IEEE Std 802.11jTM-2004 [Amendment to IEEE Std 802.11TM, 1999 Edition (Reaff 2003) as amended by IEEE Stds 802.11aTM-1999, 802.11bTM-1999, 802.11bTM-1999/Cor 1-2001, 802.11dTM-2001, 802.11gTM-2003, 802.11hTM-2003, and 802.11jTM-2004]

802.11 j™

IEEE Standard for Information technology— Telecommunications and information exchange between systems— Local and metropolitan area networks— Specific requirements

Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications

Amendment 7: 4.9 GHz–5 GHz Operation in Japan

IEEE Computer Society

Sponsored by the LAN/MAN Standards Committee

This amendment is an approved IEEE Standard. It will be incorporated into the base standard in a future edition.

3 Park Avenue, New York, NY 10016-5997, USA

29 October 2004 Print: SH95267 PDF: SS95267

IEEE Std 802.11j[™]-2004

[Amendment to IEEE Std 802.11[™], 1999 Edition (Reaff 2003) as amended by IEEE Stds 802.11a[™]-1999, 802.11b[™]-1999, 802.11b[™]-1999/Cor 1-2001, 802.11d[™]-2001, 802.11g[™]-2003, 802.11h[™]-2003, and 802.11i[™]-2004]

IEEE Standard for Information technology— Telecommunications and information exchange between systems— Local and metropolitan area networks— Specific requirements

Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications

Amendment 7: 4.9 GHz–5 GHz Operation in Japan

Sponsor LAN/MAN Committee of the IEEE Computer Society

Approved 23 September 2004

IEEE-SA Standards Board

Abstract: This amendment specifies the extensions to IEEE Std 802.11 for wireless local area networks (WLANs) providing mechanisms for operation in the 4.9 GHz and 5 GHz bands in Japan. **Keywords:** LAN, local area network, regulatory class

Print: ISBN 0-7381-4464-9 SH95267 PDF: ISBN 0-7381-4465-7 SS95267

The Institute of Electrical and Electronics Engineers, Inc. 3 Park Avenue, New York, NY 10016-5997, USA

Copyright © 2004 by the Institute of Electrical and Electronics Engineers, Inc. All rights reserved. Published 29 October 2004. Printed in the United States of America.

IEEE and 802 are registered trademarks in the U.S. Patent & Trademark Office, owned by the Institute of Electrical and Electronics Engineers, Incorporated.

No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior written permission of the publisher.

IEEE Standards documents are developed within the IEEE Societies and the Standards Coordinating Committees of the IEEE Standards Association (IEEE-SA) Standards Board. The IEEE develops its standards through a consensus development process, approved by the American National Standards Institute, which brings together volunteers representing varied viewpoints and interests to achieve the final product. Volunteers are not necessarily members of the Institute and serve without compensation. While the IEEE administers the process and establishes rules to promote fairness in the consensus development process, the IEEE does not independently evaluate, test, or verify the accuracy of any of the information contained in its standards.

Use of an IEEE Standard is wholly voluntary. The IEEE disclaims liability for any personal injury, property or other damage, of any nature whatsoever, whether special, indirect, consequential, or compensatory, directly or indirectly resulting from the publication, use of, or reliance upon this, or any other IEEE Standard document.

The IEEE does not warrant or represent the accuracy or content of the material contained herein, and expressly disclaims any express or implied warranty, including any implied warranty of merchantability or fitness for a specific purpose, or that the use of the material contained herein is free from patent infringement. IEEE Standards documents are supplied "AS IS."

The existence of an IEEE Standard does not imply that there are no other ways to produce, test, measure, purchase, market, or provide other goods and services related to the scope of the IEEE Standard. Furthermore, the viewpoint expressed at the time a standard is approved and issued is subject to change brought about through developments in the state of the art and comments received from users of the standard. Every IEEE Standard is subjected to review at least every five years for revision or reaffirmation. When a document is more than five years old and has not been reaffirmed, it is reasonable to conclude that its contents, although still of some value, do not wholly reflect the present state of the art. Users are cautioned to check to determine that they have the latest edition of any IEEE Standard.

In publishing and making this document available, the IEEE is not suggesting or rendering professional or other services for, or on behalf of, any person or entity. Nor is the IEEE undertaking to perform any duty owed by any other person or entity to another. Any person utilizing this, and any other IEEE Standards document, should rely upon the advice of a competent professional in determining the exercise of reasonable care in any given circumstances.

Interpretations: Occasionally questions may arise regarding the meaning of portions of standards as they relate to specific applications. When the need for interpretations is brought to the attention of IEEE, the Institute will initiate action to prepare appropriate responses. Since IEEE Standards represent a consensus of concerned interests, it is important to ensure that any interpretation has also received the concurrence of a balance of interests. For this reason, IEEE and the members of its societies and Standards Coordinating Committees are not able to provide an instant response to interpretation requests except in those cases where the matter has previously received formal consideration. At lectures, symposia, seminars, or educational courses, an individual presenting information on IEEE standards shall make it clear that his or her views should be considered the personal views of that individual rather than the formal position, explanation, or interpretation of the IEEE.

Comments for revision of IEEE Standards are welcome from any interested party, regardless of membership affiliation with IEEE. Suggestions for changes in documents should be in the form of a proposed change of text, together with appropriate supporting comments. Comments on standards and requests for interpretations should be addressed to:

Secretary, IEEE-SA Standards Board

445 Hoes Lane

Piscataway, NJ 08854 USA

NOTE—Attention is called to the possibility that implementation of this standard may require use of subject matter covered by patent rights. By publication of this standard, no position is taken with respect to the existence or validity of any patent rights in connection therewith. The IEEE shall not be responsible for identifying patents for which a license may be required by an IEEE standard or for conducting inquiries into the legal validity or scope of those patents that are brought to its attention.

Authorization to photocopy portions of any individual standard for internal or personal use is granted by the Institute of Electrical and Electronics Engineers, Inc., provided that the appropriate fee is paid to Copyright Clearance Center. To arrange for payment of licensing fee, please contact Copyright Clearance Center, Customer Service, 222 Rosewood Drive, Danvers, MA 01923 USA; +1 978 750 8400. Permission to photocopy portions of any individual standard for educational classroom use can also be obtained through the Copyright Clearance Center.

Introduction

[This introduction is not part of IEEE Std 802.11j-2004, IEEE Standard for Information Technology—Telecommunications and Information Exchange Between Systems—Local and Metropolitan Area Networks—Specific Requirements—Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications—Amendment 7: 4.9 GHz–5 GHz Operation in Japan.]

IEEE Std 802.11j-2004 provides mechanisms for signalling compliance with regulatory domain requirements of the USA, Europe, and Japan; for extending 5 GHz orthogonal frequency division multiplexing (OFDM) physical layer (PHY) operation outdoors; and for 5 GHz OFDM PHY operation in nonoverlapping 10 MHz channel spacing.

Notice to users

Errata

Errata, if any, for this and all other standards can be accessed at the following URL: <u>http://</u><u>standards.ieee.org/reading/ieee/updates/errata/index.html</u>. Users are encouraged to check this URL for errata periodically.

Interpretations

Current interpretations can be accessed at the following URL: <u>http://standards.ieee.org/reading/ieee/interp/index.html</u>.

Patents

Attention is called to the possibility that implementation of this standard may require use of subject matter covered by patent rights. By publication of this standard, no position is taken with respect to the existence or validity of any patent rights in connection therewith. The IEEE shall not be responsible for identifying patents or patent applications for which a license may be required to implement an IEEE standard or for conducting inquiries into the legal validity or scope of those patents that are brought to its attention.

Participants

At the time the draft of this amendment was sent to sponsor ballot, the IEEE 802.11 Working Group had the following officers:

Stuart J. Kerry, Chair Al Petrick and Harry Worstell, Vice-Chairs Tim Godfrey, Secretary Brian Mathews, Publicity Standing Committee Teik-Kheong Tan, Wireless Next Generation Standing Committee Terry L. Cole, Editor John Fakatselis, Chair Task Group e Duncan Kitchen, Vice-Chair Task Group e David Halasz, Chair Task Group i Richard Paine, Chair Task Group k Bob O'Hara, Chair Task Group m Bruce Kramer, Chair Task Group n

When the IEEE 802.11 Working Group approved this amendment, the Task Group j had the following membership:

Sheung Li, Chair Peter Ecclesine, Editor Albert Garrett, Christopher Hansen, Andrew Myles, and Stephen P. Pope, Secretaries Osama Aboul-Magd Harry Bims Simon Duggins Bjorn Bjerke Tomoko Adachi Baris Dundar Jaemin Ahn Simon Black Bryan Dunn Thomas Alexander Jan Boer Roger Durand William Brasier Areg Alimian Eryk Dutkiewicz Richard Allen Jennifer Bray Mary DuVal Keith Amann Phillip Brownlee Yaron Dvcian Dov Andelman Alex Bugeja Donald Eastlake Alistair Buttar Merwyn Andrade Dennis Eaton Peter Cain Carl Andren Jonathan Edney David Andrus Richard Cam Bruce Edwards Butch Anton Nancy Cam-Winget Natarajan Ekambaram Hidenori Aoki Bill Carney Jason Ellis Tsuguhide Aoki Pat Carson Darwin Engwer Michimasa Aramaki Broady Cash Jeff Erwin Takashi Aramaki Jayant Chande Andrew Estrada William Arbaugh Kisoo Chang Christoph Euscher Lee Armstrong Clint Chaplin Knut Evensen Larry Arnett Ye Chen John Fakatselis Hiroshi Asai Hong Cheng Lars Falk Yusuke Asai Greg Chesson Steve Fantaske Aik Chindapol Arthur Astrin Paul Feinberg Sunghyun Choi Malik Audeh Alex Feldman Won-Joon Choi Geert Awater Weishi Feng Woo-Yong Choi Shahrnaz Azizi Nestor Fesas Flovd Backes Yang-Seok Choi Matthew Fischer Jin-Seok Bae Per Christoffersson Wayne Fisher David Bagby Simon Chung Helena Flygare Jay Bain Ken Clements Brian Ford Dennis Baker Sean Coffey Ruben Formoso Ramanathan Balachander Terry Cole Sheila Frankel Paul Congdon Jaiganesh Balakrishnan John Fuller Boyd Bangerter W. Steven Conner James Gardner John Barr Charles Cook Atul Garg Simon Barber Kenneth Cook Ramez Gerges Farooq Bari Todor Cooklev Noam Geri Michael Barkway Mary Cramer Vafa Ghazi Kevin Barry Steven Crowley Monisha Ghosh Anuj Batra Nora Dabbous James Gilb Burak Baysal Rolf De Vegt Jeffrey Gilbert Javier Del Prado Pavon Tomer Bentzion Rabinder Gill Mathilde Benveniste Georg Dickmann Tim Godfrey Wim Diepstraten Don Berry Wataru Gohda

Yoshiharu Doi

Brett Douglas

Jan Biermann

Arnold Bilstad

Yuri Goldstein

Jim Goodman

Aviv Goren Andrew Gowans Rik Graulus Gordon Gray Evan Green Larry Green Patrick Green Kerry Greer Daging Gu Rajugopal Gubbi Sam Guirguis Srikanth Gummadi Qiang Guo Vivek Gupta Herman Haisch David Halasz Steven Halford Robert Hall Neil Hamady Mounir Hamdi Yasuo Harada Daniel Harkins Thomas Haslestad Amer Hassan Vann Hasty James Hauser Yutaka Havakawa Morihiko Havashi Haixiang He Xiaoning He Robert Heile Eleanor Hepworth Frans Hermodsson Dave Hetherington Guido Hiertz Garth Hillman Christopher Hinsz Jun Hirano Mikael Hjelm Jin-Meng Ho Michael Hoghooghi Allen Hollister Keith Holt Satoru Hori William Horne Srinath Hosur Russell Housley Frank Howley Yungping Hsu Robert Huang Dave Hudak David Hunter Syang-Myau Hwang David Hytha Muhammad Ikram Daichi Imamura Kimihiko Imamura Yasuhiko Inoue Katsumi Ishii Stephen Jackson Eric Jacobsen Marc Jalfon Kyung-Hun Jang Bruno Jechoux

Taehvun Jeon Moo Ryong Jeong Daniel Jiang Kuniko Jimi Walter Johnson David Johnston Jari Jokela VK Jones Bobby Jose Tvan-Shu Jou Carl Kain Srinivas Kandala You Sung Kang Jeyhan Karaoguz Kevin Karcz Pankaj Karnik Mika Kasslin Dean Kawaguchi Patrick Kelly Richard Kennedy Stuart Kerry John Ketchum Vytas Kezys Andrew Khieu Ryoji Kido Tomohiro Kikuma Byoung-Jo Kim Dooseok Kim Joonsuk Kim Yongbum Kim Yongsuk Kim Young Kim Youngsoo Kim Wayne King John Klein Guenter Kleindl Toshiya Kobashi Keiichiro Koga Lalit Kotecha John Kowalski Bruce Kraemer Gopal Krishnan Shuji Kubota Thomas Kuehnel Tomoaki Kumagai Takushi Kunihiro Thomas Kurihara Denis Kuwahara Joe Kwak Paul Lambert David Landeta Jim Lansford Colin Lanzl Jon LaRosa Choi Law David Leach Dongjun Lee Insun Lee Jae Hwa Lee Marty Lefkowitz Onno Letanche Joseph Levy Mike Lewis Pen Li

