

Infrared Data Association
‘Tiny TP’: A Flow-Control Mechanism

for use with IrLMP

Version 1.1

20th October 1996

Tiny Transport Protocol Version 1.1

Authors:

Stuart Williams, David Suvak, Paul McClellan (Hewlett-Packard Company)
Frank Novak (IBM Corporation)
Document Status: Version 1.1

1.1a to 1.1 On 17th October 1996 the IrDA Board voted to accept the Technical Committee’s
recommendation that Draft Version 1.1a of the Tiny TP specification be adopted
as Version 1.1 of that specification.

1.0. to 1.1a The use of an explicit zero-valued MaxSduSize parameter during TTP
connection establishment has been deleted to enable LITE implementations of
Tiny TP that do not implement SAR to merely test for the presence or absence
of the MaxSduSize parameter rather the having to inspect its value for zero as
well.

 As a consequence the overloading of the MaxSduSize parameter to tag byte-
stream or sequenced packet semantics during connection establishment,
suggested in Appendix A Section 4.3 has been removed.

 Clarification has been added to section 2.3.2.1 that clearly states that the
MaxSduSize parameter is strictly applied to the size of SDUs exchanged
between peer TTP clients.

 i

Tiny Transport Protocol Version 1.1

 ii

INFRARED DATA ASSOCIATION (IrDA) - NOTICE TO THE TRADE -

SUMMARY:

Following is the notice of conditions and understandings upon which this document is made available to
members and non-members of the Infrared Data Association.

• Availability of Publications, Updates and Notices

• Full Copyright Claims Must be Honored

• Controlled Distribution Privileges for IrDA Members Only

• Trademarks of IrDA - Prohibitions and Authorized Use

• No Representation of Third Party Rights

• Limitation of Liability

• Disclaimer of Warranty

• Product Testing for IrDA Specification Conformance

IrDA PUBLICATIONS and UPDATES:

IrDA publications, including notifications, updates, and revisions, are accessed electronically by IrDA members
in good standing during the course of each year as a benefit of annual IrDA membership. Electronic copies are
available to the public on the IrDA web site located at irda.org. Requests for publications, membership
applications or more information should be addressed to: Infrared Data Association, P.O. Box 3883, Walnut
Creek, California, U.S.A. 94598; or e-mail address: info@irda.org; or by calling John LaRoche at (510) 943-
6546 or faxing requests to (510) 934-5600.

COPYRIGHT:

1. Prohibitions: IrDA claims copyright in all IrDA publications. Any unauthorized reproduction, distribution,
display or modification, in whole or in part, is strictly prohibited.

2. Authorized Use: Any authorized use of IrDA publications (in whole or in part) is under NONEXCLUSIVE
USE LICENSE ONLY. No rights to sublicense, assign or transfer the license are granted and any attempt to do
so is void.

TRADEMARKS:

1. Prohibitions: IrDA claims exclusive rights in its trade names, trademarks, service marks, collective
membership marks and certification marks (hereinafter collectively "trademarks"), including but not limited to
the following trademarks: INFRARED DATA ASSOCIATION (wordmark alone and with IR logo), IrDA (acronym
mark alone and with IR logo), IR logo, IR DATA CERTIFIED (composite mark), and MEMBER IrDA (wordmark
alone and with IR logo). Any unauthorized use of IrDA trademarks is strictly prohibited.

2. Authorized Use: Any authorized use of a IrDA collective membership mark or certification mark is by
NONEXCLUSIVE USE LICENSE ONLY. No rights to sublicense, assign or transfer the license are granted and
any attempt to do so is void.

Tiny Transport Protocol Version 1.1

 iii

NO REPRESENTATION of THIRD PARTY RIGHTS:

IrDA makes no representation or warranty whatsoever with regard to IrDA member or third party ownership,
licensing or infringement/non-infringement of intellectual property rights. Each recipient of IrDA publications,
whether or not an IrDA member, should seek the independent advice of legal counsel with regard to any
possible violation of third party rights arising out of the use, attempted use, reproduction, distribution or public
display of IrDA publications.

IrDA assumes no obligation or responsibility whatsoever to advise its members or non-members who receive or
are about to receive IrDA publications of the chance of infringement or violation of any right of an IrDA member
or third party arising out of the use, attempted use, reproduction, distribution or display of IrDA publications.

LIMITATION of LIABILITY:

BY ANY ACTUAL OR ATTEMPTED USE, REPRODUCTION, DISTRIBUTION OR PUBLIC DISPLAY OF ANY
IrDA PUBLICATION, ANY PARTICIPANT IN SUCH REAL OR ATTEMPTED ACTS, WHETHER OR NOT A
MEMBER OF IrDA, AGREES TO ASSUME ANY AND ALL RISK ASSOCIATED WITH SUCH ACTS,
INCLUDING BUT NOT LIMITED TO LOST PROFITS, LOST SAVINGS, OR OTHER CONSEQUENTIAL,
SPECIAL, INCIDENTAL OR PUNITIVE DAMAGES. IrDA SHALL HAVE NO LIABILITY WHATSOEVER FOR
SUCH ACTS NOR FOR THE CONTENT, ACCURACY OR LEVEL OF ISSUE OF AN IrDA PUBLICATION.

DISCLAIMER of WARRANTY:

All IrDA publications are provided "AS IS" and without warranty of any kind. IrDA (and each of its members,
wholly and collectively, hereinafter "IrDA") EXPRESSLY DISCLAIM ALL WARRANTIES, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE AND WARRANTY OF NON-INFRINGEMENT OF
INTELLECTUAL PROPERTY RIGHTS.

