
 ECMA-426
1st Edition, December 2024

Source map format
specification

COPYRIGHT PROTECTED DOCUMENT

© Ecma International

is the registered trademark of Ecma International

Page Contents

1 Scope . 1

2 Conformance . 1

3 References . 1
3.1 Normative references . 1
3.2 Informative references . 1

4 Terms and definitions . 1

5 Source map format . 2
5.1 Mappings structure . 4
5.2 Resolving sources . 7
5.3 Extensions . 8

6 Index map . 8
6.1 Section . 9

7 Retrieving source maps . 9
7.1 Linking generated code to source maps . 9
7.2 Fetching source maps . 13

8 Conventions . 13
8.1 Source map naming . 14
8.2 Linking eval'd code to named generated code . 14

9 Language neutral stack mapping notes . 14

10 Multi-level mapping notes . 14

Annex A (informative) Index . 15
A.1 Terms defined by this specification . 15
A.2 Terms defined by reference . 15

Bibliography . 17

© Ecma International 2024 i

ii © Ecma International 2024

Introduction

This Ecma Standard defines the Source map format, used for mapping transpiled source code back to the original
sources.

The source map format has the following goals:

• Support source-level debugging allowing bidirectional mapping

• Support server-side stack trace deobfuscation

The canonical URL for the latest published source map standard is located at https://426.ecma-international.org/.
The document at https://tc39.es/ecma426/ is the most accurate and up-to-date draft source map specification. It
contains the content of the most recently published snapshot plus any modifications that will be included in the
next snapshot.

If you want to get involved you will find more information at the specification repository.

The original source map format (v1) was created by Joseph Schorr for use by Closure Inspector to enable source-
level debugging of optimized JavaScript code (although the format itself is language agnostic). However, as the
size of the projects using source maps expanded, the verbosity of the format started to become a problem. The
v2 format was created by trading some simplicity and flexibility to reduce the overall size of the source map. Even
with the changes made with the v2 version of the format, the source map file size was limiting its usefulness. The
v3 format is based on suggestions made by Pavel Podivilov (Google).

The source map format does not have version numbers anymore, and it is instead hard-coded to always be "3".

In 2023-2024, the source map format was developed into a more precise Ecma standard, with significant contri-
butions from many people. Further iteration on the source map format is expected to come from TC39-TG4.

Asumu Takikawa, Nicolò Ribaudo, Jon Kuperman

ECMA-426, 1st edition, Project Editors

This Ecma Standard was developed by Technical Committee 39 and was adopted by the General Assembly of
December 2024.

© Ecma International 2024 iii

https://426.ecma-international.org/
https://tc39.es/ecma426/
https://github.com/tc39/source-map

COPYRIGHT NOTICE

© 2024 Ecma International

This document may be copied, published and distributed to others, and certain derivative works of it may
be prepared, copied, published, and distributed, in whole or in part, provided that the above copyright notice
and this Copyright License and Disclaimer are included on all such copies and derivative works. The only
derivative works that are permissible under this Copyright License and Disclaimer are:

(i) works which incorporate all or portion of this document for the purpose of providing commentary or
explanation (such as an annotated version of the document),

(ii) works which incorporate all or portion of this document for the purpose of incorporating features that
provide accessibility,

(iii) translations of this document into languages other than English and into different formats and
(iv) works by making use of this specification in standard conformant products by implementing (e.g. by copy

and paste wholly or partly) the functionality therein.

However, the content of this document itself may not be modified in any way, including by removing the copy-
right notice or references to Ecma International, except as required to translate it into languages other than
English or into a different format.

The official version of an Ecma International document is the English language version on the Ecma Inter-
national website. In the event of discrepancies between a translated version and the official version, the official
version shall govern.

The limited permissions granted above are perpetual and will not be revoked by Ecma International or its
successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and ECMA INTERNA-
TIONAL DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY OWNERSHIP
RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE.

iv © Ecma International 2024

Source map format specification

1 Scope

This Standard defines the source map format, used by different types of developer tools to improve the debugging
experience of code compiled to JavaScript, WebAssembly, and CSS.

2 Conformance

A conforming source map document is a JSON document that conforms to the structure detailed in this specification.

A conforming source map generator should generate documents which are conforming source map documents,
and can be decoded by the algorithms in this specification without reporting any errors (even those which are
specified as optional).

A conforming source map consumer should implement the algorithms specified in this specification for retrieving
(where applicable) and decoding source map documents. A conforming consumer is permitted to ignore errors or
report them without terminating where the specification indicates that an algorithm may optionally report an error.

3 References

The following documents are referred to in the text in such a way that some or all of their content constitutes
requirements of this document. For dated references, only the edition cited applies. For undated references, the
latest edition of the referenced document (including any amendments) applies.

3.1 Normative references

ECMA-262, ECMAScript® language specification, https://262.ecma-international.org/

ECMA-404, The JSON data interchange syntax, https://ecma-international.org/publications-and-standards/
standards/ecma-404/.

3.2 Informative references

IETF RFC 4648, The Base16, Base32, and Base64 Data Encodings, https://www.ietf.org/rfc/rfc4648.txt

WebAssembly Names binary format, https://www.w3.org/TR/wasm-core-2/#names%E2%91%A2. Living Standard.

