
1

Infrared Data Association

LAN Access Extensions for Link
Management Protocol

IrLAN

Version 1.0

July 18, 1997

Extended Systems Incorporated

Hewlett-Packard Corporation

Microsoft Corporation

2

Authors
Dan Axtman (Extended Systems Incorporated),
Aaron Ogus (Microsoft Corporation), and
John Reilly (Hewlett-Packard Corporation)

3

TABLE OF CONTENTS

Authors.. 2
TABLE OF CONTENTS.. 3
Introduction... 4
Design Goals... 4
References... 4
Definition of Terms... 5
Overview... 7
Access Methods .. 7

Access Point Mode ... 7
Peer-to-Peer Mode .. 9
Hosted Mode... 10

IrLAN IAS Object Specification... 11
TinyTP Considerations ... 11

Maximum Assembled Frame Size... 11
Flow Control ... 11

Frame Formats .. 12
Data-Channel Frame Formats ... 12
Control-Channel Frame Formats... 13

Command Packet Structure... 13
Response Packet Structure .. 14
Packet Parameter List Format ... 14

IrLAN Command Descriptions ... 16
0 - Get Provider Information... 17
1 - Get Media Characteristics.. 19
2 - Open Data Channel.. 21
3 - Close Data Channel ... 23
4 - Reconnect Data Channel.. 25
5 - Filter Configuration ... 27

State Machines.. 37
Client State Chart .. 37

Client State Definitions ... 38
Client Event Descriptions ... 39
Client Action Descriptions.. 40

Provider State Chart.. 41
Provider State Definitions... 42
Provider Event Descriptions ... 42
Provider Action Descriptions.. 42

Peer-to-Peer Mode Considerations ... 43
Data-Channel Frame Formats ... 43
MacAddress Generation.. 43

4

Introduction
The creation of the IrDA protocols and their broad industry support has led to IrDA-compliant infrared
ports becoming common on laptop computers. With the IrDA approval of the higher media speeds of 1.15
and 4 megabits per second (Mbps), the infrared link is becoming fast enough to support a network interface.

This document describes a protocol, conforming to the IrDA specifications, that has these features:

• Enables a computer with an IrDA adapter to attach to a local area network (LAN) through an access
point device that acts as the network adapter for the computer.

• Enables two computers with IrDA adapters to communicate as though they were attached through a
LAN.

• Enables a computer with an IrDA-compliant adapter to be attached to a LAN through a second
computer that is already attached to the LAN (the second computer must also have an IrDA-compliant
adapter).

The proposed protocol, the infrared LAN (IrLAN) protocol, should allow for interoperability of all devices
supporting the protocol.

Design Goals
The IrLAN protocol has these design goals:

• The IrLAN protocol deals with the issues associated with running legacy networking protocols over an
infrared link. It supports three different operating modes that represent the possible configurations
between infrared devices and between infrared devices and an attached network.

Mode Description
Access point An infrared device provides access to a LAN through the device.
Peer-to-peer Two or more computers with infrared support can communicate as if they were

attached through a network.
Hosted Two or more computers can communicate with a host computer and each other as if

they were all attached through a network. In addition, a physical network attached to
the host is accessible to all of the computers.

• From a client operating-system perspective, the IrLAN protocol must be implemented completely as a
set of network media-level drivers. No modification of the existing network protocols should be
necessary.

• The IrLAN protocol must not impose excessive processing constraints on access point devices, which
may be implemented with slower processors than typically found in modern computers.

References
The IrLAN protocol is based on the following IrDA-approved specifications:

• Infrared Data Association Serial Infrared Link Access Protocol (IrLaP), available from the IrDA.
• Infrared Data Association Link Management Protocol (IrLMP), available from the IrDA.
• Infrared Data Association ‘TinyTP’: A Flow-Control Mechanism for use with IrLMP, available from

the IrDA.

Requests for publications, membership applications, or other information should be addressed to: Infrared
Data Association, P.O. Box 3883, Walnut Creek, California, U.S.A. 94598; sent by e-mail to:
jlaroche@netcom.com; phoned to: John LaRoche at (510) 943-6546; or faxed to: (510) 934-5241.

5

Definition of Terms
 The following technical terms are used in this document.

Control channel
An IrLMP communication channel used by the client and offered by the provider to allow for the setup
and configuration of a data channel.

Data channel
An IrLMP communication channel used by the client and provider to exchange LAN-formatted packets.

Frame (or media frame)
A block of data on the media. A packet may consist of multiple media frames.

IAS (information access service)
Part of the IrDA protocol suite, the IAS is a standard IrLMP client that implements a local store of
configuration information. Information is stored under a primary key called the class and under subkeys
in each class called attributes. The class may only contain subkeys, each of which is unique in the class,
and each subkey may contain a corresponding value, which may be a string or an integer. Multiple
objects of the same class are allowed, and each object in the IAS may be read by a remote station
supporting the IAS protocol.

IrLAN client (or client)
The station in an IrLAN link that is using the IrLAN services of a provider to set up an IrLAN link. The
client is the active component in the IrLAN protocol; it issues requests to the IrLAN provider to
establish a data link and to configure the link.

IrLAP (Infrared Link Access Protocol)
A protocol, based on the HDLC protocol, designed to control an infrared link. IrLAP provides for
discovery of devices, their connection over an infrared link, and reliable data delivery between devices.

IrLMP (Infrared Link Management Protocol)
A multiplexing protocol designed to run on top of IrLAP. IrLMP is multipoint-capable even though
IrLAP is not. When IrLAP becomes multipoint-capable, multiple machines will be able to communicate
concurrently over an infrared link.

Infrared LAN access point device
A network adapter with an infrared link to the LAN client. Conceptually, the infrared link is the bus that
the LAN card resides on.

LAN
A local area network.

LSAP (logical service access point)
A unique 1-byte identifier used by IrLMP to multiplex and demultiplex packets sent using IrLAP.
Clients of IrLMP logically open an LSAP and then attach it to a remote node, or receive attachment
from a remote node. Clients typically advertise their LSAP to other clients by writing entries in the local
IAS.

NIC (network interface controller)
A piece of hardware designed to transmit and receive packets on a LAN network.

6

Packet
A block of data that is transmitted or received over the media. The media may break a packet down into
several media frames to deliver it.

Primary station
A term used in IrLAP to specify the station that is controlling the infrared link. The other side of the link
is where the secondary station resides (or secondary stations reside). No secondary station can transmit
without receiving permission from the primary station.

IrLAN Provider (provider)
The station in an IrLAN link that is providing the IrLAN protocol interface.

Secondary station
A term used in IrLAP to specify a station that is controlled by the primary station. The secondary station
can send when it receives permission from the primary station.

TinyTP
A lightweight protocol, supporting flow control and segmentation and reassembly, that is designed for
use over an IrLMP connection. The full TinyTP specification is available in the publication Infrared
Data Association ‘TinyTP’: A Flow-Control Mechanism for use with IrLMP, available from the IrDA
(for more information, see “References” earlier in this document).

Window size
One of the parameters negotiated between the two infrared nodes as part of establishing an IrLAP
connection. The window size specifies the number of consecutive IrLAP frames that a node can transmit
before it must allow the other node an opportunity to transmit. The maximum IrLAP window size is
seven frames.

7

Overview
The IrLAN protocol is a “sided” protocol that defines a two-channel interface between a protocol client and
a protocol server. An IrLAN provider is passive. It is up to the IrLAN client to discover and then attach to
the provider and open up a data channel over which LAN packets can be transmitted and received. In
IrLAN peer-to-peer mode (which is also described in “Access Methods”), each station has both an IrLan
client and provider. There is a race to determine which node will open the Data channel. This race condition
is resolved by the protocol in State Machines described later in this document.

The client begins setting up the connection by reading an object’s information in the provider’s IAS. The
object specifies an IrLMP LSAP for the “control channel.” The client connects to the control channel and
uses the control channel to negotiate the characteristics of a data channel. Once the data channel has been
negotiated, it is opened and then configured. All configuration is handled through the control channel. The
data channel is used solely for the transmission and reception of packets formatted for the LAN. The IrLAN
protocol defines a graceful close, but it is seldom used because it would require user intervention to initiate
a disconnect. Typically, the connection will close down “ungracefully” through an IrLAP connection time-
out.

Both the control and data channels use the TinyTP protocol for segmentation and reassembly of packets and
for flow control.

Access Methods
The IrLAN protocol is intended to support these modes of operation:
• Access point
• Peer-to-peer
• Hosted

Access Point Mode
An access point device is hardware supporting both a LAN network interface controller (NIC) and an
infrared transceiver. For communication over the infrared link, the access point device runs a protocol stack
that conforms to the IrDA standards and runs the IrLAN protocol over the IrDA stack. The access point
device implements a network adapter for the client using infrared as the bus for accessing the adapter.

8

The following illustration shows the access point mode of operation.

