
 

IEEE Std 802.10c-1998

 

(Supplement to
IEEE Std 802.10-1992)

 

IEEE Standard

Interoperable LAN/MAN
Security (SILS)

Key Management (Clause 3)

 

17 April 1998 SH94558



 

The Institute of Electrical and Electronics Engineers, Inc.
345 East 47th Street, New York, NY 10017-2394, USA

Copyright © 1998 by the Institute of Electrical and Electronics Engineers, Inc.
All rights reserved. Published 1998. Printed in the United States of America.

ISBN 1-55937-955-3

 

No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior 
written permission of the publisher.

 

IEEE Std 802.10c-1998

 

(Supplement to IEEE Std 802.10-1992)

 

IEEE Standards for Local and Metropolitan Area 
Networks:

Supplement to Standard for Interoperable
LAN/MAN Security (SILS)Ñ

Key Management (Clause 3)

 

Sponsor

 

LAN MAN Standards Committee
of the
IEEE Computer Society

 

Approved 21 January 1998

 

IEEE Standards Board

 

Abstract:

 

 A cryptographic key management model and a key management OSI Basic Reference
Model Application Layer protocol are specified.

 

Keywords:

 

 association control service element (ACSE), asymmetric cryptographic algorithm, cen-
ter-based key distribution, certiÞcate-based key distribution, cryptographic keying material, key
management model, key management protocol (KMP), manual key distribution, symmetric crypto-
graphic algorithm



 

IEEE Standards

 

 documents are developed within the IEEE Societies and the Standards Coordinat-
ing Committees of the IEEE Standards Board. Members of the committees serve voluntarily and
without compensation. They are not necessarily members of the Institute. The standards developed
within IEEE represent a consensus of the broad expertise on the subject within the Institute as well
as those activities outside of IEEE that have expressed an interest in participating in the develop-
ment of the standard.

Use of an IEEE Standard is wholly voluntary. The existence of an IEEE Standard does not imply
that there are no other ways to produce, test, measure, purchase, market, or provide other goods and
services related to the scope of the IEEE Standard. Furthermore, the viewpoint expressed at the
time a standard is approved and issued is subject to change brought about through developments in
the state of the art and comments received from users of the standard. Every IEEE Standard is sub-
jected to review at least every Þve years for revision or reafÞrmation. When a document is more
than Þve years old and has not been reafÞrmed, it is reasonable to conclude that its contents,
although still of some value, do not wholly reßect the present state of the art. Users are cautioned to
check to determine that they have the latest edition of any IEEE Standard.

Comments for revision of IEEE Standards are welcome from any interested party, regardless of
membership afÞliation with IEEE. Suggestions for changes in documents should be in the form of a
proposed change of text, together with appropriate supporting comments.

Interpretations: Occasionally questions may arise regarding the meaning of portions of standards as
they relate to speciÞc applications. When the need for interpretations is brought to the attention of
IEEE, the Institute will initiate action to prepare appropriate responses. Since IEEE Standards rep-
resent a consensus of all concerned interests, it is important to ensure that any interpretation has
also received the concurrence of a balance of interests. For this reason, IEEE and the members of its
societies and Standards Coordinating Committees are not able to provide an instant response to
interpretation requests except in those cases where the matter has previously received formal
consideration. 

Comments on standards and requests for interpretations should be addressed to:

Secretary, IEEE Standards Board
445 Hoes Lane
P.O. Box 1331
Piscataway, NJ 08855-1331
USA

Authorization to photocopy portions of any individual standard for internal or personal use is
granted by the Institute of Electrical and Electronics Engineers, Inc., provided that the appropriate
fee is paid to Copyright Clearance Center. To arrange for payment of licensing fee, please contact
Copyright Clearance Center, Customer Service, 222 Rosewood Drive, Danvers, MA 01923 USA;
(508) 750-8400. Permission to photocopy portions of any individual standard for educational class-
room use can also be obtained through the Copyright Clearance Center.

Note: Attention is called to the possibility that implementation of this standard may
require use of subject matter covered by patent rights. By publication of this standard,
no position is taken with respect to the existence or validity of any patent rights in
connection therewith. The IEEE shall not be responsible for identifying patents for
which a license may be required by an IEEE standard or for conducting inquiries into
the legal validity or scope of those patents that are brought to its attention.



 

Copyright © 1998 IEEE. All rights reserved.

 

iii

 

Introduction

 

[This introduction is not part of IEEE Std 802.10c-1998, IEEE Standards for Local and Metropolitan Area Networks:
Supplement to Standard for Interoperable LAN/MAN Security (SILS)ÑKey Management (Clause 3).]

 

This standard is part of a family of standards for local and metropolitan area networks. The relationship
between the standard and other members of the family is shown below. (The numbers in the Þgure refer to
IEEE standard numbers.)

This family of standards deals with the Physical and Data Link layers as deÞned by the International Organiza-
tion for Standardization (ISO) Open Systems Interconnection (OSI) Basic Reference Model (ISO/IEC 7498-
1: 1994). The access standards deÞne seven types of medium access technologies and associated physical
media, each appropriate for particular applications or system objectives. Other types are under investigation.

The standards deÞning the access technologies are as follows:

¥ IEEE Std 802

 

Overview and Architecture.

 

 This standard provides an overview to the fam-
ily of IEEE 802 Standards. 

¥ ANSI/IEEE Std 802.1B
and 802.1k
[ISO/IEC 15802-2]

 

LAN/MAN Management.

 

 DeÞnes an OSI management-compatible architec-
ture, and services and protocol elements for use in a LAN/MAN environ-
ment for performing remote management.

¥ ANSI/IEEE Std 802.1D
[ISO/IEC 10038]

 

Media Access Control

 

 

 

(MAC) Bridges.

 

 SpeciÞes an architecture and protocol 
for the interconnection of IEEE 802 LANs below the MAC service boundary.

¥ ANSI/IEEE Std 802.1E
[ISO/IEC 15802-4]

 

System Load Protocol.

 

 SpeciÞes a set of services and protocol for those 
aspects of management concerned with the loading of systems on IEEE 802 
LANs.

¥ ANSI/IEEE Std 802.1G
[ISO/IEC 15802-5]

 

Remote Media Access Control

 

 

 

(MAC) Bridging

 

. SpeciÞes extensions for the 
interconnection, using non-LAN communication technologies, of geographi-
cally separated IEEE 802 LANs below the level of the logical link control 
protocol.

¥ ANSI/IEEE Std 802.2
[ISO/IEC 8802-2]

 

Logical Link Control

* Formerly IEEE Std 802.1A.

DATA
LINK

LAYER

PHYSICAL

802.2 LOGICAL LINK CONTROL

802.1 BRIDGING

80
2.

1 
M

A
N

A
G

E
M

E
N

T

80
2 

O
V

E
R

V
IE

W
 &

 A
R

C
H

IT
E

C
T

U
R

E
*

80
2.

10
 S

E
C

U
R

IT
Y

802.3
MEDIUM
ACCESS

802.3
PHYSICAL

802.4
MEDIUM
ACCESS

802.4
PHYSICAL

802.5
MEDIUM
ACCESS

802.5
PHYSICAL

802.6
MEDIUM
ACCESS

802.6
PHYSICAL

802.9
MEDIUM
ACCESS

802.9
PHYSICAL

802.11
MEDIUM
ACCESS

802.11
PHYSICAL

802.12
MEDIUM
ACCESS

802.12
PHYSICAL LAYER



 

iv

 

Copyright © 1998 IEEE. All rights reserved.

 

Conformance test methodology

 

An additional standards series, identiÞed by the number 1802, has been established to identify the
conformance test methodology documents for the 802 family of standards. Thus the conformance test
documents for 802.3 are numbered 1802.3.

 

IEEE Std 802.10c-1998

 

The IEEE 802.10 Working Group was formed in May 1988 to address the security of Local Area and Metro-
politan Area Networks (LANs and MANs). Work on cryptographic key management began in May 1989.
The IEEE 802.10 Working Group is sponsored by the LAN MAN Standards Committee. IEEE 802.10 pro-
vides interoperability standards that are compatible with existing IEEE 802 standards and Open Systems
Interconnection (OSI) architectures. The working group is made up of representatives from the vendor, gov-
ernment, and user communities.

Data networks, especially LANs and MANs, have become widespread. LANs and MANs are used by indus-
try and government for transferring vast amounts of data in the course of daily operations. Because of their
ever increasing use in the public and private sectors, the capabilities of these networks are being expanded to
provide increased performance. As a result, there is a growing need to standardize data network protocols to
ensure that data networks will interoperate effectively and securely.

¥ ANSI/IEEE Std 802.3
[ISO/IEC 8802-3]

 

CSMA/CD Access Method and Physical Layer SpeciÞcations

 

¥ ANSI/IEEE Std 802.4
[ISO/IEC 8802-4]

 

Token Passing Bus Access Method and Physical Layer SpeciÞcations

 

¥ ANSI/IEEE Std 802.5
[ISO/IEC 8802-5]

 

Token Ring Access Method and Physical Layer SpeciÞcations

 

¥ ANSI/IEEE Std 802.6
[ISO/IEC 8802-6]

 

Distributed Queue Dual Bus Access Method and Physical Layer SpeciÞ-
cations

 

¥ ANSI/IEEE Std 802.9 
[ISO/IEC 8802-9] 

 

Integrated Services (IS) LAN Interface at the Medium Access Control 
(MAC) and Physical (PHY) Layers

 

¥ ANSI/IEEE Std 802.10

 

Interoperable LAN/MAN Security

 

¥ IEEE Std 802.11
[ISO/IEC DIS 8802-11]

 

Wireless LAN Medium Access Control (MAC) and Physical Layer SpeciÞ-
cations

 

¥ ANSI/IEEE Std 802.12
[ISO/IEC DIS 8802-12]

 

Demand Priority Access Method, Physical Layer and Repeater SpeciÞ-
cations

 

In addition to the family of standards, the following is a recommended practice for a common Physical
Layer technology:

¥ IEEE Std 802.7

 

IEEE Recommended Practice for Broadband Local Area Networks

 

The following additional working group has authorized standards projects under development:

 ¥ IEEE 802.14

 

Standard Protocol for Cable-TV Based Broadband Communication Network



 

Copyright © 1998 IEEE. All rights reserved.

 

v

As standards evolve, several key areas will become critically important. One of these areas is network secu-
rity. LANs and MANs must have the capability to exchange data in a secure manner. This is especially
important in cases where disclosure of operational data to unauthorized parties would severely undermine an
organizationÕs effectiveness. A related critical area is data reliability. Should data become corrupted, either
accidentally or maliciously, the effect on the organization could be grave. Both Þnancial and government
institutions have traditionally been aware of the importance of reliable data in a secure environment. How-
ever, recent widely publicized cases of computer fraud and related crimes have made this capability a goal
for many other industries as well. Security has become a universal concern.

As the need for security on LANs and MANs becomes more widely recognized, the need for a security stan-
dards also becomes a priority. Work on security standards has already started; and where applicable, this
standard incorporates this previous work.

This standard contains state-of-the-art material. The area covered by this standard is undergoing evolution.
Revisions are anticipated within the next few years to clarify existing material, to correct possible errors, and
to incorporate new related material. Information on the current revision state of this and other IEEE 802
standards may be obtained from

Secretary, IEEE Standards Board
445 Hoes Lane
P.O. Box 1331
Piscataway, NJ 08855-1331
USA

IEEE 802 committee working documents are available from

IEEE Document Distribution Service
AlphaGraphics #35    Attn: P. Thrush
10201 N. 35th Avenue
Phoenix, AZ 85051
USA

 

Participants

 

The following is a list of participants in the Standard for Interoperable LAN/MAN Security effort of
the IEEE Project 802 Working Group. Voting members at the time of publication are marked with an
asterisk (*).

 

Kenneth G. Alonge,*

 

 Chair

 

Russell D. Housley,*

 

 

 

Vice Chair and Editor

 

Joseph G. Maley,*

 

 

 

Recording Secretary

 

Richard McAllister,*

 

 

 

Executive Secretary

 

 

Asher Altman
Kurt Augustine
Kirk Barker
Kym D. Blair
James Coyle
Dane Elliot
Joanne Evans
Warwick Ford
Kim Kirkpatrick
Robert D. Kolacki
Paul Lambert

Wen-Pai Lu
Massimo Mascoli
Michael Michnikov
Ken McCoy
Tassos Nakassis
Noel A. Nazario
Barbara Patrick
Brian Phillips
James Randall
Karen Randall
Amy Reiss
Robert Rosenthal

Anthony Sacco
Brian P. Schanning
Emile W. Soueid
Jeffrey Vignes
Dale L. Walters
David Wheeler
Michael White
Joseph B. Williamson
Peter Yee
Roberto Zamparo
James E. Zmuda



 

vi

 

Copyright © 1998 IEEE. All rights reserved.

 

The following persons were on the balloting committee:

The Þnal conditions for approval of this supplement were met on 21 January 1998. This supplement was
conditionally approved by the IEEE Standards Board on 9 December 1997, with the following membership:

 

Donald C. Loughry,

 

 Chair

 

Richard J. Holleman,

 

 

 

Vice Chair

 

Andrew G. Salem,

 

 

 

Secretary

 

*Member Emeritus

 

Also included are the following nonvoting IEEE Standards Board liaisons:

 

Satish K. Aggarwal
Alan H. Cookson

Valerie E. Zelenty

 

IEEE Standards Project Editor

William B. Adams
Kenneth G. Alonge
Alan Arndt
Kit Athul
Greg Bergren
James T. Carlo
Michael H. Coden
Robert S. Crowder
Peter Ecclesine
Gregory Elkmann
James T. Ellis
John E. Emrich
Philip H. Enslow
Changxin Fan
John W. Fendrich
Michael A. Fischer
Sandra J. Forney
Harvey A. Freeman
Robert J. Gagliano
Gautam Garai
Eli Herscovitz
Russell D. Housley
Henry Hoyt
Gilbert J. Huey
Thomas R. Hunwick
Richard J. Iliff
Cynthia E. Irvine
Peter M. Kelly
Gary C. Kessler
Yongbum Kim

Stephen Barton Kruger
Kenneth C. Kung
Lanse M. Leach
Randolph S. Little
Joseph C. J. Loo
Robert D. Love
Wen-Pai Lu
Joseph G. Maley
Richard K. McAllister
Darrell B. McIndoe
Milan Merhar
Steve Messenger
Bennett Meyer
Colin K. Mick
Ann Miller
Dale W. Miller
David S. Millman
ReÞk Molva
Warren Monroe
John E. Montague
Kinji Mori
James R. Moulton
Wayne D. Moyers
Michael John Nash
Noel Nazario
Dan Nessett
Paul Nikolich
Richard OÕBrien
Robert OÕHara

Donal OÕMahony
Roger Pandanda
Vahid Parsi
Lucy W. Person
Andreas PÞtzmann
Thomas L. Phinney
Vikram Punj
Karen T. Randall
Edouard Y. Rocher
James W. Romlein
Floyd E. Ross
Christoph Ruland
Brian P. Schanning
Roger R. Schell
Norman Schneidewind
Donald A. Sheppard
Dan Shia
Alex Soceanu
Fred J. Strauss
Michael L. Sutherland
Efstathios D. Sykas
Geoffrey O. Thompson
Brian Tretick
Mark-Rene Uchida
Dale Walters
Frank J. Weisser
Clark Weissman
Raymond P. Wenig
Qian-Li Yang
Oren Yuen

Clyde R. Camp
Stephen L. Diamond
Harold E. Epstein
Donald C. Fleckenstein
Jay Forster*
Thomas F. Garrity
Donald N. Heirman
Jim Isaak
Ben C. Johnson

Lowell Johnson
Robert Kennelly
E. G. ÒAlÓ Kiener
Joseph L. KoepÞnger*
Stephen R. Lambert
Lawrence V. McCall
L. Bruce McClung
Marco W. Migliaro

Louis-Fran�ois Pau
Gerald H. Peterson
John W. Pope
Jose R. Ramos
Ronald H. Reimer
Ingo R�sch
John S. Ryan
Chee Kiow Tan
Howard L. Wolfman



 

Copyright © 1998 IEEE. All rights reserved.

 

vii

 

Contents

 

Changes and additions to IEEE Std 802.10-1992

 

.......................................................................................................1

 

1.2.1 Acronyms..................................................................................................................................... 1
1.3 References.................................................................................................................................... 2

3. Key management ................................................................................................................................. 4

3.1 Overview...................................................................................................................................... 4
3.2 Key distribution techniques ......................................................................................................... 5
3.3 Key management model .............................................................................................................. 9
3.4 Service definition ....................................................................................................................... 18
3.5 Security exchanges..................................................................................................................... 41
3.6 KMAE control function ............................................................................................................. 56

Annex 3A (normative) Locating SDE key management entities .................................................................. 79

Annex 3B (informative) Certificate replacement.......................................................................................... 82

Annex 3C (informative) Compromised material lists ................................................................................... 85

Annex 3D (informative) Key distribution scenarios ..................................................................................... 88

Annex 3E (normative) SDE attribute negotiations ....................................................................................... 94



 

Copyright © 1998 IEEE. All rights reserved.

 

1

 

IEEE Standards for Local and Metropolitan Area 
Networks:

Supplement to Standard for Interoperable
LAN/MAN Security (SILS)Ñ

Key Management (Clause 3)

 

Revisions to IEEE Std 802.10-1992

 

The contents of this document will be incorporated into IEEE Std 802.10 in a future edition. The clauses of
this document are ordered to parallel the order of clauses in the base standard. This supplement is intended
to be used in conjunction with IEEE Std 802.10-1992. Editing instructions necessary to incorporate this
supplement into IEEE Std 802.10 are provided in 

 

bold italics.

 

1.2.1 Acronyms

 

Add the following to 1.2.1 of IEEE Std 802.10-1992:

 

ACSE Association Control Service Element

ASE Application Service Element

ASO Application Service Object

CA CertiÞcation Authority

CCITT International Telegraph Telephone Consultative Committee (Renamed ITU-T)

CF Control Function

CML Compromised Material List

CRL CertiÞcate Revocation List

GULS Generic Upper Layers Security

ICV Integrity Check Value

IEC International Electrotechnical Commission



 

IEEE
Std 802.10c-1998 INTEROPERABLE LAN/MAN SECURITY (SILS)Ñ

 

2

 

Copyright © 1998 IEEE. All rights reserved.

 

ISO International Organization for Standardization

ITU-T International Telecommunications Union - Technical

KCASO Key Center Application Service Object

KDC Key Distribution Center

KEK Key Encryption Key

KMAE Key Management Application Entity

KMAP Key Management Application Process

KMID Keying Material IDentiÞer

KMP Key Management Protocol

KMTI Key Management Technique IdentiÞer

KPASO Key Peer Application Service Object

KTC Key Translation Center

MKC Multicast Key Center

NLSP Network Layer Security Protocol

PDU Protocol Data Unit

SA Security Association

SAID Security Association IDentiÞer

SDE Secure Data Exchange

SE Security Exchange

SEI Security Exchange Item

SESE Security Exchange Service Element

SMIB Security Management Information Base

ST Security Transformation

TLSP Transport Layer Security Protocol

 

1.3 References

 

Add the following references to IEEE Std 802.10-1992:

 

ANSI X9.30-1 (1995), Public Key Cryptography Using Irreversible Algorithms for the Financial Services
IndustryÑPart 1: The Digital Signature Algorithm (DSA).

 

1

 

ANSI X9.30-2 (1993), Public Key Cryptography Using Irreversible Algorithms for the Financial Services
IndustryÑPart 2: The Secure Hash Algorithm (SHA).

ANSI DRAFT X9.42, Public Key Cryptography for the Financial Services Industry: Establishment of Sym-
metric Algorithm Keys Using DifÞe-Hellman (draft dated 12 March 1998).

ANSI DRAFT X9.44, Public Key Cryptography Using Irreversible Algorithms for the Financial Services
Industry: Transport of Symmetric Algorithm Keys Using RSA (draft dated September 1997).

ISO 7498-2: 1989, Information processing systemsÑOpen Systems InterconnectionÑBasic Reference
ModelÑPart 2: Security Architecture.

 

2

 

 (ITU-T Recommendation X.800)

 

1

 

ANSI publications are available from the Sales Department, American National Standards Institute, 11 West 42nd Street, 13th Floor,
New York, NY 10036, USA.

 

2

 

ISO and ISO/IEC publications are available from the ISO Central Secretariat, Case Postale 56, 1 rue de Varemb�, CH-1211, Gen�ve
20, Switzerland/Suisse. ISO publications are also available in the United States from the Sales Department, American National Stan-
dards Institute, 11 West 42nd Street, 13th Floor, New York, NY 10036, USA.



 

IEEE
KEY MANAGEMENT Std 802.10c-1998

Copyright © 1998 IEEE. All rights reserved.

 

3

ISO 7498-3: 1997, Information technologyÑOpen Systems InterconnectionÑBasic Reference ModelÑ
Part 3: Naming and Addressing.

ISO 8649: 1996, Information technologyÑOpen Systems InterconnectionÑService deÞnition for the Asso-
ciation Control Service Element. (ITU-T Recommendation X.217)

 

 

 

ISO 8650-1: 1996, Information technologyÑOpen Systems InterconnectionÑConnection-oriented protocol
for the Association Control Service Element: Protocol speciÞcation.

ISO/IEC 7498-1: 1994, Information technologyÑOpen Systems InterconnectionÑBasic Reference Model:
The Basic Model. (ITU-T Recommendation X.200)

ISO/IEC 8824: 1990, Information technologyÑOpen Systems InterconnectionÑSpeciÞcation of Abstract
Syntax Notation One (ASN.1). (ITU-T Recommendation X.208)

ISO/IEC 9545: 1994, Information technologyÑOpen Systems InterconnectionÑApplication Layer struc-
ture. (ITU-T Recommendation X.207)

ISO/IEC 9594-8: 1995, Information technologyÑOpen Systems InterconnectionÑThe DirectoryÑPart 8:
Authentication framework. (ITU-T Recommendation X.509)

ISO/IEC 10181-1: 1996, Information technologyÑOpen Systems InterconnectionÑSecurity frameworks
for open systems: Overview. (ITU-T Recommendation X.810)

ISO/IEC 10736: 1995, Information technologyÑTelecommunication and information exchange between
systemsÑTransport layer security protocol. (ITU-T Recommendation X.274)

ISO/IEC 10745: 1995, Information technologyÑOpen Systems InterconnectionÑUpper layers security
model. (ITU-T Recommendation X.803)

ISO/IEC 11577: 1995, Information technologyÑOpen Systems InterconnectionÑNetwork layer security
protocol. (ITU-T Recommendation X.273)

ISO/IEC 11586-1: 1996, Information technologyÑOpen Systems InterconnectionÑGeneric upper layers
security: Overview, models and notation. (ITU-T Recommendation X.830)

ISO/IEC 11586-2: 1996, Information technologyÑOpen Systems InterconnectionÑGeneric upper layers
security: Security Exchange Service Element (SESE) service deÞnition. (ITU-T Recommendation X.831)

ISO/IEC 11586-3: 1996, Information technologyÑOpen Systems InterconnectionÑGeneric upper layers
security: Security Exchange Service Element (SESE) protocol speciÞcation. (ITU-T Recommendation
X.832)

ISO/IEC 11586-4: 1996, Information technologyÑOpen Systems InterconnectionÑGeneric upper layers
security: Protecting transfer syntax speciÞcation. (ITU-T Recommendation X.833)



 

IEEE
Std 802.10c-1998 INTEROPERABLE LAN/MAN SECURITY (SILS)Ñ

 

4

 

Copyright © 1998 IEEE. All rights reserved.

 

3. Key management

 

Replace Clause 3 and add the following subclauses to IEEE Std 802.10-1992:

 

3.1 Overview

 

3.1.1 Scope and purpose

 

This clause speciÞes a cryptographic key management model and protocol. The Key Management Protocol
(KMP) is an OSI Basic Reference Model Application Layer protocol. KMP uses the services provided by
the Security Exchange Service Element (SESE), the Association Control Service Element (ACSE), and the
Presentation service. In order to retrieve presentation addresses or to support a speciÞc key management
scheme, the Directory service may be needed. A KMP entity provides a service within the context of a
deÞned security policy; it is outside the scope of this standard to deÞne such security policies.

The KMP entity supports security protocol entities by managing the cryptographic keying material and secu-
rity associations that are necessary for the provision of secure communication. KMP entities are responsible
for creating the cooperative relationship and establishing the required cryptographic keying material. Secu-
rity protocols supported by this KMP include the Secure Data Exchange security protocol, IEEE 802.10b;
the Network Layer Security Protocol, ISO/IEC 11577; and the Transport Layer Security Protocol, ISO/IEC
10736. This KMP is intended to support other lower layer and upper layer security protocols, including
those still under development by the Internet Engineering Task Force to provide security for the Internet Pro-
tocol (IP).

The key management model and protocol support three key distribution techniques: manual key distribution,
center-based key distribution, and certiÞcate-based key distribution. Symmetric cryptographic algorithms
are normally used with center-based and manual key distribution techniques. Asymmetric cryptographic
algorithms are always used with certiÞcate-based key distribution techniques.

 

3.1.2 General

 

The KMP is used to create, spawn, and delete the security associations that are needed by security protocols
as required by security policy. The security association is composed of symmetric keying material and secu-
rity attributes.