4 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

4.1
generated code
code generated by the compiler or transpiler

4.2
original source
code which has not been passed through the compiler

© Ecma International 2024 1

https://262.ecma-international.org/
https://ecma-international.org/publications-and-standards/standards/ecma-404/
https://ecma-international.org/publications-and-standards/standards/ecma-404/
https://www.ietf.org/rfc/rfc4648.txt
https://www.w3.org/TR/wasm-core-2/#names%E2%91%A2

4.3
Base64 VLQ
a base64 value, where the most significant bit (the 6th bit) is used as the continuation bit and the "digits" are en-
coded into the string least significant first, and where the least significant bit of the first digit is used as the sign bit

NOTE The values that can be represented by the VLQ Base64 encoded are limited to 32-bit quantities until
some use case for larger values is presented. This means that values exceeding 32-bits are invalid
and implementations may reject them. The sign bit is counted towards the limit, but the continuation
bits are not.

Example 1 The string "iB" represents a Base64 VLQ with two digits. The first digit "i" encodes the bit
pattern 0x100010 , which has a continuation bit of 1 (the VLQ continues), a sign bit of 0 (non-
negative), and the value bits 0x0001 . The second digit B encodes the bit pattern 0x000001 ,
which has a continuation bit of 0 , no sign bit, and value bits 0x00001 . The decoding of this VLQ
string is the number 17.

Example 2 The string "V" represents a Base64 VLQ with one digit. The digit "V" encodes the bit pattern
0x010101 , which has a continuation bit of 0 (no continuation), a sign bit of 1 (negative), and the
value bits 0x1010 . The decoding of this VLQ string is the number -10.

4.4
source mapping URL
URL referencing the location of a source map from the generated code

4.5
column
zero-based indexed offset within a line of the generated code, computed as UTF-16 code units for JavaScript
and CSS source maps, and as byte indexes in the binary content (represented as a single line) for WebAssembly
source maps.

NOTE NOTE: That means that "A" (LATIN CAPITAL LETTER A) measures as 1 code unit, and "🔥" (FIRE)
measures as 2 code units. Source maps for other content types may diverge from this.

5 Source map format

A source map is a JSON document containing a top-level JSON object with the following structure:

{
 "version" : 3,
 "file": "out.js",
 "sourceRoot": "",
 "sources": ["foo.js", "bar.js"],
 "sourcesContent": [null, null],
 "names": ["src", "maps", "are", "fun"],
 "mappings": "A,AAAB;;ABCDE"
 "ignoreList": [0]
}

• version is the version field which shall always be the number 3 as an integer. The source map may be
rejected if the field has any other value.

• file is an optional name of the generated code that this source map is associated with. It's not specified if this
can be a URL, relative path name, or just a base name. Source map generators may choose the appropriate

2 © Ecma International 2024

interpretation for their contexts of use.
• sourceRoot is an optional source root string, used for relocating source files on a server or removing

repeated values in the sources entry. This value is prepended to the individual entries in the sources field.
• sources is a list of original sources used by the mappings entry. Each entry is either a string that is a

(potentially relative) URL or null if the source name is not known.
• sourcesContent is an optional list of source content (i.e., the Original Source) strings, used when the source

cannot be hosted. The contents are listed in the same order as the sources. Entries may be null if some
original sources should be retrieved by name.

• names is an optional list of symbol names which may be used by the mappings entry.
• mappings is a string with the encoded mapping data (see § 5.1 Mappings structure).
• ignoreList is an optional list of indices of files that should be considered third party code, such as framework

code or bundler-generated code. This allows developer tools to avoid code that developers likely don't want to
see or step through, without requiring developers to configure this beforehand. It refers to the sources array
and lists the indices of all the known third-party sources in the source map. Some browsers may also use the
deprecated x_google_ignoreList field if ignoreList is not present.

A decoded source map is a struct with the following fields:

file
A string or null.

sources
A list of decoded sources.

mappings
A list of decoded mappings.

A decoded source is a struct with the following fields:

URL
A URL or null.

content
A string or null.

ignored
A boolean.

To decode a source map from a JSON string str given a URL baseURL, run the following steps:

1. Let jsonMap be the result of parsing a JSON string to an Infra value str.
2. If jsonMap is not a map, report an error and abort these steps.
3. Decode a source map given jsonMap and baseURL, and return its result if any.

To decode a source map given a string-keyed map jsonMap and a URL baseURL, run the following steps:

1. If jsonMap["version"] does not exist or jsonMap["version"] is not 3, optionally report an error.
2. If jsonMap["mappings"] does not exist or jsonMap["mappings"], is not a string, throw an error.
3. If jsonMap["sources"] does not exist or jsonMap["sources"], is not a list, throw an error.
4. Let sourceMap be a new decoded source map.
5. Set sourceMap's file to optionally get a string "file" from jsonMap.
6. Set sourceMap's sources to the result of decoding source map sources given baseURL with:

▪ sourceRoot set to optionally get a string "sourceRoot" from jsonMap;
▪ sources set to optionally get a list of optional strings "sources" from jsonMap;
▪ sourcesContent set to optionally get a list of optional strings "sourcesContent" from jsonMap;
▪ ignoredSources set to optionally get a list of array indexes "ignoreList" from jsonMap.

