cecma

anNal ECMA-419
- - 2" Edition / June 2023

ECMAScript®
embedded systems API
specification

.

Rue du Rhone 114 CH-1204 Geneva T. +41 22 849 6000 F: +41 22 849 6001



eCnad

INTERNATIONAL
is the registered trademark of Ecma International

A_ COPYRIGHT PROTECTED DOCUMENT

© Ecma International 2023



secma

Contents Page
1 S o 0] o 1T PP TPUPPPPPPTTNN 1
2 (67e) ] o] ¢ 01 F= 10 o] =TT TP PP PPPPPPPPTP 1
3 NLO T = R =T = (=T (= 0 o= 1
4 Terms and AeFINTTIONS ...ooiiiiiiiiiiiiiieeeeeeeeeee ettt e et e eeeeeeeeeeeeease s e sasssasasssasssssssssssssssnsssssnsesnsnsnnnnes 2
5 Lo X = oYt = LI o014 V2= 14 o Y o 1 4
6 OVEIVIBW .. 4
6.1 1O N ST ox ] o T PP PSP OOPPPTTRPPI 4
6.2 O F= Tl o o1 (=T OO PP PP PUPPP P 4
6.3 Independent iIMPlEMENTALIONS. . ....u i an 4
6.4 S-S NG e 4
6.5 MOAUIE SPECIHTIEIS .. s 5
6.6 SECUIE ECMASCIIP i 5
6.7 = T 011 o 5
6.8 1= To [0 ST U PP PPPPPPPPPPPN 6
6.9 A @ To Ko =3 6
B.10  BYLE BUF I ettt et e e b s b e e e e e bt e e e e ba e e e e abr e e e e abreeeeaae 6
7 Requirements for standard built-in ECMASCIIPt ODJECES ..uviiiiiiiiiii e 6
8 L T I O 1= TS = 1 1= 6
8.1 ASYNCAIONOUS MELNOTS ...ttt e et e e e s bb e e e e sbbeeeeaaes 6
8.2 Lo 0] 0 =1 8 U o3 o 1 P 7
8.3 Lol 1o o3 TN 4 1= oo 7
8.4 Lo L= (=a ol o o ] 0 1=T YRS PTPTRR 8
8.5 CallbDACKS . 8
9 (@ N O = TSRS R o= L (=T o (PO PP PUPPRPPN 8
9.1 PN S T O e e ——————————————————————————— 9
9.2 P O S P I T BT e —————————————————————————— 9
9.3 (od0] =1 4 AT o] o ) CHUNUR PP PP PP PPPPPPPP 9
9.4 LT =Y T 1 0 1= 1 T X 9
9.5 L g A =3 ¢ Y= T Yo IR 10
9.6 L1 Nl o] o] =] o Y PSSR PPPPN 10
9.7 CallbDaCKS . 10
9.7.1 ONREAUADIE .o 11
9.7.2  ONWIITADIE (o 11
O0.7.3  ONEITO 11
10 1@ I o] F= L1 TP PP PPPPPPPPPPTN 11
0 TS0 R 1 o 1 - | SR RPPPRRN 11
10.1.1 Properties of cONStructor OPtioNS ODJECT......cii i 12
10.1.2 CallBACKS .o 12
10.1.3 Dataformatl... ..o 12
0 Tt o = PP 12
O T2 o 1o 11 = 1 o =101 OO PPPPPRPN 12
10.2.1 Properties of conStructor OptioNS ODJECT......cueiiii i 13
10.2.2 CallBACKS . 13
10.2.3 Data fOrmMal....cccooiiiiiiii e 13
0 T2 S Lo =SSP 13
O JRC R AN o = Lo To I 1 oY o 1V ) S TP RRTPP PP 13
10.3.1 Properties of cONStructor OPtioNS ODJECT......coi i 14

© Ecma International 2023 [



secmd

O T D - L = T {0 ] 1= L ERP TSP 14
10.3.3  P@SOLULION PrOPOITY ..eeiiiiiiiiiitiiii ittt e e e e s e s et e e e et e s e e et e e e s e e e ne s 14
10.4  Pulse-width MOAUIALION ....ociiiiiii et e e et e e e st e e e anbee e e e nnes 14
10.4.1 Properties of CONStructor OPtioNS ODJECT ...cviiiii i 14
O S D - L= o] 1 1 - L TP T PSP PP PP PP PPPPPPPP 14
O T oYY o W o oY I o 0 ] o 1= 2 14
O A oY o] o1=T o Y PP RP TR PPPPPP 14
FO.4.5  NOTES ..o 15
(0 IR T T O 3 Y o Yo o] o] [0 10 1< [ SRR 15
10.5.1 Properties of CONStructor OPtioNS ODJECT ....iiii it 15
O T D - 1= T {0 ] 1= LSRR 15
10.5.3 Specifying stop bit with read and write MethodsS .......ccccoiiiiiiiiiii e 15
TR A 1Y =1 g Vo T o PSPPSR 15
O JN T O 13 Y o o o T (0 [ LU £ [ SR 16
10.6.1 Properties of CONStructor OPtioNS ODJECT . ..iiii it 16
O ST D - L= (o] 1 1 - L PP PP PP PPPPPPPP 16
10.6.3 Specifying stop bit with read and write methodsS ..., 16
OISR A /=1 o Yo £ SRS 16
10.7  System management bus (SMBUS) — SYNChronouS 1O .......ccccoeiiiiiiiiiiiii e 17
10.7.1 Properties of cONStruCtor OPtioNS ODJECT .. ..., 17
O A /11 o To Yo £ TR PSP PPP TP TOPPPPPR 17
10.8 System management bus (SMBuUs) —asynchronous [O ..., 18
10.8.1 Properties of CONStrUCIOr OPLIONS ODJECT ... 18
O JRC JZ N [T o To Yo 1T PP TP TUPPPPPI 18
ORI 1= -1 TP P PP TR PUPPPPRP 18
10.9.1 Properties of CONStructor OPtioNS ODJECT .......eiii i 19
L0 IR T2 1 =1 o Yo £ SRS 19
ORI T O 111 o - Tod < SRS 20
ORI S - 1= i o ] 1 0 = LRSS 20
10.10 Serial Peripheral INterface (SP1) ......eii oo 20
10.10.1 Properties of conStructor 0ptioNs ODJECT ........oii it 21
O RO D - L= (o] €1 1= L TR PP TR PPPPPPPI 21
0 TR0 e 31 =1 3 o T o =PRSS 21
O T I R e U E=Y I oo 1] o | TP PPTT PP 22
10.11.1 Properties of constructor OPtioNSs ODJECT ... 22
O N A D - L= o] €1 1= L TP UPP TP 22
0 T B 1 =1 3 o T PRSP 22
B0 I 00 @ 11 - T <SSP 23
0200 2 I ==Y o o 1= S 23
10.12.1 Properties of conStructor 0ptioNs ODJECT ........vii i 23
I B0 2 =1 o o Yo =SS 23
B0 2 B @ 111 - Tod <SS 24
OIS 24
10.12.5 remOteAddresSS PrOPEITY oot e ettt et e e e e et e e e e e e s e e e e e e e s e s e et e e e n e eee s 24
O I N G =Y To o =] o o] o ol o 0] o1 =] o YU PPTTR 24
0200 e T I8 = ] =T 1= Y o Yo = USSP 24
10.13.1 Properties of constructor OPtioNS ODJECT ... 25
0 T 2 1Y =1 g o T o PRSP 25
O e TR H 07 111 o T o] 1= TR EPP TP 25
O R R R D - L= (o] 1= L TP ERP TP 25
FO.14  UDP SOCKET ettt ettt oo oottt et e e e e e o et bt e et e e e e e e e e R bbb be e e e e e e e e e nnbbe e e e e e e e e e e nnrraaeaaaeas 25
10.14.1 Properties of cONStructor OPtioNS ODJECT .....coiiiiiiiiiiiei e 26
B0 I 2 /=1 o o Yo S 26
B0 I B @ 111 - T <SS 26
IO I I 0 I - - Y o ] 1 = S 26
(0I5 T I I @4 =T o | =Y Yo Q] P 26
10.15.1 Properties of consStructor OptioNs ODJECT ........oii i 27
L0.15.2 WITEE(DUTTEI) oot e ettt e e et e e e e sa bt e e e anbe e e e e snbe e e e e anbeeeeeaneee 27
11 1O ProVider ClaSS PATEIN ......coiii ittt e ettt e e e e e st e e e e e e e e s nnbabeeeeaaeeeanans 28

ii © Ecma International 2023



secma

5 O oT 0 ] 0 1= { 4 F (o] Ko ] GO PRSPPI 28
5 ol e XY - o =1 4 o Yo O PERP PP 28
N T O 111 o T- 1o € TSR PPTPPPN 29
12 Peripheral Class PatterN .....c...uuiiiiie et s e e e e e e s s e e e e e s s et e e e e e e e e e s snnsaraneeeaeeeas 29
2 N o0 ¢ =3 1 ¥ o] o 29
D o 1 1Y - 4 1= 4 o Yo SR PRPPRRPN 30
12.3  cONTFLIGUPrE MELNOM ... oottt e e et e e e st b e e e st e e e e e sabn e e e e snbreeeeanes 30
12.4  ACCESSOrS fOr CONFIQUIAION ..uuiiiiiiiiie e e e e e e s s s r e e e e e s e st r e e e e e e e e e s annranneees 30
13 ST R o] O P LTI - 1 (=] o o [PPSR PSR 31
R I O o0 T ¢ =3 1 ¥ o] o 31
R T2 ofo T4 & o - 1] o YN 4 1= 1 o T SRS 32
R TG - 11 3 =o' =1 o Yo PR 32
R T O 111 o T- Lo €T PPPPRPN 32
14 Y= Yo ] o] o 1Y PSRRI 32
141 COMPOUNGT SENSOIS .utiiiiiiitiiieeittiee ettt e e e rbe e e e e s beee e e abs e e e e aabe e e e e aabeeeeeabbeeeeaabseeeeaabbeeeeabbeeeesbbeeeeabreeeeanes 32
I N o o1 = 1= o ] o = - RSP S 33
14.2.1 Properties Of @ SAmMPIE ODJECT ....ooii i e e 33
143 AMDBIENT TGN .ttt e e e st e e e st b e e e e sabb e e e e anbb e e e e anbreeeeane 33
14.3.1 Properties Of SAMPIE ODJECT .....veiiii et e e 33
144 AIMOSPNEIIC PIrESSUIE ..o 34
14.4.1 Properties of asample 0DJeCt ... 34
R 0% T o Yo ] o I B To )¢ o [PPSR PPP PP PPPPPP 34
14.5.1 Properties of asample 0DJeCT ... 34
I R O T o Yo ] o 1Y (o] g Lo Drq o [PPSR PPT PP PPPPP 34
14.6.1 Properties of asample ODJeCT ... 34
o A b 1 U ] PP PTPTTRRPSPPPPIN 34
14.7.1 Properties Of @ SAmMPIE ODJECT ....ooii e 35
N €11 0L o] e ] o 1= PP PP PP PP TPPPR 35
14.8.1 Properties Of @ SAmMPIE ODJECT ....ooii i e e 35
e T o 011 T To ] PO P PP POPPPPOPPPPN 35
14.9.1 Properties 0f @ SAMPIE ODJECT ....ooi it e e 35
1410 HYArOgeN e, 35
14.10.1 Properties of asample ODJeCt ... 36
14.11  Hydrogen SUIAe ... 36
14.11.1 Properties of asample ODJeCt ... 36
ot o Y = o [ T =T 0] 1= (= PSPPSRSO 36
14.12.1 Properties of asample 0DJeCt ... 36
e T |V =Y d o - o = RS 36
14.13.1 Properties Of @ SAMPIE ODJECT ....oooi it e et e e e e e 37
I R N 114 o @ )4 o = S 37
14.14.1 Properties Of @ SAmMPIE ODJECT ....oooi ittt et e e e 37
I LT 114 o 10 o Lo SRS 37
14.15.1 Properties Of @ SAMPIE ODJECT ....oooi ittt e e et e e e 37
ot R © ) q Vo =1 o FO RPN 37
14.16.1 Properties of asample ODJeCt ... 37
L1417  PaArtiCUIALE IMALTET ...ttt e e e e e bbb et e e e e e e s e b bbbt e e e e e e e e annbb b e e e e e e e e e annnbaneeeas 38
14.17.1 Properties of asample ODJeCt ... 38
I = €o D d ] 14 11 Y PP PPPPPP PP 38
14.18.1 Properties 0f @ SAmMPIE ODJECT ......ueiiiiii e 38
I I T Yo 11 1Y o 1 A1 =S 38
14.19.1 Properties Of @ SAMPIE ODJECT ....oooi ittt e s e e s breee et 38
2 T 1Y o] o PSS 39
14.20.1 Properties Of SAMPIE ODJECT .....ueiiii ettt e st e e e b e e e ane 39
I R =T 1 0] o= = 1 UL =S PP PP PRRP PP TPPPPP 39
14.21.1 Properties Of @ SAmMPIE ODJECT ....oooiiiiiii ettt e e e e e breee et 39
Iy o YU (o I TP UETPPTRT 39
14.22.1 SAMPIE ODJECT .ceiiiiiiie ettt e e e e e e bbbt et e e e e e e a e bbbt e e e e e e e e aannbbbeeeeaeeseannbnnneeas 39
14.23 Volatile Organic COMPOUNGS .....uuiiiiiiiii ittt e e e e e e e e e s e ee e e e e e e s e aannbeseeeaaeaseaannrbnneeas 39

© Ecma International 2023 iii



»eCna

14.23.1 Properties of @ SAmMPIe OBJECT ... 40
15 DiSPIAY ClasS PATEIN ....ceiiiiiiiieiiiii ettt ettt e e sk e e e e s bbbt e s sb et e e s bbb e e e snne e e e s annneeas 40
ST A o] o7 B 1 U ] o ] TP 40
152 cONFLGUPE METNOM ...oiiiiiie et e et e e et e e e e e anb e e e et e e e e e nnes 40
L TG T - Y=Y - 1 o I =1 o Yo SRS 41
LS R0 - T I o 4 1=1 4 e Yo [ PP PTSPPI 41
LTI -1 1 T I 0 0= 1 o Lo o [PPSR 41
15.6 @daptInvalid METNOM ...ttt e e e s et e e e e e e e e e eeeeaa s 41
15.7 [ €= L e oT =N o] o] oY= 4= PR PRSRR 42
15.8  PIXEl FOrMAt VAIUES ..ooiiiiiiiii ettt et e e ettt e e e en bt e e e s nbe e e e e snbee e e e anbee e e e nnes 43
16 Real-Time ClIOCK Class Pattern ...........uiiiiiiiiiiiiit ettt e e e e s et eeeaeeeeeaan 43
16.1  Properties of CONStructor OPtioNSs ODJECT.......ovii i 43
16.2  cONFLGUPE METNOM . .ooiiiiiie et e et e e e bt e e e an b e e e e anbe e e e e nees 43
LG T R o 1= o (0 = o 1Y/ 43
16.4  conTFiguration PrOPEITY ..o e e st e e 44
17 Network Interface Class PatlerN...... ... et e e e b e e e e e e e 44
17.1  Properties of cONStruCtor OPtiONS ODJECT .. ..o 44
7 o o T4 14 1= ol 0= o o 44
I C T s Y of o T 1 o Y=Y o ol 4= d Lo o [ SRR 44
A S o o Y4 T V=Y o o oY 4 I o 0 Y o 1= o 28 45
L17.5  MAC PIOPEITY o s 45
A I Vo o | o =TT o] 0] o] =] o PSP 45
17.7  Ethernet NetWOrK INtEIrTaCE ... .uuviiiiii i e e e e e e e e e s e e eeeeeee s 45
17.7.1 CONNECELION PrOPOITY ..eiiiiiiiiiiiteti ettt et e e e s et e e e e e s e s e et e e e e s e as e et et e e e s e annrnneeeeee s 45
17.8  WIi-Fi NEtWOIK INTEITACE ...ttt e e e s e e e e e e e e ennbeneeeae s 45
17.8.1 CONNECT MELNOM ...t e oottt e e e e e s bbb e e e e e e e s e s anb b b e e e e e e e e e annbnneeeeeeas 46
17.8.2 SCAN MELNOM ...ttt e oo s e e kbbbt et e e e e s s a bbb et e et e e e aeannbb b e e e e e e e s e annnbnnneeaaeas 46
S TG B 10 I o1 o] o 1= Y SRR TTRP 47
L17.8.4 BSSID PIOPEITY .ooiiiiiitiieiieee e e ittt e e e ettt e e e e e s e ettt e e e s s s s b e ee e et e e e e e s R e e e et et e e e e e e e rn e e e re e e n e r e e ae s 47
A TR 1 3 N o] o o 1= Y SO PPPTTSPP 47
17.8.6  ChanN@L PrOPEITY ..oueiiiiiiieeiii ittt e e e ettt e e e s e s e et e e e s e s s b e e e e et e e e s e ss bbb e et et e e e s e snnrrnreeeee s 47
18 Domain Name ReSoIVer Class Pattern.........oocuuuiiiiiiiiiii e a7
S 0 A oYY o 3 A TN 0 =T o o 47
18.2  Properties of reSolve OptioNnNS ODJECT .......oii i 48
18.3 1IN ST 0 RV =] G U I3 PSP 48
18.3.1 Properties of conStructor OptioNSs ODJECT ........vi it 48
18.4  DNS OVEN HTTPS (DOH) ...ttt ettt e e e e ettt e e e e e e e st b e e e e e e e e s e snnbneeeeaeeas 48
18.4.1 Properties of cONStruCtor OPtioNS ODJECT ... ..o, 48
19 NI S O 1T= o | TP PP PPPPPPRRPP 48
19.1 Properties of cONStructor OPtioNS ODJECT ... ..o 49
19.2  getTimeE MELNOM ....eee e e ————— 49
20 L I S O =T g Ao F= LT -4 = P 49
P20 R I 7 - 0] o | PSSR 49
20.2  Properties of cONStruCtor OPtioNS OBJECT ...c.oiiiiii i 49
P20 R B ob e -3 = 1 4= d o o SR 49
20.4  requeSt METNOA ... 49
20.5  HTTP Client REQUEST INSTANCE ....cciiiiiiiiiiiiiee ittt ettt et e e e st e e e snbb e e e snbaeeeesnbaeeeeans 50
P20 8T8 R o= T I g T= 1 Mo 1o S 50
20.5.2 WPIEE MEBLNOM .ttt e e e oottt e e e e e s bbb et e e e e e e e e nbbbe e e e e e e e e e nrabeees 50
21 (I Y= VA= ot F= LTS o = 1 =] 1SR 51
22 I R I 7 - U 0] 0 - | S 51
21.2  Properties of cONStructor OPtioNS OBJECT ......ouiiiii i 51
P22 I B o o -3 = 1 4= d o o RS 51
21.4  HTTP Server CONNECHION INSTANCE .....coiiiiiiiiiii ettt e e e e e e e e e e e e e e neneeeee 51
P2 I R ol e 1Y -0 4= d o o PP PRUT 51
iv © Ecma International 2023



secma

P S« 13 ot Yol o T 4 1= o Yo PSPPSR 51
A B T of o o & o 4 1= 4 o Yo [ PRRT PR 52
A o1 s Yo Y 1T I =1 f o Yo SRR 52
A S o= YT I 4 =1 o o PP PR 53
2146 WPLIte MELNOU ... ittt e sttt e e sttt e e s ab et e e s nbe e e e s nbee e e s nnaeee s 53
A Ao 17k - oY o] o1 =T o YOO PP PRPPP PP 53
22 HTTP Server CONNECTION FOULES ....uiiiiiiiiieiiiiiie ittt et s st tee e s st e e s st e e s st e e s e st e e s snbee e e snbaeeeenneeas 53
P S - (o3 B = = 1 o 11 = SRS UTTPPSTP 53
A A = o] o =T A =TSR o) 01U =SSR 53
22.2 WebSocket HANASNAKE FOULE ... ...uuiiiiiiieii et e e e e e et e e e e e e e e s enneneeeeas 54
22.2.1 ProPertieS OF FOULE ..ottt e e st et e e sk be et e s bbb e e e e anbe e e e s anbneeessnnneee s 54
23 WebSocket Client ClaSS PATEIM ..c.o.viiiiiiieeee ettt et e e s sb e e e sbreeeeanes 54
2 T N B - = I (o1 o £ = PSRRI 54
23.2  Properties of CONSLrUCtor OPtioNS ODJECT.....coiiiiiiiiiiiii e 55
2 T B ol Ko TN 1= d o o PSRRI 55
A T =¥ T Il 4 =11 o Lo o PO PP PPPPP PP 56
P2 TS T Y o of =Y 4= d Lo o PSR S 56
23.6  Static properties of the CONSIIUCTON .....cooviiiiiii 56
24 MQTT Clent Class Pattern ... s 56
N - = U {01 o > SRR 57
24.2  Properties of CONSruCtor OPtioNS ODJECT.....c.oiiiiiiiiie e 57
2 B ol e T3 N 4= d Lo o PR 58
N =¥ T Il 4 =11 o Lo o B PP O PP PPPPP PP 59
S T | o I of =Y 4= d Lo o RS 59
24.6  Static properties Of the CONSIIUCTON .....ooiiiiiiiiiii e 60
25 HO St PrOVIAEr NS AN CE .. 60
25. 1 GlOD@I VAITADIE ...t e e e e e e e e e r e e e e e s e nen s 60
25.2  PIN NAME PrOP Y oo 60
25.3  TO BUS PrOPEITIES oo 61
A (O o = 1S3 = SO PP O PP PPPPPT PP 62
DTS T (O 2N = 0 1Yo 1= R 62
25,8 SIS OIS it 62
ST A B 1] o] -\ PSP UPTPRP 62
AT S B = =T | I T 4= o Lo o €SS 62
25.9  DOMAIN NAME FESOIVET ....ueiiiiie ettt ettt e e e e et e e e e e e s s et eeeaeeeaa s te e eeeeaeeesansnteeeeeaeeesansnneees 62
250 0 VI I o = o | RS 63
S A o I I e o] [ =T | SRR PUTPP PP 63
25,12 HTTPS CHIBNT «.eeeeeiiiie ettt ettt oo oottt e e o4 e ok bbbttt e e e e e e e abebe et e e e e e e s nnbbbeeeeeeeeeannbnnneeas 63
2513 HTTP SEIVEL . 63
A S |V (@ B B o 1= o | (PP PPTPP PP 63
A T |V (@ B B IS T 1= o | PP PPT PP 63
25.16 WS (WebS0CKet) CIENt ..o 63
25.17 WSS (WebSO0CKEt SECUTE) CHENT ...oiiiiiiii et 63
T S I I o = o R 63
25.19  NEWOTK INTEITACES .oiiiiiieiiiei ettt e e e et r e e e e e s e sttt ee e e e e e e s e nee e eeeaeee s s nsnteeeeaeeeesannsnnnees 63
26 Provenance SeNSOr Class PatterN ..........eiiiiie it e e e e e e e e e s neeeeeeee s 64
26.1.1 Properties of cONSLruCtor OPtioNS ODJECT.....coiiiiiiiiiiiii e 64
26.2  CONTLGUPRATLON PIrOPEITY .ooeiiiiiiiiiitie ittt e e e e e e e s e e e e e e e s b b e e e e e e e e aannnnnnees 64
26.3  1dentification PrOPEITY ..ottt e e e e e e e b e e e e e e e e nbaaae s 65
26.3.1 Properties of SAMPIE ODJECT........u it e e 65
Annex A (normative) FOrmal @algOritimS ... 67
Al Ta LT g o= U TT=1 o £ TP ET T PO PUPPPRPTRN 67
A. 1.1 CheckINterNalFieldS(ODJECL) ... i e e e e e e e e 67
A.1.2  ClearInterNalFieldS(ODJECL) ... ..t e e e e e e e e e s bbb eeeeeaeeeas 67
A.1.3  GetinternalField(0DJeCt, NAME) ..ot ee e e e as 67
A.1.4 SetinternalField(0bject, NAME, VAIUEG) .......coii i 67

© Ecma International 2023



A.15
A.2
A2l
A.2.2
A.2.3
A.2.4
A.2.5
A.2.6
A.3
A3.1
A.3.2
A.3.3
A4
A4l
A.4.2
A.43
A.4.4
A.4.5
A.4.6
A47
A5
AS51
A.5.2
A5.3
A.5.4
A.6
A6.1
A.6.2
A.6.3
A.6.4
A.6.5
A.6.6
A.6.7
A.6.8
A.6.9
A.6.10
A.6.11
A.6.12
A.6.13
A.6.14
A7
A.7.1
A.7.2
A.7.3
A.7.4
A.8
A8.1
A.8.2
A.8.3
A.8.4
A.8.5
A9
A9.1
A.9.2
A.9.3
A.9.4
A.9.5
A.9.6
A.9.7