Filtering information is passed from the client to the access point device to minimize the transmission of
unwanted traffic over the infrared link. In this case, the access point device assigns a unique UNICAST
address to each client connecting to the device.

It is quite reasonable to expect future implementation of access point devices to support multiple concurrent
clients connecting to the LAN. In this case, each client would be assigned a unique LAN address, and the
access point device would likely use a NIC supporting multiple concurrent UNICAST addresses.

LAN Bridge

IrLAN Provider

IrLMP/TinyTP
Control LSAP’s Data LSAP’s

NIC Network

Control LSAP Data LSAP
IrLMP/TinyTP

IrLAN Client

Client OS

Control LSAP Data LSAP
IrLMP/TinyTP

IrLAN Client

Client OS

9

Peer-to-Peer Mode
The IrLAN protocol peer-to-peer mode allows nodes running network operating systems that are peer-to-
peer capable to create ad-hoc networks. The following illustration shows the peer-to-peer mode.

In peer-to-peer mode, there is no physical connection to a wired LAN. Filtering information can still be sent
to the provider during the connection setup process. The filters allow the provider to lower traffic when
both peers are not running the exact same protocol suites. Also, the filters can lower traffic in the case of
point-to-multipoint traffic.

In peer-to-peer mode, each peer must provide a Server Control LSAP in addition to its Client Control LSAP
and Data LSAP. Each Client Control LSAP connects to its peer’s Server Control LSAP. This allows each
node to establish and control its peer’s Data LSAP using the command set described herein. The IrLAN
control protocol is used to arbitrate which peer initiates the data channel connection as described in the
section State Machines later in this document.

IrLAN Provider

Client OS

IrLAN Client

IrLMP/TinyTP
Provider Control LSAP Client Control LSAP

Data LSAP

Client OS

IrLAN Client

IrLMP/TinyTP

Provider Control LSAPClient Control LSAP Data LSAP

IrLAN Provider

10

Hosted Mode
In hosted mode, the provider has a wired network connection, but has multiple nodes attempting to
communicate through the wired connection. The following illustration shows hosted mode.

Unlike access point mode, both the host machine and the client(s) share the same NIC address in host mode.
To make host mode work, the host must run special bridging and routing software that will handle the
proper routing of packets. The algorithms used in this mode are highly protocol-dependent.

11

IrLAN IAS Object Specification
When a client connects to a provider, it looks in the provider’s IAS for the object with the “IrLAN” class.
The client reads the following attribute information for the IrLAN object to determine which LSAP the
IrLAN control channel resides on.

IrDA:TinyTP:LsapSel:<LSAP>

For compatibility with Plug-n-Play operating systems, peer nodes, access points and hosted mode hosts
must advertise the LAN and PNP hint bits in the discovery process. Access points should report PnP ID
*PNP8294 in their PnP IAS entry. Peer nodes should report PnP ID *PNP8389 in their PnP IAS entry.

TinyTP Considerations
In the IrLAN protocol, both the control and data channels use the TinyTP protocol for segmentation and
reassembly of packets and for flow control. The use of TinyTP involves these elements:

• Maximum assembled frame size
• Flow control

Maximum Assembled Frame Size
TinyTP allows for the fragmentation and reassembly of packets, which may span several IrLMP frames.
During the setup of the TinyTP connection, a maximum assembled frame size is negotiated between the two
sides.

The IrLAN protocol currently defines support for access to the 802.3 (Ethernet) and 802.5 (token-ring)
LANs. (In the future, this protocol may be modified to support additional media types.) The assembled
TinyTP frame should be large enough to support the maximum frame size for the media.

• For 802.3 (Ethernet), the assembled TinyTP frame size is 1,518 bytes.

• For 802.5 (token ring), the assembled TinyTP frame size is 65,535 bytes. Because token ring permits a

smaller upper bound on the frame size, depending on the adapter technology in use, a 2,045-byte
assembled frame size is acceptable for 802.5 support. A smart token-ring IrLAN implementation will
scale the media frame size to fit well in an integer number of TinyTP frames, which depends on the
negotiated frame size. Examples of such scaling are shown in the following table.

TinyTP Frame Size Media Frame Size
2,048 2,045
1,024 2,042
 512 2,036

Flow Control
TinyTP specifies a flow control mechanism based on extended credit; that is, during the setup of a TinyTP
connection, each side informs the other of a number of outstanding “credits,” where each credit represents a
TinyTP packet that may be sent to the side extending the credit. Each time a packet is sent, the sending side
assumes that the receiving side has one less resource available for receiving packets. If the sending side
reaches the point where it determines the receiving side has no resources left because all credits have been
consumed, it will stop transmitting until more credit is extended. The receiving side will extend more credit
as resources are freed up on the receiving side.

12

When this flow mechanism operates in conjunction with IrLAP, it can lead to under-utilization of the link.
This typically happens when the credit extended by a receiver is smaller than the window size negotiated by
IrLAP. This results in the send window not being filled, and the link turns around as a consequence more
often than it needs to. If at all possible, the receiver should extend at least enough credit so that the
transmitter can always fill an IrLAP window. The current maximum IrLAP window size is seven frames.
Because a frame may not hold an entire packet, this is the actual formula for the minimum credit that should
be extended for optimum throughput:

Credit
IrLapWindowSize

IrLapFrames TinyTpPacket
=

/

Noninteger credit values derived from the formula should be rounded up to the next highest integer value.
Examples of values derived from the formula are shown in the following table.

WindowSize Frames/Packet Recommended Credit
7 1 7
7 2 4

Frame Formats
The IrLAN protocol defines the commands used on the control channel as well as the format of data on the
data channel. These formats are defined above TinyTP; that is, TinyTP segmentation and reassembly and
flow control is assumed to be handled by the TinyTP interface. The definitions in the following sections are
for the assembled TinyTP frames.

Data-Channel Frame Formats
Frames on the IrLAN data channel are formatted the same as for their respective media.

For 802.3 (Ethernet), the format is the same as would be transmitted at the software level for an 802.3
packet. The IrLAN data-channel frame does not contain the 802.3 FCS. This is the IrLAN data channel
packet format (the numbers in the square brackets are the number of bytes in each part of the packet):

Destination Address [6] Source Address [6] Length or Frame Type [2] Information[0..1500]

For 802.5 (token ring), this is the IrLAN data channel packet format.

Access
Control[1]

Frame
Control [1]

Destination
Address[6]

Source
Address [6]

Routing
Control
[0..2]

Routing
Information
[0..16]

Information

These are the same formats typically used by network protocols when talking to network drivers. Usually,
the IrLAN driver will only have to reformat the descriptors for the packets for transmission on the infrared
media. The driver should not have to change any of the packets contents in either the peer-to-peer or access
point modes. In the hosted mode, some protocol specific transformations may have to be made.

Once the data channel is established, it is treated as the send and receive path for all frames on the emulated
LAN media. All packets sent from a node are transmitted on this channel, and all packets being received
will come from this channel.

13

Control-Channel Frame Formats
The control channel is used to perform these tasks:

• Set up a data channel connection.
• Set up configuration parameters for the data channel connection.

The control channel uses TinyTP as a flow control and segmentation and reassembly protocol. The client
and provider must both support a minimum 1,024-byte assembled frame size on the control channel. If a
client must send a command that exceeds 1,024 bytes, which is highly unlikely, it must send a sequence of
smaller commands of the same type that accomplish the same purpose.

A command/response protocol is used on the control channel. Currently, only client-initiated
command/response pairs are defined. In the future, there may be a requirement for unsolicited responses
from the provider to the client, but these requirements have not been defined. If an unsolicited response is
received from the provider, the client should check the result code field, which is the first byte of the
response. If the result code field is not 0xFF, indicating a valid unsolicited response, the link should be
dropped.

During a session, the client issues a sequence of request packets, each of which is immediately followed by
a response from the provider. The format of the command packets and response packets are defined in the
following sections.

Command Packet Structure
Each request consists of a command code, a count of parameters, and a parameter list for the command.

Command Code[1] Parameter Count[1] Parameter List[0..1020]

Command Code
A 1-byte field specifying the command to be issued on the control channel. A number of different
commands are currently defined. This list may be expanded in the future. These are the valid command
code values.

Command Code Description

0 Get Provider Information
1 Get Media Characteristics
2 Open Data Channel
3 Close Data Channel
4 Reconnect Data Channel
5 Filter Configuration
6 through 255 Reserved for future use

Parameter Count
A 1-byte value specifying the number of parameters that follow in the parameter list.

Parameter List
For a definition of the structure of a parameter list, see “Packet Parameter List Format” later in this
document.

14

Response Packet Structure
This is the structure of a response packet generated by a provider.

Result Code[1] Parameter Count[1] Parameter List[0..1020]

Result Code
If the result code is success, zero or more parameters are returned in the response packet. If the result is
nonzero, the provider must return, in its response packet parameter list, the first invalid parameter it
encountered in the request packet.

These are the valid result codes.

