ETS| TR 102 365 V1.2.1 (2005-06)

Technical Report

Broadband Radio Access Networks (BRAN);
HIPERLAN Type 2;

Application Programming Interface (API) definition
for the UDP/IP based testing of HIPERLAN Type 2
protocol prototypes

D

2 ETSI TR 102 365 V1.2.1 (2005-06)

Reference
RTR/BRAN-00200011R1

Keywords

access, API, broadband, HIPERLAN, IP, radio,
testing

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +334 9294 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C
Association a but non lucratif enregistrée a la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org

The present document may be made available in more than one electronic version or in print. In any case of existing or
perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF).
In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive
within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at
http://portal.etsi.org/tb/status/status.asp

If you find errors in the present document, please send your comment to one of the following services:
http://portal.etsi.org/chaircor/ETSI_support.asp

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2005.
All rights reserved.

DECT™, PLUGTESTS ™ and UMTS™ are Trade Marks of ETSI registered for the benefit of its Members.

TIPHON™ and the TIPHON logo are Trade Marks currently being registered by ETSI for the benefit of its Members.
3GPP™is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners.

ETSI

http://www.etsi.org/
http://portal.etsi.org/tb/status/status.asp
http://portal.etsi.org/chaircor/ETSI_support.asp

3 ETSI TR 102 365 V1.2.1 (2005-06)

Contents

Intellectual Property RIGNES.........oo et 5
0T oo O 5
1 o010 SRS 6
2 REFEIBINCES ...ttt sttt e et et et e e e bt e bt e bt s b e se e be st e st e st e benbenbeneenbentenees 6
3 Definitions and aDbrEVIBLIONS.........c.viieie ettt e e e tesreeeesneeneeseesneeneeseeenes 6
31 DEFINITIONS. ...ttt b e R Rt R R R et R Rt R e R et r e 6
3.2 ABDIEVIBLIONS ..ottt e et n R n et n e 6
4 THE COMCEPLS.....coteitieeesie ettt ete st ettt et et e e st e e te e besbeeaeesbeeae e beebeentesbeeaeebesaeenseaseessesesreenseseesneentensnns 7
4.1 THE FEOUITEIMENT ...ttt et h et b et h et h et b b e eb b e s e b bt e e bt bt b e st b et es e b b nens 7
4.2 Virtual tester/ProtoCol Layer TESLEr (PLT) ...cceiiieirieirterieesie sttt 7
421 A generic, technology-neutral, and iNEXPENSIVE SOIULIONciiirieiieriee e 8
4211 The data on the WIrE INTEITACE ..o s ne e 11
4.2.2 AAVaNtages aNd SPIN-OFFS........eiiiii bbbt bt 12
4.3 PLT COMPONENES ...ttt s e e e s e s ae e sh e e sr e e s n e e b e s ne s e e san e e 13
43.1 Wire interface data/Wire at@QraIMScieeieeieeie e ettt e te et e s aesae e sneesseeneesnseenaessaesneeseens 13
432 TR AP bbb bbb bR bR bbb bbbttt bbb bena 16
4.3.3 Wire transport modul €/ Adaptation [BYEN ..o e e 17
5 Implementing the PLT for the HiperLANZ2 DLC ProtoCOl..........ccoviieiieiieciese et 17
51 Test architeCture fOr tNE DL C TAYENciiiieereeerte ettt ek b e e b b e b b seene s 17
511 TESE CONFIGUIBLIONS......c.eiueetiieeeetert ettt b et bbbt b bbb et b e bt b e 18
5111 Test ConfiguratioNS FOr IMT ...ttt b e 18
5112 Test CoONfigUIBLIONS FOF AP ...ttt b et b e 19
52 PLT COMPONENES ...ttt s s s s s e e e e e e s e sh e e sr e e s n e e n e s e e s e e san e e 19
521 RS 1o J el 0.0 0] = P 19
5211 LIS BT (=14 TSSOSO 19
5212 ADSITACE TESE SUITE (AT S) 1.ttt bbbkttt b bbbttt ebennas 20
5213 TESE SYSIEIM PrOLOLYPIE. ..ottt st st sb e sa e e sae e e s abeesabe e sabeesabeesbeesnnee s 20
52131 (0100 = o= OSSOSO 21
5.2.2 Devel OPEd COMPONENES......ccvi e sieiee et este et e e et e e e seesseesseesaeesse e seenteenseeseesteeseenseenseensesneennes 23
5221 WWITE TBEAGIEIM....ee ettt bbb bbbt bt b e s b et bt b st eb e e et eb e e et et nn e 23
5222 The APL fOr HIPEILANZ DLC ...ttt s 23
5223 WiITE tranNSPOrt MOGUIE. ...ttt bbbt b et b et b e et eb e et b e e 26
523 ClOCKS N THMING ¢ttt b ek b e e s b seehe b se e st e b e se e st e b e se et ebese e e ebesbe e ebesb e e ebesbenneben 26
524 HeuristicS for defining @N AP ... bbbt b e 26
Annex A: HiperaL AN2 Wire Datagram SpecifiCationccccevvveeie i cicse e 28
Al Wiredatagram ASN.L MOQUIE.......cooiiiiiiiieriee et 28
A.2 DatagramS0oCKEtA Pl JAVATNIEITACE.ooeeie et st re e 33
A.3 Specidized Hiperlan2 Datagrams as Java iNtErfaCe.cccuverereieinineeesese s 34
Annex B: Hiper LAN2 APl SPECIICAtIONS......ccuiiieeeitice ettt s 37
B.1 DatagramSOCKEtAPI SPECITICALION.ciiiieieieieieesse st 37
B.2 SOCKELAUAreSS SPECITICALION.ccueiuiieeriiieitet ettt r b nrenn e 39
B.3 JAVAINTEITACR. ... bbbt b b b ne e e 40
Annex C: (O FoTox €= To I T 011 o S 41
L3 B O oo XY= o I (] 421 oo OSSOSO 41
C1l1 L0 oot TSP P TSP PR 41
Cl1l2 I 011 0 TSSOSO U RO ST PPTORSTPRTPTRTON 42

ETSI

4 ETSI TR 102 365 V1.2.1 (2005-06)

C.13 I T LS o o SR 42
Cl4 L0 L aTo T4 =YY= 15 o1 S 44
Annex D: The Java™ code of UDP/IP based virtual tester prototype.........coceveeeieeierieneseneesieseenens 45
[TS (0 SRR 46

ETSI

5 ETSI TR 102 365 V1.2.1 (2005-06)

Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI member s and non-member s, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETS in
respect of ETS standards’, which is available from the ETS| Secretariat. Latest updates are available on the ETSI Web
server (http://webapp.etsi.org/| PR/home.asp).

Pursuant to the ETSI IPR Palicy, no investigation, including I PR searches, has been carried out by ETSI. No guarantee
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Foreword
This Technical Report (TR) has been produced by ETSI Project Broadband Radio Access Networks (BRAN).

Compared to the version 1.1.1 of TR 102 365, the present document introduces changes to annex D.

ETSI

http://webapp.etsi.org/IPR/home.asp

6 ETSI TR 102 365 V1.2.1 (2005-06)

1 Scope

The present document presents the results of work to develop a generic solution for inexpensively testing any protocol
and a specific implementation of this solution for the HIPERLANZ2 DL C protocol. The generic solution provides an
inexpensive means to test any protocol implementation. The implementation is software-based but can be hardware as
well. The implementation in software on a PC-based platform isa"virtua" test system. The implementation in
hardware with radio transport and frequency capabilitiesis classic radio-based test equipment.

2 References

For the purposes of this Technical Report (TR), the following references apply:

[1] ETSI/Hiperlan2 Global Forum document: "BRAN, Hiperlan2, Data Link Control (DLC) and
Convergence Layers, Interoperability Testing Event - July 2002; Test Bed Description".

[2] ETSI TS 101 761-2: "Broadband Radio Access Networks (BRAN); HIPERLAN Type 2; Data
Link Control (DLC) Layer; Part 2: Radio Link Control (RLC) sublayer”.

[3] ETSI TS 101 823-2-3 (V1.3.1): "Broadband Radio Access Networks (BRAN); HIPERLAN
Type 2; Conformance testing for the Data Link Control (DL C) layer; Part 2: Radio Link Control
(RLC) sublayer; Sub-part 3: Abstract Test Suite (ATS) specification”.

[4] ETSI ES 201 873-5: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 5: TTCN-3 Runtime Interface (TRI)".

[5] ETSI ES 201 873-6: "Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 6: TTCN-3 Control Interface (TCI)".

[6] I SO/IEC 9646: "Information technology - Open Systems Interconnection - Conformance testing
methodology and framework".

[7] ETSI TR 102 327: "Broadband Radio Access Networks (BRAN); HIPERACCESS; Application
Programming Interface (API) definition for the UDP/IP based testing of HIPERACCESS protocol
prototypes".

3 Definitions and abbreviations

3.1 Definitions

For the purposes of the present document, the following terms and definitions apply:
Protocol Layer Tester (PLT): virtua test system for the testing of protocol layers

virtual tester: PC-based test system that replaces hardware components of a sophisticated test equipment with software
components

3.2 Abbreviations

For the purposes of the present document, the following abbreviations apply:

AP Access Point

API Application Programming Interface
ASP Abstract Service Primitive

ATS Abstract Test Suite

DLC Data Link Control

IuT Implementation Under Test

ETSI

7 ETSI TR 102 365 V1.2.1 (2005-06)

MAC Medium Access Control

MT Mobile Terminal

MTU Maximum Transmission Unit for [Pv4

PA Platform Adaptor

PCO Point of Control and Observation

PDU Protocol Data Unit

PHY PHYsical

PLT Protocol Layer Tester

PUT Protocol Under Test

RLC Radio Link Control

SA System Adaptor

SAP Service Access Point

SAR Segmentation And Reassembly

SDL Specification and Description Language

SUT System Under Test

TCP Transmission Control Protocol

TE Test Equipment

TR Technical Report

TTCN-2 Tree and Tabular Combined Notation version 2

TTCN-3 Testing and Test Control Notation version 3

UDP/IP User Datagram Protocol over the Internet Protocol
4 The concepts

4.1 The requirement

The Terms of Reference for the present document call for avirtual tester that will run existing test specifications. This
virtual tester would consist of the following:

. a subset of the existing test suite;
. an adaptation layer that would map the protocol messages into UDP/IP packets; and

. an Application Programming Interface for UDP/IP based testing with services that the executable test suite
could use to transport messages and other information to and from the system under test (SUT).

Such avirtual tester would allow the HiperLAN2 companies to test and debug DL C protocol stacks early in their
development stage and would facilitate and speed up the development of a full-fledged radio-based test tool. Such atool
could be used at interoperability events as well to provide a cheap and fast means to conformance test prototypes. Such
conformance testing would be useful to determine errors in implementations and identify possible reasons for
interoperability failures.

4.2 Virtual tester/Protocol Layer Tester (PLT)

The ETSI Abstract Test Suites (ATS) are designed to test adevice to seeif it conformsto the base specification.
Usually this base specification specifies the device's protocol layers and performance requirements. The test suite
usually mirrors these in its organization and function. The layers may be according to the OSI model or per the protocol
designers' concept.

The ATS can be executed only if thereis test equipment to run it upon. Test equipment does not come "off the shelf" for
today's high performance protocols such as those for broadband radio networks. Test equipment for such protocols
requires much the same development effort as the implementation itself. Simply said, full-featured conformance test
equipment development is very expensive. This leads to a chicken-and-egg problem. On one hand, prototypes and
implementations need to be tested to ensure they are conformant and interoperate and give them the chanceto win in
the marketplace. On the other hand, test equipment with al the required features for conformance testing is too
expensive during prototyping and development.

ETSI

8 ETSI TR 102 365 V1.2.1 (2005-06)

During prototyping and devel oping, much of the system's design and implementation is done in software. Only when
development and debugging are complete should the design become reality in firmware and hardware. If protocol layer
conformance testing could be conducted in parallel during design on protocol prototypes in software or
implementations, then product development and testing would be cheaper and quicker.

Isthere away to inexpensively conformance test the protocolsin development or finalized that normally require
expensive test equipment? The work described in the present document shows that there are low-cost off-the-shelf
technology-neutral components requiring a minimum of "glue” to make a"virtual tester".

A "virtual tester" is a PC-based test system that replaces the expensive hardware components of sophisticated test
equipment with much cheaper software components.

The development of advanced protocols requires testing and the testing equipment to run these tests. Radio protocols
complicate these tasks and increase development times and testing costs. For radio protocols, test equipment is usually
not available in time during development to test the implementation's behaviour over the air interface. The expensive
up-front cost of radio-based test equipment precludes their arrival in time for use during protocol devel opment.

Therefore, some type of relatively inexpensive means to test protocol implementation behaviour during prototyping and
development could be of benefit to manufacturers and testers. This testing would, of necessity, not be conducted over
the air interface because of the expense of devel oping such equipment.