Vi

»eCna

INTEINAI MELNOAS ..ot e e ettt et e e e e e s st b be e e e e e e e e eannbebeeeeaeeaeanns 68
REBNGES ottt e e oot e e e e e e e e e e et e e e a e e e e e e s e 68
(270 Y01 1= =T L= PR PRRRRRN 68
N TU 001 o 1= PRSP PPRRRPN 68
(@] o] 1=To] £ PO TP P PP PP OTPPP 69
BT DU OIS L.ttt ettt e s bttt e e bbbt e e s bt e e s b e e e s e e e s nnnn s 69
S 1o =SSR 69
ASYNCNIONOUS OPEIALIONS .oiiieiiiiiiiiiiiee e e e sttt e e e e e s st e e e e e e s e st e e e e e e e s s santaaeeeeeeesasnntaaneeeeeesaasnrenes 69
D F T O T S - £ (=T ISP USRRR 69
(oo o 15 ol o0 Ll oo ol (0] ] § (o ¢ =3 PRSP 69
Lot Ko -] =T O TP P PP PPUPPPPII 70
(o N 1YY (o= 111 o - T PSPPSR 71
(@ O P TS E SR == 11 = o [ PP PP PRRPRRN 71
ool T o ol ¥ T e ool (o] e 14T e] 4 =) OO P PP PPUPPPPII 71
Lo o 1YY () PRSP 71
= TeT (o] 1uTe] o ) PP PP PO P PP PP PPPPPUPPPPPP 72
L L I o =T (o > = ) 73
SO FOPMAT(VAIUE). ettt ettt e s bttt e sttt e e st be e e s nbe e e e nnnee s 73
L= A oY QT o ) PP PP PP PP OTPPRO 73
(N [0] { S PP UUP PP PR 73
IO Class Pattern — aSYNCNIOMNOUS ......uiiiiiiiiiie ittt ettt e et e e e s abne e e s aneeeeas 73
(o KoY =T (of= 111 o= 1o g I PO P PP OPUPPRPPI 73
read(option], CAllBACK]) ..vvviiiiiiieeeeeeeeeee 74
write(datal, CAllDACK]) ... ittt e e e e e sbre e e 74
I [0 X (=T ST TP PT PR PR PRPRPRPRPRPRON 75
(O O = 11T TSP PP PTOPPPPPPTPP 76
D o T L PP 76
1o =L o = U1 77
N o =1 o T 1 o 11 S 77
PulsSe-Width MOAUIALION .......eeiiiiii et e e e e s e b e e e e e e e e aae 78
[2C = SYNCRTONOUS TO ...ttt ettt e bbbt e e sttt e e s ebn e e e s nnnneees 78
[2C — ASYNCRTONOUS 1O ...ttt ettt ettt e s bbbt e s bbbt e e s bt et e e s nbn e e e s annneeas 79
System management bus (SMBUS) — SYNChronous 1O .........cooiiiiiiiiiiiie e 80
System management bus (SMBUS) —asynchronous 1O ... 81
ST o -SSP 83
Serial Peripheral INTErface (SPI) ......oo o e 85
PUISE COUNT ...ttt e oottt e e e e e sk b b ettt e e e e e s abbbe e e e e e e e e sannbbbeeeeaeeaeaanns 86
O Yo To] (=] TP PUPTPPRRPPP 87
TCP lISTENEI SOCKEL. ...ttt e ettt e e e s s et e e e e e e e e s e s bbb b e e e e e e e e e nbnbeees 87
UDP SOCKEL ...ttt ettt ettt e oo e 4o b bttt e e e e e ok bbbttt e e e e e e e e a b b be e et e e e e e e abnbeeeeaeeeeaaaas 88
Peripheral Class PatlerN ...........uuuiiiiiiiieiiiiieieieieieieee e e eeeee e e e rererere s eerarstssssssssnsssssssnsnsssnrnnnnns 88
Fele] B3 of ol ULl o o (o o1 4 o1 o =) SO 88
Lot Ko7 =T ) PP PRSPPI 89
o] g B =BTt =T (o o1 4 Lo o =) TSP 89
(N [0] { S PP UUPPPTTTTTR P 90
Y e ST o ] g O 1= LTS == 1 = o SR 90
ool T o ol ¥ Tk oo T ol (o] o AT o] 4 ) PRSPPI 90
ol e X3 =T (PP 90
ool ok o XU t=T (o] o1 A0 0 1= F PP PRSPPI 90
SAMP LE([PAIAIMIS]) -eeeiiiieeiiiitt ettt ettt e e oot e et e e e e oo e bbb ettt e e e e e e e st e be e et e e e e e s annbbbeeeeeaeeeaannbbbeeeeaaeaeanns 90
(N [0] € PP UPPPTTTPTR P 90
Y C Yo ] O = 1TSS 91
A CCERIBIOIMEBLET ...ttt e e e oottt et e e e e e o b bt e et e e e e e s e saan b ee e e e ee e e e e anbnbeaeeaaeeeaanbebeees 91
LN 1] oYL= oY o [T ] | PRSP URTPPR O 91
PN g aTe TSy o] Y=t a ol o] (=1 ] U] = TSP REPPT PP 91
(0= Td oToT o I D110 ) q Lo [T PR UUUTT ORI 92
(0= Td oToT g J1Y, (o] ¢ To D¢ Lo [ P UUTTR PRI 92
DT E ) ST PP PT PP PR PRPRPRPRPRPRON 92
(€3N Lo 1T oo ] o =TT PP PPTT PR PORTPPPRI 92

© Ecma International 2023



secma

A8 HUMIAITY ettt e ekt e e ekt e e oo h b et e e e ea b et e e ek b et e e e b b et e e e anbr e e e e anbn e e e e nnns 93
F SR I o |V o [ (oL 1= o P T T OO TP PP PUPRPTOO 93
AL9.10 HYdrogen SUIIAE .. ..eeieieie ettt e e e st e e e st e e e anb e e e e anbe e e e e nneas 93
L B R = To T =] (o] 4 1= AT PP PT PP PPPPPPTRT 94
F N TR /11 o = T = PRSP 94
F N TR T A1 4 Toa @ DT Lo [ U P RPN 94
FN It N ) 1o 10 ) L= PRSP 94
F N T I @ )T q Yo 1= o TP PPP PP 95
FN I KR - T Ao U] o =Y = 1 = PRSP 95
F e A = (0 412 11157/ ER 95
FN T TS 1o Y| I Y o 1= (U1 = PRSP 96
F R T e B =T ¢ aT o L=T = L AU =S O PSPPI 96
YN T2 O T 1o ] U Yo o [ PR PR 96
A.L0  DisSpPlay Class Patlerm ........cooiiiiiieiiiie ettt e st e e et et e e e st e e e e st e e e s anbr e e e e nnenes 97
Y X0 A oo T 1 of U e oo Yol (0] 1 40 ] =) OO T PO PP U PP PUPPPO 97
Y O Te F= Yo ol g V= e e [ = U= ) RO ER 97
F N 0 JC T ol o 1 =Y T O PSP PP TUPPPO 98
ALLOD.4 DEGIN(OPIIONS) it 98
ALL0.5 CONTLGUrE(OPTIONS) cuuiii s 99
F N 0GR =Y o e [ IO O OO P PP TUPPPO 99
ALLOD. 7 SENA(SCANTINES) .t s 99
ALL0.8 et WEATN() coiiiiiiie it a e e nens 99
ALL0.9 T NEIGIT() e s 99
AL LONOTES s 99
ALL0. 1L CONSTIUCTON OPTIONS: oeiiiiitiiie ettt ettt e et e e et e e e sa b bt e e e s be et e e saba e e e e aabb e e e e anbbeeeesbbeeeesbreeeeanes 100
A1l  Real-Time ClOCK ClasSS PAtBIN ......cooiiuiiiiiiiii it e e e e e b e e e e e e e e as 100
ALLL CONSTErUCTON(OPLIONS) cuiuii s 100
ALLL2  CLOSE() uuuuuuuunnnnnnun s 100
A.L11.3 CONTLGUPE(OPTIONS) weetiiiiiiiie ittt ettt e ettt e et e e e sttt e e sabe e e e e aabb e e e e abbe e e e ebbeeeesbreeeeanes 100
ALLLA ET TAME() uurnunii s 100
ALLLS SEt LIME(LIMIE) ettt ettt b e e e e b b e e e e e bt e e e e bb e e e e abreee e e 101
ALLLB CONSTIUCTON OPTIONS ..ttt s 101
ALLL7 CONTIQUIE OPLIONS L.eeeiiiiii s 101
A.12  Network Interface Class Pattern ......oocceiiiiiii e e e s e e e e e e s e ntenaeeeeeeee s 101
P 2 R oo o 15 of U Ten oo Y ol (0] 1 40} = PP UPPPPTTPRRN 101
ALL2.2  CLOSE() uuuununnnunnn s 101
ALL2.3 CONNECT(OPLIONS) 1uuiiiiiiii s 101
F N R e =Y oo o 4 1Y of ) PP UPPRPPPPPRR 102
F N I - = o . Y (TSP PTP TR PPPPPPPPTN 102
ALL2.6 BEE AAUPESS() curveeeiiiiiiie ittt e e bt e e b et e e e b e e e e e et ae e e e abbe e e e abreeeeane 102
AL2.7 T CONNECEION() ittt s 102
A.L12.8 CONSIIUCTON OPTIONS ..eiiiiiiiiiie ittt ettt ettt e e bt e e e e bb et e e saba e e e e aabb e e e e abbeeeeebbeeeeabbeeeeane 102
A.13 Ethernet NetWOrK INTEITaCE ... ..o e e e e e e e e e s s eeeeeee s 103
N R 20 R oo [ Y=Yl of (0] o £ 10 Y 1 L= PO UPPRPPPPPR 103
A 14 Wi-Fi NEtWOTK INTEITACE. ...t e e e e e e s bbb eeeaeeeas 103
ALA.L CONNECE(OPLIONS) wuuiiiiiii s 103
L Y of- [ o1 (0] o1 £ 0] = PO PTPPRPTTPPRRN 104
F N R I - =) = 1S 1 0 TSP PRTT PP PPPPTN 105
N L £ 53N ) SO 105
F N R = =y N D (TP 105
N I (= o] o =YV o [ (TSP OUPRR 106
A.15 Domain Name ReSOIVer Class Pattern ... e e 106
YW KT R oo T o 15 of ol U T oo ol (o] o] £ o] ¢ K= R T UTT OO 106
N LT ot o 1Y =T § PO EPR PSR 106
A.15.3 resolve(OptionS[, CAIDACK]) ... e 106
ALLE  DINS OVEI UDP ...ttt ettt ee e e e e et se e e s s e se s s et e e s s s e e s s s s s s se s s s s s s s e e seeeeeeennsnnnnnnnnnnnnnnns 107
ST A oo ] =3 (U o] o] o] o 1 1o o K= TP 107
Nt I T2 N ) =S PPRPPPRPPNt 107

© Ecma International 2023 Vii



ecind

A B 1N IS o V7T I I ST UPRRRPR 107
F N 0 R oo} 1= (U Lod o o] o1 {0 ] 1= T PO PP PU PSP PUPRPN 107
N A N o ] (=S U PPRTPR 107
N T N I O 1= o | PR PPRRPR 107
YW R T R oo T 1= o T e oo T ol (0] o] {1 ] £ 1= FO OO PP PSP PUPRPN 107
N S 0 o o 1Y Y () OSSR 107
A.18.3 getTImMe(CAIIDACK) ...ooiiiiiiie e e e e e 108
Y S oY 1= A U (o] o} o § Lo o = OSSR 108
F N R BT N\ (o] £ OO P PP PPPPPPPPPPN 108
A.19  TCP ClieNt Class PatterN ....cc.ueiiiiiiiiee ittt ettt e e sr e e e e st e e e s snbe e e e e snbeee e s anbeeeeennees 108
WA 8 el Y o 15 of U el ] o (0] ] [0 2 =3 OSSR 108
F N R B ol N 1 =1 TP PO TP PSP PUPRPN 109
A.19.3 #iresolveCallback(error, NAame, addreSS) .....cccciiiiiiiiiiiiiiiiie s e e e e s s e e e e s st r e e e e e e anes 109
F NN e R T Yo [ (oo 1V 1 T PP PP P PP PPPTUPRRN 110
y e B B of =Y (o = 2= | 0T oL T ] K= ) OSSR 110
F R N I o of o] g oo Yo (=] (0] ) PO PP P PP PPPTUPRPN 110
YN R A2 ool o] 2= Yo = 1o 2 =T (oo 1 U1 1 ) S 110
A.19.8 HECPWrIitable(COUNT) ..ooiiiii ittt e et e e et b e e e e aab e e e e snbe e e e e aabeeeeennee 110
ALL19.9 1A / WPITE GALA. . eeiiiii ittt e oottt e e e s s e et e e e s e a e e e e e e e e e ba e e e e e e e e e aaas 110
N R T K01 N[ ) (= TP 110
F O B o 8 I I = O =T o SO PRRRPR 110
YN 0 o R oo T 1= o T e oo ol (0] o] {1 ] £ 1= FO O PP PU PSP PUPRRN 110
N B o o 13 =T 110
E N O T o =Te [ TRy of (0] o1 £ 0] K= FO O OO PP PP PPRPUPRRN 110
YA R A o0 ¢ 3 4 U o o1 0 0} {0 1 111
F N O B N[0 ] £ TP PP TP PPPPPPPPPPN 111
A R o I I O 1= o =0 1= 111
A N R o 0] 3 4 U o o T g 0 0} {0 111
A.21.2 1A J WPITE GALA. .. eiiii ittt ettt e e e e e e et e e e e e e e e e e e e e e nba e e e e e e e e e aaa 112
y N Y/ (@ I I 4 7= o | SO PSRRRR 112
A.22.1 CONSTLUCTOR OPLIONS 1ottt e et e e et b et e e e aa bt e e e anbe e e e e nabe e e e eanes 112
) A T o T o =T oY ) {0 o 113
G T N[ ) (= PP 113
A.23  WED SOCKEE ClIBNT....iiiiiiiieee ettt e e e e ettt e e e e e s e bbb et e e e e e e e aanbbbeeeeeaeaeannns 113
Y T R ol oY o 3 ol U el o] o (o o1 40 ¢ 1= 113
A.23.2 CONSTRUCTOR OPLIONS ettt e e ettt e e et e e e e e aab e e e e nabe e e e ennes 114
F e T ok & o <N o] {0 ] = OO SPRTUPRR 114
G TR S N[ ) (= PSP 114
A.24  TCP SErver ClasS PAllEIN ......ooiieiiiiiiiiiiiiee oottt e s e e e e e e s e s e e e e e e s s s st aeeaeaeeesanntnreeeeaaeaeannns 114
YN o R oo T 1 o LU e oo ol (0] o] {1 ] £ 1= OO PU PSP OU PR 114
) S o o Y3 =T (S 115
A.24.3 HECPREAAADIE(COUNT) ....uiiiiiiitiie ettt e e e st e e et b e e e e e aa b et e e e aabe e e e e aabeeeeennee 115
YN N oo o 15 o ol [ex oo ol 0] o A o] £ 1= SO RPR U PRR 115
N T N[ ) = PR 115
A.25 TCP Server Connection Class PatterN.........occuiiiiiie oo e e e e e e s eeree e e e e e e e enes 116
A.25.1 conSTrUCTOr(SEIVEL, FIOM) ittt e et e e e s br e e e e 116
A T o o Y1 =T (S 116
F N ST T =TT [ (oo 1V 1 o PP SPRTUPRR 116
YN SR ek R o= (o F= 1= I oY o 401 1 1= ) PSPPSR 116
Y A R I -2 W el o] =1 ol ol T (= {o] o I PP UT PP UPPPTPR 116
A.25.6 HECPREAAADIE(COUNT) ....uiiiiiiitiie ettt e e st e e s bt e e e s ab e e e e e anbe e e e e snbeeeeeanbeeeeennnes 116
A.25.7 HECPWPrITADLE(COUNL) oottt et e e e e ettt e e e e e s s bbb et e e e e e e e aanbbbaeeeaaeeeannns 116
YA T S B Y=Y Te I A & ol <X« F- | - NP PP PPPRPPPPPPRt 116
F L I N[0 ] (= PP UT PP UPPPTPP 116
AL26  HT TP SBIVEI ettt bttt ettt bttt sttt s s 55585 e85ttt st s s st s e s e bnbnnes 117
N T R N[ ) P 117
y N A o B I Y=Y V7= o o T T =T o o] o OSSR 117
A A o 1= - Y ol T OSSR 117

viii

© Ecma International 2023



YN - Yol of =Y o ol (0] o1 410 13 ISR 117
LN C T - L=} o T o1 =Y PO PO PP PP PP PPPPPPPPPRR 117
Y A Y - o oo YUk ol =Y (o] o 1 {1 ] 1 K= PRSP 117
A.27.5 reSPONA(OPTIONS) ciiiiieiiitiii ettt ettt e e e sttt e e st e e e e e st e e e e e ot b e e e e st b e e e e aabae e e e abne e e e abreeeeane 118
F N A T N\ o = TP RPR PSR 118
A.28 Provenance SENSOr Class Pattern ..ottt e et e s e e e nnes 118
F ANt I R ol o e = {0 Lt =Y (o] o T 1 1 K= PRSP 118
A.28.2 SAMPLE([PArAIMS]) coiitiiieiittiie ettt ettt ettt ettt e e st e e e sa b e e e e e st e e e e e aa b et e e e aabee e e e aabe e e e e anbneeeeaabbeeeeabreeeeane 118
FN T T N\ o = PSPPSR 120
A.29 1O ProVvider ClasS PatlerN ... ...ttt et e e s et e e e e e e s e sas b e e e e e e e e e s senntaneaaaeeeas 120
A.29.1 CONSTrUCTOR(OPTIONS) ciiiiiiiiti ettt et e e e st e e e e s bb e e e e sabb e e e e anbaeeeeabbeeeeabreeeeane 120
S B ol o 1Y () SRR 121
L2710 1 Lo o =T o] /2SR 121

© Ecma International 2023 ix



secma

Introduction

This Standard, ECMAScript Embedded Systems API Specification, defines APIs for use on embedded systems.
Embedded systems are far more diverse than personal computers, smartphones, and web servers where
ECMAScript is most widely used. The diversity of embedded hardware is a consequence of devices being
optimized for a specific product or class of products.

It is not enough for these APIs to support the features embedded systems have in common. To be truly useful,
they must allow access to the unique hardware capabilities of each embedded system. This requirement makes
this Standard very different from that of a computer language which is grounded in the formality and rigor of
mathematics. Hardware can be inconsistent, even sometimes messy, but it needs to be accommodated.

The ability for scripts to access unique hardware capabilities has an important consequence. It means that not
all correct scripts will run correctly on all hardware. If a script requires a feature that is unavailable, it cannot run.
While it is common in ECMAScript to emulate missing language and runtime features with a “polyfill”, this is
usually impractical, if not impossible, for hardware capabilities. Therefore, the goal of this Standard is to make
it possible to write portable scripts for specific operations, not to guarantee that all scripts execute correctly on
any conformant deployment.

One important consideration when designing hardware products is cost. The APIs are designed to allow efficient
execution with minimal resource use. They assume no minimum or maximum configuration. Advances in the
state-of-the-art of ECMAScript engines, microcontrollers, and runtime libraries will determine where these APIs
may be used.

This Standard is influenced by the Extensible Web Manifesto. It aims to provide low-level APIs that do things —
primarily related to hardware and communication — that the ECMAScript language cannot do by itself. These
low-level APIs are functional, simple, and efficient. The APIs may be used directly. However, it is expected that
many developers will interact with them indirectly through higher-level modules and frameworks that build upon
the low-level APIs. This layered approach keeps the low-level APIs small and focused while allowing a variety
of uses and API styles to be built upon them.

The first edition of this Ecma Standard was adopted by the Ecma General Assembly of June 2021. It was built
around the 10 Class Pattern which provides consistent, efficient, extensible access to the 10 capabilities of
embedded systems. Driver-style classes for IO extenders, sensors, and displays build on the 10 foundation.

The second edition extends 10 with asynchronous capabilities used by I12C and the system management bus. It
introduces new sensor classes, including many gas sensors; classes to manage and monitor network interfaces;
client support for common network protocols including HTTP, MQTT, NTP, DNS, WebSocket, and TLS; server
support for the HTTP and WebSocket protocols; and a real-time clock peripheral class.

This Ecma Standard was developed by Technical Committee 53 and was adopted by the General
Assembly of June 2023.

X © Ecma International 2023


https://github.com/extensibleweb/manifesto#the-extensible-web-manifesto

secmd

COPYRIGHT NOTICE
© 2023 Ecma International

This document may be copied, published and distributed to others, and certain derivative works of it may
be prepared, copied, published, and distributed, in whole or in part, provided that the above copyright
notice and this Copyright License and Disclaimer are included on all such copies and derivative works.
The only derivative works that are permissible under this Copyright License and Disclaimer are:

(i) works which incorporate all or portion of this document for the purpose of providing commentary or
explanation (such as an annotated version of the document),

(i) works which incorporate all or portion of this document for the purpose of incorporating features that
provide accessibility,

(iii) translations of this document into languages other than English and into different formats and

(iv) works by making use of this specification in standard conformant products by implementing (e.g. by
copy and paste wholly or partly) the functionality therein.

However, the content of this document itself may not be modified in any way, including by removing the
copyright notice or references to Ecma International, except as required to translate it into languages
other than English or into a different format.

The official version of an Ecma International document is the English language version on the Ecma
International website. In the event of discrepancies between a translated version and the official version,
the official version shall govern.

The limited permissions granted above are perpetual and will not be revoked by Ecma International or
its successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and ECMA
INTERNATIONAL DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY
OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

© Ecma International 2023 Xi






ECMAScript® embedded systems API specification

1 Scope

This Standard defines application programming interfaces (APIls) for ECMAScript modules that support
programs executing on embedded systems.

This Standard defines APlIs for capabilities found in common across embedded systems. Implementations for
embedded systems that include additional capabilities are encouraged to provide ECMAScript APIs for those
using the many extensibility options provided by this Standard.

This Standard does not make any changes to the ECMAScript language as defined by ECMAScript Language
Specification (ECMA-262). It does strongly encourage all deployments to execute only in strict-mode. It
recommends hosts incorporate an engine that supports Secure ECMAScript and that script code is written to
conform to the Secure ECMAScript runtime constraints.

2 Conformance

A conforming implementation of the ECMAScript Embedded Systems API Specification must conform to
ECMA-262 and must provide and support all the objects, properties, functions, and program semantics required
by this specification.

A conforming implementation of the ECMAScript Embedded Systems API Specification is permitted to provide
additional objects, properties, and functions beyond those described in this specification.

In particular, a conforming implementation of this Standard is permitted to provide properties not described
herein, and values for those properties, for objects that are described in this specification. A conforming
implementation is permitted to add optional arguments to the functions defined in this specification only where
noted.

Because implementation differences are permitted (for example, to accommodate differentiating hardware
features), this Standard does not guarantee that all scripts execute correctly on every conformant deployment.

Self-hosted implementations are permitted as long as they conform to the requirements of this Standard (for
example, ensuring internal properties are not visible).

3 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes
requirements of this document. For dated references, only the edition cited applies. For undated references, the
latest edition of the referenced document (including any amendments) applies.

ECMA-262, ECMAScript Language Specification
https://www.ecma-international.org/publications/standards/Ecma-262.htm

ECMA-402, ECMAScript Internationalization API
https://www.ecma-international.org/publications/standards/Ecma-402.htm

RFC 2119, Key words for use in RFCs to Indicate Requirement Levels
https://tools.ietf.org/html/rfc2119

© Ecma International 2023 1


https://www.ecma-international.org/publications/standards/Ecma-262.htm
https://www.ecma-international.org/publications/standards/Ecma-402.htm
https://tools.ietf.org/html/rfc2119

o=
Bty

RFC 7230 - 7240, Hypertext Transfer Protocol (HTTP/1.1)
https://tools.ietf.org/html/rfc7230

RFC 6455, The WebSocket Protocol
https://tools.ietf.org/html/rfc6455

RFC 4346, The Transport Layer Security (TLS) Protocol Version 1.1
https://tools.ietf.org/html/rfc4346

RFC 5246, The Transport Layer Security (TLS) Protocol Version 1.2
https://tools.ietf.org/html/rfc5246

RFC 8446, The Transport Layer Security (TLS) Protocol Version 1.3
https://tools.ietf.org/html/rfc8446

RFC 6066, Transport Layer Security (TLS) Extensions: Extension Definitions
https://tools.ietf.org/html/rfc6066

RFC 7301, Transport Layer Security (TLS) Application-Layer Protocol Negotiation Extension
https://tools.ietf.org/html/rfc7301

ITU X.690, Information technology - ASN.1 encoding rules: Specification of Basic Encoding Rules (BER),
Canonical Encoding Rules (CER) and Distinguished Encoding Rules (DER)
https://www.itu.int/rec/T-REC-X.690

RFC 7468, Textual Encodings of PKIX, PKCS, and CMS Structures
https://www.rfc-editor.org/rfc/rfc7468

RFC 1035, DOMAIN NAMES - IMPLEMENTATION AND SPECIFICATION
https://www.rfc-editor.org/rfc/rfc1035

RFC 8484, DNS Queries over HTTPS (DoH)
https://www.rfc-editor.org/rfc/rfc8484

RFC 5905, Network Time Protocol Version 4: Protocol and Algorithms Specification
https://www.rfc-editor.org/rfc/rfc5905

IEEE 802.
https://standards.ieee.org/featured/ieee-802/

MQTT 3.1.1 Standard.
http://docs.oasis-open.org/maqtt/matt/v3.1.1/os/mqtt-v3.1.1-0s.html

4  Terms and definitions
For the purposes of this document, the following terms and definitions apply.

4.1
address
an identifier for interfacing with a specific component, device, or board

4.2
baud rate
the rate at which information is transferred, measured in bits per second

4.3

bus
a communications system that transfers data. A “Bus” includes hardware, software, and the protocol.

2 © Ecma International 2023


https://tools.ietf.org/html/rfc7230
https://tools.ietf.org/html/rfc6455
https://tools.ietf.org/html/rfc4346
https://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc8446
https://tools.ietf.org/html/rfc6066
https://tools.ietf.org/html/rfc7301
https://www.itu.int/rec/T-REC-X.690
https://www.rfc-editor.org/rfc/rfc7468
https://www.rfc-editor.org/rfc/rfc1035
https://www.rfc-editor.org/rfc/rfc8484
https://www.rfc-editor.org/rfc/rfc5905
https://standards.ieee.org/featured/ieee-802/
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html

secmd

4.4
connected sensing device
a sensing device that communicates with a remote endpoint

4.5
direct measurement
a sample that has been captured from a configured sensor without alteration

4.6
expander
a device that provides additional inputs and/or outputs

4.7
instance
an object that has been created by a function constructor, class constructor, or function factory

4.8
10
an abbreviation for “Input and Output”

4.9
microcontroller
a single integrated circuit with one or more CPUs, memory, and programmable 10

4.10
protocol
a system of rules that define how data is exchanged between systems

411

register

locations in a device’s memory that can be written to or read from. These memory locations may contain
configuration settings or the current state of the device.

4.12
remote endpoint
a computing system in communication with the microcontroller

4.13
sensing device
a system comprising an embedded controller with at least one attached sensor

4.14

sensor

a device that detects and responds to some type of input from the physical environment, attached to a
microcontroller used to capture data

4.15

sensor classification

sensor type, as determined by the real quantity that is, or quantities that are, subject to measurement, e.g. mass,
power, or humidity. Uses names of Sensor Classes defined by this Standard. If a sensor measures real
guantities defined as properties in multiple unique Sensor Classes, the name of any applicable Sensor Class
may be used.

4.16

sensor configuration

user-defined parameters impacting the sampling, processing, representation, and/or transmission of peripheral
data

© Ecma International 2023 3



secma

4.17

synthetic measurement

a direct measurement that has been modified in some form so as to potentially lose accuracy, precision, or
fidelity

5 Notational conventions

The key words “MUST”, “MUST NOT", “REQUIRED”, “SHALL", “SHALL NOT”, “SHOULD”, “SHOULD NOT”,
“RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in RFC 2119.

6 Overview

6.1 ECMAScript

This Standard builds on Standard ECMAScript as defined by Ecma TC39. As of this writing, that is ECMAScript
2022.

This Standard is not an extension or subset of ECMAScript 2022. It is a set of APIs to be used with that standard.
The relationship between ECMA-419 and ECMAScript is analogous to the relationship between ECMA-402
(ECMAScript Internationalization API) and ECMAScript.

This Standard is intended to be used in strict mode only. Sloppy mode has known issues that detract from
building a robust system. Sloppy mode is maintained primarily for web compatibility and provides no benefit to
embedded systems.

6.2 Class patterns

A Class Pattern, as used in this Standard, is a combination of requirements and guidelines for a class. For
example, the 10 Class Pattern defines behaviors for all IO classes.

The standard defines classes in terms of Class Patterns. In the future, there may be true formal classes as
found in the ECMAScript Language.

The requirements of a Class Pattern are behaviors defined by this Standard and must be adhered to for a
conformant implementation. A Class Pattern can be seen as similar to a collection of Abstract Operations in the
ECMA-262.