Symmetric keying material is used in symmetric cryptographic algorithms. If two security protocol entities
use the same symmetric algorithm, one security protocol entity uses the same cryptographic key to decrypt
some or all of a protocol data unit (PDU) used by the other security protocol entity to encrypt the plaintext
data.

The security attributes determine how the security protocol will use the symmetric keying material. For
example, the security attributes tell which encryption algorithm and mode are used to provide conÞdential-
ity. Other security attributes tell which optional security protocol Þelds are present and which ones are
absent.

This standard uses the functions and services deÞned in Generic Upper Layers Security (GULS), ISO/IEC
11586: 1996,

 

3

 

 to provide an application-level communications infrastructure for the development of this
mechanism-independent KMP.

GULS deÞnes a Security Exchange (SE) mechanism that permits the exchange of security information, such
as keying material, in support of the various security services. The SE is deÞned as a sequence of Security

 

3

 

Information on references can be found in 1.3.



 

IEEE
KEY MANAGEMENT Std 802.10c-1998

Copyright © 1998 IEEE. All rights reserved.

 

5

Exchange Items (SEIs). The Security Exchange Service Element (SESE), an application level element, uses
ASN.1 notational tools to allow the consistent speciÞcation of SEs. GULS also deÞnes security transforma-
tions (STs) to provide integrity, conÞdentiality, or both, of application data communicated between open
systems. STs consist of a transfer-syntax function and ASN.1 notational tools. A transfer-syntax function,
the Generic Protecting Transfer Syntax, allows applications to signal their integrity and conÞdentiality
requirements in a communication protocol. ASN.1 notational tools allow the consistent speciÞcation of STs,
as well as a mechanism allowing an application to map its integrity and conÞdentiality requirements to spe-
ciÞc security transformations that satisfy these requirements.

This standard uses the functions deÞned in GULS to deÞne SEs and STs that are applicable to the key distri-
bution techniques discussed in subclause 3.2 (of this standard). This standard also deÞnes speciÞc uses of the
SESE, and application-contexts that deÞne speciÞc procedural rules and constraints pertaining to the overall
use of the GULS functions in support of key management.

 

3.1.3 Security deÞnitions

 

3.1.3.1 keying material: 

 

Keys, codes, authentication material, or state information necessary to establish
and maintain cryptographic relationships.

 

3.1.3.2 nonce:

 

 A unique identiÞer. Examples of a nonce are a random number, a timestamp, or a counter,
each of which is used only once.

 

3.1.3.3 pairwise: 

 

Something shared only by two parties.

 

3.1.3.4 rekey:

 

 Replacement of keying material by manual or electronic means. In certiÞcate-based key man-
agement, rekey is the issuing of a replacement certiÞcate, and may include the replacement of the asymmet-
ric key pair. 

 

3.1.3.5 spawn:

 

 Given one security association, to create another uniquely named security association by
changing the keying material, the security attributes, or both.

 

3.1.3.6 update:

 

 A one-way transformation of a symmetric cryptographic key to form another symmetric
cryptographic key.

 

3.2 Key distribution techniques

 

This subclause describes the key distribution techniques that are supported by this protocol. Three classes of
key distribution techniques are supported: manual distribution, center-based key distribution, and certiÞcate-
based distribution. The key center distribution techniques support both Key Distribution Centers (KDCs) and
Key Translation Centers (KTCs). KDCs are sometimes called Centers for Key Distribution (CKDs); they are
the same. KTCs are sometimes called Centers for Key Translation (CKTs); they are the same. The format of
certiÞcates used in the certiÞcate-based distribution techniques is described in ITU-T Recommendation
X.509.

 

3.2.1 Manual key distribution techniques

 

Manual key distribution techniques may be used to establish pairwise or multicast cryptographic keying
material. For this technique, cryptographic keying material is generated a-priori and stored on the peer key
management systems via means other than KMP. The cryptographic keying material is stored in a cache of
memory and accessed using Keying Material IdentiÞers (KMIDs). See Figure 3-1. The cache is usually



 

IEEE
Std 802.10c-1998 INTEROPERABLE LAN/MAN SECURITY (SILS)Ñ

 

6

 

Copyright © 1998 IEEE. All rights reserved.

 

located in the Security Management Information Base (SMIB). The keying material cache with KMIDs is
analogous to an array with indices. KMIDs are updated in the cache via means other than KMP. 

Manual methods of key distribution can be cumbersome and have scalability issues. These methods use off-
line delivery to intended users of keying material that must be kept conÞdential. KMP allows the use of pre-
placed keying material or keying material generated by transforming preplaced keying material in the estab-
lishment and maintenance of security associations. The manual methods for preplacement of this keying
material are beyond the scope of KMP.

In many cases, manual delivery of keying material is required only once per user. Distribution of additional
keying material can be performed using the manually distributed key as a key encryption key (KEK) to
encrypt the additional keying material. The encrypted keying material can then be distributed using any con-
venient method. 

Manual key distribution methods do not provide any authentication other than that provided by the delivery
method. Therefore, the strength of the procedures used for distribution of the keying material is extremely
important.

Manual key distribution is suitable for multicast keying material distribution. In fact, it is often the most efÞ-
cient way to distribute group or network-wide keying material, especially to large groups.

 

3.2.2 Center-based key distribution techniques

 

Center-based key distribution techniques may be used to establish pairwise or multicast cryptographic key-
ing material between the participating parties via a trusted third party: the Key Distribution Center (KDC) or
Key Translation Center (KTC).

Keying material established using a technique derived from the scheme originally described by Needham
and Schroeder can be based on either a KDC or a KTC. The KDC and KTC protocols depend upon the man-
ual distribution of KEKs to provide conÞdentiality and integrity protection for keying material. Dual-control
or split-knowledge techniques may be used for initial secure distribution of KEKs, where two key compo-
nents that will later be combined to form the cryptographic key are sent by separate paths. Each of the com-
ponents conveys no knowledge of the Þnal key. Once the manual KEKs have been distributed, cryptographic
keying material may be electronically distributed. ConÞdentiality for the automatically distributed keys is
provided by encryption using the manually distributed KEKs. Integrity may also be provided by the pres-
ence of an Integrity Check Value (ICV) or a digital signature.

Each party has a manually distributed secret KEK that is known only to itself and the KDC. One party, usu-
ally the initiator, requests the KDC to generate keying material to be shared by Party A and Party B. The

A B

1.

2.

A and B select a key that was previously distributed manually.

A and B use the key to protect the negotiation of the attributes
for the operation of the security protocol.

1.

2.

Figure 3-1ÑSelecting a manually distributed key



 

IEEE
KEY MANAGEMENT Std 802.10c-1998

Copyright © 1998 IEEE. All rights reserved.

 

7

KDC generates the keying material and separately encrypts it in the manually distributed secret KEK for
each party. The encrypted keying material is sent to the requesting party. The requesting party forwards the
keying material to the other party encrypted in the other partyÕs manually distributed secret KEK. As part of
this transfer, the two parties demonstrate that they have received the same key from the KDC. See Figure 3-2.

The keying material that is generated by the KDC can be used directly by a security protocol, or it can be
used as a KEK. In the latter case, the KDC-generated KEK is used to protect keying material generated by
one party while it is transferred to the other party. When this scheme is adopted, the three tiers of keying
material are used as follows:

Tier 1:

 

Manually distributed KEK.

 

 Pairwise between one party and the KDC.

Tier 2:

 

Automatically generated KEK.

 

 Generated by the KDC and shared by Party A and Party B.

Tier 3:

 

Keying material used by the security protocol.

 

 Generated by either Party A or Party B, and then sent
to the other party encrypted in the automatically generated KEK (Tier 2).

Unlike KDCs, KTCs do not generate keying material. With KTCs, each party has a manually distributed
secret KEK that is known only to itself and the KTC. Party A generates the keying material, encrypts it in the
manually distributed secret KEK shared with the KTC, and sends the encrypted keying material to the KTC.
The KTC decrypts the keying material, and then the KTC translates it by reencrypting it in the manually dis-
tributed secret KEK shared with Party B. The translated key is sent back to the requestor, Party A. Party A
forwards the translated keying material to Party B. As part of this transfer, the two parties demonstrate that
they have the same key. See Figure 3-3.

In cases where the communications topology prohibits Party A from communicating directly with the KDC
or KTC, Party B can communicate with the KDC or KTC and send the encrypted keying material to Party A.

 

3.2.3 CertiÞcate-based distribution techniques

 

CertiÞcate-based key distribution techniques may be used to establish pairwise cryptographic keying mate-
rial. This standard does not support the use of certiÞcate-based key distribution techniques to establish mul-
ticast cryptographic keying material; however, once pairwise cryptographic keying material is established, it
can be used to protect the distribution of multicast cryptographic keying material. See Figures 3-4 and 3-5.

A B

2.

3.

A requests a key from the KDC to communicate with B. The KDC 
responds to A with a copy of the key for A and for B. The KDC 
encrypts the key for A with a key encryption key that only the KDC 
and A possess. Likewise, the KDC encrypts the key for B with a 
key that only it and B possess.

A sends a copy of the key received from the KDC to B, and then B 
sends an acknowledgment to A.

A and B use the key to protect the negotiation of the attributes for 
the operation of the security protocol.

1.

2.

3.

Figure 3-2ÑCenter-based key distribution

KDC

1.



 

IEEE
Std 802.10c-1998 INTEROPERABLE LAN/MAN SECURITY (SILS)Ñ

 

8

 

Copyright © 1998 IEEE. All rights reserved.

 

There are two certiÞcate-based distribution techniques:

Ñ A public key cryptographic technique that uses asymmetric cryptography to encrypt locally gener-
ated keying material to protect it while it is being sent to the remote key management end system.
This is commonly called 

 

key

 

 

 

transfer

 

 or 

 

key transportation.

 

Ñ A public key cryptographic technique that cooperatively generates common symmetric crypto-
graphic keying material at both the local and remote key management end system. This is commonly
called 

 

key exchange;

 

 it is also called 

 

key agreement.

 

This standard uses the formats for and management of certiÞcates deÞned in the Directory Authentication
Framework, ITU-T Recommendation X.509 (ISO/IEC 9594-8: 1995). The X.509 certiÞcate contains the
public component of the asymmetric key pair. Of course, the private component of the asymmetric key pair
must be kept conÞdential. The certiÞcate also contains the identity of the certiÞcate owner; this identity takes
the form of a distinguished name. CertiÞcates are digitally signed by a recognized certiÞcation authority
(CA). By signing the certiÞcate, the CA is binding the public component of the asymmetric key pair and the
identity. That is, the entity named by the distinguished name must hold the private component of the asym-
metric key pair.

A B

2.

3.

A generates a key, encrypts the key in the KEK shared with the 
KTC, and sends the encrypted key to the KTC. The KTC decrypts 
the key sent by A, reencrypts it in the KEK shared with B, and 
sends the ÒtranslatedÓ key to A.

A sends the ÒtranslatedÓ key received from the KTC to B, and then 
B sends an acknowledgment to A.

A and B use the key to protect the negotiation of the attributes for 
the operation of the security protocol.

1.

2.

3.

Figure 3-3ÑCenter-based key translation

KTC

1.

A B

1.

2.

A and B exchange certiÞcates, which they use to obtain a secret key.

A and B use the key to protect the negotiation of the attributes for the opera-
tion of the security protocol.

1.

2.

Figure 3-4ÑCertiÞcate-based key distribution



 

IEEE
KEY MANAGEMENT Std 802.10c-1998

Copyright © 1998 IEEE. All rights reserved.

 

9

Each party must have a trusted public key. Generation and distribution of this trusted public key is beyond
the scope of this standard. A party validates a certiÞcate, in part, by validating that the current date is within
the validity period of the certiÞcate and by validating the certiÞcateÕs signature using the public key of the
CA. Likewise, the party validates the CAÕs certiÞcate, which contains its public key. This process continues
until the party validates a certiÞcate using the trusted public key. This list of certiÞcates composes a certiÞca-
tion path.

CAs may revoke a certiÞcate if the binding between the public component of the asymmetric key pair and
the identity is no longer appropriate or if the private component of the asymmetric key pair is disclosed. As
part of the certiÞcate validation process, parties must ensure that a certiÞcate has not been revoked by con-
tacting the CA or by checking a recent CertiÞcate Revocation List (CRL) issued and signed by the CA.

When certiÞcates are cached, their validity should be periodically conÞrmed to ensure that they have not
expired or been revoked. If after checking the validity of a certiÞcate it is found to be revoked, then the cer-
tiÞcate should be discarded from the cache and security associations that were established using the revoked
certiÞcate should be deleted.

 

3.2.4 Multicast key distribution techniques

 

Multicast key distribution relies on one of the key distribution techniques, manual, center-based, or certiÞ-
cate-based, to establish pairwise cryptographic keying material between the local key management end sys-
tem and the Multicast Key Center (MKC). Using the pairwise cryptographic material, the local key
management system requests the broadcast or multicast keying material and its associated attributes from the
MKC. The MKC determines if the local key management system is authorized to receive the requested mul-
ticast keying material; if it is authorized, the MKC sends the multicast keying material and its associated
attributes to the local key management system.

Each security protocol entity instigates obtaining the broadcast or multicast keying material as its needs dic-
tate. The MKC does not push the broadcast or multicast keying material to every member of the group. Fig-
ure 3-5 depicts multicast key distribution using the three key distribution techniques.

 

3.3 Key management model

 

The cryptographic keying material and security attributes that deÞne a security association are represented as
managed objects and stored in the SMIB. Security-related managed objects in the SMIB are available to
security protocols across all layers of the OSI Reference Model. The KMP described here allows for the cre-
ating, spawning, and deleting of security associations within the SMIB. Creating a security association
establishes new keying material and security attributes within the SMIB, spawning uses information from a
security association in the SMIB to generate a new one, and deleting a security association makes the keying
material and security attributes unavailable. Deleting a security association may remove the keying material
or security attributes from the SMIB, if local security policy permits.

KMP supports two types of security associations: pairwise and multicast. Pairwise security associations sup-
port protected communication between two parties that share the same cryptographic keying material and
security attributes. Multicast security associations support communication among two or more parties,
where all parties share the same cryptographic keying material and security attributes.

 

3.3.1 Security association lifecycle

 

The creation of security associations is accomplished in two phases: establishment of cryptographic keying
material, and negotiation of security attributes. Once cryptographic keying material is established, it is used
to protect the security attribute negotiation.



 

IEEE
Std 802.10c-1998 INTEROPERABLE LAN/MAN SECURITY (SILS)Ñ

 

10

 

Copyright © 1998 IEEE. All rights reserved.

 

The negotiated security attributes determine how the security association will be used. In other words, the
security attributes determine which Security Protocol will use the security association and how that Security
Protocol will use the cryptographic keying material.

After a security association is created, it may be used to spawn other security associations. Spawn operations
allow the generation of a new security association with new cryptographic keying material derived from that
of the parent association and the same security attributes; the same cryptographic keying material and new
security attributes; or new cryptographic keying material derived from that of the parent association and new
security attributes. In every case, spawn operations generate a new security association with a new Security
Association IdentiÞer (SAID). Spawn operations do not affect the parent security association.

Either key management end system may determine that a security association is no longer needed. Once the
determination is made, the local system notiÞes the remote system, and deletes the association. No conÞrma-
tion is necessary.

 

3.3.2 Key management application entity structure

 

The key management application requires communication with remote key management applications. To
support this communication, the KMP relies on OSI communication services provided by the ACSE and
SESE. These service elements interface to the OSI Presentation Layer to communicate with the remote key
management end system.

B A

1.

2.

A and the MKC select a key that was previously distributed manually.

A gets the multicast key from the MKC.

B requests a key from the KDC to communicate with the MKC.

B sends a copy of the key received from the KDC to the MKC. The key is protected with a key encryp-
tion key that only the MKC knows.

B gets the multicast key from the MKC.

C and the MKC exchange key generation information, which they use to make a secret key.

C gets the multicast key from the MKC.

1.

2.

3.

4.

5.

6.

7.

Figure 3-5ÑMulticast key distribution

KDC

3.

MKC

4.

5.

C

6. 7.



 

IEEE
KEY MANAGEMENT Std 802.10c-1998

Copyright © 1998 IEEE. All rights reserved.

 

11

The Key Management Application Process (KMAP) is not speciÞed by this standard, but the KMAP uses the
OSI communications services to establish cryptographic keying material, negotiate attributes for the crypto-
graphic keying material, and delete the cryptographic keying material in accordance with locally deÞned
security policy. The KMAP provides the top level interface to the user. The KMAP may use one or more of
the supported cryptographic keying material distribution techniques: manual key distribution, center-based
key distribution, and certiÞcate-based key distribution. A single attribute negotiation technique is used with
all three cryptographic keying material distribution techniques. This protocol is used to establish security
associations that provide security services.

The Key Management Application Entity (KMAE) is an Application Service Object (ASO) that performs
cryptographic keying material management. As shown in Figure 3-6, the KMAE comprises two application
service objects and a control function. The Key Peer Application Service Object (KPASO) interacts with the
remote key management end system to establish security associations. The Key Center Application Service
Object (KCASO) interacts with a KDC or a KTC to obtain cryptographic keying material. The Control
Function (CF) coordinates interactions between the KPASO and the KCASO. The service interface to the
KMAE is described in 3.4.1.

The KPASO comprises the ACSE, the SESE, and a CF. The ACSE is a common application service element
deÞned by ISO/IEC 8649: 1996, and it establishes and terminates application-associations. The SESE is a
common application service element deÞned by ISO/IEC 11586: 1996, and it performs security exchanges
and security transformations. The SESE provides the SE-Transfer operation to the CF in order to transport a
Security Exchange Item (SEI). Each protocol data unit in this protocol is represented as an SEI. The CF
coordinates interactions between ACSE and SESE. The service interface to the KPASO is described in 3.4.2.

The KMAE may invoke the KPASO multiple times, once for each remote key management end system.
Therefore, each KPASO invocation uses a single application-association. Limiting the KPASO to one appli-
cation-association simpliÞes addressing.

The KCASO, like the KPASO, comprises the ACSE, the SESE, and a CF. Again, the CF coordinates interac-
tions between ACSE and SESE. The service interface to the KCASO is described in 3.4.3.

The KMAE may invoke the KCASO multiple times, once for a KDC or for a KTC. Therefore, each KCASO
invocation uses a single application-association. Again, limiting the KCASO to one application-association
simpliÞes addressing.

Figure 3-6ÑKey management application structure

KMAP

KMAE

CF

KPASO KCASO

CF CF

ACSESESESESEACSE

KMAP
KMAE
KPASO
KCASO
CF
ACSE
SESE

Key Management Application Process
Key Management Application Entity
Key Peer Application Service Object
Key Center Application Service Object
Control Function
Association Control Service Element
Security Exchange Service Element



 

IEEE
Std 802.10c-1998 INTEROPERABLE LAN/MAN SECURITY (SILS)Ñ

 

12

 

Copyright © 1998 IEEE. All rights reserved.

 

3.3.3 Sequencing of application layer services

 

The KMAE does not implement any security exchanges; rather, the KMAE invokes the KPASO and the
KCASO, which perform the necessary security exchanges. Communication between the KMAE and the
KPASO, communication between the KMAE and the KCASO, and sequencing of these communications are
controlled by the CF within the KMAE; however, these communications are an implementation detail and
are not speciÞed.

The KMAE may optionally use the KPASO to negotiate the key distribution technique and the algorithm
that will be used to establish symmetric cryptographic keying material. Regardless of how the symmetric
keying material is established, the KPASO uses the symmetric keying material to protect the security
attribute negotiation exchange necessary to complete the creation of the security association.

When using center-based techniques, the KMAE uses the KCASO to obtain symmetric cryptographic key-
ing material from a KDC, or to translate a key using a KTC. This symmetric cryptographic keying material
is subsequently used by the KPASO to complete the creation of the security association.

 

3.3.3.1 Manually distributed key

 

To select cryptographic keying material from a collection of pre-positioned material or to select crypto-
graphic keying material generated by transforming pre-positioned material, a Create-SA service request is
issued to the KMAE. 

In order to implement manually distributed cryptographic keying material, it is generated a-priori and stored
on the peer key management systems via means other than KMP. The cryptographic keying material is
stored in a memory cache and accessed using Keying Material IdentiÞers (KMIDs). Validity periods may be
associated with the cached cryptographic keying material. The cache is usually located in the SMIB. The
cache with KMIDs is analogous to an array with indices; see Table 3-1. If cryptographic keying material
transformation is supported, then the cache must include a counter that tells the number of times a transfor-
mation has been applied to the manually distributed cryptographic keying material. Keeping this counter
allows earlier versions of the cryptographic keying material, including the original, to be discarded when
they are no longer needed.

The KPASO CF generates the proper SEIs from the parameters, and then passes the SEIs to SESE via the
SE-Transfer service. The KPASO CF passes the SEIs to SESE only after an application-association is in
place for the SESE to use. If an application-association is not already in place, the KPASO CF invokes the
A-Associate service provided by ACSE. If the Create-SA parameters include a Key Management Technique
IdentiÞer (KMTI) List with multiple techniques (see 3.4.1.1.3), or the Security Policy IdentiÞer must be
announced (see 3.4.1.1.4), then the KMAE CF invokes the KPASO Pick-KM-Alg service. Once the KMAE
CF has selected the manual key distribution technique, the KMAE CF issues the Select-Key service to the
KPASO. Then, the KMAE CF uses the Security Protocol Parameters List to issue the Pick-SA-Attrs. If fur-
ther key management communications are likely, the KMAE CF leaves the application-association in place;
otherwise the KMAE CF invokes the Release-P service, which releases the application-association.

 

Table 3-1ÑCryptographic keying material cache

 

KMID Cryptographic keying 
material

Transform 
counter

 

1 0x0123456789ABCDEF 0

2 0XF0DEBC9A78563412 48



 

IEEE
KEY MANAGEMENT Std 802.10c-1998

Copyright © 1998 IEEE. All rights reserved.

 

13

Figure 3-7 shows the relationship between the KMAE and the KPASO. As mentioned previously, the
Release-P service is optional, but has been included in the Þgure for completeness. Only service requests are
shown; conÞrmations have been omitted to simplify the Þgure.

 

3.3.3.2 Key center distribution

 

A Create-SA service request is issued to the KMAE to obtain cryptographic keying material from a KDC or
to translate cryptographic keying material using a KTC. If the Create-SA parameters include the KMTI List
with multiple techniques (see 3.4.1.1.3), or the Security Policy IdentiÞer must be announced (see 3.4.1.1.4),
then the KMAE CF invokes the KPASO Pick-KM-Alg service. The KPASO generates the proper SEIs from
the parameters, and then passes the SEIs to SESE via the SE-Transfer service. The KPASO CF passes the
SEIs to SESE only after an application-association is in place for the SESE to use with its peer in the remote
key management end system. If an application-association is not already in place, the KPASO CF invokes
the A-Associate service provided by ACSE.

Once the KMAE CF has selected the key center or translation center distribution technique, the KMAE CF
issues the Request-Key or Translate-Key service to the KCASO. In the same manner as the KPASO, the
KCASO CF passes the SEIs to SESE only after an application-association is in place for the SESE to use
with its peer in the remote key or translation center end system. If an application-association with the KDC
or KTC does not already exist, the KCASO CF invokes the A-Associate service provided by ACSE. After the
KMAE CF receives conÞrmation from the Request-Key or Translate-Key service, the KMAE CF issues the
Send-Key service to the KPASO. Then the KMAE CF uses the Security Protocol Parameters List to issue the
Pick-SA-Attrs. If further key management communications are likely, the KMAE CF leaves both applica-
tion-associations in place; otherwise the KMAE CF invokes the Release-P and Release-C service, which
releases the application-associations.

Figure 3-8 shows the relationship between the KMAE, the KPASO, and the KCASO. As mentioned previ-
ously, the Release-P and Release-C services are optional, but have been included in the Þgure for complete-
ness. Only service requests are shown; conÞrmations have been omitted to simplify the Þgure.

Figure 3-7ÑCreate an SA by selecting manually distributed key

CF

1. Pick-KM-Alg

4. Release-P

3. Pick-SA-Attrs

2. Select-Key

CF

KMAE KPASO

ACSE

SESE

A-Associate

SE-Transfer

A-Release

SE-Transfer

SE-Transfer

Create-SA



 

IEEE
Std 802.10c-1998 INTEROPERABLE LAN/MAN SECURITY (SILS)Ñ

 

14

 

Copyright © 1998 IEEE. All rights reserved.

 

In cases where the communications topology prohibits the local key management end system from commu-
nicating directly with the KDC or KTC, the local KMAE CF issues the Please-Send-Key service to the
KPASO requesting the remote key management end system to communicate with the KDC or KTC. In
response, the remote KMAE CF issues the Request-Key or Translate-Key service to the remote KCASO,
and then the remote KMAE CF issues the Send-Key service to the remote KPASO. Afterwards, the local
KMAE CF uses the Security Protocol Parameters List to issue the Pick-SA-Attrs. If further key management
communications are likely, the KMAE CF leaves application-association in place; otherwise the KMAE CF
invokes the Release-P, which releases the application-association. If further key management communica-
tions are likely between the remote key management end system and the KDC or KTC, the remote KMAE
CF leaves application-association in place; otherwise the remote KMAE CF invokes the Release-C, which
releases the application-association.

