
20 July 2004 SH94892

IEEE 802.3ae™-2002
(Amendment to IEEE Std 802.3™2002)

Corrections to

IEEE Standard for Information technology—
Telecommunications and information exchange between
systems—Local and metropolitan area networks—
Specific requirements

Part 3: Carrier Sense Multiple Access with
Collision Detection (CSMA/CD) Access Method
and Physical Layer Specifications

Amendment: Media Access Control (MAC)
Parameters, Physical Layers, and Management
Parameters for 10 Gb/s Operation

Sponsor

LAN/MAN Standards Committee

of the

IEEE Computer Society

Correction Sheet
Issued 20 July 2004

Copyright © 2004 by the Institute of Electrical and Electronics Engineers, Inc.
All rights reserved. Published 2004. Printed in the United States of America.

This correction sheet may be freely reproduced and distributed in order to maintain
the utility and currency of the underlying Standard. This correction sheet may not
be sold, licensed or otherwise distributed for any commercial purposes whatso-
ever. The content of this correction sheet may not be modified.

CORRECTIONS TO IEEE Std 802.3ae-2002

20 July 2004 SH94996

4.2.7 – 4.2.9 is incorrect and should be replaced with the following 4.2.7 – 4.2.9:

4.2.7 Global declarations

Change 4.2.7 and its related subclauses to read as follows:

This subclause provides detailed formal specifications for the CSMA/CD MAC sublayer. It is a specification of
generic features and parameters to be used in systems implementing this media access method. Subclause 4.4
provides values for these sets of parameters for recommended implementations of this media access mechanism.

4.2.7.1 Common constants, types, and variables

The following declarations of constants, types and variables are used by the frame transmission and reception
sections of each CSMA/CD sublayer:

const
addressSize = ... ; {48 bits in compliance with 3.2.3}
addressSize = 48; {In bits, in compliance with 3.2.3}
lengthOrTypeSize = 16; {iIn bits}
clientDataSize = ...; {in bits, MAC client Data, see 4.2.2.2, (1)(c)}
clientDataSize = ...; {In bits, size of MAC client data; see 4.2.2.2, a) 3)}

padSize = ...; {iIn bits, = max (0, minFrameSize – (2 x addressSize + lengthOrTypeSize +
clientDataSize + crcSize))}

dataSize = ...; {iIn bits, = clientDataSize + padSize}
crcSize = 32; {In bits, 32-bit CRC = 4 octets}
frameSize = ...; {in bits, = 2 x addressSize + lengthOrTypeSize + dataSize + crcSize, see 4.2.2.2, (1)}
frameSize = ...; {In bits, = 2 x addressSize + lengthOrTypeSize + dataSize + crcSize; see 4.2.2.2, a)}
minFrameSize = ... ; {iIn bits, implementation-dependent, see 4.4}
maxUntaggedFrameSize = ... ; {iIn octets, implementation-dependent, see 4.4}
qTagPrefixSize = 4; {iIn octets, length of QTag Prefix, see 3.5}

extend = ...; {Boolean, true if (slotTime – minFrameSize) > 0, false otherwise}
extensionBit = ...; {aA nondata value which is used for carrier extension and interframe during bursts}
extensionErrorBit = ...; {aA nondata value which is used to jam during carrier extension}
minTypeValue = 1536; {mMinimum value of the Length/Type field for Type interpretation}

maxValidFrame = maxUntaggedFrameSize – (2 x addressSize + lengthOrTypeSize + crcSize) / 8;
{iIn octets, the maximum length of the MAC client data field. This constant is
defined for editorial convenience, as a function of other constants}

slotTime = ... ; {In bit times, unit of time for collision handling, implementation-dependent, see 4.4}
preambleSize = ...; {56 bits, see 4.2.5}
preambleSize = 56; {In bits, see 4.2.5}
sfdSize = 8; {8 bitIn bits, start frame delimiter}
headerSize = ...; {64 bits, sum of preambleSize and sfdSize}
headerSize = 64; {In bits, sum of preambleSize and sfdSize}

type
Bit = 0..1(0, 1);
PhysicalBit = 0,1, extensionBit, extensionErrorBit(0, 1, extensionBit, extensionErrorBit);

{bBits transmitted to the Physical Layer can be either 0, 1, extensionBit or
extensionErrorBit. Bits received from the Physical Layer can be either 0, 1
or extensionBit.}

AddressValue = array [1..addressSize] of Bit;
LengthOrTypeValue = array [1..lengthOrTypeSize] of Bit;

CORRECTIONS TO IEEE Std 802.3ae-2002

20 July 2004 SH94996

DataValue = array [1..dataSize] of Bit; {Contains the portion of the frame that starts with the first bit
following the Length/Type field and ends with the last bit
prior to the FCS field. For VLAN Tagged frames, this value
includes the Tag Control Information field and the original
MAC client Length/Type field. See 3.5}