Ouinn LI Jie Liang Wei Lih Lim Yong Je Lim Huashih Lin Sheng Lin Victor Lin Stanley Ling Der-Zheng Liu I-Ru Liu Yonghe Liu Titus Lo Peter Loc Patrick Lopez Hui-Ling Lou Xiaolin Lu Luke Ludeman Yi-Jen Lung Akira Maeki Ravishankar Mahadevappa Doug Makishima Majid Malek Rahul Malik Jouni Malinen Krishna Malladi Stefan Mangold Mahalingam Mani Jonn Martell Naotaka Maruyama Paul Marzec Brian Mathews Yoichi Matsumoto Sudheer Matta Thomas Maufer Conrad Maxwell Stephen McCann Kelly McClellan Gary McCoy William McFarland Timothy McGovern Bill McIntosh Justin McNew Irina Medvedev Pratik Mehta Robert Meier Graham Melvile Klaus Meyer Robert Miller Partho Mishra David Mitton Kenichi Miyoshi Rishi Mohindra Peter Molnar Leo Monteban Michael Montemurro Rondal Moore Tim Moore Anthony Morelli Mike Moreton Yuichi Morioka Steven Morley Robert Moskowitz Joseph Mueller Syed Mujtaba

Willem Mulder Peter Murphy Peter Murray Andrew Myers Yukimasa Nagai Katsuvoshi Naka Makoto Nakahara Michiharu Nakamura Seigo Nakao Hirovuki Nakase Sanjiv Nanda Ravi Narasimhan Slobodan Nedic Robert Neilsen David Nelson Dan Nemits Chiu Ngo Tuan Nguyen Qiang Ni Gunnar Nitsche Erwin Noble Tzvetan Novkov Ivan Oakes Kei Obara Karen O'Donoghue Hiroshi Oguma Jongtaek Oh Bob O'Hara Sean O'Hara Yoshihiro Ohtani Chandra Olson Timothy Olson Hiroshi Ono Peter Oomen Lior Ophir Satoshi Oyama **Richard Paine** Michael Paljug Stephen Palm Jong Ae Park Jonghun Park Joon Goo Park Taegon Park Steve Parker Glenn Parsons Vijay Patel Eldad Perahia Sebastien Perrot Al Petrick Joe Pitarresi Leo Pluswick James Portaro Al Potter Henry Ptasinski Anuj Puri Aleksandar Purkovic Jim Raab Ali Raissinia Ajay Rajkumar Noman Rangwala Ivan Reede Stanley Reible Anthony Reid Joe Repice

Edward Reuss Valentine Rhodes Maximilian Riegel Edmund Ring Carlos Rios Stefan Rommer Jon Rosdahl John Sadowsky Ali Sadri Kazuvuki Sakoda Shoji Sakurai Kenichi Sakusabe Hemanth Sampath Sumeet Sandhu Anil Sanwalka Ryo Sawai Tom Schaffnit Brian Schreder Sid Schrum Erik Schvlander Michael Seals Joe Sensendorf N. Shankaranarayanan Donald Shaver Stephen Shellhammer Tamara Shelton Yangmin Shen Ian Sherlock Matthew Sherman Ming Sheu Shusaku Shimada Matthew Shoemake William Shvodian D. J. Shyy Thomas Siep Floyd Simpson Manoneet Singh Hasse Sinivaara Efstratios (Stan) Skafidas David Skellern Roger Skidmore Donald Sloan Kevin Smart David Smith Yoram Solomon V. Somayazulu Amjad Soomro Robert Soranno Gary Spiess William Spurgeon Dorothy Stanley William Steck Greg Steele Adrian Stephens William Stevens Carl Stevenson Fred Stivers Warren Strand Paul Struhsaker Michael Su Hiroki Sugimoto Abhaya Sumanasena Qinfang Sun S. K. Sung

Shravan Surineni Hirokazu Tagiri Masahiro Takagi Mineo Takai Katsumi Takaoka Daisuke Takeda Nir Tal Tsuyoshi Tamaki Pek-Yew Tan Teik-Kheong Tan Wai-Cheung Tang Takuma Tanimoto Henry Taylor James Taylor Carl Temme Stephan ten Brink John Terry Timothy Thornton Jerry Thrasher James Tomcik Allen Tsai Jean Tsao Chih Tsien Tom Tsoulogiannis Kwei Tu David Tung Sandra Turner Mike Tzamaloukas Marcos Tzannes Yusuke Uchida Takashi Ueda Naoki Urano Hidemi Usuba Chandra Vaidvanathan Hans Van Leeuwen Richard van Leeuwen Richard Van Nee Nico van Waes Allert van Zelst Narasimhan Venkatesh Madan Venugopal George Vlantis Dennis Volpano Tim Wakeley Jesse Walker Brad Wallace Thierry Walrant Vivek Wandile Huaiyuan (Stephen) Wang Stanley Wang Christopher Ware Fuiio Watanabe Mark Webster Matthew Welborn Bryan Wells Filip Weytjens Stephen Whitesell Michael Wilhovte Michael Glenn Williams Peter Williams Richard Williams James Wilson Steven Wilson Jack Winters

Jin Kue Wong Timothy Wong Patrick Worfolk Harry Worstell Charles Wright Gang Wu Yang Xiao James Yee Jung Yee Kazim Yildiz Jijun Yin Kit Yong Wonyong Yoon Heejung Yu Hon Yung Erol Yurtkuran Zhun Zhong Glen Zorn James Zyren

Major contributions were received from the following individuals:

Tomoko Adachi Peter Ecclesine Darwin A. Engwer Albert Garrett Christopher Hansen Yasuhiko Inoue Uriel Lemberger Sheung Li William McFarland Andrew Myles Gunnar Nitsche Tomoki Ohsawa Kazuhiro Okanoue Stephen P. Pope Masahiro Takagi

This amendment was balloted using individual balloting. The following members of the balloting committee voted on this amendment. Balloters may have voted for approval, disapproval, or abstention.

Tomoko Adachi Toru Aihara Wole Akpose Thomas Alexander Butch Anton Eladio Arvelo Jennifer Bray William Byrd Clint Chaplin Keith Chow Terry L. Cole Javier del Prado Pavon Thomas Dineen Sourav Dutta Peter Ecclesine Darwin A. Engwer Theodore Georgantas Ron Greenthaler Qiang Guo Jose Gutierrez Zion Hadad David Halasz Atsushi Ito Yasuhiko Inoue Peeya Iwagoshi Raj Jain David James

David Johnston Bobby Jose Kevin Karcz Ruediger Kays Stuart Kerry Joshua Kilgore Guenter Kleindl Cees Klik Thomas M. Kurihara Denis Kuwahara Jeremy Landt Jan-Ray Liao Randolph Little William Lumpkins Ben Manny Justin McNew Ingolf Meier Yinghua Min Leo Monteban Mike Moreton Narayanan Murugesan Andrew Myles Paul Nikolich Erwin Noble Bob O'Hara Stephen Palm

Roger Pandanda Subbu Ponnuswamy Vikram Punj Maximilian Riegel Randal Roebuck Osman Sakr Vaughn Sheline Gil Shultz Amjad Soomro Robert Soranno Thomas Starai Adrian Stephens Carl Stevenson Mark-Rene Uchida Scott Valcourt Richard van Leeuwen Tom Wandeloski Stanley Wang William Ward Menzo Wentink Filip Weytjens Stephen Whitesell Harry R. Worstell Jung Yee Patrick Yu Oren Yuen Surong Zeng

When the IEEE-SA Standards Board approved this amendment on 23 September 2004, it had the following membership:

Don Wright, *Chair* **Steve M. Mills,** *Vice Chair* **Judith Gorman,** *Secretary*

Chuck Adams H. Stephen Berger Mark D. Bowman Joseph A. Bruder Bob Davis Roberto de Boisson Julian Forster* Arnold M. Greenspan Mark S. Halpin Raymond Hapeman Richard J. Holleman Richard H. Hulett Lowell G. Johnson Joseph L. Koepfinger* Hermann Koch Thomas J. McGean Daleep C. Mohla Paul Nikolich T. W. Olsen Ronald C. Petersen Gary S. Robinson Frank Stone Malcolm V. Thaden Doug Topping Joe D. Watson

*Member Emeritus

Also included are the following nonvoting IEEE-SA Standards Board liaisons:

Satish K. Aggarwal, NRC Representative Richard DeBlasio, DOE Representative Alan Cookson, NIST Representative

> Michael Fisher IEEE Standards Project Editor

Contents

3.	Definitions .		1
7.	Frame forma		2
	7.3 Manage 7.3.2	ement frame body components Information elements 7.3.2.12 Country information element	2 2 2
10.	Layer manag	gement	4
	10.3 Mediun (SAP) i 10.3.2 10.3.10	n access control (MAC) sublayer management entity (MLME) service access point nterface Scan	4 4 5 5
11.	MLME		5
	11.1 Synchro 11.1.3	Dization Acquiring synchronization, scanning	5 5
17.	Orthogonal f 5 GHz band	requency division multiplexing (OFDM) physical layer (PHY) specification for the	6
	17.1 Introdu 17.2 OFDM 17.2.2	ction PHY specific service parameter list TXVECTOR parameters	6 6 6 7
	17.2.3	RXVECTOR parameters	7 7 7
	17.3 OFDM 17.3.2	physical layer convergence procedure (PLCP) sublayer PLCP frame format	8 8 8 8 9 9
	17.3.3 17.3.4	PLCP preamble (SYNC) Signal field (SIGNAL) 17.3.4.1 Data rate	9 10 10
	17.3.7 17.3.8	 PLCP data modulation and modulation rate change Physical medium dependent (PMD) operating specifications (general) 17.3.8.1 Outline description 17.3.8.2 Regulatory requirements	10 11 11 11 11 12 14
	17.3.9	17.3.8.6 Slot time PMD transmit specifications 17.3.9.1 Transmit power levels 17.3.9.2 Transmit spectrum mask 17.3.9.6 Modulation accuracy	14 14 14 15 15

17.	3.10 PMD receiver specifications	16
	17.3.10.1 Receiver minimum input level sensitivity	16
	17.3.10.5 CCA sensitivity	16
17.4 OF	DM PLME	16
17.4	4.2 OFDM PHY MIB	16
17.4	4.3 OFDM TXTIME calculation	17
17.4	4.4 OFDM PHY characteristics	17
17.5 OF	DM PMD sublayer	18
17.	5.4 Basic service and options	18
	17.5.4.3 PMD_SAP service primitive parameters	18
Annex A (norm	ative) Protocol Implementation Conformance Statements (PICS)	20
A.4	PICS proforma—IEEE Std 802.11, 1999 Edition (Reaff 2003)	20
	A.4.3 Implementation under test (IUT) configuration	20
	A.4.8 Orthogonal frequency division multiplex (OFDM) physical layer (PHY)	
	functions	20
	A.4.10 Regulatory domain extensions	24
	A.4.13 Regulatory classes extensions	24
Annex D (norm	ative) ASN.1 encoding of the MAC and PHY MIB	25
Annex I (inform	ative) Regulatory classes	31
I.1	External regulatory references	31
I.2	Radio performance specifications	33
	I.2.1 Transmit and receive in-band and out-of-band spurious emissions	33
	I.2.2 Transmit power levels	35
	I.2.3 Transmit spectrum mask	36
Annex J (norma	tive) Country information element and regulatory classes	38

IEEE Standard for Information technology—

Telecommunications and information exchange between systems—

Local and metropolitan area networks—

Specific requirements

Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications

Amendment 7: 4.9 GHz–5 GHz Operation in Japan

[This amendment is based on IEEE Std 802.11TM, 1999 Edition (Reaff 2003), as amended by IEEE Stds 802.11aTM-1999, 802.11bTM-1999, 802.11bTM-1999/Cor 1-2001, 802.11dTM-2001, 802.11gTM-2003, 802.11bTM-2003, and 802.11iTM-2004.]

NOTE—The editing instructions contained in this amendment define how to merge the material contained herein into the existing base standard and its other amendments to form the comprehensive standard.

The editing instructions are shown in **bold italic**. Four editing instructions are used: change, delete, insert, and replace. **Change** is used to make small corrections in existing text or tables. The editing instruction specifies the location of the change and describes what is being changed either by using strikethrough (to remove old material) or <u>underscore</u> (to add new material). **Delete** removes existing material. **Insert** adds new material without disturbing the existing material. Insertions may require renumbering. If so, renumbering instructions are given in the editing instructions. **Replace** is used to make large changes in existing text, subclauses, tables, or figures by removing existing material and replacing it with new material. Editorial notes will not be carried over into future editions.

3. Definitions

Insert the following definition in alphabetical order into Clause 3, renumbering as necessary:

3.122 channel spacing: Nonoverlapping, adjacent channel, center frequency spacing for radio transmitters.

