cecma

anNal ECMA-419
- - 1<t Edition / June 2021

ECMAScript®
embedded systems API
specification

.

Rue du Rhone 114 CH-1204 Geneva T. +41 22 849 6000 F: +41 22 849 6001

eCnad

INTERNATIONAL
is the registered trademark of Ecma International

A COPYRIGHT PROTECTED DOCUMENT

© Ecma International 2021

seCmna

Contents Page
1 S o 0] o 1T PP TPUPPPPPPTTNN 1
2 (67e)] o] ¢ 01 F= 10 o] =TT TP PP PPPPPPPPTP 1
3 NLO T = R =T = (=T (= 0 o= 1
4 Terms and AeFINTTIONS ...ooiiiiiiiiiiiiiieeeeeeeeeee ettt e et e eeeeeeeeeeeeease s e sasssasasssasssssssssssssssnsssssnsesnsnsnnnnes 2
5 Lo X = oYt = LI o014 V2= 14 o Y o 1 3
6 OVEIVIBW .. 3
6.1 1O N ST ox] o T PP PSP OOPPPTTRPPI 3
6.2 O F= Tl o o1 (=T OO PP PP PUPPP P 3
6.3 Independent iIMPlEMENTALIONS.u i an 4
6.4 S-S NG e 4
6.5 MOAUIE SPECIHTIEIS .. s 4
6.6 SECUIE ECMASCIIP i 4
6.7 = T 011 o 5
7 Requirements for standard built-in ECMASCIIPt ODJECTSiiiiiieiiice e 5
8 L T I O 1= T = 1 1= 5
8.1 el ¢ 35 of o 1 T o ol SRS 5
8.2 CLOSE MELNOU ... s 6
8.3 Lo 1= (=a o o] 0] 0 1= Y PSP 6
8.4 L0211 o F= Vo] - TP TSP TP TP PPPPPPPT 6
9 (O N O = TS E SR o= L (=T o (PP TT T PPPPPPPPPPPN 7
9.1 PN S C T BT e e —————————————————————————— 7
9.2 P O S P I T BT e —————————————————————————— 7
9.3 (od0] =1 4 AT o] o) CHUNU PP PP PPPPPPPP 7
9.4 PEAA MELNOMU ... et 7
9.5 (Lo A =3 4 1= T Yo I 8
9.6 11 R o] o] =] o APPSR PPN 8
9.7 CallbDACKS . 8
9.7.1 ONREAUADIE ..o 9
9.7.2 ONWIITADIE (oo 9
O0.7.3 ONEITO 9
10 1@ o] = 11T PP TP PPPPUPPRPPN 9
101 DiIgital . 9
10.1.1 Properties of constructor optionNs ObJeCt.......ccooiiii i 10
O I 07 1 | o F- o] - TSP PPPPP TP 10
O R B - = T {01 1 = | TP PTPPT PP 10
0 Tt o 1 =SSP 10
10.2 DiIGITAI DANK ceeeiiieee ettt e e b e e e bt e e s be e e e e e baee e e abreeeeane 10
10.2.1 Properties of consStructor OptioNS ODJECT......oueiiii i 11
10.2.2 CallbBACKS .o 11
10.2.3 Data fOrmMal...ccccooeieiii e 11
0 T2 S [0 = PP 11
O JRC I AN o =1 Lo To I 1Y o 1V) S PP UTP PP 11
10.3.1 Properties of cONStructor OPtioNS ODJECT......coii i 12
10.3.2 Dataformatl.......cooooiiiiii 12
10.3.3 PeSOLUTION PrOPEITY ..ttt et e e e e e s bbbttt e e e e e e bbb be e e e e e e e e e annbbbeeeeaeeseaannranneeas 12
10.4 Pulse-width modulation ... 12
10.4.1 Properties of consStructor OptioNS ODJECT......oueiiii i 12

© Ecma International 2021 i

secmd

OB S D - | = i {0] 1 = L SRR 12
10.4.3 PeSOLULION PrOPOITY ..oeiiiiiiiiiitiii ittt e et e e e e s e s et e e e et e s e e e et e e e n e e e ae s 12
O A 1 A o] o] o 1=] o Y PO PPPPTR PP 13
L0.4.5 NOTBS .o e 13
10018 T RPN 13
10.5.1 Properties of cONStructor OPtioNS ODJECTovii i 13
O T D - 1= {0] 1= L PP 13
10.5.3 Specifying stop bit with read and write Methodsccooiiiiiiiiii 13
TR 1Y =1 g Vo T =PTSRS 13
10.6 System management BUS (SIMBUS)cccuuuiiiiieiii et e e e s e s e e e e e e s e st ae e e e e e e s s annrraneeeees 14
10.6.1 Properties of CONStructor OPtioNS ODJECTovii i 14
OIS T2 1/ =1 o Yo £ PP 14
O T A 1= o - | RPN 15
10.7.1 Properties of cONStructor OPtioNSs ODJECToiii i 15
OB 7 /=1 o Yo £ SRR 15
O T O 111 o - o] <<= S ERP R RPPI 16
O D - L= (o] €1 1= L TP PP PP T POPPPPPP 17
10.8 Serial Peripheral INterface (SPI) ... 17
10.8.1 Properties of cONStrUCIOr OPLIONS ODJECT ..., 17
O C J D - L= (o] €11 F- L PP PP TR PPPPPPRP 17
O JRC JRC T /11 o To Yo 1< TR P PP TP TUPPPPPP 17
L0.9 PUISE COUNT ittt e oo oottt et e e e s e skt bbb et e e e e e e e s n b bbb et et e e e e s annb b e e e e eeeesaannnbbnneeaaeas 18
10.9.1 Properties of CONStructor OPtioNS ODJECTeiii i 18
O JRe T2 D - 1= i o] 1 0 = LSRR 18
L0 IR TG T /=1 o Yo £ RS 19
0RO 111 o - Tod <= USSP 19
L0200 0 T I ==Y o To = USRS 19
10.10.1 Properties of conStructor 0ptioNs ODJECToii i 20
O K T2 /11 o To Yo £ TR PP TP TTPPPPPP 20
O RO R 02 111 o T Tod 1= T TP PP PP TR TPOPPPPP 21
O RO R R D L= o] 1 - L TR PP PP TR PUPPPPPI 21
10.11 TCP lISTENEI SOCKEL....uiiiiiiiiiiiite ettt ettt e e e et e e e e e e e s b bbb e e et e e e e s aanbe b e e e e e e e s e annbnnneeaeeas 21
10.11.1 Properties of constructor OPtioNS ODJECT ..., 21
OB I 2 /=1 1 o Yo £ PO UPP TR 21
000 I O @ 111 - Tod < S 22
B0 I O - - Y o] 1 = S 22
I 2 B 1 T =Y o 1] = S 22
10.12.1 Properties of conStructor 0ptioNs ODJECToii i 22
0 B0 2 /=1 o Yo S 22
B0 2 B @ 111 - Tod < S 23
O R DT L= (o] €1 1= L TP PPTT R POPTPPTP 23
11 1O ProVider ClaSS PATEINcooii ittt ettt e e e e e sttt e e e e e e e sanbbbeeeeaeeaeanan 23
11.1 Lelo] 0 13 o oV Lo ol o T PSPPSRI 24
5 02 ol e X - o =1 o Yo S 24
5O T O7- 111 o T o] 1= T PO UPP TP 24
12 Peripheral Class PatlerNuuiiiiiiiiiiiiiiieieieieieieeeaae e e re e rere e rerseesarstsssssssssssssrssnssrssnrnnnnns 24
12.1 Lelo] 0 13 o oV Lo ol o T PSSO PUPT PRSPPI 24
D2 o e XY -3 o =1 o Yo P 25
12.3 CONFAGUPrE MELNOM ..o 25
12.4 AcCCESSOrsS fOr CONFIGUIALIONuiiiiiiiii ettt e e et e e e 26
13 Y C T ST o] @ 1= LTSI == 1 1 = o SR 26
13.1 Lol 4 3 of o e ol] 26
IR 7 o o Ty & =¥ T o YN = o 27
G TR B - 11T X =N 4 1= g o Yo PRSP 27
S 2R S 07 111 o - o] 1= TP ERP TR 27
14 Y= KT o] o] P =Y L PSRRI 28
I o R AN o of =] =] o] 4 1= (T TP URP TSP 28