7. Set sourceMap's mappings to the result of decoding source map mappings with:

© Ecma International 2024 3

▪ mappings set to jsonMap["mappings"];
▪ names set to optionally get a list of strings "names" from jsonMap;
▪ sources set to sourceMap's sources.

8. Return sourceMap.

To optionally get a string key from a string-keyed map jsonMap, run the following steps:

1. If jsonMap[key] does not exist, return null.
2. If jsonMap[key] is not a string, optionally report an error and return null.
3. Return jsonMap[key].

To optionally get a list of strings key from a string-keyed map jsonMap, run the following steps:

1. If jsonMap[key] does not exist, return a new empty list.
2. If jsonMap[key] is not a list, optionally report an error and return a new empty list.
3. Let list be a new empty list.
4. For each jsonItem of jsonMap[key]:

a. If jsonItem is a string, append it to list.
b. Else, optionally report an error and append "" to list.

5. Return list.

To optionally get a list of optional strings key from a string-keyed map jsonMap, run the following steps:

1. If jsonMap[key] does not exist, return a new empty list.
2. If jsonMap[key] is not a list, optionally report an error and return a new empty list.
3. Let list be a new empty list.
4. For each jsonItem of jsonMap[key]:

a. If jsonItem is a string, append it to list.
b. Else,

i. If jsonItem is not null, optionally report an error.
ii. Append null to list.

5. Return list.

To optionally get a list of array indexes key from a string-keyed map jsonMap, run the following steps:

1. If jsonMap[key] does not exist, return a new empty list.
2. If jsonMap[key] is not a list, optionally report an error and return a new empty list.
3. Let list be a new empty list.
4. For each jsonItem of jsonMap[key]:

a. If jsonItem is a non-negative integer number, append it to list.
b. Else,

i. If jsonItem is not null, optionally report an error.
ii. Append null to list.

5. Return list.

To optionally report an error, implementations can choose to:

▪ Do nothing.
▪ Report an error to the user, and continue processing.
▪ Throw an error to abort the running algorithm. (Infra §3.6 Control flow)

5.1 Mappings structure

The mappings data is broken down as follows:

▪ each group representing a line in the generated file is separated by a semicolon (;)
▪ each segment is separated by a comma (,)
▪ each segment is made up of 1, 4, or 5 variable length fields.

4 © Ecma International 2024

https://infra.spec.whatwg.org/#algorithm-control-flow

The fields in each segment are:

1. The zero-based starting column of the line in the generated code that the segment represents. If this is the
first field of the first segment, or the first segment following a new generated line (;), then this field holds the
whole Base64 VLQ. Otherwise, this field contains a Base64 VLQ that is relative to the previous occurrence of
this field. Note that this is different from the subsequent fields below because the previous value is reset after
every generated line.

2. If present, the zero-based index into the sources list. This field contains a Base64 VLQ relative to the
previous occurrence of this field, unless it is the first occurrence of this field, in which case the whole value is
represented.

3. If present, the zero-based starting line in the original source. This field contains a Base64 VLQ relative to the
previous occurrence of this field, unless it is the first occurrence of this field, in which case the whole value is
represented. Shall be present if there is a source field.

4. If present, the zero-based starting column of the line in the original source. This field contains a Base64 VLQ
relative to the previous occurrence of this field, unless it is the first occurrence of this field, in which case the
whole value is represented. Shall be present if there is a source field.

5. If present, the zero-based index into the names list associated with this segment. This field contains a Base64
VLQ relative to the previous occurrence of this field, unless it is the first occurrence of this field, in which case
the whole value is represented.

NOTE The purpose of this encoding is to reduce the source map size. VLQ encoding reduced source maps
by 50% relative to the v2 format in tests performed using Google Calendar.

NOTE Segments with one field are intended to represent generated code that is unmapped because there
is no corresponding original source code, such as code that is generated by a compiler. Segments
with four fields represent mapped code where a corresponding name does not exist. Segments with
five fields represent mapped code that also has a mapped name.

NOTE Using file offsets was considered but rejected in favor of using line/column data to avoid becoming
misaligned with the original due to platform-specific line endings.

A decoded mapping is a struct with the following fields:

generatedLine
A non-negative integer.

generatedColumn
A non-negative integer.

originalSource
A decoded source or null.

originalLine
A non-negative integer or null.

originalColumn
A non-negative integer or null.

name
A string or null.

To decode source map mappings given a string mappings, a list of strings names, and a list of decoded sources
sources, run the following steps:

1. Validate base64 VLQ groupings with mappings.
2. Let decodedMappings be a new empty list.
3. Let groups be the result of strictly splitting mappings on ; .

© Ecma International 2024 5

4. Let generatedLine be 0.
5. Let originalLine be 0.
6. Let originalColumn be 0.
7. Let sourceIndex be 0.
8. Let nameIndex be 0.
9. While generatedLine is less than groups's size:

a. If groups[generatedLine] is not the empty string, then:
i. Let segments be the result of strictly splitting groups[generatedLine] on , .
ii. Let generatedColumn be 0.
iii. For each segment in segments:

1. Let position be a position variable for segment, initially pointing at segment's start.
2. Decode a base64 VLQ from segment given position and let relativeGeneratedColumn be the

result.
3. If relativeGeneratedColumn is null,optionally report an error and continue with the next iteration.
4. Increase generatedColumn by relativeGeneratedColumn. If the result is negative, optionally

report an error and continue with the next iteration.
5. Let decodedMapping be a new decoded mapping whose generatedLine is generatedLine,

generatedColumn is generatedColumn, originalSource is null, originalLine is null, originalColumn
is null, and name is null.