Guidelines are primarily for extensibility. Extensibility is essential to this Standard as it must be possible to
access unique hardware capabilities. Extensibility is problematic because of the potential for collisions. This
Standard provides requirements for how extensibility may be implemented.

Unless stated, there are no requirements about class inheritance. An implementation of a class pattern may
inherit from Object or any other class, so long as it conforms.

6.3 Independent implementations
This Standard is intended to facilitate multiple independent implementations of the APIs. A given APl may

warrant an entirely different implementation depending on a variety of factors that include the host hardware,
operating system, and ECMAScript engine.

6.4  Self-hosting

The ECMAScript language is defined in terms of a host that provides the runtime environment for the execution
of scripts. This Standard does not change that. The APIs defined herein are provided by a host. However, this
Standard does anticipate that portions of the runtime environment provided by the host may themselves be

4 © Ecma International 2023



secmd

implemented in ECMAScript. This Standard refers to a host that includes ECMAScript code in its implementation
as self-hosting.

One challenge of self-hosting is fully separating host scripts from hosted scripts to eliminate security, robustness,
and compatibility problems. The Compartment model in the Secure ECMAScript proposal is a tool to separate
host scripts from hosted scripts. Compartments also allow separation of modules within a host which mitigates
supply-chain attacks.

Self-hosted implementations must ensure that no internal properties or methods are visible to client scripts using
the implementation. Private fields and private methods as defined by ECMA-262 are one way to shield internal
properties and methods from client code.

NOTE Self-hosting is not required.

6.5 Module specifiers

This Standard defines classes which are accessed through modules. Because many embedded systems lack
a file system, using file paths to access modules is impractical and contrived. Instead, modules are accessed
using bare module specifiers. While such specifiers are currently forbidden in a web browser, they are permitted
in other environments.

A namespace prefix is used to minimize the chance of nhame collisions with other bare module specifiers. This
Standard uses the namespace prefix embedded: .

import Digital from "embedded:io/digital"”;

The “embedded:” namespace prefix is registered as a URI scheme with IANA to reduce the possibility of
collisions.

The use of module namespaces in this Standard is intended to be compatible with the Built In Modules Proposal.

For the avoidance of doubt, the use of bare module specifiers by this Standard does not prevent a host from
also supporting other kinds of module specifiers for modules not defined by this specification.

6.6  Secure ECMAScript

The Secure ECMAScript (SES) proposal extends the ECMAScript language to support provably secure
execution of scripts in an environment that includes both trusted and untrusted scripts. The two foundations of
Secure ECMAScript are immutability and compartments. SES makes all primordials immutable prior to the
execution of any untrusted script code. This ensures built-in objects behave as defined by the language and
disables common attack vectors including prototype poisoning. Compartments allow scripts to sandbox other
scripts to limit the globals and modules that are available in the sandbox.

The security guarantees provided by SES reduce vulnerabilities in systems that combine code from multiple
sources, some of which may contain security flaws. The mechanisms proposed by SES allow for an efficient
implementation. Further, the immutability requirement for SES allows primordials to be stored in read-only
memory, reducing RAM use and enabling them to be securely shared by multiple virtual machines.

This Standard is designed to be used with SES when a runtime security solution is required. If and when the
SES proposal is an approved standard, this Standard will reference it normatively.

SES consists of two major execution phases — pre-lockdown and post-lockdown. Prior to lockdown, primordials
are mutable; afterwards, they are immutable. A host is not required to support pre-lockdown on an embedded
system. It may instead complete lockdown during the build process, for example.

6.7 Naming

This Standard uses the lower camel case naming convention (e.g. exampleProperty) for property names.

© Ecma International 2023 5


https://www.iana.org/assignments/uri-schemes/prov/embedded
https://github.com/tc39/proposal-built-in-modules#namespace

secma

It follows the ECMAScript convention of naming classes with upper camel case (e.g. ExampleClass) and
methods with lower camel case (e.g. exampleMethod).

Callback function names begin with on (e.g. onExampleCallback).

Words are preferred over abbreviations and acronyms (e.g. address instead of addr, clock instead of scl,
receive instead of rx), though common acronyms are acceptable (e.g. hz instead of hertz).

6.8 IP address
This Standard represents an IP address value as a string.

An IPv4 address has the form x.x.x.x, where x is a decimal value from 0 to 255 and the values are separated
by periods.

An IPv6 address has the form y:y:y:y:y:y:y:y, where y is a hexadecimal value from 0x0000 to OxFFFF and the
values are separated by colons.

6.9 MAC address
This Standard represents a media access control address (MAC address) value as a string. The value has the

form zz:zz:zz:zz:zz:zz, where zz is a two-digit hexadecimal value from 0x00 to OxFF and the values are
separated by colons.

6.10 Byte Buffer

This Standard uses the term “Byte Buffer” to mean an instance of the following JavaScript types: ArrayBuffer
(resizable or not), SharedArrayBuffer (growable or not), Uint8Array, Int8Array, and DataView.

7 Requirements for standard built-in ECMAScript objects
Unless specified otherwise in this document, the objects, functions, and constructors described in this Standard

are subject to the generic requirements and restrictions specified for standard built-in ECMAScript objects in
ECMA-262, 10th edition, clause 18, or successor.

8 Base Class Pattern

The Base Class Pattern defines common behaviors used by other class patterns. The Base Class Pattern is
purely abstract and cannot be instantiated directly.

Classes conforming to the Base Class Pattern may be subclassed.

See Annex A for the formal algorithms of the Base Class Pattern.

8.1  Asynchronous methods

By default, methods are synchronous: they consume their inputs, perform their work, and generate their result
by the time they return. A class may provide asynchronous methods.

Asynchronous methods take an optional final argument which is a completion callback function. A completion

callback function is called once, at the completion of the operation to indicate success or failure and deliver the
result of the operation.

6 © Ecma International 2023


https://tc39.es/ecma262/#sec-ecmascript-standard-built-in-objects

»ecma

The first argument to the completion callback is always a result code. A value of null indicates success; an
Error object indicates failure. Additional arguments may be specified by the method.

Whether or not a completion callback is provided, the method is performed asynchronously.
If an instance provides any asynchronous methods, it should provide an asynchronous close method.

NOTE As defined here, an “asynchronous method” is not a JavaScript function declared with the async keyword.
Here “asynchronous” refers only to the operation being performed in without blocking the current thread of execution.

8.2 constructor
The constructor of the Base Class Pattern takes an options object as its first argument.
The target property is the only property the Base Class Pattern defines in the options object.

Typically there are no other arguments as additional configuration options can and should be added to the
options object. However, additional arguments are not prohibited.

It is an error to invoke the constructor without the options object. An exception will be thrown.

The implementation of the constructor should validate all supported option properties before allocating any
resources. This behavior avoids enabling or changing the state of any hardware should the constructor fail due
to invalid parameters.

The implementation must ignore any unrecognized properties on the options object.

If the constructor fails to complete execution successfully, it must release any resources allocated prior to exiting.
The constructor must not modify the options object. It must accept an immutable options object.

Once the instance has been successfully constructed, it must not be eligible for garbage collection until it is
explicitly released by calling close. This is done so scripts do not need to maintain a reference to the object to

prevent it from being collected, similar to setInterval/clearInterval and the W3C Generic Sensor
specification.

8.3  close method
The close method releases all resources associated with the instance before completing.

Once the close operation completes, an Error exception is thrown if any other instance methods are called. It
is not an error to call the close method more than once.

Once the close operation completes, the object is eligible for garbage collection.

Once close has been called, calling other methods on the instance throws an exception. The sole exception
is close itself which is safe to call multiple times.

For synchronous close:

» the close operation is complete when it returns

* no callbacks may be invoked after the close method is called
For asynchronous close:

» the close operation completes some time after it returns

© Ecma International 2023 7



secma

« the completion callback, if provided, is invoked after close completes
+ callbacks may be invoked after close is called and before the completion callback is invoked

» if possible, pending asynchronous operations should be canceled

8.4  target property

The target property is opaque to the object’s implementation. It may be initialized by the constructor using the
target property in the options object. Scripts may both read and write the target property, though it is typically
only set at construction.

8.5  Callbacks
Instances of the Base Class Pattern typically use function callbacks to deliver asynchronous events.
Callback functions are provided to the instance as properties in the options object.

new Button({
onPush() {
}s
onRelease() {
}

3

Callback functions are invoked with this set to the instance. This can be overridden using standard
ECMAScript features, such as arrow functions:

new Button({
onPush: () => {
}s
onRelease: () => {
}
})s

The callbacks are stored internally by the implementation. They are not public methods. The callback functions
cannot be read and are only set using the constructor’s options object.

A callback function may only be invoked when no script is running in its host virtual machine to respect the
single-thread evaluation semantics of ECMAScript. This means that callbacks may not be invoked by the
instance from within its public method calls, including the constructor.

Callbacks must be invoked in the same virtual machine in which they were created.

9 IO Class Pattern

The 10 Class Pattern builds on the Base Class Pattern to provide a foundation for implementing access to a
variety of hardware inputs and outputs.

All 10 is non-blocking, consistent with ECMAScript API behavior on the web platform. That said, not all
operations are instantaneous. Implementations determine how long is too long for a given operation.

Non-blocking 10 is facilitated by two callback functions, onReadable and onWritable, which eliminate the
need for polling in most cases.

See Annex A for the formal algorithms of the 10 Class Pattern.

8 © Ecma International 2023


https://tc39.es/ecma262/#sec-happens-before

»ecma

9.1 Pin specifier

A pin specifier is a JavaScript value used by IO classes to refer to hardware connections represented by pins.
Typically these pins correspond to a particular connection point on the hardware package, although this is not
required.

The value of a pin specifier is host-dependent. It is often a number corresponding to the logical GPIO pin number
as per the hardware data sheet (e.g. GPIO 5), but it may be a string ("D1") or even an object ({port: 1,

pin: 5}).
9.2 Port specifier

A port specifier is a JavaScript value used by 10 classes to refer to a hardware interface. Port specifier values
are defined by the host and are usually either a number or string.

For example, consider a microcontroller may support two serial connections, each with different capabilities that
may be configured to be available on a set of pins. The port specifier indicates which serial connection to use.

9.3 constructor

The options object contains the specification of the hardware resources to be used by the instance. For example,
the digital class indicates the physical pin to use with a pin property that has a pin specifier value.

If the constructor requires a resource that is already in use — whether by a script or the native host — an Error
exception is thrown.

This Standard allows but does not require, an implementation to open multiple instances for the same hardware
resource if the instances cannot interfere with each other’'s operation. For example, this can work for a digital
input but would not for a digital output.

The 10 Class Pattern is designed to be used both with IO types that have only a current value (e.g. Digital,
analog, PWM) and 10 types that use streams of data (e.g. serial, SPI).

The 10 Class Pattern reserves the 10 property name in the options object. If present, it must be ignored by 10
implementations.

94 read method

The read method returns data from the 10 instance. If no data is available, it returns undefined. The type of
the data returned depends on the value of the format property.

The read method may take any number of arguments, including zero. The arguments are defined by the
specific 10 type.

If the instance does not support reading (because the 10 type is inherently unreadable or because it is configured
for write-only) an exception is thrown.

When the format property is "buffer"”, the read method accepts a data argument that is a Number or Byte
Buffer. When it is a Number, read allocates the result as an ArrayBuffer with up to as many bytes as the
Number argument. When it is a Byte Buffer, read fills in as many bytes as possible and the result is the number
of bytes read as a Number .

For synchronous read, the result is the return value. For asynchronous read, the result is passed to the
completion callback as the second argument.

© Ecma International 2023 9



»ecma

If a resizable Byte Buffer is passed to an asynchronous read and the buffer shrinks so that it cannot hold the
number of bytes requested at the time the operation is queued, an error is passed to the completion callback. It
is implementation dependent if and how the content of the buffer is modified.

9.5 write method
The write method sends data to the 10 instance.

The following conditions cause an Error exception to be thrown: the device cannot accept the data because
its buffers are full, the data is incompatible, or a hardware error.

The write method may take any number of arguments, including zero. The arguments are defined by the
specific 10 type. The type of data accepted by write depends on the value of the format property.

If this instance does not support writing (because the IO type cannot be written or because it is configured for
read-only) an Error exception is thrown.

When the format property is "buffer", the write method accepts a data argument that is a Byte Buffer.

Calls to write must write all the data provided. If all the data cannot be output, write must not output any
data and instead must throw an exception.

If a non-shared Byte Buffer is passed to an asynchronous write method, the implementation sends the contents
of the buffer from the time the operation is queued. If a shared buffer is passed, the implementation may read
from the buffer at any time; the caller is responsible for ensuring that the bytes are not modified until the
completion callback is invoked.

9.6 format property

The format property is a string that indicates the type of data used by the read and write methods. It is
initialized by the constructor to the default defined for its 10 type. The format property may be set by the script
at any time to change how it reads and writes data.

The following values are defined by the 10 Class Pattern for the format property. 10 types may choose to
support one or more and may define others.

« number - an ECMAScript number value, typically used for bytes

- buffer - a Byte Buffer. For buffer types with defined byteOffset and byteLength properties, these restrict
the bytes accessed in views. Implementations always allocate ArrayBuffer instances for return values.

« object - an ECMAScript object, for data representing a data structure (e.g. JSON)
« string;ascii - an ECMAScript string, for reading from and writing to 10 using 7-bit ASCII data
« string;utf8 - an ECMAScript string, for reading from and writing to 10 using UTF-8 formatted data.

The format property is implemented as a getter and setter. Attempting to set the format property to an
unsupported value does not change the value and instead throws an Error exception.

9.7 Callbacks

The 10 Class Pattern specifies three callbacks which are set by the options object passed to the constructor.
Most IO types operate with or without these callbacks installed, but a particular 10 type may require one or more
callbacks.

10 © Ecma International 2023



secmd

9.7.1 onReadable

The onReadable callback is invoked when the instance has data available to be read. Data is retrieved using
the read method.

The onReadable callback may receive one or more arguments with information about the data available to
read. The arguments are defined by the specific 10 type.

The onReadable callback is invoked once when data arrives and not again until additional data is available to
read.

9.7.2 onWritable
The onlWritable callback is invoked when the instance can accept more data for output.

The onWritable callback may receive one or more arguments with information about the amount of data that
may be written. The arguments are defined by the specific 10 type.

9.7.3 onError

The onError callback is invoked when a non-recoverable error occurs. The instance is no longer usable. The
only method that should be called is close.

Details of the error may be passed to the callback using arguments defined by the specific 10 type.

10 IO classes
This section defines 10 Classes conforming to the 1O Class Pattern.

The classes support capabilities commonly supported by hardware and runtimes. Capabilities that are not
supported here may be added using the extensibility options of the IO Class Pattern and Base Class Pattern.

10.1 Digital
The Digital IO class is used for digital inputs and outputs.
import Digital from "embedded:io/digital";

See Annex A for the formal algorithms of the Digital IO Class.

© Ecma International 2023 11



secma

10.1.1  Properties of constructor options object

Property Description
pin A pin specifier indicating the pin to control. This property is required.
mode A value indicating the mode of the 10. May be Digital.Input,

Digital.InputPullUp,Digital.InputPullDown,
Digital.InputPullUpDown, Digital.Output, or
Digital.OutputOpenDrain. This property is required.

edge A value indicating the conditions for invoking the onReadable callback.
Values are Digital.Rising, Digital.Falling, and
Digital.Rising + Digital.Falling. This value is required if the
onReadable property is present and ignored otherwise.

10.1.2  Callbacks

onReadable()

Invoked when the input value changes depending on the value of the edge property.
10.1.3 Data format

The Digital class data format is always "number" with a value of either 0 or 1.

10.1.4 Notes

A digital 10 instance configured as an input does not implement write; one configured as an output does not
implement read.

10.2 Digital bank
The DigitalBank class provides simultaneous access to a group of digital inputs or outputs.
import DigitalBank from "embedded:io/digitalbank";

See Annex A for the formal algorithms of the DigitalBank bank IO Class.

12 © Ecma International 2023



»ecma

10.2.1  Properties of constructor options object

Property Description

pins A bitmask with pins to include in the bank set to 1. This property is
required.

mode A value indicating the mode of the 10, May be DigitalBank.Input,

DigitalBank.InputPullUp, DigitalBank.InputPullDown,
DigitalBank.InputPullUpDown, DigitalBank.Output, or
DigitalBank.OutputOpenDrain. All pins in the bank use the same
mode. This property is required.

rises A bitmask indicating the pins in the bank that should trigger an
onReadable callback when transitioning from 0 to 1. When an
onReadable callback is provided, at least one pin must be set in rises
and falls.

falls A bitmask indicating the pins in the bank that should trigger an
onReadable callback when transitioning from 1 to 0. When an
onReadable callback is provided, at least one pin must be set in rises
and falls.

bank For implementations with more than a single digital bank, a number or
string value specifying the digital bank for this instance. This property is
optional.

10.2.2  Callbacks
onReadable(triggers)
Invoked when the input value changes depending on the value of the mode, rises, and falls properties. The

onReadable callback receives a single argument, triggers, which is a bitmask indicating each pin that
triggered the callback with a 1.

10.2.3 Data format

The DigitalBank class data format is always "number". The value is a bitmask. On a read operation, any
bit positions that are not included in the pins bitmask are set to 0.

NOTE The requirement to zero bit positions not included in the bitmask prevents leaking the state of pins unused by
this bank.

10.2.4 Notes

A digital 10 bank instance configured as an input does not implement write; one configured as an output does
not implement read.

A bitmask contains at least one, and not more than, thirty-two bits. Digital banks may distribute their pins across
multiple banks using the bank property of the constructor dictionary.

10.3 Analog input
The Analog IO class represents an analog input source.

import Analog from "embedded:io/analog";

© Ecma International 2023 13



secma

See Annex A for the formal algorithms of the Analog IO Class.

10.3.1  Properties of constructor options object

Property Description
pin A pin specifier indicating the analog input pin. This property is
required.
resolution The requested number of bits of resolution of the input. This property
is optional.

10.3.2 Data format

The Analog class data format is always a number. The value returned is an integer from 0 to a maximum value
based on the resolution of the analog input.

10.3.3 resolution property

The read-only resolution property indicates the number of bits of resolution provided in values returned by
the instance.

10.4 Pulse-width modulation
The PWM 10 class provides access to the pulse-width modulation capability of pins.
import PWM from "embedded:io/pwm";

See Annex A for the formal algorithms of the PWM IO Class.

10.4.1  Properties of constructor options object

Property Description

pin A pin specifier indicating the pin to operate as a PWM output. This
property is required.

hz A number specifying the requested frequency of the PWM output in
hertz. This property is optional.

10.4.2 Data format

The PWM class data format is always a number. The write call accepts integers between 0 and a maximum
value based on the resolution of the PWM output.

10.4.3 resolution property

The read-only resolution property indicates the number of bits of resolution in values passed to the write
method.

10.4.4  hz property

The read-only hz property returns the frequency of the PWM.

14 © Ecma International 2023



secmd

10.4.5 Notes

A PWM instance defaults to a duty cycle of 0% until write is called with a different value.

10.5 I2C —synchronous IO

The I2C class implements an I2C Initiator to communicate with an 12C Peripheral over I2C bus. The I2C class
performs synchronous IO.

import I2C from "embedded:io/i2c";
If synchronous 10 is not supported, the constructor throws.

See Annex A for the formal algorithms of the I2C 1O Class.

10.5.1 Properties of constructor options object

Property Description
data Pin specifier for the I2C data pin. This property is required.
clock Pin specifier for the I2C clock pin. This property is required.
hz The speed of communication on the 12C bus. This property is required.
address The 7-bit address of the target 12C Peripheral to communicate with. This
property is required.
port Port specifier for the I2C instance. This property is optional.
NOTE The property name timeout is reserved for future use.

10.5.2 Data format

The I2C class data format is always "buffer".

10.5.3  Specifying stop bit with read and write methods

The I2C protocol is transaction-based. At the end of each read and write operation, a stop bit is sent. If the stop
bit is 1, it indicates the end of the transaction; if O, it indicates that the transaction has additional operations
pending.

The read and write methods set the stop bit to 1 by default. An optional argument to the read and write

methods allows the stop bit to be specified. Pass false to set the stop bit to 0, and true to set the stop bit to
1.

10.5.4 Methods

When number of bytes to read or write is zero the target device address is sent over the 12C bus but no data
bytes follow.

The read and write methods may operate synchronously. Doing so does not violate the requirement that 10

is non-blocking because these operations typically complete within a short period of time. Additionally,
synchronous operation is required for microcontrollers which do not support asynchronous I2C 10.

© Ecma International 2023 15



»ecma

read(byteLength | buffer[, stop])

The first argument follows the behavior of the 10 Class Pattern read method for the "buffer" data format.
The optional second argument is a Boolean specifying the stop bit behavior.

write(buffer[, stop])

The first argument to the write method is a buffer. The optional second argument is a Boolean specifying the
stop bit behavior.

10.6 12C —asynchronous IO

The I2C.Async class implements an I2C Initiator to communicate with an [2C Peripheral over 12C bus using
asynchronous IO.

import I2C from "embedded:io/i2c";

The I2C class provides an implementation using asynchronous IO through the I2C.Async constructor. The
I2C.Async constructor is only present if asynchronous 1O is supported.

Asynchronous operations occur serially in the order issued.

See Annex A for the formal algorithms of the I2C.Async 10 Class.

10.6.1  Properties of constructor options object

Same as synchronous 12C.

10.6.2 Data format

Same as synchronous I2C.

10.6.3  Specifying stop bit with read and write methods

Same as synchronous 12C.

10.6.4 Methods

read(byteLength | buffer)

read(byteLength | buffer, stop)
read(byteLength | buffer, callback)
read(byteLength | buffer, stop, callback)

The byteLength, buffer, and stop arguments are the same as synchronous 12C. There is no return value.
The callback property is a completion callback function. The second argument is either the byteLength or
buffer that would be returned by synchronous read.

write(buffer)

write(buffer, stop)
write(buffer, callback)
write(buffer, stop, callback)

The buffer and stop arguments are the same as synchronous I12C. The callback property is a completion
callback function.

16 © Ecma International 2023



»ecma

10.7 System management bus (SMBus) — synchronous 10

The SMBus class extends the I2C class with additional methods to communicate with devices that implement
the SMBus protocol. The SMBus class performs synchronous 10.

import SMBus from "embedded:io/smbus”;
If synchronous IO is not supported, the constructor throws.

See Annex A for the formal algorithms of the SMBus 10 Class.

10.7.1  Properties of constructor options object

Property Description

stop A boolean value indicating whether to set the stop bit when writing the
SMBus register number. This property is optional and defaults to false.

10.7.2  Methods

readUint8(register)

Reads and returns an unsigned 8-bit integer value from the specified register.
writeUint8(register, value)

Writes the unsigned 8-bit integer value to the specified register.
readUint16(register[, bigEndian])

Reads and returns an unsigned 16-bit integer value from the specified register. By default, the value is read in
little-endian byte order. If the optional bigEndian argument is true the value is read in big-endian byte order.

writeUintl6(register, value[, bigEndian])

Writes the unsigned 16-bit integer value to the specified register. By default, the value is written in little-endian
byte order. If the optional bigEndian argument is true the value is written in big-endian byte order.

readBuffer(register, byteLength | buffer)

Reads a stream of bytes starting at the specified register. The second argument to readBuffer follows the
behavior of the 10 Class Pattern read method for the "buffer" data format.

writeBuffer(register, buffer)

Write a stream of bytes from the buffer argument starting at the specified register. The buffer argument
to writeBuffer follows the behavior of the 10 Class Pattern write method for the "buffer" data format.

readQuick()
Send an SMBus Quick command with the Read/Write bit set to 1.
writeQuick()

Send an SMBus Quick command with the Read/Write bit set to 0.

© Ecma International 2023 17



secma

receiveByte()

Read an 8-bit unsigned value.
sendByte(command)

Send the 8-bit unsigned command byte.

NOTE The method names readUint32, writeUint32, readUint64, and writeUint64 are reserved for
32 and 64-bit SMBus operations in the future.

10.8 System management bus (SMBus) —asynchronous 10

The SMBus . Async class extends the I2C.Async class with additional methods to communicate with devices
that implement the SMBus protocol using asynchronous 10.

import SMBus from "embedded:io/smbus";

The SMBus class provides an implementation using asynchronous 10 through the SMBus . Async constructor.
The SMBus . Async constructor is only present if asynchronous 10 is supported.

Asynchronous operations occur serially in the order issued.

See Annex A for the formal algorithms of the SMBus . Async IO Class.

10.8.1 Properties of constructor options object

Same as synchronous SMBus.

10.8.2 Methods

readUint8(register[, callback])

readUint16(register[, bigEndian][, callback])
readBuffer(register, byteLength | buffer[, callback])
readQuick([callback])

receiveByte([callback])

All asynchronous SMBus methods read methods accept an optional final completion callback argument that
behaves consistently with the read behavior of the 10 Class Pattern.

writeUint8(register, value[, callback])
writeUintl6(register, value[, bigEndian][, callback])
writeBuffer(register, buffer[, callback])
writeQuick([callback])

sendByte(command[, callback])

All asynchronous SMBus methods write methods accept an optional final completion callback argument that
behaves consistently with the write behavior of the 10 Class Pattern.

10.9 Serial
The Serial class implements bi-directional serial (UART) communication.

import Serial from "embedded:io/serial”;

18 © Ecma International 2023



secmd

See Annex A for the formal algorithms of the Serial 10 Class.

10.9.1  Properties of constructor options object

Property

Description

receive

Pin specifier for the receive pin. This property is required
by some implementations to use the serial connection to
read data.

transmit

Pin specifier for the transmit pin. This property is required
by some implementations to use the serial connection to
write data.

baud

A number specifying the baud rate of the connection. This
property is required.

flowControl

A string specifying the kind of flow control, if any, used on
the connection. The valid values are "hardware" and
"none". This property is optional and defaults to "none".

dataTerminalReady

Pin specifier for the data terminal ready pin. This property
is optional.

requestToSend

Pin specifier for the request to send pin. This property is
optional.

clearToSend

Pin specifier for the clear to send pin. This property is
optional.

dataSetReady

Pin specifier for the data set ready pin. This property is
optional.

port

Port specifier for the serial connection. This property is
optional.

NOTE The serial connection is eight data bits, no parity bit, and one stop bit (8N1). The property names parity,

stop, and data are reserved to support other communication configurations in the future.

10.9.2 Methods

read([byteLength | buffer])

When using the "number" data format, read always returns the next available byte as a Number (from 0 to

255).

When using the "buffer" data format, read follows the behavior of the 10 Class Pattern read method for the
"buffer" data format with one addition: if there are no arguments and data is available to read, read returns

one or more bytes (implementation-dependent).

If no data is available, read returns undefined.

The read method must not wait for additional bytes to arrive.

write(byteValue | buffer)

When using the "number" data format, the first argument is a byte value to transmit.

If the output buffer cannot accept all the bytes to be written, an exception is thrown — partial data must not be

written.

© Ecma International 2023




pecma

flush([input, output])

Flushes the input and/or output queues of the serial instance. If no arguments are passed, both input and output
queues are flushed. If both arguments are provided, the corresponding queues are flushed based on the value
of the arguments. An exception is thrown if one argument is passed.