ii © Ecma International 2021

secma

14.1.1 Properties Of @ SAmMPIE ODJECToooi it 28
142 AMDBIENT TGNttt e e e st e e e st b e e e e sabe e e e e sabe e e e e sbreeeeane 28
14.2.1 Properties Of SAMPIE ODJECTeeiiii et e e e e 28
14.3 AUMOSPINEIIC PIrESSUIE iiieii ittt ettt ettt et e e et e e e e st et e e e st et e e e sab e e e e e sabe e e e e aabbeeeeabbeeeeabrneeeants 28
14.3.1 Properties Of @ SAmMPIE ODJECToooi i 29
I = 011 T Lo [PO PO TP PP PUPPPPPPPPPN 29
14.4.1 Properties 0f @ SampPle ODJECTuviiiiii e 29
T = o) q 1 14 TSR 29
14.5.1 Properties 0f @ SampPle ODJECTuviiiii i 29
o =T 0 0T o 1T = UL =TT PPPPTPTTRRRSSPPPIN 29
14.6.1 Properties 0f @ SampPle ODJECTuviiiii i 30
I S o T Yo o LR PPPRRPN 30
L1471 SAMPIE ODJECT ..ottt e et e e e st e e e e e st e e e e e st b e e e e sabb e e e e sbreeeeaae 30
14711 Properties of tOUCH ODJECTeiiiiie e e 30
15 DiSPlay ClasS PaIEINciiiiiiiiiiiiiii ettt ettt s et e s e bt e e e e nnbr e e enbne e e e nenas 30
S0 R o101 1= 4 4 U o o] SO TP PTPTPR O PPSPPPPIN 30
152 coNFLigUre METNOMooiiiiiii et e et e e e st b e e e sabe e e e e snbbee e e snbreeeeanes 30
15.3 begin MethOd ... 31
TR A Y- 1 T I s =3 d o o SRR 32
15,5 @NA MELNOM ... ettt e e oot e e et e e e e e e bbb e et e e e e e e e nn b e e e e e e e e e e e e nnrrene s 32
15.6 @daptINvalid METNOU e e e s e et e et e e e s e st e e e e e e e e e e nnnerneees 32
15.7 TRy =T o= o1 0] 1= o = 33
15.8 PiXel FOrmMat VAIUESooeiiiiiiiee ettt e e s et e e e e s e s bbb e e e e e e e e e nnnnbnneeas 33
16 HOST PrOVIAEE INSTANCEeii ittt e s et e s e bt e e e rnb e e e e nbae e e e naeeas 33
T R €1 o o = LY 7= -1 o = RSP 34
T B - L TN o] (o] o= o YO PO OO POPPPPOPPPPPN 34
TR T (O 3 o TV o] fo] o1 g (=T PO PP PP T PUPPPPUPPPPPN 34
TR S (O R o - L] =T PP O PP PPTP P TPPPPP 35
G T (O 2 o 4)V [=] £ TP PSP PPP PP TOPPPP 35
G I Y=t o [o] - S 36
A B 1 1] o] = |V TSR 36
17 Provenance SeNSOr Class Patlerneiiiiiiiiiiiiit ettt e e e ee e e e 36
17.1 Properties of constructor options ObJeCt.......ccooiiiii i 36
17.2 configuration ProPerty .. 36
17.3 1dentification PrOPEITY .o 37
17.3.1 Properties of sample ODJECT ... 37
Annex A (normative) FOrmal algorithmS ... 39
Al Ta LT g aF= U T1=] o £ PP ET TP PPPPPPPPPTTN 39
A.1.1 CheckInterNalFieldS(ODJECL) ... s 39
A.1.2 ClearInterNalFieldS(ODJECT) ... s 39
A.1.3 GetinternalField(0DJeCt, MAMIE) s 39
A.1.4 SetinternalField(0bject, NAME, VAIUE) s 39
A.2 L= 0 1 RSP SSPPN 40
0t R = Yo Yo 1= Y- g 1= PR 40
0 N[12 1 oY= PR 40
F NS B ©] 1= o3 £ T PSPPSR TPRP 41
N S 4 €1 o 1 PRSP 41
A3 T LY O P TS - U (=] o 1 SRR 41
PG 204 R of o1 13 of a1 ok ol o T ol (] o 1 {1] =3 O PRSP 41
A3.1.1 N O TS e s 42
YN 3 ol o 11 T) PP 42
A4 1@ I @ = ToE T - 4 = o SO 42
YN 0t R of o1 13 of a1 ok o o T ol (] o 1 {1] =3 TR PRP 42
YN A ol o 11 T) PP 43
N B T F= Ve [[0 o1 0] o) I TP PRP 43
Y R o =T (o F= L=) PP 44
A4S SEt FOPMAT(VAIUER) .ottt e et e s e bt e e s et e e e e n e e e nbe e e e nreas 45

© Ecma International 2021 iii

secmd

y T ==X i o 1= i of () SR PESRRR 45
A46.1 N O S e 45
A5 [3 O =TT PSPPSR 46
T8 R B 1o [- | PRSP 46
Ab5.11 (od0] 0 153 4 U Te3 (o] g0 ¢ 1 1T] K= PEERRR 46
A5.1.2 (1Yo I A of Y =1 - L PSP PP 46
A5.2 DIgITAI DANK ... e e e e e e nnee a7
A5.21 CONSTIUCTON OPTIONS oeiiiiiiiii ettt e et e e et e e e sa bt e e e eab et e e e s be e e e e anbe e e e e anbeeeeenees 47
A5.2.2 LYo B o R o < o - - PP EEP RSP a7
F R T AN o -1 o Yo T g ¥ o 11 USRS a7
A.53.1 CONSTIUCTON OPTIONS .eiiiiiiiii ettt etttk e e et e e e sa b et e e e st e e e e ab b et e e e anbe e e e e anbneeeenees 47
A.5.3.2 LT Yo B o R o < o - - WP ERP TSP 47
A.5.4 Pulse-Width MOGUIALIONc.uuiiiiiiii e e s e e e st e e s e nbe e e e e nbe e e e e nnees 48
A54.1 (od0] 0 153 4 U Te3 (o] g0 o 1 4T] K= R PRERRP 48
A5.4.2 1Yo I A of Y =1 - LSS SR 48
T T . PRSP PRRPTR 48
A55.1 CONSEIUCTON OPTIONS Leeiiiiitiii ettt ettt e et e e e e e ittt e e e s be e e e e anbe e e e e anbneeeenees 48
A55.2 LT Yo B T ol < o - - PR 48
A.55.3 (=T Te [(o o A Lo oY =] () «)) SRS 49
A.5.5.4 oA oY (o ol = IR Ao o]) TP PP PPPPPPRPPPPPP 49
A.5.6 System management DUS (SIMBUS)uuuuiuiiiiiiiiiiiiiiieieieieieieiererereerererererererererererereerererarerarararnrnrarnne 49
A5.6.1 CONSEIUCTON OPLIONS oo 49
A.5.6.2 PEAA / WIPIEE BALA ..eeiiiiie it e e e e e e e e e e e s 49
A.5.6.3 (1T (o] o] o 1) ISP PP PP UPU PRI 49
A.5.6.4 (=T Lo (8 g ot =] (=0 T3 =T) RS 50
A.5.6.5 WriteUint8(regiSter, VAIUG)o ittt e e 50
A.5.6.6 readuintle(register, DIGENGIAN) rerernrnenrnrnrernrnrnrnres 50
A.5.6.7 WPiteUintLo(regiSIer, VAIUEG)......ii ittt et e et r e e e snneeeeans 50
A.5.6.8 readBuffer(register, DUTTEI) e ernrnrarernrnrnrnne 50
A.5.6.9 writeBuffer(register, DUTTEr) ... 51
F N T A T 4 - | OO PP PP OUPPPTPPPPTPN 51
Ab5.7.1 CONSEIUCTON OPLIONS oo 51
A5.7.2 PEAA / WIPIEE BALA ..eeiiiiii it e et e e e e s e e e e e s 51
A.5.7.3 FLUSH([INPUL, OUEPULT) ceeiitiee ettt e ettt e e et e e e e nnbe e e e enees 52
A5.7.4 L= o (o] 14 e 0 =) RS 52
A.5.7.5 oo (o] oY AT el g] | P OO PP OT PR PPPPR 53
A.5.8 Serial Peripheral INTErfaCe (SPI) ...ttt ere e e rerarere e rersrarsrsrararsrnrnnnnes 54
A58.1 CONSEIUCTOr OPLIONS oo 54
A.5.8.2 PEAA / WIPIEE BALA ..eeiiiiie ittt e et e e e e e e e s 54
A.5.8.3 (1Yo [(o] o] Lo 1) I PP PP SO PPTI 54
A.5.8.4 L A= L0 E Lol (U L =T) PSS 54
A.5.8.5 L VI T (Lo L=ET S =Tl o I PO PP P PP PTPRR 55
ALB.9 PUISE COUNT ..ottt e oo oottt e e e oo e o ab b ettt e e e e e aaabb bbb e e e e e e e aannbbbneeaaaeeaaaan 55
A59.1 CONSEIUCTOr OPLIONS oo 55
A.5.9.2 PEAA / WIPIEE GALA ..eeiiiiie it e et e e e e e e e e e e as 55
0 0 1O = =Y o Yo (= SO PRSRR 56
A.5.10.1 (ofo] o1y { d U Toado] gfo] 1 4o K= S PP P PP OTPRR 56
A.5.10.2 =T Lo I A A ol 3o - ¢ PSPPSR PPUPPPRPPPRt 56
A5 11 TCP IISTENEE SOCKET ...ttt e e e ettt e e e e e s et et et e e e e e e e s nbbbeeeeaaeaaanan 57
A5.11.1 LYo I o R o <l o - - W PO PR TR UPRPPI 57
F 0 I U 10 =Y o Yo = PSSR 57
A5.12.1 (ofo] o1y { d U Toa o] gl o] o) {10 K= TSP 57
A5.12.2 =T Lo I A A o <30 - £ NP PPPPUPPPPPPPPRt 58
A.5.12.3 Write(data, A0UrESS, POTT) .. i ittt e e e e s e bbbt e e e e e e s s ann b b e e e e e e e e e e annnbbaneeaaeas 58
A.6 Peripheral Class PatterNooi ittt sttt e e s bbe e e s bbe e e e s nbeeeesnneeeeas 58
Y NG 70 R oo T 15 of 1 Tox ol oY ol (0] o1 £] K= PR 58
F N I o Ko 11T () IR P TP PPPPTR 58
YN G TRC I oY b o ={ U ot =T (o] o] £ o 4 1) IR PR 59