 

3.3.3.3 CertiÞcate-based key distribution 

 

To generate a key using certiÞcate-based techniques, a Create-SA service request is issued to the KMAE. If
the Create-SA parameters include the KMTI List with multiple techniques (see 3.4.1.1.3) or the Security
Policy IdentiÞer must be announced (see 3.4.1.1.4), then the KMAE CF invokes the KPASO Pick-KM-Alg
service. The KPASO generates the proper SEIs from the parameters, and then passes the SEIs to SESE via
the SE-Transfer service. The KPASO CF passes the SEIs to SESE only after an application-association is in
place for the SESE to use. If an application-association is not already in place, the KPASO CF invokes the
A-Associate service provided by ACSE. Once the KMAE CF has selected the certiÞcate-based key distribu-
tion technique, the KMAE CF issues the Make-Key service to the KPASO. Then the KMAE CF uses the
Security Protocol Parameters List to issue the Pick-SA-Attrs. If further key management communications
are likely, the KMAE CF leaves the application-association in place; otherwise the KMAE CF invokes the
Release-P service, which releases the application-association.

Figure 3-9 shows the relationship between the KMAE and the KPASO. As mentioned previously, the
Release-P service is optional, but has been included in the Þgure for completeness. Only service requests are
shown; conÞrmations have been omitted to simplify the Þgure.

CF

1. Pick-KM-Alg

6. Release-P

5. Pick-SA-Attrs

4. Send-Key

CF

KMAE
KPASO

SESE

A-Associate

SE-Transfer

A-Release

SE-Transfer

Figure 3-8ÑCreate an SA using center-based key distribution

2. Request-Key

3. Release-C

(Translate-Key)

CF

ACSE

ACSE

SESE

A-Associate
A-Release

SE-Transfer

KCASO

Create-SA



 

IEEE
KEY MANAGEMENT Std 802.10c-1998

Copyright © 1998 IEEE. All rights reserved.

 

15

 

3.3.3.4 Multicast key distribution

 

The MKC generates the multicast keying material and the associated attributes, and then distributes them to
the broadcast or multicast group members. The MKC determines the period of time that multicast keying
material may be used. The KMAE uses the Create-MSA service to obtain multicast keying material from the
MKC. The KMAE uses the Spawn-MSA service to obtain subsequent multicast keying material from the
MKC.

There is no need for a Delete-MSA service. With pairwise security associations, the Delete-SA service is
used to notify the remote KMAE that pairwise cryptographic keying material is being removed from the
local SMIB. This notiÞcation is important in the pairwise case because communications associated with that
cryptographic keying material are no longer possible. This is not the case with multicast keying material.
When one KMAE deletes multicast keying material from the local SMIB, other members of the broadcast or
multicast group can continue to communicate using that cryptographic keying material. The local deletion of
multicast keying material has the effect of resigning from the broadcast or multicast group. The method used
to delete multicast security associations is an implementation detail.

The security association identiÞer and all other security association attributes are assigned by the MKC so
that the same ones will be used by all Security Protocol entities who possess the multicast keying material.

 

3.3.3.4.1 Create multicast security association

 

For Multicast keys, a Create-MSA service request is issued to the KMAE. If the Create-SA parameters
include the KMTI List with multiple techniques (see 3.4.1.1.3), or the Security Policy IdentiÞer must be
announced (see 3.4.1.1.4), then the KMAE CF invokes the KPASO Pick-KM-Alg service. The KPASO gen-
erates the proper SEIs from the parameters, and then passes the SEIs to SESE via the SE-Transfer service.
The KPASO CF passes the SEIs to SESE only after an application-association is in place for the SESE to use
with the MKC. If an application-association is not already in place, the KPASO CF invokes the A-Associate
service provided by ACSE.

Once the key distribution technique has been determined, the KMAE CF issues either the Make-Key, Select-
Key, Send-Key, or Please-Send-Key service to the KPASO in order to establish keying material with the
MKC. The Protected-Make-Key service may optionally be invoked following the completion of any of these
services. After the KMAE CF has received conÞrmation from the KPASO for the chosen service, the KMAE
CF issues the Get-MKey with a list of broadcast and multicast addresses. The MKC returns the list of
approved broadcast and multicast addresses with a corresponding list of multicast tokens. The multicast
token includes the multicast SAID. If further key management communications are likely, the application-

CF

1. Pick-KM-Alg

4. Release-P

3. Pick-SA-Attrs

2. Make-Key

CF

KMAE KPASO

ACSE

SESE

A-Associate

SE-Transfer

A-Release

SE-Transfer

SE-Transfer

Create-SA

Figure 3-9ÑCreate an SA using certiÞcate-based key distribution



 

IEEE
Std 802.10c-1998 INTEROPERABLE LAN/MAN SECURITY (SILS)Ñ

 

16

 

Copyright © 1998 IEEE. All rights reserved.

 

association is left in place; otherwise the KMAE CF invokes the Release-P service, which releases the appli-
cation-association.

Figure 3-10 shows the relationship between the KMAE and the KPASO. As mentioned previously, the
Release-P service is optional, but has been included in the Þgure for completeness. Only service requests are
shown; conÞrmations have been omitted to simplify the Þgure.

 

3.3.3.4.2 Spawn multicast security association

 

To generate a new multicast security association from an existing one, a Spawn-MSA service request is
issued to the KMAE. The KMAE CF uses a previously established multicast security association to protect
the transfer of the new multicast token from the MKC. The KMAE CF invokes the KPASO service Get-
Next-MKey to the MKC. The MKC returns the new multicast token, which includes the multicast SAID.
The KPASO generates the proper SEIs from the passed parameters, and then passes the SEIs to the SESE via
the SE-Transfer service. The KPASO CF passes the SEIs to SESE only after an application-association is in
place for the SESE to use with the MKC. If an application-association is not already in place, the KPASO
CF invokes the A-Associate service provided by ACSE. If further key management communications are
likely, the application-association is left in place; otherwise the KMAE CF invokes the Release-P service,
which releases the application-association.

Figure 3-11 shows the relationship between the KMAE and the KPASO. As mentioned previously, the
Release-P service is optional, but has been included in the Þgure for completeness. Only service requests are
shown; conÞrmations have been omitted to simplify the Þgure.

 

3.3.3.5 Spawn security association

 

A Spawn-SA service request is issued to the KMAE to generate a new security association from an existing
security association by one of the following Spawn Options:

Ñ Transform keying material and use the same attributes;

Ñ Generate or transfer new keying material under the protection of an existing security association and
use the same attributes;

Ñ Transform keying material and negotiate new attributes;

Ñ Generate or transfer new keying material under the protection of an existing security association and
negotiate new attributes; or

Ñ Use the same keying material, and negotiate new attributes.

CF

1. Pick-KM-Alg

5. Release-P

4. Get-MKey

2. Make-Key

CF

KMAE
KPASO

ACSE

SESE

A-Associate

SE-Transfer

A-Release

SE-Transfer

SE-Transfer

Create-MSA

Figure 3-10ÑMulticast key distribution

(Select-Key)
(Send-Key)
(Please-Send-Key)

3. Protected-Make-Key



 

IEEE
KEY MANAGEMENT Std 802.10c-1998

Copyright © 1998 IEEE. All rights reserved.

 

17

The KMAE CF uses information from the Spawn Option, the Key Transformation Algorithm IdentiÞer, and
the previously established calling and called SAIDs to invoke either the Spawn-Key, Protected-Make-Key, or
Send-Key KPASO service. All of theses services assign a new SAID.

To change only the attributes while preserving the keying material, the KMAE must invoke the Spawn-Key
service with an identity key transformation algorithm.

The KPASO generates the proper SEIs from the parameters, and then passes the SEIs to the SESE via the
SE-Transfer service. The KPASO CF passes the SEIs to SESE only after an application-association is in
place for the SESE to use with its peer in the remote key management end system. If an application-associa-
tion is not already in place, the KPASO CF invokes the A-Associate service provided by ACSE. The KMAE
CF uses the Security Protocol Parameters List to issue the Pick-SA-Attrs to the KPASO. If further key man-
agement communications are likely, the application-association is left in place; otherwise the KMAE CF
invokes the Release-P service, which releases it.

Figure 3-12 shows the relationship between the KMAE and the KPASO. As mentioned previously, the
Release-P service is optional, but has been included in the Þgure for completeness. Only service requests are
shown; conÞrmations have been omitted to simplify the Þgure.

CF

1. Get-Next-MKey

2. Release-P

CF

KMAE
KPASO

ACSE

SESE

A-Associate

A-Release

SE-Transfer

Spawn-MSA

Figure 3-11ÑMulticast spawn

CF

1. Spawn-Key

3. Release-P

2. Pick-SA-Attrs

CF

KMAE
KPASO

ACSE

SESE

A-Associate

A-Release

SE-Transfer

SE-Transfer

Spawn-MSA

(Protected-Make-Key)
(Send-Key)

Figure 3-12ÑSpawn SA



 

IEEE
Std 802.10c-1998 INTEROPERABLE LAN/MAN SECURITY (SILS)Ñ

 

18

 

Copyright © 1998 IEEE. All rights reserved.

 

3.3.3.6 Delete security association

 

To delete a security association, a Delete-SA service is issued to the KMAE. The KMAE CF uses the Call-
ing and Called SAIDs to issue the Delete-Key service to the KPASO. The KPASO generates the proper SEIs
from the parameters, and then passes the SEIs to the SESE via the SE-Transfer service. The KPASO CF
passes the SEIs to SESE only after an application-association is in place for the SESE to use with its peer in
the remote key management end system. If an application-association is not already in place, the KPASO CF
invokes the A-Associate service provided by ACSE. If further key management communications are likely,
the application-association is left in place; otherwise the KMAE CF invokes the Release-P service, which
releases it.

Figure 3-13 shows the relationship between the KMAE and the KPASO. As mentioned previously, the
Release-P service is optional, but has been included in the Þgure for completeness. Only service requests are
shown; conÞrmations have been omitted to simplify the Þgure.

 

3.4 Service deÞnition

 

The following abbreviations are used in this subclause:

M Mandatory 

U User Optional

C Conditional

(=) If present, the parameter value must be the same as the parameter value in the previous column

The KMAE provides services to the KMAP using a service interface with a very high level of abstraction.
The KPASO and KCASO provide service to the KMAE using a service interface with a lower level of
abstraction. The KMAE CF determines when application-associations should be established and released.
The time at which application-associations should be released is not addressed by this standard; it is a local
matter.

 

3.4.1 Key management application entity (KMAE) services

 

The KMAE provides Þve services: Create-SA, Spawn-SA, Delete-SA, Create-MSA, and Spawn-MSA.

CF

1. Delete-Key

2. Release-P

CF

KMAE
KPASO

ACSE

SESE

A-Associate

A-Release

SE-Transfer

Delete-SA

Figure 3-13ÑDelete SA



 

IEEE
KEY MANAGEMENT Std 802.10c-1998

Copyright © 1998 IEEE. All rights reserved.

 

19

 

3.4.1.1 Create security association (Create-SA)

 

The Create-SA service establishes the cryptographic keying material and associated attributes to form a
security association. Create-SA provides a conÞrmed service, and it securely establishes the same symmetric
cryptographic keying material in the SMIB of each key management end system. The speciÞc attributes that
are associated with the cryptographic keying material depend on the Security Protocol that will use the secu-
rity association. Issuing a Create-SA.conf announces that the security association is enabled on both end sys-
tems for use by the security protocol.

The parameters of Create-SA are deÞned in the Table 3-2.

 

3.4.1.1.1 Calling AE-Title

 

The Calling AE-Title comprises the Application Title and Application Entity QualiÞer of the calling KMAE,
both of which are necessary during the application-association establishment and are passed from the calling
key management application. The form of the AE-Title could either be the distinguished name of the appli-
cation or an object identiÞer for the application.

 

CallingAETitle ::= AETitle

AETitle ::= CHOICE {
AETitle-form1,
AETitle-form2 }

AETitle-form1 ::= [0] SEQUENCE {
COMPONENTS OF {
APTitle-form1,
AEQualifier-form1 }}

APTitle-form1 ::= IMPLICIT SEQUENCE OF
RelativeDistinguishedName

AEQualifier-form1 ::= [1] IMPLICIT
RelativeDistinguishedName

AETitle-form2 ::= [1] SEQUENCE {

 

Table 3-2ÑCreate-SA parameters

 

Create-SA parameter name .req .ind .rsp .conf Reference

 

Calling AE-Title M M (=) Ñ Ñ 3.4.1.1.1

Called AE-Title M M (=) M M (=) 3.4.1.1.2

Key Management Technique IdentiÞer List U C (=) Ñ Ñ 3.4.1.1.3

Security Policy IdentiÞer U C (=) Ñ Ñ 3.4.1.1.4

Security Association Attributes List M M (=) Ñ Ñ 3.4.1.1.5

Security Association Attributes Ñ Ñ M M (=) 3.4.1.1.6

Calling SAID Ñ M M (=) M (=) 3.4.1.1.7

Called SAID Ñ M M (=) M (=) 3.4.1.1.8

Result Ñ Ñ M M (=) 3.4.1.1.9



 

IEEE
Std 802.10c-1998 INTEROPERABLE LAN/MAN SECURITY (SILS)Ñ

 

20

 

Copyright © 1998 IEEE. All rights reserved.

 

APTitle-form2,
AEQualifier-form2 }

APTitle-form2 ::= [2] IMPLICIT OBJECT IDENTIFIER

AEQualifier-form2 ::= [3] IMPLICIT INTEGER

 

3.4.1.1.2 Called AE-Title

 

The Called AE-Title comprises the Application Title and Application Entity QualiÞer of the called KMAE,
both of which are necessary during the application-association establishment and passed from the calling
key management application to indicate the intended called KMAE. The form of the AE-Title can either be
the distinguished name of the application or an object identiÞer for the application.

 

CalledAETitle ::= AETitle -- AETitle is defined in 3.4.1.1.1

3.4.1.1.3 Key management technique identiÞer list

The Key Management Technique IdentiÞer (KMTI) List contains a list of alternatives, in order of preference,
regarding the type of key management distribution and the algorithms and values needed for key generation,
conÞdentiality, integrity, and key transformation.

If the KMTI List contains more than one alternative or the Security Policy IdentiÞer must be announced,
then the KMAE CF must invoke Pick-KM-Alg. In many cases, the calling key management end systems
support only a single key management technique; thus negotiation is unnecessary, and the KMAE CF may
omit invocation of Pick-KM-Alg.

The KMTI is the selection made by the called KMAE from the list of alternatives in the KMTI List. The
selection is the Þrst acceptable alternative from the list in the KMTI List. The selection includes the type of
key management distribution and the algorithms and values needed, if any, for key generation. Based on the
value of the technique, the KMAE CF subsequently invokes Select-Key if the technique is equal to 0, Send-
Key if the technique is equal to 1 (after it invokes either a Request-Key or a Translate-Key), Please-Send-
Key if the technique is equal to 2, or Make-Key if the technique is equal to 3. Also, included in the selection
is the conÞdentiality and integrity algorithms that the KMAE uses in subsequent exchanges during the estab-
lishment of the Security Association, i.e., within the Pick-SA-Attrs exchange. Also, the KMAE may subse-
quently use the key transformation algorithm within the Spawn-SA exchanges.

KMTechniqueIdList ::= SEQUENCE OF KMTechniqueId

KMTechniqueId ::= SEQUENCE  {
technique Technique,
keyCreationAlg KeyCreationAlg,
attrConfidAlg AttrConfidAlg,
attrIntegrityAlg AttrIntegrityAlg,
transformationAlg TransformationAlg OPTIONAL }

Technique  ::= INTEGER  {
manual (0),
requesterCallsCenter (1),
responderCallsCenter (2),
certificate (3)  }

KeyCreationAlg::= AlgorithmIdentifier
AttrConfidAlg::= AlgorithmIdentifier



IEEE
KEY MANAGEMENT Std 802.10c-1998

Copyright © 1998 IEEE. All rights reserved. 21

AttrIntegrityAlg::= AlgorithmIdentifier
TransformationAlg::= AlgorithmIdentifier

3.4.1.1.4 Security policy identiÞer

The Security Policy IdentiÞer is used by the calling KMAE to indicate a speciÞc security policy to the called
KMAE. In addition, authentication information can follow the policy identiÞer. The Security Policy Identi-
Þer is maintained in the SMIB, and it can be used to implicitly state security association requirements such
as security service requirements, keying material selection, security protocol selection, and security protocol
attributes. This parameter is optional.

SecurityPolicy ::= SEQUENCE  {
policyId OBJECT IDENTIFIER,
policyVersion INTEGER OPTIONAL,
authenticationInfo OCTET STRING OPTIONAL  }

3.4.1.1.5 Security association attributes list

The Security Association Attributes List contains information regarding the suite of security attributes
required for the security association. For example, the security attributes could be the attributes for a security
protocol. The information is placed in the list in order of preference by the calling KMAE. The values are
determined by the security policy and maintained in the SMIB.

SAAttrsList ::= SEQUENCE of SAAttrs

3.4.1.1.6 Security association attributes

The Security Association Attributes is the selection made by the called KMAE from the Security Association
Attributes List. The selection is made by the Þrst match between the calling and called KMAE. The security
attributes may be enumerated or they may be speciÞed by referencing a previously established security asso-
ciation. If desired, padding may be included to make all of the alternatives approximately the same size. Any
padding is ignored by the remote key management end system. An example of attributes for the SDE secu-
rity protocol is contained in Annex 3E. The deÞnition of the Object Class SP-ATTRS is contained in 3.5.5.2.

SAAttrs ::= CHOICE  {
sameAs [0] ReferenceSA,

[1] SPAttrs  }
ReferenceSA  ::= SEQUENCE  {

callingSAID Said,
calledSAID Said,
padding OCTET STRING OPTIONAL  }

SPAttrs  ::= SEQUENCE  {
spAttrs SP-ATTRS.&attrs-Id
attrs SP-ATTRS.&Sp-Attrs {@spAttrs} OPTIONAL  }

3.4.1.1.7 Calling SAID

The Calling SAID is a unique identiÞer for the Security Association and is determined by the calling
KMAE. The calling and called KMAE determine their own SAIDs; therefore, the calling and called SAIDs
may differ. The KMAE creates the SAID during the key establishment process.

The SAID is used by this KMP, and the format of the calling and called SAID is identical to the format of the
SAID deÞned in 2.5.2.1.2 of IEEE Std 802.10-1992. If a security protocol requires its own SAID with a dif-
ferent format, then this SAID must be established with the selection of security attributes.



IEEE
Std 802.10c-1998 INTEROPERABLE LAN/MAN SECURITY (SILS)Ñ

22 Copyright © 1998 IEEE. All rights reserved.

The SDE SAID format provides an indicator, the G-bit, for identifying security association types. For the
security association created by this service, the KMAE must set the G-bit to FALSE, indicating a pairwise
security association.

CallingSAID ::= OCTET STRING

3.4.1.1.8 Called SAID

The Called SAID is a unique identiÞer for the Security Association and is determined by the called KMAE.
The calling and called KMAE determine their own SAIDs; therefore, the calling and called SAIDs may dif-
fer. The SAID is created during the key generation process.

CalledSAID :: = OCTET STRING

3.4.1.1.9 Result

The Result contains the exit status of the KMAE, KPASO, or KCASO services. A zero indicates success and
one of the positive integers listed below indicates failure and corresponds to an error code.

Result ::= INTEGER {
success(0),
-- The service has completed successfully.

-- General Error Codes
failed_no_reason(1),
-- The service did not complete successfully with no reason given.
service_not_available(2),
-- The underlying service provider is not available.
service_not_available_at_this_time(3),
-- The underlying service is not available at the particular moment and 
-- the caller is encouraged to try again at a later time.
illegal_ASN1_value_bad_value(4),
-- The ASN values passed from the calling party contain a bad value and 
-- the call is rejected.
illegal_ASN1_value_missing_field(5),
-- The ASN values passed from the calling party do not contain fields
-- that are mandatory and the call is rejected.
illegal_ASN1_value_unknown_field(6),
-- The valid ASN values passed from the calling party contain an unknown
-- field and the call is rejected.
provider_abort_received(7),
-- The underlying service provider aborted causing the service to fail.
user_abort_received(8),
-- The user service on the local side initiated an abort causing the
-- service to fail.

-- KMP Specific Error Codes
negotiation_failure(64),
 -- The optional negotiation phase (Pick-KM-Algs) was not successful.
error_generating_key_material(65),
-- The key generation process (Select-Key, Send-Key, Make-Key, or
-- Protected-Make-Key) could not successfully generate the new keying
-- material.
error_retrieving_key_material(67), 



IEEE
KEY MANAGEMENT Std 802.10c-1998

Copyright © 1998 IEEE. All rights reserved. 23

-- The key retrieval process (Request-Key or Translate-Key) could not
-- successfully retrieve the new keying material from the key center.
not_ready_for_protected_service(68),
-- Even though the key generation process completed successfully, the
-- protective security mechanism was not ready.
error_retrieving_multicast_key(69),
-- The key retrieval process (Get-MKey or Get-Next-Mkey) could not
-- successfully retrieve the new multicast key from the MKC.
unknown_security_transformation(70),
-- The security transformation was unknown during the Spawn-Key service.
error_processing_SA_attributes(71),
-- The attribute negotiation process (Pick-SA-Attrs) was not successful.
invalid_called_SAID(72),
-- The called SAID was invalid.
invalid_calling_SAID(73),
-- The calling SAID was invalid.
release_peer_urgent(74),
-- The KPASO generated an urgent release request reason.
release_peer_user_defined_rq(75),
-- The KPASO generated an user defined release request reason.
release_peer_not_finished(76),
-- The KPASO generated a not finished release response reason.
release_peer_user_defined_rp(77),
-- The KPASO generated an user defined release response.
release_center_urgent(78),
-- The KCASO generated an urgent release request reason.
release_center_user_defined_rq(79),
-- The KCASO generated a user defined release request reason.
release_center_not_finished(80),
-- The KCASO generated a not finished release response reason.
release_center_user_defined_rp(81),
-- The KCASO generated a user defined release response.
abort_peer_user(82),
-- The KPASO generated an user abort.
abort_peer_provider(83),
-- The KPASO generated a provider abort.
abort_center_user(84),
-- The KCASO generated an user abort.
abort_center_provider(85),
-- The KCASO generated a provider abort.
expired_key(86),
-- The Select-Key request referenced keying material that has expired.
unavailable_key(87),
-- The referenced keying material is not available at this time.
transform_count(256-511)
-- Contains the number of transformations to the base keying material
-- needed to derive shared keying material. To determine this value,
-- subtract 256 from the error code received.

}



IEEE
Std 802.10c-1998 INTEROPERABLE LAN/MAN SECURITY (SILS)Ñ

24 Copyright © 1998 IEEE. All rights reserved.

3.4.1.2 Spawn security association (Spawn-SA)

The Spawn-SA service uses a previously established security association to establish a new security associa-
tion. Spawn-SA can create a new security association from an existing security association in one of the fol-
lowing Spawn Options:

Ñ Transform keying material and use the same attributes;

Ñ Generate or transfer new keying material under the protection of an existing security association and
use the same attributes;

Ñ Transform keying material and negotiate new attributes;

Ñ Generate or transfer new keying material under the protection of an existing security association and
negotiate new attributes; or

Ñ Use the same keying material, and negotiate new attributes.

Even if the keying material and all of the attributes are the same, the security association identiÞer is differ-
ent for the two security associations. The previously established security association remains unaffected by
the Spawn-SA service. Spawn-SA provides a conÞrmed service. The enabling of cryptographic keying
material and associated attributes within the SMIB for use by the Security Protocol is a local matter. How-
ever, when the Spawn-SA.conf is provided, the cryptographic keying material and associated attributes have
been enabled for use by the Security Protocols on both of the peer key management end systems.

The Spawn-SA exchange is protected by the previously established security association. This protection may
provide peer entity authentication. Other protection depends on the services provided by the previously
established security association; conÞdentiality, integrity, or both may be provided.

The parameters of Spawn-SA are deÞned in Table 3-3.

3.4.1.2.1 Spawn option

The Spawn Option indicates whether the Spawn-SA service is to negotiate new attributes for use with exist-
ing keying material associated with a previously established security association, transform the symmetric

Table 3-3ÑSpawn-SA parameters

Spawn-SA parameter name .req .ind .rsp .conf Reference

Calling AE-Title M M (=) Ñ Ñ 3.4.1.1.1

Called AE-Title M M (=) M M (=) 3.4.1.1.2

Spawn Option M M (=) M M (=) 3.4.1.2.1

Key Transformation Algorithm IdentiÞer U C (=) Ñ Ñ 3.4.1.2.2

Security Association Attributes List U C (=) Ñ Ñ 3.4.1.1.5

Security Association Attributes Ñ Ñ U C (=) 3.4.1.1.6

Previously Established Calling SAID M M (=) 3.4.1.2.3

Previously Established Called SAID M M (=) 3.4.1.2.4

Calling SAID Ñ M M (=) M (=) 3.4.1.1.7

Called SAID Ñ Ñ M M (=) 3.4.1.1.8

Result Ñ Ñ M M (=) 3.4.1.1.9



IEEE
KEY MANAGEMENT Std 802.10c-1998

Copyright © 1998 IEEE. All rights reserved. 25

keying material, make new keying material while under the protection of an existing security association, or
transfer newly generated keying material under the protection of a previously established security associa-
tion. The Spawn Option values are samekey for new attributes with existing key, update for transforming
symmetric keying material, create for generating new keying material under the protection of an existing
security association, and transfer for sending keying material under the protection of a previously estab-
lished security association. The value for Spawn Option is selected by the Key Management Application.
When the value is samekey (0), the KMAE invokes the Spawn-Key service with the identity key transforma-
tion algorithm, in order to assign a new SAID. When the value is update (1), the KMAE invokes the Spawn-
Key service with the transformation algorithm identiÞer. When the value is create (2), the KMAE invokes
the Protected-Make-Key service. When the value is transfer (3), the KMAE invokes the Send-Key service.