End of changes to Clause 3.

7. Frame formats

7.3 Management frame body components

7.3.2 Information elements

7.3.2.12 Country information element

Replace Figure 42a with the following:

Element ID	Length	
Country Strin	g (Octets 1, 2)	
Country String (Octet 3)	First Channel Number/ Regulatory Extension Identifier	
Number of Channels/ Regulatory Class	Maximum Transmit Power Level/ Coverage Class	
First Channel Number/ Regulatory Extension Identifier	Number of Channels/ Regulatory Class	
Maximum Transmit Power Level/ Coverage Class		
First Channel Number	Number of Channels	
Maximum Transmit Power Level	Pad (if needed)	

Figure 42a—Country information element

Change the second paragraph of 7.3.2.12 as shown:

The element identifier for this information element shall be 7. The length of the information element is variable, as the element may contain more than one triplet comprising the First Channel Number, Number of Channels, and Maximum Transmit Power Level fields and referred to as subband triplets. Alternatively, where dot11RegulatoryClassesRequired is true and the First Channel Number/Regulatory Extension Identifier octet has a positive integer value of 201 or greater, then that triplet comprises the Regulatory Extension Identifier, Regulatory Class, and Coverage Class fields. Together they are referred to as a regulatory triplet. The minimum length of the information element is 8 octets.

Change the fourth paragraph of 7.3.2.12 as shown:

The First Channel Number/Regulatory Extension Identifier field shall be 1 octet in length. If the field has a positive integer value less than 201, then it shall contain a positive integer value that indicates the lowest channel number in the subband described in this information element. The group of channels described by each pair of the First Channel Number and the Number of Channels fields shall not have overlapping channel identifiers. [For example, the pairs (2,4) and (5,2) overlap and shall not be used together.] The First Channel Number field shall be monotonically increasing where dot11RegulatoryClassesRequired is not true.

Where dot11RegulatoryClassesRequired is true, consecutive subband triplets following a regulatory triplet shall have monotonically increasing First Channel Number fields.

After the sixth paragraph in 7.3.2.12, insert the following text and renumber tables as necessary:

A regulatory class is an index into a set of values for radio equipment sets of rules. The Regulatory Class field shall be 1 octet in length.

A coverage class is an index into a set of values for aAirPropagationTime. The Coverage Class field shall be 1 octet in length.

The Coverage Class field of the regulatory triplet specifies the aAirPropagationTime characteristic used in basic service set (BSS) operation, as shown in Table 20.1a. The characteristic aAirPropagationTime describes variations in actual propagation time that are accounted for in a BSS and, together with maximum transmit power level, allow control of BSS diameter.

Coverage class value	aAirPropagationTime (μs)
0	≤ 1
1	3
2	6
3	9
4	12
5	15
6	18
7	21
8	24
9	27
10	30
11	33
12	36
13	39
14	42
15	45
16	48
17	51
18	54
19	57
20	60
21	63
22	66

Table 20.1a—Coverage Class field parameters

Coverage class value	aAirPropagationTime (µs)
23	69
24	72
25	75
26	78
27	81
28	84
29	87
30	90
31	93
32–255	

Table 20.1a—Coverage Class field parameters (continued)

End of changes to Clause 7.

10. Layer management

10.3 Medium access control (MAC) sublayer management entity (MLME) service access point (SAP) interface

10.3.2 Scan

10.3.2.2 MLME-SCAN.confirm

10.3.2.2.2 Semantics of the service primitive

Change the following row in the untitled table defining the primitive parameters in 10.3.2.2.2:

Name	Туре	Valid range	Description	
ResultCode	Enumeration	SUCCESS, INVALID_ PARAMETERS_ NOT_SUPPORTED	Indicates the result of the MLME- SCAN.request	

10.3.10 Start

10.3.10.2 MLME-START.confirm

10.3.10.2.2 Semantics of the service primitive

Change the following row in the untitled table defining the primitive parameters in 10.3.10.2.2:

Name	Туре	Valid range	Description
ResultCode	Enumeration	SUCCESS, INVALID_ PARAMETERS, BSS_ALREADY_ STARTED_OR_ JOINED <u>, NOT_</u> <u>SUPPORTED</u>	Indicates the result of the MLME- START.request

End of changes to Clause 10.

11. MLME

11.1 Synchronization

11.1.3 Acquiring synchronization, scanning

Insert the following paragraph after the first paragraph in 11.1.3:

Active scanning is prohibited in some frequency bands and regulatory domains. The MAC of a station (STA) receiving an MLME-SCAN.request shall use the regulatory domain information it has to process the request and shall return a result code of NOT_SUPPORTED to a request for an active scan if regulatory domain information indicates an active scan is illegal.

Change the fifth paragraph in 11.1.3 as shown:

If a STA's scanning does not result in finding a BSS with the desired SSID and of the desired type, or does not result in finding any BSS, the STA may start an IBSS upon receipt of the MLME-START.request. The MAC of a STA receiving an MLME-START.request shall use the regulatory domain information it has to process the request and shall return a result code of NOT_SUPPORTED to the request if regulatory domain information indicates starting the BSS is illegal.

End of changes to Clause 11.

17. Orthogonal frequency division multiplexing (OFDM) physical layer (PHY) specification for the 5 GHz band

17.1 Introduction

Change the first paragraph of 17.1 as follows:

This clause specifies the PHY entity for an OFDM system and the additions that have to be made to the base standard to accommodate the OFDM PHY. The radio frequency LAN system is initially aimed for the 5.15–5.25, 5.25–5.35 and 5.725–5.825 GHz unlicensed national information structure (U-NII) bands, as regulated in the United States by the Code of Federal Regulations, Title 47, Section 15.407. The OFDM system provides a wireless local area network (WLAN) with data payload communication capabilities of 6, 9, 12, 18, 24, 36, 48, and 54 Mbit/s. The support of transmitting and receiving at data rates of 6, 12, and 24 Mbit/s is mandatory. The system uses 52 subcarriers that are modulated using binary or quadrature phase shift keying (BPSK or QPSK) or using 16- or 64-quadrature amplitude modulation (16-QAM or 64-QAM). Forward error correction coding (convolutional coding) is used with a coding rate of 1/2, 2/3, or 3/4.

Insert the following paragraph at the end of 17.1:

The OFDM system also provides a "half-clocked" operation using 10 MHz channel spacings with data communications capabilities of 3, 4.5, 6, 9, 12, 18, 24, and 27 Mbit/s. The support of transmitting and receiving at data rates of 3, 6, and 12 Mbit/s is mandatory when using 10 MHz channel spacing. The half-clocked operation doubles symbol times and clear channel assessment (CCA) times when using 10 MHz channel spacing. The regulatory requirements and information regarding use of this OFDM system in 4.9 GHz and 5 GHz bands is in Annex I and Annex J.

17.2 OFDM PHY specific service parameter list

17.2.2 TXVECTOR parameters

Change Table 76 as shown:

Parameter	Associate primitive	Value
LENGTH	PHY-TXSTART.request (TXVECTOR)	1–4095
DATATRATE	PHY-TXSTART.request (TXVECTOR)	6, 9, 12, 18, 24, 36, 48, and 54 <u>Mbit/s for 20 MHz channel</u> <u>spacing</u> (Support of 6, 12, and 24 data rates is mandatory.) 3, 4.5, 6, 9, 12, 18, 24, and 27 Mbit/s for 10 MHz channel <u>spacing</u> (Support of 3, 6, and 12 data rates is mandatory.)
SERVICE	PHY-TXSTART.request (TXVECTOR)	Scrambler initialization; 7 null bits + 9 reserved null bits
TXPWR_LEVEL	PHY-TXSTART.request (TXVECTOR)	1-8

Table 76—TXVECTOR parameters

17.2.2.2 TXVECTOR DATARATE

Change the text in 17.2.2.2 as shown:

The DATARATE parameter describes the bit rate at which the PLCP shall transmit the PSDU. Its value can be any of the rates defined in Table 76. Data rates of 6, 12, and 24 <u>Mbit/s</u> shall be supported for 20 <u>MHz</u> channel spacing, and data rates of 3, 6, and 12 Mbit/s shall be supported for 10 MHz channel spacing; other rates may also be supported.

17.2.3 RXVECTOR parameters

Change Table 77 as shown:

Parameter	Associate primitive	Value
LENGTH	PHY-RXSTART.indicate	1–4095
RSSI	PHY-RXSTART.indicate (RXVECTOR)	0–RSSI maximum
DATARATE	PHY-RXSTART.request (RXVECTOR)	6, 9, 12, 18, 24, 36, 48, and 54 <u>Mbit/s for</u> <u>20 MHz channel spacing</u> (Support of 6, 12, and 24 data rates is mandatory.) <u>3, 4.5, 6, 9, 12, 18, 24,</u> and 27 <u>Mbit/s for</u> <u>10 MHz channel spacing</u> (Support of 3, 6, and 12 data rates is mandatory.)
SERVICE	PHY-RXSTART.request (RXVECTOR)	Null

Table 77—RXVECTOR parameters

17.2.3.3 DATARATE

Change the text in 17.2.3.3 as shown:

DATARATE shall represent the data rate at which the current PPDU was received. The allowed values of the DATARATE are 6, 9, 12, 18, 24, 36, 48, or 54 <u>Mbit/s for 20 MHz channel spacing and 3, 4.5, 6, 9, 12, 18, 24, or 27 Mbit/s for 10 MHz channel spacing</u>.

17.3 OFDM physical layer convergence procedure (PLCP) sublayer

17.3.2 PLCP frame format

17.3.2.1 Overview of the PLCP protocol data unit (PPDU) encoding process

Change item b) in 17.3.2.1 as shown:

b) Produce the PLCP header field from the RATE, LENGTH, and SERVICE fields of the TXVECTOR by filling the appropriate bit fields. The RATE and LENGTH fields of the PLCP header are encoded by a convolutional code at a rate of R = 1/2 and are subsequently mapped onto a single BPSK encoded OFDM symbol, denoted as the SIGNAL symbol. In order to facilitate a reliable and timely detection of the RATE and LENGTH fields, 6 zero tail bits are inserted into the PLCP header. The encoding of the SIGNAL field into an OFDM symbol follows the same steps for convolutional encoding, interleaving, BPSK modulation, pilot insertion, Fourier transform, and prepending a guard interval (GI) as described subsequently for data transmission with BPSK-OFDM modulated at 6 Mbit/s coding rate 1/2. The contents of the SIGNAL field are not scrambled. Refer to 17.3.4 for details.

Change the title of 17.3.2.2 as shown:

17.3.2.2 Modulation Rate-dependent parameters

Change Table 78 as shown:

Data rate (Mbit/s)	Modulation	Coding rate (R)	Coded bits per subcarrier (N _{BPSC})	Coded bits per OFDM symbol (N _{CBPS})	Data bits per OFDM symbol (N _{DBPS})	<u>Data rate</u> (Mbit/s) (20 MHz <u>channel</u> spacing)	Data rate (Mbit/s) (10 MHz channel spacing)
6	BPSK	1/2	1	48	24	<u>6</u>	<u>3</u>
9	BPSK	3/4	1	48	36	<u>9</u>	<u>4.5</u>
12	QPSK	1/2	2	96	48	<u>12</u>	<u>6</u>
18	QPSK	3/4	2	96	72	<u>18</u>	<u>9</u>
24	16-QAM	1/2	4	192	96	<u>24</u>	<u>12</u>
36	16-QAM	3/4	4	192	144	<u>36</u>	<u>18</u>
48	64-QAM	2/3	6	288	192	<u>48</u>	24
54	64-QAM	3/4	6	288	216	<u>54</u>	27

Table 78—<u>Modulation</u>Rate-dependent parameters

17.3.2.3 Timing-related parameters

Change Table 79 as shown:

Parameter	Value <u>(20 MHz channel spacing)</u>	<u>Value</u> (10 MHz channel spacing)
N_{SD} : Number of data subcarriers	48	<u>48</u>
N _{SP} : Number of pilot subcarriers	4	<u>4</u>
N_{ST} : Number of subcarriers, total	$52 (N_{SD} + N_{SP})$	<u>52 (N_{SD} + N_{SP})</u>
Δ_F : Subcarrier frequency spacing	0.3125 MHz (= 20 MHz/64)	<u>0.15625 MHz (= 10 MHz/64)</u>
T_{FFT} : Inverse Fast Fourier Transform (IFFT)/ Fast Fourier Transform (FFT) period	$3.2 \ \mu s \ (1/\Delta_F)$	<u>6.4 μs (1/Δ_F)</u>
<i>T_{PREAMBLE}</i> : PLCP preamble duration	16 μs (T_{SHORT} + T_{LONG})	<u>32 μs (T_{SHORT} + T_{LONG})</u>
T_{SIGNAL} : Duration of the SIGNAL BPSK- OFDM symbol	4.0 $\mu s (T_{GI} + T_{FFT})$	<u>8.0 µs (<i>T_{GL}+ T_{FFT}</i>)</u>
<i>T_{GI}</i> : GI duration	0.8 μs (<i>T_{FFT}</i> /4)	<u>1.6 µs (<i>T_{FFT}</i>/4)</u>
<i>T_{GI2}</i> : Training symbol GI duration	1.6 μs (<i>T_{FFT}</i> /2)	<u>3.2 µs (<i>T_{FFT}</i>/2)</u>
T_{SYM} : Symbol interval	$4 \mu s (T_{GI} + T_{FFT})$	<u>8 µs (<i>T_{GI}</i> + <i>T_{FFT}</i>)</u>
T_{SHORT} : Short training sequence duration	8 µs ($10 \times T_{FFT}/4$)	<u>16 μs (10 × <i>T_{FFT}</i>/4)</u>
T_{LONG} : Long training sequence duration	8 μ s (T_{GI2} + 2 × T_{FFT})	<u> 16 µs (<i>T_{GI2}</i> + 2 × <i>T_{<u>FFT</u>}</i>)</u>

Table 79—Timing-related parameters

17.3.2.4 Mathematical conventions in the signal descriptions

Change the third paragraph of 17.3.2.4 as shown:

The subframes of which Equation (2) are composed are described in 17.3.3, 17.3.4, and 17.3.5.9. The time offsets $t_{SUBFRAME}$ determine the starting time of the corresponding subframe; t_{SIGNAL} is equal to 16 µs for 20 MHz channel spacing and 32 µs for 10 MHz channel spacing, and t_{DATA} is equal to 20 µs for 20 MHz channel spacing and 40 µs for 10 MHz channel spacing.