Result Code Description

0 Success
1 Insufficient resources
2 Invalid command format
3 Command not supported
4 Parameter not supported
5 Value not supported
6 Not open
7 Authentication required
8 Invalid password
9 Protocol error
10 through 254 Reserved for future use
255 Asynchronous status

Parameter Count
Number of parameters to follow in the parameter list.

Parameter List
List of zero or more parameters that are return values for the associated command. For a definition of
the structure of a parameter list, see “Packet Parameter List Format” later in this document.

Packet Parameter List Format
The parameter list contains zero or more variable-length parameters. The number of parameters in the list is
defined by the Parameter Count field in both request and reply packet headers (for more information, see
“Command Packet Structure” and “Response Packet Structure” earlier in this document). Each parameter in
a parameter list has a Parameter Name field and a Value field. The Parameter Name field identifies the
content and format of the Value field. There may be more than one parameter of the same name in the same
parameter list. The parameters in the parameter list may be in any order.

Name Length[1] Parameter Name[1..255] Value Length [2] Value[0..1016]

Name Length
Length of the Parameter Name field.

Parameter Name
ASCII parameter name, which is case insensitive.

Value Length
Length of the Value field.

Value

15

Parameter value. The format is implied by the Parameter Name field. Values that represent integers are
transmitted in little endian (Intel) format. Parameters that represent nonintegers, such as network address
fields, are transmitted in the same octet order that they would be transmitted on their respective media.

16

IrLAN Command Descriptions

This section gives details about the command packets available to the IrLAN client and the response
packets returned by the provider. The following command codes are defined.

Command Code Description
0 - Get Provider Information Used by the client to determine the media type/data frame formats

supported by the provider and the IrLAN modes supported by the
provider (access point, peer-to-peer, and/or hosted).

1 - Get Media Characteristics Used by the client to get detailed information about the media types
supported by the provider.

2 - Open Data Channel Used by the client to get an IrLMP LSAP number on which it should
establish a TinyTP connection to the provider for the data channel.

3 - Close Data Channel When this command is received by the provider, it will stop sending
packets to the data channel and will also stop sending received packets
on the LAN. It is still up to the client to close the TinyTP connection.

4 - Reconnect Data Channel Used by the client to reconnect a data channel. If the reconnection is
successful (the provider returns a status code of zero), the state of the
data channel is the same as when the channel was disconnected.

5 - Filter Configuration Used by the client to control the filtering of packets from the provider to
the client. This command also allows the client to check the filter
configuration on the provider.

17

0 - Get Provider Information

Command Number: 0

Command Description:

This is the first command issued by the client to the provider on the command channel. It is used by the
client to determine what type of frame formatting the provider supports and which of the three possible
IrLAN operating modes the provider supports.

Request Parameters:

None

Reply Parameters:

Parameter Name Possible Values Instances Size Description

MEDIA “802.3”, “802.5” 1 or more 1-255 Supported frame formats
IRLAN_VER 2 byte version 1 2 Version of IrLAN supported

Parameter Descriptions:

MEDIA
The media parameter is used to tell the client which LAN frame formats the provider supports. When the
client opens up the data channel, the client will specify the frame format it wishes to use on the data
channel.

IRLAN_VER
The version number is used to identify the version number of the IrLAN protocol that the provider
supports. This is a 2-byte value with the first byte being the major version and the second byte being the
minor version. All versions of the IrLAN protocol will be backward compatible with previous versions.
It is up to the client to be aware of any functionality that will not work with a provider running an older
version of the IrLAN protocol. If the client version is older than the provider version, the client can
assume all commands it is capable of generating will work on the provider. For example, a 1.0 version
of a client should have no trouble talking to a 1.1 version of the provider. If the provider version is older
than the client version, the client should be capable of “dropping back” to the command set supported by
the earlier version of the IrLAN protocol.

For this version, the IRLAN_VER parameter value should be 0x01 0x01 (1.1).

Example Command Exchange:

COMMAND

GetProviderInformation, 0 parameters

0000: 00 00

0000:

RESPONSE

Status = 0 (Success)

18

2 parameters

MEDIA = “802.3”
IRLAN_VER = 1.1

0000: 00 02 05 4d 45 44 49 41 05 00 38 30 32 2e 33 09
0010: 49 52 4c 41 4e 5f 56 45 52 02 00 01 01

0000: M E D I A 8 0 2 . 3 ..
0010: I R L A N _ V E R

19

1 - Get Media Characteristics

Command Number: 1

Command Description:

This is typically the second command issued on the command channel by the client. Before generating this
command, the client interprets the supported media types in the provider’s response to a Get Provider
Information command. The client generates a Get Media Characteristics command to get additional
information about the support available for a specific media type. This request lets the client know what
type of operating modes the provider supports and what type of filtering the provider can do for the media
frame type. This request also lets the client know the maximum frame size for the media.

Request Parameters:

Parameter Name Possible Values Instances Size Description

MEDIA “802.3”, “802.5” 1 1-255 Frame format that the client wants
information about

Parameter Descriptions:

MEDIA
The media parameter is used to specify a particular media type about which the client requires more
information. It is conceivable that a provider may support multiple media types, and this command is
used to get the characteristics of one of the media types at a time.

Reply Parameters:

Parameter Name Possible Values Instances Size Description

FILTER_TYPE “DIRECTED”,
“FUNCTIONAL”,
“GROUP”,
“MAC_FRAME”,
“MULTICAST”,
“BROADCAST”,
“IPX_SOCKET”

0 or more 1-255 Supported filters on the provider

MAX_FRAME 2 byte integer 1 2 Maximum frame size supported

ACCESS_TYPE “DIRECT”,
“PEER”,
“HOSTED”

1 1-255 IrLAN modes that are supported

Parameter Descriptions:

FILTER_TYPE
List of the filtering modes that the provider supports. The Filter Configuration command may operate on
any of the filter types returned by the provider in the response to a Get Media Characteristics command.
For detailed information about filter types, see the Filter Configuration command description.

20

MAX_FRAME
Maximum frame size that the media supports. When the connection to the data channel is established,
this is the smallest maximum assembled TinyTP frame size that should be negotiated.

ACCESS_TYPE
IrLAN modes (access point, peer-to-peer, or hosted) that the provider supports. A provider may only
support one mode at a time.

Example Command Exchange:

COMMAND

GetMediaCharacteristics
1 parameter
MEDIA = “802.3”

0000: 01 01 05 4d 45 44 49 41 05 00 38 30 32 2e 33

0000: M E D I A 8 0 2 . 3

RESPONSE

Status = 0 (Success)

5 parameters

FILTER_TYPE = “DIRECTED”
FILTER_TYPE = “BROADCAST”
FILTER_TYPE = “MULTICAST”
ACCESS_TYPE = “DIRECT”
MAX_FRAME = 0x05EE (1518d)

0000: 00 05 0b 46 49 4c 54 45 52 5f 54 59 50 45 08 00
0010: 44 49 52 45 43 54 45 44 0b 46 49 4c 54 45 52 5f
0020: 54 59 50 45 09 00 42 52 4f 41 44 43 41 53 54 0b
0030: 46 49 4c 54 45 52 5f 54 59 50 45 09 00 4d 55 4c
0040: 54 49 43 41 53 54 0b 41 43 43 45 53 53 5f 54 59
0050: 50 45 06 00 44 49 52 45 43 54 09 4d 41 58 5f 46
0060: 52 41 4d 45 02 00 ee 05

0000: F I L T E R _ T Y P E
0010: D I R E C T E D .. F I L T E R _
0020: T Y P E B R O A D C A S T ..
0030: F I L T E R _ T Y P E .. M U L T
0040: T I C A S T .. A C C E S S _ T Y
0050: P E D I R E C T .. M A X _ F
0060: R A M E

21

2 - Open Data Channel

Command Number: 2

Command Description:

This command is used by the client to get an IrLMP LSAP number to use to establish a TinyTP connection
to the provider for the data channel. In this command, the client specifies the media type it wishes to use
over the data channel.

The provider can provide an optional reconnect key in the response for the Open Data Channel command.
After a disconnect, the client may use the reconnect key to reestablish a session without going through the
entire configuration process again. The client can reconnect the command channel instead and just issue the
Reconnect Data Channel command and include the reconnect key. If the provider has not lost the
configuration information, all filter and configuration state will be restored and no other control channel
commands need to be issued to continue sending and receiving over the data channel.

It is also possible to support roaming using this feature with the proper infrastructure support in place.
However, implementation of roaming and the necessary supporting protocols is beyond the scope of this
document.

Request Parameters:

Parameter Name Possible Values Instances Size Description

MEDIA “802.3”, “802.5” 1 1-255 Frame format that the client wishes to use on
the data channel

ACCESS_TYPE “DIRECT”,
“PEER”,
“HOSTED”

1 1-255 IrLAN operating mode that the client wishes
to use

Parameter Descriptions:

MEDIA
Frame format for which the client is opening a data channel. The MEDIA parameter value used must be
one of the MEDIA types returned by the provider in response to an earlier Get Provider Information
command.