If flushing the output causes the serial instance to be able to accept data for output, the onWritable callback
will be invoked.

set(options)
The set method controls the value of the data terminal ready and request to send pins of the serial connection
together with the break. The sole argument is an options object which contains optional dataTerminalReady,

requestToSend, and break properties with boolean values.

If dataTerminalReady, requestToSend, or break is not specified in the dictionary, the corresponding
serial behavior is left unchanged.

get([options])

The get method returns the value of the clear to send and data set ready pins. It returns the state of the pins
as booleans in an options object using the clearToSend and dataSetReady properties.

If the optional options object property is provided, get sets the clearToSend and dataSetReady properties
on the options object and returns the provided options object as the result of get.

10.9.3 Callbacks
onReadable(bytes)

The onReadable callback is invoked when new data is available to read. The callback receives a single
argument that indicates the number of bytes available.

onWritable(bytes)
The onWritable callback is first invoked when the serial instance is ready for use.

The onWritable callback is invoked when space has been freed in the output buffer. The callback receives a
single argument that indicates the number of bytes that may be written without overflowing the output buffer.

10.9.4 Data format

The Serial class data format is either "number" for individual bytes or "buffer" for groups of bytes. The
default data format is "number".

10.10 Serial Peripheral Interface (SPI)

The SPI class implements a Serial Peripheral Interface (SPI) controller to communicate with a single SPI
peripheral.

import SPI from "embedded:io/spi”;

See Annex A for the formal algorithms of the SPI 10 Class.

20 © Ecma International 2023



secmd

10.10.1 Properties of constructor options object

Property Description

out Pin specifier for the Serial Data Out pin. This property is required when
using the SPI bus to write data.

in Pin specifier for the Serial Data In pin. This property is required when
using the SPI bus to read data.

clock Pin specifier for the clock pin. This property is required.

select Pin specifier for the chip select pin. This property is optional and should
not be specified if chip select will be managed by the caller.

active The value to write to the select pin when the SPI instance is active.
Must be 1 or 0. This property is optional and defaults to 0.

hz The speed of communication on the SPI bus. This property is required.

mode The SPI bus mode, a two-bit mask that specifies the SPI clock polarity

(bit 1) and phase (bit 0). This property is optional and defaults to 0b0O.

port Port specifier for the SPI connection. This property is optional.

If both out and in are unspecified, a TypeError is thrown by the constructor during validation.

The in and out properties may refer to the same physical pin (e.g. 3-wire SPI).

10.10.2 Data format

The data format for the SPI class is always "buffer".

10.10.3 Methods
read(byteLength | buffer)
The first argument follows the behavior of the 10 Class Pattern read method for the "buffer" data format.

If the buffer argument has a bitLength property, it specifies the number of bits to read, overriding the
byteLength property to allow reading of partial bytes. buffer.bitLength must be less than or equal to the
number of bits in the buffer (i.e. buffer.byteLength * 8). Bits are read into the start of buffer (i.e. bit
offset zero).

The behavior of the Serial Data Out pin is implementation-dependent during the read operation.
write(buffer)
Write buffer to the SPI bus. Any input data is discarded.

If the buffer argument has a bitLength property, it specifies the number of bits to write, overriding the
byteLength property to allow writing of partial bytes. buffer.bitLength must be less than or equal to the
number of bits in the buffer (i.e. buffer.byteLength * 8). Bits are written from the start of buffer (i.e. bit
offset zero).

© Ecma International 2023 21



secma

transfer(buffer)

Write buffer to the SPI bus while simultaneously reading buffer.byteLength 8-bit bytes from the SPI bus.
The results of the read are placed into buffer, replacing the original contents.

If the buffer argument has a bitLength property, it specifies the number of bits of the buffer to swap in the
transfer, overriding the byteLength property to allow transfer of partial bytes. buffer.bitLength must be
less than or equal to the number of bits in the buffer (i.e. buffer.byteLength * 8). Bits are transferred from
the start of buffer (i.e. bit offset zero).

flush([deselect])

Flushes any buffers of the SPI controller instance. The flush operation is synchronous and completes before
returning.

Some SPI peripherals require that the chip select pin be set inactive at specific times (for instance, to mark the

end of a transaction). The flush method supports this with the optional deselect argument which, when
present and true, causes the chip select pin to be set to inactive after the flush completes.

10.11 Pulse count
The PulseCount class implements a bi-directional counter typically used with a rotary encoder.
import PulseCount from "embedded:io/pulsecount”;

See Annex A for the formal algorithms of the PulseCount 10 Class.

10.11.1 Properties of constructor options object

Property Description
signal Pin specifier for the signal input pin. This property is required.
control Pin specifier for the control input pin. This property is required.

10.11.2 Data format

The PulseCount class data format is always a number. The values are always integers.
10.11.3 Methods

read()

The read method returns the current count. It takes no arguments.

The count is initialized to zero at the time of instantiation. Note that the initial call to read may return a non-zero
value if pulses have been counted in the intervening interval.

write(count)

The write method sets the current count.

22 © Ecma International 2023



secmd

10.11.4 Callbacks
onReadable()

The onReadable callback is invoked when the value of the counter has changed. Multiple changes to the
counter may be combined into a single invocation of the callback.

onError()

The onError callback is invoked when an error is detected, for example, underflow or overflow of the counter.

10.12 TCP socket

The TCP network socket class implements a general-purpose, bi-directional TCP connection.

import TCP from "embedded:io/socket/tcp";

The TCP socket is not a TCP listener, as in some networking libraries. The TCP listener is a separate class.

See Annex A for the formal algorithms of the TCP 10 Class.

10.12.1 Properties of constructor options object

Property Description
address A string with the IP address of the remote endpoint to connect to. This
property is required.
port A number specifying the remote port to connect to. This property is
required.
noDelay A boolean indicating whether to disable Nagle’s algorithm on the

socket. This property is equivalent to the TCP_NODELAY option in the
BSD sockets API. This property is optional and defaults to false.

keepAlive A number specifying the keep-alive interval of the socket in
milliseconds. This property is optional and if not present, the keep-
alive capability of the socket is not used.

from An existing TCP socket instance from which the native socket
instance is taken to use with the newly created socket instance. This
property is optional and intended for use with a TCP listener. When
the from property is present, the address, and port properties are
not required and are ignored if specified. The original instance is
closed with ownership of the native socket transferred to the new
instance.

10.12.2 Methods
read([byteLength | buffer])

When using the "number" data format, read always returns the next available byte as a Number (from 0 to
255).

When using the "buffer" data format, read follows the behavior of the 10 Class Pattern read method for the

"buffer" data format with one addition: if there are no arguments and data is available to read, read returns
one or more bytes (implementation-dependent).

© Ecma International 2023 23



»ecma

The read method must not wait for additional bytes to arrive.
write(byteValue | buffer)

When using the "number" data format, the first argument is a byte value to transmit.

10.12.3 Callbacks
onReadable(bytes)

Invoked when new data is available to be read. The callback receives a single argument that indicates the
number of bytes available to read.

onWritable(bytes)

Invoked when space has been made available to output additional data. The callback receives a single argument
that indicates the total number of bytes that may be written to the TCP socket without overflowing the output
buffers.

The onlWritable callback is first invoked when the socket successfully connects to the remote endpoint and it
is possible to write data.

onError()

The onError callback is invoked when an error occurs or the TCP socket disconnects. Once onError is
invoked, the connection is no longer usable. Reporting the error type is an area for future work.

10.12.4 Dataformat

The TCP class data format is either "number" for individual bytes or "buffer" for groups of bytes. The default
data format is "buffer".

10.12.5 remoteAddress property

The read-only remoteAddress property provides the IP address of the remote end-point as a string. If the
remote address is not available, the value is undefined.

10.12.6 remotePort property

The read-only remotePort property provides the port of the remote end-point as a number. If the remote port
is not available, the value is undefined.

10.13 TCP listener socket
The TCP Listener class listens for and accepts incoming TCP connection requests.
import Listener from "embedded:io/socket/listener";

See Annex A for the formal algorithms of the Listener IO Class.

24 © Ecma International 2023



secmd

10.13.1 Properties of constructor options object

Property Description

port A number specifying the port to listen on. This property is optional.

address A string with the IP address of the network interface to bind to. This
property is optional.

10.13.2 Methods

read()

The read function returns a TCP Socket instance. The instance is already connected to the remote endpoint.
There are no callback functions installed.

NOTE To set the callbacks and configure the socket, pass the socket to the TCP Socket constructor using the from

property.

write()
Unsupported.
10.13.3 Callbacks

onReadable(requests)

Invoked when one or more new connection requests are received. The callback receives a single argument that
indicates the total number of pending connection requests.

10.13.4 Data format

The TCP Listener class uses socket/tcp as its sole data format.

10.14 UDP socket

The UDP network socket class implements the sending and receiving of UDP packets.

import UDP from "embedded:io/socket/udp”;

See Annex A for the formal algorithms of the UDP 10 Class.

© Ecma International 2023

25



secma

10.14.1 Properties of constructor options object

Property Description
port The local port number to bind the UDP socket to. This property is
optional.
address A string with the IP address of the network interface to bind to. This

property is optional.

multicast A string with the IP address of a multicast address to bind to. This
property is optional.

timeTolLive A number with the multicast time-to-live value as a number from 1 to
255. This property is required if the multicast property is provided
and otherwise ignored.

10.14.2 Methods

read([buffer])

The read call reads a complete UDP packet.

If there are no arguments, read allocates an ArrayBuffer the size of the packet, copies the packet data to
the buffer, and returns the buffer. If first argument is a Byte Buffer, the packet data is copied to the buffer and
the number of bytes copied is returned. If the buffer is too small to hold the packet, an exception is thrown.

The following properties are attached to the buffer containing the packet data:

. address, a string containing the packet sender’s IP address
. port, the port number used to send the packet.

write(buffer, address, port)

The write call takes three arguments: the packet data as a Byte Buffer, the remote address string, and the
remote port number.

10.14.3 Callbacks
onReadable(packets)

Invoked when one or more packets are received. The callback receives a single argument that indicates the
total number of packets available to read.

10.14.4 Data format
The UDP class data format is always "buffer".

10.15 TLS Client socket

The TLSClient network socket class implements a logical subclass of the TCP class that secures the
connection using Transport Layer Security (TLS).

import TLS from "embedded:io/socket/tcp/tls";
A TLS implementation may use certificates from a certificate store. The certificate store is implementation

dependent and not specified by this Standard.

26 © Ecma International 2023



secmd

All certificate and key data uses DER (binary) format, not PEM (Base64 encoded text).

10.15.1 Properties of constructor options object

The TLS Client socket extends the TCP socket’s options object with a required t1s property set to an object
that contains the TLS options.

The following TLS version strings are defined: "TLSv1.3", "TLSv1.2", "TLSv1.1".

Property Description

tls An object with the following properties. This
property is required.

tls.host Supports Server Name Indication (SNI). A
string with the host name of the remote
endpoint. This property is required.

tls.minimumVersion A TLS version string indicating the

minimum acceptable TLS version for the
connection. This property is optional and
the default is implementation dependent.

tls.maximumVersion A TLS version string indicating the

maximum acceptable TLS version for the
connection. This property is optional and
the default is implementation dependent.

tls.applicationLayerProtocol Supports Application-Layer Protocol
Negotiation Extension (ALPN). A String
or Byte Buffer to indicate support for a
single application layer protocol or an
Array of one or more String and Byte
Buffers to indicate support for multiple
application layer protocols. This property is
optional.

tls.maximumFragmentLength Supports Maximum Fragment Length. A
number indicating the maximum fragment
size in bytes. This property is optional. If not
present, the maximum fragment length is
not negotiated.

tls.ca A Byte Buffer or an Array of Byte Buffer
containing certificates chains for the
connection. This property is optional.

tls.clientKey A Byte Buffer or an Array of Byte Buffers
containing client keys for the connection.
This property is optional.

tls.clientCertificate A Byte Buffer or an Array of Byte Buffers
containing client certificates for the
connection. This property is optional.

10.15.2 write(buffer)

The write method returns the updated writable count. This may be reduced by more than the size of the buffer
written because of TLS protocol overhead.

© Ecma International 2023 27



»ecma

11 10 Provider Class Pattern

The 10 Provider Class Pattern builds on the Base Class Pattern to provide a foundation to access a collection
of 10 Classes.

An 10 Provider contains one or more |0 Classes. The IO Provider may be connected to the host in any way,
including:

» Adirect hardware connection such as I12C or SPI
* Alocal wireless connection such as BLE using the Automation 1O Service profile

« A TCPI/IP connection to an internet cloud service

It is anticipated, but not required, that implementations of the IO Provider Class Pattern will perform 10 using
instances conforming to the 10 Class Pattern. To facilitate that, the constructor uses IO constructor properties
to specify their 10 connections.

An 10 Provider instance contains 10 Classes which conform to the IO Class Pattern. The following code is an
example of using an 10 Provider to access a Digital pin on a GPIO expander connected via I2C.

import I2C from "embedded:io/i2c";

const expander = new Expander({
io: I2C,
data: 5,
clock: 4,
hz: 1_000_000,
address: 0x20,
1

const led = new expander.Digital({
pin: 13,
mode: expander.Digital.Output,

})s
led.write(1);

Here the data and clock pins passed to the Expander constructor refer to pins of the host whereas the pin
passed to the expander.Digital constructor refers to a pin of the GPIO expander.

See Annex A for the formal algorithms of the 10 Provider Class Pattern.

11.1 constructor

Following the Base Class Pattern, the constructor has a single options object argument. The options object
defines the hardware connections of the sensor. These use the same properties as the 10 types corresponding
to the hardware connection. As in the Peripheral Class Pattern, the IO properties in the Provider Class Pattern
are grouped to avoid collisions.

The options object is not limited to 10 connection information and must contain all information needed by the
implementation to establish the connection.

11.2 close method
In addition to releasing all resources as required by the Base Class Pattern, the close method causes the

onError callback to be invoked on all open instances. Note that onError may not be invoked from within
close (see Callbacks section).

28 © Ecma International 2023



»ecma

A class may specify that close accepts an optional callback function to invoke after the close operation
completes. The callback must the last argument to close. The first argument to the callback is a Number with
0 indicating success and other values indicating failure. Pending callbacks from other operations are invoked
before the callback passed to close.

11.3 Callbacks

onReady()

The onReady callback is invoked once the IO Provider instance is ready for use.

The 10 provider may not know what 10 resources are available until it has successfully established a connection
to the remote resource. For this reason, a provider may not have any IO constructors on its instance until the
onReady is invoked.

The 10 constructors of an IO Provider, if present on the instance, may be used prior to onReady being invoked.

onError()

The onError callback is invoked on a non-recoverable error to indicate that the provider instance can no longer
be used.

When a provider fails, its 10 instances also become unusable, and consequently onError must also be invoked
on each instance.

12 Peripheral Class Pattern

The Peripheral Class Pattern builds on the Base Class Pattern to provide a foundation for implementing access
to different kinds of peripheral devices. The Peripheral Class Pattern is purely abstract and cannot be
instantiated directly.

See Annex A for the formal algorithms of the Peripheral Class Pattern.

12.1 constructor

Following the Base Class Pattern, the constructor has a single options object argument. The options object
defines the hardware connections of the peripheral. These use the same properties as the 10 types
corresponding to the hardware connection. For example, an I12C peripheral:

import I2CPeripheral from "embedded:example/i2cperipheral”;
import I2C from "embedded:io/i2c";

let t = new I2CPeripheral({
io: I2C,
data: 4,
clock: 5,
address: 0x30

}s
The io property specifies the constructor for the 10 Class.

If the peripheral has multiple hardware connections, the options object separates them to avoid collisions. For
example, here the peripheral has an I2C connection for primary communication and a digital connection for an
interrupt:

© Ecma International 2023 29



»ecma

import I2CPeripheralWithInterrupt from
"embedded:example/i2cperipheralwithinterrupt”;
import I2C from "embedded:io/i2c";

import Digital from "embedded:io/digital”;

let t = new I2CPeripheralWithInterrupt({
communication: {
io: I2C,
data: 4,
clock: 5,
address: 0x30
}s
interrupt: {
io: Digital,
pin: 5
}
3

The constructor must reset the peripheral hardware to a consistent initial state so the peripheral’s behavior is
not dependent on a previous instantiation. This reset may include calling the instance’s configure method.

12.2 close method

The close method, as required by the Base Class Pattern, releases all IO connections in use by the instance.

12.3 configure method
The configure method modifies how the peripheral operates. It has a single argument, an options object.

The configure method follows the same rules regarding the options argument as the constructor and
therefore may not modify its content.

Because peripherals have many features, the configure method may implement support for many properties.
A given call to the configure method should only modify the features specified in the options object.

The Peripheral Class Pattern does not require a script call the configure method to use the peripheral,
however specific implementations may require configure to be called.

The configure method may be called more than once to allow scripts to reconfigure the peripheral.

12.4 Accessors for configuration

Classes that follow the Peripheral Class Pattern may choose to provide accessors, e.g. setters and getters, for
configuration properties. A setter should behave in the same way as the configure method invoked with a
single property. For example, a setter for a property named resolution could be implemented as follows:

class ExamplePeripheral {

set resolution(value) {
this.configure({resolution: value});
}

30 © Ecma International 2023



»ecma

A getter for the same property could be implemented as follows:

class ExamplePeripheral {
get resolution() {
this.configuration.resolution;
}

13 Sensor Class Pattern

The Sensor Class Pattern builds on the Peripheral Class Pattern to provide a foundation for implementing
access to a variety of sensors.

It is anticipated, but not required, that instances conforming to the Sensor Class Pattern will perform 10 using
instances conforming to the IO Class Pattern. The Sensor Class Pattern is therefore non-blocking, like 10.
Additionally, the constructor uses 10 constructor properties to specify their IO connections.

The Sensor Class Pattern provides low-level sensor access, similar to a sensor driver provided by a sensor
manufacturer, to support access to all the unique capabilities of the sensor. As with IO, where a given type of
device (e.g. a temperature sensor) has common capabilities across manufacturers, the individual sensor types
define a common way to access that functionality.

Higher-level sensor APIs may be built using instances of the Sensor Class Pattern. The W3C Generic Sensor
specification, for example, may be implemented using sensors conforming to The Sensor Class Pattern.

The Sensor Class Pattern may be used together with the Sensor Data Provenance Rules to improve the usability
of the data collected.

See Annex A for the formal algorithms of the Sensor Class Pattern.

13.1 constructor

Following the Peripheral Class Pattern, the constructor has a single options object argument. The options object
defines the hardware connections of the sensor.

For example, here the temperature sensor has an interrupt on a Digital pin:

import I2C from "embedded:io/i2c";
import Digital from "embedded:io/digital";

let t = new Temperature({
sensor: {
io: I2C,
data: 4,
clock: 5,
address: 0x30
}s
interrupt: {
io: Digital,
pin: 5

s

© Ecma International 2023 31



»ecma

The constructor must reset the sensor hardware to a consistent initial state so the sensor’s behavior is not
dependent on a previous instantiation.

13.2 configure method
The configure method is inherited from the Peripheral Class Pattern. For sensors, it modifies how the sensor

operates. This may include the hardware’s sampling interval, what data is sampled, and the range of the data
sampled.

13.3 sample method

The sample method returns readings from the sensor. The Sensor Class Pattern defines no arguments for the
sample method, though individual sensor types may.

The sample method returns an object containing one or more properties. The returned object is mutable. The
implementation must return a different object on each invocation to allow callers to accumulate multiple sensor
readings.

NOTE A sensor implementation of sSample may accept an input argument of the object to use for the sensor data as
an optimization to reduce memory manager work. If supported, this must be specified for the Sensor Class’ sample method.

If the sample data includes timestamps (e.g. when the sample was collected), those timestamps in the returned

sample object should conform to the time or ticks properties of the Sample Object specified by the
Provenance Sensor Class Pattern.

13.4 Callbacks

The Sensor Class Pattern specifies one callback that is set by the options object passed to the constructor.
Individual sensor classes may provide additional callbacks, for instance, to indicate when a sample is available
or a sensed condition has been met.

onError()

The onError callback is invoked on a non-recoverable error to indicate that the sensor instance can no longer
be used. The only method that should be called is close.

14 Sensor classes
This section defines Sensor Classes conforming to the Sensor Class Pattern.

The classes support common sensor capabilities. Capabilities that are not supported here may be added using
the extensibility options of the Sensor Class Pattern and Base Class Pattern.

14.1 Compound sensors

A single physical sensor may provide more than one kind of sensor reading. For example, a single sensor
package may include both a temperature sensor and a humidity sensor. When a single physical sensor contains
two or more logical sensors, the Sample object returned by the sample method must contain a sub-object for
each logical sensor. For example, a physical sensor that includes both temperature and humidity sensors would
return a Sample object with the following properties:

32 © Ecma International 2023



secma

{
hygrometer: {
humidity: 0.5
}s
thermometer: {
temperature: 23
}
}

The name of the property that contains the sub-object is defined by the sensor class. Here thermometer is
defined by the Temperature sensor class and hygrometer is defined by the Humidity sensor class. Each sub-
object contains a Sample object as defined by its sensor class.

14.2 Accelerometer

The Accelerometer class implements access to a three-dimensional accelerometer. The property name
accelerometer is used when part of a compound sensor.

See Annex A for the formal algorithms of the Accelerometer sensor class.

14.2.1 Properties of a sample object

These properties are compatible with the attributes of the same name in the W3C Accelerometer draft.

Property Description

X A number that represents the sampled acceleration along the x axis in
meters per second squared. This property is required.

y A number that represents the sampled acceleration along the y axis in
meters per second squared. This property is required.

z A number that represents the sampled acceleration along the z axis in
meters per second squared. This property is required.

14.3 Ambient light

The AmbientLight class implements access to an ambient light sensor. The property name lightmeter is
used when part of a compound sensor.

See Annex A for the formal algorithms of the AmbientLight sensor class.

14.3.1 Properties of sample object

These properties are compatible with the attributes of the same name in the W3C Ambient Light Sensor draft.

Property Description

illuminance A number that represents the sampled ambient light level in Lux.
This property is required.

© Ecma International 2023 33


https://w3c.github.io/accelerometer/
https://www.w3.org/TR/ambient-light/

secma

14.4 Atmospheric pressure

The AtmosphericPressure class implements access to an atmospheric pressure sensor or barometer. The
property name barometer is used when part of a compound sensor.

See Annex A for the formal algorithms of the AtmosphericPressure sensor class.

14.4.1  Properties of a sample object

Property Description

pressure A number that represents the sampled atmospheric pressure in Pascal.
This property is required.

14.5 Carbon Dioxide

The CarbonDioxide class implements access to a sensor that detects the amount of carbon dioxide in air.
The property name carbonDioxideDetector is used when part of a compound sensor.

See Annex A for the formal algorithms of the CarbonDioxide sensor class.

14.5.1 Properties of a sample object

Property Description

co2 A number that represents the sampled carbon dioxide in parts per
million. This property is required.

14.6 Carbon Monoxide

The CarbonMonoxide class implements access to a sensor that detects the amount of carbon monoxide in
air. The property name carbonMonoxideDetector is used when part of a compound sensor.

See Annex A for the formal algorithms of the CarbonMonoxide sensor class.

14.6.1 Properties of a sample object

Property Description

co A number that represents the sampled carbon monoxide in parts per
million. This property is required.

14.7 Dust

The Dust class implements access to a sensor that detects the amount of dust suspended in air. The property
name dustDetector is used when part of a compound sensor.

See Annex A for the formal algorithms of the Dust sensor class.

34 © Ecma International 2023



secma

14.7.1  Properties of a sample object

Property Description

dust A number that represents the sampled dust levels in micrograms per
cubic meter. This property is required.

14.8 Gyroscope

The Gyroscope class implements access to a three-dimensional gyroscope. The property name gyroscope
is used when part of a compound sensor.

See Annex A for the formal algorithms of the Gyroscope sensor class.

14.8.1  Properties of a sample object

These properties are compatible with the attributes of the same name in the W3C Gyroscope draft.

Property Description

X A number that represents the sampled angular velocity around the x axis
in radian per second. This property is required.

y A number that represents the sampled angular velocity around the y axis
in radian per second. This property is required.

z A number that represents the sampled angular velocity around the z axis
in radian per second. This property is required.

The sign of the sampled angular velocity depends on the rotation direction, with a positive number indicating a
clockwise rotation and a negative number indicating a counterclockwise rotation.

14.9 Humidity

The Humidity class implements access to a humidity sensor. The property name hygrometer is used when
part of a compound sensor.

See Annex A for the formal algorithms of the Humidity sensor class.

14.9.1  Properties of a sample object

Property Description

humidity A number that represents the sampled relative humidity as a
percentage. This property is required.

14.10 Hydrogen

The Hydrogen class implements access to a sensor that detects the amount of hydrogen in air. The property
name hydrogenDetector is used when part of a compound sensor.

See Annex A for the formal algorithms of the Hydrogen sensor class.

© Ecma International 2023 35


https://www.w3.org/TR/gyroscope/

secma

14.10.1 Properties of a sample object

Property Description

H A number that represents the sampled hydrogen in parts per million. This
property is required.

14.11 Hydrogen Sulfide

The HydrogenSulfide class implements access to a sensor that detects the amount of hydrogen sulfide in
air. The property name hydrogenSulfideDetector is used when part of a compound sensor.

See Annex A for the formal algorithms of the HydrogenSulfide sensor class.

14.11.1 Properties of a sample object

Property Description

H2S A number that represents the sampled hydrogen sulfide in parts per
million. This property is required.

14.12 Magnetometer

The Magnetometer class implements access to a three-dimensional magnetometer. The property name
magnetometer is used when part of a compound sensor.

See Annex A for the formal algorithms of the Magnetometer sensor class.

14.12.1 Properties of a sample object

These properties are compatible with the attributes of the same name in the W3C Magnetometer draft.

Property Description

X A number that represents the sampled magnetic field around the x axis
in microtesla. This property is required.

y A number that represents the sampled magnetic field around the y axis
in microtesla. This property is required.

z A number that represents the sampled magnetic field around the z axis
in microtesla. This property is required.

14.13 Methane

The Methane class implements access to a sensor that detects the amount of methane in air. The property
name methaneDetector is used when part of a compound sensor.

See Annex A for the formal algorithms of the Methane sensor class.

36 © Ecma International 2023


https://www.w3.org/TR/magnetometer/

secmd

14.13.1 Properties of a sample object

Property Description

CH4 A number that represents the sampled methane in parts per million. This
property is required.

14.14 Nitric Oxide

The NitricOxide class implements access to a sensor that detects the amount of nitric oxide in air. The
property name nitricOxideDetector is used when part of a compound sensor.

See Annex A for the formal algorithms of the NitricOxide sensor class.

14.14.1 Properties of a sample object

Property Description

NO A number that represents the sampled nitric oxide in parts per million.
This property is required.

14.15 Nitric Dioxide

The NitricDioxide class implements access to a sensor that detects the amount of nitric dioxide in air. The
property name nitricDioxideDetector is used when part of a compound sensor.

See Annex A for the formal algorithms of the NitricDioxide sensor class.