iv © Ecma International 2021

secma

A.6.3.1 N O TS e s 59
A7 SENSOF ClAaSS PATEIN .ottt e e e e e e s e st e e e e e e s e s nnbeeeeeeaeeeeasnneeeeeeas 59
YN % R ol o1 15 of o U e oo Yol (0] e 40] =) O OO O PO PP PP PUPPPP 59
) A ol o 1Y () OSSR 59
A.7.3 CONTLGUPE(OPTIONS) .eiiiiiiiiiie ittt ettt e et e e s e bt e e e aa b et e e et b bt e e e aab b e e e e anbr e e e s anbneeeennnnas 60
Y A S 1111 o M =Y o= L= L0 (1=) SRR 60
A.7.4.1 N O TS e s 60
A.8 Y= Yo] GO = 1YY= PSRRI 60
YN T R N oo =1 =T o] 1= (T O PP 60
A8.1.1 SAMPLE PAIAIMIS, ittt e et e e e e e et e e e et e e et e e e e et e e e e e 60
A.8.1.2 L3 11T Y =Y 01 SRR 61
AB.2 AMDIENT HIGNT ..ot e e e 61
A8.2.1 SAMPLE PAIAIMIS, ittt e e et e et e e et e e e et e e e o e et e e e e et e e e e e 61
A.8.2.2 L3 11T Y =Y 0] SRR 61
A.B.3 AIMOSPNEIIC PIrESSUIE ...ttt e et e e e s bt e e e bt et e e e aabr e e e s anbr e e e e nnens 61
A.8.3.1 SAMPLE PAIAIMIS, ittt e et e e e e e et e e e et e e et e e e e et e e e e e 61
A.8.3.2 L3 11T o D = =] U 61
ALBiA HUMIAITY oeeeiieiiiiie ettt e et e e e ek bt e e e e h bt e oo ea b et e e e bbb e e e e ab et e e e anbe e e e e anbre e e e nnens 61
A84.1 SAMPLE PAIAIMIS, . 61
A.8.4.2 L3 11T o D = =] U 62
F NS ST = (0411111 VO PO PP PP PP PUPPPP 62
A.8.5.1 SAMPLE PAIAIMIS, . 62
A.8.5.2 L3 11T o D = =] U 62
LN F I =10 o] o1t = U] PP TP PT PP PPPPPPRPP 62
A.8.6.1 SAMPLE PAIAIMIS, . 62
A.8.6.2 L3 11T o D = =] U 62
R T 1o] U Yo o [PR 62
A8.7.1 SAMPLE PAIAIMIS, . 62
A.8.7.2 L3 11T o D = =] U 62
A.8.7.3 Lo 0T el s 0 1= ox TP PP UUUPPPPPPPRRN 63
A.9 DiSPlay Class PatterN ... 63
A9 1 CONSTrPUCTON(OPLIONS) L s 63
F N Vo [y ol s N Ko [G- 1 L= T) PP RSP 63
ALLO.3 CLOSE() uuuuuunununnn s 64
F N A o Y=Y - Ny T (o] oY T o] g 1) I PSP R PUPRP 64
AL9.5 CONTLGUNE(OPLIONS) e s 65
F NS BT =Y o To [U PP PT TP 65
F N Y =T [o [Yor=T a1 [=2 I O PSP TTPRP 65
AL9.8 BT WIATN() weeeiiiiii e e e e e e e e e eeeaaaaeas 65
F NS R - =) o = =40 of) PSPPSR 65
A.9.9.1 NOTES L. et e e e e e e e e ar e e e s 66
A.9.9.2 (oTo] 0 1=1 4 ¥ Lo (o] g Y 1o Y 1= P PPPPPPNS 66
A. 10 Provenance SeNSOr ClasS PatlerNueiiiiiii e e e e e e e e e e e e s e reeeeaeee s 66
F N O R oo (U o= (o] o o] 4) I PSPPSR UPPP 66
A.L10.2 SAMPLE([PATAMIS]) wuuuuuuuunnunniii s 66
A.10.2.1 N [0] {1 TSP P TP PTPPTTR 67
A.10.2.2 SAMPLE PAIAIMIS, . s 67
A.10.2.3 L3 11T o D I =] U 67
A.10.2.4 N [0] € PP SR PTPPTTRT 67
N (@ B o YA To [T @ F= 1T == L1 = o o SO 67
YN ¢ R of o T 13 of T o o T ol (] o 1 {1] =3 PRSP 67
Y I A ol o 11T) TP 69
12711 Yo o =T o] AP RPTPPPOTPPPN 71

© Ecma International 2021 \Y

Vi

oecmna

© Ecma International 2021

secmd

Introduction

This Standard, ECMAScript embedded systems API specification, defines APIs for use on embedded systems.
Embedded systems are far more diverse than personal computers, smartphones, and web servers where
ECMAScript is most widely used. The diversity of embedded hardware is a consequence of devices being
optimized for a specific product or class of products.

It is not enough for these APIs to support the features embedded systems have in common. To be truly useful,
they must allow access to the unique hardware capabilities of each embedded system. This requirement makes
this Standard very different from that of a computer language which is grounded in the formality and rigor of
mathematics. Hardware can be inconsistent, even sometimes messy, but it needs to be accommodated.

The ability for scripts to access unique hardware capabilities has an important consequence. It means that not
all correct scripts will run correctly on all hardware. If a script requires a feature that is unavailable, it cannot run.
While it is common in ECMAScript to emulate missing language and runtime features with a “polyfill”, this is
usually impractical, if not impossible, for hardware capabilities. Therefore, the goal of this Standard is to make
it possible to write portable scripts for specific operations, not to guarantee that all scripts execute correctly on
any conformant deployment.

One important consideration when designing hardware products is cost. The APIs are designed to allow efficient
execution with minimal resource use. They assume no minimum or maximum configuration. Advances in the
state-of-the-art of ECMAScript engines, microcontrollers, and runtime libraries will determine where these APIs
may be used.

This Standard is influenced by the Extensible Web Manifesto. It aims to provide low-level APIs that do things —
primarily related to hardware and communication — that the ECMAScript language cannot do by itself. These
low-level APIs are functional, simple, and efficient. The APIs may be used directly. However, it is expected that
many developers will interact with them indirectly through higher-level modules and frameworks that build upon
the low-level APIs. This layered approach keeps the low-level APIs small and focused while allowing a variety
of uses and API styles to be built upon them.

This Ecma Standard was developed by Technical Committee 53 and was adopted by the General
Assembly of June 2021.

© Ecma International 2021 Vii

https://github.com/extensibleweb/manifesto#the-extensible-web-manifesto

secma

"COPYRIGHT NOTICE
© 2021 Ecma International

This document may be copied, published and distributed to others, and certain derivative works of it may
be prepared, copied, published, and distributed, in whole or in part, provided that the above copyright
notice and this Copyright License and Disclaimer are included on all such copies and derivative works.
The only derivative works that are permissible under this Copyright License and Disclaimer are:

(i) works which incorporate all or portion of this document for the purpose of providing commentary or
explanation (such as an annotated version of the document),

(if) works which incorporate all or portion of this document for the purpose of incorporating features that
provide accessibility,

(iii) translations of this document into languages other than English and into different formats and

(iv) works by making use of this specification in standard conformant products by implementing (e.g. by
copy and paste wholly or partly) the functionality therein.

However, the content of this document itself may not be modified in any way, including by removing the
copyright notice or references to Ecma International, except as required to translate it into languages
other than English or into a different format.