Proven wire interfaces are cheaper and more reliable than new air interfaces. Thus, one reason for avirtual tester isto
test protocols destined for an expensive interface in their prototyping and/or development stage. The tester would use a
substitute wire interface for the lower transport layers. Another reason for a virtual tester isto conformance test any
protocol for an expensive or inexpensive interface during design and development. Finally, avirtual tester could be used
at interoperability or similar events to conformance test i mplementations and prototypes.

The Abstract Test Suite used for protocol testing would remain the same whether for avirtual tester or classical test
equipment. Thus, no additional costs would be incurred for writing Abstract Test Suites to run over either test
equipment.

The present document is concerned only with protocol messages. However, the use of wire transport layers for testing
data normally transmitted using radio can apply to other types of data such as frames. The transmission of datain
frames is not similar to protocol behaviour, e.g. aMAC protocol. However, the frame data can till be captured and
transmitted over any type of wire protocol such as UDP over |P. The present document does not investigate frame
testing or any other type of testing other than protocol conformance testing. Subsequent BRAN Technical Reports on
UDP/IP testing substituting for radio testing may cover these non-classic protocol types of testing.

Answering the question of "What is being tested?" isimportant. The present document addresses the testing of
MAC/radio link layer type protocols including their behavior and effects upon radio transmission characteristics. The
radio link layer protocol can force changesin transmission frequency, channel, and power. Otherwise said, the radio
link layer sometimes changes the performance of the physical layer. These effects are included in the Abstract Test
Suite. Thus, device behaviour such as signal strength istested as well as protocol behaviour if such behaviour isdirectly
linked to the protocol function.

In our view, such behaviour is not PHY layer specific but linked intimately with the protocol and included in the radio
link layer ATS. One could argue that such tests are PHY layer tests. Our view isthat such PHY behaviour, being the
result of radio link layer protocol actions, isrightfully included in the link layer ATS. Only that PHY level behaviour
that is not a direct result of radio link protocol layer behaviour should be included in aPHY layer ATS, if such exists.

Because the work in the present document specifically address classic protocol layer testing, the virtual tester becomes a
"Protocol Layer Tester" (PLT).

The protocol used for the feasibility study isthe HiperLAN2 DL C protocol.

4.2.1 A generic, technology-neutral, and inexpensive solution

To be generic, the PLT concept must not be tied to technology that is either hardware or software-expensive. A generic
solution should have the following characteristics:

. Apply to any protocol or transfer scheme where environment characteristics can be modelled with binary data;
e.g. PDUs, frames, waveforms, transmission frequency, transmission power, received power, etc.

ETSI

9 ETSI TR 102 365 V1.2.1 (2005-06)
. Abstract Test Suites written in the ET Sl-used testing languages TTCN-2 and TTCN-3. However, test suitesin
TCL, Java, C and its offspring, Perl scripts, etc can be easily incorporated.

. Test execution environments and systems that are either open-source, low-cost, or available from several
vendors. Forcing atest execution environment to come from a specific vendor increases the probability of high
costs.

. Common and low-cost wire interfaces such as UDP/IP/Ethernet, TCP/IP/Ethernet, etc.

. No/low-cost programming tools for making the PLT's software components and "gluing" them together with
APIs.

. Testing of protocols regardless if based on I SO/IEC 9646 [6], another standard, or a proprietary scheme.
. Protocols that conform or not to the OSl layer model.

Figure 1 shows the relationship between the PLT and Protocol Under Test (PUT) that satisfies these characteristics.

Protocol

Layer PUT
Tester

| ASP(PUT PDUs)
]

Figure 1: PLT and PUT

In general, the Protocol Layer Tester (PLT) exchanges Abstract Services Primitives (ASP) or Protocol Data Units
(PDUs) on the upper and lower end of the Protocol Under Test (PUT).

Figure 2 shows the basic components of both the PLT and PUT using the same relationship shown above.

r Tester Platform I PUT Platform

PUT Execution
Controller

Test Execution
Controller

Test Suite Codec
Under Test Codec

(PUT)

Test Runtime
Adapters

PUT Adapter

|
|
|
|
|
|
I Protocol
|
|
|
|
|

Trans porter

Figure 2: PLT and PUT Components

ETSI

10 ETSI TR 102 365 V1.2.1 (2005-06)

To be inexpensive, these components cannot be tied to any particular technology with expensive purchase, system, or
license costs. The following no/low cost components are part of the PLT:

Tester Platform: A PC serves as the test equipment's hardware platform with a hard-wired connection, rather
than aradio link, fromthe PC to the PLT.

Test Execution Controller, Codec, and Test Runtime Adapters. These are components in an off-the-shelf test
execution tool.

Test Suite: (An ATS written for conformance testing of the protocol.) At ETSI where both base specifications
and test specifications are usually written for a given product. For the PLT, the ATS used for final product
testing is the same as that used for protocol layer prototype testing. Thus, there are no additional test writing
costs. The same test execution tool that has the Test Execution Controller, Codec, and Test Runtime Adapter
converts the AT S into an executable program (ETS) on the PC hardware platform.

PUT Platform: Thisis an implementor decision. It is usually a PC.

PUT Execution Controller: The controller tellsthe PUT how to react to certain conditions. Thisisan
implementor decision. This can either be a software module in the form of a script or an operator passing
commands usually as primitivesto the PUT.

PUT and Codec: These are what the implementor must develop in any case. The use of a PLT should not
increase his development costs for both. The protocol layer implementation istypically assumed to bein
software.

PUT adapter: A low-cost adapter to receive and transmit the PDUs and other required data. Thisis
implementor effort required specifically to run tests against the PLT.

Transporter: Asfigure 2 shows, the transporter "glues' the Test Platform to the PUT platform. The
development of the virtual tester/PLT primarily centered around this transporter.

PLT Platform ‘
Test Runtime Adapters

PUT Platform‘

PUT Adapters

----1-- Interface
API--------

Wire Interface

TE Transport Module

PUT Transport Module

R

r——---

Figure 3: One Concept for the Transporter

Figure 3 isaconceptual diagram of one way to implement the transporter and is that used for work presented in the
present document. A following is abrief description of the components.

Test Runtime Adapters: A component of the test execution tool. They adapt the software elements of the Test
Equipment/Abstract Test Suite to the platform and other hardware. For example, the interfaces to platform
timers or signal strength measuring apparatus are part of the adapter. The Test Runtime Adapter is provided
with the test execution tool and is not specified herein.

Application Programmer Interface (API): The API that is the subject of the present document isthe interface
between the Test Runtime Adapter and the TE Transport Module. TR 102 327 [7] specifies ageneric APl and
then instantiates the generic API for the HiperLANZ2 Protocol.

TE Transport Module: Thisis a software module that basically shuttles data back and forth between the wire
interface and the API. It is a software module that uses the calls to the platforms wire input and output ports.
Its specification is also included in TR 102 327 [7].

ETSI

11 ETSI TR 102 365 V1.2.1 (2005-06)

. Wire Interface: Thisis physical interface that connectsthe PLT and PUT. It replaces the radio Physical (PHY)
layer and is the reason why the PLT is so inexpensive compared to classical radio protocol (and other) test
equipment. It can be any wire PHY interface, but the most common by far on PC platformsis Ethernet. The
protocols over the Ethernet PHY layer are IP and over them are |P-based protocols such as TCP or UDP. The
simplest in useisthe latter and was used in this work. TCP would be appropriate if there are large packets for
reassembly or if transmission order can vary due to P routing. Such was not the case in our work.

. PUT Transport Module: This module is on the PUT side and has the same functions as those of the TE
Transport Module. Because the PUT Adapter is hot identical to the Test Runtime Adapter, and is proprietary,
the PUT Transport Module is not identical to the TE's. However the concepts are identical. The difference lies
in the function names used by the PUT's adapter. Wire interface function calls may or may not have the same
names as the TE's depending on the operating systems used and version numbers. Thisis not part of PLT per
se and, thus, is not technically in the scope of the present document. However, since to test the PLT, the team
had to make a PUT, thisisincluded in the work. (Thereis currently no vendor hardware or software
implementati on/prototype to test against.)

. Interface (PUT-Side): Thisinterface is defined by the PUT Adapter and, as such, is proprietary. However, it
may very well be that the PUT developer may wish to use the very same API and its description for her
interface. Aswill be seen later, the interface contains al the information necessary for testing the protocol
using ETSI's ATSs. Thus, there will be many elements that the Interface must use already specified in the
PLT-side API. Of course, the PLT-side API isin the public domain and encouraged for use by all.

. PUT Adapters. During development, the PUT designer places an API with primitives under the Protocol in
order to drive the lower layers. She may as well have placed an adaptation layer for design reasons. Thisis
proprietary and not a part of the transporter. It may or may not exist. In addition, the designer may decide to
combine the PUT Adapters with the Transport Module to make one entity. For our work to make the test PUT,
PUT adapters, interface, and Transport Module were one entity.

However, thereis aneed for an APl between the testing executables and the transport modul e to execute methods and
pass data back and forth. For inexpensive development, this API should be ssmple in concept and practice for both
methods and data.

4211 The data on the wire interface

For classic protocol test equipment that tests protocols on layer 2 or above, the PHY layer isbuilt into the test
equipment. Thus, for radio protocols, aradio PHY layer is part of the conformance test equipment. To do so requires
the equivalent of designing and building a radio-based device similar to the IUT for mounting on atest platform. The
TE then transmits and receives messages/PDUs/packets/frames or whatever over this PHY interface using the test suite
asthe criteriafor which messages must be sent and should be received.

Thisis prohibitively expensive unless there is an assured market that will defray the high costs. Thisis not always the
case. The PLT replaces the expensive PHY layer with an inexpensive one.

Layer 2 protocols often control Layer 1 behavior. For example, the BRAN DL C protocols have measures for dynamic
frequency selection, transmission power adjustment, frequency shifting, antenna characteristics modification, etc. The
ETSlI ATSsinclude observing if this PHY layer behavior conforms with the instructions given by the Layer 2 DLC
protocol. For example, say that a DL C protocol function changes the transmitting power to compensate for rain fading
with atwo-way handshake. Say that the TE is the access point and the IUT is the mobile terminal. The test case would
have TE sending the command to increase the power. It would then wait to receive the mobile terminal's
acknowledgement plus it would measure the received power both before and after the command to see if the behavior
was correct.

Sincethe PLT iswire-based, it does not measure received power. However, the test case requires the measured power
to assign averdict. Something has to be done. In this case, the measured power is sent on the wire in adata field.

In essence, the data on the wire interface is a snapshot of the environment affected by the protocol's behavior plus the
protocol messages sent and received between the PLT and PUT.

What doesthe PLT do? It transmits and receives " message snapshots”.

ETSI

12 ETSI TR 102 365 V1.2.1 (2005-06)

What is a " message snapshot”? Just as a snapshot of a person isthe person and the environment around him at a point in
time, a message snapshot is the protocol message (a PDU for example) plus the environment/context at the point in time
when the PDU is received or transmitted. The environment includes things like rx/tx signal strength, rx/tx signal
frequency, lower layer information such as MAC ID, termina ID, PHY modes, frame number, timer information,
connection IDs, grant information, frame headers, etc. Thelist could be endless.

The environment/context is the only information needed by the implementation, prototype, or tester to determine the
behavior associated with the protocol message in the snapshot. It is the data needed for the TE to test the PUT. For the
PUT, it isthe data it needs to exhibit the expected behavior. To create an environment/context and then to transform
that environment into the needed datais a major reason for the expense of full-featured TE.

For the PLT, on receiving a message snapshot, it determines if the message with its context is expected. If so the test
continues or afinal Pass verdict is assigned. If not, an Inconclusive or a Fail verdict is assigned. In sending a message
snapshot, the PLT forwards a protocol message and that message's context/environment to the Protocol Under Test
(PUT) and then determines if the PUT's response conforms to the expected behavior.

The PUT takes the snapshot's message, determines the context from the snapshot, and reacts hopefully in accordance
with the base specification. All thisis carried on the wire.

The snapshot/context aso includes test architecture/configuration information. Simple tester-to-device and concurrent
tester-to-devices testing is possible with the PLT and the wire data. Shown below are just two of many testing
configurations possible witha PLT.

PUT Hard-wire PLT PUT
connection (2" instance)
Hard-wire PLT
PUT connection

Device-to-Device Test Architecture (1%t instance)

PUT
(3rd
instance)

Tester-to-3 PUT Test Architecture

Figure 4: Two test configurations with a PLT

In the left hand, the configuration is straightforward and the wire need not carry configuration information. The right
hand case is different. The tester will be sending messages to all three PUT instantiations. The destination of each
message has to be indicated in some manner on the wire interface. Similarly, each PUT's response must be tagged with
the originating PUT in some way as well.

4.2.2 Advantages and spin-offs

The advantages of the PLT solution with its APl and wire interface are:;

. Testing of protocol implementations without using expensive test equipment.