14.15.1 Properties of a sample object

Property Description

NO2 A number that represents the sampled nitric dioxide in parts per million.
This property is required.

14.16 Oxygen

The Oxygen class implements access to a sensor that detects the amount of oxygen in air. The property name
oxygenDetector is used when part of a compound sensor.

See Annex A for the formal algorithms of the Oxygen sensor class.

14.16.1 Properties of a sample object

Property Description

(0] A number that represents the sampled oxygen in parts per million. This
property is required.

© Ecma International 2023 37



secma

14.17 Particulate Matter

The ParticulateMatter class implements access to a sensor that detects the amount of particulate matter
suspended in air. The property name particulateMatterDetector is used when part of a compound
sensor.

See Annex A for the formal algorithms of the ParticulateMatter sensor class.

14.17.1 Properties of a sample object

Property Description
particulateMatter A number that represents the sampled particulate matter
levels in micrograms per cubic meter. This property is
required.

14.18 Proximity

The Proximity class implements access to a proximity sensor or range finder. The property name proximity
is used when part of a compound sensor.

See Annex A for the formal algorithms of the Proximity sensor class.

14.18.1 Properties of a sample object

These properties are compatible with the attributes of the same name in the W3C Proximity Sensor draft.

Property Description

near A boolean that indicates if a proximate object is detected. This property
is required.

Distance A number that represents the distance to the nearest sensed object in

centimeters or null if no object is detected. This property is optional:
some proximity sensors can only provide the near property.

Max A number that represents the maximum sensing range of the sensor in
centimeters.

14.19 Soil Moisture

The SoilMoisture class implements access to a soil moisture detector. The property name
soilMoistureDetector is used when part of a compound sensor.

See Annex A for the formal algorithms of the SoilMoisture sensor class.

14.19.1 Properties of a sample object

Property Description

moisture A number between 0 and 1 (inclusive) that represents the sampled
relative soil moisture level, with 0 being the most dry and 1 the most
wet. This property is required.

38 © Ecma International 2023


https://w3c.github.io/proximity/

secma

14.20 Switch

The Switch class implements access to a switch sensor. The property name switch is used when part of a
compound sensor.

14.20.1 Properties of sample object

Property Description
position A number that represents the current state of the switch. This property
is required.

14.21 Temperature

The Temperature class implements access to a temperature sensor. The property name thermometer is
used when part of a compound sensor.

See Annex A for the formal algorithms of the Temperature sensor class.

14.21.1 Properties of a sample object

Property Description

temperature A number that represents the sampled temperature in degrees
Celsius. This property is required.

14.22 Touch

The Touch class implements access to a touch panel controller. The property name touch is used when part
of a compound sensor.

See Annex A for the formal algorithms of the Touch sensor class.

14.22.1 Sample object

The Touch class sample method returns an array of touch objects, as specified below. If there is no touch in
progress, sample returns undefined.

14.22.1.1 Properties of touch object

Property Description

X Number indicating the X coordinate of the touch point

y Number indicating the Y coordinate of the touch point

id Number indicating which touch point this entry corresponds to

14.23 Volatile Organic Compounds
The VolatileOrganicCompounds class implements access to a sensor that detects the amount of volatile

organic compounds suspended in air. The property name vocDetector is used when part of a compound
sensor.

© Ecma International 2023 39



secma

See Annex A for the formal algorithms of the VolatileOrganicCompounds sensor class.

14.23.1 Properties of a sample object

Property Description

tvoc A number that represents the sampled total volatile organic compounds
in parts per billion. This property is required.

15 Display Class Pattern

The Display Class Pattern builds on the Peripheral Class Pattern to provide a foundation for implementing
access to displays represented by a two-dimensional array of pixels.

The Display Class Pattern is designed to support displays independent of hardware architecture. For example,
it may be used efficiently with both frame buffers stored in local host memory and frame buffers connected with
the MIPI Display Serial Interface.

See Annex A for the formal algorithms of the Display Class Pattern.

15.1 constructor

Following the Peripheral Class Pattern, the constructor has a single options object argument. The options object
defines the hardware connections of the display. These use the same properties as the IO types corresponding
to the hardware connection.

A Display Class is not required to have properties to configure its hardware connections. For example, a

memory-mapped display may have no external connections. Or, a Display Class may be preconfigured for the
hardware of a specific host.

15.2 configure method

The following table enumerates the properties defined for the options object argument:

Property Description

format A number indicating the format of pixel data passed to the instance
(for example, to the send method). This property is optional. If the
format provided is not supported by the Display Class, a
RangeError is thrown.

rotation The clockwise rotation of the display as a number. This property is
optional. If the value provided is not 0, 90, 180, or 270, or is
unsupported by the Display Class, a RangeError is thrown.

brightness The relative brightness of the display from 0 (off) to 1.0 (full
brightness). This property is optional.

flip A string indicating whether the pixels should be flipped horizontally
and/or vertically. Allowed values are "", "h", "v" and "hv". The

empty string indicates that neither horizontal nor vertical flip is
applied. This property is optional.

40 © Ecma International 2023


https://mipi.org/specifications/dsi

secma

The Display Class Pattern does not define default values for these properties to allow the host to provide default
values that are appropriate for its hardware. Implementations may provide the current configuration through the
configuration property defined by the Provenance Sensor Class Pattern.

15.3 begin method

The begin method starts the process of updating the display’s pixels. If no arguments are passed, the entire
frame buffer is updated starting at the top-left corner (coordinate {0, ©0}), proceeding left-to-right, top-to-bottom,
ending at the bottom-right corner (coordinate {width, height}).

If an options object is passed as the sole argument, the object may contain X, y, width, and height properties
that define a rectangular area to update. The rectangle must fit within the bounds of the display (e.g. {0, O,
width, height}) or a RangeError is thrown.

A display may not support all possible update areas. For example, a display may only support updates aligned
to even horizontal pixels. A RangeError is thrown if an unsupported update area is passed to begin. Prior to
calling begin, the adaptInvalid method may be used to adjust the update area to the capabilities of the
display.

The options object has an optional continue property to support discontiguous updates on displays that use
page flipping to swap between multiple frame buffers. When continue is false, the default value, the call to
the begin method starts to update a new frame. Calling begin with continue set to true continues updating
the same frame rather than starting a new one.

An Error exception is thrown if the begin method is called more than once without an intervening call to the
end method, unless continue is set to true in the successive calls. For example, this is a valid call sequence
to update three horizontal slices of the display.

display.begin({x: @, y: @, width: 240, height: 10});
display.send(pixels);

display.begin({x: 9, y: 20, width: 240, height: 10, continue: true});
display.send(pixels);

display.begin({x: 0, y: 40, width: 240, height: 10, continue: true});
display.send(pixels);

display.end();

15.4 send method
The send method delivers one or more horizontal scan lines of pixel data to the display. The sole argument to

send is a Byte Buffer of pixels. The pixels are stored in a packed array with no padding between scan lines.
The format of the pixels matches the format property of the options object of the configure method.

15.5 end method
The end method finishes the process of updating the display’s pixels, by making all pixels visible on the display.

If the display instance buffers pixels, all pixels musts be flushed. If the display uses page flipping, the page must
be flipped to the most recently updated buffer.

15.6 adaptInvalid method

The adaptInvalid method accepts a single options object argument that includes x, y, width, and height
properties that describe an area of the display to be updated. It adjusts these properties as necessary so that
the result is valid for the display and encloses the original update area.

© Ecma International 2023 41



secma

Consider a display which limits the update area horizontally to even pixel positions. The following code calls a
display’s adaptInvalid method with odd numbers for both left and right edges of the update area:

const area = {x: 3, y: 20, width: 10, height: 20};
display.adaptInvalid(area);

display.begin(area);

display.send(pixels);

display.end();

An implementation of adaptInvalid to apply the rules above, if implemented in JavaScript, would be:

function adaptInvalid(options) {

if (options.x & 1) {
options.x -= 1;
options.width += 1;

}

if (options.width & 1) {
options.width += 1;

}

}

Some displays require that the update area only include full scan lines. The following function shows the
implementation for such a display, assuming a scanline width of 128 pixels;

function adaptInvalid(options) {
options.x = 0;
options.width = 128;

}

For displays that only support full screen updates, adaptInvalid updates the rectangle to be the full display
dimensions. The following function shows the implementation for a QVGA (320 x 240) display:

function adaptInvalid(options) {
options.x = 0;
options.y = 0;
options.width = 320;
options.height = 249;

}

15.7 Instance properties

width

The width of the display in pixels as a number. This property is read-only. This value may change based on the
configuration, for example, when changing the rotation causes the orientation to change from portrait to
landscape.

height

The height of the display in pixels as a number. This property is read-only. This value may change based on

the configuration, for example, when changing the rotation causes the orientation to change from portrait to
landscape.

42 © Ecma International 2023



secma

15.8 Pixel format values

Value Description

3 1-bit monochrome

4 4-bit grayscale (0 black, 15 white)
5 8-bit grayscale (0 black, 255 white)
6 8-bit RGB 3:3:2

7 16-bit RGB 5:6:5 little-endian

8 16-bit RGB 5:6:5 big-endian

9 24-bit RGB 8:8:8

10 32-bit RGBA 8:8:8:8

12 12-bit xRGB 4:4:4:4 (x is unused)

16 Real-Time Clock Class Pattern

A Real-Time Clock (RTC) provides a time-of-day clock. An RTC is commonly used to initialize time on a
microcontroller. An RTC is usually a separate hardware component from the microcontroller. It usually maintains
the time using a battery so the time survives power being removed from the device.

The RTC Class Pattern conforms to the Peripheral Class Pattern.

16.1 Properties of constructor options object

Property Description

clock A class constructor options object that describes the hardware
connection for the RTC. This property is required.

interrupt A Digital class constructor options object that describes the hardware
connection to the RTC’s interrupt. This property is optional.

onAlarm() A function to invoke when an alarm is triggered by the RTC. This
property is optional.

16.2 configure method

The following property is defined for the options object.

Property Description

alarm The time in milliseconds to set the RTC’s alarm. This value is an
ECMAScript time value as a Number.

16.3 time property

The current time of the RTC. Set this property to change the current time of the RTC. This value is an
ECMAScript time value contained in a Number.

© Ecma International 2023 43



secma

The resolution of the RTC component may impact the values. For example, an RTC with one-second resolution
may return time values with a milliseconds of zero.

If the time is unavailable (for example, because it has not been set or is otherwise invalid on the RTC), the
returned value is undefined.

16.4 configuration property

The configuration property returns an object containing the current configuration of the RTC. It contains the
alarm property, if supported.

The configuration property is introduced in the Provenance Sensor Class Pattern.

17 Network Interface Class Pattern

The Network Interface Class Pattern builds on the Base Class Pattern to provide access to the network
interfaces of a device to monitor the connection state and perform operations.

The physical network interfaces may be physically built into the microcontroller or a separate peripheral. The
logical network interfaces are managed by the host.

Creating an instance of a Network Interface class binds to the host’s network interface; it does not initialize the
network interface. Closing an instance of a Network Interface class unbinds from the host’s network interface;
it does not uninitialize the network interface.

There may be multiple simultaneous instances of a Network Interface class, all bound to the same logical
network interface.

See Annex A for the formal algorithms of the Network Interface Class Pattern.

17.1 Properties of constructor options object

Property Description

onChanged(name) A function to invoke when the network interface’s state
changes. The name argument is the name of the property
that changed. The onChanged property is optional.

port A port specifier that indicates the logical network interface to
bind to. This property may be optional or required depending
on the implementation of the network interface.

17.2 connect method

Initiates the process of connecting to a network. If a connection attempt is already in progress, connect throws
an exception.

The sole argument is an options object. Each Network Interface class defines properties for the options object.

17.3 disconnect method

Disconnects from the currently connected network. If in the process of connecting, the connection attempt is
abandoned. If already disconnected, does nothing. No arguments are specified.

44 © Ecma International 2023


https://419.ecma-international.org/#-17-provenance-sensor-class-pattern-configuration-property

secmd

17.4 connection property

The read-only connection property indicates the current connection state of the network interface as a number.
The following values are defined:

Value Description

0 unavailable

100 initializing

200 disconnected

300 connecting

400 connected

500 IP address assigned

Larger values indicate a later stage in the connection process. This allows values to be compared with greater
and less than operators. Additional states may be added by specific types of network interfaces.

17.5 MAC property

The read-only MAC property is the MAC address assigned to the network interface as a string. If the MAC
address is unavailable, the value is undefined.

17.6 address property

The read-only address property is the IP address assigned to the network interface as a string. If the address
has not yet been assigned, the value is undefined.

17.7 Ethernet Network Interface

The Ethernet Network Interface is a logical subclass of the Network Interface Class Pattern for Ethernet network
interfaces.

import Ethernet from "embedded:network/interface/ethernet”;

See Annex A for the formal algorithms of the Ethernet Network Interface.

17.7.1  connection property

For an Ethernet network interface, connection 200 (“disconnected”) indicates that the physical Ethernet link
has been lost and connection 400 (“connected”) indicates that the physical Ethernet link has been established.
Ethernet network interfaces add the following value for connection.

Value Description

150 Ethernet 10 initialized

17.8 Wi-Fi Network Interface

The Wi-Fi Network Interface is a logical subclass of the Network Interface Class Pattern for Wi-Fi network
interfaces.

© Ecma International 2023 45



secma

import WiFi from "embedded:network/interface/wifi";

See Annex A for the formal algorithms of the Wi-Fi Network Interface.

17.8.1 connect method

Initiates the process of connecting to a Wi-Fi base station. The connection is defined by the properties of the
options object. If a connection attempt is already in progress, connect throws an exception.

Property Description

SSID Name of the base station as a String. This property is optional.

BSSID BSSID of the base station as a MAC address formatted string. This
property is optional.

password The base station’s password as a string. This property is optional.

secure Boolean that indicates if connections to open access points are
allowed. This property is optional and defaults to false.

channel Wi-Fi channel of the base station as a number. This property is
optional.

Either the SSID or BSSID property is required. If both are provided, BSSID is used.

17.8.2 scan method

Initiates a scan for Wi-Fi base stations. The scan is time-limited to no more than 10 seconds. A continuous scan
may be performed by repeated scans. If a scan is already active when scan is called, an exception is thrown.
The sole argument is an options object.

Properties of the scan options object:

Property Description

onFound(options) A callback function to invoke with information about an
access point discovered by the scan. This property is
required.

onComplete() A callback function invoked when the scan is complete. This
property is optional.

channel Wi-Fi channel number to scan as a number. This property is
optional.

frequency Wi-Fi frequency to scan: 2.4 or 5. This property is optional
and the default is implementation dependent.

secure Limit scan results to secure access points, omitting open
access points, as a boolean. This property is optional and
defaults to false.

46

© Ecma International 2023



secmd

Properties of the onFound options object for each access point found by the scan:

Property Description
SSID Service Set Identifier of the access point as a string.
BSSID Basic Service Set Identifier of the access point as a MAC address
formatted string.
RSSI Radio Signal Strength Indicator of the access point as a number.
channel Channel number of the access point as a number.
security Security mode of the access point as a string.

The scan cannot be cancelled. If the instance is closed while scanning, the host may complete the scan but
must not invoke the callbacks.

17.8.3  SSID property

The Service Set Identifier of the connected access point as a string or undefined if not connected. Read-only.

17.8.4  BSSID property

The Basic Service Set ldentifier of the connected access point as a MAC address formatted string or
undefined if not connected. Read-only.

17.8.5 RSSI property

The Radio Signal Strength Indicator of the connected access point as a number or undefined if not connected.
Read-only.

17.8.6  channel property

The channel number of the connected access point as a number or undefined if not connected. Read-only.

18 Domain Name Resolver Class Pattern

The Domain Name Resolver Class Pattern resolves DNS names to IP addresses. It conforms to the Base Class
Pattern. The Domain Name Resolver Class Pattern is not instantiated directly. Logical subclasses of the Domain
Name Resolver are instantiated, such as DNS over UDP and DNS over HTTPS.

18.1 resolve method

The resolve method begins the process of resolving a DNS name to an address. Several resolve operations
may be queued and be pending at the same time. The resolve requests complete in an implementation
dependent order, which may not be the order requested.

The first argument is a required options object. The second argument is a required completion callback function

that is invoked when resolution completes. If successful, the resolved address is provided in the second
argument and the requested hostname in the third.

© Ecma International 2023 47



secma

18.2 Properties of resolve options object

Property Description

host A string containing the hostname to resolve. This property is required.

The host property may be either a Domain Name or an IP address. If it is an IP address, the completion
callback is invoked with the resolved address and request hostname arguments set to that IP address.

18.3 DNS over UDP

DNS over UDP is a logical subclass of the Domain Name Resolver Class Pattern that resolves DNS names
over UDP.

import Resolver from "embedded:network/dns/resolver/udp";

18.3.1  Properties of constructor options object

Property Description

socket A UDP class constructor options object for a UDP socket. This property
is required.

servers Array of one or more IP address strings to use as DNS servers. This
property is required.

18.4 DNS over HTTPS (DoH)

DNS over HTTPS is a logical subclass of the Domain Name Resolver Class Pattern that resolves DNS names
using an HTTPS connection (DoH).

import Resolver from "embedded:network/dns/resolver/doh";

18.4.1 Properties of constructor options object

Property Description

http An HTTP Client class constructor options object. This property is
required.

servers An array of one or more objects containing host and address
properties to use as DoH servers. This property is required.

19 NTP Client

The NTP Client retrieves the current time from a network time source using the Network Time Protocol (NTP).
It conforms to the Base Class Pattern.

Implementations may use the Simple Network Time Protocol (SNTP).

import NTP from "embedded:network/ntp/client"”;

48 © Ecma International 2023



secmd

19.1 Properties of constructor options object

Property Description

socket UDP class constructor options object. This property is required.

servers An array of one or strings indicating the NTP hosts to use to synchronize
time. This property is required.

19.2 getTime method
The getTime method initiates a time synchronization operation. Only one time synchronization operation may
be active at a time. If a second request is made before the current request completes, getTime throws. The

sole argument is a required completion callback function that is invoked when synchronization completes. If
successful, the time value is provided in the second argument.

20 HTTP Client class pattern

The HTTP Client class pattern makes one or more Hypertext Transfer Protocol (HTTP/1.1) requests to a single
host. It conforms to the Base Class Pattern.

import HTTPClient from "embedded:network/http/client”;

20.1 Data format

The HTTPClient class data format is always "buffer”.

20.2 Properties of constructor options object

Property Description

socket An object containing a TCP class constructor options object. This
property is required.

port The remote port number to connect to as a number. This property is
optional and defaults to 80.

host The remote hostname to connect to as a string. This property is
required.

dns A Domain Name Resolver class constructor options object to use to
resolve the host. This property is required.

onError A function to invoke when the remote connection closes. This property is
optional.

20.3 close method

In addition to the behaviors defined in the Base Class Pattern, all outstanding requests are cancelled.

20.4 request method

Queues an HTTP request described by the required options object, the sole argument.

© Ecma International 2023 49



secma

The options object supports the following properties:

Property Description

method The HTTP method to use to access the resource as a
string. This property is optional and defaults to "GET".

path The HTTP resource to access as a string. This property
is optional and defaults to " /".

headers A Map instance containing request headers. The map
keys are the header names and their values are the
header values. This property is optional.

onHeaders(status, A function to invoke to provide the HTTP status result
headers) code and a Map containing the response headers. The
map keys are the header names normalized to lowercase
and their values are the header values. This property is
optional.

onReadable(count) A function to invoke when bytes are available to read
from the HTTP response body. The count argument is a
number indicating the number of bytes available to read.
This property is optional.

onWritable(count) A function to invoke when the HTTP request is ready to
receive bytes for the request body. The count argument
is a number indicating the maximum number of bytes that
may be written. The onWritable callback is only
invoked if a request has a request body. To signal that a
request has a request body, set either the content-
length header to a non-zero value or the transfer-
encoding header to "chunked". This property is
optional.

onDone() A function to invoke when the HTTP request has been
completed successfully. This property is optional.

The return value of the request method is an HTTP Client Request instance. This instance is the receiver
when the callback functions of the options object are invoked. The request instance has read and write
methods.

20.5 HTTP Client Request instance
The HTTP Client Request instance conforms to the 10 Class Pattern. It is instantiated by the HTTP Client and

so has no constructor. No close method is available because the protocol does not support cancelling a
request in progress.

20.5.1 read method

Reads payload body from the HTTP request’s response. If this HTTP Request instance is not currently receiving
the response body, returns undefined.

20.5.2 write method

Writes to the payload body of the HTTP request’s request. If this HTTP Request instance is not currently sending
the request body, write throws an exception.

50 © Ecma International 2023



secmd

For HTTP requests using chunked transfer-encoding, calling write with no arguments signals the end of the
request body.

The write method returns the number of bytes that may be written. This may be reduced by more than the
size of the payload due to overhead in the protocol.
21 HTTP Server class pattern

The HTTP Server class pattern responds to Hypertext Transfer Protocol (HTTP/1.1) requests. It conforms to
the Base Class Pattern.

import HTTPServer from "embedded:network/http/server”;

21.1 Data format

The HTTPServer class data format is always "buffer".

21.2 Properties of constructor options object

Property Description

io An object containing a TCP Listener class
constructor options object. This property is required.

port The port number to listen on to as a number. This
property is optional and defaults to 80.

onConnect(connection) A function to invoke when a new connection is
initiated. It is passed an HTTP Server Connection
instance as the sole argument. This property is
required.

21.3 close method

In addition to the behaviors defined in the Base Class Pattern, all active connections are closed.

21.4 HTTP Server Connection instance

The HTTP Server Connection instance conforms to the 10 Class Pattern. It is instantiated by the HTTP Server
and so has no constructor.

21.41 close method

Connections are automatically closed when the request is complete. Calling the close method before that
terminates a connection prematurely (for example, for a connection timeout).

21.4.2 detach method
The detach method returns the TCP socket instance used by this connection. There are no arguments. On

return, the HTTP Server Connection instance maintains no reference to the instance and is effectively closed.
The detach capability is useful for protocols that use the HTTP Upgrade mechanism.

© Ecma International 2023 51



secma

21.4.3 accept method

The accept method accepts the incoming connection so that processing of the HTTP request may begin. The
sole argument is an options object which contains callback functions to invoke as the HTTP request is processed.

21431 Properties of accept options object
Property Description
onRequest(method, A callback function to invoke after the HTTP request
path, headers) headers have been received. The first argument is

the HTTP request method as a string. The second
argument is the HTTP request path as a string. The
third argument is a map containing the headers. The
map keys are the header names normalized to
lowercase and their values are the header values.
This property is optional.

onReadable(count) A callback function to invoke when data is available
to read from the request body. This property is
optional.

onResponse(response) A callback function to invoke when the request body

has been fully received. The sole argument is an
options object with a status property set to 200
and a headers property set to an empty map. The
callback may update these values. The option object
is passed to the respond method to begin
transmitting the HTTP response. This property is
optional.

onWritable(count) A callback function to invoke when there is room in
the output buffers to transmit part of the response
body. This property is optional.

onDone() A callback function to invoke when the request
successfully completes. This property is optional.

onError(error) A callback function to invoke if an error occurs
before the response is complete, such as the
connection being terminated. This property is
optional.

21.4.4 respond method

The respond method is called to begin transmitting the HTTP response. The respond method may only be
called once for a given instance and must be called after the request body has been fully received. The sole
argument to the respond method is an options object.

21.4.41 Properties of respond options object
Property Description
status A number indicating the status code for the HTTP response. This
property is required.
headers A map containing the HTTP response headers. The map keys are the
header names and their values are the header values. This property is
required.

52 © Ecma International 2023



»ecma

21.45 read method

Reads the payload body from the HTTP request body. If this HTTP Server Connection instance is not currently
receiving the request body, returns undefined.

21.4.6 write method

Writes to the payload body of the HTTP response body. If this HTTP Server Connection instance is not currently
sending the response body, write throws an exception.

For HTTP Server Connection instances using chunked transfer-encoding, calling write with no arguments
signals the end of the response body.

The write method returns the number of bytes that may be written. This may be reduced by more than the
size of the payload due to overhead in the protocol.

21.4.7 route property

The route of an HTTP Server Connection instance is an object that is used to override the callbacks set in the
call to accept. This may be used to dispatch incoming requests to different handlers based on the request
method, path, and request headers.

If the route is set from within the onRequest callback, the onRequest callback of the route is called
immediately.

The instance copies the callback functions. Changes to the properties of the route after setting the route are

ignored.

22 HTTP Server Connection routes

22.1 Static Dataroute
The Static route sends a buffer or string as an HTTP Response body.
import StaticRoute from "embedded:network/http/server/route/static";

connection.route = {
...StaticRoute,
data: "hello, world"

}s

22.1.1  Properties of route

Property Description

data A Byte Buffer or string to be transmitted as the HTTP Response
body. If the value is a string, it is transmitted as UTF-8 data. This
property is required.

contentType The MIME type of response body to be set as the HTTP Content-
Type header. This property is optional and defaults to “text/html”.

© Ecma International 2023 53



»ecma

22.2 WebSocket Handshake route

The WebSocket Handshake route implements the server side of the WebSocket handshake to upgrade an
HTTP connection to the WebSocket protocol.

import WebSocketHandshake from "embedded:network/http/server/route/ws/handshake”;

The onDone callback of the route is invoked when the handshake completes successfully; onError, if the
handshake fails. After the handshake succeeds, the TCP socket may be detached and used with a WebSocket

implementation.

connection.route = {

.. .WebSocketHandshake,

onDone() {
const ws = new

WebSocketClient ({

socket: this.detach(),
onReadable(count, options) {

}
s
}
onError() {
console.log("failed");
}

};

22.2.1 Properties of route

Property

Description

protocol

Array of strings. This property is optional.

23 WebSocket Client class pattern

The WebSocket Client class pattern establishes a connection to an endpoint hosting a WebSocket server and
exchanges messages using the WebSocket protocol. The WebSocket Client class pattern conforms to the 10

Class Pattern.

import WebSocketClient from "embedded:network/ws/client";

The WebSocket Client class pattern replies to ping and close messages by replying with a pong or close
message with the same payload received, as required by the protocol.

23.1 Dataformat

The WebSocketClient class data format is always "buffer".

54

© Ecma International 2023



secmd

23.2 Properties of constructor options object

Property

Description

socket

An object containing a TCP Class constructor options
object. This property is optional.

host

The remote hostname to connect to as a string. This
property is optional.

attach

An instance of a TCP Class. This property is optional.

port

The remote port number to connect to as a number. This
property is optional and defaults to 80.

protocol

The WebSocket sub-protocol as a string. This property is
optional.

headers

A Map of HTTP headers to add to the request. The map
keys are the header names and their values are the
header values. This property is optional.

dns

A Domain Name Resolver class constructor options
object to use to resolve the host. This property is
required.

onReadable(count,
options)

A function to invoke when part of a WebSocket binary or
text message is available to read. The first argument is
the number of bytes available to read. The second
argument is an options object. It has a more property set
to false if this is the last fragment of a message and
true if there is at least one more fragment. It has a
binary property set to true for binary messages and
false for text messages. This property is optional.

onWritable(count)

A function to invoke when more data may be written to
the connection. The sole argument indicates the number
of bytes that maybe written. This property is optional.

onError(error)

A function to invoke when the remote connection
terminates unexpectedly. This property is optional.

onControl(opcode,
payload)

A function to invoke when a control message is received.
The first argument is the control message opcode. The
second argument is an ArrayBuffer containing the
complete control message payload. This property is
optional.

onClose()

A function to invoke when the connection closes cleanly.
This property is optional.