ACCESS_TYPE
IrLAN mode that the client wishes to use for the data channel connection. The ACCESS_TYPE
parameter value used must be the IrLAN mode returned by the provider in response to an earlier Get
Media Characteristics command.

22

Reply Parameters:

Parameter Name Possible Values Instances Size Description

DATA_CHAN 1-byte LSAP 1 1 LSAP that the client should open the
data channel on.

CON_ARB 2-byte integer 0-1 2 Random number generated by peer
nodes to arbitrate which node
initiates connect on data channel.

RECONNECT_KEY String of bytes 1 3-255 Key supplied by the provider to
allow the client to attempt to
reconnect the data channel after a
disconnect.

Parameter Descriptions:

DATA_CHAN
LSAP number on which the data channel should be opened. Subsequent to this command, this number is
used to demultiplex commands from different clients to the provider and is used in some of the other
commands. The use of the data channel LSAP for demultiplexing is necessary because there may be
more than one data connection opened from a client to a provider.

CON_ARB
Peer nodes generate a two byte random CON_ARB value in their Open Data Channel response. After
each Peer node opens a data channel on the other, the node which generated the highest CON_ARB
value initiates the data channel IrLMP connect between the newly opened data channel LSAP’s. If both
sides generate identical CON_ARB values, each peer issues a Close Data Channel command. After a
Close Data Channel response is received, the Open Data Channel process in tried again.

RECONNECT_KEY
A byte-string of arbitrary length that may be stored by the client and used to reopen a data channel
without reissuing all of the configuration commands for the data channel after a disconnect.

Example Command Exchange:

COMMAND:

OpenDataChannel

2 parameters
MEDIA = “802.3”
ACCESS_TYPE = “DIRECT”

0000: 02 02 05 4d 45 44 49 41 05 00 38 30 32 2e 33 0b
0010: 41 43 43 45 53 53 5f 54 59 50 45 06 00 44 49 52
0020: 45 43 54

0000: M E D I A 8 0 2 . 3 ..
0010: A C C E S S _ T Y P E D I R
0020: E C T

RESPONSE:

Status = 0 (Success)

2 parameters

23

DATA_CHAN = <LSAP:02>
RECONNECT_KEY = <08 00 09 00 5d e9 dd 13>

0000: 00 02 09 44 41 54 41 5f 43 48 41 4e 01 00 02 0d
0010: 52 45 43 4f 4e 4e 45 43 54 5f 4b 45 59 08 00 08
0020: 00 09 00 5d e9 dd 13

0000: D A T A _ C H A N
0010: R E C O N N E C T _ K E Y
0020:

3 - Close Data Channel

Command Number: 3

Command Description:

This command is used by the client to gracefully close the data channel. When this command is received by
the provider, it will stop sending packets to the data channel and will also stop sending received packets on
the LAN. It is up to the client to close the TinyTP connection. Depending on the implementation of the
provider, it may still be possible to reconnect the data channel using the reconnect key after a call to Close
Data Channel (for more information about reconnect keys, see the descriptions for the Open Data Channel
and Reconnect Data Channel commands).

Request Parameters:

Parameter Name Possible Values Instances Size Description

DATA_CHAN 1-byte LSAP 1 1 LSAP of the data channel to close

DATA_CHAN
LSAP number of a data channel that the client saved from a previous call to the Open Data Channel
command.

Example Command Exchange:

COMMAND:

CloseDataChannel

1 parameter
DATA_CHAN = <LSAP:02>

0000: 03 02 09 44 41 54 41 5f 43 48 41 4e 01 00 02

0000: D A T A _ C H A N

RESPONSE:

Status = 0 (Success)

0 parameters

0000: 00 00

24

0000:

25

4 - Reconnect Data Channel

Command Number: 4

Command Description:

This command is used to reconnect a data channel. If the reconnection is successful (that is, the provider
returns a status code of zero), the state of the data channel is the same as when the channel was
disconnected. The client may assume that the state of the filters, the media type, and the frame size have not
changed.

Request Parameters:

Parameter Name Possible Values Instances Size Description

RECONNECT_KEY String of bytes 1 3-255 Key supplied by the provider that
allows the client to attempt to
reconnect the data channel after a
disconnect

RECONNECT_KEY
Byte-string of arbitrary length saved by the client after an earlier use of the Open Data Channel
command.

Response Parameters:

Parameter Name Possible Values Instances Size Description

DATA_CHAN 1-byte LSAP 1 1 LSAP on which the client should re-
open the data channel

DATA_CHAN
LSAP number on which the data channel reconnection should be made.

Example Command Exchange:

COMMAND:

ReconnectDataChannel

1 parameter
RECONNECT_KEY = <08 00 09 00 5d e9 dd 13>

0000: 04 01 0d 52 45 43 4f 4e 4e 45 43 54 5f 4b 45 59
0010: 08 00 08 00 09 00 5d e9 dd 13

0000: R E C O N N E C T _ K E Y
0010:

RESPONSE:

Status = 0 (Success)

26

1 parameter

DATA_CHAN = <LSAP:02>

0000: 00 02 09 44 41 54 41 5f 43 48 41 4e 01 00 02

0000: D A T A _ C H A N

27

5 - Filter Configuration

Command Number: 5

Packet filtering allows a network client to set up a description of the type of packets that the client wants to
receive from the network. Most clients usually want to receive packets that are addressed to their UNICAST
address, and, depending on which protocols are running on the client, the client may wish to receive packets
addressed to a GROUP address or the BROADCAST address. Certain protocols may even want to receive
all packets off of the network.

Depending on the network interface hardware, different filtering capabilities may be available. The filtering
capabilities supported by the provider are returned to the client in the Get Media Characteristics command.
The client can then configure the available filters by using the Filter Configuration command.

Command Description:

The Filter Configuration command is used to control the filtering of packets from the provider to the client.
This command also allows the client to check the filter configuration on the provider.

Each Filter Configuration command must specify a FILTER_TYPE parameter that specifies the type of
filtering the command is applied to. The command may also use one or more of the following optional
parameters:

• A FILTER_MODE parameter for setting the operating mode of that type of filter.
• A FILTER_OPERATION specifying an operation to perform on the filter.
• One or more FILTER_ENTRY parameters, which are objects of FILTER_OPERATION.

Each Filter Configuration command can only operate on one filter type at a time. The available filter types
that may be supported by a provider are listed in the following table.

FILTER_TYPE Description FILTER_ENTRY List Size
DIRECTED Packets directed to the UNICAST

address
Media-dependent UNICAST
address

1

FUNCTIONAL 802.5 packets addressed to a
FUNCTIONAL address

4-byte 802.5 FUNCTIONAL
address

1 or more

GROUP 802.5 GROUP addressed packets 4-byte 802.5 GROUP address 1 or more

MAC_FRAME Media access control packets -- --

MULTICAST MAC MULTICAST-addressed
packets

Media-dependent
MULTICAST address

1 or more

BROADCAST BROADCAST-addressed packets -- --

IPX_SOCKET Reserved Reserved Reserved

28

Some of the filters can only be turned on or off, while others have an associated entry value(s):

• The BROADCAST and MAC_FRAME filters are either on or off and have no associated entry values.
• The DIRECTED filter can only have one entry, which may either be set by the client or queried from

the provider.
• The FUNCTIONAL, GROUP, and MULTICAST filters each have a list of values associated with

them.

The setting of the list for a filter and the activation/deactivation of the filter are independent.

Each filter can be set to one of three modes. When the connection is first initiated, all the filters are in the
NONE state. In the NONE state, no packets that meet the requirements of the filter are passed to the client.
In the FILTER state, all packets that meet the requirements of the filter and that are found in the list of
addresses for the filter are passed to the client. In the ALL state, all packets that meet the requirements of
the filter are passed, regardless of whether they occur in the filter’s entry list. If a filter (such as the
BROADCAST filter) has only two meaningful modes of operation, the FILTER and ALL states are
equivalent.

 Request Parameters:

Name Description Values Default
Value

Instances Size

DATA_CHAN LSAP number of
the data channel to
be modified

1-byte LSAP value -- 1 1

FILTER_TYPE Type of filter to be
modified

”DIRECTED",
“FUNCTIONAL”,
“GROUP”, “MAC
FRAME”,
“MULTICAST”,
“BROADCAST”, or
“IPX_SOCKET”

-- 1 1-255

FILTER_MODE Filter operation
mode

“ALL,” “FILTER,” or
“NONE”

“NONE” 0-1 1-255

FILTER_OPERATION Operation to
perform on the
filter’s pass list

“GET,” “CLEAR,”
“ADD,” “REMOVE,”
or “DYNAMIC”

“GET” 0-1 1-255

FILTER_ENTRY Entry to “ADD” or
“REMOVE” from
the filter’s pass list

Filter entry value
format based on
FILTER_TYPE

-- 0 or more 1-255

DATA_CHAN
LSAP number, obtained by using an earlier Open Data Channel command, that indicates the location of
the filter on the provider.

