"$ | 01010100 | $"$ | 01111110 |
| ID < IM | $"$ | 01010101 | $"$ | 01111111 |

Note-SP (and SD) represent character signals defined according to Tables 1/G.711 and 2/G.711. See sub-block COMPRESS (§ 4.2.8) for the exact representation of SP (and SD ).

## APPENDIX

(to Recommendation G.726)

## Network aspects

The purpose of this Appendix is to give a broad outline of the interaction of 16, 24, 32 and $40 \mathrm{kbit} / \mathrm{s}$ ADPCM with other devices that are found in the telephony network and also the effect of specific signals found in the network. Some general guidance is also offered.

## I. 1 General transmission considerations

Both 24 and 16 kbit/s codings are intended for use with DCME overload channels. It is recommended that $32 \mathrm{kbit} / \mathrm{s}$ and $16 \mathrm{kbit} / \mathrm{s}$ or $24 \mathrm{kbit} / \mathrm{s}$ coding be alternated rapidly such that at least 3.5 to $3.7 \mathrm{bits} / \mathrm{sample}$ are used on average. The rate of alternation is for further study. The method of alternation is beyond the scope of this Recommendation. The effect on speech quality of this alternation is not expected to be significant. The use of 24 or 16 kbit/s coding for data transmission is not recommended.

The $40 \mathrm{kbit} / \mathrm{s}$ coding is intended for use with DCME and packet circuit multiplication equipment (PCME) data modem channels, especially for modem operation at speeds of 7200, 9600 and $12000 \mathrm{bit} / \mathrm{s}$.

Consideration will have to be given to appropriate corrective action with, for example, the use of bit stealing techniques for the provision of a limited speed signalling facility. Otherwise, serious performance degradation will occur.

Conversely a $64 \mathrm{kbit} / \mathrm{s}$ channel which is conveyed by an ADPCM channel (or channels) will not exhibit bit integrity.

## I. $2 \quad$ Interaction with other processes

The synchronous coding adjustment is described in $\S \S 1.2$ and 3.7 of this Recommendation. The favourable operation of this adjustment is dependent on the signals on the ADPCM path and on the intermediate $64 \mathrm{kbit} / \mathrm{s}$ path both being uncorrupted by other digital processes. For example, the use of digital pads, A-law to $\mu$-law converters, echo cancellers or digital speech interpolation (DSI) at these intermediate points will inhibit the correct functioning of this adjustment. However, the performance will still be better than that achieved when an asynchronous connection is employed.

The use of an ADPCM link to interconnect $64 \mathrm{kbit} / \mathrm{s}$ A-law PCM signals and $64 \mathrm{kbit} / \mathrm{s} \mu$-law signals has been found to be satisfactory for speech even though this will inhibit the correct operation of the synchronous coding adjustment between the ADPCM link so used and the subsequent ADPCM link.

The interactions between ADPCM and processes such as DSI and echo cancellation (e.g. quantization noise in the echo path) are for further study.

The effect of large d.c. offsets (arising from PCM encoders) on the performance of ADPCM for low level signals is for further study.

## I. 3 Interaction with coding laws other than PCM

Interconnection with coding laws other than PCM is not the subject of the Recommendation and analogue interconnections may need to be employed.

It follows that great care must be exercised when interconnection is made to coding laws which are not the subject of CCITT Recommendations.

The encoder and its respective decoder must always operate at the same bit rate (i.e 16, 24,32 or $40 \mathrm{kbit} / \mathrm{s}$ ), or otherwise severe mistracking may occur.

## I. 5 Synchronous coding adjustment

The synchronous coding adjustment will work correctly when an ADPCM encoder/decoder pair is connected by a bit-transparent $64 \mathrm{kbit} / \mathrm{s}$ PCM path to another encoder/decoder pair operating at the same rate. When two encoder/decoder pairs are operating at different rates, the synchronous tandeming property is not guaranteed to be established.

## I. 6

## Speech performance

Under error free transmission conditions the perceived quality of speech over $32 \mathrm{kbit} / \mathrm{s}$ ADPCM links is only slightly lower than that over $64 \mathrm{kbit} / \mathrm{s}$ PCM links. This will only be significant when numbers of such links are used in tandem and not when single links are used. Hence the numbers of such $32 \mathrm{kbit} / \mathrm{s}$ ADPCM links must be controlled on an international connection. With transmission error ratios higher than $1 \cdot 10^{-4}$ the perceived quality of speech over $32 \mathrm{kbit} / \mathrm{s}$ ADPCM links is better than that over $64 \mathrm{kbit} / \mathrm{s}$ PCM links. Precise limits for the international portion of the connection and the national extensions may be found in Recommendation G.113. Preliminary tests indicate that for voice, the $40 \mathrm{kbit} / \mathrm{s}$ ADPCM coding performs approximately as well as $64 \mathrm{kbit} / \mathrm{s}$ PCM according to Recommendation G.711.