SpawnOption ::= INTEGER {
samekey (0),
update   (1),
create   (2),
transfer (3) }

3.4.1.2.2 Key transformation algorithm identiÞer

The Key Transformation Algorithm IdentiÞer speciÞes the one-way transformation to be used by both the
calling and called KMAEs to transform existing keying material into the new keying material for the secu-
rity association. The Key Transformation Algorithm IdentiÞer is set by the calling KMAE and is maintained
in the SMIB or passed from the Key Management Application. The Key Transformation Algorithm IdentiÞer
is composed of an OBJECT IDENTIFIER and an optional INTEGER parameter, called transformCount.
The transformCount speciÞes the number of times that the one-way transformation is applied to the original
keying material.

The Key Transformation Algorithm IdentiÞer was negotiated when the KMAE created the previous security
association. If multiple keys comprise the previously established security association, the identiÞer tells the
KMAE how to transform each key.

KeyTransformationAlgorithmIdentifier ::= AlgorithmIdentifier

3.4.1.2.3 Previously established calling SAID

The Previously Established Calling SAID is the unique identiÞer for the calling Security Association that is
to be used as a template for the spawned security association. The previously established security association
remains unaffected during the spawn process. The Previously Established Calling SAID and the Previously
Established Called SAID must reference the same security association. The value for the Previously Estab-
lished Calling SAID is maintained in the SMIB and is set by the calling KMAE.

PreviouslyEstablishedCallingSAID ::= OCTET STRING

3.4.1.2.4 Previously established called SAID

The Previously Established Called SAID is the unique identiÞer for the called Security Association that is to
be used as a template for the spawned security association. The previously established security association
remains unaffected during the spawn process. The Previously Established Calling SAID and the Previously
Established Called SAID must reference the same security association. The value for the Previously Estab-
lished Called SAID is maintained in the SMIB and is provided by the calling KMAE.

PreviouslyEstablishedCalledSAID ::= OCTET STRING



IEEE
Std 802.10c-1998 INTEROPERABLE LAN/MAN SECURITY (SILS)Ñ

26 Copyright © 1998 IEEE. All rights reserved.

3.4.1.3 Delete security association (Delete-SA)

The Delete-SA service notiÞes the remote key management end system that the cryptographic keying mate-
rial and associated attributes, which deÞne a particular security association, are no longer available. Deleting
a security association may remove the keying material and associated attributes from the SMIB, if local pol-
icy permits. Delete-SA provides an unconÞrmed service. The remote key management end system also
makes unavailable the cryptographic keying material and associated attributes, which deÞne the security
association. Again if local policy permits, deleting the security association may remove the cryptographic
keying material and associated attributes from the remote SMIB.

Delete-SA is protected by the security association that is to be deleted, providing data origin authentication.
The protection may also provide conÞdentiality, integrity, or both.

The parameters of Delete-SA are deÞned in Table 3-4.

3.4.1.4 Create multicast security association (Create-MSA)

The Create-MSA service provides the capability for a peer key management system to obtain multicast
tokens from the MKC. Create-MSA is a conÞrmed service. The KMAE Þrst establishes cryptographic key-
ing material with the MKC. Once established, the KMAE requests the multicast tokens associated with a list
of multicast addresses. The MKC decides which multicast addresses are available to the peer key manage-
ment systems, and then sends back the authorized list of multicast tokens. The KMAE requests tokens from
the MKC by invoking the Get-Mkey service.

The parameters of Create-MSA are deÞned in Table 3-5.

3.4.1.4.1 MKC title

The MKCTitle is the application layer title of the Multicast Key Center.

MKCTitle ::= AETitle

Table 3-4ÑDelete-SA parameters

Delete-SA parameter name .req .ind Reference

Calling AE-Title M M (=) 3.4.1.1.1

Called AE-Title M M (=) 3.4.1.1.2

Calling SAID M M (=) 3.4.1.1.7

Called SAID M M (=) 3.4.1.1.8

Table 3-5ÑCreate-MSA parameters

Create-MSA parameter name .req .ind .rsp .conf Reference

Calling AE-Title M M (=) Ñ Ñ 3.4.1.1.1

MKCTitle M M (=) M M (=) 3.4.1.4.1

Key Management Technique IdentiÞer List U C (=) Ñ Ñ 3.4.1.1.3

McastAddressList M M (=) M (=) M (=) 3.4.1.4.2

McastTokenList Ñ Ñ M M (=) 3.4.1.4.3

Result Ñ Ñ M M (=) 3.4.1.1.9



IEEE
KEY MANAGEMENT Std 802.10c-1998

Copyright © 1998 IEEE. All rights reserved. 27

3.4.1.4.2 Mcast address list

The Mcast Address List is the list of multicast addresses for which the KMAP is requesting tokens.

McastAddressList ::= SEQUENCE OF McastAddress

McastAddress ::= OCTET STRING

3.4.1.4.3 Mcast token list

The MKC returns the McastToken to the requesting KMAE. The McastToken contains the mcastSAID. The
mcastSAID is used by this KMP, and is identical to the format of the SAID deÞned in 2.5.2.1.2 of IEEE Std
802.10-1992. If a security protocol requires its own SAID with a different format, then this SAID must be
established with the selection of security attributes.

The SDE SAID format provides an indicator, the G-bit, for identifying security association types. For the
security association created by this service, the KMAE must set the G-bit to TRUE. If the format of the SAID
of the security protocol has a multicast indicator, this indicator must be set to multicast for this service.

McastTokenList ::=  SEQUENCE OF McastToken

McastToken  ::= SEQUENCE  {
mKCId MKCTitle,
PROTECTED {  SEQUENCE  {

mcastKey OCTET STRING,
mcastAddress OCTET STRING,
mcastAttributes SPAttrs,
mcastSAID OCTET STRING,
validityPeriod ValidityPeriod  }, enciphered  },

optionally-signed  }

ValidityPeriod  ::= SEQUENCE {
notBefore GeneralizedTime,
notAfter GeneralizedTime  }

3.4.1.5 Spawn multicast security association (Spawn-MSA)

The Spawn-MSA service provides the capability for a peer key management system to update a single mul-
ticast token using the protection of a previously established multicast security association. Spawn-MSA is a
conÞrmed service that determines the previously established multicast SAID and sends the request to MKC.
The MKC responds with the updated multicast token, based on the multicast token indicated by the previ-
ously established SAID, and the new subsequent multicast SAID.

The parameters of Spawn-MSA are deÞned in Table 3-6.

3.4.1.5.1 McastSAID

The McastSAID identiÞes the security association for which the KMAE is requesting an updated Mcast-
Token. The SDE SAID format provides an indicator, the G-bit, for identifying security association types.
For the security association created by this service, the KMAE must set the G-bit to TRUE. If the format of
the SAID of the security protocol has a multicast indicator, this indicator must be set to multicast for this ser-
vice.

McastSAID ::= OCTET STRING



IEEE
Std 802.10c-1998 INTEROPERABLE LAN/MAN SECURITY (SILS)Ñ

28 Copyright © 1998 IEEE. All rights reserved.

3.4.2 Key peer application service object (KPASO) services

The KPASO provides thirteen services: Pick-KM-Alg, Select-Key, Make-Key, Send-Key, Pick-SA-Attrs,
Spawn-Key, Get-MKey, Delete-Key, Release-P, Abort-P, Protected-Make-Key, Get-Next-MKey, and Please-
Send-Key.

3.4.2.1 Negotiate key management algorithm (Pick-KM-Alg)

The KMAE uses the Pick-KM-Alg service to choose the key management algorithm that it will use to estab-
lish the same cryptographic symmetric key in the two key management end systems. 

The KMAP may supply the KMTI List as a parameter in the Create-SA service request. If the KMAP did
not supply the KMTI List, then the KMAE obtains the KMTI List from the SMIB. In either case if the
KMTI List contains more than one alternative, then the KMAE CF must invoke Pick-KM-Alg. Also, if the
Security Policy IdentiÞer must be announced, then the KMAE CF must invoke Pick-KM-Alg. In many
cases, the calling key management end system supports only a single key management technique and the
Security Policy IdentiÞer does not need to be announced; thus negotiation is unnecessary, and the KMAE
may omit invocation of Pick-KM-Alg.

Since the KMTI negotiation performed by Pick-KM-Alg is not integrity protected, the KMTI is repeated in
Pick-SA-Attrs to detect malicious modiÞcation during Pick-KM-Alg.

If there is not an application-association with the remote key management end system, then the KMAE cre-
ates one.

Since this Pick-KM-Alg exchange is unprotected, any security association attributes that are selected, either
implicitly or explicitly, in this exchange should be revalidated in the protected Pick-SA-Attrs exchange.

The parameters of Pick-KM-Alg are deÞned in Table 3-7.

3.4.2.2 Select Key (Select-Key)

The Select-Key service chooses a symmetric cryptographic key from a cache of manually distributed keys
that are stored in the SMIB. The cryptographic key is selected by indexing the cache using the Keying Mate-
rial IdentiÞer (KMID). If there is not an application-association with the remote key management end sys-
tem, then one is created.

The KPASO must supply a nonce in the SEI passed to the SESE. The nonce is a unique identiÞer, such as a
random number, timestamp, or counter, that is used once. The nonce is used to demonstrate liveness and pre-
vent replay. The nonce supplied by the requester KPASO is passed to the responder KPASO, and then the

Table 3-6ÑSpawn-MSA parameters

Spawn-MSA parameter name .req .ind .rsp .conf Reference

Calling AE-Title M M (=) Ñ Ñ 3.4.1.1.1

MKCTitle M M (=) M M (=) 3.4.1.4.1

McastSAID M M (=) M (=) M (=) 3.4.1.5.1

McastAddress M M (=) M (=) M (=) 3.4.1.4.2

McastToken Ñ Ñ M M (=) 3.4.1.4.3

Result Ñ Ñ M M (=) 3.4.1.1.9



IEEE
KEY MANAGEMENT Std 802.10c-1998

Copyright © 1998 IEEE. All rights reserved. 29

responder KPASO increments the nonce by one and passes the new value back to the requester KPASO.
Since this exchange is protected, return of the expected value assures the requester KPASO that the
responder KPASO has access to the speciÞed cryptographic keying material. The responder KPASO could
not generate the response in advance without knowledge of the nonce value, so liveness is demonstrated. The
use of a unique nonce value ensures that the response is not a replay of a previous exchange.

The parameters of Select-Key are deÞned in Table 3-8.

3.4.2.2.1 Keying Material IdentiÞer

The Keying Material IdentiÞer names a pairwise key from the cache. The Keying Material IdentiÞer con-
tains the unique identiÞer that indicates the selected symmetric cryptographic key that is to be used. The
calling KMAE retrieves the Cryptographic Keying Material IdentiÞer from the SMIB.

KeyingMaterialIdentifier     ::= OCTET STRING

3.4.2.3 Make Key (Make-Key)

The Make-Key service obtains the data needed to establish a symmetric cryptographic key using a public
key cryptographic technique. The public key technique may be a key distribution or a key agreement tech-
nique. The public keys are bound to the distinguished name of the key management end system in X.509 cer-
tiÞcates. The distinguished name uniquely identiÞes the owner of the private key that corresponds to the
public key contained in the certiÞcate. Make-Key provides a conÞrmed service. If there is not an application-
association with the remote key management end system, then one is created.

Table 3-7ÑPick-KM-alg parameters

Pick-KM-alg parameter name .req .ind .rsp .conf Reference

Calling AE-Title M M (=) Ñ Ñ 3.4.1.1.1

Called AE-Title M M (=) M M (=) 3.4.1.1.2

Key Management Technique IdentiÞer List U C (=) Ñ Ñ 3.4.1.1.3

Key Management Technique IdentiÞer Ñ Ñ U C (=) 3.4.1.1.3

Security Policy IdentiÞer U C (=) C (=) C (=) 3.4.1.1.4

Result Ñ Ñ M M (=) 3.4.1.1.9

Table 3-8ÑSelect-Key parameters

Select-Key parameter name .req .ind .rsp .conf Reference

Calling AE-Title M M (=) Ñ Ñ 3.4.1.1.1

Called AE-Title M M (=) M M (=) 3.4.1.1.2

Keying Material IdentiÞer M M (=) Ñ Ñ 3.4.2.2.1

Key Transform Algorithm IdentiÞer U C (=) Ñ Ñ 3.4.1.2.2

Calling SAID M M (=) M (=) M (=) 3.4.1.1.7

Called SAID Ñ Ñ M M (=) 3.4.1.1.8

Result Ñ Ñ M M (=) 3.4.1.1.9



IEEE
Std 802.10c-1998 INTEROPERABLE LAN/MAN SECURITY (SILS)Ñ

30 Copyright © 1998 IEEE. All rights reserved.

The parameters of Make-Key are deÞned in Table 3-9.

3.4.2.3.1 Key generation algorithm identiÞer

The Key Generation Algorithm IdentiÞer contains the identiÞer to the key generation algorithm. This Key
Generation Algorithm IdentiÞer is obtained from the SMIB and can be optionally negotiated during the
Pick-KM-Alg service.

keyGenAlgorithmID KEY-GEN-ALG.&key-Gen-Alg-Id

3.4.2.3.2 Calling certiÞcate path

The Calling CertiÞcate Path is the X.509 certiÞcation path that establishes the binding between the calling
KMAEÕs distinguished name and the calling KMAEÕs key management public cryptographic material.

CallingCertPath ::= CertificationPath

3.4.2.3.3 Called certiÞcate path

The Called CertiÞcate Path is the X.509 certiÞcation path that establishes the binding between the called
KMAEÕs distinguished name and the called KMAEÕs key management public cryptographic material.

CalledCertPath ::= CertificationPath

3.4.2.3.4 Calling key generation algorithm parameters

The Calling Key Generation Algorithm Parameters are the calling KMAEÕs parameters outside the certiÞ-
cate that may be present depending on the key generation algorithm used to create the key between the call-
ing and called KMAE.

KEY-GEN-ALG.&Rq-Parms(@keyGenAlgorithmID) OPTIONAL

Table 3-9ÑMake-Key parameters

Make-Key parameter name .req .ind .rsp .conf Reference

Calling AE-Title M M (=) Ñ Ñ 3.4.1.1.1

Called AE-Title M M (=) M M (=) 3.4.1.1.2

Key Generation Algorithm IdentiÞer M M (=) Ñ Ñ 3.4.2.3.1

Calling CertiÞcate Path M M (=) Ñ Ñ 3.4.2.3.2

Called CertiÞcate Path Ñ Ñ M M (=) 3.4.2.3.3

Calling Key Generation Algorithm Parameters U C (=) Ñ Ñ 3.4.2.3.4

Called Key Generation Algorithm Parameters Ñ Ñ U C (=) 3.4.2.3.5

Calling SAID M M (=) M (=) M (=) 3.4.1.1.7

Called SAID Ñ Ñ M M (=) 3.4.1.1.8

Calling Attribute CertiÞcation Path U C (=) Ñ Ñ 3.4.2.3.6

Called Attribute CertiÞcation Path Ñ Ñ U C (=) 3.4.2.3.7

Result Ñ Ñ M M (=) 3.4.1.1.9



IEEE
KEY MANAGEMENT Std 802.10c-1998

Copyright © 1998 IEEE. All rights reserved. 31

3.4.2.3.5 Called key generation algorithm parameters

The Called Key Generation Algorithm Parameters are the called KMAEÕs parameters outside the certiÞcate
that may be present depending on the key generation algorithm used to create the key between the calling
and called KMAE.

KEY-GEN-ALG.&Rp-Parms(@keyGenAlgorithmID) OPTIONAL

3.4.2.3.6 Calling attribute certiÞcation path

The attribute certiÞcation path establishes a binding between the calling KMAEÕs distinguished name and a
set of domain speciÞc attributes. One example of attribute certiÞcation path can be found in ANSI X9.30.
Use of attribute certiÞcation paths is optional.

AttributeCertificationPath ::= SEQUENCE {
attrCert AttributeCertificate,
acPath SEQUENCE OF ACPathData OPTIONAL }

ACPathData ::= SEQUENCE {
cert Certificate OPTIONAL,
attrCert AttributeCertificate OPTIONAL }

3.4.2.3.7 Called attribute certiÞcation path

The attribute certiÞcation path establishes a binding between the called KMAEÕs distinguished name and a
set of domain speciÞc attributes. Use of attribute certiÞcation paths is optional. The Called Attribute CertiÞ-
cation Path and Calling Attribute CertiÞcation Path have the same syntax.

3.4.2.4 Send key (Send-Key)

The Send-Key service transfers symmetric cryptographic keying material from the local key management
end system to the remote key management end system. The cryptographic keying material is enciphered in a
KEK held by the remote KMAE. The cryptographic keying material may have been generated locally or
obtained from a KDC or KTC. Send-Key provides a conÞrmed service. If there is not an application-associ-
ation with the remote key management end system, then one is created.

The parameters of Send-Key are deÞned in Table 3-10.

Table 3-10ÑSend-Key parameters

Send-Key parameter name .req .ind .rsp .conf Reference

Calling AE-Title M M (=) Ñ Ñ 3.4.1.1.1

Called AE-Title M M (=) M M (=) 3.4.1.1.2

KEK IdentiÞer M M (=) Ñ Ñ 3.4.2.4.1

Request Parameters M M (=) Ñ Ñ 3.4.2.4.2

Response Parameters Ñ Ñ M M (=) 3.4.2.4.3

Result Ñ Ñ M M (=) 3.4.1.1.9



IEEE
Std 802.10c-1998 INTEROPERABLE LAN/MAN SECURITY (SILS)Ñ

32 Copyright © 1998 IEEE. All rights reserved.

The remote KMAE must have previously obtained the KEK that it will use to decrypt the enciphered crypto-
graphic keying material. If this material came from a KDC or KTC, the KEK may also come from the same
center, through a manual distribution.

3.4.2.4.1 KEK identiÞer

The KEK IdentiÞer names the previously distributed cryptographic keying material that was used to encrypt
the enciphered cryptographic keying material within the Request Parameters. The KEK IdentiÞer indirectly
speciÞes the encryption algorithm that was used to protect the enciphered cryptographic keying material.
The relationship between the KEK IdentiÞer and the encryption algorithm is maintained in the SMIB.

KEKIdentifier ::= CHOICE {
said [0] CalledSAID,
kdc [1] KDCAETitle,
ktc [2] KTCAETitle }

3.4.2.4.2 Request parameters

The parameters sent to the remote key management end system vary depending upon the center protocol that
is used. The center protocol is identiÞed by an OBJECT IDENTIFIER. The associated parameters are regis-
tered with the center protocol OBJECT IDENTIFIER. A sample registration is presented in 3D.2 of
Annex 3D.

The registered Request Parameters must include the Calling SAID assigned by the local key management
end system and the package containing the symmetric cryptographic keying material enciphered in a KEK
that was previously distributed to the remote key management end system.

centerProtocol CENTER-PROTOCOL.&centerProtocolId
sRqParms CENTER-PROTOCOL.&SendRqParms {@centerProtocol} 

3.4.2.4.3 Response Parameters

The parameters returned by the remote key management end system vary depending upon the center proto-
col that is used. The center protocol is identiÞed by an OBJECT IDENTIFIER in the Request Parameters.
The associated parameters are registered with the center protocol OBJECT IDENTIFIER.

The registered Response Parameters must include the Calling SAID assigned by the local key management
end system and the Called SAID assigned by the remote key management end system.

sRsParms CENTER-PROTOCOL.&SendRsParms {@centerProtocol} 

3.4.2.5 Negotiate Security Association Attributes (Pick-SA-Attrs)

The Pick-SA-Attrs forms a security association by assigning attributes to cryptographic keying material that
was established using the Select-Key, Make-Key, or Send-Key service. The same application-association
used for Select-Key, Make-Key, Protected-Make-Key, Please-Send-Key, or Send-Key will be used to provide
this service. This service synchronizes the enabling of cryptographic keying material and associated
attributes within the SMIB for use by the Security Protocol through the second and third parts of a three-part
exchange. This three-part security exchange is deÞned in 3.5.2.5. When the responding KMAE sends the
second security exchange, the security protocol in that end system is prepared to receive protected trafÞc.
When the initiating KMAE sends the third security exchange, the security protocol in that end system is pre-
pared to send and receive protected trafÞc. When the responding KMAE receives the third security
exchange, the security protocol in that end system can now send protected trafÞc. 



IEEE
KEY MANAGEMENT Std 802.10c-1998

Copyright © 1998 IEEE. All rights reserved. 33

Since the KMTI negotiation performed by Pick-KM-Alg is not integrity protected, the KMTI is repeated in
Pick-SA-Attrs to detect malicious modiÞcation during Pick-KM-Alg.

The Pick-SA-Attrs exchange is protected by the cryptographic keying material that was established using the
Select-Key, Make-Key, Send-Key, Please-Send-Key, or Protected-Make-Key service. This protection pro-
vides peer entity authentication, conÞdentiality, and integrity.

The parameters of Pick-SA-Attrs are deÞned in Table 3-11.

3.4.2.5.1 Key recovery info

This optional parameter supports key recovery. The key recovery technique may be speciÞed.

KeyRecoveryInfo ::= KeyRecoveryData OPTIONAL

KeyRecoveryData ::= SEQUENCE {
recoveryTechnique OBJECT IDENTIFIER OPTIONAL,
recoveryData OCTET STRING }

3.4.2.6 Spawn key (Spawn-Key)

The Spawn-Key service forms a security association by transforming a previously established symmetric
cryptographic key to form a new symmetric cryptographic key. Spawn-Key optionally assigns the attributes
that were associated with the previously established key to the new key. Of course, the security association
identiÞer attribute will be different for the two security associations. Spawn-Key provides a conÞrmed ser-
vice. If there is not an application-association with the remote key management end system, then one is cre-
ated. The same symmetric cryptographic key is established in the SMIB of each key management end
system. The enabling of cryptographic keying material and associated attributes within the SMIB for use by
the Security Protocol is a local matter; however, when the Spawn-Key.conf is provided, the cryptographic
keying material and associated attributes have been enabled for use by the Security Protocols on both of the
peer key management end systems.

The Spawn-Key exchange is protected by the previously established security association. This protection
provides peer entity authentication; the protection also provides conÞdentiality, integrity, or both.

The parameters of Spawn-Key are deÞned in Table 3-12.

Table 3-11ÑPick-SA-Attrs parameters

Pick-SA-Attrs parameter name .req .ind .rsp .conf Reference

Security Association Attributes List M M (=) Ñ Ñ 3.4.1.1.5

Security AssociationAttributes Ñ Ñ M M (=) 3.4.1.1.6

Calling SAID Ñ Ñ M M (=) 3.4.1.1.7

Called SAID M M (=) Ñ Ñ 3.4.1.1.8

Key Management Technique IdentiÞer Ñ Ñ U C (=) 3.4.1.1.3

Security Policy IdentiÞer Ñ Ñ U C (=) 3.4.1.1.4

Key Recovery Info U C (=) U C (=) 3.4.2.5.1

Result Ñ Ñ M M (=) 3.4.1.1.9



IEEE
Std 802.10c-1998 INTEROPERABLE LAN/MAN SECURITY (SILS)Ñ

34 Copyright © 1998 IEEE. All rights reserved.

3.4.2.7 Get multicast key (Get-MKey)

The Get-MKey service forms a security association by obtaining an enciphered symmetric cryptographic
key from the remote key center that will be used by the Security Protocol to protect broadcast or multicast
communications. Each security protocol entity obtains the broadcast or multicast key as its needs dictate.
The key center does not push the broadcast or multicast key out to every member of the group. 

The Get-MKey service may only be used after a Select-Key, Make-Key, Send-Key, Please-Send-Key, or
Protected-Make-Key service. The same application-association used for the Select-Key, Make-Key, Send-
Key, Please-Send-Key, or Protected-Make-Key service will be used to provide this conÞrmed service. The
security association identiÞer and all other security association attributes are assigned by the MKC so that
the same ones will be used by all Security Protocol entities who posses this multicast key. The enabling of
cryptographic keying material and associated attributes within the SMIB for use by the Security Protocol is
a local matter; however, when the Get-MKey.conf is provided, the cryptographic keying material and associ-
ated attributes have been enabled for use by the Security Protocols in the SMIB of the local peer key
management end system.

The Get-MKey exchange is protected by the previously established security association. This protection pro-
vides peer entity authentication, integrity, and conÞdentiality; a security association that provides these secu-
rity services must be used.

The parameters of Get-MKey are deÞned in Table 3-13.