The official version of an Ecma International document is the English language version on the Ecma
International website. In the event of discrepancies between a translated version and the official version,
the official version shall govern.

The limited permissions granted above are perpetual and will not be revoked by Ecma International or
its successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and ECMA
INTERNATIONAL DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY
OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE."

viii © Ecma International 2021

secmd

ECMAScript® embedded systems API specification

1 Scope

This Standard defines application programming interfaces (APIs) for ECMAScript modules that support
programs executing on embedded systems.

This Standard defines APlIs for capabilities found in common across embedded systems. Implementations for
embedded systems that include additional capabilities are encouraged to provide ECMAScript APIs for those
using the many extensibility options provided by this Standard.

This Standard does not make any changes to the ECMAScript language as defined by ECMAScript language
specification (ECMA-262). It does strongly encourage all deployments to execute only in strict-mode. It
recommends hosts incorporate an engine that supports Secure ECMAScript and that script code is written to
conform to the Secure ECMAScript runtime constraints.

2 Conformance

A conforming implementation of the ECMAScript Embedded Systems API Specification must conform to
ECMA-262 and must provide and support all the objects, properties, functions, and program semantics required
by this specification.

A conforming implementation of the ECMAScript Embedded Systems API Specification is permitted to provide
additional objects, properties, and functions beyond those described in this specification.

In particular, a conforming implementation of this Standard is permitted to provide properties not described
herein, and values for those properties, for objects that are described in this specification. A conforming
implementation is permitted to add optional arguments to the functions defined in this specification only where
noted.

Because implementation differences are permitted (for example, to accommodate differentiating hardware
features), this Standard does not guarantee that all scripts execute correctly on every conformant deployment.

Self-hosted implementations are permitted as long as they conform to the requirements of this Standard (for
example, ensuring internal properties are not visible).

3 Normative references

The following referenced documents are required for the application of this document. For dated references,
only the edition cited applies. For references without a date or version number, the latest edition of the
referenced document (including any amendments) applies.

ECMA-262, ECMAScript language specification
https://www.ecma-international.org/publications/standards/Ecma-262.htm

ECMA-402, ECMAScript internationalization API
https://www.ecma-international.org/publications/standards/Ecma-402.htm

RFC 2119, Key words for use in RFCs to Indicate Requirement Levels
https://tools.ietf.org/html/rfc2119

© Ecma International 2021 1

https://www.ecma-international.org/publications/standards/Ecma-262.htm
https://www.ecma-international.org/publications/standards/Ecma-402.htm
https://tools.ietf.org/html/rfc2119

secma

4 Terms and definitions
For the purposes of this document, the following terms and definitions apply.

4.1
address
an identifier for interfacing with a specific component, device, or board

4.2
baud rate
the rate at which information is transferred, measured in bits per second

4.3
bus
a communications system that transfers data. A “Bus” includes hardware, software, and the protocol.

4.4
connected sensing device
a sensing device that communicates with a remote endpoint

4.5
direct measurement
a sample that has been captured from a configured sensor without alteration

4.6
expander
a device that provides additional inputs and/or outputs

4.7
instance
an object that has been created by a function constructor, class constructor, or function factory

4.8
microcontroller
a single integrated circuit with one or more CPUs, memory, and programmable input/output

4.9
protocol
a system of rules that define how data is exchanged between systems

4.10

register

locations in a device’s memory that can be written to or read from. These memory locations may contain
configuration settings or the current state of the device.

4.11
remote endpoint
a computing system in communication with the microcontroller

4.12
sensing device
a system comprising an embedded controller with at least one attached sensor

4.13

sensor

a device that detects and responds to some type of input from the physical environment, attached to a
microcontroller used to capture data.

2 © Ecma International 2021

secmd

4.14

sensor classification

sensor type, as determined by the real quantity that is, or quantities that are, subject to measurement, e.g. mass,
power, or humidity. Uses names of Sensor Classes defined by this Standard. If a sensor measures real
guantities defined as properties in multiple unique Sensor Classes, the name of any applicable Sensor Class
may be used.

4.15

sensor configuration

user-defined parameters impacting the sampling, processing, representation, and/or transmission of peripheral
data.

4.16

synthetic measurement

a direct measurement that has been modified in some form so as to potentially lose accuracy, precision, or
fidelity.

5 Notational conventions

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”,
‘RECOMMENDED?”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in RFC 2119.

6 Overview

6.1 ECMAScript

This Standard builds on Standard ECMAScript as defined by Ecma TC39. As of this writing, that is ECMAScript
2020.

This Standard is not an extension or subset of ECMAScript 2020. It is a set of APIs to be used within that
Standard. The relationship between ECMA-419 and ECMAScript is analogous to the relationship between
ECMA-402 (ECMAScript internationalization API) and ECMAScript.

This Standard is intended to be used in strict mode only. Sloppy mode has known issues that detract from
building a robust system. Sloppy mode is maintained primarily for web compatibility and provides no benefit to
embedded systems.

6.2 Class patterns

A Class Pattern, as used in this Standard, is a combination of requirements and guidelines for a class. For
example, the 10 Class Pattern defines behaviors for all IO classes.

The Standard defines classes in terms of Class Patterns. In the future, there may be true formal classes as
found in the ECMAScript Language.

The requirements of a Class Pattern are behaviors defined by this Standard and must be adhered to for a
conformant implementation. A Class Pattern can be seen as similar to a collection of Abstract Operations in the
ECMA-262.

Guidelines are primarily for extensibility. Extensibility is essential to this Standard as it must be possible to
access unique hardware capabilities. Extensibility is problematic because of the potential for collisions. This
Standard provides requirements for how extensibility may be implemented.

Unless stated, there are no requirements about class inheritance. An implementation of a class pattern may
inherit from Object or any other class, so long as it conforms.

© Ecma International 2021 3

pecma

6.3 Independent implementations

This Standard is intended to facilitate multiple independent implementations of the APIs. A given APl may
warrant an entirely different implementation depending on a variety of factors that include the host hardware,
operating system, and ECMAScript engine.

6.4 Self-hosting

The ECMAScript language is defined in terms of a host that provides the runtime environment for the execution
of scripts. This Standard does not change that. The APIs defined herein are provided by a host. However, this
Standard does anticipate that portions of the runtime environment provided by the host may themselves be
implemented in ECMAScript. This Standard refers to a host that includes ECMAScript code in its implementation
as self-hosting.

One challenge of self-hosting is fully separating host scripts from hosted scripts to eliminate security, robustness,
and compatibility problems. The Compartment model in the Secure ECMAScript proposal is a tool to separate
host scripts from hosted scripts. Compartments also allow separation of modules within a host which mitigates
supply-chain attacks.

Self-hosted implementations must ensure that no internal properties or methods are visible to client scripts using
the implementation. Private fields and private methods as defined by ECMA-262 are one way to shield internal
properties and methods from client code.

NOTE Self-hosting is not required.

6.5 Module specifiers

This Standard defines classes which are accessed through modules. Because many embedded systems lack
a file system, using file paths to access modules is impractical and contrived. Instead, modules are accessed
using bare module specifiers. While such specifiers are currently forbidden in a web browser, they are permitted
in other environments.

A namespace prefix is used to minimize the chance of name collisions with other bare module specifiers. This
Standard uses the namespace prefix embedded:.

import Digital from "embedded:io/digital"”;

The “embedded:” namespace prefix is registered as a URI scheme with IANA to reduce the possibility of
collisions.

The use of module namespaces in this Standard is intended to be compatible with the Built In Modules Proposal.

For the avoidance of doubt, the use of bare module specifiers by this Standard does not prevent a host from
also supporting other kinds of module specifiers for modules not defined by this specification.

6.6 Secure ECMAScript

The Secure ECMAScript (SES) proposal extends the ECMAScript language to support provably secure
execution of scripts in an environment that includes both trusted and untrusted scripts. The two foundations of
Secure ECMAScript are immutability and compartments. SES makes all primordials immutable prior to the
execution of any untrusted script code. This ensures built-in objects behave as defined by the language and
disables common attack vectors including prototype poisoning. Compartments allow scripts to sandbox other
scripts to limit the globals and modules that are available in the sandbox.

The security guarantees provided by SES reduce vulnerabilities in systems that combine code from multiple
sources, some of which may contain security flaws. The mechanisms proposed by SES allow for an efficient
implementation. Further, the immutability requirement for SES allows primordials to be stored in read-only
memory, reducing RAM use and enabling them to be securely shared by multiple virtual machines.

4 © Ecma International 2021

https://www.iana.org/assignments/uri-schemes/prov/embedded
https://github.com/tc39/proposal-built-in-modules#namespace

»ecma

This Standard is designed to be used with SES when a runtime security solution is required. If and when the
SES proposal is an approved standard, this Standard will reference it normatively.