. Validation of the ATS's correctness without needing expensive test equipment. This validation also occurs
sooner because the waiting for the manufacturing expensive testing equipment is eliminated.

. Protocol development/debugging and the writing/running of tests can occur in parallel thereby reducing the
time-to-market and reduced costs because prototype and test debugging occur during the development process.

. Although designed for the test equipment side in conformance testing, the protocol implementor can take the
components developed for the PLT and "plug” them, with some modification, into the PUT sidein order to run
the conformance tests.

A PLT hasdirect application to protocol development as well.

. Implementors developing the protocol for which a PLT's message snapshot has been already designed can use
the snapshot to determine what environmental variables are necessary.

. The PLT's API can possibly be used as part of the PUT's interface to lower protocol layers.

ETSI

13 ETSI TR 102 365 V1.2.1 (2005-06)

. If the protocol developers want to use the PLT to test their implementation, they can use the hard-wire
transport module in the PLT to provide the glue between their implementation and the hard-wire connection
(with some modification if the operating system and programming languages are different).

Thiswork also provides spin-offsthat, in the long run, could be more beneficial than the above advantages.

. The API is multipurpose. Its intended purpose is for conformance (device to test equipment) testing, but it can
aso be used in device to device testing at interoperability events. Other possible purposes are providing an
interface between an implementation and a simulator or between a simulator and test equipment.

. The results provide an inexpensive and quick way to validate the correctness of the base specification's
correctness. The combined use of a protocol prototype "moving" with a base specification's devel opment with
tests "moving" along with the base specification's development yields quick results back to the base
specification writers.

. The concept can be applied to any entity for which test cases are written. The concept is not limited to protocol
layers. One possible application is the testing of abstract representations in software of physical layer
characteristics. For example, this concept can be used to test the effects of a specific waveform anomaly that
may not be producible by electronics. (In this case, the test equipment side costs are minimal but it may be too
expensive to convert a hardware radio frequency interface into a software interface.) "Frame" testing is also
another possibility.

4.3 PLT components

The following text describesin detail the generic PLT components requiring development: the Wire Interface Data, the
Application Programmer Interface (API), and the TE Transport Module. Clause 5 presents these components as
developed for the HiperLAN2 DL C protocol. The Test Runtime Adapters and the Wire Interface components are off-
the-shelf and were not developed. The following components were developed for having a PUT to test against: PUT
Transport Module, the Interface (PUT-Side), and the PUT Adapters. The effort in their development is not to be
counted with that for the PLT.

4.3.1 Wire interface data/wire datagrams

Wireis used to transmit single or multiple PDUs or frames to and from a protocol implementation without the need of
concrete lower layer implementations. It also carries the additional information needed by the PLT and PUT entities.
The transport service provided by lower layer protocols is provided now by the transporter.

The concepts follow a message-oriented communication paradigm rather than stream-oriented or operation-oriented
paradigms.

The wire interface data replaces the protocol's transport and physical layers.

Proper operation of the protocol layer within the PUT typically depends on additional information that is not included in
the PDUs. Thisinformation is frequently related to the lower layer protocols. Examples for alayer 3 protocol might
includeaMAC id. In addition, the API concept must identify PCOs (Point of Control and Observation) and/or SAPs
(Service Access Points) if required by the receiving side. Other information optionally included in the API might be text
strings for operator instructions.

Typically an PUT is embedded in an environment that offers different types of information including (but not limited
to) physical layer and other parameters. Real world protocol implementations might use on thisinformation asis or
perform operations upon it. The wire interface data is thisinformation between the PLT and PUT or between PUTsin
the case of interoperability testing.

EXAMPLE: A test for an (imaginary) protocol might be for a change between two different physical modes.
Thetester indicates to the PUT that it should change the physical mode; the PUT acknowledges
the change using the old physical mode; PUT starts using the new physical mode and indicates that
hand-over has taken place using the new physical mode.

Just from this short example it can be seen that both entities, the PUT and the PLT, need write and read accessto
environmental information like the actual physical mode used. The PUT in this example would instruct the underlying
layer that a physical mode change should occur (write access). The PLT would have some kind of external operation
that accesses the underlying layer and queries the actual physical mode used.

ETSI

14 ETSI TR 102 365 V1.2.1 (2005-06)

If areal system would be tested instead of a PUT, the tested protocol would communicate with its lower layer. The red
test device would implement the external operations by accessing the lower layers and reading this information out.
However in a PLT/PUT scenario, this necessary information must be communicated between PUT and PLT. Thisisthe
wire interface data.

The transmitted data must have a structure so that modules can access, manipulate, and store values. This structure
includes both the messages and the snapshot/context/environment. We call encoded structure with the message and
message's environment the Wire Datagram. The Wire Datagram provides the framework to transmit this information
between the PLT and PUT.

The Wire Datagram

i ead(?r body

Wire Datagram
Figure 5: Structure of a Wire Datagram

The Wire Datagram consists of two parts, its header and the body or payload (figure 5). The header contains the
snapshot/context (PUT-related lower layer information, PCO/SAP information and possibly additional information)
while the body/payload carries the encoded PDUSs, frames, etc. The PDU is encoded according to the protocol
specification with either standardized methods (e.g. ASN.1 PER) or custom-made transfer syntax.

Write access of aPUT/PLT environment/context would update the header of the Wire Datagram. Read access by a
PLT/PUT would use the results to make a decision.

For the purpose of this work we assume that the Wire Datagram is transmitted and received via buffers of byte arrays.
However, its type specification isindependent of the means used to store, transmit, and receive the data. We have
defined the following buffer implementation for the Wire Datagram.

offset =2

length = 11 *

*_h complete data buffer —+
areato beused —i

Figure 6: Possible internal structure of a DatagramPacket

According to this specification only the data area as described by the parameters offset and length are used. However,
without specifying any particular parameters for offset and length the complete data buffer will be used to store
information.

The API focuses on the communication of Datagrams. Within the API, Wire Datagrams are further specialized in order
to provide access to the header information independently from their encoding. The encoding of the header information
depends on the field of application and can vary from standardized encoding rules to self-defined encoding rules. Asthe
framework is focusing on an early stage of the test suite and protocol specification phase, it may be necessary to change
the encoding over time.

Wire Datagram requirements are summarized as follows:
. The transporter relies on a given functionality independent of the specific contents.

. The PLT/PLU implementation requires an abstract access to the contents of the Wire Datagram independent of
the encoding and independent of the transporter implementation.

ETSI

15 ETSI TR 102 365 V1.2.1 (2005-06)

sl y

Vil Mapidiime | -
ERF e | -

_ . ——.[——— =T

Test Adapter’s View

\
\
\
J('D-_N
2T

[
ﬁr body

- __Wire Datagram

Transporter’'s View

NOTE: Itis understood that the transporter accesses also other data from a DatagramPacket, in particular socket
addresses and port number. However this visualization is omitted for readability reasons.

Figure 7: Different views via specialized interfaces

Figure 7 shows how different actors use a Wire Datagram. While the Test Runtime Adapter accesses (read/write)
individual elements of the datagram, the transporter perceives the datagram only as payload for the underlying transport
mechanism, e.g. UDP. The upper view is aways specific to a particular protocol or technology. Clause 4.3.1 describes
the Wire Datagram for the HiperLAN2 DLC protocol.

Use of the Header
The header fields represent the environment that the PUT and the Test Equipment need for operation.

For example, the base specification requires specific behaviour when the received power level does not meet certain
conditions. In actual deployment, rain fading can cause decreased received power requiring the protocol to adjust power
levels. To ensure that an IUT conformsto the standard in such events, testing an SUT or a PUT requires in some way
those reduced power levelsthat are part of its environment.

It isdifficult to make rain in atest environment. In testing an SUT, the Test Equipment may have some built-in function
to reduce transmission power to provoke the expected behaviour. In testing an IUT, there may be a different way to
provoke the behaviour. Also, the test writer does not usually know how the tester will use the Test Equipment to run the
test. For example, to reduce power levels one tester may reduce transmitting power from the Test Equipment; another
may set up agrid connected to ground between the Test Equipment and the SUT; and another may simply take the SUT
and walk away far enough from the Test Equipment. To cover these possibilities, the test writer usually creates a " stub”
or a hook to the environment that controls the transmission power. The Test Equipment manufacturer and the tester are
left to their own devices on how they want to control the power. The interface between their method and the test suiteis
this"stub” or hook. In TTCN-2, thisinterfaceisa TSO (Test Suite Operation).

To invoke the protocol actions for adjusting power levels, the PUT's controller must detect the change and then
command the PUT to start the transaction to adjust the power level. Thisis where the header field comesin. The header
field "rxPower" carries the information that the PUT's controller needs to determine if the power levels need adjustment
or not.

One can see from this exampl e the heuristic why TSOs are very good indicators of header fields.

Clause 4.3 discusses the HiperL AN2 header in detail.

ETSI

16

4.3.2 The API

The well-known socket concepts have been adopted for defining the generic interface structure shown in figure 8.

ETSI TR 102 365 V1.2.1 (2005-06)

<<interface>>
org::etsi::ttcn:udp::DatagramSocketAPI

close(): void

connection(in remote: SocketAddress): boolean
disconnect(): void

isConnected(): boolean

receive(in packet: DatagramPacket, in timeout: int): boolean
send(in packet: DatagramPacket): boolean

org::etsi::ttcn:udp::DatagramPacket

<<interface>> \

getData(): byte[]

getLength(): int

getOffset(): int

getSocketAdress(): SocketAddress

setData(in buf: byte[], in offset: int, in length: int): void
setData(in buf: byte[]): void

setLength(in length: int): void

setSocketAddress(in address: SocketAddress): void

\\\\ \N
Y <<interface>>
SO org::etsi::ttcn:udp::SocketAddress
\\\\
N

getHostName()
getPort()
setBzHostName()
setPort()

Figure 8: Abstract APl description

A Dat agr anBocket APl USeS Dat agr arrPacket s in order to communicate with a remote peer entity as described viathe
Socket Addr ess. On thislevel of abstraction the API defines the means of implementing communication between the
PLT and the PUT. In addition does this level of abstraction allow the reuse of the implementation on both sides.

All operations at the interfaces have been defined using UML notation. This clause specifies only interfaces, not any
concrete implementations. The operations definitions are defined using the following template.

Signature

Si gnature

In Parameters

Description of data passed as parameters to the operation from the calling entity to the called

entity

Return Value

Description of data returned from the operation to the calling entity

Effect

Behaviour required of the called entity before the operation may return.

The Dat agr anSocket APl defines an interface on how a Test Runtime Adapter can communicate with the Transport
Module. Basicaly, it abstracts from any protocol test suite the relevant additional information in the message header.
The Dat agr anSocket APl together with the Dat agr anPacket interface and the Socket Addr ess interface focuses
completely on the communication between PLT and PUT.

Figure 3 highlights the location of the API. The Test Runtime Adapter uses implementation of the Dat agr anPacket API
from the Transport Module and therefore does not have not to deal with transporting packets to the PUT.

The SocketAddress

A Socket Addr ess defines the host and the port to be used. Within the Dat agr anSocket APl the Socket Addr ess will be
used for described the local as well as the remote addresses.

ETSI

17 ETSI TR 102 365 V1.2.1 (2005-06)

4.3.3 Wire transport module/Adaptation layer

The Transport Module takes the context/environment information and PDU/message provided in the API, placesit into
the buffer discussed, and transmits it to the PUT over the wire interface in the Wire Datagram. Simply said, it formsthe
Wire Datagram given the information provided by the API.

In the other direction, the Transport Module receives the Wire Datagram as transmitted by the PUT, placesit into a
buffer, determines the API data, and transmits the data via the API to the Test Runtime Adapters.

Itisarelatively straightforward module written specifically for the operating system and version. It can be in any
programming language.

5 Implementing the PLT for the HiperLAN2 DLC
protocol

The idea of using wire for conformance testing the HiperLAN2 DLC came from successful techniques used in the
HiperLan interoperability events organized by the ETSI Plugtests™ Service. The interoperability testsinvolved two
IUTs connected viathe LAN transmitting the RLC datain UDP datagrams carried over |P. The idea was to replace one
of the IUTs with simple conformance test equipment for testing only the protocol layer. This simple equipment would
include a PC platform, the ATS aready devel oped for the protocol and the other adaptations required to send and
receive the UDP datagrams viathe TE.

One of ETSI'stest specification goalsisto validate a test suite before its publication. A test suite can only be validated
if an application (the IUT) is provided by a manufacturer. Better validation is achieved with several IUTs from different
manufacturers.

The HiperLAN2 ATS produced in prior work is source of the executable test suite part of the PLT. It is based on the
test architectures shown in the following clause.

5.1 Test architecture for the DLC layer

Notional UT
Lower Tester SUT
DLC PCO
DLC DLC
(ATS)
(IuT)
S e,
SAR/MAC SAR/MAC
PHY > PHY
<

Figure 9: Test architecture for DLC

A single-party testing concept is used that consists of the following abstract testing functions:

Lower Tester: A Lower Tester (LT) islocated in the remote BRAN HL2 test system. It controls and observes the
behaviour of the IUT.