CRCValue = array [1..crcSize] of Bit;
PreambleValue = array [1..preambleSize] of Bit;
SfdValue = array [1..sfdSize] of Bit;
ViewPoint = (fields, bits); {Two ways to view the contents of a frame}
HeaderViewPoint = (headerFields, headerBits);
Frame = record {Format of Media Access frame}

case view: ViewPoint of
fields: (

destinationField: AddressValue;
sourceField: AddressValue;
lengthOrTypeField: LengthOrTypeValue;
dataField: DataValue;
fcsField: CRCValue);

bits: (contents: array [1..frameSize] of Bit)
end; {Frame}

Header = record {Format of preamble and start frame delimiter}
case headerView : HeaderViewPoint of

headerFields : (
preamble : PreambleValue;
sfd : SfdValue);

headerBits : (
headerContents : array [1..headerSize] of Bit)

headerBits: (headerContents: array [1..headerSize] of Bit)
end; {dDefines header for MAC frame}

var
halfDuplex: Boolean; {Indicates the desired mode of operation. halfDuplex is a static variable; its value

shall only be changed by the invocation of the Initialize procedure}
its value does not change between invocations of the Initialize procedure}

4.2.7.2 Transmit state variables

The following items are specific to frame transmission. (See also 4.4.)

const
interFrameSpacing = ... ; {In bit times, minimum time gap between frames. Equal to interFrameGap,

see 4.4}
interFrameSpacingPart1 = ... ; {In bit times, duration of the first portion of interFrameSpacing. In the

range of 0 up to 2/3 of interFrameSpacing}
interFrameSpacingPart2 = ... ; {In bit times, duration of the remainder of interFrameSpacing. Equal to

interFrameSpacing – interFrameSpacingPart1}
interFrameSize = ... ; {in bits, length of interframe fill during a burst. Equal to interFrameGap

divided by the bit period}
ifsStretchRatio = ...; {In bits, determines the number of bits in a frame that require one octet of

interFrameSpacing extension, when ifsStretchMode is enabled; implementation
dependent, see 4.4}

attemptLimit = ... ; {Max number of times to attempt transmission}
backOffLimit = ... ; {Limit on number of times to back off}

CORRECTIONS TO IEEE Std 802.3ae-2002

20 July 2004 SH94996

burstLimit= ... ; {in bits: LimitIn bits, limit for initiation of frame transmission in Burst Mode,
implementation dependent, see 4.4}

jamSize = ... ; {in bits:In bits, the value depends upon medium and collision detect implementation}
var

outgoingFrame: Frame; {The frame to be transmitted}
outgoingHeader: Header;
currentTransmitBit, lastTransmitBit: 1..frameSize; {Positions of current and last outgoing bits in

outgoingFrame}
lastHeaderBit: 1..headerSize;
deferring: Boolean; {Implies any pending transmission must wait for the medium to clear}
frameWaiting: Boolean; {Indicates that outgoingFrame is deferring}
attempts: 0..attemptLimit; {Number of transmission attempts on outgoingFrame}
newCollision: Boolean; {Indicates that a collision has occurred but has not yet been jammed}
transmitSucceeding: Boolean; {Running indicator of whether transmission is succeeding}
burstMode: Boolean:; {Indicates the desired mode of operation, and enables the transmission of

multiple frames in a single carrier event. burstMode is a static variable; its
value does not change between invocations of the Initialize procedure.}
value shall only be changed by the invocation of the Initialize procedure}

bursting: Boolean; {In burstMode, the given station has acquired the medium and the burst timer has
not yet expired}

burstStart: Boolean; {In burstMode, indicates that the first frame transmission is in progress}
extendError: Boolean; {Indicates a collision occurred while sending extension bits}
ifsStretchMode: Boolean; {Indicates the desired mode of operation, and enables the lowering of the

average data rate of the MAC sublayer (with frame granularity), using
extension of the minimum interFrameSpacing. ifsStretchMode is a static
variable; its value shall only be changed by the invocation of the Initialize
procedure}

ifsStretchCount: 0..ifsStretchRatio; {In bits, a running counter that counts the number of bits during a
frame’s transmission that are to be considered for the minimum
interFrameSpacing extension, while operating in ifsStretchMode}

ifsStretchSize: 0..(((maxUntaggedFrameSize + qTagPrefixSize) x 8 + headerSize + interFrameSpacing
+ ifsStretchRatio – 1) div ifsStretchRatio);
{In octets, a running counter that counts the integer number of octets that are to be
added to the minimum interFrameSpacing, while operating in ifsStretchMode}

4.2.7.3 Receive state variables

The following items are specific to frame reception. (See also 4.4.)

var
incomingFrame: Frame; {The frame being received}
receiving: Boolean; {Indicates that a frame reception is in progress}
excessBits: 0..7; {Count of excess trailing bits beyond octet boundary}
receiveSucceeding: Boolean; {Running indicator of whether reception is succeeding}
validLength: Boolean; {Indicator of whether received frame has a length error}
exceedsMaxLength: Boolean; {Indicator of whether received frame has a length longer than the

maximum permitted length}
extending: Boolean; {Indicates whether the current frame is subject to carrier extension}
extensionOK: Boolean; {Indicates whether any bit errors were found in the extension part of a frame,

which is not checked by the CRC}
passReceiveFCSMode: Boolean; {Indicates the desired mode of operation, and enables passing of

the frame check sequence field of all received frames from the
MAC sublayer to the MAC client. passReceiveFCSMode is a
static variable}