29

FILTER_TYPE
Type of filter to be modified.

FILTER_MODE
Mode of the filter operation.

FILTER_OPERATION
Operation to perform on the filter’s pass list.

FILTER_ENTRY
Entry to add or remove from the filter’s pass list.

Response Parameters:

Name Description Values Default
Value

Instances Size

FILTER_MODE Current filter operation
mode

“ALL,”
“FILTER,” or
“NONE”

“NONE” 0-1 1-255

FILTER_ENTRY On “DYNAMIC” or “GET”
operations, provides the
filter entry list

Filter entry value
format based on
FILTER_TYPE

-- 0 or more 1-255

MAX_ENTRY Maximum number of
entries that FILTER_TYPE
in the request supports

2-byte integer 0-1 2

FILTER_MODE
Current filter operation mode.

FILTER_ENTRY
On “DYNAMIC” or “GET” operations, provides the filter entry list.

MAX_ENTRY
Maximum number of entries that FILTER_TYPE in the request supports.

For each of the different filter types, only certain filter operations and modes are valid. This information is
summarized in the table that follows. (For more detailed information about the use of certain filter
operations and modes with different filter types, see the descriptions following the summary table. The
descriptions are organized by filter type.)

30

In the summary table that follows, an “X” in a column means that filter operation or filter mode can be used
with the filter type named in the first column. For some filter types, the filter modes ALL and FILTER are
equivalent; where that is the case, the X’s in the ALL and FILTER columns are shown to be equivalent with
shading.

 |Å Filter Operations Æ|Å Filter Modes Æ|

Filter Type GET CLEAR ADD REMOVE DYNAMIC ALL FILTER NONE
DIRECTED X X X X X X
FUNCTIONAL X X X X X X
GROUP X X X X X X X
MAC FRAME X X X
MULTICAST X X X X X X X
BROADCAST X X X

DIRECTED Filter Type:

Valid operations: ADD, GET, DYNAMIC
Valid modes: FILTER, ALL, NONE (FILTER and ALL are equivalent)

The DIRECTED filter may be set, read, or dynamically assigned. Commands for the directed filter are
issued by setting the FILTER_TYPE field of the Filter Configuration command to “DIRECTED”.

To set the UNICAST address on which packets should be accepted, issue a Filter Configuration command
with FILTER_OPERATION = “ADD” and FILTER_ENTRY = “desired address”.

To have the provider dynamically assign a UNICAST address to the client, issue a Filter Configuration
command with FILTER_OPERATION = “DYNAMIC”.

To start accepting packets directed to the UNICAST address, issue a Filter Configuration command with
FILTER_MODE=“FILTER”.

The current status of the DIRECTED filter can be queried by issuing a Filter Configuration request with
FILTER_OPERATION=“GET”. The provider will return the current FILTER_MODE and the current
UNICAST address in the reply.

FUNCTIONAL Filter Type:

Valid operations: ADD, GET, CLEAR.
Valid modes: FILTER, ALL, NONE

The functional address may be set or read. There is only one functional address per data channel. The
functional address is an bitwise OR operation of all the functional bits that all protocols wish to listen to.
Commands for the FUNCTIONAL address filter are issued by setting the FILTER_TYPE field of the Filter
Configuration command to “FUNCTIONAL”.

To set the functional address on the provider, issue a Filter Configuration command with
FILTER_OPERATION = “ADD” and FILTER_ENTRY = “desired functional address”.

To enable reception of a frame on the current functional address, issue a Filter Configuration command with
FILTER_MODE = “FILTER”. Setting the FILTER_MODE parameter to ALL is equivalent to setting

31

FILTER_MODE to FILTER with FILTER_ENTRY = FF-FF-FF-FF, because either setting will accept all
packets addressed to any functional address.

The current status of the FUNCTIONAL filter can be queried by issuing a Filter Configuration command
with FILTER_OPERATION=“GET”. The provider will return the current FILTER_MODE and the current
functional address in the response packet. If the functional address has not yet been set, the provider may
return the current address as 00-00-00-00, because this is equivalent to the FUNCTIONAL filter being set
to not accept any functional packets.

GROUP Filter Type:

Valid operations: ADD, GET, CLEAR, REMOVE
Valid modes: FILTER, ALL, NONE

The GROUP address list may either be set or read, and be turned ON or OFF or be set to accept packets
directed to any GROUP address. Commands for the GROUP address filter are issued by setting the
FILTER_TYPE field of the Filter Configuration command to “GROUP”.

To add a list of GROUP addresses on the provider, issue a Filter Configuration command with
FILTER_OPERATION = “ADD” and one or more FILTER_ENTRY parameters. Adding entries will not
remove the previous entries in the list, so the client must be sure to keep track of and clear out expired
entries.

To remove all entries from the GROUP address list on the provider, issue a Filter Configuration command
with FILTER_OPERATION=“CLEAR”. Using the CLEAR operation instead of the REMOVE operation
can sometimes help make the maintenance of the GROUP address list easier for the client.

To remove some of the entries from the GROUP address list on the provider, issue a Filter Configuration
command with FILTER_OPERATION = “REMOVE” and one or more FILTER_ENTRY parameters
specifying which addresses should be removed.

All frames addressed to GROUP addresses can be received by setting the FILTER_MODE of the GROUP
address filter to ALL.

The current status of the GROUP address filter can be queried by issuing a Filter Configuration command
with FILTER_OPERATION=“GET”. The provider will return the current FILTER_MODE and the current
list of GROUP addresses, as well as the maximum number of GROUP address entries that the provider
supports.

MAC_FRAME Filter Type:

Valid operations:
Valid modes: FILTER, ALL, NONE (FILTER and ALL are equivalent)

The reception of MAC_FRAME frames on the 802.5 media can only be turned ON or OFF. Commands for
the MAC_FRAME filter are issued by setting the FILTER_TYPE field of the Filter Configuration
command to “MAC_FRAME”.

To turn the reception of MAC_FRAME frames on, issue a Filter Configuration command with
FILTER_MODE = “FILTER” or FILTER_MODE = “ALL”. To disable the reception of MAC_FRAME
frames, issue a Filter Configuration command with FILTER_MODE = “NONE”

The current status of the MAC_FRAME filter can be queried by issuing a Filter Configuration command
with FILTER_OPERATION=“GET”. The provider will return the current FILTER_MODE.

32

MULTICAST Filter Type:

Valid operations: ADD, GET, CLEAR, REMOVE
Valid modes: FILTER, ALL, NONE

The MULTICAST address list may be either set or read, and be turned ON or OFF or be set to accept
packets directed to any MULTICAST address. Commands for the MULTICAST address filter are issued
by setting the FILTER_TYPE parameter of the Filter Configuration command to “MULTICAST”.

To add a list of MULTICAST addresses on the provider, issue a Filter Configuration command with
FILTER_OPERATION = “ADD” and one or more FILTER_ENTRY parameters. Adding entries will not
remove the previous entries in the list, so the client must be sure to keep track of and clear out expired
entries.

To remove all entries from the MULTICAST address list on the provider, issue a Filter Configuration
command with FILTER_OPERATION=“CLEAR”. Using the CLEAR operation instead of the REMOVE
operation can sometimes help make the maintenance of the MULTICAST address list easier for the client.

To remove some of the entries from the MULTICAST address list on the provider, issue a Filter
Configuration command with FILTER_OPERATION = “REMOVE” and one or more FILTER_ENTRY
parameters specifying which addresses should be removed.

All frames addressed to MULTICAST addresses can be received by setting the FILTER_MODE of the
MULTICAST address filter to ALL.

The current status of the MULTICAST address filter can be queried by issuing a Filter Configuration
request with FILTER_OPERATION=“GET”. The provider will return the current FILTER_MODE and the
current list of MULTICAST addresses as well as the MAXIMUM number of MULTICAST address entries
that the provider supports.

BROADCAST Filter Type:

Valid operations: None.
Valid modes: FILTER, ALL, NONE (FILTER and ALL are equivalent)

The reception of BROADCAST frames can only be ON or OFF. Commands for the BROADCAST filter
are issued by setting the FILTER_TYPE parameter of the Filter Configuration command to
“BROADCAST”.

To turn the reception of BROADCAST frames on, issue a Filter Configuration command with
FILTER_MODE = “FILTER” or FILTER_MODE = “ALL”. To disable the reception of BROADCAST
frames, issue a Filter Configuration command with FILTER_MODE = “NONE”.

The current status of the BROADCAST filter can be queried by issuing a Filter Configuration command
with FILTER_OPERATION=“GET”. The provider will return the current FILTER_MODE.

Example Filter Configuration Commands:

COMMAND:

Get a UNICAST address.