Table 3-12ÑSpawn-Key parameters

Spawn-Key parameter name .req .ind .rsp .conf Reference

Calling AE-Title M M (=) Ñ Ñ 3.4.1.1.1

Called AE-Title M M (=) M M (=) 3.4.1.1.2

Key Transformation Algorithm IdentiÞer M M (=) Ñ Ñ 3.4.1.2.2

Previously Established Calling SAID M M (=) M M (=) 3.4.1.2.3

Previously Established Called SAID M M (=) Ñ Ñ 3.4.1.2.4

Calling SAID M M (=) M (=) M (=) 3.4.1.1.7

Called SAID Ñ Ñ M M (=) 3.4.1.1.8

Result Ñ Ñ M M (=) 3.4.1.1.9

Table 3-13ÑGet-MKey parameters

Get-MKey parameter name .req .ind .rsp .conf Reference

Calling SAID Ñ Ñ M M (=) 3.4.1.1.7

Called SAID M M (=) Ñ Ñ 3.4.1.1.8

McastAddressList M M (=) Ñ Ñ 3.4.1.4.2

McastTokenList Ñ Ñ M M (=) 3.4.1.4.3

Result Ñ Ñ M M (=) 3.4.1.1.9



IEEE
KEY MANAGEMENT Std 802.10c-1998

Copyright © 1998 IEEE. All rights reserved. 35

3.4.2.8 Delete key (Delete-Key)

The Delete-Key service notiÞes the remote key management end system that the cryptographic keying mate-
rial and associated attributes, which deÞne a particular security association, are no longer available. Deleting
a security association may remove the keying material and associated attributes from the SMIB, if local pol-
icy permits. Delete-Key provides an unconÞrmed service. The remote key management end system also
makes unavailable the keying material and associated attributes that deÞne the security association. Again, if
local policy permits, deleting the security association may remove the keying material and associated
attributes from the remote SMIB.

Portions of the Delete-Key exchange are protected by the security association that is to be deleted, providing
data origin authentication. The protection may also include conÞdentiality, integrity, or both.

The parameters of Delete-Key are deÞned in Table 3-14.

3.4.2.9 Release peer association (Release-P)

The Release-P service releases the application-association with the remote key management end system.

The parameters of Release-P are deÞned in Table 3-15. 

3.4.2.9.1 Release-request-reason

The Release-request-reason parameter is used to indicate the reason for the release. Release request reason
values are normal, urgent, or user-deÞned.

release-request-reason ::= INTEGER {
normal(0),
urgent(1),
userdefined(30) }

Table 3-14ÑDelete-Key parameters

Delete-Key parameter name .req .ind Reference

Calling AE-Title M M (=) 3.4.1.1.1

Called AE-Title M M (=) 3.4.1.1.2

Calling SAID M M (=) 3.4.1.1.7

Called SAID M M (=) 3.4.1.1.8

Table 3-15ÑRelease-P parameters

Release-P parameter name .req .ind .rsp .conf Reference

Release-request-reason U C (=) Ñ Ñ 3.4.2.9.1

Release-response-reason Ñ Ñ U C (=) 3.4.2.9.2

User Information U C (=) U C (=) 3.4.2.9.3

Result Ñ Ñ M M (=) 3.4.1.1.9



IEEE
Std 802.10c-1998 INTEROPERABLE LAN/MAN SECURITY (SILS)Ñ

36 Copyright © 1998 IEEE. All rights reserved.

3.4.2.9.2 Release-response-reason

The Release-response-reason parameter is used to indicate the reason for the release. Release response rea-
son values are normal, not Þnished, or user-deÞned.

release-response-reason ::= INTEGER {
normal(0),
notfinished(1),
userdefined(30) }

3.4.2.9.3 User information

The User Information provides additional information in regard to the release or abort. This information is
not protected by any security service.

UserInformation ::= OCTET STRING

3.4.2.10 Abort peer association (Abort-P)

The Abort-P service aborts the application-association with the remote key management end system. 

The parameters of Abort-P are deÞned in Table 3-16.

3.4.2.10.1 Abort source

The Abort Source value is used to indicate whether the abort was a service user abort (value equals zero) or
a service provider abort (value equals one).

AbortSource ::= INTEGER {
user(0),
provider(1) }

3.4.2.11 Protected make key (Protected-Make-Key)

The Protected-Make-Key obtains the data needed to establish a symmetric cryptographic key using a public
key cryptographic technique, but it does so under the protection of an existing security association. This ser-
vice operates in the same manner as the Make-Key. 

The parameters of Protected-Make-Key are deÞned in Table 3-17.

3.4.2.12 Get next multicast key (Get-Next-MKey)

The Get-Next-MKey service obtains the subsequent keying material for a new multicast security association.
The service uses an existing multicast security association that must provide conÞdentiality.

The parameters of Get-Next-MKey are deÞned in Table 3-18. 

Table 3-16ÑAbort-P parameters

Abort-P parameter name .req .ind Reference

Abort Source Ñ M 3.4.2.10.1

User Information U C (=) 3.4.2.9.3



IEEE
KEY MANAGEMENT Std 802.10c-1998

Copyright © 1998 IEEE. All rights reserved. 37

3.4.2.13 Please send key (Please-Send-Key)

The Please-Send-Key primitive requests the remote key management end system to obtain a symmetric
cryptographic key and send it to the local key management end system. The cryptographic keying material is
enciphered in a KEK held by the local KMAE; the cryptographic keying material may have been obtained
from the KDC or the KTC. If there is not an application-association with the remote key management end
system, then one is created.

Please-Send-Key provides an unconÞrmed service, and the remote key management end system is expected
to initiate the Send-Key conÞrmed service upon receipt of the Please-Send-Key indication.

The parameters of Please-Send-Key are deÞned in Table 3-19.

Table 3-17ÑProtected-Make-Key parameters

Protected-Make-Key parameter name .req .ind .rsp .conf Reference

Calling AE-Title M M (=) Ñ Ñ 3.4.1.1.1

Called AE-Title M M (=) M M (=) 3.4.1.1.2

Key Generation Algorithm IdentiÞer M M (=) Ñ Ñ 3.4.2.3.1

Calling CertiÞcate Path M M (=) Ñ Ñ 3.4.2.3.2

Called CertiÞcate Path Ñ Ñ M M (=) 3.4.2.3.3

Calling Key Generation Algorithm Parameters U C (=) Ñ Ñ 3.4.2.3.4

Called Key Generation Algorithm Parameters Ñ Ñ U C (=) 3.4.2.3.5

Previously Established Calling SAID M M (=) Ñ Ñ 3.4.1.2.3

Previously Established Called SAID M M (=) Ñ Ñ 3.4.1.2.4

Calling SAID M M (=) M (=) M (=) 3.4.1.1.7

Called SAID Ñ Ñ M M (=) 3.4.1.1.8

Result Ñ Ñ M M (=) 3.4.1.1.9

Table 3-18ÑGet-Next-MKey parameters

Get-Next-MKey parameter name .req .ind .rsp .conf Reference

McastSAID M M (=) M (=) M (=) 3.4.1.5.1

McastAddress M M (=) M (=) M (=) 3.4.1.4.2

McastToken Ñ Ñ M M (=) 3.4.1.4.3

Table 3-19ÑPlease-Send-Key parameters

Please-Send-Key parameter name .req .ind Reference

Calling AE-Title M M (=) 3.4.1.1.1

Called AE-Title M M (=) 3.4.1.1.2

KEK IdentiÞer M M (=) 3.4.2.4.1



IEEE
Std 802.10c-1998 INTEROPERABLE LAN/MAN SECURITY (SILS)Ñ

38 Copyright © 1998 IEEE. All rights reserved.

3.4.3 Key center application service object (KCASO) services

The KCASO provides four services: Request-Key, Translate-Key, Release-C, and Abort-C.

3.4.3.1 Request key (Request-Key)

The Request-Key service obtains symmetric cryptographic keying material from a KDC. Two copies of the
symmetric cryptographic keying material are obtained; one is enciphered in a KEK that was previously dis-
tributed to the local key management end system, and the other is enciphered in a KEK that was previously
distributed to the remote key management end system. Request-Key provides a conÞrmed service. If there is
not an application-association with the KDC, then one is created. Request-Key does not require an applica-
tion-association with the remote key management end system.

The parameters of Request-Key are deÞned in Table 3-20.

3.4.3.1.1 KDC AE-Title

The KDC AE-Title comprises the Application Title and Application Entity QualiÞer of the called KMAE,
both of which are necessary during the application-association establishment and passed from the calling
key management application to indicate the intended KDC. The form of the AE-Title could either be the dis-
tinguished name of the application or an object identiÞer for the application.

KDCAETitle ::= AETitle

3.4.3.1.2 KDC request parameters

The parameters sent to the KDC vary depending upon the center protocol that is used. The center protocol is
identiÞed by an OBJECT IDENTIFIER. The associated parameters are registered with the center protocol
OBJECT IDENTIFIER. A sample registration is presented in 3D.2 of Annex 3D.

centerProtocol CENTER-PROTOCOL.&centerProtocolId
rRqParms CENTER-PROTOCOL.&RequestRqParms

{@centerProtocol}

3.4.3.1.3 KDC response parameters

The parameters returned by the KDC vary depending upon the center protocol that is used. The center proto-
col is identiÞed by an OBJECT IDENTIFIER in the Request Parameters. The associated parameters are reg-
istered with the center protocol OBJECT IDENTIFIER.

Table 3-20ÑRequest-Key parameters

Request-Key parameter name .req .ind .rsp .conf Reference

Calling AE-Title M M (=) Ñ Ñ 3.4.1.1.1

KDC AE-Title M M (=) M M (=) 3.4.3.1.1

Called AE-Title M M (=) M (=) M (=) 3.4.1.1.2

KDC Request Parameters M M (=) Ñ Ñ 3.4.3.1.2

KDC Response Parameters Ñ Ñ M M (=) 3.4.3.1.3

Result Ñ Ñ M M (=) 3.4.1.1.9



IEEE
KEY MANAGEMENT Std 802.10c-1998

Copyright © 1998 IEEE. All rights reserved. 39

The registered Response Parameters must accommodate two possible cases. When the KDC is unable to ful-
Þll the request, the response contains either a referral to another KDC to handle the request, or an error.
When the KDC is able to fulÞll the request, the response contains two packages. One package contains the
symmetric cryptographic keying material enciphered in a KEK that was previously distributed to the local
key management end system, and the other package contains the symmetric cryptographic keying material
enciphered in a KEK that was previously distributed to the remote key management end system. The second
package will be sent to the remote key management end system as part of the Send-Key service response.

rRsParms CENTER-PROTOCOL.&RequestRsParms
{@centerProtocol}

3.4.3.2 Translate key (Translate-Key)

The Translate-Key service sends symmetric cryptographic keying material that was enciphered using a KEK
that is shared between the key local management end system and the KTC, and obtains the same symmetric
cryptographic keying material encrypted in a KEK that is shared between the remote key management end
system and the KTC. Translate-Key provides a conÞrmed service. If there is not an application-association
with the KTC, then one is created. Translate-Key does not require an application-association with the remote
key management end system.

The parameters of Translate-Key are deÞned in Table 3-21.

3.4.3.2.1 KTC AE-Title

The KTC AE-Title comprises the Application Title and Application Entity QualiÞer of the called KMAE,
both of which are necessary during the application-association establishment and passed from the calling
key management application to indicate the intended KTC. The form of the AE-Title could either be the dis-
tinguished name of the application or an OBJECT IDENTIFIER.

KTCAETitle ::= AETitle

3.4.3.2.2 KTC request parameters

The parameters sent to the KTC vary depending upon the center protocol that is used. The center protocol is
identiÞed by an OBJECT IDENTIFIER. The associated parameters are registered with the center protocol
OBJECT IDENTIFIER. A sample registration is presented in 3D.2 of Annex 3D.

centerProtocol CENTER-PROTOCOL.&centerProtocolId
tRqParms CENTER-PROTOCOL.&TranslateRqParms

{@centerProtocol}

Table 3-21ÑTranslate-Key parameters

Translate-Key parameter name .req .ind .rsp .conf Reference

Calling AE-Title M M (=) Ñ Ñ 3.4.1.1.1

KTC AE-Title M M (=) M M (=) 3.4.3.2.1

KTC Request Parameters M M (=) Ñ Ñ 3.4.3.2.2

KTC Response Parameters Ñ Ñ M M (=) 3.4.3.2.3

Result Ñ Ñ M M (=) 3.4.1.1.9



IEEE
Std 802.10c-1998 INTEROPERABLE LAN/MAN SECURITY (SILS)Ñ

40 Copyright © 1998 IEEE. All rights reserved.

3.4.3.2.3 KTC response parameters

The parameters returned by the KTC vary depending upon the center protocol that is used. The center proto-
col is identiÞed by an OBJECT IDENTIFIER in the Request Parameters. The associated parameters are reg-
istered with the center protocol OBJECT IDENTIFIER.

The registered Response Parameters must accommodate two possible cases. When the KTC is unable to ful-
Þll the request, the response contains either a referral to another KTC to handle the request, or an error.
When the KTC is able to fulÞll the request, the response contains one package that holds the symmetric
cryptographic keying material enciphered in a KEK that was previously distributed to the remote key man-
agement end system. The package will be sent to the remote key management end system as part of the
Send-Key service response.

tRsParms CENTER-PROTOCOL.&TranslateRsParms
{@centerProtocol}

3.4.3.3 Release center association (Release-C)

The Release service releases the application-association with the KDC or the KTC.

The parameters of Release-C are deÞned in Table 3-22.

3.4.3.4 Abort center association (Abort-C)

The Abort service aborts the application-association with the KDC or the KTC.

The parameters of Abort-C are deÞned in Table 3-23.

Table 3-22ÑRelease-C parameters

Release-C parameter name .req .ind .rsp .conf Reference

Release-request-reason U C (=) Ñ Ñ 3.4.2.9.1

Release-response-reason Ñ Ñ U C (=) 3.4.2.9.2

User Information U C (=) U C (=) 3.4.2.9.3

Result Ñ Ñ M M (=) 3.4.1.1.9

Table 3-23ÑAbort-C parameters

Abort-C parameter name .req .ind Reference

Abort Source M Ñ 3.4.2.10.1

User Information U C (=) 3.4.2.9.3



IEEE
KEY MANAGEMENT Std 802.10c-1998

Copyright © 1998 IEEE. All rights reserved. 41

3.5 Security exchanges

This subclause deÞnes the security exchanges that implement the KMP.

IMPORTS
PROTECTED, PROTECTED-Q, SECURITY-EXCHANGE, 
SECURITY-TRANSFORMATION, PROTECTION-MAPPING,
enciphered, signed, optionally-signed 

FROM Notation 
{joint-iso-ccitt genericULS(20) modules(1) notation(1)}

CertificationPath, AlgorithmIdentifier 
FROM AuthenticationFramework
{joint-iso-ccitt ds(5) module(1) authenticationFramework(7) 2}

3.5.1 Key management application entity (KMAE) security exchanges

The KMAE does not generate security exchanges directly, but issues service requests to the KPASO and
KCASO.

3.5.2 Key peer application service object (KPASO) security exchanges

3.5.2.1 Negotiate key management algorithm (Pick-KM-Alg) security exchange

pick-km-alg SECURITY-EXCHANGE ::=
{

SE-ITEMS {pick-km-alg-1, pick-km-alg-2}
IDENTIFIER {se-id-pick-km-alg (1) }

}
pick-km-alg-1 SEC-EXCHG-ITEM  ::=
{

ITEM-TYPE PickKMAlgRq
ERRORS {alg-negotiation-failed}
ITEM-ID 1

}
pick-km-alg-2 SEC-EXCHG-ITEM  ::=
{

ITEM-TYPE PickKMAlgRs
ITEM-ID 2

}
alg-negotiation-failed SE-ERROR  ::=
{

PARAMETER Result
ERROR-CODE 1

}
PickKMAlgRq::= SEQUENCE  {

KMTechniqueIdList OPTIONAL,
SecurityPolicy OPTIONAL  }

PickKMAlgRs::= SEQUENCE  {
KMTechniqueId OPTIONAL,
SecurityPolicy OPTIONAL  }

KMTechniqueIdList::= SEQUENCE OF KMTechniqueId



IEEE
Std 802.10c-1998 INTEROPERABLE LAN/MAN SECURITY (SILS)Ñ

42 Copyright © 1998 IEEE. All rights reserved.

KMTechniqueId::= SEQUENCE  {
technique Technique,
keyCreationAlg KeyCreationAlg,
attrConfidAlg AttrConfidAlg,
attrIntegrityAlg AttrIntegrityAlg,
transformationAlg TransformationAlg OPTIONAL  }

Technique::= INTEGER  {
manual(0),
requestorCallsCenter(1),
responderCallsCenter(2),
certificate(3)  }

KeyCreationAlg ::= AlgorithmIdentifier
AttrConfidAlg ::= AlgorithmIdentifier
AttrIntegrityAlg ::= AlgorithmIdentifier
TransformationAlg ::= AlgorithmIdentifier

SecurityPolicy ::= SEQUENCE {
policyId   OBJECT IDENTIFIER,
policyVersion   INTEGER OPTIONAL,
authenticationInfo  OCTET STRING OPTIONAL  }

Result ::= INTEGER {
success(0),
-- The service has completed successfully.
-- General Error Codes
failed_no_reason(1),
-- The service did not complete successfully with no reason given.
service_not_available(2),
-- The underlying service provider is not available.
service_not_available_at_this_time(3),
-- The underlying service is not available at the particular moment and 
-- the caller is encouraged to try again at a later time.
illegal_ASN1_value_bad_value(4),
-- The ASN values passed from the calling party contain a bad value and 
-- the call is rejected.
illegal_ASN1_value_missing_field(5),
-- The ASN values passed from the calling party do not contain fields 
-- that are mandatory and the call is rejected.
illegal_ASN1_value_unknown_field(6),
-- The valid ASN values passed from the calling party contain an unknown
-- field and the call is rejected.
provider_abort_received(7),
-- The underlying service provider aborted causing the service to fail.
user_abort_received(8),
-- The user service on the local side initiated an abort causing the 
-- service to fail.
-- KMP Specific Error Codes
negotiation_failure(64),
-- The optional negotiation phase (Pick-KM-Algs) was not successful.
error_generating_key_material(65),
-- The key generation process (Select-Key, Send-Key, Make-Key, or 
-- Protected-Make-Key) could not successfully generate the new keying



IEEE
KEY MANAGEMENT Std 802.10c-1998

Copyright © 1998 IEEE. All rights reserved. 43

-- material.
error_retrieving_key_material(67),
-- The key retrieval process (Request-Key or Translate-Key)
-- could not successfully retrieve the new keying material from the key
-- center.
not_ready_for_protected_service(68),
-- Even though the key generation process completed successfully, the
-- protective security mechanism was not ready.
error_retrieving_multicast_key(69),
-- The key retrieval process (Get-MKey or Get-Next-Mkey) could not
-- successfully retrieve the new multicast key from the MKC.
unknown_security_transformation(70),
-- The security transformation was unknown during the Spawn-Key service.
error_processing_SA_attributes(71),
-- The attribute negotiation process (Pick-SA-Attrs) was not successful.
invalid_called_SAID(72),
-- The called SAID was invalid.
invalid_calling_SAID(73),
-- The calling SAID was invalid.
release_peer_urgent(74),
-- The KPASO generated an urgent release request reason.
release_peer_user_defined_rq(75),
-- The KPASO generated an user defined release request reason.
release_peer_not_finished(76),
-- The KPASO generated a not finished release response reason.
release_peer_user_defined_rp(77),
-- The KPASO generated an user defined release response.
release_center_urgent(78),
-- The KCASO generated an urgent release request reason.
release_center_user_defined_rq(79),
-- The KCASO generated a user defined release request reason.
release_center_not_finished(80),
-- The KCASO generated a not finished release response reason.
release_center_user_defined_rp(81),
-- The KCASO generated a user defined release response.
abort_peer_user(82),
-- The KPASO generated an user abort.
abort_peer_provider(83),
-- The KPASO generated a provider abort.
abort_center_user(84),
-- The KCASO generated an user abort.
abort_center_provider(85),
-- The KCASO generated a provider abort.
expired_key(86),
-- The Select-Key request referenced keying material that has expired.
unavailable_key(87),
-- The referenced keying material is not available at this
time.transform_count(256-511)
-- Contains the number of transformations to the base keying material 
-- needed derive shared keying material. To determine this value,
-- subtract 256 from the error code received.

}



IEEE
Std 802.10c-1998 INTEROPERABLE LAN/MAN SECURITY (SILS)Ñ

44 Copyright © 1998 IEEE. All rights reserved.

3.5.2.2 Select key (Select-Key) security exchange

select-key SECURITY-EXCHANGE ::=
{

SE-ITEMS {select-key-1, select-key-2}
IDENTIFIER {se-id-select-key (2)}

}
select-key-1  SEC-EXCHG-ITEM ::=
{

ITEM-TYPE SelectKeyRq
ERRORS {select-key-failed}
ITEM-ID 1

}
select-key-2  SEC-EXCHG-ITEM  :=
{

ITEM-TYPE SelectKeyRs
ITEM-ID 2

}
select-key-failed SE-ERROR  ::=
{

PARAMETER Result
ERROR-CODE 2

}

SelectKeyRq::=  SEQUENCE  {
KeyingMaterialIdentifier,
KeyTransformationAlgorithmIdentifier OPTIONAL,
AlgorithmIdentifier, -- used to encrypt following sequence
PROTECTED  { SEQUENCE  {

CallingSAID,
Nonce

}, enciphered  }  }

SelectKeyRs  ::= PROTECTED  {  SEQUENCE  {
CallingSAID,
CalledSAID,
NoncePlus1

}, enciphered  }

CallingSAID ::= OCTET STRING
CalledSAID  ::= OCTET STRING
KeyingMaterialIdentifier  ::= OCTET STRING
KeyTransformationAlgorithmIdentifier ::= AlgorithmIdentifier
Nonce  ::= INTEGER
NoncePlus1  ::= Nonce

3.5.2.3 Make key (Make-Key) security exchange

make-key SECURITY-EXCHANGE  ::=
{

SE-ITEMS {make-key-1, make-key-2}
IDENTIFIER {se-id-make-key (3)}

}
make-key-1 SEC-EXCHG-ITEM  ::=



IEEE
KEY MANAGEMENT Std 802.10c-1998

Copyright © 1998 IEEE. All rights reserved. 45

{
ITEM-TYPE MakeKeyRq
ERRORS {make-key-failed}
ITEM-ID 1

}
make-key-2 SEC-EXCHG-ITEM  ::=
{

ITEM-TYPE MakeKeyRs
ITEM-ID 2

}
make-key-failed SE-ERROR  ::=
{

PARAMETER Result
ERROR-CODE 3

}
MakeKeyRq::=  SEQUENCE  {

keyGenAlgorithmID KEY-GEN-ALG.&key-Gen-Alg-Id,
CallingCertPath,
AttributeCertificationPath OPTIONAL,
KEY-GEN-ALG.&Rq-Parms { @keyGenAlgorithmID }

OPTIONAL,
CallingSAID  }

MakeKeyRs::= SEQUENCE  {
CalledCertPath,
AttributeCertificationPath OPTIONAL,
KEY-GEN-ALG.&Rp-Parms { @keyGenAlgorithmID }

OPTIONAL,
CallingSAID,
CalledSAID  }

CallingCertPath ::= CertificationPath
CalledCertPath ::= CertificationPath
AttributeCertificationPath  ::= SEQUENCE {
    attrCert    AttributeCertificate,
    acPath      SEQUENCE OF ACPathData OPTIONAL }

ACPathData  ::= SEQUENCE {
    cert          Certificate OPTIONAL,
    attrCert AttributeCertificate OPTIONAL }

3.5.2.4 Send key (Send-Key) security exchange

send-key SECURITY-EXCHANGE  ::=
{

SE-ITEMS {send-key-1, send-key-2}
IDENTIFIER {se-id-send-key (4)}

}
send-key-1 SEC-EXCHG-ITEM  ::=
{

ITEM-TYPE SendKeyRq
ERRORS {send-key-failed}
ITEM-ID 1

}



IEEE
Std 802.10c-1998 INTEROPERABLE LAN/MAN SECURITY (SILS)Ñ

46 Copyright © 1998 IEEE. All rights reserved.

send-key-2 SEC-EXCHG-ITEM  ::=
{

ITEM-TYPE SendKeyRs
ITEM-ID 2

}
send-key-failed SE-ERROR  ::=
{

PARAMETER Result
ERROR-CODE 4

}
SendKeyRq::=  SEQUENCE  {

kekIdentifier KEKIdentifier,
centerProtocol CENTER-PROTOCOL.&centerProtocolId,
sRqParms CENTER-PROTOCOL.&SendRqParms {@centerProtocol} }

SendKeyRs::=  SEQUENCE  {
sRsParms CENTER-PROTOCOL.&SendRsParms {@centerProtocol} }

KEKIdentifier ::= CHOICE  {
said [0]  CalledSAID,
kdc [1]  KDCAETitle,
ktc [2]  KTCAETitle  }

KDCAETitle ::=  AETitle
KTCAETitle ::=  AETitle

AETitle::=  CHOICE  {
AETitle-form1,
AETitle-form2  }

AETitle-form1 ::=  [0]  SEQUENCE  {  {
COMPONENTS OF 
APTitle-form1,
AEQualifier-form1  }  }

APTitle-form1 ::=  IMPLICIT SEQUENCE OF RelativeDistinguishedName

APQualifier-form1 ::=  [1]  IMPLICIT RelativeDistinguishedName

AETitle-form2 ::=  [1]  SEQUENCE  {
APTitle-form2,
AEQualifier-form2 }

APTitle-form2 ::= [2]  IMPLICIT OBJECT IDENTIFIER

AEQualifier-form2 ::= [3]  IMPLICIT INTEGER

3.5.2.5 Negotiate security association attributes (Pick-SA-Attrs) security exchange

pick-sa-attrs SECURITY-EXCHANGE  ::=
{

SE-ITEMS {pick-sa-attrs-1, pick-sa-attrs-2, pick-sa-attrs-3}
IDENTIFIER {se-id-pick-sa-attrs (5)}