DLCATS: A DLC Abstract Test Suite (ATS) islocated in the remote BRAN HL2 test system.

ETSI

18 ETSI TR 102 365 V1.2.1 (2005-06)

DLC PCO: the Point of Control and Observation (PCO) for DLC testing islocated at a SAP between the DLC
layer and the MAC layer. All test events at the PCO are specified in terms of Abstract testing
Service Primitives (ATSP defined in clause 7) containing complete PDUs. To avoid the
complexity of datafragmentation and recombination testing, the SAP is defined below these
functions.

Notional UT: No explicit upper tester (UT) exists in the system under test. Nevertheless, some specific actions to
cover implicit send events and to obtain feedback information are necessary for compl ete testing.
A black box covering these requirementsis used in the SUT asanotional UT asdefined in
ISO/IEC 9646 [6]. Thisnotional UT is part of the test system.

The PLT issituated at the right hand side in the shaded DL C block. The PUT is on the left hand sidein the black DLC
(1UT) block. The lower SAR/MAC and PHY layers have been replaced by the API and wire data transport module. The
radio interfaceis, of course, replaced by the UDP/IP wire interface. The lower test is part of the test execution system.
The Notional UT and SUT are prototype-dependent. They are usually the test engineer running the prototype on a PC.

5.1.1 Test Configurations

5.11.1 Test Configurations for MT

Two configurations are defined for M T testing and used in the ATS.

AP MT

A
\/

(1uT)
(T ester)

Figure 10: Normal configuration for MT

The normal configuration is for testing the behaviour between the MT and only one AP.

T ester MT
AP1 _ -
- > (IUT)
P 4
AP2 -7
-

Figure 11: Load levelling configuration for MT
The load-levelling configuration is used when the MT has to interact with two APs. In that case, the two simulated APs

are configured to be either a multi-sector AP or two separate APs. Concurrent TTCN functions are used for testing this
configuration.

ETSI

19 ETSI TR 102 365 V1.2.1 (2005-06)

5.1.1.2 Test Configurations for AP

One configuration is defined for AP testing.

M T AP

i - (1uT)
(T ester)

Figure 12: Normal configuration for AP

The normal configuration isfor testing the behaviour between the MT and only one AP.

5.2 PLT components

The below discussion usesfigure 2 "PLT and PUT Components' of clause 4.2.1 as the basic components diagram.

521 Existing components

The components described below exist already and were taken " off-the-shel f* and used as such.

5.2.1.1 Test system
The test systemis TTCN3-based.
According to [TTCN3 TCI] atest system contains, as a minimum, the following components:
. A test management entity.
. A testing language execution environment.
. One or more codecs.
. And, an adapter to the test system used.

This structure is presented in figure 13.

SA System Adapter PA Platform Adapter

SUT

Figure 13: A TTCN-3 Test System

ETSI

20 ETSI TR 102 365 V1.2.1 (2005-06)

The TE, the TTCN-3 Execution Environment executes the TTCN-3 specification. The communication with the System
Under Test (SUT) is performed by the System Adaptor (SA), while the implementation of time and of TTCN-3 external
functions is done within the Platform Adaptor (PA). Otherwise said, the System Adapter communicates with PUT. The
System and Platform Adaptors are the TTCN-3 equivalent of the Test Runtime Adapters shown in figure 2: "PLT and
PUT Components®. The Test Execution Control maps to the TTCN-3 Test Management component. Component
Handling is not show in figure 2. It is used for concurrent/parallel testing where there is more than one IUT or where
two or more components of the test suite are executed at the same time. The interface between the TE and the SA and
the TE and the PA is defined within the TRI part of TTCN-3.

TCI definesinterfaces for the implementation of codecs that encode and decode data present in the TE according to the
specified encoding rules.

The following clauses present the individual components in more detail.

5.2.1.2 Abstract Test Suite (ATS)

The [HL2 ATS] has been developed within ETSI in TTCN-2. A description of the test architecture and the three test
configurations necessary for the ATS were presented above.

The running of the ATS against a manufactured i mplementation usually requires the expensive test equipment
associated with conformance testing. However, the present document presents running the ATS against a protocol layer
implementation and requires much simpler test equipment-the PLT. It isimportant to emphasize that for testing with the
PLT and for validating/building the test system prototype that no modification of the ATS hasto be performed.

5.2.1.3 Test System Prototype

The Test System Prototype has been developed on the basis of the TTCN-2 ATS which was then trand ated
automatically into its TTCN-3 equivalent.

The Test System Prototype uses only standardized interfaces and follows a generic test implementation framework
derived from the generic test system architecture as presented in clause 5.2.1.1. The following steps are part of the
implementation process:

1) Adaptation to the test system.
2) Implementation of codecs.
3) Integration of the test management functions.

Test suite validation should rely on the execution of the test suite. There are other validation methods such as
walk-throughs that are useful as well. But nothing is better for validation then executing the test suite against
something.

For this work, the test validation process was split into three steps.
Step 1

The implementation of the HiperLAN2 Test System Prototype requires the implementation of a system adapter (SA)
and platform adapter (PA) as defined in [TRI]. The purpose of the SA isto implement the communication aspects of
the ATS. In other words to implement the sending and receiving of messages. As the implementation of and the
access to underlying communication layers vary from test device to test device, this step is referred to as adaptation
to the test system. Different test devices are used for different test purposes. In the context of the HiperLAN2 Test
System Prototype, the test device is defined to be a PC offering UDP/IP communication. For the implementation of
the System Adaptor, built-in operations of the Java SDK have been used to realize a UDP/IP connection. Adapting
the Test System Prototype to other lower layers requires changing only the SA implementation.

This step included:

. the implementation of the Test System Adapter on the test tool side by respecting the defined UDP/IP
interface;

ETSI

21 ETSI TR 102 365 V1.2.1 (2005-06)

. the generation of coding/decoding functions from ASN.1 HiperL AN2 protocol specification using PER rules
as specified in the DLC Technica Specification. As different projects have shown, the implementation of a
codec can constitute a significant amount of time, especially in a Protocol Layer Tester scenario. The required
amount of effort heavily depends on the type of encoding (e.g. text based, tabular based, etc) and the notation
used to describe this encoding. Codecs are discussed further in a clause below;

. the trandation of the test suite from TTCN-2 to TTCN-3. The source ATS was written in TTCN-2. Because of
the standardized TRI and TCI for TTCN-3 and the availability of test equipment with these interfaces, the
TTCN-2 ATS was converted automatically to an equivalent TTCN-3 ATS;

. the compilation of the TTCN-3 test suite.
While the interfaces for the first step is defined in [TRI], the interfaces for step two and three are defined in [TCI].
Step 2

The task of encoders and decoders (short: codecs) isto trand ate the abstract data as defined in an abstract test suite
into its concrete representation. This concrete representation is referred to as encoding or coding. In general all data
that is exchanged with the "real" test system (also the Test System Prototype) has to be encoded. Although the
encoding of the same data might be different and depends of the usage of the data, typically the term encoding
relates to the encoding related to the peer entity, the IUT. Thus the implementation of the HiperLAN2 Test System
Prototype requires an implementation of the encoding as specified in the HiperLAN2 specification, i.e. as specified
in bit tables.

Step 3

Thelast step refers to accessibility of the HiperLAN2 Test System Prototype. Executing an implemented test suite
means that for starting and stopping, atest run must be available. This task typically depends on the test device and,
therefore, on the test management capabilities offered. The targeted platform for the HiperLAN2 Test System
Prototype is a standard PC. Therefore the availability of atest management system can not be guaranteed. However,
the used test execution environment TTrun offers the basic functionality of a graphical test management system.
Thus only the used test management has to be configured. Migrating the Test System Prototype onto a physical test
device would require some additional resources for this task. However this would be in the responsibility of the test
solution provider, and had been therefore not considered.

The experimental HiperLAN2 Test System Prototype was built on PC/Windows 2000 using Java 2 SDK with the
TTCN-3 runtime environment (TTrun) from Testing Technologies. TTrun implements the TTCN-3 Runtime Interface
specified by ETSI [TTCN3 TRI].

5.2.1.3.1 Codecs

One of the most time and resource consuming task in test suite implementation is to implement the codecs. The codec
trandates the abstract data as described in TTCN into its concrete representation and vice versa. In general, protocols
define either their own encoding scheme by using a so called "tabular" encoding, or they rely upon standardized
encoding rules such as ASN.1. Examples for these encoding rules are BER and PER. However, the availability of
defined and standardized encoding rules does not solve the problem that that codecs have to be integrated into the test
environment.

InaPLT context, codecs for two tasks can be identified. On one hand, codecs that encodes/decodes ASP and PDUs for
the peer communication with the PUT are needed. On the other hand codecs for the encoding and decoding of the Wire
Datagrams are needed. While the encoding rules for the first one are specified by the appropriate protocol standard, the
latter one is defined as part of PLT development. The encoding rules for ASPs and PDUs cannot be modified by the
PLT developer while those for the PUT's Wire Datagram are the devel oper's choice.

52.1.3.1.1 PDU and ASP Codecs

HiperLAN2 defines protocol data units using the ASN.1 with [ASN1 PER] encoding rules. For the implementation of
the PER encoding rules, different commercial tools and software libraries are available. However, asit aready has been
stated before, the availability of tools that produce standard compliant encodings does not solve the problem of
integrating them into the PLT.

ETSI

22 ETSI TR 102 365 V1.2.1 (2005-06)

Existing encoding/decoding tools typically offer avalue API in order to fill in the tool's proprietary data structures.
Afterwards the codec operates on this codec internal data structures in order to generate the encoded representation of
this data structure.

Codec internal
representation

Bit representation

Value API

Figure 14: General operation of codecs
Figure 14 shows this process.

Integrating existing codecs into an existing environment like PLT's TTCN-3 conformant runtime environment is
reduced to the task of translating an application (i.e. tester) internal data structure into the codecs' internal data structure
and vice versa.

As both the PLT's and the codecs runtime environment are not tailored for a particular purpose, tooling for solving this
task generally is available.

m

Codec internal
Application internal representation
representation

Figure 15: Tree - Usage of encoders

Thus the task of encoding PDUS/ASPsinaPLT can be solved efficiently aslong as:
a) Standardized encoding rules have been specified in the protocol standard.
b) Standardized runtime environments are used.

HiperLAN2 defines the usage of standardized encoding rules (PER) instead of transfer syntax tables. Thus, existing
coding tools have been used for the implementation of the PDU/ASP codecs. As the test environment offersa
standardized coding interface (T CI-CD), the integration of the codec resulted in the application of an available TCI-to-
Codec trandator. As aresult, the resources required for this integration are remarkably low.

However, the fact that off-the-shelf codecs offer only proprietary interfaces limits the applicability of this approach. If a
standardized coding interface for codec generators would have been available, PLT implementers or users could have
selected codecs according to their interface features, thus increasing acceptance and applicability of the PLT approach
in the area of standardized encoding rules.

5.2.1.31.2 APIs Datagram Codecs

Asdescribed, a PLT exchanges wire datagrams with the PUT. Obviously, this datagram must be encoded and decoded.
Clause 4 introduced the API for construction and accessing these datagrams. However this accessis at an abstract level.
In order to implement a complete PLT the abstract datagram has to be encoded.

ETSI

23 ETSI TR 102 365 V1.2.1 (2005-06)

The HiperLAN2 wire datagrams have been defined using ASN.1 and the HiperLAN2 API has defined the read and
write access on the information that has been defined using ASN.1. PER has been chosen because of the availability of
codecs. In fact, the same tools used for PDU encoding have been used to gain time and resources. In reality, the codec's
internal structure had to be accessed in order to provide the API the necessary information. The fact that standardized
notation (ASN.1) together with standardized encoding rules have been chosen to define the datagrams and their
encoding has improved the reliability of the implementations. The manual implementation of codecs is by no means
trivial and is, in fact, quite error prone.

5.2.2 Developed components
The following presents the components that had to be developed for PLT. Additionally, PUT components had to be
developed since a PUT prototype was unavailable at the time of testing.

5.2.2.1 Wire datagram

The ASN.1 description of the wire datagram is at annex A. Annex A a so gives an example of a set of values for one
wire datagram.

Asexplained in clause 4, the wire datagram has two parts: the header containing the context/environment and the body
that contains, in the HiperLAN2 case, a PDU.

5.2.2.2 The API for HiperLAN2 DLC

In order to facilitate development, the API has been refined with specialized interfaces that provide useful operationsin
order to access the APl header elements without dealing with any API coding related issues.

Although the API concept could be abstracted from its transporter and implementation technology, a UDP/IP
transporter is assumed hereafter.

A UDP/IP based transporter uses UDP communication on both sides, the PUT and PLT, for communicating PDUs or
frames (see note 1).