CORRECTIONS TO IEEE Std 802.3ae-2002

20 July 2004 SH94996

4.2.7.4 Summary of interlayer interfaces

a) The interface to the MAC client, defined in 4.3.2, is summarized below:

type
TransmitStatus = (transmitDisabled, transmitOK, excessiveCollisionError, lateCollisionErrorStatus);

{Result of TransmitFrame operation, reporting of lateCollisionErrorStatus is
optional for MACs operating at speeds at or below 100Mb/s}

ReceiveStatus = (receiveDisabled, receiveOK, frameTooLong, frameCheckError, lengthError,
alignmentError); {Result of ReceiveFrame operation}

function TransmitFrame (
destinationParam: AddressValue;
sourceParam: AddressValue;
lengthOrTypeParam: LengthOrTypeValue;
dataParam: DataValue): TransmitStatus; {Transmits one frame}
dataParam: DataValue;
fcsParamValue: CRCValue;
fcsParamPresent: Bit): TransmitStatus; {Transmits one frame}

function ReceiveFrame (
var destinationParam: AddressValue;
var sourceParam: AddressValue;
var lengthOrTypeParam: LengthOrTypeValue;
var dataParam: DataValue): ReceiveStatus; {Receives one frame}
var dataParam: DataValue;
var fcsParamValue: CRCValue;
var fcsParamPresent: Bit): ReceiveStatus; {Receives one frame}

b) The interface to the Physical Layer, defined in 4.3.3, is summarized in the following:

var
receiveDataValid: Boolean; {Indicates incoming bits}
carrierSense: Boolean; {In half duplex mode, indicates that transmission should defer}
transmitting: Boolean; {Indicates outgoing bits}
collisionDetect: Boolean; {Indicates medium contention}

procedure TransmitBit (bitParam: PhysicalBit); {Transmits one bit}
function ReceiveBit: PhysicalBit; {Receives one bit}
procedure Wait (bitTimes: integer); {Waits for indicated number of bit times}

4.2.7.5 State variable initialization

The procedure Initialize must be run when the MAC sublayer begins operation, before any of the processes begin
execution. Initialize sets certain crucial shared state variables to their initial values. (All other global variables are
appropriately reinitialized before each use.) Initialize then waits for the medium to be idle, and starts operation of the
various processes.

NOTE—Care should be taken to ensure that the time from the completion of the Initialize process to when the first packet
transmission begins is at least an interFrameGap.

If Layer Management is implemented, the Initialize procedure shall only be called as the result of the initializeMAC
action (30.3.1.2.1).

procedure Initialize;
beginbegin

frameWaiting := false;

CORRECTIONS TO IEEE Std 802.3ae-2002

20 July 2004 SH94996

deferring := false;
newCollision := false;
transmitting := false; {IAn interface to Physical Layer; see below}
receiving := false;
halfDuplex := ...; {tTrue for half duplex operation, false for full duplex operation. For operation at

speeds above 1000 Mb/s, halfDuplex shall always be false}halfDuplex is a static
variable; its value does not change between invocations of the Initialize

bursting := false;
burstMode := ...; { tTrue for half duplex operation at speeds above 100 Mb/s an operating speed of 1000

Mb/s, when multiple frames’ transmission in a single carrier event is desired and
supported, false otherwise}. burstMode is a static variable; its value does not change
between invocations of the Initialize procedure}

extending := extend andand halfDuplex;
ifsStretchMode := ...; {True for operating speeds above 1000 Mb/s when lowering the average data rate

of the MAC sublayer (with frame granularity) is desired and supported, false
otherwise}

ifsStretchCount := 0;
ifsStretchSize := 0;
passReceiveFCSMode := ...; {True when enabling the passing of the frame check sequence of all

received frames from the MAC sublayer to the MAC client is desired and
supported, false otherwise}

while carrierSense or receiveDataValid do nothing
if halfDuplex then while carrierSense or receiveDataValid do nothing
else while receiveDataValid do nothing
{Start execution of all processes}

end; {Initialize}

4.2.8 Frame transmission

Change subclause 4.2.8 to read as follows:

The algorithms in this subclause define MAC sublayer frame transmission. The function TransmitFrame implements
the frame transmission operation provided to the MAC client:

function TransmitFrame (
destinationParam: AddressValue;
sourceParam: AddressValue;
lengthOrTypeParam: LengthOrTypeValue;
dataParam: DataValue): TransmitStatus;
dataParam: DataValue;
fcsParamValue: CRCValue;
fcsParamPresent: Bit): TransmitStatus;

procedure TransmitDataEncap; ... {n{Nested procedure; see body below}

begin
if transmitEnabled then

begin
TransmitDataEncap;
TransmitFrame := TransmitLinkMgmt

end
else TransmitFrame := transmitDisabled

end; {TransmitFrame}

CORRECTIONS TO IEEE Std 802.3ae-2002

20 July 2004 SH94996

If transmission is enabled, TransmitFrame calls the internal procedure TransmitDataEncap to construct the frame.
Next, TransmitLinkMgmt is called to perform the actual transmission. The TransmitStatus returned indicates the
success or failure of the transmission attempt.