6. Append decodedMapping to decodedMappings.
7. Decode a base64 VLQ from segment given position and let relativeSourceIndex be the result.
8. Decode a base64 VLQ from segment given position and let relativeOriginalLine be the result.
9. Decode a base64 VLQ from segment given position and let relativeOriginalColumn be the result.

10. If relativeOriginalColumn is null, then:
a. If relativeSourceIndex is not null, optionally report an error.
b. Continue with the next iteration.

11. Increase sourceIndex by relativeSourceIndex.
12. Increase originalLine by relativeOriginalLine.
13. Increase originalColumn by relativeOriginalColumn.
14. If any of sourceIndex, originalLine, or originalColumn are less than 0, or if sourceIndex is greater

than or equal to sources's size, optionally report an error.
15. Else,

a. Set decodedMapping's originalSource to sources[sourceIndex].
b. Set decodedMapping's originalLine to originalLine.
c. Set decodedMapping's originalColumn to originalColumn.

16. Decode a base64 VLQ from segment given position and let relativeNameIndex be the result.
17. If relativeNameIndex is not null, then:

a. Increase nameIndex by relativeNameIndex.
b. If nameIndex is negative or greater than names's size, optionally report an error.
c. Else, set decodedMapping's name to names[nameIndex].

18. If position does not point to the end of segment, optionally report an error.
b. Increase generatedLine by 1.

10. Return decodedMappings.

To validate base64 VLQ groupings from a string groupings, run the following steps:

1. If groupings is not an ASCII string, throw an error.
2. If groupings contains any code unit other than:

▪ U+002C (,) or U+003B (;);
▪ U+0030 (0) to U+0039 (9);
▪ U+0041 (A) to U+005A (Z);
▪ U+0061 (a) to U+007A (z);
▪ U+002B (+), U+002F (/)

NOTE These are the valid base64 characters (excluding the padding character =), together with , and
; .

3. then throw an error.

6 © Ecma International 2024

To decode a base64 VLQ from a string segment given a position variable position, run the following steps:

1. If position points to the end of segment, return null.
2. Let first be a byte whose the value is the number corresponding to segment's positionth code unit, according

to the base64 encoding.

NOTE The two most significant bits of first are 0.

3. Let sign be 1 if first & 0x01 is 0x00, and -1 otherwise.
4. Let value be (first >> 1) & 0x0F, as a number.
5. Let nextShift be 16.
6. Let currentByte be first.
7. While currentByte & 0x20 is 0x20:

a. Advance position by 1.
b. If position points to the end of segment, throw an error.
c. Set currentByte to the byte whose the value is the number corresponding to segment's positionth code

unit, according to the base64 encoding.
d. Let chunk be currentByte & 0x1F, as a number.
e. Add chunk * nextShift to value.

f. If value is greater than or equal to 231, throw an error.
g. Multiply nextShift by 32.

8. Advance position by 1.
9. If value is 0 and sign is -1, return -2147483648.

NOTE -2147483648 is the smallest 32-bit signed integer.

10. Return value * sign.

NOTE In addition to returning the decoded value, this algorithm updates the position variable in the calling
algorithm.

5.1.1 Mappings for generated JavaScript code

Generated code positions that may have mapping entries are defined in terms of input elements as per ECMAScript
Lexical Grammar. Mapping entries shall point to either:

1. the first code point of the source text matched by IdentifierName, PrivateIdentifier, Punctuator, DivPunctuator,
RightBracePunctuator, NumericLiteral and RegularExpressionLiteral.

2. any code point of the source text matched by Comment, HashbangComment, StringLiteral, Template,
TemplateSubstitutionTail, WhiteSpace and LineTerminator.

5.2 Resolving sources

If the sources are not absolute URLs after prepending the sourceRoot, the sources are resolved relative to the
SourceMap (like resolving the script src attribute in an HTML document).

To decode source map sources given a URL baseURL, a string or null sourceRoot, a list of either strings or
nulls sources, a list of either strings or nulls sourcesContent, and a list of numbers ignoredSources, run the
following steps:

1. Let decodedSources be a new empty list.
2. Let sourceURLPrefix be "".
3. If sourceRoot is not null, then:

a. If sourceRoot contains the code point U+002F (/), then:

© Ecma International 2024 7

https://tc39.es/ecma262/#sec-ecmascript-language-lexical-grammar
https://tc39.es/ecma262/#sec-ecmascript-language-lexical-grammar
https://tc39.es/ecma262/#prod-IdentifierName
https://tc39.es/ecma262/#prod-PrivateIdentifier
https://tc39.es/ecma262/#prod-Punctuator
https://tc39.es/ecma262/#prod-DivPunctuator
https://tc39.es/ecma262/#prod-RightBracePunctuator
https://tc39.es/ecma262/#prod-NumericLiteral
https://tc39.es/ecma262/#prod-RegularExpressionLiteral
https://tc39.es/ecma262/#prod-Comment
https://tc39.es/ecma262/#prod-HashbangComment
https://tc39.es/ecma262/#prod-StringLiteral
https://tc39.es/ecma262/#prod-Template
https://tc39.es/ecma262/#prod-TemplateSubstitutionTail
https://tc39.es/ecma262/#prod-WhiteSpace
https://tc39.es/ecma262/#prod-LineTerminator

i. Let index be the index of the last occurrence of U+002F (/) in sourceRoot.
ii. Set sourceURLPrefix to the substring of sourceRoot from 0 to index + 1.