SES consists of two major execution phases — pre-lockdown and post-lockdown. Prior to lockdown, primordials

are mutable; afterwards, they are immutable. A host is not required to support pre-lockdown on an embedded
system. It may instead complete lockdown during the build process, for example.

6.7 Naming
This Standard uses the lower camel case naming convention (e.g. exampleProperty) for property names.

It follows the ECMAScript convention of naming classes with upper camel case (e.g. ExampleClass) and
methods with lower camel case (e.g. exampleMethod).

Callback function names begin with on (e.g. onExampleCallback).

Words are preferred over abbreviations and acronyms (e.g. address instead of addr, clock instead of scl,
receive instead of rx), though common acronyms are acceptable.

7 Requirements for standard built-in ECMAScript objects
Unless specified otherwise in this document, the objects, functions, and constructors described in this Standard

are subject to the generic requirements and restrictions specified for standard built-in ECMAScript objects in
ECMA-262, 10th edition, clause 17, or successor.

8 Base Class Pattern

The Base Class Pattern defines common behaviors used by other class patterns. The Base Class Pattern is
purely abstract and cannot be instantiated directly.

Classes conforming to the Base Class Pattern may be subclassed.

See Annex A for the formal algorithms of the Base Class Pattern.

8.1 constructor
The constructor of the Base Class Pattern takes an options object as its first argument.
The target property is the only property the Base Class Pattern defines in the options object.

Typically, there are no other arguments as additional configuration options can and should be added to the
options object. However, additional arguments are not prohibited.

It is an error to invoke the constructor without the options object. An exception will be thrown.

The implementation of the constructor should validate all supported option properties before allocating any
resources. This behavior avoids enabling or changing the state of any hardware should the constructor fail due
to invalid parameters.

The implementation must ignore any unrecognized properties on the options object.

If the constructor fails to complete execution successfully, it must release any resources allocated prior to exiting.

The constructor must not modify the options object. It must accept an immutable options object.

© Ecma International 2021 5

https://tc39.es/ecma262/#sec-ecmascript-standard-built-in-objects

secma

Once the instance has been successfully constructed, it must not be eligible for garbage collection until it is
explicitly released by calling close. This is done so scripts do not need to maintain a reference to the object to
prevent it from being collected, similar to setInterval/clearInterval and the W3C Generic Sensor
specification.

8.2 close method
The close method releases all resources associated with the instance.
Once close completes, the object is eligible for garbage collection.

Once close completes, an Error exception is thrown if any other instance methods are called. It is not an
error to call the close method more than once.

No callbacks may be invoked after the close method is called.

8.3 target property

The target property is opaque to the object’s implementation. It may be initialized by the constructor using the
target property in the options object. Scripts may both read and write the target property, though it is typically
only set at construction.

8.4 Callbacks
Instances of the Base Class Pattern typically use function callbacks to deliver asynchronous events.
Callback functions are provided to the instance as properties in the options object.

new Button({
onPush() {
}s
onRelease() {
}

})s

Callback functions are invoked with this set to the instance. This can be overridden using standard
ECMAScript features, such as arrow functions:

new Button({
onPush: () => {
3
onRelease: () => {
}
3

The callbacks are stored internally by the implementation. They are not public methods. The callback functions
cannot be read and are only set using the constructor’s options object.

A callback function may only be invoked when no script is running in its host virtual machine to respect the
single-thread evaluation semantics of ECMAScript. This means that callbacks may not be invoked by the
instance from within its public method calls, including the constructor.

Callbacks must be invoked in the same virtual machine in which they were created.

6 © Ecma International 2021

https://tc39.es/ecma262/#sec-happens-before

»ecma

9 IO Class Pattern

The 10 Class Pattern builds on the Base Class Pattern to provide a foundation for implementing access to a
variety of hardware inputs and outputs.

All 10 is non-blocking, consistent with ECMAScript API behavior on the web platform. That said, not all
operations are instantaneous. Implementations determine how long is too long for a given operation.

Non-blocking 10 is facilitated by two callback functions, onReadable and onWritable, which eliminate the
need for polling in most cases.

See Annex A for the formal algorithms of the 10 Class Pattern.

9.1 Pin specifier

A pin specifier is a JavaScript value used by IO classes to refer to hardware connections represented by pins.
Typically, these pins correspond to a particular connection point on the hardware package, although this is not
required.

The value of a pin specifier is host-dependent. It is often a number corresponding to the logical GPIO pin nhumber
as per the hardware data sheet (e.g. GPIO 5), but it may be a string ("D1") or even an object ({port: 1,

pin: 5}).
9.2 Port specifier

A port specifier is a JavaScript value used by 10 classes to refer to a hardware interface. Port specifier values
are defined by the host and are usually either a number or string.

For example, consider a microcontroller may support two serial connections, each with different capabilities that
may be configured to be available on a set of pins. The port specifier indicates which serial connection to use.

9.3 constructor

The options object contains the specification of the hardware resources to be used by the instance. For example,
the digital class indicates the physical pin to use with a pin property that has a pin specifier value.

If the constructor requires a resource that is already in use — whether by a script or the native host — an Error
exception is thrown.

This Standard allows but does not require, an implementation to open multiple instances for the same hardware
resource if the instances cannot interfere with each other’s operation. For example, this can work for a digital
input but would not for a digital output.

The 10 Class Pattern is designed to be used both with 10 types that have only a current value (e.g. Digital,
analog, PWM) and 10 types that use streams of data (e.g. serial, SPI).

The 10 Class Pattern reserves the io property name in the options object. If present, it must be ignored by 10
implementations.

9.4 read method

The read method returns data from the 10 instance. If no data is available, it returns undefined. The type of
the data returned depends on the value of the format property.

The read method may take any number of arguments, including zero. The arguments are defined by the
specific 10 type.

© Ecma International 2021 7

»ecma

If the instance does not support reading (because the |10 type is inherently unreadable or because it is configured
for write-only) an exception is thrown.

When the format property is "buffer”, the read method may take a data argument that is a Number,
ArrayBuffer, or TypedArray. When it is a Number, read allocates and returns an ArrayBuffer with up
to as many bytes as the Number argument. When it is an ArrayBuffer or TypedArray, read fills in as many
bytes as possible and returns a Number with the number of bytes read. These two behaviors are provided to
allow both efficient and convenient use of read with "buffer" because it is very common.

9.5 write method
The write method sends data to the 10 instance.

The following conditions cause an Error exception to be thrown: the device cannot accept the data because
its buffers are full, the data is incompatible, or a hardware error.

The write method may take any number of arguments, including zero. The arguments are defined by the
specific 10 type. The type of data accepted by write depends on the value of the format property.

If this instance does not support writing (because the 10 type cannot be written or because it is configured for
read-only) an Error exception is thrown.

9.6 format property

The format property is a string that indicates the type of data used by the read and write methods. It is
initialized by the constructor to the default defined for its 10 type. The format property may be set by the script
at any time to change how it reads and writes data.

The following values are defined by the 10 Class Pattern for the format property. 10 types may choose to
support one or more and may define others.

. number - an ECMAScript number value, typically used for bytes

. buffer - an ArrayBuffer instance. For convenience, TypedArray values are accepted as
arguments, and the byteOffset and byteLength properties of the TypedArray restrict the bytes
accessed. Implementations allocate ArrayBuffer instances for return values, never a
TypedArray.

. object - an ECMAScript object, for data representing a data structure (e.g. JSON)

. string;ascii - an ECMAScript string, for reading from and writing to 10 using 7-bit ASCII data

. string;utf8 - an ECMAScript string, for reading from and writing to 10 using UTF-8 formatted
data

The format property is implemented as a getter and setter. Attempting to set the format property to an
unsupported value does not change the value and instead throws an Error exception.

9.7 Callbacks

The 10 Class Pattern specifies three callbacks which are set by the options object passed to the constructor.
Most IO types operate with or without these callbacks installed, but a particular 10 type may require one or more
callbacks.

8 © Ecma International 2021

secmd

9.7.1 onReadable

The onReadable callback is invoked when the instance has data available to be read. Data is retrieved using
the read method.

The onReadable callback may receive one or more arguments with information about the data available to
read. The arguments are defined by the specific 10 type.

The onReadable callback is invoked once when data arrives and not again until additional data is available to
read.

9.7.2 onWritable
The onlWritable callback is invoked when the instance is able to accept more data for output.

The onWritable callback may receive one or more arguments with information about the amount of data that
may be written. The arguments are defined by the specific 10 type.

9.7.3 onError

The onError callback is invoked when a non-recoverable error occurs. The instance is no longer usable. The
only method that should be called is close.

Details of the error may be passed to the callback using arguments defined by the specific 10 type.

10 IO classes
This section defines 10 Classes conforming to the 10 Class Pattern.

The classes support capabilities commonly supported by hardware and runtimes. Capabilities that are not
supported here may be added using the extensibility options of the IO Class Pattern and Base Class Pattern.