IrDA DOES NOT WARRANT THAT ITS PUBLICATIONS WILL MEET YOUR REQUIREMENTS OR THAT
ANY USE OF A PUBLICATION WILL BE UN-INTERRUPTED OR ERROR FREE, OR THAT DEFECTS WILL
BE CORRECTED. FURTHERMORE, IrDA DOES NOT WARRANT OR MAKE ANY REPRESENTATIONS
REGARDING USE OR THE RESULTS OR THE USE OF IrDA PUBLICATIONS IN TERMS OF THEIR
CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE. NO ORAL OR WRITTEN PUBLICATION
OR ADVICE OF A REPRESENTATIVE (OR MEMBER) OF IrDA SHALL CREATE A WARRANTY OR IN ANY
WAY INCREASE THE SCOPE OF THIS WARRANTY.

LIMITED MEDIA WARRANTY:

IrDA warrants ONLY the media upon which any publication is recorded to be free from defects in materials and
workmanship under normal use for a period of ninety (90) days from the date of distribution as evidenced by
the distribution records of IrDA. IrDA's entire liability and recipient's exclusive remedy will be replacement of the
media not meeting this limited warranty and which is returned to IrDA. IrDA shall have no responsibility to
replace media damaged by accident, abuse or misapplication. ANY IMPLIED WARRANTIES ON THE MEDIA,
INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE, ARE LIMITED IN DURATION TO NINETY (90) DAYS FROM THE DATE OF DELIVERY. THIS
WARRANTY GIVES YOU SPECIFIC LEGAL RIGHTS, AND YOU MAY ALSO HAVE OTHER RIGHTS WHICH
VARY FROM PLACE TO PLACE.

COMPLIANCE and GENERAL:

Tiny Transport Protocol Version 1.1

 iv

Membership in IrDA or use of IrDA publications does NOT constitute IrDA compliance. It is the sole
responsibility of each manufacturer, whether or not an IrDA member, to obtain product compliance in
accordance with IrDA Specifications.

All rights, prohibitions of right, agreements and terms and conditions regarding use of IrDA publications and
IrDA rules for compliance of products are governed by the laws and regulations of the United States. However,
each manufacturer is solely responsible for compliance with the import/export laws of the countries in which
they conduct business. The information contained in this document is provided as is and is subject to change
without notice.

Tiny Transport Protocol Version 1.1

 v

Contents

1. INTRODUCTION... 1

1.1 References ... 1

2. ELEMENTS OF PROCEDURE... 2

2.1 Tiny TP Service Access Point Addresses. ... 2
2.2 Tiny TP Service Primitives ... 2

2.2.1 TTP_Connect.. 2
2.2.2 TTP_Disconnect ... 3
2.2.3 TTP_Data ... 4
2.2.4 TTP_UData... 4
2.2.5 TTP_LocalFlow... 5

2.3 Tiny TP Protocol Data Units ... 5
2.3.1 Data TTP-PDUs.. 5
2.3.2 Connect TTP-PDUs.. 6

2.4 Detailed Operation .. 8
2.4.1 Variables... 9
2.4.2 Credit Operation ... 10
2.4.3 Segmentation and Reassembly.. 10
2.4.4 Event/Action Table.. 11

3. IRLMP IAS OBJECT AND ATTRIBUTES.. 15

3.1 Exported Attributes... 15

4. APPENDIX A IMPLEMENTATION CONSIDERATIONS... 16

4.1 Tiny TP Buffering. ... 16
4.1.1 Receive Buffer Pool .. 16
4.1.2 SAR Reassembly Buffer... 16
4.1.3 Combined Buffer Pool and SAR Reassembly Buffer ... 17

4.2 Closing TTP Connections .. 17
4.3 Byte Stream v Sequenced Packet Service.. 17

Tiny Transport Protocol Version 1.1

 1

1. Introduction

Whilst IrLAP provides a flow-control mechanism between peer IrLAP [2] entities, the introduction of
multiplexed channels above IrLAP by IrLMP LM-MUX [4] introduces a problem. Reliance on IrLAP
to provide flow-control for a multiplexed channel can result in dead-locks if the consumption of data
from one multiplexed channel is dependent on data flowing in an adjacent multiplexed channel.
Conversely, if inbound data on a multiplexed channel cannot be consumed and the underlying
IrLAP connection cannot be flow-controlled off due to the possibility of deadlock, inbound data
(freshly arrived or buffered) must be discarded in the event of buffer exhaustion. Sadly this reduces
the reliable delivery service provided by IrLAP to a best effort delivery service provided by IrLMP
LM-MUX (when multiple multiplexed channels are in operation).

There are at least two possible solutions for restoring a reliable delivery service above IrLMP
LM-MUX.

1. Provide a per application stream flow-control mechanism above LM-MUX between peer
application entities. This ensures that there is always sufficient buffer space available to
accomodate in-bound application data. OR

2. Provide a per application stream retransmission mechanism above LM-MUX that recovers from
the loss of data that arises if inbound buffering become exhausted.

The Tiny TP protocol detailed in this document provides just:

• independently flow controlled transport connections
• segmentation and reassembly

1.1 References
[2] “Serial Infrared Link Access Protocol”, IrLAP, Version 1.0, Infrared Data Association,

June 1994

[4] “Link Management Protocol”, IrLMP, Version 1.0, Infrared Data Association, August 1994

Tiny Transport Protocol Version 1.1

 2

2. Elements of Procedure

2.1 Tiny TP Service Access Point Addresses.
Since each Tiny TP Service Access Point (TTPSAP) is accessible through one and only one IrLMP
LM-MUX LSAP the syntax of a TTPSAP address is identical to that of an IrLMP LSAP address.
Namely:

<TTSAP Address> = <LSAP Address> = <DeviceAddress><LSAP-SEL>

Thus a TTSAP is identified by the address of the LSAP through which it is accessed.