b. Else, set sourceURLPrefix to the concatenation of sourceRoot and "/".
4. For each source of sources with index index:

a. Let decodedSource be a new decoded source whose URL is null, content is null, and ignored is false.
b. If source is not null:

i. Set source to the concatenation of sourceURLPrefix and source.
ii. Let sourceURL be the result of URL parsing source with baseURL.
iii. If sourceURL is failure, optionally report an error.
iv. Else, set decodedSource's URL to sourceURL.

c. If index is in ignoredSources, set decodedSource's ignored to true.
d. If sourcesContent's size is greater than or equal to index, set decodedSource's content to

sourcesContent[index].
e. Append decodedSource to decodedSources.

5. Return decodedSources.

NOTE Implementations that support showing source contents but do not support showing multiple sources
with the same URL and different content will arbitrarily choose one of the various contents
corresponding to the given URL.

5.3 Extensions

Source map consumers shall ignore any additional unrecognized properties, rather than causing the source map
to be rejected, so that additional features can be added to this format without breaking existing users.

6 Index map

To support concatenating generated code and other common post-processing, an alternate representation of a
map is supported:

{
 "version" : 3,
 "file": "app.js",
 "sections": [
 {
 "offset": {"line": 0, "column": 0},
 "map": {
 "version" : 3,
 "file": "section.js",
 "sources": ["foo.js", "bar.js"],
 "names": ["src", "maps", "are", "fun"],
 "mappings": "AAAA,E;;ABCDE"
 }
 },
 {
 "offset": {"line": 100, "column": 10},
 "map": {
 "version" : 3,
 "file": "another_section.js",
 "sources": ["more.js"],
 "names": ["more", "is", "better"],
 "mappings": "AAAA,E;AACA,C;ABCDE"
 }
 }
]
}

8 © Ecma International 2024

The index map follows the form of the standard map. Like the regular source map, the file format is JSON with a
top-level object. It shares the version and file field from the regular source map, but gains a new sections field.

sections is an array of Section objects.

6.1 Section

Section objects have the following fields:

▪ offset is an object with two fields, line and column , that represent the offset into generated code that the
referenced source map represents.

▪ map is an embedded complete source map object. An embedded map does not inherit any values from the
containing index map.

The sections shall be sorted by starting position and the represented sections shall not overlap.

7 Retrieving source maps

7.1 Linking generated code to source maps

While the source map format is intended to be language and platform agnostic, it is useful to define how to
reference to them for the expected use-case of web server-hosted JavaScript.

There are two possible ways to link source maps to the output. The first requires server support in order to add an
HTTP header and the second requires an annotation in the source.

Source maps are linked through URLs as defined in URL; in particular, characters outside the set permitted to
appear in URIs shall be percent-encoded and it may be a data URI. Using a data URI along with sourcesContent
allows for a completely self-contained source map.

The HTTP sourcemap header has precedence over a source annotation, and if both are present, the header URL
should be used to resolve the source map file.

Regardless of the method used to retrieve the Source mapping URL the same process is used to resolve it, which
is as follows:

When the Source mapping URL is not absolute, then it is relative to the generated code's source origin. The
source origin is determined by one of the following cases:

▪ If the generated source is not associated with a script element that has a src attribute and there exists a
//# sourceURL comment in the generated code, that comment should be used to determine the source
origin.

NOTE Previously, this was //@ sourceURL , as with //@ sourceMappingURL , it is reasonable to
accept both but //# is preferred.

▪ If the generated code is associated with a script element and the script element has a src attribute, the src
attribute of the script element will be the source origin.

▪ If the generated code is associated with a script element and the script element does not have a src attribute,
then the source origin will be the page's origin.

▪ If the generated code is being evaluated as a string with the eval() function or via new Function() , then
the source origin will be the page's origin.

© Ecma International 2024 9

7.1.1 Linking through HTTP headers

If a file is served through HTTP(S) with a sourcemap header, the value of the header is the URL of the linked
source map.

sourcemap: <url>

NOTE Previous revisions of this document recommended a header name of x-sourcemap . This is now
deprecated; sourcemap is now expected.

7.1.2 Linking through inline annotations

The generated code should include a comment, or the equivalent construct depending on its language or format,
named sourceMappingURL and that contains the URL of the source map. This specification defines how
the comment should look like for JavaScript, CSS, and WebAssembly. Other languages should follow a similar
convention.

For a given language there can be multiple ways of detecting the sourceMappingURL comment, to allow for
different implementations to choose what is less complex for them. The generated code unambiguously links to
a source map if the result of all the extraction methods is the same.

If a tool consumes one or more source files that unambiguously links to a source map and it produces an output
file that links to a source map, it shall do so unambiguously.

Example 3 The following JavaScript code links to a source map, but it does not do so unambiguously:

let a = `
 //# sourceMappingURL=foo.js.map
 //`;

Extracting a Source map URL from it through parsing gives null, while without parsing gives
foo.js.map .