3 parameters
DATA_CHAN = <LSAP:02>

33

FILTER_TYPE = “DIRECTED”
FILTER_OPERATION = “DYNAMIC”

0000: 05 03 09 44 41 54 41 5f 43 48 41 4e 01 00 02 0b
0010: 46 49 4c 54 45 52 5f 54 59 50 45 08 00 44 49 52
0020: 45 43 54 45 44 10 46 49 4c 54 45 52 5f 4f 50 45
0030: 52 41 54 49 4f 4e 07 00 44 59 4e 41 4d 49 43

0000: D A T A _ C H A N
0010: F I L T E R _ T Y P E D I R
0020: E C T E D F I L T E R _ O P E
0030: R A T I O N D Y N A M I C

RESPONSE:

Status = 0 (Success)

3 parameters

FILTER_MODE = ”NONE”
MAX_ENTRY = 1
FILTER_ENTRY = <00 08 00 09 97 23 54>

The directed filter is off, only 1 directed filter can be set at a time,
and the UNICAST address is 00-08-00-09-97-23-57

0000: 00 03 0b 46 49 4c 54 45 52 5f 4d 4f 44 45 04 00
0010: 4e 4f 4e 45 09 4d 41 58 5f 45 4e 54 52 59 02 00
0020: 01 00 0c 46 49 4c 54 45 52 5f 45 4e 54 52 59 06
0030: 00 08 00 09 97 23 54
0000: F I L T E R _ M O D E
0010: N O N E .. M A X _ E N T R Y
0020: F I L T E R _ E N T R Y ..
0030: # T

COMMAND:

Get the state of the provider MULTICAST list

3 parameters
DATA_CHAN = <LSAP:02>
FILTER_OPERATION = “GET”
FILTER_TYPE = “MULTICAST”

0000: 05 03 09 44 41 54 41 5f 43 48 41 4e 01 00 02 10
0010: 46 49 4c 54 45 52 5f 4f 50 45 52 41 54 49 4f 4e
0020: 03 00 47 45 54 0b 46 49 4c 54 45 52 5f 54 59 50
0030: 45 09 00 4d 55 4c 54 49 43 41 53 54

0000: D A T A _ C H A N
0010: F I L T E R _ O P E R A T I O N
0020: G E T .. F I L T E R _ T Y P
0030: E M U L T I C A S T

RESPONSE:

Filter is off and the provider supports 16 MULTICAST entries.

Status = 0 (Success)

34

2 parameters

FILTER_MODE = ”NONE”
MAX_ENTRY = 16 (decimal)

0000: 00 02 0b 46 49 4c 54 45 52 5f 4d 4f 44 45 04 00
0010: 4e 4f 4e 45 09 4d 41 58 5f 45 4e 54 52 59 02 00
0020: 00 10 00

0000: F I L T E R _ M O D E
0010: N O N E .. M A X _ E N T R Y
0020:

COMMAND:

Start accepting packets sent to the UNICAST address.

3 parameters
DATA_CHAN = <LSAP:02>
FILTER_TYPE = “DIRECTED”
FILTER_MODE = “FILTER”

0000: 05 03 09 44 41 54 41 5f 43 48 41 4e 01 00 02 0b
0010: 46 49 4c 54 45 52 5f 54 59 50 45 08 00 44 49 52
0020: 45 43 54 45 44 0b 46 49 4c 54 45 52 5f 4d 4f 44
0030: 45 06 00 46 49 4c 54 45 52

0000: D A T A _ C H A N
0010: F I L T E R _ T Y P E D I R
0020: E C T E D .. F I L T E R _ M O D
0030: E F I L T E R

RESPONSE:

Directed filter has been turned on.

Status = 0 (Success)

0 parameters

0000: 00 00

COMMAND:

Start accepting packets directed to the BROADCAST address.

3 parameters
DATA_CHAN = <LSAP:02>
FILTER_TYPE = “BROADCAST”
FILTER_MODE = “FILTER”

0000: 05 03 09 44 41 54 41 5f 43 48 41 4e 01 00 02 0b
0010: 46 49 4c 54 45 52 5f 54 59 50 45 09 00 42 52 4f
0020: 41 44 43 41 53 54 0b 46 49 4c 54 45 52 5f 4d 4f
0030: 44 45 06 00 46 49 4c 54 45 52

0000: D A T A _ C H A N
0010: F I L T E R _ T Y P E B R O
0020: A D C A S T .. F I L T E R _ M O

35

0030: D E F I L T E R

RESPONSE:

BROADCAST packets are now being accepted.

Status = 0 (Success)
0 parameters

0000: 00 00
COMMAND

Clear the MULTICAST filter list on the provider.

3 parameters
DATA_CHAN = <LSAP:02>
FILTER_OPERATION = “CLEAR”
FILTER_TYPE = “MULTICAST”

0000: 05 03 09 44 41 54 41 5f 43 48 41 4e 01 00 02 10
0010: 46 49 4c 54 45 52 5f 4f 50 45 52 41 54 49 4f 4e
0020: 05 00 43 4c 45 41 52 0b 46 49 4c 54 45 52 5f 54
0030: 59 50 45 09 00 4d 55 4c 54 49 43 41 53 54

0000: D A T A _ C H A N
0010: F I L T E R _ O P E R A T I O N
0020: C L E A R .. F I L T E R _ T
0030: Y P E M U L T I C A S T

RESPONSE:

MULTICAST List has been cleared

0000: 00 00

COMMAND

Add the MULTICAST entry 01-00-5e-00-00-01 to the MULTICAST list on the
provider and turn on MULTICAST filtering.

5 parameters
DATA_CHAN = <LSAP:02>
FILTER_OPERATION = “ADD”
FILTER_MODE = “FILTER”
FILTER_TYPE = “MULTICAST”
FILTER_ENTRY = <01 00 5e 00 00 01>

0000: 05 05 09 44 41 54 41 5f 43 48 41 4e 01 00 02 10
0010: 46 49 4c 54 45 52 5f 4f 50 45 52 41 54 49 4f 4e
0020: 03 00 41 44 44 0b 46 49 4c 54 45 52 5f 4d 4f 44
0030: 45 06 00 46 49 4c 54 45 52 0b 46 49 4c 54 45 52
0040: 5f 54 59 50 45 09 00 4d 55 4c 54 49 43 41 53 54
0050: 0c 46 49 4c 54 45 52 5f 45 4e 54 52 59 06 00 01
0060: 00 5e 00 00 01

0000: D A T A _ C H A N
0010: F I L T E R _ O P E R A T I O N
0020: A D D .. F I L T E R _ M O D
0030: E F I L T E R .. F I L T E R
0040: _ T Y P E M U L T I C A S T

36

0050: .. F I L T E R _ E N T R Y
0060: .. D

RESPONSE:

The entry has been added to the list, and MULTICAST filtering is on.

0000: 00 00

37

State Machines
If discrepancies appear to exist between the precise description of this procedure and any textual
material in this specification the precise description shall be taken as the definitive description.

Client State Chart

Current
State

Event Action(s) Next State

IDLE
entrystate

IrLan-Discovery-Indication Query-Remote-IAS QUERY

QUERY Lap-Disconnect IDLE
Client-Data-Indication:
IASReply-Provider-Available

OpenRetries = 0
Connect-to-Provider

CONN

Client-Data-Indication:
IASReply-Provider-Not-Avail

IDLE

CONN Lap-Disconnect IDLE
Connect-Failure IDLE
Connect-Complete send GetInfoCmd INFO

INFO Lap-Disconnect IDLE
Lmp-Disconnect IDLE
Client-Data-Indication parse GetInfoReply

send GetMediaCmd
MEDIA

MEDIA Lap-Disconnect IDLE
Lmp-Disconnect IDLE
Client-Data-Indication parse GetMediaReply

send OpenDataCmd
OPEN

OPEN Lap-Disconnect IDLE
Lmp-Disconnect IDLE
Client-Data-Indication
&& AccessType == PEER
&& ProviderState == OPEN

parse OpenDataReply
RcvArbVal = CON_ARB param

ARB

Client-Data-Indication
&& AccessType == PEER
&& ProviderState != OPEN

parse OpenDataReply
RcvArbVal = CON_ARB param

WAIT

Client-Data-Indication
&& AccessType == DIRECT

parse OpenDataReply
connect-to-Data-Channel

DATA

Client-Data-Indication
&& AccessType == HOSTED

parse OpenDataReply
connect-to-Data-Channel

DATA

WAIT Lap-Disconnect IDLE
Lmp-Disconnect IDLE
ProviderSignal:
ProviderState == OPEN

ARB

38

Current
State

Event Action(s) Next State

ARB Lap-Disconnect IDLE
Lmp-Disconnect IDLE
SendArbVal == RcvArbVal send CloseDataCmd CLOSE
SendArbVal > RcvArbVal connect-Data-Channel

enable-data-transfer
DATA

SendArbVal < RcvArbVal ARB
Data-Connect-Indication enable-data-transfer DATA

DATA Lap-Disconnect disable-data-transfer IDLE
Lmp-Disconnect disable-data-transfer

disconnect-Data-Channel
IDLE

Data-Chan-Disconnect disconnect-Provider IDLE
CLOSE Lap-Disconnect IDLE

Lmp-Disconnect IDLE
Client-Data-Indication
&& ProviderState == OPEN

parse DataCloseReply SYNC

Client-Data-Indication
&& ProviderState != OPEN
&& OpenRetries < ORMax

parse DataCloseReply
OpenRetries = OpenRetries + 1
send OpenDataCmd

OPEN

Client-Data-Indication
&& ProviderState != OPEN
&& OpenRetries >= ORMax

parse DataCloseReply IDLE

SYNC Lap-Disconnect IDLE
Lmp-Disconnect IDLE
ProviderSignal:
ProviderState != OPEN
&& OpenRetries < ORMax

OpenRetries = OpenRetries + 1
send OpenDataCmd

OPEN

ProviderSignal:
ProviderState != OPEN
&& OpenRetries >= ORMax

IDLE

Notes

1. Logical operators in the state table are defined as follows:
A == B: A equals B.
A != B: A does not equal B.
A < B: A is less than B.
A >= B: A is greater than or equal to B.
A && B: A logically ANDed with B.