NOTE 1: For readability reasons in the following the term PDU is used whenever data send to and received from a
protocol layer is referenced. Depending on the abstraction chosen in the test suite, the relevant data
elements might also be frames, multiple PDU, etc.

The API transfers information between the Test System and the IUT(s). The body contains the protocol message units
that are, in this case, DLC PDUSs. The header contains the information needed both by the IUTs and the Test system.

The Test system information requirements for running the test cases were determined by a hand review of the test cases
to determine what additional information over and above the PDUs were required.

This interface between the test system and the UDP datagram was developed and is shown in figure 16.

ETSI

24 ETSI TR 102 365 V1.2.1 (2005-06)

«interface»
L1 org::etsi::ttcn::hl2::udp::DatagramPacket

I

«interface»
L1 org::etsi::ttcn::hl2::udp::HL2Datagram

getTag(): int

setTag(in tag: int): void

getMaclID(): int

setMaclID(in macID: int): void
getPeerMaclID(): int

setPeerMacID(in peerMaclID: int): void
getDatalength(): long

setDatalength(in dataLength: long): void
validate(): boolean

A

«interface» «interface»
o org::etsi::ttcn::hl2::udp::HL2UserPlaneDatagram L1 org::etsi::ttcn::hl2::udp::HL2ControlPlaneDatagram

I E R NN N NN N

getUserData(): byte[]

setUserData(in userData: bytel[]): void
getFlags(): int

setFlags(in flags: int): void
getDlcclD(): int

setDlcclD(in dicclD: int): void

getRIcPDUType(): int

setRIcPDUType(in ricPDUType: int): void
getExtensionType(): int

setExtensionType(in extensionType: int): void
getRIcData(): byte[]

setRIcData(in ricData: bytef[]): void

I N NN
I FE N RN

Figure 16: Interface between Test System and UDP datagram

Asit has been seenin clause 4.3.1 the DatagramPacket interface provides generic means for the communication via the
transporter. But thislevel of abstraction isinsufficient when atest adaptation has to access elements of the API header
and body. Asit will be shown below the API header contains various types of information where the operation on bit
level for providing and retrieving the datais inappropriate.

Implementations of the specified interfaces HL2User Pl aneDat agr am and HL2Cont r ol Pl aneDat agr amhide the need of
handling the encoding/decoding of APl messages directly within atest adapter. Datagram implementations can
therefore be considered to provide the coding for different APl messages. The user, i.e. the test adapter implementers
can therefore focus on the provisioning of the necessary API information.

Figure 16 displays an extract of the specialized API definitions. For different type of API distinct datagram packets
have been defined. Asthe different APl messages share some common functionality a Hiperlan2 "base packet” has been
defined (HL2Dat agr am). Specia information that is only present in the different APl messagesis available only in the
specia packets HL2User PI aneDat agr am and HL2Cont r ol Pl aneDat agr am

Asit can be easily concluded implementations of HL2User Pl aneDat agr am and HL2Cont r ol Pl aneDat agr am perform the
encoding/decoding of the API header information, like Di ccl D or Ext ensi onType, and the APl message body, like
User Data Of Rl cDat a.

Thus the Dat agr anPacket and its specializations perform a central role in the encapsulation of the APl message and
therefore increase the reusability. One the one hand side the implementations of the APl messages

(HL2User Pl aneDat agr am and HL2Cont r ol Pl aneDat agr am) can be potentially reused within the Test Runtime Adapter
and PUT Adapter if required. On the other side an implementation of the transporter is completely independent of the
API messages it transports and thus reusabl e for different kind PLTs.

The Test System's components are discussed in the following clauses.
Relation to TRI System Adapters

The DatagramSocketAPI has been designed considering the needs of a TTCN-3 System Adaptation (SA) Layer
implementation. According to TRI the SA implements the communications aspects of a TTCN-3 test suite. For the PLT,
this means encoding/decoding of APl messages and their sending/receiving. Clause 4 introduced the concept of a
protocol layer tester (PLT) and described the functionality of Adapters and the Transporter.

For the TRI, the SA implements the Test Runtime Adapters as well as parts of the transporter.

ETSI

25 ETSI TR 102 365 V1.2.1 (2005-06)

Using the concepts of the Dat agr anBocket APl a possible test case execution results in the following message exchange
between the participating entities.

Displays how a non-concurrent test sui
: TTCNEnvironmet : TestAdapter creates the datagram socket RemoteEnd : DatagramSocketf
—_— displays the relationship between the
TRI operations and the datagram socket
operations
TestSystemUser

-
D‘ startTestCase
« = I

LocalEnd : DatagramSocketf\PI
triExecute+estcase(TriTestCaseId,Tri@rtldList): TriStatus
-

Y

create

connect(SocketAddress): void |

triSend(TriCoLrponentld,TriPonld,TriAddrisslriMessage): TriStatus

send(DatagramPacket): void
o

transmit

| transmit

triEnqueueMsﬁﬁortld,TriAddress,TriCompor]entId,TriMessage): void

Figure 17: Starting a test case and using the DatagramSocketAPI

Figure 17 displays the necessary steps for a complete send and receive cycle. After the user triggers the execution of a
test case at the test environment, at ri Execut eTest case operation istriggered within the SA according to TRI. Hereiit
is assumed that the creation of the Dat agr anSocket | npl is performed at this point. In a concurrent test configuration
scenario, the creation of the Dat agr anSocket APl implementation could also be postponed to the occurrences of a

tri Map(). For simplicity reasons, we assume that a non-concurrent test scenario is described by figure 17.

From this point in time the test suite is able to receive messages from the PUT (see note 2).

NOTE 2: The PUT ismodelled in this figure in having an analogous implementation of the DatagramSocketAPI.
Although thisis unnecessary, the PUT will use functionality similar to the ones defined within the
DatagramSocketAPI approach within the PUT adapter.

Thusthe Dat agr anSocket APl is connected to the PUT using the connect operation. Sending a message from within the
test suite will trigger atriSend operation at the SA. Thiswill result in sending the message within aDat agr anPacket to
the PUT using the send operation on the Dat agr anBocket API , after having encoded the test suite PDU/ASP into the API

message.

ETSI

26 ETSI TR 102 365 V1.2.1 (2005-06)

Processing a message received from the PUT will be identified by a successful cal to receive on the

Dat agr amBocket API . The return Dat agr anPacket Will contain the APl message sent by the PUT. The Dat agr anPacket
contains the encoded APl message. The PDU/ASP will be extracted and enqueued within the test system using the

tri EnqueueMessage() operation of the TRI interface.

5.2.2.3 Wire transport module

The Wire Transport Module is the software code required to place/extract the API information into/from the Wire
Datagram structure and send/receive the datagram on the wire. Annex C presents the Java code for the Wire Transport
module.

5.2.3 Clocks and timing

A detailed study was made of clocks and timing to determine how to best employ theminthe PLT. Annex D presents
that study.

5.2.4 Heuristics for defining an API
During the development of the API, lessons were learned that could be applied to the development of other APIs.

The type of testing affects the API. The API for conformance testing may have more information than that for
interoperability testing. For example, signal strengths may not be needed in interoperability testing but they may be
necessary for conformance testing.

Another way of saying the same thing is that the testing configurations for interoperability testing are different from
those for conformance testing. For interoperability testing, two or more implementations are connected. In conformance
testing, test equipment is connected to one or more IUTs. Thisis afundamental architectural difference that could
require different testing information requirementsin their respective APl headers.

These heuristics apply only to conformance testing architectures.

The manufacturer of an IUT must define his own information regquirements because he is the best situated to know what
the implementation's information requirements are.

ETSI is best situated to determine what the test system's information requirements are. Thus, the following heuristics
apply only to the information requirements for the TS side of the test architecture.

The manufacturer can significantly reduce the burden of developing its API requirements by using the ETSI Test
System information requirements as a basis for its requirements.

The basic source for APl elementsisthe ATS. An ETSI ATS iswritten in either TTCN-2 or TTCN-3. The source ATS
for the API isthe [HL2 ATS] written in TTCN-2. TTCN-2 concepts and components such as Abstract Service
Primitives (ASPs) do not map into equivalent TTCN-3 concepts. For example, if one says ASP to apure TTCN-3
writer, that test writer would have no idea what is meant. The equivalent code structures would very possibly bein the
TTCN-3 tests but there would is no formal concept with a name to identify this code structure. Fortunately, all TTCN-2
code structures can be mapped/converted into equivalent TTCN-3 code.

Because the TTCN-2 test suite was used as one source for the API, the TTCN-2 concepts are used in the heuristics
given below. The TTCN-3 reader must perform the exercise to convert these heuristics into her/his equivalent TTCN-3
code constructs.

The simplest heurigtic isthat the APl body contains the set of all possible protocol message units; e.g. PDUs, multi-
messages, packed PDUs, etc.

A simple heuristic independent of the testing language is to include in the API header all test suite data declarations that
are not used in the body part of the API; i.e. al other data declarations not in the set of all possible messages. However
this set of declarationsis only a subset of the API header. There may be data types in the messages that are also heeded
inthe API header data. The heuristic is simple, its application is time-consuming.

The different PCO types and their values are another source of API header information. (The PCO concept is valid for
both TTCN-3 and TTCN-2.) If there is more than one PCO used in atest, the API header must contain the PCO value.

ETSI

27 ETSI TR 102 365 V1.2.1 (2005-06)

All datatypes TTCN-2 ASPs and their TTCN-3 equivalent, except for the protocol message units, are very good API
header data type candidates.

Clocking information, like a frame number, shared between the TS and the IUT must be in the API header.

Returned TTCN-2 Test Suite Operation or Procedure types and their TTCN-3 equivalent are good APl header data type
candidates. Signal strength and transmitted/received frequencies often fall into this category.

MAC-1Ds, connection numbers and/or identifiers, and their equivalents will always be in the API header.

Concurrent testing requires either multiple subsets of the APl header data or successive sending of UDP datagramsin
the same direction each of which has different APl header data for distribution to the instances being concurrently
tested. In either case, the adaptation layer must have additional logic to direct the successive datagrams to the proper
instance or to direct the same datagram to the different instances given in the subsets.

A complete API can be large. It can dominate the size of the UDP datagram. If it is coupled with alarge sized message
unit, it is quite possible to exceed system MTU limits. One way of limiting sizeisto send only that datathat is
necessary for the message units being transported. That is, make all API data types optional and send only that whichis
necessary. Thiswill require additional logic in the adaptation layers to determine which data elements are sent. Two
factors that decide the sent data elements are the message in the body and the test case number.

The test case number is a useful, but not mandatory, APl header field. Adaptation layer logic can key upon the test case
number to determine adaptation layer behavior and the use of optiona data elements.

The API data encoding can be in any coding scheme shared by the adaptation layers. The encoding should consider the
largest integer transported. API data types can include large integers greater than 232, Some encoding schemes cannot
handle integers larger than 232. In this case, a different encoding scheme must be used.

Always check to see if the IUT hasits own elements to add to the API header.

Additional text strings can be added to the API header for instructing the tester, for information purposes, or for
adaptation layer control logic.

ETSI

28 ETSI TR 102 365 V1.2.1 (2005-06)

Annex A:
HiperaLANZ2 Wire Datagram Specification

This annex specifies the wire datagram for the HiperLAN2 PLT. It is specified in ASN.1 to show the datagram's
structure. PLT development and the testing conducted with it used the ASN.1 specification. However, implementors can
use equivalent data typesin other languages such as C, C++, Java, et cetera. The only condition isthat the PLT and

PUT share the same coding/decoding schemes for the wire datagram.

A.1 Wire datagram ASN.1 module

The following lists the HIPERLAN2 API necessary for running the all Abstract Test Suites for HIPERLANZ2 contained
inthe various applicable ETSI TS (e.g. TS 101 823-2-3[3]). Although thereisan ETSI TSfor each ATS, all test cases
have been combined into the electronic TTCN-2 format in hip2_v014.MP. The tabular format of these test casesisin
hip2_v014.MP. Both files are electronic annexesto TS 101 823-2-3 [3].

The module in clause A.1 specifies the structure of the data exchanged between the Protocol Layer Tester and the
Protocol Under Test over their common wire interface. This structure is expressed in ASN.1. However, the data itself
does not have to be encoded and decoded in ASN.1. Any other encoding/decoding scheme is acceptable providing that
that Protocol Layer Tester and Protocol Under Test share the same scheme. Examplesincluded C, C++, and Java
coding of information.

The data structure does not take into account specific machine limitations such as maximum integer size
(MAX_INTEGER) or Maximum Transmission Unit (MTU) over |Pv4. Specifically, two problems may occur.

. MAX_INTEGER on some machinesis 32 bitslong. csr O f set inWit eRegArg is42 bits. The frame number
is greater than 32 bits as well.

. Some PDUs such as RLC-CONNECT or RLC-DATA can have alarge size. Also, the APl header is greater
than 500 bytes. The test equipment does not include SAR. If UDP is used, the maximum allowable datagram
size (MTU) may be too small to carry the entire PDU. In this case, APl behavior is unspecified.