17.3.3 PLCP preamble (SYNC)

Change the first paragraph of 17.3.3 as shown:

The PLCP Preamble field is used for synchronization. It consists of 10 short symbols and two long symbols that are shown in Figure 110 and described in this subclause. The timings described in this subclause and shown in Figure 110 are for 20 MHz channel spacing and are doubled for half-clocked (i.e., 10 MHz) channel spacing.

17.3.4 Signal field (SIGNAL)

Change the first paragraph of 17.3.4 as shown:

The OFDM training symbols shall be followed by the SIGNAL field, which contains the RATE and the LENGTH fields of the TXVECTOR. The RATE field conveys information about the type of modulation and the coding rate as used in the rest of the packet. The encoding of the SIGNAL single OFDM symbol shall be performed with BPSK modulation of the subcarriers and using convolutional coding at R = 1/2. The encoding procedure, which includes convolutional encoding, interleaving, modulation mapping processes, pilot insertion, and OFDM modulation, follows the steps described in 17.3.5.5, 17.3.5.6, and 17.3.5.8, as used for transmission of data at a 6 Mbit/s rate with BPSK-OFDM modulated at coding rate 1/2. The contents of the SIGNAL field are not scrambled.

17.3.4.1 Data rate

Change Table 80 as shown:

Rate (Mbit/s)	R1–R4	<u>Rate (Mbit/s)</u> (20 MHz channel spacing)	<u>Rate (Mbit/s)</u> (10 MHz channel spacing)
6	1101	<u>6</u>	<u>3</u>
9	1111	<u>9</u>	<u>4.5</u>
12	0101	<u>12</u>	<u>6</u>
18	0111	<u>18</u>	<u>9</u>
24	1001	<u>24</u>	<u>12</u>
36	1011	<u>36</u>	<u>18</u>
4 8	0001	<u>48</u>	<u>24</u>
5 4	0011	<u>54</u>	<u>27</u>

Table 80—Contents of the SIGNAL field

17.3.7 PLCP data modulation and modulation rate change

Change the text of 17.3.7 as shown:

The PLCP preamble shall be transmitted using an OFDM modulated fixed waveform. The IEEE 802.11 SIGNAL field, BPSK-OFDM modulated at 6 Mbit/s with coding rate 1/2, shall indicate the modulation and coding rate that shall be used to transmit the MPDU. The transmitter (receiver) shall initiate the modulation (demodulation) constellation and the coding rate according to the RATE indicated in the SIGNAL field. The MPDU transmission rate shall be set by the DATARATE parameter in the TXVECTOR, issued with the PHY-TXSTART.request primitive described in 17.2.2.

17.3.8 Physical medium dependent (PMD) operating specifications (general)

17.3.8.1 Outline description

Change Table 86 as shown:

Information data rate	6, 9, 12, 18, 24, 36, 48, and 54 Mbit/s (6, 12, and 24 Mbit/s are mandatory) (20 MHz channel spacing)	3, 4.5, 6, 9, 12, 18, 24, and 27 Mbit/s (3, 6, and 12 Mbit/s are mandatory) (10 MHz channel spacing)
Modulation	BPSK OFDM, QPSK OFDM, 16-QAM OFDM, 64-QAM OFDM	<u>BPSK OFDM, QPSK OFDM,</u> <u>16-QAM OFDM, 64-QAM OFDM</u>
Error correcting code	K = 7 (64 states) convolutional code	<u>K = 7 (64 states) convolutional code</u>
Coding rate	1/2, 2/3, 3/4	<u>1/2, 2/3, 3/4</u>
Number of subcarriers	52	<u>52</u>
OFDM symbol duration	4.0 μs	<u>8.0 μs</u>
GI ^a	0.8 μs (T _{GI})	<u>1.6 µs (<i>T_{GI}</i>)</u>
Occupied bandwidth	16.6 MHz	<u>8.3 MHz</u>

Table 86—Major parameters of the OFDM PHY

^aRefer to 17.3.2.4.

17.3.8.2 Regulatory requirements

Change the text of 17.3.8.2 as shown, including the deletion of Table 87, and renumber tables as necessary:

WLANs implemented in accordance with this standard are subject to equipment certification and operating requirements established by regional and national regulatory administrations. The PMD specification establishes minimum technical requirements for interoperability, based upon established regulations at the time this standard was issued. These regulations are subject to revision or may be superseded. Requirements that are subject to local geographic regulations are annotated within the PMD specification. Regulatory requirements that do not affect interoperability are not addressed in this standard. Implementers are referred to the regulatory sources in Table 87-Annex I for further information. Operation in countries within defined regulatory domains may be subject to additional or alternative national regulations.

The documents listed in Table 87 specify the current regulatory requirements for various geographic areas at the time this standard was developed. They are provided for information only, and are subject to change or revision at any time.

Geographic area	Approval standards	Documents	Approval authority
United States	Federal Communications Commission (FCC)	CFR47 [B7], Part 15, Sections 15.205, 15.209, and 15.247; and Subpart E, Sections 15.401 15.407	FCC
Japan	Ministry of Public Man- agement, Home Affairs, Post and Telecommunica- tions (MPHPT)	MPHPT Ordinance for Regulating Radio Equip- ment, Article 49–20	MPHPT

Table 87—Regulatory requirement list

17.3.8.3 Operating channel frequencies

17.3.8.3.1 Operating frequency range

Change the first paragraph of 17.3.8.3.1 as shown:

The OFDM PHY shall operate in the 5 GHz band, as allocated by a regulatory body in its operational region. Spectrum allocation in the 5 GHz band is subject to authorities responsible for geographic-specific regulatory domains (e.g., global, regional, and national). The particular channelization to be used for this standard is dependent on such allocation, as well as the associated regulations for use of the allocations. These regulations are subject to revision, or may be superseded. In the United States, the FCC is the agency responsible for the allocation of the 5 GHz U-NII bands.

17.3.8.3.2 Channel numbering

Change the text of 17.3.8.3.2 as follows:

Channel center frequencies are defined at every integral multiple of 5 MHz above <u>5 GHzChannel starting</u> <u>frequency</u>. The relationship between center frequency and channel number is given by Equation (27):

Channel center frequency =
$$\frac{5000}{\text{Channel starting frequency}} + (n_{ch} \times 5) \text{ (MHz)}$$
 (27)

where

n _{ch}	is 0,1, 200,
Channel starting frequency	is defined as dot11ChannelStartingFactor × 500 kHz or is defined as 5 GHz for systems where dot11RegulatoryClassesRequired is false or not defined.
	For example, dot11ChannelStartingFactor = 10 000 indicates that Channel zero center frequency is 5.000 GHz. The value NULL for n_{ch} shall be
	reserved, and a channel center frequency of 5.000 GHz shall be indicated by dot11ChannelStartingFactor = 8000 and n_{ch} = 200. An SME managing
	<u>multiple channel sets can change the channel set being managed by changing</u> the value of dot11ChannelStartingFactor.

This definition provides a unique numbering system for all channels with 5 MHz spacing from 5 GHz to 6 GHz, as well as the flexibility to define channelization sets for all current and future regulatory domains.

17.3.8.3.3 Channelization

Change the text of 17.3.8.3.3 as shown, including the deletion of Table 88 and Figure 119, and renumber tables and figures as necessary:

The set of valid-operating channel numbers by regulatory domain is defined in Table 88-Annex J. As shown in Figure 117, no subcarrier is allocated on the channel center frequency.

Regulatory domain	Band (GHz)	Operating channel numbers	Channel center frequencics (MHz)
United States CEPT	U-NII lower band (5.15-5.25)	36 40 44 48	5180 5200 5220 5240
United States CEPT	U-NII middle band (5.25-5.35)	52 56 60 64	5260- 5280- 5300- 5320-
CEPT	(5.47-5.725)	100 104 108 112 116 120 124 128 132 136 140	5500 5520 5540 5560 5580 5600 5620 5640 5660 5660 5660 5620 5640 5660 5620 5640 5660 5660 5660 5670
United States	U-NII upper band (5.725–5.825)	149 153 157 161	5745- 5765- 5785- 5805-

Table 88—Valid operating channel numbers by regulatory domain and band-

The OFDM PHY shall operate in the 5 GHz band, as allocated by a regulatory body in its operational region.

The center frequency is indicated in Figure 119 for the US frequency channel plan; however, no subcarrier is allocated on the center frequency as described in Figure 117.

In a multiple cell network topology, overlapping and/or adjacent cells using different channels can operate simultaneously.

Figure 43—OFDM PHY frequency channel plan for the United States

17.3.8.4 Transmit and receive in-band and out-of-band spurious emissions

Change the text of 17.3.8.4 as shown:

The OFDM PHY shall conform to in-band and out-of-band spurious emissions as set by regulatory bodies. For the United States, refer to FCC 15.407.

17.3.8.6 Slot time

Change the text of 17.3.8.6 as follows:

The slot time for the OFDM PHY shall be 9 μ s for 20 MHz channel spacing, which is the sum of the RXto TX turnaround time, MAC processing delay, and CCA detect time (<4 μ s) and shall be 13 μ s for 10 MHz channel spacing. The propagation delay shall be regarded as being included in the CCA detect time.

<u>Where dot11RegulatoryClassesRequired is true, the value of the slot time shall be increased by the value of 3 μ s × coverage class. The default value of coverage class shall be zero.</u>

<u>NOTE</u>—Distributed coordination function (DCF) operation over larger BSS diameters is facilitated by relaxing some PHY timing parameters, while maintaining compatibility with existing implementations in small BSS diameters.

17.3.9 PMD transmit specifications

17.3.9.1 Transmit power levels

Change the text of 17.3.9.1 as shown, including the deletion of Table 89, and renumber tables as necessary:

The maximum allowable <u>transmit output</u> power by regulatory domain is <u>shown in Table 89</u> defined in <u>Annex I</u>.

¹Notes in text, tables, and figures are given for information only and do not contain requirements needed to implement the standard.

Frequency band (GHz)	United States (Maximum output power with up to 6 dBi antenna gain) (mW)	CERP (EIRP)
5.15 5.25	40 (2.5 mW/MHz)	200 mW
5.25 5.35	200 (12.5 mW/MHz)	200 mW
5.470 5.725		1 W
5.725 - 5.825 -	800 (50 mW/MHz)	_

Table 89—Transmit power levels by regulatory domain

17.3.9.2 Transmit spectrum mask

Change the text of 17.3.9.2 as shown:

For operation using 20 MHz channel spacing, tThe transmitted spectrum shall have a 0 dBr (dB relative to the maximum spectral density of the signal) bandwidth not exceeding 18 MHz, -20 dBr at 11 MHz frequency offset, -28 dBr at 20 MHz frequency offset, and -40 dBr at 30 MHz frequency offset and above. The transmitted spectral density of the transmitted signal shall fall within the spectral mask, as shown in Figure 120. The measurements shall be made using a 100 kHz resolution bandwidth and a 30 kHz video bandwidth. For operation using 10 MHz channel spacing, the transmitted spectrum shall have a 0 dBr bandwidth not exceeding 9 MHz, -20 dBr at 5.5 MHz frequency offset, -28 dBr at 10 MHz frequency offset, and -40 dBr at 15 MHz frequency offset and above. The transmit spectrum mask by regulatory domain is defined in Annex I and Annex J.