TransmitDataEncap builds the frame and places the 32-bit CRC in the frame check sequence field:

procedure TransmitDataEncap;

begin
with outgoingFrame do

begin {aAssemble frame}
view := fields;
destinationField := destinationParam;
sourceField := sourceParam;
lengthOrTypeField := lengthOrTypeParam;
dataField := ComputePad (dataParam);
fcsField := CRC32(outgoingFrame);
if fcsParamPresent then

begin
dataField := dataParam; {No need to generate pad if the FCS is passed from MAC client}
fcsField := fcsParamValue {Use the FCS passed from MAC client}

end
else

begin
dataField := ComputePad(dataParam);
fcsField := CRC32(outgoingFrame)

end;
view := bits

end {aAssemble frame}
with outgoingHeader do

begin
headerView := headerFields;
preamble := ...; {* ‘1010...10,’ LSB to MSB*}
sfd := ...; {* ‘10101011,’ LSB to MSB*}
headerView := headerBits

end

end; {TransmitDataEncap}

If the MAC client chooses to generate the frame check sequence field for the frame, it passes this field to the MAC
sublayer via the fcsParamValue parameter. If the fcsParamPresent parameter is true, TransmitDataEncap uses the
fcsParamValue parameter as the frame check sequence field for the frame. Such a frame shall not require any
padding, since it is the responsibility of the MAC client to ensure that the frame meets the minFrameSize constraint.
If the fcsParamPresent parameter is false, the fcsParamValue parameter is unspecified.TransmitDataEncap first calls
the ComputePad function, followed by a call to the CRC32 function to generate the padding (if necessary) and the
frame check sequence field for the frame internally to the MAC sublayer.

CORRECTIONS TO IEEE Std 802.3ae-2002

20 July 2004 SH94996

ComputePad appends an array of arbitrary bits to the MAC client data to pad the frame to the minimum frame size.:

function ComputePad(
var dataParam: DataValue): DataValue;

begin
ComputePad := {Append an array of size padSize of arbitrary bits to the MAC client dataField}

end; {ComputePadParam}

function ComputePad(var dataParam: DataValue): DataValue;
begin

ComputePad := {Append an array of size padSize of arbitrary bits to the MAC client dataField}
end; {ComputePad}

TransmitLinkMgmt attempts to transmit the frame. In half duplex mode, it first defers to any passing traffic. In half
duplex mode, if a collision occurs, transmission is terminated properly and retransmission is scheduled following a
suitable backoff interval:

function TransmitLinkMgmt: TransmitStatus;
begin

attempts := 0;
transmitSucceeding := false;
lateCollisionCount := 0;
deferred := false; {iInitialize}
excessDefer := false;
while (attempts < attemptLimit) and (not transmitSucceeding)

and (not extend or lateCollisionCount = 0) do
{nNo retransmission after late collision if operating at > 100 1000 Mb/s}

begin {lLoop}
if bursting then {tThis is a burst continuation}

frameWaiting := true {sStart transmission without checking deference}
else {nNon bursting case, or first frame of a burst}

begin
if attempts > 0 then BackOff;
if halfDuplex then frameWaiting := true;
frameWaiting := true;

while deferring do {dDefer to passing frame, if any1}
if halfDuplex then deferred := true;
begin

nothing;
‡ if halfDuplex then deferred := true

end;
burstStart := true;
if burstMode then bursting := true

end;
lateCollisionError := false;
StartTransmit;
frameWaiting := false;
if halfDuplex then
begin

frameWaiting := false;

1. The Deference process ensures that the reception of traffic does not cause deferring to be true when in full duplex mode. Deferring is used in full
duplex mode to enforce the minimum interpacket gap spacing.

CORRECTIONS TO IEEE Std 802.3ae-2002

20 July 2004 SH94996

while transmitting do WatchForCollision;
if lateCollisionError then lateCollisionCount := lateCollisionCount + 1;

lateCollisionCount := lateCollisionCount + 1;
attempts := attempts + 1

end {hHalf duplex mode}
else while transmitting do nothing {fFull duplex mode}

end; {lLoop}
LayerMgmtTransmitCounters; {uUpdate transmit and transmit error counters in 5.2.4.2}
if transmitSucceeding then

begin
if burstMode then burstStart := false; {Can’t be the first frame anymore}
TransmitLinkMgmt := transmitOK

end
else if (extend and lateCollisionCount > 0) then TransmitLinkMgmt := lateCollisionErrorStatus;

TransmitLinkMgmt := lateCollisionErrorStatus;
else TransmitLinkMgmt := excessiveCollisionError

end; {TransmitLinkMgmt}

Each time a frame transmission attempt is initiated, StartTransmit is called to alert the BitTransmitter process that bit
transmission should begin:

procedure StartTransmit;
begin

currentTransmitBit := 1;
lastTransmitBit := frameSize;
transmitSucceeding := true;
transmitting := true;
lastHeaderBit: = := headerSize

end; {StartTransmit}

In half duplex mode, TransmitLinkMgmt monitors the medium for contention by repeatedly calling
WatchForCollision, once frame transmission has been initiated:

procedure WatchForCollision;
begin

if transmitSucceeding and collisionDetect then
begin

if currentTransmitBit > (slotTime – headerSize) then lateCollisionError := true;
lateCollisionError := true;

newCollision := true;
transmitSucceeding := false;
if burstMode then
begin

 bursting := false;
 if not burstStart then
 lateCollisionError := true {Every collision is late, unless it hits the first frame in a burst}