10.1 Digital
The Digital IO class is used for digital inputs and outputs.
import Digital from "embedded:io/digital";

See Annex A for the formal algorithms of the Digital IO Class.

© Ecma International 2021 9

secma

10.1.1 Properties of constructor options object

Property Description
pin A pin specifier indicating the pin to control. This property is required.
mode A value indicating the mode of the 10. May be Digital.Input,

Digital.InputPullUp, Digital.InputPullDown,
Digital.InputPullUpDown, Digital.Output, or
Digital.OutputOpenDrain. This property is required.

edge A value indicating the conditions for invoking the onReadable callback.
Values are Digital.Rising, Digital.Falling, and
Digital.Rising | Digital.Falling. This value is required if the
onReadable property is present and ignored otherwise.

10.1.2 Callbacks

onReadable()

Invoked when the input value changes depending on the value of the mode property.
10.1.3 Data format

The Digital class data format is always "number" with a value of either 0 or 1.

10.1.4 Notes

A digital 10 instance configured as an input does not implement write; one configured as an output does not
implement read.

10.2 Digital bank
The DigitalBank class provides simultaneous access to a group of digital inputs or outputs.
import DigitalBank from "embedded:io/digitalbank";

See Annex A for the formal algorithms of the DigitalBank bank IO Class.

10 © Ecma International 2021

secmd

10.2.1 Properties of constructor options object

Property Description

pins A bitmask with pins to include in the bank set to 1. This property is
required.

mode A value indicating the mode of the 10, May be Digital.Input,

Digital.InputPullUp, Digital.InputPullDown,
Digital.InputPullUpDown, Digital.Output, or
Digital.OutputOpenDrain. All pins in the bank use the same mode.
This property is required.

rises A bitmask indicating the pins in the bank that should trigger an
onReadable callback when transitioning from 0 to 1. When an
onReadable callback is provided, at least one pin must be set in rises
and falls.

falls A bitmask indicating the pins in the bank that should trigger an
onReadable callback when transitioning from 1 to 0. When an
onReadable callback is provided, at least one pin must be set in rises
and falls.

bank For implementations with more than a single digital bank, a number or
string value specifying the digital bank for this instance. This property is
optional.

10.2.2 Callbacks
onReadable(triggers)
Invoked when the input value changes depending on the value of the mode, rises, and falls properties. The

onReadable callback receives a single argument, triggers, which is a bitmask indicating each pin that
triggered the callback with a 1.

10.2.3 Data format

The DigitalBank class data format is always "number". The value is a bitmask. On a read operation, any
bit positions that are not included in the pins bitmask are set to 0.

NOTE The requirement to zero bit positions not included in the bitmask prevents leaking the state of pins unused by
this bank.

10.2.4 Notes

A digital 10 bank instance configured as an input does not implement write; one configured as an output does
not implement read.

A bitmask contains at least one, and not more than, thirty-two bits. Digital banks may distribute their pins across
multiple banks using the bank property of the constructor dictionary.

10.3 Analog input

The Analog IO class represents an analog input source.

© Ecma International 2021 11

secma

import Analog from "embedded:io/analog";

See Annex A for the formal algorithms of the Analog 10 Class.

10.3.1 Properties of constructor options object

Property Description
pin A pin specifier indicating the analog input pin. This property is
required.
resolution The requested number of bits of resolution of the input. This property
is optional.

10.3.2 Data format

The Analog class data format is always a number. The value returned is an integer from 0 to a maximum value
based on the resolution of the analog input.

10.3.3 resolution property

The read-only resolution property indicates the number of bits of resolution provided in values returned by
the instance.

10.4 Pulse-width modulation
The PWM 10O class provides access to the pulse-width modulation capability of pins.
import PWM from "embedded:io/pwm";

See Annex A for the formal algorithms of the PWM IO Class.

10.4.1 Properties of constructor options object

Property Description

pin A pin specifier indicating the pin to operate as a PWM output. This
property is required.

hz A number specifying the requested frequency of the PWM output in
hertz. This property is optional.

10.4.2 Data format

The PWM class data format is always a number. The write call accepts integers between 0 and a maximum
value based on the resolution of the PWM output.

10.4.3 resolution property

The read-only resolution property indicates the number of bits of resolution in values passed to the write
method.

12 © Ecma International 2021

secmd

10.4.4 hz property
The read-only hz property returns the frequency of the PWM.

10.4.5 Notes

A PWM instance defaults to a duty cycle of 0% until write is called with a different value.

10.5 I2C
The I2C class implements an I2C Initiator to communicate with an 12C Peripheral over I2C bus.
import I2C from "embedded:io/i2c";

See Annex A for the formal algorithms of the I2C IO Class.

10.5.1 Properties of constructor options object

Property Description
data Pin specifier for the I2C data pin. This property is required.
clock Pin specifier for the I2C clock pin. This property is required.
hz The speed of communication on the 12C bus. This property is required.
address The 7-bit address of the target I12C Peripheral to communicate with. This
property is required.
port Port specifier for the I2C instance. This property is optional.
NOTE The property name timeout is reserved for future use.

10.5.2 Data format

The I2C class data format is always buffer. The write call accepts an ArrayBuffer or a TypedArray. The

read call always returns an ArrayBuffer.

10.5.3 Specifying stop bit with read and write methods

The 12C protocol is transaction-based. At the end of each read and write operation, a stop bit is sent. If the stop
bit is 1, it indicates the end of the transaction; if O, it indicates that the transaction has additional operations

pending.

The read and write methods set the stop bit to 1 by default. An optional argument to the read and write
methods allows the stop bit to be specified. Pass false to set the stop bit to 0, and true to set the stop bit to

1.

10.5.4 Methods

read(byteLength | buffer[, stop])

The first argument follows the behavior of the 10 Class Pattern read method for the "buffer" data format.

The optional second argument is a Boolean specifying the stop bit behavior.

© Ecma International 2021

»ecma

write(buffer[, stop])

The first argument to the write method is a buffer. The optional second argument is a Boolean specifying the
stop bit behavior.

NOTE The read and write methods may operate synchronously. Doing so does not violate the requirement that 10 is
non-blocking because these operations typically complete within a short period of time. Additionally, synchronous operation
is required for microcontrollers which do not support asynchronous I2C 10.

10.6 System management bus (SMBus)

The SMBus class extends the I2C class with additional methods to communicate with devices that implement
the SMBus protocol.

import SMBus from "embedded:io/smbus";

See Annex A for the formal algorithms of the SMBus |0 Class.

10.6.1 Properties of constructor options object

Property Description

stop A boolean value indicating whether to set the stop bit when writing the
SMBus register number. This property is optional and defaults to false.

10.6.2 Methods

readUint8(register)

Reads and returns an unsigned 8-bit integer value from the specified register.
writeUint8(register, value)

Writes the unsigned 8-bit integer value to the specified register.
readUintl16(register[, bigEndian])

Reads and returns an unsigned 16-bit integer value from the specified register. By default, the value is read in
little-endian byte order. If the optional bigEndian argument is true the value is read in big-endian byte order.

writeUintl6(register, value[, bigEndian])

Writes the unsigned 16-bit integer value to the specified register. By default, the value is written in little-endian
byte order. If the optional bigEndian argument is true the value is written in big-endian byte order.

readBuffer(register, byteLength | buffer)

Reads a stream of bytes starting at the specified register. The second argument to readBuffer follows the
behavior of the 10 Class Pattern read method for the "buffer" data format.

writeBuffer(register, buffer)

Write a stream of bytes from the ArrayBuffer instance in the buffer argument starting at the specified
register. The number of bytes written is equal to the byteLength of the buffer.

14 © Ecma International 2021

secmd

NOTE The method names readuint32, writeUint32, readUint64, and writeUint64 are reserved for 32 and 64-bit

SMBus operations in the future.

10.7 Serial

The Serial class implements bi-directional serial (UART) communication.

import Serial from "embedded:io/serial";

See Annex A for the formal algorithms of the Serial 10 Class.

10.7.1 Properties of constructor options object

Property

Description

receive

Pin specifier for the receive pin. This property is required
by some implementations to use the serial connection to
read data.

transmit

Pin specifier for the transmit pin. This property is required
by some implementations to use the serial connection to
write data.

baud

A number specifying the baud rate of the connection. This
property is required.

flowControl

A string specifying the kind of flow control, if any, used on
the connection. The valid values are "hardware" and

"none". This property is optional and defaults to "none".

dataTerminalReady

Pin specifier for the data terminal ready pin. This property
is optional.

requestToSend

Pin specifier for the request to send pin. This property is
optional.

clearToSend

Pin specifier for the clear to send pin. This property is
optional.

dataSetReady

Pin specifier for the data set ready pin. This property is
optional.

port

Port specifier for the serial connection. This property is
optional.