17.3.9.6 Modulation accuracy

17.3.9.6.3 Transmit constellation error

Change Table 90 as shown:

Data rate (Mbit/s)	Relative constellation error (dB)	<u>Modulation</u>	<u>Coding rate</u> <u>(R)</u>
6	-5	<u>BPSK</u>	<u>1/2</u>
9	-8	<u>BPSK</u>	<u>3/4</u>
12	-10	<u>QPSK</u>	<u>1/2</u>
18	-13	<u>QPSK</u>	<u>3/4</u>
24	-16	<u>16-QAM</u>	<u>1/2</u>
36	-19	<u>16-QAM</u>	<u>3/4</u>
4 8	-22	<u>64-QAM</u>	<u>2/3</u>
5 4	-25	<u>64-QAM</u>	<u>3/4</u>

Table 90—Allowed relative constellation error versus data rate

17.3.10 PMD receiver specifications

Change the title of 17.3.10.1 as shown:

17.3.10.1 Receiver minimum input level-sensitivity

Change Table 91 as shown:

<u>Modulation</u>	<u>Coding</u> rate (R)	Data rate (Mbit/s)	Minimum- sensitivity- (dBm)	Adjacent channel rejection (dB)	Alternate adjacent channel rejection (dB)	<u>Minimum</u> <u>sensitivity</u> (dBm) (20 MHz channel spacing)	<u>Minimum</u> <u>sensitivity</u> (dBm) (10 MHz <u>channel</u> <u>spacing)</u>
<u>BPSK</u>	<u>1/2</u>	6	-82-	16	32	-82	<u>85</u>
<u>BPSK</u>	<u>3/4</u>	9	-81-	15	31	-81	<u>84</u>
<u>QPSK</u>	<u>1/2</u>	12	-79-	13	29	<u> </u>	<u>-82</u>
<u>QPSK</u>	<u>3/4</u>	18	-77-	11	27	<u> </u>	<u>80</u>
<u>16-QAM</u>	<u>1/2</u>	24	-74-	8	24	_74	<u> </u>
<u>16-QAM</u>	<u>3/4</u>	36	-70-	4	20	<u>-70</u>	<u>-73</u>
<u>64-QAM</u>	2/3	48	-66-	0	16	<u>66</u>	<u>69</u>
<u>64-QAM</u>	<u>3/4</u>	54	-65-	-1	15	<u>65</u>	<u>68</u>

Table 91—Receiver performance requirements

17.3.10.5 CCA sensitivity

Change the text of 17.3.10.5 as shown:

The start of a valid OFDM transmission at a receive level equal to or greater than the minimum $\frac{6 \text{ Mbit/s}}{\text{modulation and coding rate}}$ sensitivity (-82 dBm for 20 MHz channel spacing and -85 dBm for 10 MHz channel spacing) shall cause CCA to indicate busy with a probability > 90% within 4 µs for 20 MHz channel spacing and 8 µs for 10 MHz channel spacing. If the preamble portion was missed, the receiver shall hold the carrier sense (CS) signal busy for any signal 20 dB above the minimum $\frac{6 \text{ Mbit/s}}{6 \text{ Mbit/s}}$ modulation and coding rate sensitivity (-62 dBm for 20 MHz channel spacing and -65 dBm for 10 MHz channel spacing).

<u>NOTE</u>—CCA detect time is based on finding the short sequences in the preamble, so when *T_{SYM}* doubles, so does CCA detect time.

17.4 OFDM PLME

17.4.2 OFDM PHY MIB

Change Table 92 as shown (only affected rows are given here):

Managed object	Default value/range	Operational semantics			
dot1	dot11 PHY Operation Table				
dot11 Current reg domain	Implementation dependent	StaticDynamic			
dot11 Su	pported Data Rates Tx Table				
dot11 Supported data -rates Tx value	6, 9, 12, 18, 24, 36, 48, and 54 Mbit/s <u>for 20 MHz</u> <u>channel spacing</u> (Mandatory rates: 6, 12, and 24)	Static			
	<u>3, 4.5, 6, 9, 12, 18, 24, and</u> <u>27 Mbit/s for 10 MHz channel</u> <u>spacing (Mandatory rates: 3, 6, and 12)</u>				
dot11 Su	pported Data Rates Rx Table				
dot11 Supported data -rates Rx value	6, 9, 12, 18, 24, 36, 48, and 54 Mbit/s for 20 MHz channel spacing (Mandatory rates: 6, 12, and 24)	Static			
	3, 4.5, 6, 9, 12, 18, 24, and 27 Mbit/s for 10 MHz channel spacing (Mandatory rates: 3, 6, and 12)				
dot11 PHY OFDM Table					
dot11 Channel starting factor	Implementation dependent	<u>Dynamic</u>			

Table 92—MIB attribute default values/ranges

17.4.3 OFDM TXTIME calculation

Change the last paragraph in 17.4.3 as shown:

Equation (30) does not include the effect of rounding to the next OFDM symbol and may be in error by $\pm \frac{2 \mu s T_{SYM}/2}{2}$.

17.4.4 OFDM PHY characteristics

Change Table 93 as shown:

Characteristics Value (20 MHz channel spacing)		<u>Value</u> (10 MHz channel spacing)
aSlotTime	9 μs	<u>13 μs</u>
aSIFSTime	16 μs	<u>32 µs</u>
aCCATime	< 4 µs	<u>< 8 μs</u>
aRxTxTurnaroundTime	< 2 µs	<u>< 2 μs</u>
aTxPLCPDelay	Implementation dependent	Implementation dependent
aRxPLCPDelay	Implementation dependent	Implementation dependent
aRxTxSwitchTime	<< 1 µs	<u><<1 μs</u>
aTxRampOnTime	Implementation dependent	Implementation dependent
aTxRampOffTime	Implementation dependent	Implementation dependent
aTxRFDelay	Implementation dependent	Implementation dependent
aRxRFDelay	Implementation dependent	Implementation dependent
aAirPropagationTime	<< 1 µs	<u><<1 μs</u>
aMACProcessingDelay	< 2 µs	<u>< 2 μs</u>
aPreambleLength	20 µs	<u>40 μs</u>
aPLCPHeaderLength	4 μs	<u>8 μs</u>
aMPDUMaxLength	4095	4095
aCWmin	15	<u>15</u>
aCWmax	1023	1023

Table 93—OFDM PHY characteristics

17.5 OFDM PMD sublayer

17.5.4 Basic service and options

17.5.4.3 PMD_SAP service primitive parameters

Change Table 96 as shown:

Table 96—List of parameters for the PMD primitives

Parameter	Associate primitive	Value <u>(20 MHz channel spacing)</u>	<u>Value</u> (10 MHz channel spacing)
TXD_UNIT	PMD_DATA.request	One(1), Zero(0): one OFDM symbol value	One(1),Zero(0): one OFDM symbol value
RXD_UNIT	PMD_DATA.indicate	One(1), Zero(0): one OFDM symbol value	One(1),Zero(0): one OFDM symbol value
TXPWR_LEVEL	PMD_TXPWRLVL.request	1–8 (max of 8 levels)	1-8 (max of 8 levels)

Parameter	Associate primitive	Value <u>(20 MHz channel spacing)</u>	<u>Value</u> (10 MHz channel spacing)
RATE	PMD_RATE.request	12 Mbit/s (for BPSK) 24 Mbit/s (for QPSK) 48 Mbit/s (for 16-QAM) 72 Mbit/s (for 64-QAM)	6 Mbit/s (for BPSK) 12 Mbit/s (for QPSK) 24 Mbit/s (for 16-QAM) 36 Mbit/s (for 64-QAM)
RSSI	PMD_RSSI.indicate	0–8 bits of RSSI	0-8 bits of RSSI

Table 96—List of parameters for the PMD primitives (continued)

End of changes to Clause 17.

Annex A

(normative)

Protocol Implementation Conformance Statements (PICS)

Change the title of A.4 as shown:

A.4 PICS proforma—IEEE Std 802.11, 1999 Edition (Reaff 2003)

Insert the following row at the end of the table in A.4.3:

A.4.3 Implementation under test (IUT) configuration

Item	IUT configuration	References	Status	Support
*CF11	Is regulatory classes capability implemented?	7.3.2.12, 17.3.8.3.2, 17.3.8.6, 17.4.2, Annex I, Annex J	CF6&CF8& CF10:O	Yes 🗆 No 🗅 N/A 🗅

Insert the following rows in numerical order into the table in A.4.8 (the existing table section titles have been included here to clarify where to insert the new rows):

A.4.8 Orthogonal frequency division multiplex (OFDM) physical layer (PHY) functions

Item	Feature	References	Status	Support		
OF1: OFDM PHY Specific Service Parameters						
*OF1.7	10 MHz Channel spacing	17.2.2, 17.2.3, 17.2.3.3	CF11:O	Yes 🗆 No 🗔 N/A 🗔		
OF1.7.1	DATARATE = 3 Mbit/s (10 MHz channel spacing)	17.2.2, 17.2.3, 17.2.3.3	CF11& OF1.7:M	Yes 🗆 No 🗔 N/A 🗅		
OF1.7.2	DATARATE = 4.5 Mbit/s (10 MHz channel spacing)	17.2.2, 17.2.3, 17.2.3.3	CF11& OF1.7:O	Yes 🗆 No 🗔 N/A 🗅		
OF1.7.3	DATARATE = 6 Mbit/s (10 MHz channel spacing)	17.2.2, 17.2.3, 17.2.3.3	CF11& OF1.7:M	Yes 🗆 No 🗔 N/A 🗅		
OF1.7.4	DATARATE = 9 Mbit/s (10 MHz channel spacing)	17.2.2, 17.2.3, 17.2.3.3	CF11& OF1.7:O	Yes 🗆 No 🗔 N/A 🗅		
OF1.7.5	DATARATE = 12 Mbit/s (10 MHz channel spacing)	17.2.2, 17.2.3, 17.2.3.3	CF11& OF1.7:M	Yes 🗆 No 🗔 N/A 🗅		

Item	Feature	References	Status	Support
OF1.7.6	DATARATE = 18 Mbit/s (10 MHz channel spacing)	17.2.2, 17.2.3, 17.2.3.3	CF11& OF1.7:O	Yes 🗆 No 🗔 N/A 🗔
OF1.7.7	DATARATE = 24 Mbit/s (10 MHz channel spacing)	17.2.2, 17.2.3, 17.2.3.3	CF11& OF1.7:O	Yes 🗆 No 🗔 N/A 🗔
OF1.7.8	DATARATE = 27 Mbit/s (10 MHz channel spacing)	17.2.2, 17.2.3, 17.2.3.3	CF11& OF1.7:O	Yes 🗆 No 🗔 N/A 🗔
	OF2: OFDM PLC	P Sublayer		
OF2.21	Modulation-dependent parameters (10 MHz channel spacing)	17.3.2.2	CF11& OF1.7:M	Yes 🗆 No 🗔 N/A 🗅
OF2.22	Timing-related parameters (10 MHz channel spacing)	17.3.2.3	CF11& OF1.7:M	Yes 🗆 No 🗅 N/A 🗅
OF2.23	PLCP header: RATE (10 MHz channel spacing)	17.3.4.1	CF11& OF1.7:M	Yes 🗆 No 🖵 N/A 🗖
	OF3: PDM Operating Spe	cification Gen	eral	
OF3.11	Occupied channel bandwidth (10 MHz channel spacing)	17.3.8.1	CF11& OF1.7:M	Yes 🗆 No 🗔 N/A 📮
*OF3.12	Operating frequency range	17.3.8.2	CF11:M	Yes 🗅 No 🗅 N/A 🗅
OF3.12.1	4.9 GHz band	Annex J	CF11:0	Yes 🗆 No 🗅 N/A 🗅
OF3.12.2	5.0 GHz band	Annex J	CF11:M	Yes 🗅 No 🗅 N/A 🗅
OF3.12.3	5.47–5.725 GHz band in Europe	Annex J	CF10& CF11:M	Yes 🗖 No 🗖 N/A 🗖
OF3.13	Channelization	17.3.8.3.3, J.2.1	CF11:M	Yes 🗆 No 🗔 N/A 🗔
OF3.13.1	4.9 GHz band (20 MHz channel spacing)	17.3.8.3.3	CF11& OF3.12.1: M	Yes 🗆 No 🗔 N/A 🗔
OF3.13.2	4.9 GHz band (10 MHz channel spacing)	17.3.8.3.3	CF11& OF3.12.1& OF1.7:M	Yes 🗆 No 🗔 N/A 🗔
OF3.13.3	5.0 GHz band (20 MHz channel spacing)	17.3.8.3.3	CF11& OF3.12.2: M	Yes 🗆 No 🗔 N/A 🗔
OF3.13.4	5.0 GHz band (10 MHz channel spacing)	17.3.8.3.3	CF11& OF3.12.2& OF1.7:M	Yes 🗆 No 🗔 N/A 🗅
OF3.13.5	5.15–5.25 GHz band in Japan	17.3.8.3.3	CF11:M	Yes 🗅 No 🗅 N/A 🗅
OF3.13.6	5.47–5.725 GHz in Europe	17.3.8.3.3	CF11& OF3.12.3: M	Yes 🗆 No 🗔 N/A 🗔
OF3.14	Number of operating channels	17.3.8.3.3	CF11:M	Yes 🗆 No 🗔 N/A 🗅