end
end

end; {WatchForCollision}

CORRECTIONS TO IEEE Std 802.3ae-2002

20 July 2004 SH94996

WatchForCollision, upon detecting a collision, updates newCollision to ensure proper jamming by the BitTransmitter
process. The current transmit bit number is checked to see if this is a late collision. If the collision occurs later than a
collision window of slotTime bits into the packet, it is considered as evidence of a late collision. The point at which
the collision is received is determined by the network media propagation time and the delay time through a station
and, as such, is implementation-dependent (see 4.1.2.2). While operating at speeds of 100 Mb/s or lower, an
implementation may optionally elect to end retransmission attempts after a late collision is detected. While operating
at speeds above 100 Mb/s the speed of 1000 Mb/s, an implementation shall end retransmission attempts after a late
collision is detected.

After transmission of the jam has been completed, if TransmitLinkMgmt determines that another attempt should be
made, BackOff is called to schedule the next attempt to retransmit the frame.

function Random (low, high: integer): integer;
begin

Random := ...{uUniformly distributed random integer r, such that low ≤ r < high}
end; {Random}

BackOff performs the truncated binary exponential backoff computation and then waits for the selected multiple of
the slot time.:

var maxBackOff: 2..1024; {Working variable of BackOff}
procedure BackOff;
begin

if attempts = 1 then maxBackOff := 2
else if attempts ≤ backOffLimit then maxBackOff := maxBackOff x 2;
Wait(slotTime x Random(0, maxBackOff))

end; {BackOff}

BurstTimer is a process that does nothing unless the bursting variable is true. When bursting is true, BurstTimer
increments burstCounter until the burstLimit limit is reached, whereupon BurstTimer assigns the value false to
bursting.:

process BurstTimer;
var burstCounter: integer;

begin
cycle

while not bursting do nothing; {wait for a burst}
burstCounter := 0;
while bursting and (burstCounter < burstLimit) do

begin
Wait(1);
burstCounter := burstCounter + 1

end;
bursting := false

end {burstMode cycle}
end; {BurstTimer}

process BurstTimer;
begin

cycle
while not bursting do nothing; {Wait for a burst}
Wait(burstLimit);
bursting := false

end {burstMode cycle}
end; {BurstTimer}

CORRECTIONS TO IEEE Std 802.3ae-2002

20 July 2004 SH94996

The Deference process runs asynchronously to continuously compute the proper value for the variable deferring. In
the case of half duplex burst mode, deferring remains true throughout the entire burst. Interframe spacing may be
used to lower the average data rate of a MAC at operating speeds above 1000 Mb/s in the full duplex mode, when it is
necessary to adapt it to the data rate of a WAN-based physical layer. When interframe stretching is enabled, deferring
remains true throughout the entire extended interframe gap, which includes the sum of interFrameSpacing and the
interframe extension as determined by the BitTransmitter:

process Deference;
var realTimeCounter: integer; wasTransmitting: Boolean;

begin
if halfDuplex then cycle{hHalf duplex loop}

while not carrierSense do nothing; {wWatch for carrier to appear}
deferring := true; {dDelay start of new transmissions}
wasTransmitting := transmitting;
while carrierSense or transmitting do wasTransmitting := wasTransmitting or transmitting;

wasTransmitting: = wasTransmitting or transmitting;
if wasTransmitting then Wait(interFrameSpacingPart1) {Time out first part of interframe gap}

begin
StartRealTimeDelay; {time out first part interframe gap}
while RealTimeDelay(interFrameSpacingPart1) do nothing

end
else

begin
StartRealTimeDelay;
repeat
while carrierSense do StartRealTimeDelay
until not RealTimeDelay(interFrameSpacingPart1)
realTimeCounter := interFrameSpacingPart1;
repeat

while carrierSense do realTimeCounter := interFrameSpacingPart1;
Wait(1);
realTimeCounter := realTimeCounter – 1

until (realTimeCounter = 0)
end;

StartRealTimeDelay; {time out second part interframe gap}
while RealTimeDelay(interFrameSpacingPart2) do nothing;
Wait(interFrameSpacingPart2); {Time out second part of interframe gap}
deferring: = := false; {aAllow new transmissions to proceed}
while frameWaiting do nothing {aAllow waiting transmission, if any}

end {hHalf duplex loop}
else cycle {fFull duplex loop}

while not transmitting do nothing; {wWait for the start of a transmission}
deferring := true; {iInhibit future transmissions}
while transmitting do nothing; {wWait for the end of the current transmission}
StartRealTimeDelay; {time out an interframe gap}
while RealTimeDelay(interFrameSpacing) do nothing;
Wait(interFrameSpacing + ifsStretchSize x 8); {Time out entire interframe gap and IFS extension}
if not frameWaiting then {Don’t roll over the remainder into the next frame}

begin
Wait(8);
ifsStretchCount := 0

CORRECTIONS TO IEEE Std 802.3ae-2002

20 July 2004 SH94996

end
deferring := false {dDon’t inhibit transmission}

end {fFull duplex loop}
end; {Deference}

If the ifsStretchMode is enabled, the Deference process continues to enforce interframe spacing for an additional
number of bit times, after the completion of timing the interFrameSpacing. The additional number of bit times is
reflected by the variable ifsStretchSize. If the variable ifsStretchCount is less than ifsStretchRatio and the next frame
is ready for transmission (variable frameWaiting is true), the Deference process enforces interframe spacing only for
the integer number of octets, as indicated by ifsStretchSize, and saves ifsStretchCount for the next frame’s transmis-
sion. If the next frame is not ready for transmission (variable frameWaiting is false), then the Deference process ini-
tializes the ifsStretchCount variable to zero.