Similarly, a TTP connection (or TTP connection endpoint) is identified by the pair of TTPSAP
addresses at each end of the connection.

2.2 Tiny TP Service Primitives
2.2.1 TTP_Connect
TTP_Connect.request(Called TTPSAP,
 Requested QoS,
 Calling MaxSduSize
 Calling UserData)

TTP_Connect.indication(Calling TTPSAP,
 Resultant QoS,
 Calling MaxSduSize
 Calling UserData)

TTP_Connect.response(Calling TTPSAP,
 Called MaxSduSize,
 Called UserData)

TTP_Connect.confirm(Called TTPSAP,
 Resultant QoS,
 Called MaxSduSize
 Called UserData)

TTPSAP A reference to a TTPSAP which is also an implicit reference to
the corresponding IrLMP LM-MUX LSAP.

QoS IrLMP/IrLAP Quality of Service parameters.

MaxSduSize The maximum size of the UserData field, in bytes, that may
delivered in a TTP_Data.indication primitive at the
Calling and Called ends of the TTP connection respectively.
The Calling and Called values for MaxSduSize are specified
independently and may differ.

A value of zero disables segmentation and reassembly (SAR).
The UserData field submitted in TTP_Data.request must
then fit within a single Data TTP-PDU whose maximum size is
determined by IrLAP negotiation.

Tiny Transport Protocol Version 1.1

 3

UserData Calling UserData is passed from the entity initiating a TTP
connection to the entity that should respond to an incomming
TTP connection request. Likewise, Called UserData is
passed back from the responding entity to the initiating entity.

The total size of the Connect TTP-PDUs transferred during
connection establishment is limited by the size negotiated for
the underlying IrLAP connection. Currently the maximum size
of the Parameters field of the Connect TTP-PDU is 6 bytes,
therefore a connect UserData field of 52 bytes1 or less can
always be transferred during connection establishment.

Typically this might be used as a signature field to help decide
whether to accept the connection; parameter negotiation
between TTP clients; or simply to piggyback a small amount of
data.

This service is used to establish a TTP-connection between two IrLMP LSAPs. They are similar to
the corresponding IrLMP LM-MUX LM-Connect primitives.

2.2.2 TTP_Disconnect
TTP_Disconnect.request(UserData)

TTP_Disconnect.indication(Reason, UserData)

Reason Disconnect Reason: passed through from IrLMP. Values other
than UserRequested indicate that the connection was
terminated by the TTP service provider rather than by the peer
TTP client entity.

UserData Present only if the reason field specifies UserRequested

Up to 60 bytes of data accompanying the disconnect.

Typically this might be used to carry application specific
diagnostic/reason information concerning the disconnect.

This service is used to: reject incoming TTP connections; terminate a TTP connection; and to
indicate both the normal and abnormal termination of a TTP connection.

The TTP_Disconnect service primitives are mapped to the corresponding IrLMP[4]
LM_Disconnect service primitives. However, a TTP_Disconnect.indication, generated in
response to the invocation (by IrLMP) of an LM_Disconnect.indication, is schedule to occur
after all preceding data received on the TTP connection has been passed to the local TTP client
(with the exception of any partially reassembled TTP SDUs). Likewise, a
LM_Disconnect.request, generated in response to the invocation of
TTP_Disconnect.request by the local TTP client, is schedule after all preceding data for the
TTP connection received from the local TTP client has been transferred to IrLMP.

1 The minimum IrLAP maximum data size is 64 bytes. The Connect LM-PDU has a 4 byte header. If
a maximum length MaxSduSize parameter is present then the Connect TTP-PDU currently has a
maximum header length of 8 bytes. 64-4-8=52

Tiny Transport Protocol Version 1.1

 4

2.2.3 TTP_Data
TTP_Data.request(UserData)

TTP_Data.indication(UserData,Status)

UserData This is the TTP Client Service Data Unit (SDU) that is
exchanged between TTP Clients.

If SAR is active then the size of the UserData field submitted
in the .request primitive must not exceed the MaxSduSize
indicated in the TTP_Connect.indication or
TTP_Connect.confirm primitive that established the
connection.

Likewise the size of UserData field delivered using the
.indication primitive may not exceed the MaxSduSize
indicated in the TTP_Connect.request or
TTP_Connect.response primitive that established the
connection.

If SAR is inactive, then the size of the UserData field is
constrained to fit within a single Data TTP-PDU.

Status Delivery Status may take the following values:

OK: If the reassembly process is inactive or has
successfully reassembled the inbound
SDU.

Truncated: If the reassembly process has truncated
the inbound SDU because its exceeds the
agreed size.

TTP SDUs submitted by the invocation of TTP_Data.request are delivered to the corresponding
peer by the invocation of TTP_Data.indication. The TTP_LocalFlow service is used to
suspend and resume the generation of TTP_Data.indication service primitives.

2.2.4 TTP_UData
TTP_UData.request(UserData)

TTP_UData.indication(UserData)

Send data unreliably and without flow control. There is no guarantee that data sent in this manner
will be delivered. These service primitives are mapped directly to the corresponding LM-UData
service primitives for the underlying LSAP-connection. The size of the UserData field is constrained
to fit a single Data LM-PDU used to convey the UserData (SDU).

Tiny Transport Protocol Version 1.1

2.2.5 TTP_LocalFlow
TTP_LocalFlow.request(Flow=on|off)

Flow Flow=on enables the flow of received TTP SDUs to pass
from the receiving TTP entity to the local TTP client via the
local invocation of TTP_Data.indication primitives.

Flow=off halts the flow of TTP SDUs to the local TTP client.
Inbound data is held backlogged within the receiving TTP
entity which may apply backpressure to halt the data flow at
the sending peer TTP entity.