Issue 1 Having multiple ways to extract a source map URL, that can lead to different results, can have
negative security and privacy implications. Implementations that need to detect which source maps
are potentially going to be loaded are strongly encouraged to always apply both algorithms, rather
than just assuming that they will give the same result.

A fix to this problem is being worked on, and is expected to be included in a future version of the
standard. It will likely involve early returning from the below algorithms whenever there is a
comment (or comment-like) that contains the characters U+0060 (`), U+0022 ("), or U+0027 ('), or
the sequence U+002A U+002F (*/).

7.1.2.1 Extraction methods for JavaScript sources

To extract a Source map URL from JavaScript through parsing a string source, run the following steps:

1. Let tokens be the list of tokens obtained by parsing source according to ECMA-262.
2. For each token in tokens, in reverse order:

a. If token is not a single-line comment or a multi-line comment, return null.

10 © Ecma International 2024

https://tc39.es/ecma262/#sec-lexical-and-regexp-grammars
https://tc39.es/ecma262/#prod-SingleLineComment
https://tc39.es/ecma262/#prod-MultiLineComment

b. Let comment be the content of token.
c. If matching a Source map URL in comment returns a string, return it.

3. Return null.

To extract a Source map URL from JavaScript without parsing a string source, run the following steps:

1. Let lines be the result of strictly splitting source on ECMAScript line terminator code points.
2. Let lastURL be null.
3. For each line in lines:

a. Let position be a position variable for line, initially pointing at the start of line.
b. While position doesn't point past the end of line:

i. Collect a sequence of code points that are ECMAScript white space code points from line given
position.

NOTE The collected code points are not used, but position is still updated.

ii. If position points past the end of line, break.
iii. Let first be the code point of line at position.
iv. Increment position by 1.
v. If first is U+002F (/) and position does not point past the end of line, then:

1. Let second be the code point of line at position.
2. Increment position by 1.
3. If second is U+002F (/), then:

a. Let comment be the code point substring from position to the end of line.
b. If matching a Source map URL in comment returns a string, set lastURL to it.
c. Break.

4. Else if second is U+002A (*), then:
a. Let comment be the empty string.
b. While position + 1 doesn't point past the end of line:

i. Let c1 be the code point of line at position.
ii. Increment position by 1.
iii. Let c2 be the code point of line at position.
iv. If c1 is U+002A (*) and c2 is U+002F (/), then:

i. If matching a Source map URL in comment returns a string, set lastURL to it.
ii. Increment position by 1.

v. Append c1 to comment.
5. Else, set lastURL to null.

vi. Else, set lastURL to null.

NOTE We reset lastURL to null whenever we find a non-comment code character.

4. Return lastURL.

NOTE The algorithm above has been designed so that the source lines can be iterated in reverse order,
returning early after scanning through a line that contains a sourceMappingURL comment.

© Ecma International 2024 11

https://tc39.es/ecma262/#table-line-terminator-code-points
https://tc39.es/ecma262/#sec-white-space

NOTE The algorithm above is equivalent to the following JavaScript implementation:

const JS_NEWLINE = /^/m;

// This RegExp will always match one of the following:
// - single-line comments
// - "single-line" multi-line comments
// - unclosed multi-line comments
// - just trailing whitespaces
// - a code character
// The loop below differentiates between all these cases.
const JS_COMMENT =
/\s*(?:\/\/(?<single>.*)|\/*(?<multi>.*?)*\/|\/*.*|$|(?<code>[^\/]+))/uym;

const PATTERN = /^[@#]\s*sourceMappingURL=(\S*?)\s*$/;

let lastURL = null;
for (const line of source.split(JS_NEWLINE)) {
 JS_COMMENT.lastIndex = 0;
 while (JS_COMMENT.lastIndex < line.length) {
 let commentMatch = JS_COMMENT.exec(line).groups;
 let comment = commentMatch.single ?? commentMatch.multi;
 if (comment != null) {
 let match = PATTERN.exec(comment);
 if (match !== null) lastURL = match[1];
 } else if (commentMatch.code != null) {
 lastURL = null;
 } else {
 // We found either trailing whitespaces or an unclosed comment.
 // Assert: JS_COMMENT.lastIndex === line.length
 }
 }
}
return lastURL;

To match a Source map URL in a comment comment (a string), run the following steps:

1. Let pattern be the regular expression /^[@#]\s*sourceMappingURL=(\S*?)\s*$/ .
2. Let match be ! RegExpBuiltInExec(pattern, comment).
3. If match is not null, return match[1].
4. Return null.

NOTE The prefix for this annotation was initially //@ however this conflicts with Internet Explorer's
Conditional Compilation and was changed to //# .

Source map generators shall only emit //# while source map consumers shall accept both //@ and //# .

7.1.2.2 Extraction methods for CSS sources

Extracting source mapping URLs from CSS is similar to JavaScript, with the exception that CSS only supports
/* ... */ -style comments.

12 © Ecma International 2024

https://tc39.es/ecma262/#sec-regexpbuiltinexec

7.1.2.3 Extraction methods for WebAssembly binaries

To extract a Source map URL from a WebAssembly source given a byte sequence bytes, run the following steps:

1. Let module be module_decode(bytes).
2. If module is error, return null.
3. For each custom section customSection of module,

a. Let name be the name of customSection, decoded as UTF-8.
b. If name is "sourceMappingURL", then:

i. Let value be the bytes of customSection, decoded as UTF-8.
ii. If value is failure, return null.
iii. Return value.