}



IEEE
KEY MANAGEMENT Std 802.10c-1998

Copyright © 1998 IEEE. All rights reserved. 47

pick-sa-attrs-1  SEC-EXCHG-ITEM  ::=
{

ITEM-TYPE PickSAAttrsRq
ERRORS {attrs-negotiation-failed}
ITEM-ID 1

}
pick-sa-attrs-2  SEC-EXCHG-ITEM  ::=
{

ITEM-TYPE PickSAAttrsRs
ERRORS {attrs-negotiation-failed}
ITEM-ID 2

}
pick-sa-attrs-3  SEC-EXCHG-ITEM  ::=
{

ITEM-TYPE PickSAAttrsCommit
ITEM-ID 3

}
attrs-negotiation-failed SE-ERROR  ::=
{

PARAMETER Result
ERROR-CODE 5

}

PickSAAttrsRq::= SEQUENCE  {
CalledSAID,
KeyRecoveryData OPTIONAL,
PROTECTED-Q     { SAAttrsList, 
sealedEncrypt, { attrConfidAlg, attrIntegrityAlg, calledSAID } } }

PickSAAttrsRs::=  SEQUENCE  {
CallingSAID,
KeyRecoveryData OPTIONAL,
PROTECTED-Q     { NegotiatedAttrs,
sealedEncrypt, { attrConfidAlg, attrIntegrityAlg, callingSAID } } }

PickSAAttrsCommit  ::= SEQUENCE  {
CalledSAID,
PROTECTED-Q { Commit,
sealedEncrypt, { attrConfidAlg, attrIntegrityAlg, calledSAID } } }

NegotiatedAttrs  ::=  SEQUENCE  {
SAAttrs,
[0]  KMTechniqueId OPTIONAL,
[1]  SecurityPolicy OPTIONAL  }

SAAttrsList::=  SEQUENCE OF SAAttrs

SAAttrs::=  CHOICE  {
sameAs [0] ReferenceSA,

[1] SPAttrs  }

ReferenceSA::=  SEQUENCE  {
callingSAID CallingSAID,
calledSAID CalledSAID,



IEEE
Std 802.10c-1998 INTEROPERABLE LAN/MAN SECURITY (SILS)Ñ

48 Copyright © 1998 IEEE. All rights reserved.

padding OCTET STRING OPTIONAL  }

SPAttrs::=  SEQUENCE  {
spAttrs SP-ATTRS.&attrs-Id,
attrs SP-ATTRS.&Sp-Attrs {@spAttrs} OPTIONAL  }

Commit::=  SEQUENCE  {
Nonce,
Result  }

KeyRecoveryData  ::= SEQUENCE  {
recoveryTechnique OBJECT IDENTIFIER OPTIONAL,
recoveryData OCTET STRING  }

3.5.2.6 Spawn key (Spawn-Key) security exchange

spawn-key SECURITY-EXCHANGE  ::=
{

SE-ITEMS { spawn-key-1, spawn-key-2}
IDENTIFIER {se-id-spawn-key (6)}

}
spawn-key-1 SEC-EXCHG-ITEM  ::=
{

ITEM-TYPE SpawnKeyRq
ERRORS {spawn-key-failed}
ITEM-ID 1

}
spawn-key-2 SEC-EXCHG-ITEM  ::=
{

ITEM-TYPE SpawnKeyRs
ITEM-ID 2

}
spawn-key-failed  SE-ERROR  ::=
{

PARAMETER Result
ERROR-CODE 6

}
SpawnKeyRq  ::=  SEQUENCE  {

PreviouslyEstablishedCalledSAID,
PROTECTED  {  SEQUENCE  {

KeyTransformationAlgorithmIdentifier,
PreviouslyEstablishedCallingSAID,
CallingSAID

},  enciphered  }  }

SpawnKeyRs  ::=  SEQUENCE  {
PreviouslyEstablishedCallingSAID,
PROTECTED  {  SEQUENCE  {

CallingSAID,
CalledSAID

}, enciphered  }  }

PreviouslyEstablishedCallingSAID::=  OCTET STRING
PreviouslyEstablishedCalledSAID::=  OCTET STRING



IEEE
KEY MANAGEMENT Std 802.10c-1998

Copyright © 1998 IEEE. All rights reserved. 49

3.5.2.7 Get multicast key (Get-MKey) security exchange

get-mkey SECURITY-EXCHANGE  ::=
{

SE-ITEMS {get-mkey-1, get-mkey-2}
IDENTIFIER {se-id-get-mkey (7)}

}
get-mkey-1 SEC-EXCHG-ITEM  ::=
{

ITEM-TYPE GetMkeyRq
ERRORS {get-mkey-failed}
ITEM-ID 1

}
get-mkey-2 SEC-EXCHG-ITEM  ::=
{

ITEM-TYPE GetMkeyRs
ITEM-ID 2

}
get-mkey-failed  SE-ERROR  ::=
{

PARAMETER Result
ERROR-CODE 7

}
GetMkeyRq::=  SEQUENCE  {

CalledSAID,
PROTECTED  { McastAddressList,

sealedEncrypt  }   }

GetMkeyRs::=  SEQUENCE  {
CallingSAID,
PROTECTED  { McastTokenList, 

sealedEncrypt  }  }

McastAddressList ::=  SEQUENCE OF McastAddress
McastAddress ::=  OCTET STRING
McastTokenList ::=  SEQUENCE OF McastToken
McastToken ::=  SEQUENCE  {

mKCId MKCTitle,
PROTECTED  {  SEQUENCE  {

mcastKey OCTET STRING,
mcastAddress OCTET STRING,
mcastAttributes SPAttrs,
mcastSAID McastSAID,
validityPeriod ValidityPeriod  }, optionally-signed  }  }

ValidityPeriod ::=  SEQUENCE  {
notBefore GeneralizedTime,
notAfter GeneralizedTime  }

MKCTitle ::=  AETitle
McastSAID ::=  OCTET STRING



IEEE
Std 802.10c-1998 INTEROPERABLE LAN/MAN SECURITY (SILS)Ñ

50 Copyright © 1998 IEEE. All rights reserved.

3.5.2.8 Delete key (Delete-Key) security exchange

delete-keySECURITY-EXCHANGE  ::=
{

SE-ITEMS {delete-key-1}
IDENTIFIER {se-id-delete-key (8)}

}
delete-key-1 SEC-EXCHG-ITEM  ::=
{

ITEM-TYPE DeleteKeyRq
ITEM-ID 1

}
DeleteKeyRq  ::=  SEQUENCE  {

CalledSAID,
PROTECTED  {  SEQUENCE  {

Nonce,
CallingSAID

},  enciphered  }  }

3.5.2.9 Protected make key (Protected-Make-Key)

protected-make-key  SECURITY-EXCHANGE  ::=
{

SE-ITEMS {protected-make-key-1, protected-make-key-2}
IDENTIFIER {se-id-protected-make-key (12)}

}
protected- make-key-1  SEC-EXCHG-ITEM  ::=
{

ITEM-TYPE ProtectedMakeKeyRq
ERRORS {protected-make-key-failed}
ITEM-ID 1

}
protected- make-key-2  SEC-EXCHG-ITEM  ::=
{

ITEM-TYPE ProtectedMakeKeyRs
ITEM-ID 2

}
protected-make-key-failed  SE-ERROR ::=
{

PARAMETER Result
ERROR-CODE 12

}
ProtectedMakeKeyRq  ::= SEQUENCE  {

CallingSAID,
PROTECTED  {  MakeKeyRq,  sealedEncrypt  }  }

ProtectedMakeKeyRs  ::= SEQUENCE  {
CalledSAID,
PROTECTED  {  MakeKeyRs,  sealedEncrypt  }  }



IEEE
KEY MANAGEMENT Std 802.10c-1998

Copyright © 1998 IEEE. All rights reserved. 51

3.5.2.10 Get next multicast key (Get-Next-MKey)

get-next-mkey SECURITY-EXCHANGE  ::=
{

SE-ITEMS {get-next-mkey-1, get-next-mkey-2}
IDENTIFIER {se-id-get-next-mkey (13)}

}
get-next-mkey-1 SEC-EXCHG-ITEM  ::=
{

ITEM-TYPE GetNextMkeyRq
ERRORS {get-next-mkey-failed}
ITEM-ID 1

}
get-next-mkey-2 SEC-EXCHG-ITEM  ::=
{

ITEM-TYPE GetNextMkeyRs
ITEM-ID 2

get-next-mkey-failed  SE-ERROR  ::=
{

PARAMETER Result
ERROR-CODE 13

}
GetNextMkeyRq::=  SEQUENCE  {

McastSAID,
PROTECTED  {  McastAddress, sealedEncrypt  }  }

GetNextMkeyRs::=  SEQUENCE  {
McastSAID,
PROTECTED  {  McastToken, sealedEncrypt  }  }

3.5.2.11 Please send key (Please-Send-Key) security exchange

please-send-key SECURITY-EXCHANGE  ::=
{

SE-ITEMS {please-send-key-1, please-send-key-2, 
please-send-key-3}

IDENTIFIER {se-id-please-send-key (11)}
}
please-send-key-1  SEC-EXCHG-ITEM  ::=
{

ITEM TYPE PleaseSendKeyRq
ERRORS {please-send-key-failed}
ITEM ID 1

}
please-send-key-2  SEC-EXCHG-ITEM  ::=
{

ITEM TYPE SendKeyRq
ERRORS {send-key-failed}
ITEM ID 2

}
please-send-key-3  SEC-EXCHG-ITEM  ::=
{

ITEM TYPE SendKeyRs
ITEM ID 3



IEEE
Std 802.10c-1998 INTEROPERABLE LAN/MAN SECURITY (SILS)Ñ

52 Copyright © 1998 IEEE. All rights reserved.

}
please-send-key-failed  SE-ERROR  ::=
{

PARAMETER Result
ERROR CODE 11

}
PleaseSendKeyRq::=  SEQUENCE  {

KEKIdentifier  }

3.5.3 Key center application service object (KCASO) security exchanges

3.5.3.1 Request key (Request-Key) security exchange

request-key SECURITY-EXCHANGE  ::=
{

SE-ITEMS {request-key-1, request-key-2}
IDENTIFIER {se-id-request-key (9)}

}
request-key-1 SEC-EXCHG-ITEM  ::=
{

ITEM-TYPE RequestKeyRq
ERRORS {request-key-failed}
ITEM-ID 1

}
request-key-2 SEC-EXCHG-ITEM  ::=
{

ITEM-TYPE RequestKeyRs
ITEM-ID 2

}
request-key-failed  SE-ERROR  ::=
{

PARAMETER Result
ERROR-CODE 9

}
RequestKeyRq ::=  SEQUENCE  {

callingAETitle CallingAETitle,
centerProtocol CENTER-PROTOCOL.&centerProtocolId,
rRqParms CENTER-PROTOCOL.&RequestRqParms {@centerProtocol} }

RequestKeyRs ::=  SEQUENCE  {
kdcAETitle KDCAETitle,
rRsParms CENTER-PROTOCOL.&RequestRsParms {@centerProtocol} }

CallingAETitle ::=  AETitle
CalledAETitle ::=  AETitle

3.5.3.2 Translate key (Translate-Key) security exchange

translate-key SECURITY-EXCHANGE  ::=
{

SE-ITEMS {translate-key-1, translate-key-2}
IDENTIFIER {se-id-translate-key (10)}

}



IEEE
KEY MANAGEMENT Std 802.10c-1998

Copyright © 1998 IEEE. All rights reserved. 53

translate-key-1 SEC-EXCHG-ITEM  ::=
{

ITEM-TYPE TranslateKeyRq
ERRORS {translate-key-failed}
ITEM-ID 1

}
translate-key-2 SEC-EXCHG-ITEM  ::=
{

ITEM-TYPE TranslateKeyRs
ITEM-ID 2

}
translate-key-failed  SE-ERROR  ::=
{

PARAMETER Result
ERROR-CODE 10

}
TranslateKeyRq ::=  SEQUENCE  {

callingAETitle CallingAETitle,
centerProtocol CENTER-PROTOCOL.&centerProtocolId,
tRqParms CENTER-PROTOCOL.&TranslateRqParms {@centerProtocol} }

TranslateKeyRs ::=  SEQUENCE  {
ktcAETitle KTCAETitle,
tRsParms CENTER-PROTOCOL.&TranslateRsParms {@centerProtocol} }

KTCAETitle::=  AETitle

3.5.4 Object identiÞers

sils ::= { iso (1) member-body (2) us (840) ieee-802dot10 (10022) }
id-kmp-se ::= { sils 11 }
id-kmp-center-exchange ::= { sils 22 }

se-id-pick-km-alg ::=  { id-kmp-se 1 }
se-id-select-key ::=  { id-kmp-se 2 }
se-id-make-key ::=  { id-kmp-se 3 }
se-id-send-key ::=  { id-kmp-se 4 }
se-id-pick-sa-attrs ::=  { id-kmp-se 5 }
se-id-spawn-key ::=  { id-kmp-se 6 }
se-id-get-mkey ::=  { id-kmp-se 7 }
se-id-delete-key ::=  { id-kmp-se 8 }
se-id-request-key ::=  { id-kmp-se 9 }
se-id-translate-key ::=  { id-kmp-se 10 }
se-id-please-send-key ::=  { id-kmp-se 11 }
se-id-protected-make-key ::=  { id-kmp-se 12 }
se-id-get-next-mkey ::=  { id-kmp-se 13 }
se-id-cert-replacement ::=  { id-kmp-se 14 }
se-id-request-cml ::=  { id-kmp-se 15 }



IEEE
Std 802.10c-1998 INTEROPERABLE LAN/MAN SECURITY (SILS)Ñ

54 Copyright © 1998 IEEE. All rights reserved.

3.5.5 Object class deÞnitions 

3.5.5.1 Key generation algorithm object class

This subclause deÞnes a class of information objects.

KEY-GEN-ALG ::= CLASS
{
 &Rq-Parms,
 &Rp-Parms,
-- Parameters syntax is provided as part of registering the key-gen-alg
 &key-Gen-Alg-Id Identifier    UNIQUE
}
WITH SYNTAX
{
 RQ-PARMS &Rq-Parms
 RP-PARMS &Rp-Parms
 ALG-ID &key-Gen-Alg-Id
}
Identifier ::= OBJECT IDENTIFIER

3.5.5.2 Security protocol attributes object class

SP-ATTRS ::= CLASS
{
&attrs-Id OBJECT IDENTIFIER,

&Sp-Attrs
}
WITH SYNTAX
{

SP-ATTRS &Sp-Attrs
ATTRS-ID &attrs-Id

}

3.5.5.3 Center protocol object class

CENTER-PROTOCOL::= CLASS
{

&centerProtocolId OBJECT IDENTIFIER
& SendRqParms
& SendRsParms

}
WITH SYNTAX
{

SEND-RQ-PARMS & SendRqParms
SEND-RS-PARMS & SendRsParms
CENTER-PROTOCOL-ID &centerProtocolId

}

3.5.6 Security transformations and protection mappings

This standard uses the security transformations and protection mappings deÞned in the GULS standard
wherever possible. However, where these are not sufÞcient, new transformations and mappings are used.
This subclause deÞnes these additional security transformations and protection mappings.



IEEE
KEY MANAGEMENT Std 802.10c-1998

Copyright © 1998 IEEE. All rights reserved. 55

3.5.6.1 Integrity and privacy security transformation

integrityAndPrivacyTransform SECURITY-TRANSFORMATION ::=
{

IDENTIFIER {silsSecurityTransformation 
sealed-enciphered(1)}

INITIAL-ENCODING-RULES {joint-iso-ccitt asn1(1) ber(1)}
XFORMED-DATA-TYPE PROTECTED {

PROTECTED-Q {
 ToBeProtected, sealed, intAlg},

enciphered}
QUALIFIER-TYPE Qtype

}
Qtype ::=  SEQUENCE  {
intAlg AlgorithmIdentifier,
confAlg AlgorithmIdentifier,
sa-id SAID  }

3.5.6.1.1 Other details

Other details of the Integrity and Privacy Security transform are as follows:

Ñ Encoding process and its local inputs. The Base-type has an ICV calculated and appended and then
the entire sequence is encrypted.

Ñ Decoding process and local inputs/outputs. The transformed type is decrypted and the ICV is calcu-
lated and checked.

Ñ Parameters. All parameters are supplied with the algorithm identiÞers.

Ñ Transformation qualiÞers. The algorithm identiÞer and SAID identify the keying material.

Ñ Errors. On decoding, the ICV calculation will fail.

Ñ Security services. Integrity and conÞdentiality.

3.5.6.2 Integrity security transformation

integrityTransform SECURITY-TRANSFORMATION ::=
{

IDENTIFIER {silsSecurityTransformation sealed (2)}
INITIAL-ENCODING-RULES {joint-iso-ccitt asn1(1) ber(1)}
XFORMED-DATA-TYPESEQUENCE { ToBeProtected, Icv}
QUALIFIER-TYPE Itype

}
Itype ::= AlgorithmIdentifier
Icv ::= OCTET STRING

3.5.6.3 Seal and encrypt protection mapping

sealedEncrypt PROTECTION-MAPPING  ::=
{

SECURITY-TRANSFORMATION
{integrityAndPrivacyTransform}

}



IEEE
Std 802.10c-1998 INTEROPERABLE LAN/MAN SECURITY (SILS)Ñ

56 Copyright © 1998 IEEE. All rights reserved.

3.5.6.4 Sealed protection mapping

sealed PROTECTION-MAPPING  ::=
{

SECURITY-TRANSFORMATION {integrityTransform}
}

3.6 KMAE control function

This subclause describes the KMAE Control Function.

3.6.1 KMAE control function state tables

This subclause speciÞes the state tables for the KMAE CF. The state tables (Tables 3-24 through 3-34) do
not include interactions with ACSE; rather, they assume that the CF establishes application-associations
when needed and releases them when no longer needed. 

Each state table has state names across the top as column headings, and event names down the Þrst column
as row headings. Within each state table, cells that are not blank contain information that the protocol
machine uses to generate an action and then to transition to a new state. This information includes predi-
cates, which the protocol machine tests, and if true performs the action indicated and the transition to the
state indicated. If a predicate is not present, the protocol machine unconditionally performs the action and
transitions to the new state. Within a cell, P indicates predicate, A indicates action, and S indicates resulting
state.

Within each state table, every cell that is blank is invalid and causes an Abort.req service request, and results
in an Idle state. Likewise, the receipt of an Abort.ind causes the protocol machine to transition to the Idle
state.



IE
E

E
K

E
Y

 M
A

N
A

G
E

M
E

N
T

S
td 802.10c-1998

C
opyright ©

 1998 IE
E

E
. A

ll rights reserved.
57

Table 3-24ÑCreate-SA REQUESTER  

Event

State

Idle Wait-KM-Alg.rsp Wait-
Request.conf

Wait-
Translate.

conf

Wait-
Send.conf

Wait-
Make.conf

Wait-
Select.conf Wait-Attrs Wait-

Send.ind

Create-
SA.req

P:(KMTI List) > 1
or Òmust announce
security policyÓ
A: Pick-KM-Alg.req
S: Wait-KM-Alg.rsp
else
P: technique = 0
A: Select-Key.req
S: Wait-select.conf
else
P: technique = 3
A: Make-Key.req
S: Wait-Make.conf
else
P: technique = 2
A: Please-Send-
Key.req
S: Wait-Send.ind 
else
P: Local Key Gen 
allowed = Yes
A: Translate-Key.req
S: Wait-
Translate.conf
else
A: Request-Key.req
S: Wait-Request.conf



IE
E

E
IN

T
E

R
O

P
E

R
A

B
LE

 LA
N

/M
A

N
 S

E
C

U
R

IT
Y

 (S
ILS

)Ñ
S

td 802.10c-1998

58
C

opyright ©
 1998 IE

E
E

. A
ll rights reserved.

Pick-KM-
Alg.conf

P: technique = 0
A: Select-Key.req
S: Wait-
Select.conf
else
P: technique = 3
A: Make-Key.req
S: Wait-Make.conf
else
P: technique = 2
A: Please-Send-
Key.req
S: Wait-Send.ind
else
P: local key gen
     allowed = Yes
A: Translate-
Key.req
S: Wait-
Translate.conf
else
A: Request-
Key.req
S: Wait-
Request.conf

Request-
Key.conf

P: Package 
returned?
A: Send-
Key.req
S: Wait-
Send.conf
else
A: Translate-
Key.req
S: Wait-
Translate.conf

Table 3-24ÑCreate-SA REQUESTER   (continued)

Event

State

Idle Wait-KM-Alg.rsp Wait-
Request.conf

Wait-
Translate.

conf

Wait-
Send.conf

Wait-
Make.conf

Wait-
Select.conf Wait-Attrs Wait-

Send.ind



IE
E

E
K

E
Y

 M
A

N
A

G
E

M
E

N
T

S
td 802.10c-1998

C
opyright ©

 1998 IE
E

E
. A

ll rights reserved.
59

Translate-
Key.conf

P: Package 
returned?
A: Send-
Key.req
S: Wait-
Send.conf
else
A: Translate-
Key.req
S: Wait-
Translate.conf

Send-
Key.conf

P: Result = 0
A: Pick-SA-
Attrs.req
S: Wait-Attrs
else
A: Create-
SA.conf (result)
S: Idle

Make-
Key.conf

P: Result = 0
A: Pick-SA-
Attrs.req
S: Wait-Attrs
else
A: Create-
SA.conf (result)
S: Idle

Select.conf P: Result = 0
A: Pick-SA-
Attrs.req
S: Wait-Attrs
else
A: Create-
SA.conf (result)
S: Idle

Table 3-24ÑCreate-SA REQUESTER   (continued)

Event

State

Idle Wait-KM-Alg.rsp Wait-
Request.conf

Wait-
Translate.

conf

Wait-
Send.conf

Wait-
Make.conf

Wait-
Select.conf Wait-Attrs Wait-

Send.ind



IE
E

E
IN

T
E

R
O

P
E

R
A

B
LE

 LA
N

/M
A

N
 S

E
C

U
R

IT
Y

 (S
ILS

)Ñ
S

td 802.10c-1998

60
C

opyright ©
 1998 IE

E
E

. A
ll rights reserved.

Pick-SA-
Attrs.conf

A: Create-
SA.conf 
(result);
Commit.req
S: Idle

Send-
key.ind

A: Send-
Key.rsp; 
Pick-SA-
Attrs.req
S: Wait-Attrs

Table 3-24ÑCreate-SA REQUESTER   (continued)

Event

State

Idle Wait-KM-Alg.rsp Wait-
Request.conf

Wait-
Translate.

conf

Wait-
Send.conf

Wait-
Make.conf

Wait-
Select.conf Wait-Attrs Wait-

Send.ind



IE
E

E
K

E
Y

 M
A

N
A

G
E

M
E

N
T

S
td 802.10c-1998

C
opyright ©

 1998 IE
E

E
. A

ll rights reserved.
61

Table 3-25ÑCreate-SA RESPONDER  

Event

State

Idle Wait-Select Wait-Send Wait-Ask-Key Wait-Make Wait-
Request

Wait-Pick-
Attrs

Wait-
Translate

Wait-
Create-rsp

Wait-
commit

Pick-KM-
Alg.ind

P: technique = 0
A: Pick-KM-
Alg.rsp
S: Wait-Select
else
P: technique = 1
A: Pick-KM-
Alg.rsp
S: Wait-Send
else
P: technique = 2
A: Pick-KM-
Alg.rsp
S: Wait-Ask-Key
else
A: Pick-KM-
Alg.rsp
S: Wait-Make

Select-
Key.ind

A: Select-
Key.rsp (result)
S: Wait-Pick-
Attrs

A: Select-
Key.rsp (result)
S: Wait-Pick-
Attrs

Send-
Key.ind

A: Send-Key.rsp 
(result)
S: Wait-Pick-
Attrs

A: Send-
Key.rsp (result)
S: Wait-Pick-
Attrs



IE
E

E
IN

T
E

R
O

P
E

R
A

B
LE

 LA
N

/M
A

N
 S

E
C

U
R

IT
Y

 (S
ILS

)Ñ
S

td 802.10c-1998

62
C

opyright ©
 1998 IE

E
E

. A
ll rights reserved.