This service is used to control the flow of received TTP SDUs between the receiving TTP entity and
its local client.

2.3 Tiny TP Protocol Data Units
2.3.1 Data TTP-PDUs
Data TTP-PDUs are carried in the UserData field of IrLMP LM-MUX Data LM-PDUs. Hence, Data
TTP-PDUs are passed as the UserData parameter in IrLMP LM_Data service primitives

These are the only IrLMP service primitives used to carry Data TTP-PDUs.

DeltaCredit UserDataM

0-(IrLAPmax-3) bytes1 byte

Bit: 7 6-0

Figure 2.1 Data TTP-PDU

M The More bit.

Only significant if SAR has been specified by the use of non-
zero MaxSduSize during connection establishment.

When set indicates that the UserData field does not contain
the last segment of a segmented TTP-SDU.

When clear indicates that the UserData field contains the final
segment of a segmented TTP-SDU.

For Dataless Data TTP-PDUs (see below) the M bit MUST be
sent as 0 and is ignored on reception.

DeltaCredit Specifies the number (0-127) of additional Data-Carrying Data
TTP-PDUs that may be sent in the reverse direction.

A Data-Carrying Data TTP-PDU carries 1 or more octets of
UserData.

A Dataless Data TTP-PDU has a zero length UserData field.

It is always permissible to send a dataless Data TTP-PDU in
order to advance credit to the peer TTP Entity.

 5

Tiny Transport Protocol Version 1.1

UserData If SAR is in operation then this field carries a segment of a
segmented TTP-SDU.

It is recommended that all segments of a segmented TTP-SDU
except the last should fill outbound Data TTP-PDUs2.

When SAR is not in operation TTP requires that TTP-SDUs fit
within a single Data TTP-PDU.

2.3.2 Connect TTP-PDUs
Connect TTP-PDUs are exchanged during connection establishment and are carried in the
UserData field of Connect LM-PDUs and Connect Confirm LM-PDUs. Hence Connect TTP-PDUs
are passed as UserData in the IrLMP LM_Connect service primitives.

There are two forms of Connect TTP-PDU, once that carries a Parameters field and one that does
not.

InitialCredit UserDataP=0

0 to 59 bytes1 byte

Bit: 7 6-0

Figure 2.2 Parameterless Connect TTP-PDU

InitialCredit UserDataP=1

0 to (59-(x+1)) bytes1 byte

Bit: 7 6-0

Plen=x

Parameters

Pvalue

PI PL PV PI PL

1st Parameter 2nd Parameter
(if present)

..........

Length in Bytes: 1 1 PL

1 byte x bytes

PV

Figure 2.3 Parameter Carrying Connect TTP-PDU

 6

2 The maximum size of an outbound PDU may be constrained smaller than that imposed by IrLAP
negotiation due to local buffer management considerations

Tiny Transport Protocol Version 1.1

P When set specifies that a variable length Parameters field
follows the InitialCredit field (Figure 2.3).

When clear specifies that the Parameters field is absent
(Figure 2.2) and that parameters should assume their default
values.

InitialCredit Specifies the initial number (0-127) of Data-Carrying Data
TTP-PDUs that may be sent in the reverse direction. .

Parameters A variable length field composed of two subfield, a single byte
Plen that indicates the size in bytes (0-255) of the second sub-
field Pvalue. Pvalue contains a list of tuples of the form PI,
PL and PV. PI and PL are each a single byte in size and
identify the parameter being carried and specify the length of
the value carried in its PV field respectively. The PV field carries
the parameter value and its interpretation depends on the value
of PI. This tuple mechanism is identical to that used for IrLAP
parameter negotiation and for the IrCOMM control channel.

If there are N parameters then the value of Plen is:

 ()Plen xPL
x

N
= +

=
∑ 2

1

UserData The remainder of the Connect LM-PDU used to carry the
Connect TTP-PDU carries UserData that is exchanged
between TTP clients during connection establishment.

Implicitly this field carries a single unsegmented TTP-SDU, ie. it
DOES NOT carry the first segment of an SDU that is continued
in subsequent Data TTP-PDUs.

Currently the maximum size of the Parameters field is 7 bytes
therefore a UserData field of up to 52 bytes may always be
transferred. Future revisions of this standard may reduce this
value.

2.3.2.1 Connect TTP-PDU Parameters
Tiny TP curently defines only one parameter that may be carried in the Parameters field of a
Connect TTP-PDU

Parameter Name: MaxSduSize

PI Value: 0x01

PL Range: 0x00-0x04

Value Semantics: The maximum size of the UserData field, in bytes, that may delivered in a
TTP_Data.indication primitive at the end of the connection sending the
parameter.

Non-zeroed values of MaxSduSize indicate the maximum TTP-SDU sizes that
receiving TTP clients are prepared to accept. The value of this parameter should
be strictly applied even if it is smaller than that indicated by the appropriate
IrLAP maximum data size.

 The PV field is interpreted as an unsigned integer that is transferred most
significant byte first (big endian). Values lie in the range 1 through (2^32)-1.
Leading zero bytes may be truncated.

 7

Tiny Transport Protocol Version 1.1

 The default value for this parameter is 0 and arises only when either the
Parameters field is absent or the MaxSduSize parameter is absent from the
Parameters field.

0 MaxSduSize should never be sent with an explicit value of zero3. Zero is the
default value which arises when the parameter is absent Connect TTP-PDUs.

The default value of zero for MaxSduSize disables the operation of
Segmentation and Reassembly. All outbound Data TTP-PDUs should be sent
with the M bit cleared. The M bit is ignored on all inbound Data TTP-PDUs. The
size of TTP-SDU passed as the UserData parameter in TTP_Data service
primitives will be constrained to fit within a single Data LM-PDU.