procedure StartRealTimeDelay
begin

{reset the realtime timer and start it timing}
end; {StartRealTimeDelay}

function RealTimeDelay (µsec:real): Boolean;
begin

{return the value true if the specified number of microseconds have
not elapsed since the most recent invocation of StartRealTimeDelay,
otherwise return the value false}

end; {RealTimeDelay}

The BitTransmitter process runs asynchronously, transmitting bits at a rate determined by the Physical Layer’s Trans-
mitBit operation:

process BitTransmitter;
begin

cycle {oOuter loop}
if transmitting then

begin {iInner loop}
extendError := false;
if ifsStretchMode then {Calculate the counter values}

begin
ifsStretchSize := (ifsStretchCount + headerSize + frameSize + interFrameSpacing) div

ifsStretchRatio; {Extension of the interframe spacing}
ifsStretchCount := (ifsStretchCount + headerSize + frameSize + interFrameSpacing)

mod ifsStretchRatio {Remainder to carry over into the next frame’s transmission}
end;

PhysicalSignalEncap; {Send preamble and start of frame delimiter}
while transmitting do

begin
if (currentTransmitBit > lastTransmitBit) then TransmitBit(extensionBit)
else if extendError then TransmitBit(extensionErrorBit) {Jam in extension}

if extendError then
TransmitBit(extensionErrorBit) {jam in extension}

else TransmitBit(outgoingFrame[currentTransmitBit]);
TransmitBit(outgoingFrame[currentTransmitBit]);

if newCollision then StartJam else NextBit
end;

if bursting then
begin

CORRECTIONS TO IEEE Std 802.3ae-2002

20 July 2004 SH94996

InterFrameSignal;
if extendError then

if transmitting then transmitting := false {TransmitFrame may have been
called during InterFrameSignal}

{TransmitFrame may have been called during InterFrameSignal}
else IncLargeCounter(lateCollision);

{Count late collisions which were missed by TransmitLinkMgmt}
IncLargeCounter(lateCollision); {count late collisions which

were missed by TransmitLinkMgmt}
bursting := bursting and (frameWaiting oror transmitting)

end
end {iInner loop}

end {oOuter loop}
end; {BitTransmitter}

The bits transmitted to the physical layer can take one of four values: data zero (0), data one (1), extensionBit
(EXTEND), or extensionErrorBit (EXTEND_ERROR). The values extensionBit and extensionErrorBit are not trans-
mitted between the first preamble bit of a frame and the last data bit of a frame under any circumstances. The Bit-
Transmitter calls the procedure TransmitBit with bitParam = extensionBit only when it is necessary to perform carrier
extension on a frame after all of the data bits of a frame have been transmitted. The BitTransmitter calls the procedure
TransmitBit with bitParam = extensionErrorBit only when it is necessary to jam during carrier extension.

procedure PhysicalSignalEncap;
begin

while currentTransmitBit ≤ lastHeaderBit do
begin

TransmitBit(outgoingHeader[currentTransmitBit]); {tTransmit header one bit at a time}
currentTransmitBit := currentTransmitBit + 1

end;
if newCollision then StartJam else currentTransmitBit := 1
currentTransmitBit := 1

end; {PhysicalSignalEncap}

The procedure InterFrameSignal fills the interframe interval between the frames of a burst with extensionBits. Inter-
FrameSignal also monitors the variable collisionDetect during the interframe interval between the frames of a burst,
and will end a burst if a collision occurs during the interframe interval. The procedural model is defined such that a
MAC operating in the burstMode will emit an extraneous sequence of interFrameSize extensionBits in the event that
there are no additional frames ready for transmission after InterFrameSignal returns. Implementations may be able to
avoid sending this extraneous sequence of extensionBits if they have access to information (such as the occupancy of
a transmit queue) that is not assumed to be available to the procedural model.

procedure InterFrameSignal;
var interFrameCount, interFrameTotal : integer;

begin
interFrameCount := 0;
interFrameTotal := interFrameSize;
interFrameTotal := interFrameSpacing;
while interFrameCount < interFrameTotal do

begin
if not extendError then TransmitBit(extensionBit)

TransmitBit(extensionBit)
else TransmitBit(extensionErrorBit);

TransmitBit(extensionErrorBit);
interFrameCount := interFrameCount + 1;

CORRECTIONS TO IEEE Std 802.3ae-2002

20 July 2004 SH94996

if collisionDetect and not extendError then
begin

bursting := false;
extendError := true;
interFrameCount := 0;
interFrameTotal := jamSize

end
end

end; {InterFrameSignal}

procedure NextBit;
begin

currentTransmitBit := currentTransmitBit + 1;
if halfDuplex and burstStart and transmitSucceeding then {cCarrier extension may be required}

transmitting := (currentTransmitBit ≤ max(lastTransmitBit, slotTime))
else transmitting := (currentTransmitBit ≤ lastTransmitBit)

transmitting := (currentTransmitBit ≤ lastTransmitBit)
end; {NextBit}

procedure StartJam;
begin

extendError := currentTransmitBit > lastTransmitBit;
currentTransmitBit := 1;
lastTransmitBit := jamSize;
newCollision := false

end; {StartJam}

BitTransmitter, upon detecting a new collision, immediately enforces it by calling StartJam to initiate the transmis-
sion of the jam. The jam should contain a sufficient number of bits of arbitrary data so that it is assured that both com-
municating stations detect the collision. (StartJam uses the first set of bits of the frame up to jamSize, merely to
simplify this program.)