Item	Feature	References	Status	Support
OF3.15	Operating channel frequencies	17.3.8.3.3	CF11:M	Yes 🗆 No 🗅 N/A 🗅
OF3.16	Transmit and receive in-band and out-of- band spurious emissions (nomadic use)	17.3.8.4	CF11:M	Yes 🗆 No 🗔 N/A 🗔
OF3.16.1	Interference-limited areas, 4.9 GHz band (20 MHz channel spacing)	17.3.8.4	CF11& OF3.12.1: M	Yes 🗆 No 🗅 N/A 🗅
OF3.16.2	Interference-limited areas, 4.9 GHz band (10 MHz channel spacing)	17.3.8.4	CF11& OF3.12.1& OF1.7:O	Yes 🗆 No 🗔 N/A 🗔
OF3.16.3	Interference-limited areas, 5.0 GHz band (20 MHz channel spacing)	17.3.8.4	CF11& OF3.12.2: M	Yes 🗆 No 🗔 N/A 🗔
OF3.16.4	Interference-limited areas, 5.0 GHz band (10 MHz channel spacing)	17.3.8.4	CF11& OF3.12.2& OF1.7:O	Yes 🗆 No 🗔 N/A 🗅
OF3.17	Slot time (20 MHz channel spacing and regulatory classes)	17.3.8.6	CF11& RC2:M	Yes 🗆 No 🗔 N/A 🗔
OF3.18	Slot time (10 MHz channel spacing and regulatory classes)	17.3.8.6	CF11& RC3& OF1.7:M	Yes 🗆 No 🗔 N/A 🗔
	OF4: PMD Transmit	Specification		
OF4.7	Power level, 4.9 GHz band (20 MHz channel spacing)	17.3.9.1	CF11& OF3.12.1: M	Yes 🗆 No 🗔 N/A 🗔
OF4.8	Power level, 5.0 GHz band (20 MHz channel spacing)	17.3.9.1	CF11& OF3.12.2: M	Yes 🗆 No 🗔 N/A 🗔
OF4.9	Power level, 5.47–5.725 GHz band in Europe	17.3.9.1	CF11& OF3.12.3: M	Yes 🗆 No 🗅 N/A 🗅
OF4.10	Power level, 4.9 GHz band (10 MHz channel spacing)	17.3.9.1	CF11& OF3.12.1& OF1.7:M	Yes 🗆 No 🗅 N/A 🗅
OF4.11	Power level, 5.0 GHz band (10 MHz channel spacing)	17.3.9.1	CF11& OF3.12.2& OF1.7:M	Yes 🗆 No 🗅 N/A 🗅
OF4.12	Spectrum mask (20 MHz channel spacing)	17.3.9.2	CF11:M	Yes 🗆 No 🗔 N/A 🗔
OF4.13	Spectrum mask (10 MHz channel spacing)	17.3.9.2	CF11& OF1.7:M	Yes 🗆 No 🗔 N/A 🗔
OF4.14	Transmitter constellation error (10 MHz channel spacing)			
OF4.14.1	Transmitter constellation error $< -5 \text{ dB}$ (10 MHz channel spacing)	17.3.9.6.3	CF11& OF1.7:M	Yes 🗆 No 🗔 N/A 🗔
OF4.14.2	Transmitter constellation error $< -8 \text{ dB}$ (10 MHz channel spacing)	17.3.9.6.3	CF11& OF1.7.2:M	Yes 🗆 No 🗔 N/A 🗖

Item	Feature	References	Status	Support
OF4.14.3	Transmitter constellation error < -10 dB (10 MHz channel spacing)	17.3.9.6.3	CF11& OF1.7:M	Yes 🗅 No 🗅 N/A 🗅
OF4.14.4	Transmitter constellation error < -13 dB (10 MHz channel spacing)	17.3.9.6.3	CF11& OF1.7.4:M	Yes 🗆 No 🖵 N/A 🗖
OF4.14.5	Transmitter constellation error < -16 dB (10 MHz channel spacing)	17.3.9.6.3	CF11& OF1.7.5:M	Yes 🗆 No 🖵 N/A 🗖
OF4.14.6	Transmitter constellation error < -19 dB (10 MHz channel spacing)	17.3.9.6.3	CF11& OF1.7.6:M	Yes 🗆 No 🖵 N/A 🗖
OF4.14.7	Transmitter constellation error < -22 dB (10 MHz channel spacing)	17.3.9.6.3	CF11& OF1.7.7:M	Yes 🗆 No 🖵 N/A 🗖
OF4.14.8	Transmitter constellation error < -25 dB (10 MHz channel spacing)	17.3.9.6.3	CF11& OF1.7.8:M	Yes 🗆 No 🖵 N/A 🗖
	OF5: PMD Receiver S	Specifications		
				-
OF5.6	Maximum input level sensitivity at packet error rate (PER) = 10% with 1000 octet frames (10 MHz channel spacing)			
OF5.6.1	-85 dBm for 3 Mbit/s (10 MHz channel spacing)	17.3.10.1	CF11& OF1.7:M	Yes 🗆 No 🗔 N/A 🗔
OF5.6.2	-84 dBm for 4.5 Mbit/s (10 MHz channel spacing)	17.3.10.1	CF11& OF1.7.2:M	Yes 🗆 No 🖵 N/A 🗖
OF5.6.3	-82 dBm for 6 Mbit/s (10 MHz channel spacing)	17.3.10.1	CF11& OF1.7:M	Yes 🗆 No 🖵 N/A 🗖
OF5.6.4	-80 dBm for 9 Mbit/s (10 MHz channel spacing)	17.3.10.1	CF11& OF1.7.4:M	Yes 🗅 No 🗅 N/A 🗅
OF5.6.5	-77 dBm for 12 Mbit/s (10 MHz channel spacing)	17.3.10.1	CF11& OF1.7:M	Yes 🗅 No 🗅 N/A 🗅
OF5.6.6	-73 dBm for 18 Mbit/s (10 MHz channel spacing)	17.3.10.1	CF11& OF1.7.6:M	Yes 🗆 No 🖵 N/A 🗖
OF5.6.7	-69 dBm for 24 Mbit/s (10 MHz channel spacing)	17.3.10.1	CF11& OF.17.7:M	Yes 🗆 No 🗔 N/A 🗖
OF5.6.8	-68 dBm for 27 Mbit/s (10 MHz channel spacing)	17.3.10.1	CF11& OF1.7.8:M	Yes 🗆 No 🗔 N/A 🗖
OF5.7	Adjacent channel rejection (10 MHz channel spacing)	17.3.10.2	CF11& OF1.7:M	Yes 🗆 No 🖵 N/A 🗖
OF5.8	Nonadjacent channel rejection (10 MHz channel spacing)	17.3.10.3	CF11& OF1.7:M	Yes 🗆 No 🖵 N/A 🗖
OF5.9	Maximum input level (10 MHz channel spacing)	17.3.10.4	CF11& OF1.7:M	Yes 🗅 No 🗅 N/A 🗅
OF5.10	CCA sensitivity (10 MHz channel spacing)	17.3.10.5	CF11& OF1.7:M	Yes 🗆 No 🗆 N/A 🗖
	OF8: PLM	1E		
OF8.4	PLME:support PHY characteristics (dot11ChannelStartingFactor)	17.4.2	CF11:M	Yes 🗆 No 🗔 N/A 🗔

Item	Feature	References	Status	Support		
OF9: OFDM PMD Sublayer						
OF9.4						
OF9.4.1	Parameter: RATE (6 Mbit/s for 10 MHz channel spacing)	17.5.4.3	CF11& OF1.7:M	Yes 🗆 No 🗅 N/A 🗅		
OF9.4.2	Parameter: RATE (12 Mbit/s for 10 MHz channel spacing)	17.5.4.3	CF11& OF1.7:M	Yes 🗆 No 🗅 N/A 🗅		
OF9.4.3	Parameter: RATE (24 Mbit/s for 10 MHz channel spacing)	17.5.4.3	CF11& OF1.7:M	Yes 🗆 No 🗅 N/A 🗅		
OF9.4.4	Parameter: RATE (36 Mbit/s for 10 MHz channel spacing)	17.5.4.3	CF11& OF1.7:M	Yes 🗅 No 🗅 N/A 🗅		
	OF10: Geographic Area Sp	ecific Requirer	nents			
OF10.2	Regulatory domain extensions	17.3.8.3.3, 17.3.8.4, 17.3.9.1 17.3.9.2, Annex J	CF11:M	Yes 🗆 No 🖵 N/A 🖵		

Insert the following row at the end of the table in A.4.10:

A.4.10 Regulatory domain extensions

Item	Protocol capability	References	Status	Support
MD12	Regulatory and Coverage classes	7.3.2.12	RC1:M	Yes 🗅 No 🖵 N/A 🗅

After A.4.12, insert A.4.13:

A.4.13 Regulatory classes extensions

Item	Protocol capability	References	Status	Support
RC1	Regulatory and Coverage classes	7.3.2.12	CF8&CF11:M	Yes 🗅 No 🗅 N/A 🗅
RC2	Regulatory and Coverage classes (20 MHz channel spacing)	7.3.2.12, 17.3.8.6	CF8&CF11:M	Yes 🗅 No 🗅 N/A 🗅
RC3	Regulatory and Coverage classes (10 MHz channel spacing)	7.3.2.12, 17.3.8.6	CF8&CF11& OF1.7:M	Yes 🗆 No 🗅 N/A 🗅

Annex D

(normative)

ASN.1 encoding of the MAC and PHY MIB

In "Major sections" of Annex D, add the following text at the end of the Station Management attributes:

 dot11smt GROUPS					
 dot11StationConfigTable	::=	{	dot11smt	1	}
 dot11AuthenticationAlgorithmsTable	::=	{	dot11smt	2	}
 dot11WEPDefaultKeysTable	::=	{	dot11smt	3	}
 dot11WEPKeyMappingsTable	::=	{	dot11smt	4	}
 dot11PrivacyTable	::=	{	dot11smt	5	}
 dot11SMTnotification	::=	{	dot11smt	6	}
 dot11MultiDomainCapabilityTable	::=	{	dot11smt	7	}
 dot11SpectrumManagementTable	::=	{	dot11smt	8	}
 dot11RSNAConfigTable	::=	{	dot11smt	9	}
 dot11RSNAConfigPairwiseCiphersTable	::=	{	dot11smt	10) }
 dot11RSNAConfigAuthenticationSuitesTable	::=	{	dot11smt	11	}
 dot11RSNAStatsTable	::=	{	dot11smt	12	2 }
 dot11RegulatoryClassesTable	::=	{	dot11smt	13	3 }

In "SMT Station Config Table" in Annex D, change Dot11StationConfigEntry as follows:

Dot11StationConfigEntry ::=	
SEQUENCE {	
dot11StationID	MacAddress,
dot11MediumOccupancyLimit	INTEGER,
dot11CFPollable	TruthValue,
dot11CFPPeriod	INTEGER,
dot11CFPMaxDuration	INTEGER,
dot11AuthenticationResponseTimeOut	Unsigned32,
dot11PrivacyOptionImplemented	TruthValue,
dot11PowerManagementMode	INTEGER,
dot11DesiredSSID	OCTET STRING,
dot11DesiredBSSType	INTEGER,
dot110perationalRateSet	OCTET STRING,
dot11BeaconPeriod	INTEGER,
dot11DTIMPeriod	INTEGER,
dot11AssociationResponseTimeOut	Unsigned32,
dot11DisassociateReason	INTEGER,
dot11DisassociateStation	MacAddress,
dot11DeauthenticateReason	INTEGER,
dot11DeauthenticateStation	MacAddress,
dot11AuthenticateFailStatus	INTEGER,
dot11AuthenticateFailStation	MacAddress,
dot11MultiDomainCapabilityImplemented	TruthValue,
dot11MultiDomainCapabilityEnabled	TruthValue,
dot11CountryString	OCTET STRING,
dot11SpectrumManagementImplemented	TruthValue,
dot11SpectrumManagementRequired	TruthValue,
dot11RSNAOptionImplemented	TruthValue,
dot11RSNAPreauthenticationImplemented	TruthValue <u>,</u>
dot11RegulatoryClassesImplemented	TruthValue,
dot11RegulatoryClassesRequired	TruthValue }

In "SMT Station Config Table" in Annex D, insert the following attributes after dot11RSNA-PreauthenticationImplemented { dot11StationConfigEntry 27 }:

```
dot11RegulatoryClassesImplemented OBJECT-TYPE
      SYNTAX TruthValue
      MAX-ACCESS read-write
      STATUS current
      DESCRIPTION
             "This attribute, when TRUE, indicates that the station implementa-
             tion is capable of supporting regulatory classes. The capability is
             disabled otherwise. The default value of this attribute is FALSE."
   ::= { dot11StationConfigEntry 28 }
dot11RegulatoryClassesRequired OBJECT-TYPE
      SYNTAX TruthValue
      MAX-ACCESS read-write
      STATUS current
      DESCRIPTION
             "A STA will use the defined regulatory classes procedures if and
             only if this attribute is TRUE. The default value of this attribute
             is FALSE."
   ::= { dot11StationConfigEntry 29 }
```