 8

)1 to Values between 1 and (322 2− ()322 2− inclusive specify the maximum size in bytes of
TTP-SDU that may be delivered to the end of the connection sending the
Connect TTP-PDU that carries the MaxSduSize parameter.

()322 1− Specifies an unbounded MaxSduSize. In general, this indicates that TTP entity
sending this parameter AND the corresponding TTP client are capable of
receiving arbitrarily large SDUs. This is like to require that the implementation of
the TTP entity supports the delivery of partially reassembled TTP-SDUs and that
the TTP client is capable of processing partially delivered TTP-SDUs so that
buffers may be recycled.

2.4 Detailed Operation
The operation of the TTP involves the exchange of Data TTP-PDUs described in Section 2.3.1.
Effectively this adds a single octet of header to the IrLMP LM-MUX Data LM-PDUs. This additional
octet is used to convey increments (credits) to the number of Data TTP-PDUs that may be
exchanged in each direction using the underlying LM_Data service.

3 This is to ensure that LITE implementations of TTP that do not support SAR NEVER have to
inspect the value of the MaxSduSize parameter, they merely have to test for its presence.

Tiny Transport Protocol Version 1.1

Sink

Source

TTP_Data.request(data)

SendCredit>0

SendCredit -= 1
LM_Data.request(

TTP_PDU(deltaCredit,data))
LM_Data.indication(

TTP_PDU(deltacredit,M=m,UserData=data))

TTP_Data.indication(data,status))

LM_MUX Connection
Endpoint

SendCredit += deltacredit

RemoteCredit - = 1;
TTP_Segment[M=m,UserData=data]

Reassembly Buffer

!RxSDU.busy

TTP_LocalFlow.request(flow)
RxSDU.busy = (flow==off)

Segmentation

TTP_Segment[M=m,UserData=data]

RxQueue

TxQueue
RxSDU.data

AvailCredit += 1

Rx Buffer
Pool

R
em

ot
eC

re
di

t
Av

ai
lC

re
di

t

Figure 2.4 Tiny TP SAR and Credit Flow

Figure 2.4 shows the manipulation of both inbound and oubound credit at one end of a TTP
connection that has reached its data phase.

For the purposes of describing the operation of Tiny TP, Figure 2.4 and Table 2-1 (below) describe
a buffer management scheme that assumes a fixed number of receive buffers is available to the
connection and that available credit is advanced the peer TTP entity in an aggressive way.
However, other buffer management policies are legal.

Possible variations include:

• dynamic variation of the number of receive buffers in use by a TTP connection.
NB. Once credit has been advance to a peer (ie. transfered from AvailCredit to
RemoteCredit) it cannot be reclaimed.

• a lazy policy for advancing credit. In the context of the description given, this means that credit is
held longer at on AvailCredit rather than being advanced at the eariliest opportunity. This
leaves buffers available to be reclaimed (from AvailCredit) and redeployed to other needy
TTP connections or to relieve resource problems elsewhere in a system.

Note that Connect TTP-PDUs exchanged during connection establishment are not regarded as
requiring or consuming credit. During connection establishment the use of segmentation and
reassembly is indicated as are any constraints on the maximum Service Data Unit (SDU) that can
be conveyed using the TTP_Data service.

The TTP entity manipulates variables associated with each TTP-Connection that implicitly encode
the state of the flow control mechanism for that connection. The mechanism is described in the
Event/Action pairs of Table 2-1 (below).

2.4.1 Variables
AvailCredit Credit available to advance to the peer TTP entity.

 9

Tiny Transport Protocol Version 1.1

 10

RemoteCredit Credit held by peer TTP Entity:

SendCredit Credit held by local TTP Entity

Connected A flag that monitors the state of the underlying LM-MUX connection.

TxQueue FIFO queue used to hold TTP_Segments and TTP_Disconnect requests. Holds
segmented SDUs and prevents a disconnect overtaking queued data.

RxQueue FIFO queue used to hold inbound TTP_Segments and TTP_Disconnect
requests. TTP_Segments are transferred from RxQueue to the reassembly
buffer, RxSdu.data. Credit is recycled as this transfer takes place.

MaxSegSize The maximum size of segment conveyed in an outbound Data TTP-PDU.

TxMaxSduSize Received from peer TTP entity during connection establishment. Used to guard
the size of TTP-SDUs submitted using the TTP_Data.request service primitive.

RxMaxSduSize Transmitted to peer TTP entity during connection establishment. Used to police
the size of inbound TTP-SDUs.

RxSdu.size The current size of a partially received SDU undergoing reassembly.

RxSdu.data The current partially received SDU undergoing reassembly.

RxSdu.busy A flag that controls the consumption of the receive queue. Set/cleared by
invocation of TTP_LocalFlow.request.

2.4.2 Credit Operation
If SendCredit is non-zero then the local entity may reliably send data. While SendCredit is zero
TTP_Data.request primitives are left queued in sequence on TxQueue awaiting credit from the
peer entity.

If RemoteCredit is non-zero then the peer entity is able to reliably send data.

If AvailCredit is non-zero then the local entity has credit available that it has not yet advanced to its
peer. Credit is advanced in blocks of up to 127 with the normal flow of data.

If RemoteCredit falls below some configured LowThreshold and AvailCredit is or becomes non-
zero whilst TxQueue is empty or SendCredit is zero, then RemoteCredit is advanced by the
transmission of a dataless FlowData TTP-PDU.

2.4.3 Segmentation and Reassembly
When Segmentation and Reassembly (SAR) is disabled in a given direction then all SDUs
exchanged must fit within a single Data TTP-PDU. In this case the M bit is ignored on reception.