4. Return null.

Since WebAssembly is not a textual format and it does not support comments, it supports a single unambiguous
extraction method. The URL is encoded using WasmNamesBinaryFormat, and it's placed as the content of the
custom section. It is invalid for tools that generate WebAssembly code to generate two or more custom sections
with the "sourceMappingURL" name.

7.2 Fetching source maps

To fetch a source map given a URL url, run the following steps:

1. Let promise be a new promise.
2. Let request be a new request whose URL is url.
3. Fetch request with processResponseConsumeBody set to the following steps given response response and

null, failure, or a byte sequence bodyBytes:
a. If bodyBytes is null or failure, reject promise with a TypeError and abort these steps.
b. If url's scheme is an HTTP(S) scheme and bodyBytes starts with `)]}' ̀, then:

i. While bodyBytes's length is not 0 and bodyBytes's 0th byte is not an HTTP newline byte:
1. remove the 0th byte from bodyBytes.

NOTE For historic reasons, when delivering source maps over HTTP(S), servers may prepend
a line starting with the string)]}' to the source map.

)]}'garbage here
{"version": 3, ...}

is interpreted as

{"version": 3, ...}

c. Let sourceMap be the result of parsing JSON bytes to a JavaScript value given bodyBytes.
d. If the previous step threw an error, reject promise with that error.
e. Otherwise, resolve promise with sourceMap.

4. Return promise.

8 Conventions

The following conventions should be followed when working with source maps or when generating them.

© Ecma International 2024 13

https://webassembly.github.io/spec/core/appendix/embedding.html#embed-module-decode
https://webassembly.github.io/spec/core/binary/modules.html#binary-customsec
https://webassembly.github.io/spec/core/binary/modules.html#binary-customsec
https://webassembly.github.io/spec/core/binary/modules.html#binary-customsec

8.1 Source map naming

Commonly, a source map will have the same name as the generated file but with a .map extension. For example,
for page.js a source map named page.js.map would be generated.

8.2 Linking eval'd code to named generated code

There is an existing convention that should be supported for the use of source maps with eval'd code, it has the
following form:

//# sourceURL=foo.js

It is described in EvalSourceURL.

9 Language neutral stack mapping notes

Stack tracing mapping without knowledge of the source language is not covered by this document.

10 Multi-level mapping notes

It is getting more common to have tools generate sources from some DSL (templates) or compile TypeScript ->
JavaScript -> minified JavaScript, resulting in multiple translations before the final source map is created. This
problem can be handled in one of two ways. The easy but lossy way is to ignore the intermediate steps in the
process for the purposes of debugging, the source location information from the translation is either ignored (the
intermediate translation is considered the ”Original Source“) or the source location information is carried through
(the intermediate translation hidden). The more complete way is to support multiple levels of mapping: if the
Original Source also has a source map reference, the user is given the choice of using that as well.

However, It is unclear what a "source map reference" looks like in anything other than JavaScript. More specifically,
what a source map reference looks like in a language that doesn't support JavaScript-style single-line comments.

14 © Ecma International 2024

Annex A
(informative)

Index

A.1 Terms defined by this specification

Base64 VLQ, in §4
Column, in §4
content, in §5
decode a base64 VLQ, in §5.1
decode a source map, in §5
decode a source map from a
JSON string, in §5
decoded mapping, in §5.1
decoded source, in §5
decoded source map, in §5
decode source map mappings, in
§5.1
decode source map sources, in
§5.2
extract a Source map URL from a
WebAssembly source, in §7.1.2.3
extract a Source map URL from
JavaScript through parsing, in
§7.1.2.1
extract a Source map URL from
JavaScript without parsing, in
§7.1.2.1
file

◦ dfn for decoded source map, in
§5

◦ dfn for json, in §5
Generated Code, in §4
generatedColumn, in §5.1

generatedLine, in §5.1
ignored, in §5
ignoredSources, in §5.2
ignoreList, in §5
map, in §6.1
mappings

◦ dfn for decode source map
mappings, in §5.1

◦ dfn for decoded source map, in
§5

◦ dfn for json, in §5
match a Source map URL in a
comment, in §7.1.2.1
name, in §5.1
names

◦ dfn for decode source map
mappings, in §5.1

◦ dfn for json, in §5
offset, in §6.1
optionally get a list of array
indexes, in §5
optionally get a list of optional
strings, in §5
optionally get a list of strings, in §5
optionally get a string, in §5
optionally report an error, in §5
originalColumn, in §5.1
originalLine, in §5.1

Original Source, in §4
originalSource, in §5.1
sections, in §6
Source mapping URL, in §4
source origin, in §7.1
sourceRoot

◦ dfn for decode source map
sources, in §5.2

◦ dfn for json, in §5
sources

◦ dfn for decode source map
mappings, in §5.1

◦ dfn for decode source map
sources, in §5.2

◦ dfn for decoded source map, in
§5

◦ dfn for json, in §5
sourcesContent

◦ dfn for decode source map
sources, in §5.2

◦ dfn for json, in §5
unambiguously links to a source
map, in §7.1.2
URL, in §5
validate base64 VLQ groupings, in
§5.1
version, in §5