After the end of the "dot11SpectrumManagement TABLE" in Annex D, insert the following dot11RegulatoryClasses TABLE:

```
-- * dot11RegulatoryClasses TABLE
dot11RegulatoryClassesTable OBJECT-TYPE
     SYNTAX SEQUENCE OF Dot11RegulatoryClassesEntry
     MAX-ACCESS not-accessible
     STATUS current
     DESCRIPTION
           "(Conceptual) table of attributes for regulatory classes"
  ::= {dot11smt 13}
dot11RegulatoryClassesEntry OBJECT-TYPE
     SYNTAX Dot11RegulatoryClassesEntry
     MAX-ACCESS not-accessible
     STATUS current
     DESCRIPTION
           "An entry (conceptual row) in the Regulatory Classes Table.
           IfIndex - Each 802.11 interface is represented by an ifEntry.
           Interface tables in this MIB are indexed by ifIndex."
     INDEX {ifIndex, dot11RegulatoryClassesIndex}
  ::= { dot11RegulatoryClassesTable 1 }
Dot11RegulatoryClassesEntry ::=
     SEQUENCE {
                                         Integer32,
           dot11RegulatoryClassesIndex
                                              INTEGER,
           dot11RegulatoryClass
           dot11CoverageClass
                                              INTEGER }
dot11RegulatoryClassesIndex OBJECT-TYPE
     SYNTAX Integer32
     MAX-ACCESS not-accessible
     STATUS current
     DESCRIPTION
           "The auxiliary variable used to identify instances of the columnar
           objects in the Regulatory Classes Table."
  ::= { dot11RegulatoryClassesEntry 1 }
```

```
dot11RegulatoryClass OBJECT-TYPE
     SYNTAX INTEGER
     MAX-ACCESS read-write
     STATUS current
     DESCRIPTION
          "This attribute shall indicate the regulatory class to be used. The
          default value of this attribute shall be zero."
  ::= { dot11RegulatoryClassesEntry 2 }
dot11CoverageClass OBJECT-TYPE
     SYNTAX INTEGER
     MAX-ACCESS read-write
     STATUS current
     DESCRIPTION
          "This attribute shall indicate the coverage class to be used. The
          default value of this attribute shall be zero."
  ::= { dot11RegulatoryClassesEntry 3 }
-- * End of dot11RegulatoryClasses TABLE
```

In "dot11RegDomainsSupported TABLE" in Annex D, change dot11RegDomainsSupportedTable object as shown:

```
dot11RegDomainsSupportedTable OBJECT-TYPE
    SYNTAX SEQUENCE OF Dot11RegDomainsSupportedEntry
    MAX-ACCESS not-accessible
    STATUS current
    DESCRIPTION
    "There are different operational requirements dependent on the
    regulatory domain. This attribute list describes the regulatory
    domains the PLCP and PMD support in this implementation. Currently
    defined values and their corresponding Regulatory Domains are as
    follows:
    FCC (USA) = X'10', DOC (Canada) = X'20', ETSI (most of
    Europe) = X'30', Spain = X'31', France = X'32', MKKMPHPT
    (Japan) = X'40', Other = X'00' "
    ::= { dot11phy 7}
```

In "dot11RegDomainsSupported TABLE" in Annex D, change dot11RegDomainsSupportedValue object as shown:

In "dot11PhyOFDM TABLE" in Annex D, change Dot11PhyOFDMEntry as shown:

Dot11PhyOFDMEntry ::	=	
SEQUENCE {	dot11CurrentFrequency	INTEGER,
C	dot11TIThreshold	Integer32,
C	dot11FrequencyBandsSupported	INTEGER,
<u>c</u>	lot11ChannelStartingFactor	<pre>Integer32 }</pre>

In "dot11PhyOFDM TABLE" in Annex D, change dot11FrequencyBandsSupported object as shown:

```
dot11FrequencyBandsSupported OBJECT-TYPE
      SYNTAX INTEGER (1..127)
      MAX-ACCESS read-only
      STATUS current
      DESCRIPTION
             "The capability of the OFDM PHY implementation to operate in the
             three U-NII bands, in the CEPT Band B, and in the Japanese 5 GHz
             bands. Coded as an integer value of a seven bit field as follows:
                bit 0 .. capable of operating in the lower (5.15-5.25 GHz)
                    U-NII band
                bit 1 .. capable of operating in the middle (5.25-5.35 GHz)
                    U-NII band
                bit 2 .. capable of operating in the upper (5.725-5.825 GHz)
                    U-NII band
                bit 3 .. capable of operating in CEPT Band B (5.47-5.725 GHz)
                bit 4 .. capable of operating in the lower Japanese (5.15-
                    5.25 GHz) band
                bit 5 .. capable of operating in the Japanese 5.0 (5.03-
                    5.091 GHz) band
                bit 6 .. capable of operating in the Japanese 4.9 (4.9-5.0 GHz)
                    band
             For example, for an implementation capable of operating in the
             lower and mid bands, this attribute would take the value 3."
   ::= { dot11PhyOFDMEntry 3 }
```

In "dot11PhyOFDM TABLE" in Annex D, insert the following object after dot11FrequencyBandsSupported { dot11PhyOFDMEntry 3 }:

```
dot11ChannelStartingFactor OBJECT-TYPE
   SYNTAX Integer32 (8000..10000)
   MAX-ACCESS read-write
   STATUS current
   DESCRIPTION
     "The base factor from which channel center frequencies are
     calculated. This number is multiplied by 500 kHz to form the base
     frequency to be added to the channel number x 5 MHz. The default
     value of this attribute shall be 10 000."
   ::= { dot11PhyOFDMEntry 4 }
```

In "Compliance Statements" of Annex D, change OPTIONAL-GROUPS as follows:

```
::= { dot11Compliances 1 }
```

In "Groups – units of conformance" of Annex D, change dot11PhyOFDMComplianceGroup object as shown:

In "Groups - units of conformance" of Annex D, change dot11SMTbase3 as follows:

```
dot11SMTbase3 OBJECT-GROUP
        OBJECTS { dot11MediumOccupancyLimit,
                  dot11CFPollable,
                  dot11CFPPeriod,
                  dot11CFPMaxDuration,
                  dot11AuthenticationResponseTimeOut,
                  dot11PrivacyOptionImplemented,
                  dot11PowerManagementMode,
                  dot11DesiredSSID, dot11DesiredBSSType,
                  dot110perationalRateSet,
                  dot11BeaconPeriod, dot11DTIMPeriod,
                  dot11AssociationResponseTimeOut,
                  dot11DisassociateReason,
                  dot11DisassociateStation,
                  dot11DeauthenticateReason,
                  dot11DeauthenticateStation,
                  dot11AuthenticateFailStatus,
                  dot11AuthenticateFailStation,
                  dot11MultiDomainCapabilityImplemented,
                  dot11MultiDomainCapabilityEnabled,
                  dot11CountryString }
      STATUS currentdeprecated
      DESCRIPTION
             "The SMTbase3 object class provides the necessary support at the
             STA to manage the processes in the STA so that the STA may work
             cooperatively as a part of an IEEE 802.11 network, when the STA is
             capable of multidomain operation. This object group should be
             implemented when the multidomain capability option is implemented."
   ::= { dot11Groups 20 }
```

In "Groups - units of conformance" in Annex D, insert the following objects after dot11SMTbase4 { dot11Groups 26 }:

```
dot11AuthenticationResponseTimeOut,
dot11PrivacyOptionImplemented,
dot11PowerManagementMode,
dot11DesiredSSID, dot11DesiredBSSType,
dot110perationalRateSet,
dot11BeaconPeriod, dot11DTIMPeriod,
dot11AssociationResponseTimeOut,
dot11DisassociateReason,
dot11DisassociateStation,
dot11DeauthenticateReason,
dot11DeauthenticateStation,
dot11AuthenticateFailStatus,
dot11AuthenticateFailStation,
dot11MultiDomainCapabilityImplemented,
dot11MultiDomainCapabilityEnabled,
dot11CountryString,
dot11SpectrumManagementImplemented,
dot11SpectrumManagementRequired,
dot11RSNAOptionImplemented,
dot11RegulatoryClassesImplemented,
dot11RegulatoryClassesRequired }
```

STATUS current DESCRIPTION

"The SMTbase5 object class provides the necessary support at the STA to manage the processes in the STA so that the STA may work cooperatively as a part of an IEEE 802.11 network, when the STA is capable of multidomain operation. This object group should be implemented when the multidomain capability option is implemented." ::= { dot11Groups 30 } After Annex H, insert Annex I and Annex J:

Annex I

(informative)

Regulatory classes

I.1 External regulatory references

This annex and Annex J provide information and requirements extending the OFDM PHY specification in Clause 17 for operation in the USA, Europe, and the 4.9 GHz and 5 GHz bands in Japan. The OFDM system provides a WLAN with data payload communication capabilities of 6, 9, 12, 18, 24, 36, 48, and 54 Mbit/s in 20 MHz channels and 3, 4.5, 6, 9, 12, 18, 24, and 27 Mbit/s in 10 MHz channels.

WLANs implemented in accordance with this standard and the specifications and definitions referenced in it are subject to equipment certification and operating requirements established by regional and national regulatory administrations. The specification establishes minimum technical requirements for interoperability, based upon established regulations at the time this standard was issued. These regional and national regulations are subject to revision or may be superseded. Regulatory requirements that do not affect interoperability are not addressed in this standard. Implementers are referred to the regulatory sources in Table I.1 for further information. Operation in countries within defined regulatory domains may be subject to additional or alternative national regulations.

The documents listed in Table I.1 specify the current regulatory requirements for various geographic areas at the time this standard was developed. They are provided for information only and are subject to change or revision at any time.

Geographic area	Approval standards	Documents	Approval authority
Japan	Ministry of Public Management, Home Affairs, Posts and Telecommunications (MPHPT)	MPHPT Equipment Ordinance (EO) for Regulating Radio Equip- ment Articles 7, 49.20, 49.21 ^a	MPHPT
United States	Federal Communications Commission (FCC)	CFR47, Part 15, Sections 15.205, 15.209, and 15.247; and Subpart E, Sections 15.401–15.407	FCC
Europe	European Conference of Postal and Telecommunications (CEPT) Administrations and its Electronic Communications Committee (ECC). Also, European Radiocommunications Office, European Telecommunications Standards Institute	ECC DEC (04) 08, ETSI EN301 893	СЕРТ

Table I.1—Regulatory requirement list

^aFrequency planning for licensed STAs in Japan is performed by the regulatory authority and the licensees, addressing the coexistence among STAs operating with a variety of air propagation times and the coexistence between STAs using 20 MHz channel spacing and STAs operating with 10 MHz channel spacing. Note also the CCA mechanism is preserved in licensed operation. Emissions limits sets are listed in Table I.2, and behavior limits sets are specified in Table I.3. The external regulatory references in Table I.2 and Table I.3 are informative, as they do not specify technical parameters.

Emissions limits set	USA	Europe	Japan
0	Not specified	Not specified	Not specified
1 nomadic use	FCC CFR47, Section 15.407	ETSI EN 301 389-1	MPHPT EO Articles 49.20, 49.21
2 interference-limited areas ^a	Reserved	Reserved	MPHPT EO Article 49.21
3 other interference areas ^a	Reserved	Reserved	MPHPT EO Article 49.21
4–255	Reserved	Reserved	Reserved

Table I.2—Emissions limits sets

^aThe deployment in Japan of licensed radios in dense urban areas (i.e., interference-limited areas) and other areas (i.e., other interference areas) are specified to allow more radios to operate in dense urban areas, while permitting what can be less expensive radio designs to be used elsewhere.

Behavior limits set	USA	Europe	Japan
0	Not specified	Not specified	Not specified
1 nomadic use	FCC CFR47, Section 15.407	ETSI EN 301 389-1	MPHPT EO Articles 49.20, 49.21
2 indoor only use	FCC CFR47, Section 15.407(e)	ETSI EN 301 389-1	MPHPT EO Article 49.20
3 transmit power control	Reserved	ETSI EN 301 389-1	Reserved
4 dynamic frequency selection	Reserved	ETSI EN 301 389-1	Reserved
5 Independent basic service set (IBSS) prohibited	Reserved	Reserved	MPHPT EO Article 49.21
6 4 ms CS ^a	Reserved	Reserved	MPHPT EO Articles 49.20, 49.21
7 licensed base station	Reserved	Reserved	MPHPT EO Article 49.21
8 mobile station	Reserved	Reserved	MPHPT EO Articles 49.20, 49.21
9–255	Reserved	Reserved	Reserved

Table I.3—Behavior limits sets

^aThe Japanese 4 ms CS rule says no STA can transmit for more than 4 ms without carrier sensing, whether transmitting fragments or frames, unless it is controlled by another STA.

I.2 Radio performance specifications

I.2.1 Transmit and receive in-band and out-of-band spurious emissions

Spurious transmissions from compliant devices shall conform to national regulations. For operation in the USA, refer to FCC CFR47, Section 15.407. For operation in Europe, refer to ETSI EN 301 389-1. For operation in Japan, refer to MPHPT EO Article 49.20 and Article 49.21, Section 1.