When SAR is enabled and a received SDU exceeds the maximum SDU size indicated during
connection establishment the resulting SDU is truncated and the truncated portion delivered
(logically) when the final segment arrives with a status code that indicates that an error has
occurred.

In the formal description that follows it should be noted that it is assumed that data is delivered to
the TTP client only on reception of the last segment of an SDU subjected to SAR.

This may not be the case in some practical interfaces which allow the delivery of partially
reassembled SDUs in the interests of economising on buffer space. This latter style of interface is
capable of supporting unbounded SDU sizes. See Section 4.1 for more discussion of Tiny TP
receive buffering strategies.

Tiny Transport Protocol Version 1.1

 11

2.4.4 Event/Action Table
Event Action
TTP_Connect.request(
 CalledTTPSAP=sap-id,
 RequestedQos=qos,
 MaxSduSize=mSduSize
 UserData=data)

Connected=False; AvailCredit=0; RxMaxSduSize=mSduSize;
RxSdu.size=0; RxSdu.busy=False;

n = DEFAULT_INITIAL_CREDIT /* Local Policy */

RemoteCredit=0; SendCredit=0;
if(n>127) { AvailCredit=n-127; n=127 }
RemoteCredit=n;

if(mSduSize == 0)
 ttpPdu =
 ConnectTTP-PDU(P=0,InitialCredit=n,UserData=data);
else
 ttpPdu =
 ConnectTTP-PDU (P=1, InitialCredit=n,
 Parameters={(PiMaxSduSize,mSduSize)}
 UserData=data);

LM_Connect.request (
 CalledLsap=sap-id, RequestedQos=qos,ClientData=ttpPdu)

TTP_Connect.response(
 CallingLSAP=sap-id
 MaxSduSize=mSduSize
 UserData=data)

AvailCredit=0;RemoteCredit=0; RxMaxSduSize = mSduSize;
RxSdu.size = 0; RxSdu.busy = False

n = DEFAULT_INITIAL_CREDIT /* Local Policy */

if(>127) { AvailCredit=n-127; n=127 }
RemoteCredit=n

if(mSduSize == 0)
 ttpPdu =
 ConnectTTP-PDU(P=0,InitialCredit=n,UserData=data);
else
 ttpPdu =
 ConnectTTP-PDU (P=1, InitialCredit=n,
 Parameters={(PiMaxSduSize,mSduSize)}
 UserData=data);

LM_Connect.response(
 CallingLsap=sap-id, RequestedQos=qos,ClientData=ttpPdu)
Connected=True;

TTP_Disconnect.request(UserData=data) AppendTail(TxQueue,
 [TTP_Disconnect, UserData=data])

TTP_Data.request(UserData=data) ∧
(sizeof(UserData)==0 ∨ !Connected)

Error;

TTP_Data.request(UserData=data) ∧
TxMaxSduSize == 0 ∧
sizeof(UserData)>(MaxSegSize) ∧ Connected

//SAR Disabled
Error

TTP_Data.request(UserData=data) ∧
TxMaxSduSize ≠ 0 ∧
sizeof(UserData)>TxMaxSduSize ∧ Connected

//SAR Enabled
Error

Tiny Transport Protocol Version 1.1

 12

Event Action
TTP_Data.request(UserData=data) ∧
TxMaxSduSize == 0 ∧ sizeof(UserData)>0 ∧
sizeof(UserData) <= MaxSegSize ∧ Connected

// SAR Disabled queue as a last segment.
AppendTail(TxQueue
 [TTP_Segment,M=0,.UserData=data])

TTP_Data.request(UserData=data) ∧
TxMaxSduSize ≠ 0 ∧ sizeof(UserData)>0 ∧
(TxMaxSduSize == UnBounded ∨
 sizeof(UserData) < TxMaxSduSize) ∧
Connected

// SAR Enabled

NumSegs = INT ((sizeof(data)+MaxSegSize-1) / MaxSegSize)

// Queue all but the last segment
for(i=1;i<NumSegs;i++) {
 AppendTail(TxQueue,
 [TTP_Segment, M=1, GetSegment(i,data)]
}

// Queue the last segment of the SDU
AppendTail(TxQueue,
 [TTP_Segment, M=0, GetSegment(NumSegs,data)])

TTP_UData.request(UserData=data) ∧
!Connected

Error

TTP_UData.request(UserData=data) ∧
Connected

LM_UData.request(ClientData=data)

TTP_LocalFlow.request(Flow=flow) if (flow == on)
 RxSDU.busy = false;
else
 RxSDU.busy = true;

LM_Connect.indication(
 CallingLsap=sap-id, ResultantQos=qos,
 ClientData=ConnectTTP-PDU
 [P=0,InitialCredit=n,
 UserData=data])

SendCredit = n; TxMaxSduSize = 0

MaxSegSize = MaxTxIrLapDataSize-3

TTP-Connect.indication(CallingTTPSAP=sap-id,
 ResultantQos=qos,
 MaxSduSize=TxMaxSduSize,
 UserData=data);

LM_Connect.indication(
 CallingLsap=sap-id, ResultantQos=qos,
 ClientData=ConnectTTP-PDU
 [P=1,InitialCredit=n,
 Parameters=plist,
 UserData=data])

SendCredit=n; TxMaxSduSize = 0

MaxSegSize = MaxTxIrLapDataSize-3

for (each (pi,pv) in plist)
 if (pi==PiMaxSduSize)
 TxMaxSduSize = pv;

TTP-Connect.indication(CallingTTPSAP=sap-id,
 ResultantQos=qos,
 MaxSduSize=TxMaxSduSize,
 UserData=data);