A.2 Terms defined by reference

[ECMA-262] defines the following
terms:

◦ Comment
◦ DivPunctuator
◦ ECMAScript Lexical Grammar
◦ HashbangComment
◦ IdentifierName
◦ line terminator code points
◦ LineTerminator
◦ multi-line comment
◦ NumericLiteral
◦ PrivateIdentifier
◦ Punctuator
◦ RegExpBuiltinExec
◦ RegularExpressionLiteral
◦ RightBracePunctuator
◦ single-line comment

◦ StringLiteral
◦ Template
◦ TemplateSubstitutionTail
◦ tokens
◦ white space code points
◦ WhiteSpace

[ENCODING] defines the following
terms:

◦ UTF-8 decode without BOM or
fail

[FETCH] defines the following
terms:

◦ fetch
◦ HTTP newline byte
◦ HTTP(S) scheme
◦ processResponseConsumeBody

◦ request
◦ response
◦ URL

[INFRA] defines the following
terms:

◦ append
◦ ASCII string
◦ boolean
◦ break
◦ byte
◦ byte sequence
◦ code point
◦ code point substring
◦ code unit
◦ code unit substring
◦ collect a sequence of code

points

© Ecma International 2024 15

https://tc39.es/ecma262/multipage/
https://encoding.spec.whatwg.org/
https://fetch.spec.whatwg.org/
https://infra.spec.whatwg.org/

◦ concatenate
◦ exist
◦ for each
◦ length
◦ list
◦ map
◦ parse a JSON string to an Infra

value
◦ parse JSON bytes to a

JavaScript value
◦ position variable
◦ size

◦ starts with
◦ strictly split
◦ string
◦ struct
◦ value
◦ while

[URL] defines the following terms:

◦ scheme
◦ URL
◦ URL parser

[WASM] defines the following
terms:

◦ custom section
◦ module_decode

[WEBIDL] defines the following
terms:

◦ TypeError
◦ a new promise
◦ reject
◦ resolve

16 © Ecma International 2024

https://url.spec.whatwg.org/
https://www.w3.org/TR/wasm-core-2/
https://webidl.spec.whatwg.org/

Bibliography

[1] Anne van Kesteren. Encoding Standard, https://encoding.spec.whatwg.org/. Living Standard.

[2] Anne van Kesteren. Fetch Standard, https://fetch.spec.whatwg.org/. Living Standard.

[3] Anne van Kesteren; Domenic Denicola. Infra Standard, https://infra.spec.whatwg.org/. Living Standard.

[4] URL Standard, https://url.spec.whatwg.org/. Living Standard.

[5] Edgar Chen; Timothy Gu. Web IDL Standard, https://webidl.spec.whatwg.org/. Living Standard.

[6] Give your eval a name with //@ sourceURL, https://web.archive.org/web/20120814122523/
http://blog.getfirebug.com/2009/08/11/give-your-eval-a-name-with-sourceurl/. archive.

[7] Source map Revision 2 Proposal, https://docs.google.com/document/d/
1xi12LrcqjqIHTtZzrzZKmQ3lbTv9mKrN076UB-j3UZQ/edit?hl=en_US.

[8] Variable-length quantity, https://en.wikipedia.org/wiki/Variable-length_quantity. reference article.

© Ecma International 2024 17

https://encoding.spec.whatwg.org/
https://fetch.spec.whatwg.org/
https://infra.spec.whatwg.org/
https://url.spec.whatwg.org/
https://webidl.spec.whatwg.org/
https://web.archive.org/web/20120814122523/http://blog.getfirebug.com/2009/08/11/give-your-eval-a-name-with-sourceurl/
https://web.archive.org/web/20120814122523/http://blog.getfirebug.com/2009/08/11/give-your-eval-a-name-with-sourceurl/
https://docs.google.com/document/d/1xi12LrcqjqIHTtZzrzZKmQ3lbTv9mKrN076UB-j3UZQ/edit?hl=en_US
https://docs.google.com/document/d/1xi12LrcqjqIHTtZzrzZKmQ3lbTv9mKrN076UB-j3UZQ/edit?hl=en_US
https://en.wikipedia.org/wiki/Variable-length_quantity

© Ecma International 2024

	Contents
	Introduction
	1 Scope
	2 Conformance
	3 References
	3.1 Normative references
	3.2 Informative references

	4 Terms and definitions
	5 Source map format
	5.1 Mappings structure
	5.1.1 Mappings for generated JavaScript code

	5.2 Resolving sources
	5.3 Extensions

	6 Index map
	6.1 Section

	7 Retrieving source maps
	7.1 Linking generated code to source maps
	7.1.1 Linking through HTTP headers
	7.1.2 Linking through inline annotations
	7.1.2.1 Extraction methods for JavaScript sources
	7.1.2.2 Extraction methods for CSS sources
	7.1.2.3 Extraction methods for WebAssembly binaries

	7.2 Fetching source maps

	8 Conventions
	8.1 Source map naming
	8.2 Linking eval'd code to named generated code

	9 Language neutral stack mapping notes
	10 Multi-level mapping notes
	Index
	A.1 Terms defined by this specification
	A.2 Terms defined by reference

	Bibliography