Please-
Send-
Key.ind

P: KEKIdenti-
Þer = ktc
A: Translate-
Key.req
S: Wait-Translate
else
P: KEKIdenti-
Þer = kdc
A: Request-
Key.req
S: Wait-Request
else
A: Send-Key.req
S: Wait-Send

P: KEKIdenti-
Þer = ktc
A: Translate-
Key.req
S: Wait-Translate
else
P: KEKIdenti-
Þer = kdc
A: Request-
Key.req
S: Wait-Request
else
A: Send-Key.req
S: Wait-Send

Make-
Key.ind

A: Make-
Key.rsp (result)
S: Wait-Pick-
Attrs

A: Make-
Key.rsp (result)
S: Wait-Pick-
Attrs

Request-
Key.conf

P: Package 
returned?
A: Send-
Key.req
S: Wait-Send
else
A: Translate-
Key.req
S: Wait-
Translate

Send-
Key.conf

S: Wait-Pick-
Attrs

Pick-
Attr.ind

A: Create-
SA.ind
S: Wait-
Create-rsp

Table 3-25ÑCreate-SA RESPONDER   (continued)

Event

State

Idle Wait-Select Wait-Send Wait-Ask-Key Wait-Make Wait-
Request

Wait-Pick-
Attrs

Wait-
Translate

Wait-
Create-rsp

Wait-
commit



IE
E

E
K

E
Y

 M
A

N
A

G
E

M
E

N
T

S
td 802.10c-1998

C
opyright ©

 1998 IE
E

E
. A

ll rights reserved.
63

Translate-
key.conf

P: Package 
returned?
A: Send-
Key.req
S: Wait-Send
else
A: Translate-
Key.req
S: Wait-
Translate

Create-
SA.rsp

A: Pick-SA-
Attrs.rsp
S: Wait-
Commit

Commit. 
ind

S: Idle

Table 3-25ÑCreate-SA RESPONDER   (continued)

Event

State

Idle Wait-Select Wait-Send Wait-Ask-Key Wait-Make Wait-
Request

Wait-Pick-
Attrs

Wait-
Translate

Wait-
Create-rsp

Wait-
commit



IE
E

E
IN

T
E

R
O

P
E

R
A

B
LE

 LA
N

/M
A

N
 S

E
C

U
R

IT
Y

 (S
ILS

)Ñ
S

td 802.10c-1998

64
C

opyright ©
 1998 IE

E
E

. A
ll rights reserved.

Table 3-26ÑSpawn-SA REQUESTER  

Event

State

Idle Wait-Same-Key Wait-Protected-Make-
Key Wait-Update-Key Wait-Send-Key Wait-Attrs

Spawn-
SA.req

P: Spawn-Option = 0
A: Spawn-Key.req
(Identity transformation)
S: Wait-Same-Key
else
P: Spawn-Option = 1
A: Spawn-Key.req
S: Wait-Update-Key
else
P: Spawn-Option = 2
A: Protected-Make-Key.req
S: Wait-Protected-Make-key
else
A: Send-Key.req
S: Wait-Send-Key 

Spawn-
Key.conf

P: Result = 0
A: Pick-SA-Attrs.req
S: Wait-Attrs
else
A: Spawn-SA (result)
S: Idle

P: Result = 0
A: Pick-SA-Attrs.req
S: Wait-Attrs
else
A: Spawn-SA.conf (result)
S: Idle

Protected-
Make-
Key.conf

P: Result = 0
A: Pick-SA-Attrs.req
S: Wait-Attrs
else
A: Spawn-SA.conf (result)
S: Idle

Send-
Key.conf

P: Result = 0
A: Pick-SA-Attrs.req
S: Wait-Attrs
else
A: Spawn-SA.conf (result)
S: Idle

Pick-SA-
Attrs.conf

A: Spawn-SA.conf (result);
Commit.req
S: Idle



IE
E

E
K

E
Y

 M
A

N
A

G
E

M
E

N
T

S
td 802.10c-1998

C
opyright ©

 1998 IE
E

E
. A

ll rights reserved.
65

Table 3-27ÑSpawn-SA RESPONDER

Event
State

Idle Wait-Pick-Attrs.ind Wait-Choose-Attrs Wait-Commit

Spawn-Key.ind A: Spawn-Key.rsp
S: Wait-Pick-Attrs.ind

Pick-SA-Attrs.ind A: Spawn-SA.ind
S: Wait-Choose-Attrs

Spawn-SA.rsp A: Pick-SA-Attrs.rsp
S: Wait-Commit

Protected-Make-Key.ind A: Protected-Make-Key.rsp
S: Wait-Pick-Attrs.ind

Send-Key.ind A: Send-Key.rsp
S: Wait-Pick-Attrs.ind

Commit.ind S: Idle



IE
E

E
IN

T
E

R
O

P
E

R
A

B
LE

 LA
N

/M
A

N
 S

E
C

U
R

IT
Y

 (S
ILS

)Ñ
S

td 802.10c-1998

66
C

opyright ©
 1998 IE

E
E

. A
ll rights reserved.

Table 3-28ÑCreate-MSA REQUESTER  

Event

State

Idle Wait-KM-
Alg.rsp

Wait-
Request.conf

Wait-Translate.
conf Wait-Send.conf Wait-Make.conf Wait-Select.conf Wait-Attrs Wait-

Send.ind

Create-
MSA.req

P: (KMTL) > 1a 
or Òmust 
announce secu-
rity policyÓ
A: Pick-KM-
Alg.req
S: Wait-KM-
Alg.rsp
else
P: technique = 0
A: Select-
Key.req
S: Wait-
select.conf
else
P: technique = 3
A: Make-Key.req
S: Wait-
Make.conf
else
P: technique = 2
A: Please-Send-
Key.req
S: Wait-Send.ind
else
P: Local Key 
Gen allowed 
=Yes
A: Translate- 
Key.req
S: Wait-Trans-
late.conf
else
A: Request-
Key.req
S: Wait-
Request.conf

aKey Management Technique List contains more than one entry.



IE
E

E
K

E
Y

 M
A

N
A

G
E

M
E

N
T

S
td 802.10c-1998

C
opyright ©

 1998 IE
E

E
. A

ll rights reserved.
67

Pick-KM-
Alg.conf

P: technique = 0
A: Select-Key.req
S: Wait-
select.conf
else
P: technique = 3
A: Make-Key.req
S: Wait-
Make.conf
else
P: technique = 2
A: Please-Send-
Key.req
S: Wait-Send.ind
else
P: Local Key Gen 
allowed = Yes
A: Translate- 
Key.req
S: Wait-Trans-
late.conf
else
A: Request-
Key.req
S: Wait-
Request.conf

Request-
Key.conf

P: Package is 
returned?
A: Send-Key.req
S: Wait-
Send.conf
else
A: Translate-
Key.req
S: Wait-Trans-
late.conf

Table 3-28ÑCreate-MSA REQUESTER   (continued)

Event

State

Idle Wait-KM-
Alg.rsp

Wait-
Request.conf

Wait-Translate.
conf Wait-Send.conf Wait-Make.conf Wait-Select.conf Wait-Attrs Wait-

Send.ind



IE
E

E
IN

T
E

R
O

P
E

R
A

B
LE

 LA
N

/M
A

N
 S

E
C

U
R

IT
Y

 (S
ILS

)Ñ
S

td 802.10c-1998

68
C

opyright ©
 1998 IE

E
E

. A
ll rights reserved.

Translate-
Key.conf

P: Package is 
returned?
A: Send-Key.req
S: Wait-
Send.conf
else
A: Translate-
Key.req
S: Wait-Trans-
late.conf

Send-
Key.conf

P: Result = 0
A: Get-Mkey.req
S: Wait-Mkey
else
A: Create-
MSA.conf 
(result)
S: Idle

Make-
Key.conf

P: Result = 0
A: Get-Mkey.req
S: Wait-MKey
else
A: Create-
MSA.conf 
(result)
S: Idle

Select.conf P: Result = 0
A: Get-Mkey.req
S: Wait-MKey
else
A: Create-
MSA.conf 
(result)
S: Idle

Table 3-28ÑCreate-MSA REQUESTER   (continued)

Event

State

Idle Wait-KM-
Alg.rsp

Wait-
Request.conf

Wait-Translate.
conf Wait-Send.conf Wait-Make.conf Wait-Select.conf Wait-Attrs Wait-

Send.ind



IE
E

E
K

E
Y

 M
A

N
A

G
E

M
E

N
T

S
td 802.10c-1998

C
opyright ©

 1998 IE
E

E
. A

ll rights reserved.
69

Get-
Mkey.conf

A: Create-
MSA.conf 
(result)
S: Idle

Send-
Key.ind

A: Send-
Key.resp;
Get-Mkey.req
S: Wait-Mkey

Table 3-28ÑCreate-MSA REQUESTER   (continued)

Event

State

Idle Wait-KM-
Alg.rsp

Wait-
Request.conf

Wait-Translate.
conf Wait-Send.conf Wait-Make.conf Wait-Select.conf Wait-Attrs Wait-

Send.ind



IE
E

E
IN

T
E

R
O

P
E

R
A

B
LE

 LA
N

/M
A

N
 S

E
C

U
R

IT
Y

 (S
ILS

)Ñ
S

td 802.10c-1998

70
C

opyright ©
 1998 IE

E
E

. A
ll rights reserved.

Table 3-29ÑCreate-MSA RESPONDER  

Event

State

Idle Wait-Select Wait-Send Wait-Ask-Key Wait-
Make

Wait-
Request Wait-Translate Wait-Create Wait-Get-Mkey

Pick-KM-
Alg.ind

P: technique = 0
A: Pick-KM-Alg.rsp
S: Wait-Select
else
P: technique = 1
A: Pick-KM-Alg.rsp
S: Wait-Send
else
P: technique = 2
A: Pick-KM-Alg.rsp
S: Wait-Ask-Key
else
A: Pick-KM-Alg.rsp
S: Wait-Make

Select-
Key.ind

A: Select-Key.rsp 
(result)
S: Wait-Get-Mkey

A: Select-Key.rsp 
(result)
S: Wait-Get-Mkey

Send-
Key.ind

A: Send-Key.rsp 
(result)
S: Wait-Get-Mkey

A: Send-
Key.rsp 
(result)
S: Wait-Get-
Mkey

Please-
Send-
Key.ind

P: KEKIdentiÞer = ktc
A: Translate-Key.req
S: Wait-Translate
else
P: KEKIdentiÞer = 
kdc
A: Request-Key.req
S: Wait-Request
else
A: Send-Key.req
S: Wait-Send

P: KEKIdenti-
Þer = ktc
A: Translate-
Key.req
S: Wait-Translate
else
P: KEKIdenti-
Þer = kdc
A: Request-
Key.req
S: Wait-Request
else
A: Send-Key.req
S: Wait-Send



IE
E

E
K

E
Y

 M
A

N
A

G
E

M
E

N
T

S
td 802.10c-1998

C
opyright ©

 1998 IE
E

E
. A

ll rights reserved.
71

Make-
Key.ind

A: Make-Key.rsp 
(result)
S: Wait-Get-Mkey

A: Make-
Key.rsp 
(result)
S: Wait-
Get-Mkey

Request-
Key.con

P: Package 
returned?
A: Send-
Key.req
S: Wait-Send
else
A: Translate-
Key.req
S: Wait-
Translate

Send-
Key.conf

S: Wait-Get-
Mkey

Create-
MSA.rsp

A: Get-
Mkey.rsp
S: Idle

Translate-
Key.conf

P: Package 
returned?
A: Send-Key.req
S: Wait-Send
else
A: Translate-
Key.req
S: Wait-Translate

Get-
Mkey.ind

A: Create-MSA.ind 
S: Wait-Create

Table 3-29ÑCreate-MSA RESPONDER   (continued)

Event

State

Idle Wait-Select Wait-Send Wait-Ask-Key Wait-
Make

Wait-
Request Wait-Translate Wait-Create Wait-Get-Mkey



IEEE
Std 802.10c-1998 INTEROPERABLE LAN/MAN SECURITY (SILS)Ñ

72 Copyright © 1998 IEEE. All rights reserved.

Table 3-30ÑSpawn-MSA REQUESTER

Event
State

Idle Wait-Next-MKey.conf

Spawn-MSA.req A: Get-Next-MKey.req
S: Wait-Next-MKey.conf

Ñ

Get-Next-MKey.conf Ñ A: Spawn-MSA.conf
S: Idle

Table 3-31ÑSpawn-MSA RESPONDER

Event
State

Idle Wait-Spawn-MSA.rsp

Get-Next-Mkey.ind A: Spawn-MSA.ind
S: Wait-Spawn-MSA.rsp

Ñ

Spawn-MSA.rsp Ñ A: Get-Next-Mkey.rsp
S: Idle

Table 3-32ÑDelete-SA REQUESTER

Event
State

Idle

Delete-SA.req A: Delete-Key.req
S: Idle

Table 3-33ÑDelete-SA RESPONDER

Event
State

Idle

Delete-Key.ind A: Delete-SA.ind
S: Idle

Table 3-34ÑKey Center RESPONDER

Event
State

Idle

Request-Key.ind A: Request-Key.rsp
S: Idle

Translate-Key.ind A: Translate-Key.rsp
S: Idle



IEEE
KEY MANAGEMENT Std 802.10c-1998

Copyright © 1998 IEEE. All rights reserved. 73

3.6.2 Sample timing diagrams

The following diagrams illustrate several paths through the state tables. These timing diagrams make no
attempt to illustrate all possible paths through the state tables; rather, they illustrate paths that are expected to
be used frequently. None of these timing diagrams illustrate error cases.

NOTE

In these timing diagrams,
subscript A = initiator;
subscript B = responder;
subscript X = KDC or KTC.



IEEE
Std 802.10c-1998 INTEROPERABLE LAN/MAN SECURITY (SILS)Ñ

74 Copyright © 1998 IEEE. All rights reserved.



IEEE
KEY MANAGEMENT Std 802.10c-1998

Copyright © 1998 IEEE. All rights reserved. 75



IEEE
Std 802.10c-1998 INTEROPERABLE LAN/MAN SECURITY (SILS)Ñ

76 Copyright © 1998 IEEE. All rights reserved.



IEEE
KEY MANAGEMENT Std 802.10c-1998

Copyright © 1998 IEEE. All rights reserved. 77



IEEE
Std 802.10c-1998 INTEROPERABLE LAN/MAN SECURITY (SILS)Ñ

78 Copyright © 1998 IEEE. All rights reserved.



IEEE
KEY MANAGEMENT Std 802.10c-1998

Copyright © 1998 IEEE. All rights reserved. 79

Add Annex 3A as follows:

Annex 3A

(normative) 

Locating SDE key management entities

When the Secure Data Exchange (SDE) protocol is implemented in bridges, the internetwork is divided into
two logical internetworks. The trafÞc from stations on the internetwork behind SDE bridges is protected
(conÞdentiality, integrity, or both) when it is carried across the other internetwork.

The bridges with connections to each of the two internetworks form separate spanning trees as deÞned in
IEEE Std 802.1D-1990. The SDE bridges have ports in both spanning trees. The internetwork that carries
SDE protected trafÞc appears as one logical LAN to the other internetwork.

When an unprotected PDU arrives at an SDE bridge, the source and destination addresses reveal the stations
involved in the communication, but neither address reveals the address of the peer SDE bridge. This leads to
an address discovery problem. To establish a security association in support of these SDE entities, their
addresses must be discovered. Probe frames are used by the SDE bridges to locate the correct SDE bridge.
Once the addresses are known, the KMAPs within the SDE bridges communicate to establish the security
association.

Whenever the spanning tree changes, the SDE bridges must verify that the peer SDE bridge is still the active
path. It is possible that the altered spanning tree blocks the path between the two communicating SDE
bridges. Should the path between the two SDE bridges become blocked, the address discovery process must
be repeated to locate the SDE bridge that has taken over responsibility, and then the KMAP must establish a
new security association on behalf of that SDE entity. 

3A.1  Probe frames

When SDE is implemented in bridges, the local KMAP must locate the remote KMAP before the applica-
tion-association for KMP can be established. The local KMAP sends a probe request frame addressed to the
destination MAC address. The probe request frame will be handled by any bridges necessary to deliver the
frame; however, an SDE-enabled bridge will intercept the probe request frame and return a probe response
frame. Note that SDE-enabled end systems must be prepared to process probe request and probe response
frames; otherwise, the address resolution will fail.

Figure 3A.1 shows the format of the probe request frame and the probe response frame. For simplicity,
frames have the same format.

SDE Designator SAID Type Source Dest Source KM Dest KM

3 4 1 8 8 8 8

Figure 3A.1ÑProbe frame format

OCTETS



IEEE
Std 802.10c-1998 INTEROPERABLE LAN/MAN SECURITY (SILS)Ñ

80 Copyright © 1998 IEEE. All rights reserved.

3A.1.1 Probe request

The local KMAP generates a probe request frame as follows:

Ñ SDE Designator is the reserved LSAP for SDE, which is Ò0A0A03.Ó Use of this LSAP ensures that
SDE-enabled bridges will intercept this frame.

Ñ SAID is a reserved SDE SAID. It is all zeros. Use of this SAID value ensures that the receiving SDE
entity will process this frame as management trafÞc, not user trafÞc.

Ñ Type indicates that this frame is a probe request. The value is 1.

Ñ Source is the source MAC address for the trafÞc that will be protected by SDE once the security
association is established.

Ñ Dest is the destination MAC address for the trafÞc that will be protected by SDE once the security
association is established.

Ñ Source KM is the source MAC address for the KMAP supporting the SDE entity that will handle
trafÞc on behalf of the source MAC address. If the SDE entity is located in the end system, then
Source and Source KM have the same MAC address.

Ñ Dest KM is unknown; the Þeld must contain all zeros.

The local KMAP sends the probe request in a MAC frame addressed to the destination MAC address.

3A.1.2  Probe processing

When the KMAP receives a probe request, the processing depends on the location of the KMAP.

If the KMAP is located at the end system, then it simply Þlls the Dest KM Þeld with its MAC address, and
sends the probe response frame back to the KMAP that originated the probe request.

If the KMAP is located at an SDE-enabled bridge, then it must determine if the destination MAC address is
reachable on the plaintext side of the SDE-enabled bridge. If the SDE-enabled bridge is conÞgured with a
list of MAC addresses that it supports, then a simple list lookup can determine whether or not the destination
MAC address is supported. Learning from previous trafÞc processed by the SDE-enabled bridge may deter-
mine whether or not the destination MAC address is supported. Otherwise, the SDE-enabled bridge must
send an LLC test request frame (as speciÞed in ISO/IEC 8802-2: 1994 Section 5.4.1.1.3) to the destination
MAC address to determine if that MAC address is reachable on the plaintext side of the SDE-enabled bridge.
If the SDE-enabled bridge has multiple unblocked plaintext ports, the test frames must be sent on each one.
If the LLC test response frame (as speciÞed in ISO/IEC 8802-2: 1994 Section 5.4.1.2.2) is returned, then the
KMAP Þlls the Dest KM Þeld with its MAC address, and sends the probe response frame back to the KMAP
that originated the probe request. If no test response frame is returned, then no action is taken.

3A.1.3  Probe response

The local KMAP generates a probe response frame as follows:

Ñ SDE Designator is the reserved LSAP for SDE, which is Ò0A0A03.Ó

Ñ SAID is a reserved SDE SAID. It is all zeros.

Ñ Type indicates that this frame is a probe response. The value is 2.

Ñ Source is the source MAC address for the trafÞc that will be protected by SDE once the security
association is established. This value is copied from the probe request frame.

Ñ Dest is the destination MAC address for the trafÞc that will be protected by SDE once the security
association is established. This value is copied from the probe request frame.



IEEE
KEY MANAGEMENT Std 802.10c-1998

Copyright © 1998 IEEE. All rights reserved. 81

Ñ Source KM is the MAC address for the KMAP that sent the probe request. This value is copied from
the probe request frame.

Ñ Dest KM is the MAC address for the responding KMAP.

The KMAP sends the probe response in a MAC frame addressed to the MAC address of the KMAP that sent
the probe request.

3A.2  Address discovery scenario

This clause describes an example of the address discovery process. Figure 3A.2 is used in this text to
describe a scenario of the operation of SDE equipped bridges. In the diagram, Bridges X, Y, and Z have SDE
implemented.

a) Workstation A knows Workstation DÕs MAC layer address, but Workstation D has never transmitted
any link layer frames and none of the bridges know of Workstation D.

b) Workstation A sends a frame with source address = A and destination address = D.

c) Bridge X does not have a Security Association for source address = A and destination address = D.
Bridge X does not have an entry in its ßow tables for destination address = D. Bridge X ßoods an
SDE Probe packet on all active ports, except the port on which Bridge X received the SDE Probe
packet.

d) Bridges Y and Z receive the Probe packet. Neither has information for destination address = D. Both
Bridges Y and Z ßood Test frames on all active ports, except the port on which Bridges Y and Z
received the SDE Probe packet.

e) Workstation D responds to the test frame from Bridge Z.

f) Bridge Z responds to the Probe from Bridge X.

Figure 3A.2ÑAddress discovery example

Workstation
A

Bridge
X

Workstation
B

Bridge Workstation
C

Workstation
D

Bridge

Bridge
Y

Bridge
Z



IEEE
Std 802.10c-1998 INTEROPERABLE LAN/MAN SECURITY (SILS)Ñ

82 Copyright © 1998 IEEE. All rights reserved.

Add Annex 3B as follows:

Annex 3B

(informative) 

CertiÞcate replacement

3B.1  Service deÞnition (Cert-Replace)

The Cert-Replace is a KMAE service that provides the capability for a peer key management system to
request a replacement X.509 certiÞcate. In addition, the replacement certiÞcate could be received with
optional replacement of the associated private material from a responding peer key management system. The
decision to replace the private material is determined by the responding peer key management system. Cert-
Replace is a conÞrmed service that establishes the replacement of certiÞcates, which are stored in the SMIB
of the requesting entity. The certiÞcate that is being replaced can be passed in or obtained from the SMIB.

This service requires a security-association with the certiÞcation authority to exist prior to invocation.

The parameters of Cert-Replace are deÞned in Table 3B.1.

3B.1.1  CertiÞcate-To-Be-Replaced

CertiÞcate-To-Be-Replaced represents the X.509 certiÞcate that is being replaced.

Certificate-To-Be-Replaced::= Certificate

3B.1.2  Replacement-Indicator

Replacement Material is a Boolean value that indicates if the private keying material associated with the
certiÞcate has been replaced.

Replacement-Indicator ::= BOOLEAN

Table 3B.1ÑCert-Replace parameters

Cert-Replace parameter name .req .ind .rsp .conf Reference

Calling AE-Title M M (=) Ñ Ñ 3.4.1.1.1

Called AE-Title M M (=) M (=) M (=) 3.4.1.1.2

CertiÞcate-To-Be-Replaced U C (=) Ñ Ñ 3B.1.1

Replacement-Indicator Ñ Ñ M M (=) 3B.1.2

Calling SAID Ñ Ñ M M (=) 3.4.1.1.7

Called SAID M M (=) Ñ Ñ 3.4.1.1.8

Result Ñ Ñ M M (=) 3.4.1.1.9



IEEE
KEY MANAGEMENT Std 802.10c-1998

Copyright © 1998 IEEE. All rights reserved. 83

3B.2  Replace-CertiÞcate

Replace-CertiÞcate offers the KPASO the means to obtain a replacement X.509 certiÞcate and optionally the
associated private material. Replace-CertiÞcate is a conÞrmed service.

The parameters of Replace-CertiÞcate are deÞned in Table 3B.2.

3B.2.1  Replacement-Material

Replacement-Material is the replacement X.509 certiÞcate and optionally the associated private material.

Replacement-Material ::= SEQUENCE {
certificate CertificationPath,
privateMaterial OCTET STRING OPTIONAL}

3B.3  Security exchanges

certificate-replacement SECURITY-EXCHANGE::=
{

SE-ITEMS {request-replacement, replacement-response}
IDENTIFIER { se-id-cert-replacement(14)}

}
request-replacement SEC-EXCHG-ITEM::=
{

ITEM TYPE Replacement-rq
ERRORS {replacement-failed}
ITEM ID1

}
replacement-response SEC-EXCHG-ITEM::=
{

ITEM TYPE Replacement-rp
ITEM ID2

}

Table 3B.2ÑReplace-CertiÞcate parameters

Replace-CertiÞcate parameter name .req .ind .rsp .conf Reference

Calling AE-Title M M (=) Ñ Ñ 3.4.1.1.1

Called AE-Title M M (=) M (=) M (=) 3.4.1.1.2

CertiÞcate-To-Be-Replaced M M (=) Ñ Ñ 3B.1.1

Replacement-Material Ñ Ñ M M (=) 3B.2.1

Calling SAID Ñ Ñ M M (=) 3.4.1.1.7

Called SAID M M (=) Ñ Ñ 3.4.1.1.8

Result Ñ Ñ M M (=) 3.4.1.1.9



IEEE
Std 802.10c-1998 INTEROPERABLE LAN/MAN SECURITY (SILS)Ñ

84 Copyright © 1998 IEEE. All rights reserved.

replacement-failed SE-ERROR ::=
{

PARAMETER Result
ERROR CODE 14

}
Replacement-rq::=  SEQUENCE  {

CalledSAID,
PROTECTED {Certificate-To-Be-Replaced, enciphered}   }

Replacement-rp::=  SEQUENCE  {
CallingSAID,
PROTECTED  { Replacement-Material, enciphered }  }

Certificate-To-Be-Replaced::=Certificate

Replacement-Material::=SEQUENCE {
certificate CertificationPath,
privateMaterial OCTET STRING OPTIONAL}



IEEE
KEY MANAGEMENT Std 802.10c-1998

Copyright © 1998 IEEE. All rights reserved. 85

Add Annex 3C as follows:

Annex 3C

(informative) 

Compromised material lists

3C.1  Security deÞnition (CML-Request)

The CML-Request is a KMAE service that provides the capability for a peer key management system to
obtain a compromised material list. The CML is a method for notifying the peer key management system of
compromised material.

This service could be used to distribute X.509 CertiÞcate Revocation Lists. However, the purpose of this ser-
vice is much broader, in that it could be used for distributing a list of identiÞers of any keying material that
has been compromised.

This service requires a security-association with the certiÞcation authority to exist prior to invocation.

The parameters of CML-Request are deÞned in Table 3C.1.

3C.1.1  Name

Name is the Distinguished Name of the issuer of the compromised material list.