NOTE The serial connection is eight data bits, no parity bit, and one stop bit (8N1). The property names parity, stop,
and data are reserved to support other communication configurations in the future.

10.7.2 Methods

read([byteLength | buffer])

When using the "number" data format, read always returns the next available byte as a Number (from 0 to

255).

© Ecma International 2021

15

»ecma

When using the "buffer" data format, read follows the behavior of the 10 Class Pattern read method for the
"buffer" data format with one addition: if there are no arguments, read returns one or more bytes
(implementation-dependent).

If no data is available, read returns undefined.

The read method must not wait for additional bytes to arrive.

write(bytevValue | data)

When using the "number" data format, the first argument is a byte value to transmit. If the output buffer is full,
write throws.

When using the "buffer" data format, the first argument is an ArrayBuffer or TypedArray containing one
or more bytes to transmit. If the output buffer cannot accept all the bytes in the buffer, an exception is thrown —
partial data must not be written.

flush([input, output])

Flushes the input and/or output queues of the serial instance. If no arguments are passed, both input and output
queues are flushed. If both arguments are provided, the corresponding queues are flushed based on the value
of the arguments. An exception is thrown if one argument is passed.

If flushing the output causes the serial instance to be able to accept data for output, the onWritable callback
will be invoked.

set(options)
The set method controls the value of the data terminal ready and request to send pins of the serial connection
together with the break. The sole argument is an options object which contains optional dataTerminalReady,

requestToSend, and break properties with boolean values.

If dataTerminalReady, requestToSend, or break is not specified in the dictionary, the corresponding
serial behavior is left unchanged.

get([options])

The get method returns the value of the clear to send and data set ready pins. It returns the state of the pins
as booleans in an options object using the clearToSend and dataSetReady properties.

If the optional options object property is provided, get sets the clearToSend and dataSetReady properties
on the options object and returns the provided options object as the result of get.

10.7.3 Callbacks
onReadable(bytes)

The onReadable callback is invoked when new data is available to read. The callback receives a single
argument that indicates the number of bytes available.

onWritable(bytes)
The onWritable callback is first invoked when the serial instance is ready for use.

The onWritable callback is invoked when space has been freed in the output buffer. The callback receives a
single argument that indicates the number of bytes that may be written without overflowing the output buffer.

16 © Ecma International 2021

secmd

10.7.4 Dataformat
The Serial class data format is either "number" for individual bytes or "buffer" for groups of bytes. The

default data format is "number". When using the "buffer" format, the write call accepts an ArrayBuffer
or a TypedArray, and the read call always returns an ArrayBuffer.

10.8 Serial Peripheral Interface (SPI)

The SPI class implements a Serial Peripheral Interface (SPI) controller to communicate with a single SPI
peripheral.

import SPI from "embedded:io/spi”;

See Annex A for the formal algorithms of the SPI IO Class.

10.8.1 Properties of constructor options object

Property Description

out Pin specifier for the Serial Data Out pin. This property is required when
using the SPI bus to write data.

in Pin specifier for the Serial Data In pin. This property is required when
using the SPI bus to read data.

clock Pin specifier for the clock pin. This property is required.

select Pin specifier for the chip select pin. This property is optional and should
not be specified if chip select will be managed by the caller.

active The value to write to the select pin when the SPI instance is active.
Must be 1 or 0. This property is optional and defaults to 0.

hz The speed of communication on the SPI bus. This property is required.

mode The SPI bus mode, a two-bit mask that specifies the SPI clock polarity
(bit 1) and phase (bit 0). This property is optional and defaults to 0b0O.

port Port specifier for the SPI connection. This property is optional.

If both out and in are unspecified, a TypeError is thrown by the constructor during validation.
The in and out properties may refer to the same physical pin (e.g. 3-wire SPI).

10.8.2 Data format

The data format for the SPT class is always "buffer".

10.8.3 Methods

read(byteLength | buffer)

The first argument follows the behavior of the 10 Class Pattern read method for the "buffer" data format.

© Ecma International 2021 17

»ecma

If the buffer argument has a bitLength property, it specifies the number of bits to read, overriding the
byteLength property to allow reading of partial bytes. buffer.bitLength must be less than or equal to the
number of bits in the buffer (i.e. buffer.byteLength * 8). Bits are read into the start of buffer (i.e. bit
offset zero).

The behavior of the Serial Data Out pin is implementation-dependent during the read operation.
write(buffer)
Write buffer to the SPI bus. Any input data is discarded.

If the buffer argument has a bitLength property, it specifies the number of bits to write, overriding the
byteLength property to allow writing of partial bytes. buffer .bitLength must be less than or equal to the
number of bits in the buffer (i.e. buffer.byteLength * 8). Bits are written from the start of buffer (i.e. bit
offset zero).

transfer(buffer)

Write buffer to the SPI bus while simultaneously reading buffer.byteLength 8-bit bytes from the SPI bus.
The results of the read are placed into buffer, replacing the original contents.

If the buffer argument has a bitLength property, it specifies the number of bits of the buffer to swap in the
transfer, overriding the byteLength property to allow transfer of partial bytes. buffer.bitLength must be
less than or equal to the number of bits in the buffer (i.e. buffer.byteLength * 8). Bits are transferred from
the start of buffer (i.e. bit offset zero).

flush([deselect])

Flushes any buffers of the SPI controller instance. The flush operation is synchronous and completes before
returning.

Some SPI peripherals require that the chip select pin be set inactive at specific times (for instance, to mark the

end of a transaction). The flush method supports this with the optional deselect argument which, when
present and true, causes the chip select pin to be set to inactive after the flush completes.

10.9 Pulse count
The PulseCount class implements a bi-directional counter typically used with a rotary encoder.
import PulseCount from "embedded:io/pulsecount”;

See Annex A for the formal algorithms of the PulseCount 10 Class.

10.9.1 Properties of constructor options object

Property Description
signal Pin specifier for the signal input pin. This property is required.
control Pin specifier for the control input pin. This property is required.

10.9.2 Data format

The PulseCount class data format is always a number. The values are always integers.

18 © Ecma International 2021

»ecma

10.9.3 Methods
read()
The read method returns the current count. It takes no arguments.

The count is initialized to zero at the time of instantiation. Note that the initial call to read may return a non-zero
value if pulses have been counted in the intervening interval.

write(count)

The write method sets the current count.

10.9.4 Callbacks
onReadable()

The onReadable callback is invoked when the value of the counter has changed. Multiple changes to the
counter may be combined into a single invocation of the callback.

onError()

The onError callback is invoked when an error is detected, for example, underflow or overflow of the counter.

10.10 TCP socket

The TCP network socket class implements a general-purpose, bi-directional TCP connection.

import TCP from "embedded:io/socket/tcp";

The TCP socket is not a TCP listener, as in some networking libraries. The TCP listener is a separate class.

See Annex A for the formal algorithms of the TCP 10 Class.

© Ecma International 2021 19

secma

10.10.1 Properties of constructor options object

Property Description

address A string with the IP address of the remote endpoint to connect to.
Either the address or host property must be provided.

host A string with the DNS name of the remote endpoint to connect to.
Either the address or host property must be provided.

port A number specifying the remote port to connect to. This property is
required.
noDelay A boolean indicating whether to disable Nagle’s algorithm on the

socket. This property is equivalent to the TCP_NODELAY option in the
BSD sockets API. This property is optional and defaults to false.

keepAlive A number specifying the keep-alive interval of the socket in
milliseconds. This property is optional and if not present, the keep-
alive capability of the socket is not used.

from An existing TCP socket instance from which the native socket
instance is taken to use with the newly created socket instance. This
property is optional and intended for use with a TCP listener. When
the from property is present, the address, host, and port
properties are not required and are ignored if specified. The original
instance is closed with ownership of the native socket transferred to
the new instance.

10.10.2 Methods
read((byteLength | buffer))

When using the "number" data format, read always returns the next available byte as a Number (from 0 to
255).

When using the "buffer" data format, read follows the behavior of the 10 Class Pattern read method for the
"buffer" data format with one addition: if there are no arguments, read returns one or more bytes
(implementation-dependent).

The read method must not wait for additional bytes to arrive.
write(byteValue | buffer)

When using the "number" data format, the first argument is a byte value to transmit. If the output buffer is full,
write throws.

When using the "buffer" data format, the first argument is an ArrayBuffer or TypedArray containing one

or more bytes to transmit. If the output buffer cannot accept all the bytes in the buffer, an exception is thrown —
partial data must not be written.

20 © Ecma International 2021

secmd

10.10.3 Callbacks
onReadable(bytes)

Invoked when new data is available to be read. The callback receives a single argument that indicates the
number of bytes available to read.

onWritable(bytes)

Invoked when space has been made available to output additional data. The callback receives a single argument
that indicates the total number of bytes that may be written to the TCP socket without overflowing the output
buffers.