NOTE—All out-of-band and in-band spurious emission requirements of MPHPT EO Article 49.20 and Article 49.21, Section 1, are included in Table I.4 and Table I.5. Figure I.1 and Figure I.2 are an informative summary of the requirements for operation in the Japanese 4.9 GHz and 5.0 GHz bands.

Regulatory domain	egulatory domain Band (GHz)		Out-of-band frequencies					
For 20 MHz channel spacing systems								
MPHPT EO Article 49.21	4.9	$< 15 \ \mu W/MHz$	$\begin{array}{c} 4880 \leq \! f \! < \! 4900 \; \mathrm{MHz}, \\ 5000 < \! f \! \le \! 5020 \; \mathrm{MHz} \end{array}$					
MPHPT EO Article 49.21	5.0	$< 15 \ \mu W/MHz$	$5000 \le f < 5020 \text{ MHz},$ $5100 < f \le 5120 \text{ MHz}$					
MPHPT EO Article 49.21	5.0	< 0.5 mW/MHz	$5020 \le f < 5030$ MHz, $5091 < f \le 5100$ MHz					
MPHPT EO Article 49.21, Part 2 in limited interfer- ence areas, and unlicensed	4.9	$< 0.2 \ \mu W/MHz$	4840 MHz ± 10 MHz, 4860 MHz ± 10 MHz					
MPHPT EO Article 49.21, Part 2 in limited interfer- ence areas, and unlicensed	MPHPT EO Article 49.21, 5.0 Part 2 in limited interfer- ence areas, and unlicensed		4960 MHz ± 10 MHz, 4980 MHz ± 10 MHz					
MPHPT EO Article 49.20	5.15-5.25	\leq 2.5 μ W/MHz	$5130 \le f \le 5142 \text{ MHz}$					
MPHPT EO Article 49.20 5.15–5.25		\leq 15 μ W/MHz	$5142 < f \le 5150 \text{ MHz},$ $5250 \le f < 5258 \text{ MHz}$					
MPHPT EO Article 49.20	5.15-5.25	$\leq 0.2 \; \mu W/MHz$	5258 ≤ <i>f</i> ≤ 5270 MHz					
	For 10 MHz chan	nel spacing systems						
MPHPT EO Article 49.20	4.9	$< 15 \ \mu W/MHz$	$4895 \le f < 4905$ MHz, $4955 < f \le 4965$ MHz					
MPHPT EO Article 49.20	5.0	$< 15 \ \mu W/MHz$	$5015 \le f < 5025$ MHz, $5065 < f \le 5075$ MHz					
MPHPT EO Article 49.20	5.0	< 0.5 mW/MHz	5025 ≤ <i>f</i> < 5030 MHz					

Table I.4—Japanese out-of-band emission limits

Regulatory domain	gulatory domain Band (GHz)		Frequencies					
For 20 MHz channel spacing systems								
MPHPT EO Article 7	4.9	$\leq 2 \ \mu W/MHz$	<4870 MHz					
MPHPT EO Article 7	4.9	\leq 2.5 μ W/MHz	$4870 \le f < 4880 \text{ MHz},$ $5020 < f \le 5270 \text{ MHz}$					
MPHPT EO Article 7	4.9	\leq 0.2 μ W/MHz	$5270 < f \le 5342 \text{ MHz}$					
MPHPT EO Article 7	4.9	$\leq 1 \ \mu W/MHz$	> 5342 MHz					
MPHPT EO Article 7	5.0	$\leq 2 \ \mu W/MHz$	<4990 MHz					
MPHPT EO Article 7	$\frac{1}{20 \text{ Article 7}} 5.0 \leq 2.5 \mu\text{W/MHz}$		$4990 \le f < 5000 \text{ MHz},$ $5120 < f \le 5270 \text{ MHz}$					
MPHPT EO Article 7	5.0	\leq 0.2 μ W/MHz	$5270 < f \le 5342 \text{ MHz}$					
MPHPT EO Article 7	5.0	$\leq 1 \ \mu W/MHz$	> 5342 MHz					
MPHPT EO Article 7	5.15-5.25	\leq 2.5 µW/MHz $f < 5130$ MHz, 5342 MHz $< f$						
MPHPT EO Article 7	5.15-5.25	$< 0.2 \ \mu W/MHz$	$5270 < f \le 5342 \text{ MHz}$					
	For 10 MHz chan	nel spacing systems						
MPHPT EO Article 7	4.9	$\leq 2~\mu W/MHz$	<4870 MHz					
MPHPT EO Article 7	MPHPT EO Article 7 4.9		$4870 \le f < 4895$ MHz, $4965 < f \le 5270$ MHz					
MPHPT EO Article 7	4.9	$\leq 0.2 \ \mu W/MHz$	$5270 < f \le 5342$ MHz					
MPHPT EO Article 7	4.9	$\leq 1 \ \mu W/MHz$	> 5342 MHz					
MPHPT EO Article 7	5.0	$\leq 2~\mu W/MHz$	<4990 MHz					
MPHPT EO Article 7	5.0	5.0 $\leq 2.5 \mu W/MHz$ 4990 $\leq f$ 5075 $\leq f$						
MPHPT EO Article 7	5.0	\leq 0.2 μ W/MHz	$5270 < f \le 5342 \text{ MHz}$					
MPHPT EO Article 7	5.0	$\leq 1 \ \mu W/MHz$	> 5342 MHz					

Table I.5—Japanese upper limit of spurious emissions

Japan 20 MHz channelization

Figure I.1—Out-of-band and spurious emissions limits for 20 MHz channels in Japan

Japan 10 MHz channelization

Figure I.2—Out-of-band and spurious emissions limits for 10 MHz channels in Japan

I.2.2 Transmit power levels

The maximum allowable output power by regulatory domain (except in Japan) is shown in Table I.6.

The maximum allowable output power by Japanese regulatory domain is shown in Table I.7. For the Japanese 4.9 GHz and 5.0 GHz bands, the maximum deviation of designated or rated equivalent isotropically radiated power (EIRP) shall be nominal +20% and nominal -80%.

Frequency band (GHz)	USA (Maximum output power with up to 6 dBi antenna gain) (mW)	Europe (EIRP)
5.15-5.25	40 (2.5 mW/MHz)	200 mW
5.25-5.35	200 (12.5 mW/MHz)	200 mW
5.470-5.725		1 W
5.725-5.825	800 (50 mW/MHz)	

Table I.6—Transmit power level by regulatory domain

Table I.7—Japanese transmit power levels by regulatory domain

Frequency band (GHz)	Regulatory type	Japan	
4.9–5.091	Fixed wireless access, licensed	< 250 mW EIRP, and < 50 mW/MHz EIRP for licensed access	
4.9–5.091	Nomadic access, unlicensed	< 10 mW/MHz EIRP	
5.15-5.25	Unlicensed	< 10 mW/MHz EIRP	

I.2.3 Transmit spectrum mask

For operation using 20 MHz channel spacing in the USA, Europe, and Japan, the transmitted spectrum shall have a 0 dBr (dB relative to the maximum spectral density of the signal) bandwidth not exceeding 18 MHz, -20 dBr at 11 MHz frequency offset, -28 dBr at 20 MHz frequency offset, and -40 dBr at 30 MHz frequency offset and above. For operation using 10 MHz channel spacing, the transmitted spectrum shall have a 0 dBr bandwidth not exceeding 9 MHz, -20 dBr at 5.5 MHz frequency offset, -28 dBr at 10 MHz frequency offset, and -40 dBr at 10 MHz frequency offset, and -40 dBr at 30 MHz frequency offset, and -40 dBr at 30 MHz frequency offset and above. The measurements shall be made using a 100 kHz resolution bandwidth and a 30 kHz video bandwidth.

For operation in Japan, the average power emitted in adjacent and alternate adjacent channels of the same channel width shall be less than -3 dBr and -18 dBr, respectively, for both the 4.9 GHz and 5.0 GHz bands, measured relative to the EIRP in the 100 kHz at the channel edges and the band edges. For operation in Japan in the 5.15–5.25 GHz band, the average power emitted in adjacent and alternate adjacent channels shall be lower than average on-channel power by 25 dB and 40 dB, respectively.

NOTE—Figure I.3 shows the average power in adjacent channels for 20 MHz channel spacing, and Figure I.4 shows the average power in adjacent channels for 10 MHz channel spacing. There are no special spreading requirements for any particular channel. The alternate adjacent channel(s) are adjacent to the channels adjacent to a given channel.

Figure I.3—Average power in adjacent channels for 20 MHz channel spacing in Japan

Figure I.4—Average power in adjacent channels for 10 MHz channel spacing in Japan

Annex J

(normative)

Country information element and regulatory classes

The Country information element (see 7.3.2.12) allows a STA to configure its PHY and MAC for operation when the regulatory triplet of Regulatory Extension Identifier, Regulatory Class, and Coverage Class fields is present. The regulatory triplet indicates both PHY and MAC configuration characteristics and operational characteristics. The First Channel Number field of subsequent subband triplet(s) is based on the dot11ChannelStartingFactor that is indicated by the Regulatory Class field.

The regulatory class for the OFDM PHY is an index into a set of values for radio equipment sets of rules.

The channel starting frequency variable is a frequency, used together with a channel number, to calculate a channel center frequency.

Channel spacing is the frequency difference between nonoverlapping adjacent channel center frequencies.

The channel set shall be the list of integer channel numbers that are legal for a regulatory domain and class.

The transmit power limit shall be the maximum transmit power that is legal for a regulatory domain and class.

An emissions limits set is an enumerated list of spectral masks and emissions limits that are legal for a regulatory domain and are listed in Table I.1.

Specific transmit restrictions and limits are listed in I.2.

A behavior limits set is an enumerated list of behaviors that are legal for a regulatory domain and are specified in Table I.3.

The regulatory classes specified for 5 GHz operation in the USA are enumerated in Table J.1.

Table J.1—Regulatory classes for 5 GHz bands in the USA

Regulatory class	Channel starting frequency (GHz)	Channel spacing (MHz)	Channel set	Transmit power limit (mW)	Emissions limits set	Behavior limits set
1	5	20	36, 40, 44, 48	40	1	1, 2
2	5	20	52, 56, 60, 64	200	1	1
3	5	20	149, 153, 157, 161	800	1	1
4–255	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved

The regulatory classes specified for 5 GHz operation in Europe are enumerated in Table J.2.

Regulatory class	Channel starting frequency (GHz)	Channel spacing (MHz)	Channel set	Transmit power limit (EIRP)	Emissions limits set	Behavior limits set
1	5	20	36, 40, 44, 48	200	1	2, 3
2	5	20	52, 56, 60, 64	200	1	1, 3, 4
3	5	20	100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140	1 W	1	1, 3, 4
4–255	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved

Table J.2—Regulatory classes for 5 GHz bands in Europe

The regulatory classes specified for 4.9 GHz and 5 GHz operation in Japan are enumerated in Table J.3.

Table J.3—Regulator	y classes for	4.9 GHz and 5	GHz bands in Japan
---------------------	---------------	---------------	--------------------

Regulatory class	Channel starting frequency (GHz)	Channel spacing (MHz)	Channel set	Transmit power limit (dBm)	Emissions limits set	Behavior limits set
1	5	20	34, 38, 42, 46	22	1	1, 2, 6
2	5	20	8, 12, 16	24	2	5, 6, 7
3	5	20	8, 12, 16	24	2	5, 6, 8
4	5	20	8, 12, 16	24	3	5, 6, 7
5	5	20	8, 12, 16	24	3	5, 6, 8
6	5	20	8, 12, 16	22	1	5, 6, 8
7	4	20	184, 188, 192, 196	24	2	5, 6, 7
8	4	20	184, 188, 192, 196	24	2	5, 6, 8
9	4	20	184, 188, 192, 196	24	3	5, 6, 7
10	4	20	184, 188, 192, 196	24	3	5, 6, 8
11	4	20	184, 188, 192, 196	22	1	5, 6, 8
12	5	10	7, 8, 9, 11	24	2	5, 6, 7
13	5	10	7, 8, 9, 11	24	2	5, 6, 8
14	5	10	7, 8, 9, 11	24	3	5, 6, 7

Regulatory class	Channel starting frequency (GHz)	Channel spacing (MHz)	Channel set	Transmit power limit (dBm)	Emissions limits set	Behavior limits set
15	5	10	7, 8, 9, 11	24	3	5, 6, 8
16	4	10	183, 184, 185, 187, 188, 189	24	2	5, 6, 7
17	4	10	183, 184, 185, 187, 188, 189	24	2	5, 6, 8
18	4	10	183, 184, 185, 187, 188, 189	24	3	5, 6, 7
19	4	10	183, 184, 185, 187, 188, 189	24	3	5, 6, 8
20	4	10	183, 184, 185, 187, 188, 189	17	1	5, 6, 8
21–255	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved

Table J.3—Regulatory classes for 4.9 GHz and 5 GHz bands in Japan (continued)