Name ::= DistinguishedName

Table 3C.1ÑCML-Request parameters

CML-Request parameter name .req .ind .rsp .conf Reference

Calling AE-Title M M (=) Ñ Ñ 3.4.1.1.1

Called AE-Title M M (=) M (=) M (=) 3.4.1.1.2

Name M M (=) Ñ Ñ 3C.1.1

Attribute-Id M M (=) Ñ Ñ 3C.1.2

Attribute-Value Ñ Ñ M M (=) 3C.1.3

Calling SAID Ñ Ñ M M (=) 3.4.1.1.7

Called SAID M M (=) Ñ Ñ 3.4.1.1.8

Result Ñ Ñ M M (=) 3.4.1.1.9



IEEE
Std 802.10c-1998 INTEROPERABLE LAN/MAN SECURITY (SILS)Ñ

86 Copyright © 1998 IEEE. All rights reserved.

3C.1.2 Attribute-Id

Attribute-Id is the object identiÞer of the compromised material list. It is used by the requester to indicate the
type of the compromised material list that the requester desires.

Attribute-Id ::= OBJECT IDENTIFIER

3C.1.3  Attribute-Value

The Attribute-Value is the compromised material list.

Attribute-Value ::= OCTET STRING

3C.2  Request-CML

Request-CML offers the KPASO the means to obtain a Compromised Material List. Request-CML is a con-
Þrmed service.

The parameters of Request-CML are deÞned in Table 3C.2.

3C.3  Security exchanges

request-CML SECURITY-EXCHANGE::=
{

SE-ITEMS {cml-request, cml-response}
IDENTIFIER {se-id-request-cml(15)}

}
cml-request SEC-EXCHG-ITEM::=
{

ITEM TYPECML-rq
ERRORS {cml-failed}
ITEM ID1

}

Table 3C.2ÑRequest-CML parameters

Request-CML parameter name .req .ind .rsp .conf Reference

Calling AE-Title M M (=) Ñ Ñ 3.4.1.1.1

Called AE-Title M M (=) M (=) M (=) 3.4.1.1.2

Name M M (=) Ñ Ñ 3C.1.1

Attribute-Id M M (=) Ñ Ñ 3C.1.2

Attribute-Value Ñ Ñ M M (=) 3C.1.3

Calling SAID Ñ Ñ M M (=) 3.4.1.1.7

Called SAID M M (=) Ñ Ñ 3.4.1.1.8

Result Ñ Ñ M M (=) 3.4.1.1.9



IEEE
KEY MANAGEMENT Std 802.10c-1998

Copyright © 1998 IEEE. All rights reserved. 87

cml-response SEC-EXCHG-ITEM::=
{

ITEM TYPECML-rp
ITEM ID2

}
cml-failed SE-ERROR ::=
{

PARAMETER Result
ERROR CODE 15

}
CML-rq ::= SEQUENCE{

CalledSAID,
PROTECTED { 

SEQUENCE {
Name,
Attribute-Id  }, enciphered }  }

CML-rp ::= SEQUENCE {
CallingSAID,
PROTECTED { 

SEQUENCE {
Name,
Attribute-Id,
Attribute-Value  }, enciphered }  }

Name ::= DistinguishedName
Attribute-Id ::= OBJECT IDENTIFIER
Attribute-Value ::= OCTET STRING



IEEE
Std 802.10c-1998 INTEROPERABLE LAN/MAN SECURITY (SILS)Ñ

88 Copyright © 1998 IEEE. All rights reserved.

Add Annex 3D as follows:

Annex 3D

(informative) 

Key distribution scenarios

The scenarios in this annex illustrate the security association creation (Create-SA) for each of the three key
management techniques supported by this protocol: manual key distribution, center-based key distribution,
and certiÞcate-based key distribution. Each scenario includes sample security exchanges to show which data
is included in each of the security exchanges. Attribute negotiation is not included in these scenarios; how-
ever, Annex 3E illustrates attribute negotiation for the Secure Data Exchange protocol.

3D.1  Manual key distribution scenario

If the initiator wants to exchange protected trafÞc with the responder and more than one key management
algorithm could be used, then the initiator sends to the responder the Pick-KM-Alg-rq to negotiate the key
management algorithm. The responder responds with a Pick-KM-Alg-rp selecting the Þrst key management
algorithm offered by the initiator that is supported by the responder. In this scenario, manual key distribution
is selected. The initiator sends a Select-Key-rq to the responder identifying predistributed keying material.
The responder replies with a Select-Key-rp, conÞrming the initiatorÕs choice of keying material. Once the
keying material is selected, attributes are negotiated. The initiator sends a Pick-SA-Attrs-rq, and the
responder replies with a Pick-SA-Attrs-rp.

A sample Select-Key-rq is shown below:

Select-Key-rq ::= SEQUENCE {
 CryptographicKeyingMaterialIdentifier"PTFKMC-3-9FD3AAD2F2691B9A",
 TransformAlgorithmIdentifier    -- absent --,
 AlgorithmIdentifier    { 1 3 14 3 2 7 }, -- DES-CBC
 PROTECTED {  SEQUENCE {    -- encrypted using key identified 

      above
  CallingSAID    48,
  Nonce    950704201545
 } }
}

A sample Select-Key-rp that matches the above Select-Key-rq is shown below:

Select-Key-rp ::= PROTECTED { SEQUENCE {
--encrypted using key and algorithm
--identified in the proceeding
  Select-Key-rq

  CallingSAID 48,
  CalledSAID 42,
  NoncePlus1 950704201546
 } }



IEEE
KEY MANAGEMENT Std 802.10c-1998

Copyright © 1998 IEEE. All rights reserved. 89

3D.2 Center-based key distribution scenario

If the initiator wants to exchange protected trafÞc with the responder and more than one key management
algorithm could be used, then the initiator sends to the responder the Pick-KM-Alg-rq to negotiate the key
management algorithm. The responder responds with a Pick-KM-Alg-rp selecting the Þrst key management
algorithm offered by the initiator that is supported by the responder. In this scenario, center-based key distri-
bution is selected. Next, the initiator sends a Request-Key-rq to the Key Distribution Center (KDC) to
request keying material for use by the initiator and responder. The KDC responds with a Request-Key-rp
containing keying material encrypted in a key encryption key shared between the initiator and the KDC. The
Request-Key-rp includes the same keying material encrypted in a key encryption key (KEK) shared between
the responder and the KDC. The initiator sends to the responder a Send-Key-rq that contains the keying
material that was encrypted for the responder. Then, the responder replies with a Send-Key-rp. Finally,
attributes are negotiated. The initiator sends a Pick-SA-Attrs-rq, and the responder replies with a Pick-SA-
Attrs-rp.

The format of the exchanges depends on the CENTER-PROTOCOL that is used. A sample CENTER-PRO-
TOCOL registration is included for purposes of example. The OBJECT IDENTIFIER associated with these
deÞnitions is:

id-center ::= { iso(1) member-body(2) us(840) ieee-802dot10(10022) 22 1 
}
center-based-exchanges CENTER-PROTOCOL {

SEND-RQ-PARMS { RequestRqParms }
SEND-RS-PARMS  { RequestRsParms }
CENTER-PROTOCOL-ID  {id-center}  }

RequestRqParms ::=  SEQUENCE  {
AlgorithmIdentifier,
PROTECTED  {  SEQUENCE  {

Nonce,
CalledAETitle,
AlgorithmIdentifier

},  enciphered  }  }

RequestRsParms ::=  PROTECTED  {  SEQUENCE  {
TitleOrPackage,
KeyingMaterial,
Nonce,
CalledAETitle,
AlgorithmIdentifier

},  enciphered  }

TranslateKeyParms  ::=  SEQUENCE  {
AlgorithmIdentifier,
PROTECTED  {  SEQUENCE  {

KeyingMaterial,
Nonce,
CalledAETitle,
AlgorithmIdentifier

},  enciphered  }  }

TranslateRsParms  ::=  RequestRsParms



IEEE
Std 802.10c-1998 INTEROPERABLE LAN/MAN SECURITY (SILS)Ñ

90 Copyright © 1998 IEEE. All rights reserved.

SendRqParms ::=  SEQUENCE  {
AlgorithmIdentifier,
BPackage,
PROTECTED  {  SEQUENCE  {

CallingSAID,
Time

},  enciphered  }  }

SendRsParms ::=  PROTECTED  {  SEQUENCE  {
CallingSAID,
CalledSAID,
TimePlus1

},  enciphered  }

TitleOrPackage ::=  CHOICE  {
bPackage [0] BPackage,
title [1] KTCTitle  }

BPackage ::=  PROTECTED  {  SEQUENCE  {
KeyingMaterial,
AlgorithmIdentifier,
CallingAETitle

},  enciphered  }

KeyingMaterial ::=  OCTET STRING
Nonce ::=  INTEGER
Time ::=  GeneralizedTime
TimePlus1 ::=  GeneralizedTime

A sample Request-Key-rq is shown below:

Request-Key-rq ::=  SEQUENCE  {
  callingTitle (AETitle of the initiator KMAE),
  centerProtocol {1 2 840 10022 22 1},
  SEQUENCE  {
    AlgorithmIdentifier { 1 3 14 3 2 7 },  -- DES-CBC

-- algorithm used to encrypt the following
-- PROTECTED SEQUENCE

    PROTECTED  {  SEQUENCE  {
      Nonce 960214201545,
      CalledAETitle (AETitle of the responding KMAE),
      AlgorithmIdentifier{ 1 3 14 3 2 7 }, -- DES-CBC

-- the KDC will generate keying material
-- for use with DES-CBC

    }
 }
}



IEEE
KEY MANAGEMENT Std 802.10c-1998

Copyright © 1998 IEEE. All rights reserved. 91

A sample Request-Key-rp that matches the above Request-Key-rq is shown below:

Request-Key-rp ::= SEQUENCE {
 kdcTitle (AETitle of the KDC),
 PROTECTED {  SEQUENCE {-- encrypted in the key shared between the

-- initiator KMAE and the KDC
[0] -- a Bpackage follows

 PROTECTED { SEQUENCE {-- the initiator does not have the key to decrypt
     -- this portion; it is for the responding KMAE

      KeyingMaterial 0123456789ABCDEF,
      AlgorithmIdentifier{ 1 3 14 3 2 7 }, -- DES-CBC
      CallingAETitle (AETitle of the initiator KMAE),
    } }
    KeyingMaterial 0123456789ABCDEF,
    Nonce 960214201545,
    CalledAETitle (AETitle of the responding KMAE),
    AlgorithmIdentifier { 1 3 14 3 2 7 },  -- DES-CBC
  }  }
}

A sample Send-Key-rp that matches the above Request-Key-rp is shown below:

Send-Key-rq ::=  SEQUENCE  {
  kekIdentifier [1] (AETitle of the KDC),
  centerProtocol {1 2 840 10022 22 1},
  SEQUENCE  {
    AlgorithmIdentifier,{ 1 3 14 3 2 7 },  -- DES-CBC
    PROTECTED  {  SEQUENCE  {-- the BPackage
      KeyingMaterial 0123456789ABCDEF,
      AlgorithmIdentifier{ 1 3 14 3 2 7 },  -- DES-CBC
      CallingAETitle (AETitle of the initiator KMAE),
    }  }
    PROTECTED  {  SEQUENCE  {-- encrypted in the key inside the BPackage
      CallingSAID 48,
      Time "19960214201548Z",
    }  }
  }
}

A sample Send-Key-rp that matches the above Send-Key-rq is shown below:

Send-Key-rp ::=  PROTECTED  {  SEQUENCE  {
  CallingSAID 48,
  CalledSAID 42,
  TimePlus1 "19960214201549Z"
}  }

3D.3 CertiÞcate-based key distribution scenario

Two examples of certiÞcate-based key distribution are included here: one using RSA key transport as
deÞned in X9.44, and the other one using the X9.42 variation of DifÞe-Hellman Key Agreement. Two exam-
ples are shown since the same security exchanges are used in different ways.



IEEE
Std 802.10c-1998 INTEROPERABLE LAN/MAN SECURITY (SILS)Ñ

92 Copyright © 1998 IEEE. All rights reserved.

In either of the two examples, if the initiator wants to exchange protected trafÞc with another entity (the
responder), and if more than one key management algorithm could be used, then the initiator sends to the
responder the Pick-KM-Alg.req to negotiate the key management algorithm. The responder returns a Pick-
KM-Alg.rsp selecting the Þrst key management algorithm offered by the initiator that is supported by the
responder. In both sample scenarios, certiÞcate-based key distribution is selected.

3D.3.1  X9.44 RSA key transfer scenario

The initiator sends to the responder a Make-Key.req that includes the initiatorÕs certiÞcate. The initiatorÕs
certiÞcate contains the initiatorÕs RSA public key used for key management. The responder replies with a
Make-Key.rsp that includes the responderÕs certiÞcate, symmetric keying material encrypted in the initiatorÕs
RSA public key, and a signature over the encrypted keying material. The responderÕs certiÞcate contains the
responderÕs RSA public key used for digital signatures. Encrypting the symmetric keying material in the ini-
tiatorÕs RSA public key ensures that only the initiator can decrypt the keying material, and the signature
authenticates the responder as the source of the keying material. Once the keying material is transferred,
attributes are negotiated. The initiator sends a Pick-SA-Attrs.req, and the responder replies with a Pick-SA-
Attrs.rsp.

The format of the exchanges depends on the KEY-GEN-ALG that is used. The OBJECT IDENTIFIER asso-
ciated with X9.44 RSA Key Transport is:

{ iso(1) identified-organization(3) oiw(14) secsig(3) algorithm(2) 22 }
The definitions for Rq-Parms and Rp-Parms for X9.44 RSA Key Transport are:

Rq-Parms  ::=  NULL
Rp-Parms  ::=  X944KeyMaterial
X944KeyMaterial  ::=  PROTECTED  {  EncipheredKey, signed  }
EncipheredKey  ::=  OCTET STRING

A sample Make-Key.req is shown below:

MakeKeyRq  ::=  SEQUENCE  {
  keyGenAlgorithmID{ 1 3 14 3 2 22 },
  CallingCertPath (Initiator certification path; contains the 

 initiatorÕs key management RSA public key.)
  Rq-Params NULL
  CallingSAID 48
}

A sample Make-Key.rsp that matches the above Make-Key.req is shown below:

MakeKeyRs  ::=  SEQUENCE  {
  CalledCertPath   (Responder certification path; contains the 

responderÕs signature RSA public key.)
  PROTECTED  { --  signed with the responderÕs RSA private key
    EncipheredKey (Symmetric key encrypted in the initiatorÕs

  RSA public key.)
  }
  CallingSAID 48,
  CalledSAID 42
}



IEEE
KEY MANAGEMENT Std 802.10c-1998

Copyright © 1998 IEEE. All rights reserved. 93

3D.3.2  X9.42 DifÞe-Hellman key agreement scenario

The initiator sends to the responder a Make-Key.req that includes the initiatorÕs certiÞcate and a nonrepeat-
ing or random value created by the initiator, called Ra. The initiatorÕs certiÞcate contains the initiatorÕs Dif-
Þe-Hellman public key. The responder replies with a Make-Key.rsp that includes the responderÕs certiÞcate
and a non-repeating or random value created by the responder, called Rb. From these values, the initiator and
the responder can generate the same symmetric keying material. The initiator uses his own DifÞe-Hellman
private key, the responderÕs DifÞe-Hellman public key from the responderÕs certiÞcate, the public DifÞe-
Hellman generator and prime modulus, Ra, and Rb to generate the keying material. The responder generates
the same keying material from his own DifÞe-Hellman private key, the initiatorÕs DifÞe-Hellman public key
from the initiatorÕs certiÞcate, the public DifÞe-Hellman generator and prime modulus, Ra, and Rb. Details
of the calculations can be found in X9.42. Once the keying material is generated, attributes are negotiated.
The initiator sends a Pick-SA-Attrs.req, and the responder replies with a Pick-SA-Attrs.rsp.

The format of the exchanges depends on the KEY-GEN-ALG that is used.The OBJECT IDENTIFIER asso-
ciated with X9.42 DifÞe-Hellman Key Agreement is:

 { iso(1) identified-organization(3) oiw(14) secsig(3) algorithm(2) 25 }

The deÞnitions for Rq-Parms and Rp-Parms for X9.42 DifÞe-Hellman Key Agreement are:

Rq-Parms  ::=  X942Params
Rp-Parms  ::=  X942Params
X942Params  ::=  SEQUENCE  {

ephemeralKeyDHPublicKey OPTIONAL,  -- not used in this scenario
nrv OCTET STRING OPTIONAL  }

A sample Make-Key.req is shown below:

MakeKeyRs  ::=  SEQUENCE  {
  keyGenAlgorithmID { 1 3 14 3 2 25 },
  CallingCertPath (Initiator certification path; contains the 

   initiatorÕs Diffie-Hellman public key.)
  SEQUENCE  {
    nrv (Random value)
  }
  CallingSAID 48
}

A sample Make-Key.rsp that matches the above Make-Key.req is shown below:

MakeKeyRs  ::=  SEQUENCE  {
  CalledCertPath (Responder certification path; contains the 

  responderÕs Diffie-Hellman public key.)
  SEQUENCE  {
    nrv (Random value)
  }
  CallingSAID 48,
  CalledSAID 42
}



IEEE
Std 802.10c-1998 INTEROPERABLE LAN/MAN SECURITY (SILS)Ñ

94 Copyright © 1998 IEEE. All rights reserved.

Add Annex 3E as follows:

Annex 3E

(normative) 

SDE attribute negotiations

This annex deÞnes the attribute negotiation for SDE. The initiator provides a sealed and encrypted security
protocol attribute list. Within each attribute list member, a list of conÞdentiality and integrity algorithms can
be speciÞed. The initiator determines the SDE attributes that are acceptable, and the initiator provides the
alternatives in order of decreasing preference. The responder chooses the Þrst alternative that is acceptable.
The responder chooses one of the items from the attribute list and one of the conÞdentiality and integrity
algorithm alternatives.

Should an implementor wish to augment the attributes assigned in this annex, that implementor shall assign
a new OBJECT IDENTIFIER and register a new attribute structure. Implementors who register an aug-
mented attribute structure are encouraged to also support the attribute structure speciÞed in this annex to
ensure interoperability with other implementations.

3E.1  Security attributes for Secure Data Exchange (SDE)

The initiator structures the list according to the ASN.1 deÞned for the particular security protocol. KMP pro-
vides the SPAttrs Þeld to carry the initiator attribute alternatives.

SPAttrs ::= SEQUENCE {
 spAttrs   SP-ATTRS.&attrs-Id,
 attrs   SP-ATTRS.&Sp-Attrs { @spAttrs } OPTIONAL }

spAttrs is set to the OID for SDE. The SDE OID is:

  {iso(1) member-body(2) us(840) ieee-802dot10(10022) asn1Module(2) sde-
Attrs(2)}

The following ASN.1 structure is associated with the SDE OID:

SDEAttrs  ::= SEQUENCE  {
  assocMDF BOOLEAN,
  idPres BOOLEAN,
  assocFragEnab  BOOLEAN,
  sDESAP SAP-ID,
  algorithmChoices  AlgorithmChoices,
  validityPeriod   [0] ValidityPeriod OPTIONAL,
  callingMACAddress  [1] MACAddress OPTIONAL,
  calledMACAddress  [2] MACAddress OPTIONAL,
  callingMDF [3] OCTET STRING OPTIONAL,
  calledMDF [4] OCTET STRING OPTIONAL,

-- provided by the responder if assocMDF is TRUE 
-- and the responder wished to use an MDF value

  securityLabel   [5] SecurityLabel OPTIONAL  }



IEEE
KEY MANAGEMENT Std 802.10c-1998

Copyright © 1998 IEEE. All rights reserved. 95

The SAP-ID and MACAddress ASN.1 types are imported from IEEE 802.10f-1993.  The others are deÞned
below:

AlgorithmChoices  ::=  SEQUENCE OF AlgorithmPair

AlgorithmPair  ::=  SEQUENCE  {
padding   BOOLEAN,
confidAlgorithm  [0] AlgorithmIdentifier OPTIONAL,
integAlgorithm  [1] AlgorithmIdentifier OPTIONAL  }

    -- If the confidentiality Boolean is true,
    -- then the confidAlgorithm must be present.
    -- If the integrity Boolean is true,
    -- then the integAlgorithm must be present.

ValidityPeriod  ::=  SEQUENCE  {
  notBefore   GeneralizedTime,
  notAfter   GeneralizedTime  }

SecurityLabel  ::=  CHOICE  {
  implicit   RegisteredSecurityLabel,
  explicit   RegisteredSecurityLabelSet  }

RegisteredSecurityLabel  ::=  SEQUENCE  {
  tagSetName  OBJECT IDENTIFIER,
  sdeSecurityLabel  AssociationLabelSet  }

RegisteredSecurityLabelSet  ::=  SEQUENCE  {
  tagSetName   OBJECT IDENTIFIER,
  sdeSecurityLabelSet  SET OF AssociationLabelSet  }

AssociationLabelSet  ::=  SEQUENCE OF SecurityTag

SecurityTag   ::=  CHOICE  {

    -- Type 1 - for restrictive security attributes
restrictivebitMap   [1] IMPLICIT SEQUENCE  {
securityLevel   SecurityAttribute,
attributeFlags   BIT STRING  }

    -- Type 2 - security attributes by number
  enumeratedAttributes[2] IMPLICIT SEQUENCE  {
    securityLevel   SecurityAttribute,
    attributeList   SET OF SecurityAttribute  }

    -- Type 5 - all security attributes in the range(s)
rangeSet   [5] IMPLICIT SEQUENCE  {
securityLevel   SecurityAttribute,
rangeList   SET OF SecurityAttributeRange  }

    -- Type 6 - for permissive security attributes
permissivebitMap    [6] IMPLICIT SEQUENCE  {
securityLevel   SecurityAttribute,
attributeFlags   BIT STRING  }



IEEE
Std 802.10c-1998 INTEROPERABLE LAN/MAN SECURITY (SILS)Ñ

96 Copyright © 1998 IEEE. All rights reserved.

    -- Type 7 - format specified via registration
freeFormField  [7] IMPLICIT ANY DEFINED BY tagSetName  }

SecurityAttributeRange  ::=  SEQUENCE  {
upperBound   SecurityAttribute,
lowerBound   SecurityAttribute  }

SecurityAttribute  ::=  INTEGER (0..ub-SecurityAttribute)

ub-SecurityAttribute  ::=  16383

3E.2  Example SDE attribute negotiation

For purposes of example, assume that the initiator wants to use conÞdentiality and integrity, but the initiator
is willing to settle for conÞdentiality only. For conÞdentiality, the initiator insists on DES-CBC. If conÞden-
tiality and integrity are both used, the initiator is willing to use DES-CBC with either SHA-1 or MD5.

The initiator would construct a SEQUENCE of one SDEAttrs that contains the following:

SDEAttrs ::=     SEQUENCE  {
  assocMDF   FALSE,
  idPres   FALSE,
  assocFragEnab  TRUE,
  sDESAP   "Default",
  algorithmChoices  { { TRUE, [0] { 1 3 14 3 2 7 }, [1] { 1 3 14 3 2 15 } }

-- DES-CBC with SHA-1
{ TRUE, [0] { 1 3 14 3 2 7 }, [1] { 2 2 840 113549 2 5 } }

-- DES-CBC with MD5
{ TRUE, [0] { 1 3 14 3 2 7 } } }
-- DES-CBC without integrity

  securityLabel    -- absent   --
  validityPeriod    -- absent   --
  callingMACAddress  [1] 0x0080c880c435,
  calledMACAddress  [2] 0x0080c880abcd,
  callingMDF     -- absent   --
  calledMDF     -- absent   --
}

The SEQUENCE of one SDEAttrs is transferred to the responder as part of the offered-attrs security
exchange item.

The responder selects the Þrst alternative in the SEQUENCE that is acceptable. In this case there is only one
to choose from. Then, the responder returns the selected SDEAttrs in the accepted-attrs security exchange.
For purposes of example, assume that the responder desires both conÞdentiality and integrity. Also, assume
that DES-CBC with SHA-1 is an acceptable combination. The following SDEAttrs is transferred to the initi-
ator as part of the accepted-attrs security exchange item.



IEEE
KEY MANAGEMENT Std 802.10c-1998

Copyright © 1998 IEEE. All rights reserved. 97

SDEAttrs ::=     SEQUENCE  {
  assocMDF   FALSE,
  idPres   FALSE,
  assocFragEnab  TRUE,
  sDESAP   "Default",
  algorithmChoices { { TRUE, [0] { 1 3 14 3 2 7 }, [1] { 1 3 14 3 2 15 } } }

-- DES-CBC with SHA-1
  securityLabel    -- absent   --
  validityPeriod    -- absent   --
  callingMACAddress  [1] 0x0080c880c435,
  calledMACAddress  [2] 0x0080c880abcd,
  callingMDF     -- absent   --
  calledMDF     -- absent   --
}



 

To order IEEE standardsÉ

 

Call 1. 800. 678. IEEE (4333) in the US and Canada. 

 

Outside of the US and Canada:

 

1. 732. 981. 0600

 

To order by fax:

 

1. 732. 981. 9667

 

IEEE business hours: 8 a.m.Ð4:30 p.m. (EST)

 

For on-line access to IEEE standards informationÉ

 

Via the World Wide Web:

 

http://standards.ieee.org/

 

Via ftp:

 

stdsbbs.ieee.org

 

Via a modem:

 

1. 732. 981. 0035

 

ISBN 1-55937-955-3