--The APl is presented in ASN.1. This is nmeant only to show the APl el ements and structure.
--Encodi ng and decoding of the APl is at the user's discretion. For exanple, the interoperability
--and prototype APl used 32 bit integers for both integer and enunerated types.

--NOTE: csrOfset is 48 bits |ong!!

HL2api
DEFI NI TI ONS

AUTOVATI C TAGS :: =
BEG N
HLapi ::= SEQUENCE {

hdr HEADER,
aPDU H PERLAN2pdu

}

H PERLAN2pdu :: = OCTET STRI NG
HEADER : : = SEQUENCE {
configurationPart1 Rl cConf i gur at i onASP,
configurationPart2 Rl cConf i gur at i onASP,
crd | NTEGER, --Range is (0..n) where nis very |low, <8
macl d | NTEGER (0. . 255),
type I NTEGER, --Range is (0..n) where nis very |low, <8
dlccld | NTEGER (0. .63),
ducDescr DucDescr,
nunber | NTEGER, --SDU nunber/identifier
del ay I NTEGER, --Vaiting time in ms between two bursts
duration I NTEGER, --duration of data generation in s
bur st Nunber | NTEGER,
of f set | NTEGER, --Ofset to start the error generation in

--the follow ng data transm ssion

ETSI

I ength
correctIndication
snNunber

avai | abl eSl ot

al | ocSomeRsp

al | ocSoneReq

nodi f yBandwi dt hRsp
nodi f yBandwi dt hReq

| ockRegAr g

| ockRspArg
recl ai niThi sReq
recl ai niThi sRsp
channel

rel easeThi sRsp
writeReqArg
desi gnat edCC

channel sTxChar acteri stics

bandwi dt hUse

29

| NTEGER (0. .1024),
Correct | ndication,
| NTEGER,

| NTEGER,

Al 'l ocSoneRsp,

Al | ocSoneReq,

Modi f yBandwi dt hSt at us,

Modi f yBandwi dt hReq,
LockReqAr g,
LockRspAr g,

Recl ai nThi sReq,

Recl ai nTThi sRsp,
Channel ,

Rel easeThi sRsp,
WiteReqArg,

Desi gnat edCC,

Channel sTxChar acteri stics,

Bandwi dt hUse

}

Rl cConfi gurati onASP :: = SEQUENCE ({
role I NTEGER (0. .3),
netld I NTEGER (0 .. 1023),
apld I NTEGER (O .. 1023),
sectorld INTEGER (O .. 7),
tspxSectorld INTEGER (O .. 7),
apTxLevel I NTEGER (0. .15),
apRxULI evel I NTEGER (0..7),
version I NTEGER (0..7),

apTrafficlLoad
maxi munPower

}

I NTEGER (0. .7),
Maxi munmPower

Maxi nunPower ::= ENUMERATED {
not Maxi munPower (0),

maxi munPower (1)

}

DucDescr ::= SEQUENCE {
direction Di rection,
dlccld | NTEGER (0. .63),
cl ConnAttr

ducDi recti onDescr
ducDi recti onDescr

}

OCTET STRING (Sl ZE(O..31)),

Fw DucDirectionDescr Fw OPTI ONAL,
Bw DucDirectionDescrBw OPTI ONAL

Direction ::= ENUMERATED {
si nmpl exForward (0),

si nmpl exBackward (
dupl ex (2),

1,

dupl exSynetric (3)
}

DucDi recti onDescrFw :: = DucDi rectionDescr
DucDirecti onDescrBw :: = DucDirectionDescr
DucDi rectionDescr ::= SEQUENCE {
al | ocati onType Al | ocati onType,
cyclicPrefix CyclicPrefix,
f ecUsed FecUsed,
echMde EcMode,
ar qDat a ArgDat a OPTI ONAL,
f ecDescr FecDescr OPTI ONAL,
f caDescr FcaDescr OPTI ONAL,
f saDescr FsaDescr OPTI ONAL
}
Al | ocationType ::= ENUMERATED {
basic (0),
fca (1),
fsa (2)
}
CyclicPrefix ::= ENUMERATED ({
t400ns (0),
t800ns (1)
}

ETSI

ETSI TR 102 365 V1.2.1 (2005-06)

30

FecUsed ::= ENUMERATED ({
fecNot Used (0),
fecUsed (1)

}

EcMbde ::= ENUMERATED ({
ar qNot Used (0),
arqUsed (1),
repetiti onvbde (2)

}

ArgData ::= SEQUENCE ({
argNr O Ret r I NTEGER (0. . 15),
wi ndowSi ze W ndowSi ze

}

W ndowSi ze ::= ENUMERATED {
ar gNot Used (0),
wSi ze32 (1),
wSi ze64 (2),
wSi zel28 (3),
wSi ze256 (4),
wSi ze512 (5)

}

FecDescr ::= SEQUENCE {
coder Type Coder Type,
interl eaver Type I nterl eaver Type
}

Coder Type ::= ENUMERATED ({
reedSol onron216200 (0)
}

I nterl eaver Type ::= ENUMERATED ({

nol nterl eaver (0),
t hreeBranchCov (1)

}

FcaDescr ::= SEQUENCE {
schPer NoFr anes I NTEGER (1..15),
| chPer NoFr anes I NTEGER (1..15),
nbCOF Sch I NTEGER (0..1),
phyModeSch PhyMbdeSch,
phyModelLch PhyModeLch,
nbCf Lch I NTEGER (0. . 255),
m nNbCf Lch I NTEGER (0. . 255)
}

PhyMbdeSch :: = ENUMERATED ({

nophyMbdePropos (0),
cBPSK12 (1),

cBPSK34 (2),

cQPSK12 (3),

cQPSK13 (4),
cl6QAMD16 (5),
c16QAMB4 (6),
c64QAMB4 (7)

}

PhyModeLch: : = ENUMERATED {
noPhyMbdePr oposal (0),
cpBPSK12 (1),
cpBPSK34 (2),
cpQPSK12 (3),
cpQPSK13 (4),
cpl6QAMB16 (5),
cpl6QAMB4 (6),
cp64QAMB4 (7)

}

FsaDescr ::= SEQUENCE {
phyModelLch PhyModeLch,
nbOf Leh | NTEGER (0. . 255),
m nNbCF Lch | NTEGER (0. . 255),
startPoi nter | NTEGER (0. .8191),

ETSI

ETSI TR 102 365 V1.2.1 (2005-06)

31
start MacFrane St art MacFr anme
}
Start MacFrane ::= SEQUENCE {
repetitionCounter I NTEGER (0. .4095),
f rameCount I NTEGER (0. . 15)
}
Correctlndication ::= ENUVERATED {

receptionCorrect (0),
receptionlncorrect (1)

}

Al | ocSonmeRsp :: = ENUMERATED {
al | ocSoneDone (0),
al | ocSonmeChan (1),
al | ocSoneReset (2),
al | ocSomeBW (3),
al | ocSonmeBot h (4),
al | ocSomreBadComand (255)

}

Al | ocSonmeReq :: = SEQUENCE {
msgType H 2LockMsgTypes,
tal kerI D I NTEGER (0. .63),
listenerlD | NTEGER (0. .63),
bandwi dt h Bandwi dt h
}

H 2LockMsgTypes ::= ENUMERATED ({

al | ocat eSone (0),
nodi f yBandwi dth (1),
reclainrhis (2),

rel easeThis (3)

}

Modi f yBandwi dt hSt at us :: = ENUMERATED {
nodi f yBandwi dt hDone (0),
nodi f yBandwi dt hChan (1),
nodi f yBandwi dt hReset (2),
nodi f yBandwi dt hBW (3) ,
nmodi f yBandwi dt hBadCommrand (255)

}

Modi f yBandwi dt hReq :: = SEQUENCE {
nmsgType H 2LockMsgTypes,
streantChannel | NTEGER (0..63),
bandw dt h I NTEGER (0. .1023)

}

LockReqArg ::= SEQUENCE {
| ockReqHdr LockReqHdr,
dat aFi el d LockReqDat a
}

LockReqHdr ::= SEQUENCE {
destld Physi cal I d,
tl I NTEGER (0. . 255),
rt I NTEGER (0. . 3),

t code I NTEGER (0. .15),
pri I NTEGER (0. .15),
sourcel d Physi cal 1d,

I ength I NTEGER(0. . 65535) ,
ext Tcode | NTEGER (0. .65535)
}

Physicalld ::= I NTEGER (0. .63)

LockReqgData ::= CHO CE {
oPCR OPCR,

i PCR | PCR
}

OPCR :: = SEQUENCE {
onLi ne I NTEGER (0..1),
br oadcast Count I NTEGER (0. .1),
poi nt ToPoi nt Count I NTEGER (0. .255),
channel I NTEGER (0. .255),

ETSI

ETSI TR 102 365 V1.2.1 (2005-06)

pay! oad
}

I PCR ::= SEQUENCE {
onLi ne
br oadcast Count
poi nt ToPoi nt Count
channel

32

I NTEGER (0. . 1023)

| NTEGER (0. . 1),

I NTEGER (0. . 1),

| NTEGER (0. . 255),
| NTEGER (0. . 255)

}

LockRspArg ::= SEQUENCE {
aLockRspHdr LockRspHdr
aRspDat a LockRspbDat a
}

LockRspHdr ::= SEQUENCE {
destld Physi cal I d
tl I NTEGER (0. . 255),
rt I NTEGER (0. .3),
t code I NTEGER (0. .15)
pri I NTEGER (0. . 15),
sourcel d Physi cal I d
rcode Rcode,
|l ength | NTEGER(0. . 65535) ,
ext Tcode | NTEGER(0. . 65535)
}

Rcode ::= CHA CE {
respConpl ete | NTEGER(0) ,
respError LockRspErr or
}

LockRspError ::= CHO CE {
respConflictError | NTEGER(4) ,
respDat aErr or | NTEGER(5) ,
respTypeError | NTEGER(6)
respAddr essErr or | NTEGER(7)

}

LockRspDat a ::= SEQUENCE {

ol dval ue OCTET STRI NG
}

Recl ai nThi sReq :: = SEQUENCE {
msgType H 2LockMsgTypes
handl e G oupMacl d,
channel | NTEGER,
payl oad Bandwi dt h
}

Macld ::= I NTEGER (0. .255)

GroupMacld ::= Macld (224..255)

Bandwi dth ::= | NTEGER (0..1023)

Recl ai nThi sRsp ::= SEQUENCE {
status Recl ai nft at us
}

Recl ai nft at us :: = ENUMERATED ({
done (0),
chan (1),
reset (2),
bandwi dth (3),
both (4),
badConmmand (255)

}

Rel easeThi sRsp :: = SEQUENCE {
status H 2BusRel easeSt at us
}

H 2BusRel easeSt at us :: = ENUVERATED {
done (0),
chan (1)
reset (2)

badConmmand (255)

ETSI

ETSI TR 102 365 V1.2.1 (2005-06)

33 ETSI TR 102 365 V1.2.1 (2005-06)

}
WiteReqArg :: = SEQUENCE {
desti D Physi cal 1d,
tl I NTEGER (0. . 255),
rt I NTEGER (0. . 3),
t code I NTEGER (0. .15),
pri I NTEGER (0. . 15),
sourcel d Physi cal I d,
csrOffset | NTEGER, -- 48 bits !!!
quadl et Dat a I NTEGER
}
Desi gnat edCC : : = ENUMERATED ({ - - Bool ean enunerati on

not Desi gnated (0),
designated (1)

Channel sTxCharacteristics ::= SEQUENCE OF Channel TxCharacteristics
Channel TxChar acteristics ::= SEQUENCE {
channel Channel ,
txCharacteristics TxCharacteristics
}
TxCharacteristics ::= ENUVERATED {
txCharacteristicl (0), --define values as required per test case

txCharacteristic2 (1),
txCharacteristic3 (2)

--etc
}
Channel ::= | NTEGER (0. . 255)
Bandwi dt hUse ::= ENUMERATED ({
not Used (0),

m ni munse (1),
nor mal Use (2),
maxi muniJse (3),
saturated (4)

}

END

A.2 DatagramSocketAPI Java interface

The work described in the present document has been performed mainly using the Java programming language.
Therefore implementations have been done using Java.