Either both socket and host are required or attach is required. The attach property takes precedence.

23.3

close method

The close method does not initiate a clean close, as defined by the WebSocket protocol, of the connection

(use write with a close opcode instead).

© Ecma International 2023

55



secma

23.4 read method

A single call to read returns bytes from the current message. Once the current message has been completely
read, the onReadable callback is invoked when the next message is available to read.

23.5 write method

The write method sends both message data and control messages. The first argument contains the message
payload in a Byte Buffer. The second argument is an options object that has the following properties to specify
the message to send.

Property Description

binary A boolean value set to true for a binary payload and false for a text
payload. This property is optional and defaults to true.

more A boolean value set to false for the last fragment of a message and
true for all others. This property is optional and defaults to false.

opcode This property is a number specifying the opcode of a control message
(the data argument is the control message’s payload). This property is
optional and must not be set for text and binary messages. Because
control messages cannot be fragmented, the more property is ignored
when opcode is present.

The write method may be used to send all or part of a single binary or text message based on the properties
of the options object.

The options object is optional. If not provided, the default values are used.

The return value is the number of bytes that may be written. This may be reduced by more than the size of the
payload due to overhead in the protocol.

23.6 Static properties of the constructor

The following properties are present on the constructor. The property names and values correspond to
WebSocket opcodes. The values are numbers and the properties are read-only.

Property Value
text 1
binary 2
close 8
ping 9
pong 10

24 MQTT Client class pattern

The MQTT Client class pattern establishes a connection to a remote endpoint hosting an MQTT server (broker)
and exchanges messages using the MQTT protocol (MQTT Version 3.1.1, OASIS Standard, 29 October 2014
6455). It allows messages of unlimited size to be sent and received, and supports all control messages.

import MQTTClient from "embedded:network/mqtt/client”;

56 © Ecma International 2023


http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.doc
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.doc

secmd

The MQTT Client class pattern must implement the following:

* Transmit keep alive message if configured with a non-zero keep-alive interval
* Reply to PINGREQ messages with PINGREQ

The MQTT Client class pattern should implement the following. If a quality level is not implemented, sending a
PUBLISH or SUBSCRIBE message with that quality of service level must throw an exception.

* Reply to PUBLISH with PUBACK for quality of service 1
* Reply to PUBLISH with PUBREC for quality of service 2
* Reply to PUBREL with PUBCOMP for quality of service 2
* Reply to PUBREC with PUBREL for quality of service 2

The MQTT Client class pattern may not implement the following. They may be provided by layers built on the
MQTT Client class pattern.

» caching messages and, consequently, message retransmit messages after disconnect
* reconnect

* maintaining a list of active subscriptions

NOTE This specification supports MQTT Version 3. It is designed to be extensible to support MQTT Version 5.
24.1 Dataformat

The MQTTClient class data format is always "buffer".

24.2 Properties of constructor options object

Property Description

socket An object containing a TCP Class constructor options
object. This property is required.

port The remote port number to connect to as a number. This
property is optional and defaults to 1883.

host The remote hostname to connect to as a string. This
property is required.

dns A Domain Name Resolver class constructor options
object to use to resolve the host. This property is
required.

onReadable(count, A function to invoke when part of an MQTT message is

options) available to read. The first argument is the number of

bytes available to read. The second argument is an
options object. It has a more property set to false if this
is the last fragment of a message and true if there is at
least one more fragment. For the first fragment of a
message, the options object contains topic property
with a string indicating the message topic, a Q0S property
with a number indicating the quality of service, and a
byteLength property with a number indicating the total
number of bytes in the message. The onReadable
property is optional.

© Ecma International 2023 57



secma

onWritable(count)

A function to invoke when more data may be written to
the connection. The sole argument is a number indicating
how many bytes may be written. This property is
optional.

onError(error)

A function to invoke when the remote connection
terminates. This property is optional.

onControl(opcode,
message)

A function to invoke when a control message is received.
The first argument is the control message opcode. The
second argument is an object containing an operation
property indicating the control message (CONNACK,
PUBACK, PUBREC, PUBREL, PUBCOMP, SUBACK,
UNSUBACK, PINGREQ, etc.) and an id property if
included in the message. The SUBACK message payload
is provided on the payload property as an array of byte
values. The onControl property is optional.

id

The MQTT client identifier as a string. This property is
optional and defaults to an empty string.

user

The MQTT user for establishing a connection as a string.
This property is optional and defaults to an empty string.

password

The MQTT password for establishing a connection as a
string or Byte Buffer. This property is optional and
defaults to an empty string.

keepAlive

The MQTT connection keep-alive time in milliseconds as
a number. This property is optional and defaults to O.
(This value is in milliseconds as required for durations in
this specification. The MQTT protocol uses seconds for
the keep-alive value.)

clean

The MQTT clean session flag as a boolean. This
property is optional and defaults to true.

will

An object with the following properties. This property is
optional.

will.topic

The topic for the MQTT will for this connection as a
string. This property is optional.

will.message

The message for the MQTT will for this connection as a
String or Byte Buffer. This property is optional.

will.QoS

The requested quality of service for the will message for
this connection as humber with values 0, 1, or 2. This
property is optional and defaults to O.

will.retain

A Boolean indicating whether the will message should be
retained by the server. This property is optional and
defaults to false.

24.3

The close method does not send an MQTT close message (use write with a DISCONNECT opcode to

close method

initiate a clean disconnect).

58

© Ecma International 2023




»ecma

24.4 read method

A single call to read returns bytes from the current message. Once the current message has been completely
read, the onReadable callback is invoked when the next message is available to read.

245 write method

The write method sends both message data and control messages. The first argument contains the message
payload in a Byte Buffer. The second argument is an options object that has the following properties to specify

the message to send.

The options object has the following properties to specify the message to publish or control message to send.

Property

Description

operation

This property is a number specifying the opcode of a control
message (the data argument is the control message’s payload).
This property is optional and defaults to PUBLISH.

id

A number specifying the id for the message. If an id is not
provided the MQTT client generates one. As a rule, either the caller
should provide the id for all messages or none to avoid the
possibility of values colliding. This property is optional.

topic

A string specifying an MQTT topic for a PUBLISH message. This
property is required for PUBLISH messages.

QoS

A number specifying the quality of service of PUBLISH message.
Allowed values are 0, 1, and 2. This property is for PUBLISH
messages only. It is optional and defaults to 0.

retain

A boolean indicating if a PUBLISH message should be retained by
the server. This property is for PUBLISH messages only. It is
optional and default to false.

duplicate

A boolean indicating if a PUBLISH message is being retransmitted
by the client. This property is for PUBLISH messages only. It is
optional and default to false.

byteLength

A number indicating the total size of a PUBLISH message to allow a
single PUBLISH message payload to be split across two or more
calls to write. This property is optional and defaults to
data.bytelLength

items

An array of objects indicating the topics to subscribe or unsubscribe
from. Each object must contain a topic property with a string
indicating the topic and, for SUBSCRIBE messages, may contain an
optional QoS property with the requested quality of service as a
value of 0, 1, or 2. This property is required for SUBSCRIBE and
UNSUBSCRIBE messages and must contain at least one element.

The options object is required, except when writing fragments of a PUBLISH message after the first fragment.

It is an error to call write before the CONNACK control message has been received.

The return value is the number of bytes that may be written. This may be reduced by more than the size of the
payload due to overhead in the protocol.

© Ecma International 2023

59



secma

24.6 Static properties of the constructor

The following properties are present on the constructor. The property names and values correspond to MQTT
Control Packet types in Section 2.1.1 of the MQTT 3.1.1 Standard. The values are numbers and the properties
are read-only.

Property Value
CONNECT 1
CONNACK 2
PUBLISH 3
PUBACK 4
PUBREC 5
PUBREL 6
PUBCOMP 7
SUBSCRIBE 8
SUBACK 9
UNSUBSCRIBE 10
UNSUBACK 11
PINGREQ 12
PINGRESP 13
DISCONNECT 14

25 Host provider instance

The Host Provider instance aggregates data and code available to scripts from the host. The host provider
instance is available as a module import:

import device from "embedded:provider/builtin”;

The Host Provider instance is instantiated before hosted scripts are executed. Only a single instance of the host
provider may be created, and the host provider cannot be closed or garbage collected.

The following sections define properties of the Host Provider instance. The Host Provider instance has no
required properties.

25.1 Global variable

Hosts are not required to make the host provider instance available in a global variable. A host that does should
use the global variable named device.

25.2 Pin name property

The pin property is an object that maps pin names to pin specifiers. More than one pin name may map to the
same pin specifier.

60 © Ecma International 2023



»ecma

import Digital from "embedded:io/digital"”;

let led = new Digital({
pin: device.pin.led,
mode: Digital.Output
})

25.3 10 bus properties

An O Bus is two or more pins used to implement a communication protocol such as Serial, SPI, or I2C. There
may be one or more instances of an IO Bus and one may be designated as the default bus of that type.

The Host Provider instance may contain properties corresponding to each bus type. The following bus types
are defined for those host provider instance.

Bus Type Property Name
[2C i2c

Serial serial

SPI spi

Each bus type may contain one or more buses. Each bus may have one or more names. It is recommended to
provide a property named default when there is a default bus.

// example host implementation

const A = {
in: 12,
out: 13,

clock: 14,
select: 15,
hz: 10_000_000

}s

const B = {
in: o,
out: 1,
clock: 2,
select: 3,
hz: 20 000 000

}s

device.spi = {
A,
B,
default: B

}

// example hosted script use
import SPI from "embedded:io/spi”;

let spi = new SPI(device.spi.default);

© Ecma International 2023 61



»ecma

25.4 |O classes

The host provider instance may provide access to its 10 constructors through its io property. This is analogous
to the 10 constructors available from an 10 Provider.

// example host provider implementation
import Digital from "embedded:io/digital”;
import I2C from "embedded:io/i2c";

import SPI from "embedded:io/spi”;

export default {

pin: {
button: o,
led: 2

s

io: {
Digital,
12C,
SPI

}

¥

// example hosted script use

import device from "embedded:provider/builtin”;
let spi = new device.io.SPI(device.spi.default);
25.5 10 Providers

The host provider instance should include its 10 Provider constructors in its provider property.
25.6 Sensors

The host provider instance should include its Sensor constructors in its sensor property.

25.7 Displays

The host provider instance should include its Display constructors through its display property.

25.8 Real-time clocks

The host provider instance should include a default Real-time clock constructor options object on its rtc
property.

25.9 Domain Name resolver

The host provider instance should include a default Domain Name Resolver class constructor options object on
its network.dns.resolver property.

62 © Ecma International 2023



»ecma

25.10 NTP client

The host provider instance should include a default NTP Client class constructor options object on its
network.ntp.client property.

25.11 HTTP client

The host provider instance should include a default HTTP Client class constructor options object on its
network.http.client property.

25.12 HTTPS client

The host provider instance should include a default secure HTTP Client class constructor options object on its
network.https.client property.

25.13 HTTP server

The host provider instance should include a default HTTP Client class constructor options object on its
network.http.server property.

25.14 MQTT client

The host provider instance should include a default MQTT Client class constructor options object on its
network.mqtt.client property.

25.15 MQTTS client

The host provider instance should include a default secure MQTT Client class constructor options object on its
network.mqtts.client property.

25.16 WS (WebSocket) client

The host provider instance should include a default WebSocket Client class constructor options object on its
network.ws.client property.

25.17 WSS (WebSocket Secure) client

The host provider instance should include a default secure WebSocket Client class constructor options object
on its network.wss.client property.

25.18 TLS client

The host provider instance should include a default TLS Client class constructor options object on its
network.tls.client property.

25.19 Network Interfaces

The host provider instance should include a Network Interface class constructor options object for each of its
network interfaces on its network.interface property.

const Ethernet® = device.network.interface.Etherneto;
const eth® = new Ethernet@.io(Etherneto);

© Ecma International 2023 63



secma

26 Provenance Sensor Class Pattern

Sensor data provenance is metadata associated with sensor samples. It encapsulates the specific, instance
source of data, the data transmission mechanism(s), and data transformations occurring at any point between
the sensor and the end-user or end-use application. Provenance applies both to direct and synthetic
measurements.

This section specifies the Provenance Sensor Class Pattern, which builds on the Sensor Class Pattern by
specifying an API for making sensor metadata available to scripts.

The Provenance Sensor Class Pattern adds one optional property to the constructor options object, two required
instance properties, and three properties to the object returned by the sample method.

The additions the Provenance Sensor Class Pattern makes to the Sensor Class Pattern are a lightweight means
of enabling provenance-aware scripts using Sensor Classes. Provenance-aware scripts may support more
robust analytics and/or high-assurance tasks.

A separate Technical Report, ECMA TR/110, Recommendations and Best Practices for Scripts on Connected
Sensing Devices, describes the best practices for using the Provenance Sensor Class Pattern to support scripts
running on connected sensing devices, for propagating static and dynamic device and state metadata, and for
accurately propagating sensor samples.

26.1.1 Properties of constructor options object

Property Description

onConfiguration() Callback to invoke when a new sensor configuration has
been applied. The configuration details are obtained from
the configuration property of the instance. This
property is optional.

The onConfiguration callback is invoked whenever configuration parameters are changed from the
originally-constructed instance.

26.2 configuration property

The required read-only configuration property indicates the current configuration of the sensor. Non-default
values must be reported. All configured parameters may optionally be included.

The data format of this property is implementation-dependent. For instance, the data may be a binary value or
may be human-readable. The data do not have to be interoperable to the connected sensing device if they can
be parsed by the relevant endpoint.

Configuration information recommended for the configuration property includes, but is not limited to:

Property Description
calibration Calibration factors / parameters that impact samples presented as
raw.
mode Sampling operating mode.
scaling Scaling factors that impact samples presented as raw.
units Configured sample unit.

64 © Ecma International 2023



secma

26.3 identification property

The required read-only identification property provides static identification information about the physical
sensor and/or sensor driver.

The data format of this property is implementation-dependent. For instance, the data may be a binary value or
may be human-readable. The data do not have to be interoperable to the connected sensing device if they can
be parsed by the relevant endpoint.

Identification information recommended for the identification property includes, but is not limited to:

Property Description

model Identification of the manufacturer and part number of the
sensor. Required.

classification Identification of the sensor classification of the sensor instance.
Required for instances of defined classes.

uniquelD Hard-coded unique identifiers associated with the sensor part.
This includes serial numbers, time and date of manufacture,
etc. Optional.

26.3.1  Properties of sample Object

The Provenance Sensor Class Pattern extends the sample object described in the Sensor Class Pattern to
include the following properties.

Property Description

time Number originating from an absolute clock describing the instant that the
sample returned was captured. If reported, time must be represented as
a time value as defined in ECMA-262 in “Time Values and Time Range”
(https://tc39.es/ecma262/#sec-time-values-and-time-range). The time
should originate from the most accurate clock associable to the start of a
sampling event, or be derived from the same.

ticks Number originating from a non-absolute clock describing the instant that
the sample returned was captured. If reported, ticks must be reported
as an integer representing the number of time units occurring from an
arbitrary, connected sensing device-consistent start time as reported by
the sensor instance.

faults Object representing a record of any sensor-level faults that occurred
during this sensor sample or since the previously reported sample.
Optional.

In the event disparate sensing modalities may be measured from a single sensor as discretely-sampled events
(e.g. requesting from an IMU first acceleration and only later angular rate), those modalities are assumed to be
treated as independent sensors for the purposes of recording time, ticks, and faults.

See Annex A for the formal algorithms of the Provenance Sensor Class Pattern.

© Ecma International 2023 65


https://tc39.es/ecma262/#sec-time-values-and-time-range

cecma

66 © Ecma International 2023



secmd

Annex A
(normative)

Formal algorithms

This annex defines formal algorithms for behaviors defined by this specification. These algorithms are useful
primarily for implementing the specification and validating implementations.

A.1 Internal fields

Internal fields are implementation-dependent and must not be accessible outside the implementation. For
instance they can be C structure fields, JavaScript private fields, or a combination of both.

Every object conforming to a Class Pattern is expected to have one or several internal fields. This document
uses the following operators on internal fields.

A.1.1 ChecklinternalFields(object)

1. For each internal field of the class being defined
1. Let name be the name of the internal field
2. Throw if object has no internal field named name
CheckInternalFields throws if an internal field is absent. That can be implicit when internal fields are JavaScript

private fields, or can be explicit when internal fields are C structure fields. The purpose of ChecklInternalFields
is to ensure that object is an instance of the class being defined.

A.1.2 ClearinternalFields(object)

1. For each internal field of the class being defined
1. Let name be the name of the internal field
2. Clear the internal field named name of object
ClearInternalFields zeroes all internal fields. That can be storing null in JavaScript private fields, or can be

storing NULL in C structure fields. The purpose of ClearinternalFields is to ensure that object is in a consistent
state when constructed and closed.

A.1.3 GetinternalField(object, name)
1. Return the value stored in the internal field named name of object

GetInternalField is trivial for JavaScript private fields, but can involve value conversion for C structure field like
converting C NULL into JavaScript null.

A.1.4 SetinternalField(object, name, value)
1. Store value in the internal field named name of object

SetinternalField is trivial for JavaScript private fields, but can involve value conversion for C structure field like
converting JavaScript null into C NULL.

© Ecma International 2023 67



secma

A.1.5 Internal methods
Internal methods are implementation-dependent and must not be accessible outside the implementation. This

document uses JavaScript private method syntax to indicate internal methods, prefixing the names of internal
methods with #.

A.2 Ranges

A.2.1 Booleans

For boolean ranges, the value is converted into a JavaScript boolean.

A.2.2 Numbers

For number ranges, the value is converted into a JavaScript number, then the value is checked to be in range.
The special value NaN is never in range.

For integer ranges, the value is converted into a JavaScript number, then the value is checked to be an integer,
then the value is checked to be in range.

Range From To
number -Infinity Infinity
negative -Infinity -Number .MIN_VALUE
number

positive Number .MIN_VALUE Infinity
number

integer Number .MIN_SAFE_INTEGER Number .MAX_SAFE_INTEGER
negative Number .MIN_SAFE_INTEGER -1
integer

positive 1 Number .MAX_SAFE_INTEGER
integer

8-bit -128 127
integer

8-bit 0 255
unsigned

integer

16-bit -32768 32767
integer

16-bit 0 65535
unsigned

integer

32-bit -2147483648 2147483647
integer

32-bit %] 4294967295
unsigned

integer

Further restrictions are specified with from x to y, meaning the value must be >=x and <=y.

68

© Ecma International 2023




»ecma

A.2.3 Objects
For object ranges like ArrayBuffer, the value is checked to be an instance of one of specified class.
Further restrictions can be specified, for instance on the byteLength of the ArrayBuffer instance.

If the object can be null, it is explicitly specified like Function or null.

A.2.4 Byte buffers

For byte buffer ranges, the value is checked to be an instance of ArrayBuffer, SharedArrayBuffer,
Uint8Array, Int8Array or DataView.

Further restrictions can be specified, for instance on the byteLength.

To access the data contained in a byte buffer, algorithms uses a host specific operator:
GetBytePointer(buffer)

The operator throws if buffer is not an instance of ArrayBuffer, SharedArrayBuffer, Uint8Array,

Int8Array, or DataView, orif buffer is detached. For a TypedArray and DataView instances, the pointer
takes the view’s byte offset into account.

A.2.5 Strings

For string ranges like "buffer", the value is converted into a JavaScript string, then checked to be strictly
equal to one of the specified values.

A.2.6 Asynchronous operations

Asynchronous operations are never synchronous: the callback is never invoked directly by the method that
starts the asynchronous operation, but indirectly at the end of the asynchronous operation.

To emphasize such a rule, the algorithms uses steps like:

1. Queue atask that performs
1. Call(this, callback)
The mechanism can be similar to what is necessary to implement setTimeout.
print(1);
setTimeout (0, () => print(3));

print(2);
// 123

A.3 Base Class Pattern

A.3.1 constructor(options)

1. ClearinternalFields(this)
2. Throw if options is not an object

3. Let params be an empty object

© Ecma International 2023 69



4.

ecmd

For each supported option
1. Let name be the name of the supported option
2. If HasProperty(options, name)
1. Letvalue be GetProperty(options, name)

2. Throw if value is not in the valid range of the supported option

3. Else
1. Throw if the supported option has no default value

2. Letvalue be the default value of the supported option
4. DefineProperty(params, name, value)

For each supported callback option

1. Let name be the name of the supported callback option

2. Let callback be GetProperty(params, name)

3. If callback is not null

1. SetinternalField(this, name, callback)

Let value be GetProperty(params, "target")
If value is not undefined

1. DefineProperty(this, "target", value)

Mark this as ineligible for garbage collection

A.3.1.1 Notes

Supported options, with their names, default values and valid ranges, are defined by a separate table for
each class conforming to the Base Class Pattern.

The params object is unobservable. Its purpose in the algorithm is to ensure that properties of the options
object are only accessed once and that the options object can be frozen. Local variables can be used
instead, for instance:

let pin = 2;
if (options !== undefined) {
if ("pin" in options)) {
pin = options.pin;
if ((pin < @) [| (3 < pin))
throw new RangeError(” invalid pin ${pin}’);

}

Most classes conforming to the Base Class Pattern are expected to support one or several callbacks.
Callbacks are supported options: their default value is null, their valid range is null or a JavaScript
function. Callbacks are stored in internal fields and are always called with this set to the constructed
object.

There is only one option that is always supported: its name is "target", its default value is undefined
and its range is any JavaScript value.

A.3.2 close()

1.

70

CheckinternalFields(this)

© Ecma International 2023



2.
3.
4,

A

1.
2,
3.
4.

eCina

Mark this as eligible for garbage collection
Cancel any pending callbacks for this

ClearInternalFields(this)

.3.3 close(callback)

CheckInternalFields(this)
Throw if callback is not undefined and not IsCallable(callback)
Optionally, cancel asynchronous operations
When all asynchronous operations succeeded or failed

1. Mark this as eligible for garbage collection

2. ClearInternalFields(this)

3. |If callback is not undefined

1. Queue atask that performs
1. Call(this, callback, null)

A.4 10 Class Pattern

A

1
2
3.
4

>

o M w NPk

©

4.1 constructor(options)
Execute steps 1 to 7 of the Base Class Pattern constructor
Let value be GetProperty(params, "format™)
SetinternalField(this, "format"”, value)
Try
1. Letresources be the hardware resources specified by params
2. Throw if resources are unavailable
3. Allocate and configure resources
4. Throw if allocation or configuration failed
5. SetInternalField(this, "resources", resources)
Catch exception
1. Call(this, GetProperty(this, "close"))
2. Throw exception
Execute step 8 of the Base Class Pattern constructor
4.2 close()
Execute step 1 of the Base Class Pattern close method
Let resources be GetInternalField(this, "resources™)
Return if resources is null
Execute steps 2 and 3 of the Base Class Pattern close method
Free resources

Ecma International 2023



secma

6. Execute step 4 of the Base Class Pattern close method

A.4.3 read([option])

1. CheckinternalFields(this)

2. Letresources be GetInternalField(this, "resources™)
3. Throw if resources is null

4. If resources is not readable

1. return undefined

o

Let format be GetInternalField(this, "format™)
6. If formatis "buffer"
1. Let available be the number of readable bytes
2. |If option is absent
1.  Throw if available is undefined
2 Let n be available
3. Letdata be Construct("ArrayBuffer", n)
4.  Let pointer be GetBytePointer(data)
5 Read n bytes from resources into pointer
6. Return data.
3. Else if option is a number
1. Throw if option is no positive integer
2. Letn be option
3. If available is not undefined and n > available
1. Letn be available
Let data be Construct("ArrayBuffer", n)

4
5. Let pointer be GetBytePointer(data)

6 Read n bytes from resources into pointer
7

Return data.

4. Else
1. Let pointer be GetBytePointer(option)
2. Letn be GetProperty(option, "byteLength")
3. If available is not undefined and n > available

1. Letn be available
4. Read n bytes from resources into pointer

5. Return n.

7. Throw if option is present

8. Read data from resources

9. Format data according to format
10. Return data.

72 © Ecma International 2023



secmd

A.4.4 write(data)

ChecklinternalFields(this)

Let resources be GetinternalField(this, "resources™)
Throw if resources is null or not writable

Throw if data is absent

Let format be GetInternalField(this, "format™)

o ok~ 0w bd P

If format is "buffer"

Let pointer be GetBytePointer(data)
Let n be GetProperty(data, "byteLength")
Throw if n bytes would overflow resources

Write n bytes from pointer into resources

o > 0w nhoE

Return

7. Throw if data is not formatted according to format

8. Write data into resources

A.4.5 set format(value)

1. CheckinternalFields(this)

n

Throw if value is not in the valid range of "format

w

SetinternalField(this, "format", value)

A.4.6 get format()

1. CheckinternalFields(this)
2. Return GetinternalField(this, "format")

A.4.7 Notes

» Hardware resources can require one or several internal fields which should be all cleared and checked.
The "resources" internal field is only a convention in this document.

» Several IO classes read/write bytes into/from buffers so the read and write methods detail the relevant
steps, for instance to optimize the read method memory usage by passing a buffer.

« 10 classes that do not use buffers can skip steps 6 of the read and write methods.

« Theranges of read and write data are defined by a separate table for each class conforming to the 10
Class Pattern.

*  When the parameters of read or write differ from the 10 Class Pattern, they are defined by a separate
table.

A.5 10 Class Pattern —asynchronous

A.5.1 close(callback)

1. Execute step 1 of the Base Class Pattern close method

© Ecma International 2023 73



secma

Let resources be GetInternalField(this, "resources")
Return if resources is null

Optionally, cancel asynchronous operations

o 0D

When all asynchronous operations succeeded or failed
1. Mark this as eligible for garbage collection
2. ClearinternalFields(this)

3.  Free resources

4

Execute step 5.2 and 5.3 of the Base Class Pattern close method

>

.5.2 read(option[, callback])

ChecklnternalFields(this)
Let resources be GetInternalField(this, "resources")
Throw if resources is null or not readable

Throw if option is absent

a > w0 b E

If option is a number

1. Throw if option is no positive integer

2. Letn be option

3. Letdata be Construct("ArrayBuffer", n)
6. Else

1. Letdata be option

2. Let pointer be GetBytePointer(data)

3. Letn be GetProperty(data, "byteLength")

7. Throw if callback is not undefined and not IsCallable(callback)
8. Start an input operation to read n bytes into data
1. When the input operation succeeded
1. If callback is not undefined
1. Queue atask that performs
1. Call(this, callback, null, data, n)
2. When the input operation failed
1. If callback is not undefined
1. Leterror be a JavaScript Error object describing the failure
2. Queue a task that performs

1. Call(this, callback, error)

A.5.3 write(data[, callback])

1. CheckinternalFields(this)

2. Letresources be GetinternalField(this, "resources")

74 © Ecma International 2023



secmd

Throw if resources is null or not writable
Throw if data is absent

Let pointer be GetBytePointer(data)

Let n be GetProperty(data, "byteLength")

Throw if callback is not undefined and not IsCallable(callback)

© N o 0 bk~ w

Start an output operation to write n bytes from data

1. When the output operation succeeded
1.  If callback is not undefined
1. Queue a task that performs
1. Call(this, callback, null, data, n)
2. When the output operation failed
1. If callback is not undefined
1. Leterror be a JavaScript Error object describing the failure
2. Queue atask that performs

1. Call(this, callback, error)

A.5.4 Notes

* The input and output operations represent the implementation dependent mechanism that ensures that
asynchronous read and write operations happen in the order issued.