LM_Connect.confirm(
 CalledLsap=sap-id,
 ResultantQos=qos,
 ClientData=ConnectTTP-PDU
 [P=0, InitialCredit=n,
 UserData=data])

SendCredit=n; TxMaxSduSize = 0;

MaxSegSize = MaxTxIrLapDataSize-3

TTP_Connect.confirm(.CalledTTPSAP=sap-id,
 ResultantQos=qos,
 MaxSduSize=TxMaxSduSize
 UserData=data);
Connected=True;

Tiny Transport Protocol Version 1.1

 13

Event Action
LM_Connect.confirm(
 CalledLsap=sap-id,
 ResultantQos=qos,
 ClientData=ConnectTTP-PDU
 [P=1, InitialCredit=n,
 Parameters=plist,
 UserData=data])

SendCredit=n; TxMaxSduSize = 0;

MaxSegSize = MaxTxIrLapDataSize-3

for (each (pi,pv) in plist)
 if (pi==PiMaxSduSize)
 TxMaxSduSize = pv;

TTP_Connect.confirm(.CalledTTPSAP=sap-id,
 ResultantQos=qos,
 MaxSduSize=TxMaxSduSize
 UserData=data);
Connected=True;

LM_Disconnect.indication(Reason=r,
 ClientData=data)

Connected=False; Flush(TxQueue);
/* Queue inbound disconnect to allow buffer data to drain */
AppendTail(RxQueue,
 [TTP_Disconnect, Reason=r, ClientData=data]);

LM_Data.indication(
 ClientData=FlowData TTP-PDU
 [M=m, DeltaCredit=n,
 UserData=data]) ∧
sizeof(UserData)==0

/* Dataless FlowData TTP-PDU */
SendCredit = SendCredit+n;

LM_Data.indication(
 ClientData=FlowData TTP-PDU
 [M=m, DeltaCredit=n,
 UserData=data]) ∧
sizeof(UserData) > 0

/* Deal with the inbound Credit */
SendCredit = SendCredit+n; RemoteCredit = RemoteCredit-1;

/* Put Received Segment on Rx Queue */
AppendTail(RxQueue,[TTP_Segment, M=m, Userdata=data])

LM_UData.indication(ClientData=data) TTP_UData.indication(UserData=data)
Head(TxQueue)==
 [TTP_Disconnect, UserData=data]

Connected=False;
Flush(TxQueue); Flush(RxQueue);
LM_Disconnect.request(Reason=UserRequested,
 ClientData=data);

Head(TxQueue) ==
 [TTP_Segment, M=m, UserData=data] ∧
SendCredit>0

n=AvailCredit; AvailCredit=0;
If(n>127) { AvailCredit=n-127; n=127 }
RemoteCredit=RemoteCredit+n;
SendCredit=SendCredit-1;
LM_Data.request(ClientData=
 Data TTP-PDU
 [M=m, DeltaCredit=n,UserData=data])
DeQueueHead(TxQueue)

(Empty(TxQueue) ∨ SendCredit==0) ∧
RemoteCredit<=LowThreshold ∧
AvailCredit>0 ∧
Connected

/* Send a Dataless FlowData TTP-PDU */

n=AvailCredit; AvailCredit=0;
If(n>127) { AvailCredit=n-127; n=127 }
RemoteCredit=RemoteCredit+n;

LM_Data.request(ClientData=
 Data TTP-PDU
 [M=0, DeltaCredit=n,UserData=NULL])

Tiny Transport Protocol Version 1.1

 14

Event Action
Head(RxQueue) ==
 [TTP_Segment, M=1, UserData=data] ∧
RxMaxSduSize ≠ 0 ∧
!RxSdu.busy

/* Non-terminal SDU Segment */
RxSdu.size=RxSdu.size+sizeof(data);

if(RxSdu.size<=RxMaxSduSize ∨
 RxMaxSduSize==UnBounded) {
 RxSdu.data = Reassemble(RxSdu.data,data);
}

/* Recycle Segment Buffer */
DeQueueHead(RxQueue)
AvailCredit = AvailCredit+1;

(Head(RxQueue) ==
 [TTP_Segment, M=0, UserData=data] ∧
 !RxSdu.busy) ∨

(Head(RxQueue) ==
 [TTP_Segment, M=m,UserData=data] ∧
 RxMaxSduSize ==0) ∧
 !RxSdu.busy)

/* Last SDU Segment or Inbound SAR disabled*/

RxSdu.size=RxSdu.size+sizeof(data)

 if(RxSdu.size<=RxMaxSduSize ∨
 RxMaxSduSize==UnBounded ∨
 RxMaxSduSize==0)
 RxSdu.data = Reassemble(RxSdu.data,data);
 TTP_Data.indication(UserData=RxSdu.data, Status=OK);
} else {
 TP_Data.indication(UserData=RxSdu.data,
 Status=Truncated);
}

/* Recycle Segment Buffer */
DeQueueHead(RxQueue)
AvailCredit = AvailCredit+1;

Head(RxQueue) ==
 [TTP_Disconnect, Reason=r, ClientData=data] ∧
!RxSdu.busy

Flush(RxQueue); /Should be empty anyway */
TTP_Disconnect.indication(Reason=r,ClientData=data);

Table 2-1 Tiny TP Entity - Event Action Table

Tiny Transport Protocol Version 1.1

 15

3. IrLMP IAS Object and Attributes

3.1 Exported Attributes
This section defines an attribute that is intended for use in the definition of object classes which
represent service providers that make their service available via a TTP entity.

Use of this attributes is not mandatory, but its use is strongly encouraged in those circumstances
where an attribute is required for the same purpose as this attribute is defined.