The presented interfaces have been trandated into Javainterface. The source code of these interfacesis presented in the
following:

/1 Dat agranBocket APl . j ava
package org.etsi.ttcn. hl 2. udp ;
public interface DatagranSocket APl {
publ i c bool ean connect (Socket Address renote) ;

public void disconnect() ;

publ i c bool ean isConnected() ;

publ i c bool ean send(Dat agranPacket packet) ;

public bool ean recei ve(Dat agranPacket packet, int tinmeout) ;
public void close() ;

/| Dat agranPacket.j ava
package org.etsi.ttcn. hl 2. udp ;
public interface DatagranPacket {

public byte[] getData() ;
public int getOfset() ;
public int getLength() ;
public void setData(byte[] buf, int offset, int length) ;
public void set Socket Addr ess(Socket Addr ess address) ;
publ i ¢ Socket Addr ess get Socket Address() ;

c

public void setData(byte[] buf) ;

ETSI

34

public void setLength(int |ength) ;

}
/] Socket Address. java
package org.etsi.ttcn. hl 2. udp;
public interface Socket Address {
public String getHostNanme() ;
public void setByHost Nanme(String host Nane) ;
public void setPort(int port) ;
public int getPort() ;

ETSI TR 102 365 V1.2.1 (2005-06)

A.3 Specialized Hiperlan2 Datagrams as Java interface

The following clause displays the complete Java interface descriptions for the specialized Hiperlan2 Datagrams as used

for the presented work.

/1 HL2Dat agram j ava
package org.etsi.ttcn. hl 2. udp;

public interface HL2Dat agram ext ends Dat agr anPacket {

public static final
public static final
public static final
public static final
public static final
public static final

nt MAX HL2 DATAGRAM LENGTH = 60 ;
nt HEADER LENGTH = 12 ;

nt POS_TAG = 0 ;

nt POS MAC ID = 4 ;
nt POS_PEER MAC I D
nt PCS_DATA LENGTH

5,
8 ;

/**

* Returns the TAG of this H perLan2 datagram
* @eturn the TAG field as integer

*/

public int getTag() ;

/**

* Sets the TAG field of this H perLan2 datagram

* In addition it set the data length of this datagram

* to the valid value, i.e. if the tag indicates a short channel

* pdu the length will be set to 5, else to 48.
*
* A short channel pdu has either the tag val ues: 0x80, 0x82, 0x88,
* O0x8A, Ox8E
*
* |t has the sanme effect as calling setLength() with the respective
* val ues.
*
* @aramtag as defined in the UDP API
*
/

public void setTag(int tag) ;

| **

* Returns the mac id of this Hi perLan2 datagram
* @eturn the nac id as integer

*/

public int getMclD() ;

| **

* Sets the mac id of this H perLan2 datagram
*
* @aram nmacl D as defined in the UDP API
*
/
public void setMacl D(int macl D) ;

| **

* Returns the peer mac id of this HiperLan2 datagram

* @eturn the peer mac id as integer
*/

public int getPeerMacl D() ;

/**

* Sets the peer mac id of this Hi perLan2 datagram

*

* @aram peerMacl D as defined in the UDP API

ETSI

35 ETSI TR 102 365 V1.2.1 (2005-06)

*/
public void setPeerMacl D(i nt peer Macl D) ;

/**

* Returns the data length of the HiperLan2 datagram
* @eturn the length of the PDU in bytes

*/

public | ong getDatalLength() ;

*

/
Sets the data | ength of the Hi perLan2 datagram

I f the datagram contains a |ong channel PDU then | ength should

be 48. In case the datagram contains a short channel PDU then |ength
shoul d contain 5.

If called after setTag() this would overide the Iength cal culation
done in setTag()

R R

*

@ar am dataLength the I ength of the PDU in bytes

*/

public void setDatalLength(long datalLength) ;

/**

* Validates the format of the HL2 header of this datagram
* Only the format, i.e. value ranges, etc.

* @eturn true if the datagram has the correct format, false else.
*/
publ i c bool ean validate() ;

/I HL2User Pl aneDat agr am j ava
package org.etsi.ttcn. hl 2. udp;

public interface HL2User Pl aneDat agr am ext ends HL2Dat agr am {

| **

* Returns the RLC user data as byte array.
*

* @eturn the RLC user plane PDU
*/
public byte[] getUserData() ;

/**

* Sets the RLC user data of this user plane datagram
* @aram userData the RLC user data

*/

public void setUserData(byte[] userData) ;

/**

* Returns the flags of this HiperLan2 User Pl ane datagram
*

* @eturn the flags encoded as integer

*/

public int getFlags() ;

/**

* Sets the flag of this HiperLan2 User Plane datagram
*

* @aramflags the flags encoded as integer

*/

public void setFlags(int flags) ;

/**

* Returns the DLCC ID of this Hi perLan2 User Pl ane datagram
*

* @eturn the DLCC I D encoded as integer

*/

public int getD cclD) ;

/**

* Sets the DLCC I D of this HiperLan2 User Pl ane datagram

*

* @aramdl cclD the DLCC | D encoded as integer
*/

ETSI

36 ETSI TR 102 365 V1.2.1 (2005-06)

public void setD cclD(int dlcclD) ;

}

/1 HL2Cont r ol Pl aneDat agram j ava
package org.etsi.ttcn. hl 2. udp;

public interface HL2Contr ol Pl aneDat agr am ext ends HL2Dat agr am {

public static final int POS_ RLC PDU TYPE = 1 ;
public static final int POS_EXT = 2 ;
public static final int POS_RLC PDU = 12 ;

| **

* Returns the RLC PDU Types of this control plane datagram

*

* @eturn the RLC PDU types as defined in the UDP API
*/
public int getR cPDUType() ;

/**

* Sets the RLC PDU types of this control plane datagram

*

* @aramrl cPDUType the RLC PDU type as defined in the UDP API
*/
public void setR cPDUType(int rlcPDUType) ;

/**
* Returns the extension type of this control plane datagram
*
* @eturn the extension type as defined in the UDP API
*
/
public int getExtensionType() ;

| **

* Sets the extensions type of this control plane datagram
*
* @aram ext ensi onType the extension types as defined in the UDP API
*
/
public void set Extensi onType(int extensionType) ;

*

Returns the RLC Control Plane PDU as a byte array.

The byte array can be two octets long in the case of a
short channel RLC PDU in downling, or 5 octets long in the
case of a short channel RLC PDU in Uplink, or 48 octet |ong
in the case of a |long channel RLC PDU (Up/ Downl i nk)

/

* ok ok ok % kX

* @eturn the RLC control plane PDU
*/
public byte[] getR cData() ;

*

/
Sets the RLC control plane PDU of this control plane datagram

The PDU size mght differ for different kind of PDUs, |ike short channel
PDUs in Up- or Downlink or Long channel PDU (Up- and Downl i nk).

<p>

In case the MAC I D nust be provided as last octet in a short

channel RLC PDU in Uplink the octet nust be present in the PDU.

<p>

Setting the RLC data, adjust also the datalLength of the

HL2Control Pl ane datagram This is the sane as calling first

<code>set Rl cDat a(buf) </ code> i nmedi ately followed by

<code>set Dat aLengt h(buf. | engt h) </ code>.

* ook ok ok Rk 3k ko ok k% % 3k ok Ok

~

@aramrlcbData the RLC control plane PDU

public void setR cData(byte[] rlcData) ;

ETSI

37 ETSI TR 102 365 V1.2.1 (2005-06)

Annex B:
HiperLAN2 API Specifications

B.1 DatagramSocketAPI Specification

connect

Signature connect (in renote: Socket Address): bool ean

In Parameters renote the remote peer entity described as SocketAddress

Return Value t rue if the connection could have been established, f al se otherwise

Effect Connects this socket. The socket is configured so that it only receives datagrams from, and
sends datagrams to, the given renot e peer address. Once connected, datagrams may not be
received from or sent to any other address. A datagram socket remains connected until it is
explicitly disconnected.

disconnect

Signature di sconnect(): void

In Parameters none

Return Value voi d

Effect The socket can receive datagrams from, and sends datagrams to, any remote address.

isConnected

Signature i sConnect (): bool ean

In Parameters None

Return Value t r ue if this socket is connected, f al se otherwise

Effect The operation returns t r ue if the socket is connected, f al se otherwise.

send

Signature send(in packet: DatagranPacket): bool ean

In Parameters packet the packet to be send

Return Value true if the send operation was successful, f al se otherwise.

Effect Sends a datagram packet from this socket. The Dat agr anPacket includes information
indicating the data to be sent, its length, the IP address of the remote host, and the port
number on the remote host.

On a send operation, if the packet's address is set and the packet's address and the socket's
address (in case the socket is connected) do not match, f al se will be returned and the packet
will not be send.

receive

Signature recei ve(inout packet: DatagranPacket, in tineout: int): bool ean

In Parameters packet a DatagranPacket where the received packet could be stored in
ti meout the amount of milliseconds the operation blocks when waiting to receive a packet

Return Value true if a packet has been received or a timeout has occurred, f al se in any other error
condition

Effect Receives a datagram packet from this socket. When this method returns, the

DatagramPacket's buffer is filled with the data received. The datagram packet also contains
the sender's IP address, and the port number on the sender's machine. This method blocks
until a datagram is received or the indicated time (in milliseconds) has passed. If a timeout has
occurred packet will be returned unmodified.

The length field of the datagram packet object contains the length of the received message. If
the message is longer than the packet's length, the message is truncated.

ETSI

38 ETSI TR 102 365 V1.2.1 (2005-06)

close

Sighature close(): void
In Parameters None

Return Value Void

Effect

Closes the socket. All resources bound to this socket will get released.

getData

Signature

getData(): byte[]

In Parameters

none

Return Value

the buffer used to receive or send data

Effect

Returns the data buffer. The data received or the data to be sent starts from the of f set inthe
buffer, and runsfor | engt h long. The values for of f set and | engt h can be retrieved with the
respective operations.

getLength

Signature

getLength(): int

In Parameters

None

Return Value

The length of the data to be sent or the length of the datareceived.

Effect Returns the length of the data to be sent or the length of the data received. The length of the
data specifies the number of bytes in the byte buffer being relevant.
getOffset
Signature getOffset(): int

In Parameters

None

Return Value

The offset of the datato be sent or the offset of the datareceived.

Effect Returns the offset of the datato be sent or the offset of the datareceived.
getSocketAddress
Signature get Socket Address(): Socket Address

In Parameters

None

Return Value

the associated Socket Addr ess Of this Dat agr anPacket if present, or nul | €else

Effect Gets the Socket Addr ess (usually IP address + port number) of the remote host that this
packet is being sent to or is coming from.
setData
Signature SetData (in buf: byte[]): void

In Parameters

buf the data for the byte buffer

Return Value

Void

Effect

Set the data buffer for this packet, with the of f set of this Dat agr anPacket set to 0, and the
I engt h set to the length of buf . of f set and | engt h can be retrieved with the respective
operations.

ETSI

setData

39 ETSI TR 102 365 V1.2.1 (2005-06)

Signature

setData (in buf: byte[], in offset: int, in length: int): void

In Parameters

buf the buffer to set for this packet

of fset the offsetinto the data
I ength the length of the data and/or the length of the buffer used to receive data
Return Value void
Effect Set the data buffer for this packet. This setsthe data, | engt h and of f set of the packet.
setLength
Signature setLength(in length: int) void
In Parameters I ength the length to set for this packet.
Return Value void

Effect Set the length for this packet. The length of the packet is the number of bytes from the packet's
data buffer that will be sent, or the number of bytes of the packet's data buffer that will be used
for receiving data. The length must be lesser or equal to the offset plus the length of the
packet's buffer.

setSocketAddress
Signature set Socket Addr ess(i n address: Socket Address) void

In Parameters

Addr ess the Socket Addr ess

Return Value

Void

Effect

Sets the Socket Addr ess (usually IP address + port number) of the remote host to which this
datagram is being sent.

B.2

getHostName

SocketAddress specification

Signature

get Host Name(): String

In Parameters

None

Return Value

the host name of this Socket Addr ess

Effect If no host Nane has been provided before the dotted IP-address " 0. 0. 0. 0" will be returned.
setByHostName
Signature set ByHost Name(in hostname: String): void
In Parameters host the specified host, or nul | for the local host.
Return Value Void
Effect Sets this Socket Addr ess to the IP address of a host, given the host's name. The host name
can either be a machine name, such as "portal . etsi.org", or a dotted ip-address of the
form ,212. 234. 161. 115' .
The port of this Socket Addr ess remains unchanged.
setPort
Signature SetPort(in port: int) void

In Parameters

port the specified port number

Return Value

Voi d

Effect

Sets this Socket Addr ess to this port number. The host name of this Socket Addr ess remains
unchanged.

ETSI

40 ETSI TR 102 365 V1.2.1 (2005-06)
getPort
Sighature getPort(): int
In Parameters None

Return Value

the port nunber

Effect

Returns the port number of this Socket Addr ess.

B.3

Java interface

The work described in the present document has been performed mainly using the Java programming language.

Therefore implementations have been done using Java.