Client State Definitions

IDLE. The LAN client is waiting for indication that there is a provider in the IR cone.

CONN. The client has connected to a provider but has not issued any commands.

INFO. The client has issued a GetInfo command and is awaiting a reply.

39

MEDIA. The client has issued a GetMedia command and is awaiting a reply.

OPEN. The client has issued a OpenData command and is awaiting a reply.

WAIT. The client is waiting for the local provider to enter the provider OPEN state.

ARB. The client compares the DataOpen arbitration value it sent to the remote provider to the value
received by the local provider and acts accordingly.

DATA. The data channel is connected, allowing data transfers between the local and remote machines.

CLOSE. The client has issued a DataClose command and is awaiting a reply.

SYNC. The client is waiting for the local provider to exit the provider OPEN state.

Client Event Descriptions

IrLan-Discovery-Indication. A device with the IrLAN hint bit set has been discovered.

Lap-Disconnect. An IrLap connection has ended.

Client-Data-Indication. A data packet has been received by the IrLan client LSAP.

IASReply-Provider-Available. The remote IAS reply indicates an IrLan provider is supported.

IASReply-Provider-Not-Avail. The remote IAS reply indicates an IrLan provider is not supported

Connect-Complete. The requested connection is available for use.

Connect-Failure. The connect request has failed.

Lmp-Disconnect. The IrLmp(e.g. IrLan Client LSAP - IrLan Provider LSAP) connection has ended.

AccessType == PEER. The method of IrLan access selected is Peer-to-Peer with each side having a client
and a provider.

AccessType == DIRECT. The method of IrLan access selected is Access Point with a client on one side
and a provider on the other.

AccessType == HOSTED. The method of IrLan access selected is Hosted mode with a client on one side
and a provider on the other.

ProviderSignal: ProviderState == OPEN. The local provider is signaling that it is entering the OPEN
state.

ProviderSignal: ProviderState != OPEN. The local provider is signaling that it is leaving the OPEN state.

SendArbVal == RcvArbVal. The CON_ARB value sent by the local provider is equal to the CON_ARB
value received by the client in the reply to the Open Data Channel command.

Data-Connect-Indication. The remote station has connected to the local data channel LSAP.

40

Data-Chan-Disconnect. The remote station has disconnected from the local data channel LSAP.

ProviderState == OPEN. The local provider is in the OPEN state.

OpenRetries < ORMax. The open retry count is less than the maximum allowed.

Client Action Descriptions

Query-Remote-IAS. Query the remote IAS for the presence of an IrLan provider.

OpenRetries = 0. Set the OpenRetries variable to 0.

Connect-to-Provider. Perform an IrLMP connect from the local IrLan Client LSAP to the remote IrLan
provider LSAP.

send GetInfoCmd. Send an IrLan Get Provider Information command to the remote IrLan provider LSAP.

send GetMediaCmd. Send an IrLan Get Media Characteristics command to the remote IrLan provider
LSAP.

send OpenDataCmd. Send an IrLan Open Data Channel command to the remote IrLan provider LSAP.

send CloseDataCmd. Send an IrLan Close Data Channel command to the remote IrLan provider LSAP.

parse xxxReply. Extract any parameters from a reply to an IrLan command, checking for errors.

RcvArbVal = CON_ARB param. Load the CON_ARB parameter from reply to the IrLan Data Open
Command into the RcvArbVal variable.

connect-Data-Channel. Perform an IrLMP connect from the local IrLan Data Channel LSAP to the remote
IrLan Data Channel LSAP.

enable-data-transfer. Allow data transfers to occur across the data channel.

disable-data-transfer. Disallow sending and receiving data on the data channel.

disconnect-Data-Channel. Perform an IrLMP disconnect from the local IrLan Data Channel LSAP to the
remote IrLan Data Channel LSAP.

disconnect-Provider. Perform an IrLMP disconnect from the remote IrLan Provider LSAP.

OpenRetries = OpenRetries + 1. Increment the OpenRetries variable.

41

Provider State Chart

Current
State

Event Action(s) Next State

IDLE
(entry
 state)

Connect-Indication INFO

INFO Lap-Disconnect IDLE
Lmp-Disconnect IDLE
Provider-Data-Indication:
GetInfoCmd

if(ProviderAccess == PEER)
then

 MEDIA = “802.3”
send GetInfoReply

INFO

Provider-Data-Indication:
GetMediaCmd

parse GetMediaCmd
send GetMediaReply

INFO

Provider-Data-Indication:
OpenDataCmd

if(AccessType == PEER) then
 generate SendArbVal
 CON_ARB param =

SendArbVal
send OpenDataReply
signal client: State == OPEN

OPEN

OPEN Lap-Disconnect IDLE
Lmp-Disconnect IDLE
Provider-Data-Indication:
GetInfoCmd

send GetInfoReply OPEN

Provider-Data-Indication:
GetMediaCmd

parse GetMediaCmd
send GetMediaReply

OPEN

Provider-Data-Indication:
CloseDataCmd

parse CloseDataCmd
send CloseDataReply
signal client: State != OPEN

INFO

Provider-Data-Indication:
FilterConfigCmd

parse FilterConfigCmd
send FlterConfigReply

OPEN

Data-Connect-Indication DATA
DATA Lap-Disconnect IDLE

Lmp-Disconnect IDLE
Data-Chan-Disconnect INFO
Provider-Data-Indication:
CloseDataCmd

disable-data-transfer
send CloseDataReply

INFO

Provider-Data-Indication:
GetInfoCmd

send GetInfoReply DATA

Provider-Data-Indication:
GetMediaCmd

parse GetMediaCmd
send GetMediaReply

DATA

Provider-Data-Indication:
FilterConfigCmd

parse FilterConfigCmd
send FlterConfigReply

DATA

42

Provider State Definitions

IDLE. The provider is waiting for an incoming client connection.

INFO. The provider provides information to the remote client.

OPEN. The provider has received the DataOpen command.

DATA. The data channel is connected, allowing data transfers between the local and remote machines.

Provider Event Descriptions

Connect-Indication. A device with the IrLAN hint bit set has been discovered.

Lap-Disconnect. An IrLap connection has ended.

Lmp-Disconnect. The IrLmp(e.g. IrLan Client LSAP - IrLan Provider LSAP) connection has ended.

Provider-Data-Indication: GetInfoCmd. An IrLan Get Provider Information command has been received
by the IrLan provider LSAP.

Provider-Data-Indication: GetMediaCmd. An IrLan Get Media Characteristics command has been
received by the IrLan provider LSAP.

Provider-Data-Indication: OpenDataCmd. An IrLan Open Data Channel command has been received by
the IrLan provider LSAP.

Provider-Data-Indication: CloseDataCmd. An IrLan Close Data Channel command has been received by
the IrLan provider LSAP.

Provider-Data-Indication: FilterConfigCmd. An IrLan Filter Configuration command has been received
by the IrLan provider LSAP.

Provider Action Descriptions

if(ProviderAccess == PEER) then MEDIA = “802.3”. If the provider supports PEER access, then it must
also indicate 802.3 support in the Get Provider Information reply, since peer-peer access takes place with
802.3 frames exclusively.

generate SendArbVal. Generate a 16-Bit random number and put it in the variable SendArbVal.

CON_ARB param = SendArbVal. Load the variable SendArbVal into the CON_ARB parameter in the
IrLan Open Data Channel reply.

signal client: State = OPEN. Signal the local IrLan client state machine that the provider state machine is
entering the OPEN state.