Attribute Name Value Type Description

IrDA:TinyTP:LsapSel Integer The value carried in this attribute identifies the IrLMP LSAP/TTPSAP of
the TTP entity that provides access to the service represented by the
containing object

Legal values are restricted to the range 0x01-0x6f.

Tiny Transport Protocol Version 1.1

4. Appendix A Implementation Considerations

4.1 Tiny TP Buffering.
The description of Tiny TP given in Section 2.4 explicitly includes both segment buffering, the
receive buffer pool and the RxQueue and a SAR Reassembly buffer (the variable RxSDU).

4.1.1 Receive Buffer Pool
The receive buffer pool and receive queue shown in Figure 2.4 may be implemented as a circular
buffer as shown below.

If this is implemented as a circular list rather than an array, its size may be altered dynamically,
provided buffers are added or removed in the current AvailCredit region.

Note that Tiny TP can function with a single buffer in this receive buffer pool. However, a single TTP
connection cannot then take full advantage of the underlying IrLAP window, except for an IrLAP
window size of 1. If resources allow the size of the TTP receive buffer pool for a TTP connection
should be at least equivalent to the size of the current IrLAP receive window. In this way a single
TTP connection can the entire IrLAP window. Additional credit up to twice the IrLAP window size
enables the connection to make smooth progress without the need to rapidly advance fresh credit
as inbound PDUs are consumed and buffer space recycled.

Thus a TTP receive buffer pool size of twice the IrLAP receive window size should allow a Tiny TP
connection to progress smoothly. Nevertheless, even with a TTP receive buffer pool size of just 1
TTP will function, although progress is unlikely to be smooth.

4.1.2 SAR Reassembly Buffer
The description of Tiny TP given in this document also explicitly includes a per TTP connection
SAR reassembly buffer. However, if the API exposed by an implementation of Tiny TP supports the
partial delivery of SDUs then this buffer is entirely unnecessary. Buffering of inbound PDUs is all
this is required ie. the receive buffer pool described in the previous section. Buffers from the
RxQueue section of the pool may be delivered to the TTP client, thus freeing them to collect more
data segments.

AvailCredit

Rem
oteCredit

Receive
Buffer
Pool

Rx
Que

ue

Figure 4.1 Receive Buffer Pool
Organisation

Thus a implementation of Tiny TP with minimal buffering requirements would provide paritial SDU
delivery and use a single TTP-SDU buffer per receive buffer pool.

 16

Tiny Transport Protocol Version 1.1

 17

Another observation that may assist the implementor is that inbound Data TTP-PDUs need only be
buffered on RxQueue whilst the SAR reassembly buffer is unavailable. If the SAR buffer is
available, the data carried a freshly delivered PDU may be transferred directly.

4.1.3 Combined Buffer Pool and SAR Reassembly Buffer
Another alternative for reducing the amount of buffer space require for TTP is to combine the buffer
pool and the SAR buffer. Referring to Figure 4.1 above, the RxQueue segment performs the
function of the SAR buffer. In this case received Data TTP-PDUs are packed into the receive buffer
and the total size of the pool must equal or exceed that of client specified maximum receive SDU
size. Credit is only advanced as the amount of space under the ‘AvailCredit’ portion successively
exceeds integer multiples of the current maximum segment size. If the entire buffer become filled
with an incompletely reassembled SDU truncated delivery should occur (freeing the buffer space)
and resynchronisation is then accomplished at the next SDU boundary.

4.2 Closing TTP Connections
Tiny TP does not implement graceful disconnect. However, under normal circumstances, a
TTP_Disconnect.request will be invoked from one end of a TTP connection. Data in the
reverse direction may be lost if it has not all been delivered to a TTP client. However, data
previously send by the TTP client that initiates the disconnect will be delivered before the
corresponding TTP_Disconnect.indication is delivered to the peer TTP client.

If TTP disconnect can be initiated from either end then it is necessary for TTP clients to ensure that
it is safe to close a TTP connection. Implementors of TTP clients should be aware that if no
measures are taken in the application protocol to ensure that it is ‘safe’ to close a TTP connection
(eg. an exchange of “I’m Done”, “So am I” messages) prior to the invocation of
TTP_Disconnect.request data may be lost in EITHER direction.

4.3 Byte Stream v Sequenced Packet Service
Strictly, Tiny TP offers a sequence packet service. Even if MaxSduSize are allowed to default
during connection establishment then SDU boundaries are still maintained, however the SDU is
constrained in size to fit within a single maximum sized Data TTP-PDU.

Thus with SAR disabled, TTP may be used to implement either: a sequenced packet service, where
SDU boundaries are preserved between TTP peers but the maximum SDU size is constrained by
the maximum sized Data TTP-PDU; or a byte-stream service where there is no guarantee that SDU
boundaries are preserved between peer TTP clients.

Implementors of TTP clients should be aware of this distinction, particularly in cases where the
relative alignment of SDUs and PDUs is important to the operation of the application protocol.

	Introduction
	References

	Elements of Procedure
	Tiny TP Service Access Point Addresses.
	Tiny TP Service Primitives
	TTP_Connect
	TTP_Disconnect
	TTP_Data
	TTP_UData
	TTP_LocalFlow

	Tiny TP Protocol Data Units
	Data TTP�PDUs
	Connect TTP�PDUs
	Connect TTP�PDU Parameters

	Detailed Operation
	Variables
	Credit Operation
	Segmentation and Reassembly
	Event/Action Table

	IrLMP IAS Object and Attributes
	Exported Attributes

	Appendix A Implementation Considerations
	Tiny TP Buffering.
	Receive Buffer Pool
	SAR Reassembly Buffer
	Combined Buffer Pool and SAR Reassembly Buffer

	Closing TTP Connections
	Byte Stream v Sequenced Packet Service