The presented interfaces have been trandlated into Java interface. The source code of these interfacesis presented in the

following:

/| Dat agr anSocket API . j ava
package org.etsi.ttcn.udp ;
public interface DatagranSocket APl {

public
public
public
public
public
public

bool ean connect (Socket Address renot e)

voi d di sconnect () ;
bool ean i sConnected() ;

bool ean send(Dat agr anPacket packet)
bool ean recei ve(Dat agr anPacket packet,

void close() ;

/1 Dat agranPacket.j ava
package org.etsi.ttcn.udp ;
public interface DatagranPacket {

publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i

Cc
Cc
C
C
Cc
Cc
C
C

byte[] getData() ;
int getOfset() ;
int getLength() ;

voi d setData(byte[] buf, int offset,
voi d set Socket Addr ess(Socket Addr ess address) ;

Socket Addr ess get Socket Addr ess()

voi d setData(byte[] buf) ;
voi d setLength(int |ength)

}

/] Socket Address. j ava

package org.etsi.ttcn. udp;

public interface Socket Address {
public String getHostNane() ;

public void setByHost Nane(String host Nane)

public void setPort(int port) ;
public int getPort() ;

int

ETSI

| engt h)

int timeout)

41 ETSI TR 102 365 V1.2.1 (2005-06)

Annex C:
Clocks and timing

C.1 Clocks and timing

The development of the API raised a question concerning clocks. Isit advantageous for PLT and PUT to share the same
clock whose value can be manipulated? In this way, the time waiting for timers to expire during testing could be
reduced thereby saving time for those testing. In effect, a shared clock could allow a"time warp” to the next testable
condition like the expiry of atimer or the reception of asignal. Thisis similar to moving our personal clock ahead one
hour for Daylight Savings Time in order to wake up earlier.

In some BRAN testing, time warping could be very useful because some timers have a duration of 6 000ms. These long
timers coupled with the scaling required by less than real-time simulations could result in long wait times. See the
clause on "Timing".

Thisissue resulted in the following analysis.

C.1.1 Clocks

In testing, clocks are the source for timer values and expiration. The PLT and PUT each require a clock. They can share
the same clock or each can have their own independent clock.

Anexample of aPLT and PUT sharing the same clock is where the frame number generated by the oneis used as the
clocking signal by the other. For HiperLANZ2, thisis possible for real implementations since AP periodically sends
frames including a frame number that increments by one each time sent.

Independent clocks are usually used in both implementations and test equipment. Normally, the test equipment and the
SUT each have and use their own clock.

The clock can be integrated into the PLT or PUT respectively or separated from it(i.e. internal versus external clocks).
An oscillator within adeviceisan internal clock example. Such adevice usually does not have an interface that test
equipment or an observer can access. Thus, internal clocks allow their time to be observed but the time value cannot be
manipulated. Thus, thetimeis absolute.

Externa clocks have an interface that allow time values to be changed. An exampleis the system clock of a computer.
If an application program accesses the system clock for its timing purposes, the application program does so through an
interface. Theoretically, any clock can be connected to thisinterface. Thus, the time values can be manipulated viathe
interface. The time isrelative to the clock on the interface.

Table C.1 shows the possible combinations for clocks external and internal for the TE and SUT and presents an
example for each. These clocks are unshared.

Table C.1: Internal and External Clock Examples for Unshared Clocks

SUT Clock TE Clock Example
Internal Internal Interoperability testing of two HiperLAN2 devices with one used as a
"golden" SUT.
Internal External Conformance Testing a real HiperLAN2 implementation over its air
interface.
External Internal SUT is a TTCN executable using the system clock. TE is an SDL using

internal logic for clocking an not the system clock.

Admittedly a far-fetched example but SDL can be used to validate the
TTCN test suite. In this case, SUT is TTCN ATS and TE is the SDL.
External External Testing using PLT and PUT that each derive its timing from PC system
clocks.

ETSI

42 ETSI TR 102 365 V1.2.1 (2005-06)

Table C.2 shows the possible combinations for shared clocks external and internal to the TE and SUT with examples.

Table C.2: Internal and External Clock Examples for Shared Clocks

SUT Clock TE Clock Example
Internal Internal Impossible case. By definition, two clocks that are internal cannot be
shared.
Internal External Conformance Testing a real HiperLAN2 implementation over its air

interface. The TE uses the SUT's frame number. In this case the SUT
must be a HiperLAN2 AP. An AT does not generate the frame number.
External Internal Say that a protocol specification requires a device on one side of the
protocol to generate the clocking for the other side. When the TE is on the
clock generator side, then the clock could be considered internal to the TE
if the clocking conforms to the specification. Obviously, "time warping" via
an external clock is non-conformant in this case. The SUT then relies upon
the TEs timing indication. An example might be an AT relying upon the AP
for timing information and the TE has the AP role.

External External Testing using PLT and PUT that each derive their timing information from
a shared buffer/stack. This is the classic "time warping" example.

C.1.2 Timing

There are some long timersin the BRAN protocols. One of the scenarios of testing wireless protocols over wire
includesa TTCN platform running tests against software simulations (e.g. SDL). Such simulations are likely not able to
run implementationsin real time. For example, decoding a DL frame, determining the corresponding protocol action,
and encoding the UL response within the delay of less then a millisecond is unlikely with an SDL simulation.
Therefore, time scaling will be necessary to alow the simulation adequate time. The scaling may be by a factor from 10
to 100. This could ultimately result in having to wait ten minutes or so real timeto seeif the timer under test operates
correctly.

It would be interesting for the tester to reduce this amount of wait time when testing opposite slow simulations or
testing-thus the "time warp" idea.

C.1.3 Time Warping

The principle of time warping issimple. The TE and SUT each jump the same amount of time thereby speeding up test
execution time. Of course, behaviour must not have occurred during the time warp. The time warp must occur in "dead
time" for both the SUT and the TE. Unobserved behaviour ruins any value of testing.

The principleis shown in figure C.1.

Timer
Queue
TP3 A
TT3
TE SuT Teo By
Order
TT3 TP3 TT2
oo | | Tez T
TTl TPl TPl

T+, = TE timer n expiry
Tpn = IUT timer n expiry

(Try < Tp<Tyz)and (Tp; < Tpp < Tpg)

Figure C.1: Timer Queue Setup for Time Warping

ETSI

43 ETSI TR 102 365 V1.2.1 (2005-06)

Infigure C.1, the timer events for the Test Equipment and the IUT in the SUT are arranged in chronological order in a
timer queue. The timer events for the TE are known when the executable test case makes a cal to the TRI to start or
stop atimer.

Knowing the timer eventsin the IUT are problematical. If the IUT schedules timer events using an external clock, then
the calls to schedule those timers can be monitored in order to build the SUT timer event queue. External clocks are
used in protocol simulations and prototypes. Production implementations use internal or external clocks. For UDP/IP
testing, it islikely that the lUT will use an external clock and, thus, it islikely the IUT timer queue can be devel oped.

If the SUT hasaninternal clock that the tester cannot manipulate, then time warping is not possible. For example, if the
TE uses an external interrupt for timing, but the SUT uses an internal oscillator for its timing, then one cannot "warp"
the oscillator to atime in the future by the any increment. Thus, the warping cannot be synchronized making it useless.

Once both timer queues are known, they are combined into one queue in chronological order to run the test.

In running atest, only one of two events are possible: a message is sent/received or atimer expiry. Practically speaking,
two or more of these events cannot occur simultaneously since the events occur in a stack-like FIFO manner. Thus, we
consider only two different events can occur.

. Sent/received messages:

- For receiving a message, there are guard timers set awaiting the arrival of an expected message. If the
received message is the expected message, these guard timers are cancelled and operation continues.
This means that the guard timers are removed from the consolidated timer queue. If the received message
is unexpected, then the test case stops. All timers are now useless and removed from the queue except for
those needed to close out the test case and bring the IUT to a given state.

- Timers or management entities cause message transmission. In the event of management entities
transmitting a message, they usually start guard timers because a response to the message is required.
These timers are added in chronological order to the queue. For timer-caused message transmission, see
the point immediately below.

. Timer expiry occurs when atimer in the queue expires firing the actions necessary to send the message. When
atimer in the queue expires, it is removed from the queue. The expiry of timer usually causes some response
that then causes other timersto be set and placed in the queue.

The times used in the queue can be either absolute or relative. Absolute time starts at zero at the start of the first event.
The setting of atimer isan event as well as transmitting or receiving a message. All times placed on the queue are based
upon thisfirst event. Relative time is the adjustment of the timesin the timer queue by determining the time between
the last event and the event that has just occurred and subtracting it from all the timer values in the queue. The type of
time used (relative or absolute) is a matter of implementation convenience.

Note that random events can generated using a pseudo random number generator to determine the occurrence in time of
the event. In this way, random events are placed into the timer queue.

Figure C.2 is an example of the queue, in relative time, after the earliest timer in figure C.2 has expired.

Timer
Queue

TP3 - TPl

TT3 - TPl

_ Expiry
TPZ TPl Order

TT2 - TPl

TT1' TPl

Figure C.2: Timer Queue after Timer Expiry (Relative Time)

ETSI

44 ETSI TR 102 365 V1.2.1 (2005-06)

C.1.4 Using Time Warping

The advantage of using time warping is to reduce testing time. One can skip to the next timer or message event rather
than waiting for atimer event to occur in real or simulated time. In some cases, simulated time can be significantly
longer than real time and lead to very long waits between events. In the event of one BRAN protocol, this wait time can
be up to 6 minutes per event. With several eventsin atest case, atester would have to spend a half-hour or more
running one test case.

Several hand walk-throughs of test cases using time warping were conducted. Time warping was applicable to all tests
and arrived at the same results as real-time testing. Scenarios were devised to "break” the concept but the concept
remained intact.

Warping was not tried on a prototype implementation or simulation.

As discussed above, time warping could not be applied to IUT/SUT with internal clocks. Simply, there is no way to
"warp" the I[UT/SUT into the sametime asthe TE.

Using warping on a prototype implementation or simulation will require software to access the externa clock interfaces,
form the timer queues, and manipulate them. The time and resources needed to devel op this software must be compared
against the time and resources saved during test execution. If tests are to be run often, warping appears to be
advantageous. If not, then the straightforward use of time appears to be advantageous.

Time warping was not used for UDP/IP testing for resource reasons. Since the STF is exploring the feasibility of
UDP/IP testing, the actual time spent in running testsis significantly less than the total time for setting up of the TE,
conversion of the transfer syntax, and the conversion of TTCN-2 to TTCN-3. The benefits obtained from warping
would not outweigh the time required to devel op the software necessary to implement warping.

However, warping may be viable for HiperLAN2 work if UDP/IP testing is pursued.

ETSI

45 ETSI TR 102 365 V1.2.1 (2005-06)

Annex D:
The Java™ code of UDP/IP based virtual tester prototype

The Java code developed for the HiperLAN2 UDP/IP based virtual tester prototype is contained in the archive
HIPERLAN_TestAdapter.zip contained in the archive tr_102365v010201p0.zip which accompanies the present
document.

NOTE: Java™ isthe trade name of a product supplied by Sun Microsytems™. This information is given for the
convenience of users of the present document and does not constitute an endorsement by ETSI of the
product named. Equivalent products may be used if they can be shown to lead to the same results.

ETSI

46

ETSI TR 102 365 V1.2.1 (2005-06)

History

Document history
V111 June 2005 Publication
V121 June 2005 Publication

ETSI

	Intellectual Property Rights
	Foreword
	1 Scope
	2 References
	3 Definitions and abbreviations
	3.1 Definitions
	3.2 Abbreviations

	4 The concepts
	4.1 The requirement
	4.2 Virtual tester/Protocol Layer Tester (PLT)
	4.2.1 A generic, technology-neutral, and inexpensive solution
	4.2.1.1 The data on the wire interface

	4.2.2 Advantages and spin-offs

	4.3 PLT components
	4.3.1 Wire interface data/wire datagrams
	4.3.2 The API
	4.3.3 Wire transport module/Adaptation layer

	5 Implementing the PLT for the HiperLAN2 DLC protocol
	5.1 Test architecture for the DLC layer
	5.1.1 Test Configurations
	5.1.1.1 Test Configurations for MT
	5.1.1.2 Test Configurations for AP

	5.2 PLT components
	5.2.1 Existing components
	5.2.1.1 Test system
	5.2.1.2 Abstract Test Suite (ATS)
	5.2.1.3 Test System Prototype
	5.2.1.3.1 Codecs

	5.2.2 Developed components
	5.2.2.1 Wire datagram
	5.2.2.2 The API for HiperLAN2 DLC
	5.2.2.3 Wire transport module

	5.2.3 Clocks and timing
	5.2.4 Heuristics for defining an API

	Annex A: HiperaLAN2 Wire Datagram Specification
	A.1 Wire datagram ASN.1 module
	A.2 DatagramSocketAPI Java interface
	A.3 Specialized Hiperlan2 Datagrams as Java interface

	Annex B: HiperLAN2 API Specifications
	B.1 DatagramSocketAPI Specification
	B.2 SocketAddress specification
	B.3 Java interface

	Annex C: Clocks and timing
	C.1 Clocks and timing
	C.1.1 Clocks
	C.1.2 Timing
	C.1.3 Time Warping
	C.1.4 Using Time Warping

	Annex D: The JavaŽ code of UDP/IP based virtual tester prototype
	History