4.2.9 Frame reception

Change subclause 4.2.9 to read as follows:

The algorithms in this subclause define CSMA/CD Media Access sublayer frame reception.

The function ReceiveFrame implements the frame reception operation provided to the MAC client:

function ReceiveFrame (
var destinationParam: AddressValue;
var sourceParam: AddressValue;
var lengthOrTypeParam: LengthOrTypeValue;
var dataParam: DataValue): ReceiveStatus;
var dataParam: DataValue;
var fcsParamValue: CRCValue;
var fcsParamPresent: Bit): ReceiveStatus;

function ReceiveDataDecap: ReceiveStatus; ... {n{Nested function; see body below}
begin

if receiveEnabled then
repeat

ReceiveLinkMgmt;
ReceiveFrame := ReceiveDataDecap;

CORRECTIONS TO IEEE Std 802.3ae-2002

20 July 2004 SH94996

until receiveSucceeding
else ReceiveFrame := receiveDisabled

ReceiveFrame := receiveDisabled
end; {ReceiveFrame}

If enabled, ReceiveFrame calls ReceiveLinkMgmt to receive the next valid frame, and then calls the internal function
ReceiveDataDecap to return the frame’s fields to the MAC client if the frame’s address indicates that it should do so.
The returned ReceiveStatus indicates the presence or absence of detected transmission errors in the frame.

function ReceiveDataDecap: ReceiveStatus;
‡ var status : ReceiveStatus; {hHolds receive status information}

begin
‡ with incomingFrame do
‡ begin
‡ view := fields;

receiveSucceeding := RecognizeAddress (incomingFrame, destinationField);
‡ receiveSucceeding := LayerMgmtRecognizeAddress (destinationField);

if receiveSucceeding then
begin {dDisassemble frame}

destinationParam := destinationField;
sourceParam := sourceField;
lengthOrTypeParam: = := lengthOrTypeField;
dataParam := RemovePad (lengthOrTypeField, dataField);
fcsParamValue := fcsField;
fcsParamPresent := passReceiveFCSMode;
exceedsMaxLength := ...; ({Check to determine if receive frame size exceeds the maximum

permitted frame size. MAC implementations may use either
maxUntaggedFrameSize or (maxUntaggedFrameSize +
qTagPrefixSize) for the maximum permitted frame size,
either as a constant or as a function of whether the frame being
received is a basic or tagged frame (see 3.2, 3.5). In
implementations that treat this as a constant, it is recommended
that the larger value be used. The use of the smaller value
in this case may result in valid tagged frames exceeding the
maximum permitted frame size.}

if exceedsMaxLength then status := frameTooLong
else if fcsField = CRC32(incomingFrame) and extensionOK then

‡ if validLength then status := receiveOK else status := lengthError
‡ else if excessBits = 0 or not extensionOK then status := frameCheckError
‡ else status := alignmentError;

if fcsField = CRC32(incomingFrame) and extensionOK then
begin

‡ if validLength then status: = receiveOK
‡ else status: = lengthError

end
else

begin
‡ if excessBits = 0 or not extensionOK then status:= frameCheckError
‡ else status := alignmentError

end;
‡ LayerMgmtReceiveCounters(status); {Update receive counters in 5.2.4.3}

{update receive and receive error counters in 5.2.4.3}
view: = := bits

CORRECTIONS TO IEEE Std 802.3ae-2002

20 July 2004 SH94996

end {dDisassemble frame}
‡ end; {wWith incomingFrame}
‡ ReceiveDataDecap := status

end; {ReceiveDataDecap}

function RecognizeAddress (address: AddressValue): Boolean;
begin

RecognizeAddress := ...; {Returns true for the set of physical, broadcast,
and multicast-group addresses corresponding
to this station}

end; {RecognizeAddress}

function LayerMgmtRecognizeAddress(address: AddressValue): Boolean;
begin

if {promiscuous receive enabled} then LayerMgmtRecognizeAddress := true;
if address = ... {MAC station address} then LayerMgmtRecognizeAddress := true;
if address = ... {Broadcast address} then LayerMgmtRecognizeAddress := true;
if address = ... {One of the addresses on the multicast list and multicast reception is enabled} then