## I. $7 \quad$ Voice frequency telegraph performance

Twenty-four-channel voice frequency telegraph of Recommendation R. 35 cannot be satisfactorily conveyed over $32 \mathrm{kbit} / \mathrm{s}$ ADPCM links and it is, therefore, desirable to implement routing rules to avoid this combination.

## I. 8 Data performance

Voiceband data performance up to $2400 \mathrm{bit} / \mathrm{s}$ using, for example modems conforming to Recommendation V.21, V. 22 bis, V. 23 and V. 26 ter, will not be subject to significant degradation over 32 kbit/s ADPCM links provided the numbers of such links do not exceed the limits of Recommendation G.113.

Voiceband data performance at $4800 \mathrm{bit} / \mathrm{s}$ using, for example modems conforming to Recommendation V. 27 bis, can be accommodated with $32 \mathrm{kbit} / \mathrm{s}$ ADPCM but will be subject to additional degradations over and above that expected from standard $64 \mathrm{kbit} / \mathrm{s}$ PCM links. More care will need to be exercised in using such a service.

Voiceband data at speeds up to $12000 \mathrm{bit} / \mathrm{s}$ can be accommodated by $40 \mathrm{kbit} / \mathrm{s}$ ADPCM. The performance of V. 33 modems operating at $14400 \mathrm{bit} / \mathrm{s}$ over $40 \mathrm{kbit} / \mathrm{s}$ ADPCM is for further study.

## I. 9

Dual tone multi-frequency (DTMF) signalling
No major difficulties are likely to be experienced with DTMF signalling conveyed over $32 \mathrm{kbit} / \mathrm{s}$ or $40 \mathrm{kbit} / \mathrm{s}$ ADPCM links. The use of DTMF for end-to-end signalling is limited by the number of links in tandem. DTMF performance for $16 \mathrm{kbit} / \mathrm{s}$ or $24 \mathrm{kbit} / \mathrm{s}$ ADPCM is for further study.

Facsimile

No degradation is to be expected when using $40 \mathrm{kbit} / \mathrm{s}$ ADPCM with Group 2 or Group 3 facsimile apparatus according to Recommendations T. 3 or T. 4 at rates up to 12000 bit/s. Performance of Group 3 facsimile when using $40 \mathrm{kbit} / \mathrm{s}$ ADPCM at $14400 \mathrm{bit} / \mathrm{s}$ is for further study. No serious degradation is to be expected when using $32 \mathrm{kbit} / \mathrm{s}$ ADPCM with Group 2 facsimile apparatus according to Recommendations T. 3 or T. 4 at rates up to $12000 \mathrm{bit} / \mathrm{s}$.

## Digital test sequences for the verification of the algorithms in Recommendation G. 726

This Appendix gives information on the digital test sequences which have been chosen to verify implementations of the algorithms in Rec. G.726. Copies of the sequences on flexible diskettes together with a detailed description can be ordered from the ITU sales services (Please refer to collective letter No. 11/XV, 1991).

## II. $1 \quad$ Purpose of digital test sequences

Digital sequences are used to verify the conformance of an implementation to a digital transcoding algorithm. The sequences are chosen to exercise the major arithmetic components and thus give a reasonable level of confidence of the compliance of an implementation with this Recommendation. Note that with a limited number of test sequences it is not possible to demonstrate $100 \%$ coverage of all states of the implementation. The more general issues involved in testing such algorithms are the subject of active research in the areas of VLSI testing and protocol conformance testing.

## II. 2 Diskette interface and format

Copies of the digital test sequences are available from the ITU on four $51 / 4^{\prime \prime}$ diskettes. The diskettes were created under MS-DOS operating system (version 3.2 or newer), and 1.2 Mbyte high-density doubled-sided 96 tracks per inch $51 / 4 \mathrm{MS}-\mathrm{DOS}$ format.


[^0]:    ${ }^{1)}$ This Recommendation completely replaces the text of Recommendations G. 721 and G. 723 published in Volume III. 4 of the Blue Book. It should be noted that systems designed in accordance with the present Recommendation will be compatible with systems designed in accordance with the Blue Book version.

[^1]:    Note - The I values are transmitted starting with bit 1.

[^2]:    Note - The I values are transmitted starting with bit 1.

[^3]:    |
    | Scale factor multipliers

[^4]:    | Combine sign bit, 4 exponent
    | bits and 6 mantissa bits
    | into one 11-bit word