+ Step 4 of the close method is optional since operations can be cancellable or not. Cancelled operations
fail with a corresponding Error object.

« Step 6.2 of the read method and step 5 of the write method ensures data is a byte buffer.

© Ecma International 2023 75



ecma

A.6 10 Classes

A.6.1 Digital

A.6.1.1 constructor options

Property

Required

Range

Default

pin

yes

pin specifier

mode

yes

Digital.Input,
Digital.InputPullUp,
Digital.InputPullDown,

Digital.InputPullUpDown,

Digital.Output, or

Digital.OutputOpenDrain.

edge

no*

Digital.Rising,
Digital.Falling, and
Digital.Rising |
Digital.Falling

onReadable

no

null or Function

null

format

no

"number"

"number"

+ If the onReadable option is not null, edge is required to have a non-zero value.

A.6.1.2 read/write data

Format

Read

Write

"number"

Qorl

Qorl

76

© Ecma International 2023



eCina

A.6.2 Digital bank

A.6.2.1 constructor options

Property Required Range Default
pins yes 32-bit unsigned integer
mode yes Digital.Input,
Digital.InputPullUp,
Digital.InputPullDown,
Digital.InputPullUpDown,
Digital.Output, or
Digital.OutputOpenDrain.
rises no* 32-bit unsigned integer 0
falls no* 32-bit unsigned integer 0
bank no number or string
onReadable no null or Function null
format no "number" "number"
+ Both rises and falls cannot be 9; at least one pin must be selected.
A.6.22 read/write data
Format Read Write
"number" 32-bit unsigned integer 32-bit unsigned integer
A.6.3 Analog input
A.6.3.1 constructor options
Property Required Range Default
pin yes pin specifier
resolution no positive integer host-dependent
format no "number" "number"

A.6.3.2 read/write data

Format Read

Write

"number" all

© Ecma International 2023

77



2eCma

A.6.4 Pulse-width modulation

A.6.4.1 constructor options

Property Required Range Default

pin yes pin specifier

hz no positive number host-dependent

format no "number" "number"
A.6.4.2 read/write data

Format Read Write

"number" positive integer
A.6.5 12C — synchronous IO
A.6.5.1 constructor options

Property Required Range Default

data yes pin specifier

clock yes pin specifier

hz yes positive integer

address yes 8-bit unsigned

integer from 0 to
127
port no port specifier host-
dependent

onReadable no null or Function null

format no "buffer" "buffer"
A.6.5.2 read/writedata

Format Read Write

"buffer" ArrayBuffer byte buffer

78 © Ecma International 2023



secmd

A.6.5.3 read(option[, stop])

Param Required Range Default
option yes* positive integer, byte buffer
stop no true or false true

* The number of readable bytes is undefined so option is required

A.6.5.4 write(data[, stop])

Param Required Range Default
data yes byte buffer
stop no true or false true

A.6.6 12C — asynchronous IO

A.6.6.1 read(option[, stop][, callback])

1. Execute steps 1 to 7 of the 10.Async Class Pattern read method
2. If callback is not undefined
1. Throw if not IsCallable(callback)
2. Convert stop to a JavaScript boolean
3. Else if stop is not undefined
1. IfIsCallable(stop)
1. Let callback be stop
2. Letstop be true
2. Else
1. Convert stop to a JavaScript boolean
4. Else
1. Let stop be true

5. Execute step 8 of the 10.Async Class Pattern read method

A.6.6.2 write(datal, stop][, callback])

1. Execute steps 1 to 6 of the 10.Async Class Pattern write method
2. If callback is not undefined
1. Throw if not IsCallable(callback)

2. Convert stop to a JavaScript boolean

3. Else if stop is not undefined
1. IfIsCallable(stop)
1. Let callback be stop
2.  Letstop be true

© Ecma International 2023

79



2eCma

2. Else
1. Convert stop to a JavaScript boolean
4. Else
1. Letstop be true

5. Execute step 8 of the 10.Async Class Pattern write method

A.6.6.3 Notes

« The read and write methods algorithms describe how to handle an optional argument before the
optional callback argument.

A.6.7 System management bus (SMBus) — synchronous IO

A.6.7.1 constructor options

All properties from I12C plus the following:

Property Required Range Default

stop no true or false false

A.6.7.2 read/write data

Format Read Write

"buffer" any any

A.6.7.3 read(option)

Param Required Range Default

option yes* positive integer, byte buffer

» The number of readable bytes is undefined so option is required

A.6.7.4 readUint8(register)

Param Required Range Default

register yes integer

A.6.7.5 writeUint8(register, value)

Param Required Range Default
register yes integer
value yes 8-bit unsigned integer

80 © Ecma International 2023



secmd

A.6.7.6 readUintl6(register, bigEndian)

Param Required Range Default
register yes integer
bigEndian no true or false false
A.6.7.7 writeUintl6(register, value)
Param Required Range Default
register yes integer
value yes 16-bit unsigned integer
A.6.7.8 readBuffer(register, buffer)
Param Required Range Default
register yes integer
buffer yes byte buffer
A.6.7.9 writeBuffer(register, buffer)
Param Required Range Default
register yes integer
buffer yes byte buffer
A.6.8 System management bus (SMBus) — asynchronous 10
All properties from 12C.Async plus the following:
A.6.8.1 readUint8(register|, callback])
Param Required Range Default
register yes integer N/A
callback no Function null
A.6.8.2 writeUint8(register, valuel, callback])
Param Required Range Default
register yes integer
value yes 8-bit unsigned integer N/A
callback no Function null

© Ecma International 2023

81



secmd

A.6.8.3 readUintl6(register[, bigEndian][, callback])
Param Required Range Default
register yes integer N/A
bigEndian no true or false false
callback no Function null
A.6.8.4 writeUintl16(register, value[, bigEndian][, callback])
Param Required Range Default
register yes integer N/A
value yes 16-bit unsigned integer N/A
callback no Function null
A.6.8.5 readBuffer(register, option[, callback])
Param Required Range Default
register yes integer N/A
buffer yes number or byte buffer N/A
callback no Function null
A.6.8.6 writeBuffer(register, buffer[, callback])
Param Required Range Default
register yes integer N/A
buffer yes byte buffer N/A
callback no Function null

A.6.8.7 Notes

82

The asynchronous methods to read and write data behaves analogously to the 12C.Async read and

write method.

© Ecma International 2023



secmd

A.6.9 Serial

A.6.9.1 constructor options

Property Required Range Default

receive no* pin specifier

transmit no* pin specifier

baud yes positive integer

flowControl no "hardware" and "none"
"none"

dataTerminalReady no pin specifier

requestToSend no pin specifier

clearToSend no pin specifier

dataSetReady no pin specifier

port no port specifier

onReadable no null or Function null

onWritable no null or Function null

format no "number" or "buffer"
"buffer"

» A host may require the receive and/or transmit properties.

A.6.9.2 read/write data

Format Read Write
"number" 8-bit unsigned integer 8-bit unsigned integer
"buffer" ArrayBuffer byte buffer

A.6.9.3 flush([input, output])

1. CheckinternalFields(this)

2. If input and output are absent
1. Letflushinput be true
2. Let flushOutput be true

3. Else if input and output are present
1. Convert input into a JavaScript boolean
2. Let flushinput be input
3. Convert output into a JavaScript boolean
4

Let flushOutput be output

© Ecma International 2023



secma

4. Else

1. Throw
5. If flushinput is true

1. Flush all received but unread data
6. If flushOutput is true

1. Flush all written but unsent data

A.6.9.4 set(options)

1. CheckinternalFields(this)
2. Throw if options is not an object
3. If HasProperty(options, "dataTerminalReady")
1. Letvalue be GetProperty(options, "dataTerminalReady")
2. Convert value into a JavaScript boolean
3. If value is true, set serial connection’s DTR pin
4.

Else clear serial connection’s DTR pin

4. If HasProperty(options, "requestToSend")
1. Letvalue be GetProperty(options, "requestToSend")
2. Convert value into a JavaScript boolean
3. lIfvalue is true, set serial connection’s RTS pin
4.

Else clear serial connection’s RTS pin

5. If HasProperty(options, "break")
1. Letvalue be GetProperty(options, "break™)
2. Convert value into a JavaScript boolean
3. lIf value is true, set serial connection’s break signal
4.

Else clear serial connection’s break signal

A.6.9.5 get([options])

1. CheckinternalFields(this)
2. If options is absent

1. Letresult be an empty object
3. Else

1. Throw if options is not an object

2. Letresult be options

4. |If serial connection’s CTS pin is set

1. SetProperty(result, "clearToSend", true)

5. Else
1. SetProperty(result, "clearToSend", false)

84 © Ecma International 2023



secmd

6. If serial connection’s DSR pin is set

1. SetProperty(result, "dataSetReady", true)

7. Else

1. SetProperty(result, "dataSetReady", false)

8. Return result

A.6.10 Serial Peripheral Interface (SPI)

A.6.10.1 constructor options

Property Required Range Default

out no* pin specifier

in no* pin specifier

clock yes pin specifier

select no* pin specifier

active no Oorl 0

hz yes positive integer

mode no 0,1,2,0r3 0

port no port specifier

format no "buffer" "buffer"
A.6.10.2 read/write data

Format Read Write

"buffer" ArrayBuffer byte buffer
A.6.10.3 read(option)

Param Required Range Default

option yes* positive integer, byte buffer

* The number of readable bytes is undefined so option is required

A.6.10.4 transfer(buffer)

1. CheckinternalFields(this)

2. If buffer is an ArrayBuffer

1. Let transferBuffer be buffer
2. Let transferOffset be 0

© Ecma International 2023




secma

3. Else
1. Let transferBuffer be GetProperty(buffer, “buffer”)
2. Let transferOffset be GetProperty(buffer, “byteOffset”)

4. If HasProperty(buffer, “bitLength”))
1. Let transferBits be GetProperty(buffer, “bitLength”)
2. Let availableBits be GetProperty(buffer, “byteLength”) * 8

3. Throw if transferBits is greater than availableBits

5. Else
1. Let transferBits be GetProperty(buffer, “byteLength”) * 8

6. Simultaneously write and read transferBits bits into buffer starting at byte offset transferOffset

7. Return buffer

A.6.10.5 flush([deselect])

1. CheckinternalFields(this)
2. Flush all written but unsent data
3. If deselect is present
1. Convert deselect into a JavaScript boolean
2. |If deselect is true
1. If GetinternalField(this, "active")is 0
1. Setthe selectpintol
2. Else
1. Setthe select pinto 0

A.6.11 Pulse count

A.6.11.1 constructor options

Property Required Range Default
signal yes pin specifier

control yes pin specifier

onReadable no null or Function null
format no "number" "number"

A.6.11.2 read/write data

Format Read Write

"number" integer integer

86

© Ecma International 2023



»ecma

A.6.12 TCP socket

A.6.12.1 constructor options

Property Required Range Default
address yes string
port yes ;G-bit unsigned
integer
noDelay no true or false false
keepAlive no positive integer N/A
from no instance of TCP N/A
Socket
onError no null or Function null
onlWritable no null or Function null
onReadable no null or Function null
format no "number" or "buffer"
"buffer"

A.6.12.2 read/write data

Format Read Write
"buffer" ArrayBuffer byte buffer
"number" 8-bit unsigned integer 8-bit unsigned integer

A.6.13 TCP listener socket

A.6.13.1 constructor options

Property Required Range Default

port yes 16-bit unsigned
integer

address no string N/A

onError no null or null
Function

onReadable no null or null
Function

format no "socket/tcp" "socket/tcp"

© Ecma International 2023



2eCma

A.6.13.2 read/write data

Format Read Write

"socket/tcp" instance of TCP Socket

A.6.14 UDP socket

A.6.14.1 constructor options

Property Required Range Default

address no string N/A

port no 16-bit signed N/A
integer

multicast no string N/A

timeToLive yes, if multicast integer from 1 N/A

used to 255

onError no null or null
Function

onhritable no null or null
Function

format no "buffer" "buffer"

A.6.14.2 read/write data

Format Read Write

"buffer" ArrayBuffer byte buffer

A.6.14.3 write(data, address, port)

Param Required Range Default
data yes byte buffer

address yes string

port yes 16-bit unsigned integer

A.7 Peripheral Class Pattern

A.7.1 constructor(options)

1. Execute steps 1 to 7 of the Base Class Pattern constructor

2. Try

1. For each supported 10 connection

88 © Ecma International 2023



secmd

2
3
4,
5

1 Let name be the name of the supported 10 connection.
2 Let ioOptions be GetProperty(params, name)
3. LetioConstructor be GetProperty(ioOptions, "io")
4 Let ioConnection be Construct(ioConstructor, ioOptions)
5. SetinternalField(this, name, ioConnection)
Configure the peripheral with params
Throw if the communication with the peripheral is not operational
Activate the peripheral

SetinternalField(this, "status"”, "ready")

3. Catch exception

1.
2.

Call(this, GetProperty(this, "close"))

Throw exception

4. Execute step 8 of the Base Class Pattern constructor

A.7.2 close()

o g~ w bdPE

Execute step 1 of the Base Class Pattern close method

Let status be GetInternalField(this, "status")

Return if status is null

Execute steps 2 and 3 of the Base Class Pattern close method

Deactivate the peripheral

For each supported 10 connection
1.
2.
3.

Let name be the name of the supported 10 connection.
Let ioConnection be GetinternalField(this, name)

If ioConnection is not null

1. Call(ioConnection, "close")

7. Execute step 4 of the Base Class Pattern close method

A.7.3 configure(options)

o M 0w NP

ChecklinternalFields(this)
Let status be GetInternalField(this, "status")
Throw if status is null
Throw if options is undefined or null
For each supported option
1.
2.

Let name be the name of the supported option
If HasProperty(options, name)
1. Letvalue be GetProperty(options, name)

2. Throw if value is not in the valid range of the supported option

© Ecma International 2023

89



secma

6. Configure the peripheral with options

A.7.4 Notes

«  Supported IO connections are supported options. Their value must be an object with an 1o property,
which is the class of the IO connection.

A.8 Sensor Class Pattern

A.8.1 constructor(options)

1. Execute all steps of the Peripheral Class Pattern constructor

A.8.2 close()

1. Execute all steps of the Peripheral Class Pattern close method

A.8.3 configure(options)

1. Execute all steps of the Peripheral Class Pattern configure method

A.8.4 sample([params])

1. CheckinternalFields(this)

2. Let status be GetlInternalField(this, "status")

3. Throw if status is null

4. Throw if params are absent but required, or present but not in the valid range
5. If the peripheral is readable

1. Letresult be an empty object
2. For each sample property
1 Let name be the name of the sample property
2.  Letvalue be undefined
3. Read from the peripheral into value
4 DefineProperty(result, name, value)
6. Else

1. Letresult be undefined

7. Return result.

A.8.5 Notes

« The order, requirements and ranges of sample params are defined by a separate table for each class
conforming to the Sensor Class Pattern.

» The requirements and ranges of properties in sample result are defined by a separate table for each
class conforming to the Sensor Class Pattern.

90 © Ecma International 2023



secmd

A.9 Sensor Classes
A.9.1 Accelerometer

A.9.1.1 sample params:

None

A.9.1.2 sample result:

Property Required Range Description
X yes number acceleration along the x
axis in meters per second
squared
y yes number acceleration along the y
axis in meters per second
squared
z yes number acceleration along the z
axis in meters per second
squared
A.9.2 Ambient light
A.9.2.1 sample params:
None
A.9.2.2 sampleresult:
Property Required Range Description
illuminance yes positive ambient light level
number in lux
A.9.3 Atmospheric pressure
A.9.3.1 sample params:
None
A.9.3.2 sample result:
Property Required Range Description
pressure yes number atmospheric pressure in

Pascal

© Ecma International 2023

91



oelind

A.9.4 Carbon Dioxide

A.9.4.1 sample params:

None

A.9.4.2 sample result:

Property Required Range Description
Cco2 yes number carbon dioxide in parts per
million

A.9.5 Carbon Monoxide

A.9.5.1 sample params:

None

A.9.5.2 sample result:

Property Required Range Description
co yes number carbon monoxide in parts per
million
A.9.6 Dust

A.9.6.1 sample params:

None

A.9.6.2 sample result:

Property Required Range Description
dust yes number dust levels in micrograms per
cubic meter

A.9.7 Gyroscope

A.9.7.1 sample params:

None

92 © Ecma International 2023



oecnd

A.9.7.2 sample result:

Property Required Range Description
X yes number angular velocity around the
X axis in radian per second
y yes number angular velocity around the
y axis in radian per second
z yes number angular velocity around the
Z axis in radian per second
A.9.8 Humidity
A.9.8.1 sample params:
None
A.9.8.2 sample result:
Property Required Range Description
humidity yes number relative humidity as a
fromOtol percentage
A.9.9 Hydrogen
A.9.9.1 sample params:
None
A.9.9.2 sample result:
Property Required Range Description
H yes number hydrogen in parts per million
A.9.10 Hydrogen Sulfide
A.9.10.1 sample params:
None
A.9.10.2 sample result:
Property Required Range Description
H2S yes number hydrogen sulfide in parts per

million

© Ecma International 2023

93



oelind

A.9.11 Magnetometer

A.9.11.1 sample params:

None

A.9.11.2 sample result:

Property Required Range Description

X yes number magnetic field around the x
axis in microtesla

y yes number magnetic field around the y
axis in microtesla

z yes number magnetic field around the z
axis in microtesla

A.9.12 Methane

A.9.12.1 sample params:

None

A.9.12.2 sample result:

Property Required Range Description

CH4 yes number methane in parts per million

A.9.13 Nitric Oxide

A.9.13.1 sample params:

None

A.9.13.2 sample result:

Property Required Range Description

NO yes number nitric oxide in parts per million

A.9.14 Nitric Dioxide

A.9.14.1 sample params:

None

94 © Ecma International 2023



secma

A.9.14.2 sample result:

Property Required Range Description
NO2 yes number nitric dioxide in parts per
million
A.9.15 Oxygen
A.9.15.1 sample params:
None
A.9.15.2 sample result:
Property Required Range Description
o yes number oxygen in parts per million
A.9.16 Particulate Matter
A.9.16.1 sample params:
None
A.9.16.2 sample result:
Property Required Range Description
particulateMatter yes number particulate
matter levels
in
micrograms
per cubic
meter

A.9.17 Proximity

A.9.17.1 sample params:

None

© Ecma International 2023

95



2eCma

A.9.17.2 sample result:

Property Required Range Description
near yes boolean indicator of a detected
proximate object
distance yes positive distance to the nearest
number or sensed object in
null centimeters or null if

no object is detected

max yes positive maximum sensing
number range of the sensor in
centimeters

A.9.18 Soil Moisture

A.9.18.1 sample params:

None

A.9.18.2 sample result:

Property Required Range Description
moisture yes number relative soil
between 0 and moisture level
1

A.9.19 Temperature

A.9.19.1 sample params:

None

A.9.19.2 sample result:

Property Required Range Description
temperature yes number temperature in degrees
Celsius
A.9.20 Touch

A.9.20.1 sample params:

None

A.9.20.2 sample result:

Array of touch objects or undefined if no touch is in progress.

96 © Ecma International 2023



secmd

A.9.20.3 touch object:

Property Required Range Description
X yes number X coordinate of the touch
point
y yes number Y coordinate of the touch
point
id yes positive indicator of which touch
integer point this entry
corresponds to
A.9.20.4 Volatile Organic Compounds
A.9.20.5 sample params:
None
A.9.20.6 sample result:
Property Required Range Description
tvoc yes number total volatile organic

compounds in parts per
billion

A.10 Display Class Pattern

A.10.1 constructor(options)

1. Execute all steps of the Peripheral Class Pattern constructor

A.10.2 adaptInvalid(area)

1. CheckinternalFields(this)
2. Throw if area is absent

3. If HasProperty(area, "x")

1. Letx be GetProperty(area, "x")

4. Else
1. Letxbeo
5. If HasProperty(area, "y")

1. Lety be GetProperty(area, "y")

6. Else
1. Letybe®
7. If HasProperty(area, "width")

1. Let width be GetProperty(area, "width")

© Ecma International 2023

97



secma

8. Else

1. Letwidth be the width of the frame buffer in pixels
9. If HasProperty(area, "height")

1. Let height be GetProperty(area, "height")
10. Else

1. Let height be the height of the frame buffer in pixels
11. Adjust x, y, width, height to define a valid area to update

12. SetProperty(area, "x", x)
13. SetProperty(area, "y",y)
14. SetProperty(area, "width", width)

15. SetProperty(area, "height", height)

A.10.3 close()

1. Execute all steps of the Peripheral Class Pattern close method

>

.10.4 begin(options)

CheckinternalFields(this)

Let status be GetInternalField(this, "status™)
Throw if status is null

Letx be ©

Lety be ©

Let width be the width of the frame buffer in pixels
Let height be the height of the frame buffer in pixels

Let continue be false

© ® N o o & w0 DN PE

If options is present

1. If HasProperty(options, "x")

1. Letxbe GetProperty(options, "x")

2. If HasProperty(options, "y")
1. Lety be GetProperty(options, "y")
3. If HasProperty(options, "width")
1. Let width be GetProperty(options, "width")
4. If HasProperty(options, "height™")
1. Let height be GetProperty(options, "height")
5. If HasProperty(options, "continue")
1. Letcontinue be GetProperty(options, "continue™)
10. Throw if the area defined by x, y, width, and height is invalid.
11. If status is ready

1. SetinternalField(this, "status", "updating")

98 © Ecma International 2023



secmd

12. Else
1. Throw if continue is false

13. Use X, y, width, height to prepare the frame buffer to receive scanlines

A.10.5 configure(options)

1. Execute all steps of the Peripheral Class Pattern configure method

A.10.6 end()

1. CheckinternalFields(this)

2. Let status be GetInternalField(this, "status™)
3. Throw if status is not "updating"

4. SetinternalField(this, "status”, "finishing")
5. Make updated frame buffer visible

6. SetinternalField(this, "status"”, "ready")
A.10.7 send(scanlines)

1. CheckinternalFields(this)

2. Let status be GetInternalField(this, "status™)
3. Throw if status is not "updating"

4. Throw if scanlines is absent

5. Let pointer be GetBytePointer(scanlines)

6. Letn be GetProperty(lines, "byteLength")

7. Transfer n bytes from pointer to the frame buffer

A.10.8 get width()

1. CheckinternalFields(this)

2. Return the width of the frame buffer in pixels

A.10.9 get height()

1. CheckinternalFields(this)

2. Return the height of the frame buffer in pixels

A.10.10 Notes

*  When the frame buffer rotation is 90 or 270 degrees, get width returns the height of the frame buffer
in pixels and get height returns the width of the frame buffer in pixels.

© Ecma International 2023 99



secma

A.10.11 constructor options:

Property Required Range Default
format no see text

rotation no 0, 90, 180, or 270

brightness no 0.0to 1.0

flip no “’h”, “v’, or “hv”

A.11 Real-Time Clock Class Pattern

A.11.1 constructor(options)

1. Execute step 1 of the Peripheral Class Pattern constructor
2. Letinterrupt be GetinternalField(this, "interrupt")
3. LetonAlarm be GetinternalField(this, "onAlarm")
4. Ifinterrupt is not null and onAlarm is not null

1. LetinterruptParams be GetProperty(params, "interrupt")

2. Let onReadable be a function with the following steps:

1. Queue a task that performs
1. Call(this, onAlarm)
3. SetProperty(interruptParams, "onReadable", onReadable)

5. Execute steps 2 to 4 of the Peripheral Class Pattern constructor

A.11.2 close()

1. Execute all steps of the Peripheral Class Pattern close method

A.11.3 configure(options)

1. Execute all steps of the Peripheral Class Pattern configure method

A.11.4 get time()

1. CheckinternalFields(this)
2. Let status be GetlInternalField(this, "status")
3. Throw if status is null
4. If the peripheral is readable
1. Letresult be the clock time as a JavaScript number
5. Else
1. Letresult be undefined

6. Return result.

100 © Ecma International 2023



secmd

A.11.5 set time(time)

1. CheckinternalFields(this)
2. Let status be GetInternalField(this, "status™)
3. Throw if status is null
4. |If the peripheral is writable
1. Convert time into a JavaScript number

2. Set the clock time to time

A.11.6 constructor options

Property Required Range Default
clock yes Object

interrupt no null or Object null
onAlarm no null or Function null

A.11.7 configure options

Property Required Range Default

alarm no number 0

A.12 Network Interface Class Pattern

A.12.1 constructor(options)

1. Execute all steps of the Base Class Pattern constructor

A.12.2 close()

1. Execute all steps of the Base Class Pattern close method

A.12.3 connect(options)

CheckinternalFields(this)

Let connection be GetInternalField(this, "connection™)
Throw if connection is not O

SetinternalField(this, "connection", 100)

Let port be GetInternalField(this, "port")

Let onChanged be GetinternalField(this, "onChanged™")

N o g & 0w Ddh PR

Monitor the network interface specified by port
1. When changed
1. If onChanged is not null

© Ecma International 2023

101



secma

1. Queue atask that performs
1. Call(this, onChanged)

A.12.4 disconnect()

1. CheckinternalFields(this)

n

Let connection be GetinternalField(this, "connection™)
3. If connectionis not 0

1. Disconnect the network interface

A.12.5 get MAC()

1. CheckinternalFields(this)

n

Let connection be GetinternalField(this, "connection™")
3. If connection is more than O
1. Letresult be the MAC address of the network interface as a JavaScript string
4. Else
1. Letresult be undefined

5. Return result.

A.12.6 get address()

1. CheckinternalFields(this)
2. Let connection be GetiInternalField(this, "connection")
3. If connection is more than or equal to 500
1. Letresult be the IP address of the network interface as a JavaScript string
4. Else
1. Letresult be undefined

5. Return result.

A.12.7 get connection()

1. CheckinternalFields(this)
2. Let connection be GetiInternalField(this, "connection")

3. return connection

A.12.8 constructor options

Property Required Range Default
onChanged no null or Function null
port no string

102

© Ecma International 2023



ecmd

A.13 Ethernet Network Interface

A.13.1 connect(options)

1.
2.
3.

Execute steps 1 to 6 of the Network Interface Class Pattern connect method
Start connecting the network interface specified by port

Execute step 7 of the Network Interface Class Pattern connect method

A.14 Wi-Fi Network Interface

A.14.1 connect(options)

1.
2.
3.

10.