43

signal client: State != OPEN. Signal the local IrLan client state machine that the provider state machine is
leaving the OPEN state.

send GetInfoReply. Send an IrLan Get Provider Information reply to the remote IrLan client LSAP.

send GetMediaReply. Send an IrLan Get Media Characteristics reply to the remote IrLan client LSAP.

send OpenDataReply. Send an IrLan Open Data Channel reply to the remote IrLan client LSAP.

send CloseDataReply. Send an IrLan Close Data Channel reply to the remote IrLan client LSAP.

parse xxxCmd. Extract any parameters from an IrLan command, checking for errors.

disable-data-transfer. Disallow sending and receiving data on the data channel.

RcvArbVal = CON_ARB param. Load the CON_ARB parameter from reply to the IrLan Data Open
Command into the RcvArbVal variable.

Peer-to-Peer Mode Considerations

Data-Channel Frame Formats
Peer-to-Peer mode is defined to support only the 802.3 (Ethernet) frame format.

MacAddress Generation
In connections where an IrLan Access Point is acting as the IrLan Provider, the Access Point contains a
hard coded MacAddress which it returns to the IrLan Client in response to the “DIRECT “ “GET” or
“DIRECT” “DYNAMIC” FILTER commands. The IrLan Client may then pass this address to the upper
level protocols when they request the MacAddress.

In the case of a Peer-to-Peer connection it is probable that no hard coded MacAddress exists. Thus the Peer
Provider must provide some means of generating a locally unique (unique to the current peer network)
MacAddress which may be returned to the IrLan Client.

8 b its

Peer-to-Peer M acAddress Specification

24 b its 16 b its

48 b it address

0100 0000 24 b its of 0s Connection
arbitration

value

Sam ple Address:
40.00.00.00.A4.78

44

Since the address is local, the Peer-to-Peer address generation algorithm takes advantage of the 802.3 frame
format’s locally administered address bit. As the MacAddress is not required to be generated until after
connection arbitration has completed we have a convenient access to a 16 bit value that is guaranteed to be
unique. Thus the Peer-to-Peer address shall consist of 6 bytes where the high 4 bytes are all 0 except for the
second bit of the first byte which is set to 1 to specify a locally administered address. The lower 2 bytes of
the address are the arbitration value that was generated during the connection arbitration process.

Example Peer Mode Initial Conversation and Arbitration

PEER 1: COMMAND
GetProviderInformation
0 parameters

0000: 00 00

0000:

PEER 2: RESPONSE
Status = 0 (Success)

2 parameters
MEDIA = "802.3"
IRLAN_VER = 1.1

0001: 00 02 05 4D 45 44 49 41 05 00 38 30 32 2E 33 09
0002: 49 52 4C 41 4E 5F 56 45 52 02 00 01 01

0001: M E D I A 8 0 2 . 3 ..
0002: I R L A N _ V E R

PEER 2: COMMAND
GetProviderInformation
0 parameters

0003: 00 00

0003:

PEER 1: RESPONSE
Status = 0 (Success)

2 parameters
MEDIA = "802.3"
IRLAN_VER = 1.1

0004: 00 02 05 4D 45 44 49 41 05 00 38 30 32 2E 33 09
0005: 49 52 4C 41 4E 5F 56 45 52 02 00 01 01

0004: M E D I A 8 0 2 . 3 ..
0005: I R L A N _ V E R

PEER 1: COMMAND
GetMediaCharacteristics
1 parameter

45

MEDIA = "802.3"

0006: 01 01 05 4D 45 44 49 41 05 00 38 30 32 2E 33

0006: M E D I A 8 0 2 . 3

PEER 2: COMMAND
GetMediaCharacteristics
1 parameter
MEDIA = "802.3"

0007: 01 01 05 4D 45 44 49 41 05 00 38 30 32 2E 33

0007: M E D I A 8 0 2 . 3

PEER 2: RESPONSE
Status = 0 (Success)

5 parameters
FILTER_TYPE = "DIRECTED"
FILTER_TYPE = "MULTICAST"
FILTER_TYPE = "BROADCAST"
MAX_FRAME = 0x05EA (1514d)
ACCESS_TYPE = "PEER"

0008: 00 05 0B 46 49 4C 54 45 52 5F 54 59 50 45 08 00
0009: 44 49 52 45 43 54 45 44 0B 46 49 4C 54 45 52 5F
0010: 54 59 50 45 09 00 4D 55 4C 54 49 43 41 53 54 0B
0011: 46 49 4C 54 45 52 5F 54 59 50 45 09 00 42 52 4F
0012: 41 44 43 41 53 54 09 4D 41 58 5F 46 52 41 4D 45
0013: 02 00 EA 05 0B 41 43 43 45 53 53 5F 54 59 50 45
0014: 04 00 50 45 45 52

0008: F I L T E R _ T Y P E
0009: D I R E C T E D .. F I L T E R _
0010: T Y P E M U L T I C A S T ..
0011: F I L T E R _ T Y P E .. B R O A
0012: D C A S T .. M A X _ F R A M E ..
0013: A C C E S S _ T Y P E
0014: P E E R

PEER 1: RESPONSE
Status = 0 (Success)

5 parameters
FILTER_TYPE = "DIRECTED"
FILTER_TYPE = "MULTICAST"
FILTER_TYPE = "BROADCAST"
MAX_FRAME = 0x05EA (1514d)
ACCESS_TYPE = "PEER"

0015: 00 05 0B 46 49 4C 54 45 52 5F 54 59 50 45 08 00
0016: 44 49 52 45 43 54 45 44 0B 46 49 4C 54 45 52 5F
0017: 54 59 50 45 09 00 4D 55 4C 54 49 43 41 53 54 0B
0018: 46 49 4C 54 45 52 5F 54 59 50 45 09 00 42 52 4F
0019: 41 44 43 41 53 54 09 4D 41 58 5F 46 52 41 4D 45
0020: 02 00 EA 05 0B 41 43 43 45 53 53 5F 54 59 50 45
0021: 04 00 50 45 45 52

46

0015: F I L T E R _ T Y P E
0016: D I R E C T E D .. F I L T E R _
0017: T Y P E M U L T I C A S T ..
0018: F I L T E R _ T Y P E .. B R O A
0019: D C A S T .. M A X _ F R A M E ..
0020: A C C E S S _ T Y P E
0021: P E E R

PEER 1: COMMAND
OpenDataChannel
2 parameters
MEDIA = "802.3"
ACCESS_TYPE = "PEER"

0022: 02 02 05 4D 45 44 49 41 05 00 38 G2 30 32 2E 33
0023: 0B 41 43 43 45 53 53 5F 54 59 50 45 04 00 50 45
0024: 45 52

0022: M E D I A 8 0 2 . 3 ..
0023: .. A C C E S S _ T Y P E P E
0024: E R

PEER 2: COMMAND
OpenDataChannel
2 parameters
MEDIA = "802.3"
ACCESS_TYPE = "PEER"

0025: 02 02 05 4D 45 44 49 41 05 00 38 G2 30 32 2E 33
0026: 0B 41 43 43 45 53 53 5F 54 59 50 45 04 00 50 45
0027: 45 52

0025: M E D I A 8 0 2 . 3 ..
0026: .. A C C E S S _ T Y P E P E
0027: E R

PEER 2: RESPONSE
Status = 0 (Success)

3 Parameters
DATA_CHAN = <LSAP:06>
RECONNECT_KEY = 00 40 68 00 09 97 00 00 01 00
CON_ARB = 0x9709 (38665)

0028: 00 03 09 44 41 54 41 5F 43 48 41 4E 01 00 06 0D
0029: 52 45 43 4F 4E 4E 45 43 54 5F 4B 45 59 0A 00 00
0030: 40 68 00 09 97 00 00 01 00 07 43 4F 4E 5F 41 52
0031: 42 02 00 09 97

0028: D A T A _ C H A N
0029: R E C O N N E C T _ K E Y
0030: C O N _ A R
0031: B

PEER 1: RESPONSE
Status = 0 (Success)

47

3 Parameters
DATA_CHAN = <LSAP:06>
RECONNECT_KEY = 00 40 68 00 B9 6A 00 00 01 00
CON_ARB = 0x6AB9 (27321)

0032: 00 03 09 44 41 54 41 5F 43 48 41 4E 01 00 06 0D
0033: 52 45 43 4F 4E 4E 45 43 54 5F 4B 45 59 0A 00 00
0034: 40 68 00 09 97 00 00 01 00 07 43 4F 4E 5F 41 52
0035: 42 02 00 B9 6A

0032: D A T A _ C H A N
0033: R E C O N N E C T _ K E Y
0034: C O N _ A R
0035: B

At this point in the conversation both sides know that PEER 2 has won the arbitration process, since it has
the higher arbitration value. Additionally, PEER 2 is aware that PEER 1’s data channel is on LSAP 6.
Thus PEER 1 will wait for PEER 2 to open a channel on its LSAP 6. Note that both PEERs may perform a
number of other actions, such as setting filters, before PEER 2 issues its connect request.