LayerMgmtRecognizeAddress := true;
LayerMgmtRecognizeAddress := false

end; {LayerMgmtRecognizeAddress}

The function RemovePad strips any padding that was generated to meet the minFrameSize constraint, if possible.
When the MAC sublayer operates in the mode that enables passing of the frame check sequence field of all received
frames to the MAC client (passReceiveFCSMode variable is true), it shall not strip the padding and it shall leave the
data field of the frame intact. Length checking is provided for Length interpretations of the Length/Type field. For
Length/Type field values in the range between maxValidFrame and minTypeValue, the behavior of the RemovePad
function is unspecified.:

function RemovePad(var lengthOrTypeParam: LengthOrTypeValue; dataParam: DataValue): DataValue;
var lengthOrTypeParam:LengthOrTypeValue; dataParam:DataValue):DataValue;

begin
if lengthOrTypeParam ≥ minTypeValue then

begin
validLength := true; {Don’t perform length checking for Type field interpretations}
RemovePad := dataParam

end
else if lengthOrTypeParam ≤ maxValidFrame then

begin
if lengthOrTypeParam ≤ maxValidFrame then
begin
validLength := {For length interpretations of the Length/Type field, check to determine if value

represented by Length/Type field matches the received clientDataSize};
if validLength and not passReceiveFCSMode then

RemovePad := {tTruncate the dataParam (when present) to the value represented by the
lengthOrTypeParam (in octets) and return the result}

else RemovePad := dataParam
end

end
end; {RemovePad}

ReceiveLinkMgmt attempts repeatedly to receive the bits of a frame, discarding any fragments from collisions by
comparing them to the minimum valid frame size:

CORRECTIONS TO IEEE Std 802.3ae-2002

20 July 2004 SH94996

procedure ReceiveLinkMgmt;
begin

repeat
StartReceive;
while receiving do nothing; {wWait for frame to finish arriving}
excessBits := frameSize mod 8;
frameSize := frameSize – excessBits; {tTruncate to octet boundary}
receiveSucceeding := receiveSucceeding and (frameSize ≥ minFrameSize)

{rReject collision fragments}
until receiveSucceeding

end; {ReceiveLinkMgmt}

procedure StartReceive;
begin

receiveSucceeding := true;
receiving := true

end; {StartReceive}

The BitReceiver process runs asynchronously, receiving bits from the medium at the rate determined by the Physical
Layer’s ReceiveBit operation, partitioning them into frames, and optionally receiving them:

process BitReceiver;
var b : PhysicalBit;

incomingFrameSize: integer; {cCount of all bits received in frame including extension}
frameFinished: Boolean;
enableBitReceiver: Boolean;
currentReceiveBit: 1..frameSize; {Position of current bit in incomingFrame}

begin
cycle {oOuter loop}

if receiveEnabled then
begin {rReceive next frame from physical layer}

currentReceiveBit := 1;
incomingFrameSize := 0;
frameFinished := false;
enableBitReceiver := receiving;
PhysicalSignalDecap; {Skip idle and extension, strip off preamble and sfd}
if enableBitReceiver then extensionOK := true;
while receiveDataValid and not frameFinished do

{inner loop to receive the rest of an incoming frame}
begin {Inner loop to receive the rest of an incoming frame}

b := ReceiveBit; {nNext bit from physical medium}
incomingFrameSize := incomingFrameSize + 1;
if b = 0 or b = 1 then {nNormal case}

if enableBitReceiver then {aAppend to frame}
begin

if incomingFrameSize > currentReceiveBit then extensionOK := false;
 {Errors in the extension get mapped to data bits on input}

incomingFrame[currentReceiveBit] := b;
currentReceiveBit := currentReceiveBit + 1

end
else if not extending then frameFinished := true; {b must be an extensionBit}

if not extending then frameFinished := true;
if incomingFrameSize ≥ slotTime then extending := false

end; {iInner loop}

CORRECTIONS TO IEEE Std 802.3ae-2002

20 July 2004 SH94996

if enableBitReceiver then
begin

frameSize := currentReceiveBit – 1;
receiveSucceeding := not extending;
receiving := false

end
end {eEnabled}

end {oOuter loop}
end; {BitReceiver}

The bits received from the physical layer can take one of three values: data zero (0), data one (1), or extensionBit
(EXTEND). The value extensionBit will not occur between the first preamble bit of a frame and the last data bit of a
frame in normal circumstances. Extension bits are counted by the BitReceiver but are not appended to the incoming
frame. The BitReceiver checks whether the bit received from the physical layer is a data bit or an extensionBit before
appending it to the incoming frame. Thus, the array of bits in incomingFrame will only contain data bits. The
underlying Reconciliation Sublayer (RS) maps incoming EXTEND_ERROR bits to normal data bits. Thus, the
reception of additional data bits after the frame extension has started is an indication that the frame should be
discarded.

procedure PhysicalSignalDecap;
begin

{Receive one bit at a time from physical medium until a valid sfd is detected, discard bits and return.}
end; {PhysicalSignalDecap}

The process SetExtending controls the extending variable, which determines whether a received frame must be at
least slotTime bits in length or merely minFrameSize bits in length to be considered valid by the BitReceiver.
SetExtending sets the extending variable to true whenever receiveDataValid is de-asserted, while in half duplex mode
at operating speeds above 100 Mb/s. an operating speed of 1000 Mb/s:

process SetExtending;
begin

cyclecycle {lLoop forever}
while receiveDataValid do nothing;
extending := extend and halfDuplex

end {lLoop}
end; {SetExtending}