11.

12.

13.

Execute steps 1 to 6 of the Network Interface Class Pattern connect method
Throw if options is not an object
If HasProperty(options, "SSID")
1. Let SSID be GetProperty(options, "SSID")
2. Convert SSID into a JavaScript string
Else
1. Let SSID be undefined
If HasProperty(options, "BSSID")
1. Let BSSID be GetProperty(options, "BSSID")
2. Convert BSSID into a JavaScript string
Else
1. Let BSSID be undefined
Throw if both SSID and BSSID are undefined
If HasProperty(options, "channel")
1. Letchannel be GetProperty(options, "channel™)
2. Convert channel into a JavaScript number
Else
1. Letchannel be undefined
If HasProperty(options, "secure™)
1. Letsecure be GetProperty(options, "secure")
2. Convert secure into a JavaScript boolean
Else
1. Letsecure be false
If HasProperty(options, "password™)
1. Let password be GetProperty(options, "password")
2. Convert password into a JavaScript string
Else

1. Let password be undefined

© Ecma International 2023

103



secma

14. Start connecting the network interface specified by port to the access point specified by SSID, BSSID,
channel and secure with password

15. Execute step 7 of the Network Interface Class Pattern connect method

A.14.2 scan(options)

Let scanning be GetInternalField(this, "scanning")

Let onFound be GetProperty(options, "onFound")

If HasProperty(options, "onComplete™")

1. LetonComplete be GetProperty(options, "onComplete")

2. Throw if not IsCallable(onComplete)

1. CheckinternalFields(this)

2.

3. Throw if scanning is true

4. Throw if options is not an object
5.

6. Throw if not IsCallable(onFound )
7.

8. Else

1. LetonComplete be undefined

9. If HasProperty(options, "channel")

1. Letchannel be GetProperty(options, "channel")

2. Convert channel into a JavaScript number

10. Else

1. Let channel be undefined

11. If HasProperty(options, "frequency")

1. Letfrequency be GetProperty(options, "frequency")

2. Convert frequency into a JavaScript number

3. Throw if frequency is neither 2.4 nor 5

12. Else

1. Letfrequency be undefined

13. If HasProperty(options, "secure")

1. Let secure be GetProperty(options, "secure")

2. Convert secure into a JavaScript boolean

14. Else

5. Let secure be false

15. SetinternalField(this, "scanning", true)

16. Start scanning for access points matching channel, frequency and secure

1. When an access point is found

1.
2.
3.
4.

104

Let result be an empty object
Let value be the SSID of the access point as a JavaScript string
SetProperty(result, "SSID", value)

Let value be the BSSID of the access point as a MAC address JavaScript string

© Ecma International 2023



eCina

SetProperty(result, "BSSID", value)
Let value be the RSSI of the access point as a JavaScript number
SetProperty(result, "RSSI", value)

Let value be the channel of the access point as a JavaScript number

© © N o v

SetProperty(result, "channel™, value)
10. Let security be the security mode of the access point as a JavaScript string
11. SetProperty(security, "security”, value)
12. Queue a task that performs
1. Call(this, onFound, null, result)
2. When done
1. SetinternalField(this, "scanning"”, false)
2. If onComplete is not undefined
1. Queue a task that performs

1. Call(this, onComplete)

A.14.3 get BSSID()

CheckinternalFields(this)
Let connection be GetInternalField(this, "connection™)
If connection is more than or equal to 400
1. Letresult be the BSSID of the access point as a JavaScript string
Else
1. Letresult be undefined

Return result.

A.14.4 get RSSI()

CheckinternalFields(this)
Let connection be GetinternalField(this, "connection™)
If connection is more than or equal to 400
1. Letresult be the RSSI of the access point as a JavaScript string
Else
1. Letresult be undefined

Return result.

A.14.5 get SSID()

N

ChecklInternalFields(this)
Let connection be GetinternalField(this, "connection™)
If connection is more than or equal to 400

1. Letresult be the SSID of the access point as a JavaScript string

© Ecma International 2023 105



|

4.

5.

ecina

Else
1. Letresult be undefined

Return result.

A.14.6 get channel()

1.
2.
3.

CheckinternalFields(this)
Let connection be GetinternalField(this, "connection™)
If connection is more than or equal to 400
1. Letresult be the channel of the access point as a JavaScript number
Else
1. Letresult be undefined

Return result.

A.15 Domain Name Resolver Class Pattern

A.15.1 constructor(options)

1.

Execute all steps of the Base Class Pattern constructor

A.15.2 close()

1.

Al

1.
2.
3.

106

Execute all steps of the Base Class Pattern close method

5.3 resolve(options], callback])

CheckinternalFields(this)
Throw if options is not an object
If HasProperty(options, "host")
1. Let name be GetProperty(options, "host")
2. Convert name to a JavaScript string
Else
1. Throw
Throw if callback is not undefined and not IsCallable(callback)
If name matches an IP address
1. |If callback is not undefined
1. Queue a task that performs
1. Call(this, callback, null, name, name)
Else
1. Start the resolution with name
1.  When the resolution succeeded

1. If callback is not undefined

1. Letaddress be the resolved address as a JavaScript string

© Ecma International 2023



secma

2. Queue a task that performs
1. Call(this, callback, null, name, address)
2. When the resolution failed
1. If callback is not undefined
1. Leterror be a JavaScript Error object describing the failure
2. Queue a task that performs

1. Call(this, callback, error)

A.16 DNS over UDP

A.16.1 constructor options

Property Required Range Default

socket yes Object N/A

servers yes Array of strings N/A
A.16.2 Notes

* The resolution itself can be implemented in JavaScript. See the sample code.

A.17 DNS over HTTPS

A.17.1 constructor options

Property Required Range Default

http yes Object N/A

servers yes Array of string N/A
A.17.2 Notes

* The resolution itself can be implemented in JavaScript.

A.18 NTP Client

A.18.1 constructor(options)

1. Execute all steps of the Base Class Pattern constructor

A.18.2 close()

1. Execute all steps of the Base Class Pattern close method

© Ecma International 2023

107


https://github.com/Moddable-OpenSource/moddable/blob/public/examples/io/udp/dns/dns.js

secma

A.18.3 getTime(callback)

1. CheckinternalFields(this)

2. Let synchronizing be GetInternalField(this, "synchronizing")
3. Throw if synchronizing is true

4. Throw if not IsCallable(callback)

5. SetinternalField(this, "synchronizing", true)

6. Start the synchronization

1. When the synchronization succeeded
1. Lettime be the synchronized time as a JavaScript number
2. Queue a task that performs
1. Call(this, callback, null, time)
2. SetinternalField(this, "synchronizing", false)
2. When the synchronization failed
1. Leterror be a JavaScript Error object describing the failure
2. Queue a task that performs
1. Call(this, callback, error)

2. SetinternalField(this, "synchronizing", false)

A.18.4 constructor options

Property Required Range Default

socket yes Object N/A

servers yes Array of string N/A
A.18.5 Notes

* The synchronization itself can be implemented in JavaScript. See the sample code.

A.19 TCP Client Class Pattern

A.19.1 constructor(options)

Execute all steps of the Base Class Pattern constructor
Let dnsOptions be GetlInternalField(this, "dns™)

Let dnsConstructor be Get(dnsOptions, "io")

Let dnsParams be a copy of dnsOptions

Set(dnsParams, "target", this)

o g~ w DN PE

Let dnsResolver be New(dnsConstructor, dnsParams)

108 © Ecma International 2023


https://github.com/Moddable-OpenSource/moddable/blob/public/examples/io/udp/sntp/sntp.js

/

7.
8.
9.

10.
11.
12.

ecna

SetInternalField(target, "dnsResolver", dnsResolver)

Let resolve be Get(dnsResolver, "resolve")

Let resolveParams be a new object

Set(resolveParams, "host", GetinternalField(this, "host™"))

Let resolveCallback be GetInternalField(this, "resolveCallback")

Call(dnsResolver, resolve, resolveParams, resolveCallback)

A.19.2 close()

1.
2,

Let tcpSocket be GetinternalField(this, "tcpSocket™)
If tcpSocket is not null
1. Call(tcpSocket, Get(tcpSocket, "close"))
Let dnsResolver be GetiInternalField(this, "dnsResolver")
If dnsResolver is not null
1. Call(dnsResolver, Get(dnsResolver, "close™))

Execute all steps of the Base Class Pattern close method

A.19.3 #resolveCallback(error, name, address)

1
2
3.
4

5.

Let target be Get(this, "target")

Call(this, Get(this, "close™))

SetinternalField(target, "dnsResolver", null)

If error is null
1. LettcpOptions be GetInternalField(target, "socket™)
2. LettcpConstructor be Get(tcpOptions, "io")

Let tcpParams be a copy of tcpOptions

Set(tcpParams, "address", address)

Set(tcpParams, "port", GetinternalField(target, "port™))

© © N o g M ®w

Set(tcpParams, "target"”, this)
10. Let tcpSocket be New(tcpConstructor, tcpParams)
11. SetinternalField(target, "tcpSocket", tcpSocket)
Else
1. LetonError be GetinternalField(target, "onError")
2. [If onErroris not null
1. Queue a task that performs

1. Call(target, onError, error)

© Ecma International 2023

Set(tcpParams, "onError", GetinternalField(this, #tcpError))
Set(tcpParams, "onReadable", GetinternalField(this, #tcpReadable))
Set(tcpParams, "onWritable", GetinternalField(this, #tcpWritable))

109



secma

A.19.4 read(count)

A.19.5 write(data[,options])
A.19.6 #tcpError(error)
A.19.7 #tcpReadable(count)
A.19.8 #tcpWritable(count)

A.19.9 read / write data

Format Read Write

"buffer" ArrayBuffer byte buffer

A.19.10 Notes

« The read, write, #tcpError, #tcpReadable, #tcpWritable functions implement the network
protocol, which usually requires a state machine, buffers, parsers, serializers, etc.

* Such methods can read and write from the TCP socket and can queue tasks to call the client callbacks.

«  For each network protocol, the client has specific methods and callbacks, and the write method can
have specific options.

A.20 HTTP Client

A.20.1 constructor(options)

1. Execute step 1 of the TCP Client Class Pattern constructor
2. Letrequests be a new Array object

3. SetinternalField(this, "requests”, requests)

4

Execute steps 2 to 12 of the TCP Client Class Pattern constructor

A.20.2 close()

1. Letrequests be GetinternalField(this, "requests"™)
2. For each request of requests
1. Cancel request

3. Execute all steps TCP Client Class Pattern close method

>

.20.3 request(options)

Let requests be GetInternalField(this, "requests")
Let requestConstructor be the HTTP Client Request constructor

Let requestParams be a copy of options

A wDd P

Set(requestParams, "target"”, this)

110 © Ecma International 2023



secma

5. Letrequest be New(requestConstructor, requestParams)
6. Add request to request
7. When this is ready

1. Start the request

A.20.4 constructor options

Property Required Range Default

dns yes Object N/A

host yes string N/A

socket yes Object N/A

port no number 80

onError no null or Function null
A.20.5 Notes

* The HTTP Client Request constructor is available only to the HTTP Client class.

* The HTTP Client class conforms to the TCP Client Class Pattern here above except:
— The read and write methods are provided by the HTTP Client Request instance.
— The HTTP Client Request instance owns the network protocol specific callbacks.

« Ifthe HTTP Client handles a single request at time, step 7 of the request method waits for the former
reguest to complete.

*  For details about the implementation of the HTTP Client, see the sample code.

A.21 HTTP Client Request

A.21.1 constructor options

Property Required Range Default
method no string GET
path no string /
headers no Map null
port no number 80
onHeaders no Function null
onReadable no Function null
onWritable no Function null
onDone no Function null

© Ecma International 2023 111


https://github.com/Moddable-OpenSource/moddable/blob/public/examples/io/tcp/httpclient/httpclient.js

secmd

A.21.2 read / write data

Format Read Write
"buffer" ArrayBuffer byte buffer
A.22 MQTT Client
A.22.1 constructor options
Property Required Range Default
dns yes Object N/A
host yes string N/A
socket yes Object N/A
port no number 1883
id no string
user no string
password no string or Byte Buffer
keepAlive no number 0
clean no boolean true
will no Object* null
onReadable no Function null
onlWritable no Function null
onError no Function null
onControl no Function null
e The will object has:
Property Required Range Default
topic yes string N/A
message yes string or Byte Buffer N/A
QoS no 0,1,0r2
retain no boolean false

112

© Ecma International 2023



eCimna

A.22.2 write options

Property Required Range Default
operation no number MQTTCLient.PUBLISH
id no number
topic yes* string N/A
QoS no* 0,1, or 0
2
retain no* boolean false
duplicate no* boolean false
byteLength no* number data.bytelLength
items yes* Array N/A

topic is required when operation is MQTTCLient.PUBLISH
QoS, retain, duplicate, byteLength are used when operation is MQTTCLient.PUBLISH

items is required and used when operation is MQTTCLient.SUBSCRIBE or
MQTTCLient.UNSUBSCRIBE.

items is an array of objects that have:

Property Required Range Default
topic yes string N/A
QoS no* 0,1,0r2 0

QoS is used when operation is MQTTCLient.SUBSCRIBE

A.22.3 Notes

The MQTT Client class conforms to the TCP Client Class Pattern here above.
For details about the implementation of the MQTT Client, see the sample code.

A.23 WebSocket Client

A.23.1 constructor(options)

1.
2.
3.

Execute step 1 of the TCP Client Class Pattern constructor
Let tcpSocket be GetInternalField(this, "attach™)
If tcpSocket is null
1. Execute steps 2 to 12 of the TCP Client Class Pattern constructor
Else

1. SetinternalField(this, "tcpSocket", tcpSocket)

© Ecma International 2023 113


https://github.com/Moddable-OpenSource/moddable/blob/public/examples/io/tcp/mqttclient/mqttclient.js

secma

A.23.2 constructor options

Property Required Range Default
attach no instance of TCP Socket null
dns yes* Object N/A
host yes* string N/A
socket yes* Object N/A
port no* number 80
protocol no* string
headers no* Map null
onReadable no Function null
onWritable no Function null
onError no Function null
onControl no Function null
onClose no Function null

- Ifattachis present, dns, host, socket, port, protocol and headers are neither required nor used.

A.23.3 write options

Property Required Range Default
binary no boolean true
more no boolean false
opcode no number

A.23.4 Notes

« The WebSocket Client class conforms to the TCP Client Class Pattern here above.

* For details about the implementation of the WebSocket Client, see the sample code.

A.24 TCP Server Class Pattern

A.24.1 constructor(options)

Execute all steps of the Base Class Pattern constructor
Let connections be a new Set object

SetinternalField(this, "connections", connections)

1.
2
3
4. LettcpOptions be GetInternalField(target, "1listener™)
5. Let tcpConstructor be Get(tcpOptions, "i0")

6

Let tcpParams be a copy of tcpOptions

114

© Ecma International 2023


https://github.com/Moddable-OpenSource/moddable/blob/public/examples/io/tcp/websocketclient/websocketclient.js

secmd

10.
11.

Set(tcpParams, "port", GetinternalField(target, "port™))
Set(tcpParams, "onReadable", GetinternalField(this, #tcpReadable))
Set(tcpParams, "target”, this)

Let tcpSocket be New(tcpConstructor, tcpParams)

SetinternalField(this, "tcpSocket", tcpSocket)

A.24.2 close()

oW

Let connections be GetinternalField(this, "connections™)

For each connection of connections

1.

Call(connection, "close")

Let tcpSocket be GetInternalField(this, "tcpSocket™)

If tcpSocket is not null

1.

Call(tcpSocket, "close")

Execute all steps of the Base Class Pattern close method

A.24.3 #tcpReadable(count)

1
2
3.
4
5

Let target be Get(this, "target")

Let connections be GetinternalField(target, "connections")

Let onConnect be GetlnternalField(target, "onConnect")

Let connectionConstructor be a class conforming to the TCP Server Connection Class Pattern

While count > 0

1.

2
3.
4

Let from be Call(this, Get(this, "read"))
Let connection be New(connectionConstructor, target, from)
Add connection to connections
Queue a task that performs
1. Call(target, onConnect, connection)

Let count be count - 1

A.24.4 constructor options

Property Required Range Default

listener yes Object N/A

port no* number 80

onConnect yes Function N/A
A.24.5 Notes

a static private field of the server class, a closure of the server module, etc.

© Ecma International 2023

The connection constructor is specific to each network protocol, and available only to the implementation:

115



»ecma

A.25 TCP Server Connection Class Pattern

A.25.1 constructor(server, from)

SetinternalField(this, "server", server)
Let tcpConstructor be Get(from, "constructor")
Let tcpParams be New("Object")

Set(tcpParams, "from", from)

Set(tcpParams, "onReadable", GetinternalField(this, #tcpReadable))
Set(tcpParams, "onWritable", GetinternalField(this, #tcpWritable))

1
2
3
4
5. Set(tcpParams, "onError", GetinternalField(this, #tcpError))
6
7
8. Set(tcpParams, "target", this)

9

Let tcpSocket be New(tcpConstructor, tcpParams)

10. SetinternalField(this, "tcpSocket", tcpSocket)

A.25.2 close()

1. LettcpSocket be GetinternalField(this, "tcpSocket")
2. If tcpSocket is not null
1. Call(tcpSocket, Get(tcpSocket, "close™))
3. Letserver be GetInternalField(this, "server")
4. Let connections be GetInternalField(server, "connections™)

5. Remove this from connections
A.25.3 read(count)

A.25.4 write(data[, options])
A.25.5 #tcpError(error)

A.25.6 #tcpReadable(count)
A.25.7 #tcpWritable(count)

A.25.8 read / write data

Format Read Write
"buffer" ArrayBuffer byte buffer
A.25.9 Notes

+ The read, write, ##tcpError, ##ttcpReadable, #tcpWritable functions implement the network
protocol, which usually requires a state machine, buffers, parsers, serializers, etc.

116 © Ecma International 2023



secmd

*  Such methods can read and write from the TCP socket and can queue tasks to call the server connection
callbacks.

» For each network protocol, the server connection has specific methods and callbacks, and the write
method can have specific options.

A.26 HTTP Server

A.26.1 Notes

* The HTTP Server class conforms to the TCP Server Class Pattern here above.
¢ The server connection constructor is the HTTP Server Connection class.

* For details about the implementation of the HTTP Server, see the sample code.

A.27 HTTP Server Connection

A.27.1 detach()
Let tcpSocket be GetInternalField(this, "tcpSocket™)
SetinternalField(this, "tcpSocket”, null)
Let server be GetInternalField(this, "server")

1
2
3
4. Let connections be GetInternalField(server, "connections")
5. Remove this from connections

6

return tcpSocket

A.27.2 accept(options)

1. Throw if options is not an object
2. For each supported callback
1. Let name be the name of the supported callback
2. Let callback be GetProperty(options, name)
3. |If callback is not undefined
1. Throw if not IsCallable(callback)
2.  SetinternalField(this, name, callback)

3. Start receiving the request

A.27.3 get route()

1. Letresult be GetinternalField(this, "route")

2. Return result

A.27.4 set route(options)

1. Execute steps 1 and 2 of the accept method

2. SetinternalField(this, "route", options)

© Ecma International 2023 117


https://github.com/Moddable-OpenSource/moddable/blob/public/examples/io/listener/httpserver/httpserver.js

secma

A.27.4.1 accept and set route options

Property Required Range Default
onDone no Function null
onError no Function null
onReadable no Function null
onRequest no Function null
onWritable no Function null

A.27.5 respond(options)

1. Throw if options is not an object

2. Let status be GetProperty(options, "status™)

3. Convert status into a JavaScript number

4. Throw if status is no positive integer

5. Let headers be GetProperty(options, "headers")

6. Throw if headers is no Map instance

7. Start sending the response with status and headers

A.27.5.1 respond options
Property Required Range Default
status yes positive integer N/A
headers yes Map N/A

A.27.6 Notes

* The HTTP Server Connection class conforms to the TCP Server Connection Class Pattern here above.

+ The HTTP Connection callbacks can be changed with the route setter, usually in the onRequest

callback, when the HTTP method, path, and headers are available.

* For examples of routes, see the sample code.

A.28 Provenance Sensor Class Pattern

A.28.1 configure(options)

1. Execute all steps of the Sensor Class Pattern configure method

A.28.2 sample([params])

1. Execute steps 1 to 6 of the Sensor Class Pattern sample method

2. Ifresult is an object

118

© Ecma International 2023


https://github.com/Moddable-OpenSource/moddable/blob/public/examples/io/listener/httpserver/options

secma

1. If an absolute clock is available
1. Lettime be the value of the absolute clock upon sampling
2. DefineProperty(result, "time", time)
2. |If arelative clock is available
1. Letticks be the value of a relative clock upon sampling
2.  DefineProperty(result, "ticks", ticks)
3. If faults are readable from the sensor upon sampling
1. Read from the sensor into faults
2. DefineProperty(result, "faults", faults)

3. Execute steps 7 of the Sensor Class Pattern sample method

A.28.2.1 Notes

* The absolute clock is the most precise clock available to get an absolute time value (since the Epoch),

from either the sensor, the microcontroller, or another peripheral.

* The relative clock is any clock available to get a consistent relative time value (for instance since the
device started), from either the sensor, the microcontroller, or another peripheral.

A.28.2.2 sample params:

None

A.28.2.3 sample result:

In addition to the sample results defined in the Sensor Class Pattern, the Provenance Sensor Class Pattern

adds properties as follows:

Property

Required

Range

Description

time

yes, if
available

positive
number

number originating from
an absolute clock
describing the instant
that the sample returned
was captured

ticks

yes, if
available

positive
number

number originating from
a non-absolute clock
describing the instant
that the sample returned
was captured

faults

no

boolean,
number,
or string

object representing a
record of any sensor-
level faults that occurred
during this sensor
sample or since the
previously reported
sample

© Ecma International 2023

119



ecimnd

A.28.3 Notes

The order, requirements, and ranges of options for configure extend those found in a separate table for
every class conforming to the Sensor Class Pattern, and add the options configuration and
identification as defined in the Sensor Provenance Class Pattern.

Metadata (time, ticks, faults) reflect only the metadata associated with the first sample. In cases where
multiple samples may be taken from a single device, timing and fault data may be imprecise for
subsequent samples.

A.29 10 Provider Class Pattern

A.29.1 constructor(options)

1.
2.

120

Execute steps 1 to 7 of the Base Class Pattern constructor
Let onReadable be a function with the following steps:

1. Letdata be Call(this, GetProperty(this, "read"))

2. Let provider be GetProperty(this, "target")

3. Dispatch data among IO objects of provider
Let count be the number of supported 10 connection
Let onWritable be a function with the following steps:

1. Letcountbe count-1

2. IfcountisO

1. Let provider be GetProperty(this, "target")

Configure provider with params
Add supported IO constructors to provider

SetinternalField(provider, "status", "ready")

Let callback be GetInternalField(provider, "onReady")

L T S

If callback is not null
1. Call(provider, callback)
Let onError be a function with the following steps:
1. Let provider be GetProperty(this, "target")
2. Dispatch the error to open 10 objects of provider
3. Call(provider, GetProperty(provider, "close"))
4. Let callback be GetInternalField(provider, "onError")
5. If callback is not null
1. Call(provider, callback)
Try
1. For each supported 10 connection
1. Let name be the name of the supported IO connection.
2. LetioOptions be GetProperty(params, name)

3. LetioParams be a copy of ioOptions

© Ecma International 2023



secmd

7. Catch exception

Let ioConstructor be GetProperty(ioParams, "io")
DefineProperty(ioParams, "onReadable", onReadable)
DefineProperty(ioParams, "onWritable", onWritable)
DefineProperty(ioParams, "onError™, onError)
DefineProperty(ioParams, "target"”, this)

Let ioConnection be Construct(ioConstructor, ioParams)

SetInternalField(this, name, ioConnection)

1. Call(this, GetProperty(this, "close™))

2. Throw exception

8. Execute step 8 of the Base Class Pattern constructor

A.29.2 close()

Execute all steps of the Peripheral Class Pattern close method

© Ecma International 2023

121



cecma

Bibliography

10

[1] [2C-bus specification and user manual, Rev. 6. https://www.nxp.com/docs/en/user-quide/UM10204.pdf

[2] System Management Bus (SMBus) Specification Version 3.1.
http://smbus.org/specs/SMBus 3 1 20180319.pdf

W3C Sensor

[3] W3C Generic Sensor specification. https://www.w3.org/TR/generic-sensor/

[4] W3C Accelerometer draft. https://w3c.qgithub.io/accelerometer/

[5] W3C Ambient Light Sensor draft. https://www.w3.org/TR/ambient-light/

[6] W3C Proximity Sensor draft. https://w3c.qgithub.io/proximity/

Secure ECMAScript (SES)

[7] Ecma TC39 - Compartments Proposal. https://github.com/tc39/proposal-compartments

[8] Ecma TC39 - SES Proposal. https://github.com/tc39/proposal-ses

[9] Draft Specification for Standalone SES. https://github.com/Agoric/SES-
shim/blob/master/packages/ses/docs/source/draft-standalone-spec.md

ResizableArrayBuffer and GrowableSharedArrayBuffer

[10] In-Place Resizable and Growable ArrayBuffers. https://github.com/tc39/proposal-resizablearraybuffer

122 © Ecma International 2023


https://www.nxp.com/docs/en/user-guide/UM10204.pdf
http://smbus.org/specs/SMBus_3_1_20180319.pdf
https://www.w3.org/TR/generic-sensor/
https://w3c.github.io/accelerometer/
https://www.w3.org/TR/ambient-light/
https://w3c.github.io/proximity/
https://github.com/tc39/proposal-compartments
https://github.com/tc39/proposal-ses
https://github.com/Agoric/SES-shim/blob/master/packages/ses/docs/source/draft-standalone-spec.md
https://github.com/Agoric/SES-shim/blob/master/packages/ses/docs/source/draft-standalone-spec.md
https://github.com/tc39/proposal-resizablearraybuffer

secmd

Ecma International

Rue du Rhone 114

CH-1204 Geneva

Tel: +41 22 849 6000

Fax: +41 22 849 6001

Web: https://ecma-international.org/

Software license

All Software contained in this document (“Software”) is protected by copyright and is being made available under
the “BSD License”, included below. This Software may be subject to third party rights (rights from parties other
than Ecma International), including patent rights, and no licenses under such third party rights are granted under
this license even if the third party concerned is a member of Ecma International. SEE THE ECMA CODE OF
CONDUCT IN PATENT MATTERS AVAILABLE AT https://ecma-
international.org/memento/codeofconduct.htm FOR INFORMATION REGARDING THE LICENSING OF
PATENT CLAIMS THAT ARE REQUIRED TO IMPLEMENT ECMA INTERNATIONAL STANDARDS.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and
the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the
distribution.

3.  Neither the name of the authors nor Ecma International may be used to endorse or promote
products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE ECMA INTERNATIONAL “AS IS” AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL ECMA
INTERNATIONAL BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

© Ecma International 2023 123


https://ecma-international.org/
https://ecma-international.org/memento/codeofconduct.htm
https://ecma-international.org/memento/codeofconduct.htm

oecma

© Ecma International 2023