The onWritable callback is first invoked when the socket successfully connects to the remote endpoint and it
is possible to write data.

onError()

The onError callback is invoked when an error occurs or the TCP socket disconnects. Once onError is
invoked, the connection is no longer usable. Reporting the error type is an area for future work.

10.10.4 Data format
The TCP class data format is either "number" for individual bytes or "buffer" for groups of bytes. The default

data format is "buffer"”. When using the "buffer" format, the write call accepts an ArrayBuffer or a
TypedArray. The read call always returns an ArrayBuffer.

10.11 TCP listener socket
The TCP Listener class listens for and accepts incoming TCP connection requests.
import Listener from "embedded:io/socket/listener";

See Annex A for the formal algorithms of the Listener 10 Class.

10.11.1 Properties of constructor options object

Property Description

port A number specifying the port to listen on. This property is optional.

address A string with the IP address of the network interface to bind to. This
property is optional.

10.11.2 Methods

read()

The read function returns a TCP Socket instance. The instance is already connected to the remote endpoint.
There are no callback functions installed.

NOTE To set the callbacks and configure the socket, pass the socket to the TCP Socket constructor using the from
property.

© Ecma International 2021 21

secma

write()

Unsupported.

10.11.3 Callbacks
onReadable(requests)

Invoked when one or more new connection requests are received. The callback receives a single argument that
indicates the total number of pending connection requests.

10.11.4 Data format

The TCP Listener class uses socket/tcp as its sole data format.

10.12 UDP socket

The UDP network socket class implements the sending and receiving of UDP packets.
import UDP from "embedded:io/socket/udp”;

See Annex A for the formal algorithms of the UDP IO Class.

10.12.1 Properties of constructor options object

Property Description
port The local port number to bind the UDP socket to. This property is
optional.
address A string with the IP address of the network interface to bind to. This

property is optional.

multicast A string with the IP address of a multicast address to bind to. This
property is optional.

timeToLive A number with the multicast time-to-live value as a number from 1 to
255. This property is required if the multicast property is provided
and otherwise ignored.

10.12.2 Methods

read([buffer])

The read call reads a complete UDP packet.

If there are no arguments, read allocates an ArrayBuffer the size of the packet, copies the packet data to
the buffer, and returns the buffer. If first argument is an ArrayBuffer or TypedArray, the packet data is
copied to the buffer and the number of bytes copied is returned. If the buffer is too small to hold the packet, an
exception is thrown.

The following properties are attached to the buffer containing the packet data:

. address, a string containing the packet sender’s IP address

22 © Ecma International 2021

»ecma

. port, the port number used to send the packet.
write(buffer, address, port,)

The write call takes three arguments: the packet data as an ArrayBuffer or TypedArray, the remote
address string, and the remote port number. If there is insufficient memory to transmit the packet, the write
call throws an exception.

10.12.3 Callbacks
onReadable(packets)

Invoked when one or more packets are received. The callback receives a single argument that indicates the
total number of packets available to read.

10.12.4 Data format

The UDP class data format is always "buffer". The write call accepts an ArrayBuffer or a TypedArray.
The read call always returns an ArrayBuffer.

11 10 Provider Class Pattern

The 10 Provider Class Pattern builds on the Base Class Pattern to provide a foundation to access a collection
of 10 Classes.

An 10 Provider contains one or more 10 Classes. The 10 Provider may be connected to the host in any way,
including:

. A direct hardware connection such as 12C or SPI
. A local wireless connection such as BLE using the Automation 10 Service profile

. A TCP/IP connection to an internet cloud service

It is anticipated, but not required, that implementations of the 10 Provider Class Pattern will perform IO using
instances conforming to the 10 Class Pattern. To facilitate that, the constructor uses IO constructor properties
to specify their IO connections.

An 10 Provider instance contains 10 Classes which conform to the 10 Class Pattern. The following code is an
example of using an 10 Provider to access a Digital pin on a GPIO expander connected via I2C.

import I2C from "embedded:io/i2c";

const expander = new Expander({
io: I2C,
data: 5,
clock: 4,
hz: 1_000 000,
address: 0x20,
1)

const led = new expander.Digital({
pin: 13,
mode: expander.Digital.Output,

});
led.write(1);

© Ecma International 2021 23

secma

Here the data and clock pins passed to the Expander constructor refer to pins of the host whereas the pin
passed to the expander.Digital constructor refers to a pin of the GPIO expander.

See Annex A for the formal algorithms of the 10 Provider Class Pattern.

11.1 constructor

Following the Base Class Pattern, the constructor has a single options object argument. The options object
defines the hardware connections of the sensor. These use the same properties as the 10 types corresponding
to the hardware connection. As in the Peripheral Class Pattern, the 10 properties in the Provider Class Pattern
are grouped to avoid collisions.

The options object is not limited to IO connection information and must contain all information needed by the
implementation to establish the connection.

11.2 close method

In addition to releasing all resources as required by the Base Class Pattern, the close method causes the
onError callback to be invoked on all open instances. Note that onError may not be invoked from within
close (see Callbacks section).

11.3 Callbacks

onReady()

The onReady callback is invoked once the 10 Provider instance is ready for use.

The 10 provider may not know what 1O resources are available until it has successfully established a connection
to the remote resource. For this reason, a provider may not have any 10 constructors on its instance until the
onReady is invoked.

The 10 constructors of an 10 Provider, if present on the instance, may be used prior to onReady being invoked.

onError()

The onError callback is invoked on a non-recoverable error to indicate that the provider instance can no longer
be used.

When a provider fails, its 10 instances also become unusable, and consequently onError must also be invoked
on each instance.

12 Peripheral Class Pattern

The Peripheral Class Pattern builds on the Base Class Pattern to provide a foundation for implementing access
to different kinds of peripheral devices. The Peripheral Class Pattern is purely abstract and cannot be
instantiated directly.

See Annex A for the formal algorithms of the Peripheral Class Pattern.

12.1 constructor
Following the Base Class Pattern, the constructor has a single options object argument. The options object

defines the hardware connections of the peripheral. These use the same properties as the 10 types
corresponding to the hardware connection. For example, an 12C peripheral:

24 © Ecma International 2021

secma

import I2CPeripheral from "embedded:example/i2cperipheral”;
import I2C from "embedded:io/i2c";

let t = new I2CPeripheral({
io: I2¢C,
data: 4,
clock: 5,
address: 0x30

1
The io property specifies the constructor for the 10 Class.

If the peripheral has multiple hardware connections, the options object separates them to avoid collisions. For
example, here the peripheral has an I2C connection for primary communication and a digital connection for an
interrupt:

import I2CPeripheralWithInterrupt from
"embedded:example/i2cperipheralwithinterrupt”;
import I2C from "embedded:io/i2c";

import Digital from "embedded:io/digital";

let t = new I2CPeripheralWithInterrupt({
communication: {
io: I2C,
data: 4,
clock: 5,
address: 0x30
}s
interrupt: {
io: Digital,
pin: 5
}
})s

The constructor must reset the peripheral hardware to a consistent initial state so the peripheral’s behavior is
not dependent on a previous instantiation. This reset may include calling the instance’s configure method.

12.2 close method

The close method, as required by the Base Class Pattern, releases all IO connections in use by the instance.

12.3 configure method
The configure method modifies how the peripheral operates. It has a single argument, an options object.

The configure method follows the same rules regarding the options argument as the constructor and
therefore may not modify its content.

Because peripherals have many features, the configure method may implement support for many properties.
A given call to the configure method should only modify the features specified in the options object.

The Peripheral Class Pattern does not require a script call the configure method to use the peripheral,
however specific implementations may require configure to be called.

The configure method may be called more than once to allow scripts to reconfigure the peripheral.

© Ecma International 2021 25

secma

12.4 Accessors for configuration

Classes that follow the Peripheral Class Pattern may choose to provide accessors, e.g. setters and getters, for
configuration properties. A setter should behave in the same way as the configure method invoked with a
single property. For example, a setter for a property named resolution could be implemented as follows:

class ExamplePeripheral {
set resolution(value) {
this.configure({resolution: value});
}
}

A getter for the same property could be implemented as follows:

class ExamplePeripheral {
get resolution() {
this.configuration.resolution;
}

13 Sensor Class Pattern

The Sensor Class Pattern builds on the Peripheral Class Pattern to provide a foundation for implementing
access to a variety of sensors.

It is anticipated, but not required, that instances conforming to the Sensor Class Pattern will perform 10 using
instances conforming to the IO Class Pattern. The Sensor Class Pattern is therefore non-blocking, like 10.
Additionally, the constructor uses IO constructor properties to specify their IO connections.

The Sensor Class Pattern provides low-level sensor access, similar to a sensor driver provided by a sensor
manufacturer, to support access to all the unique capabilities of the sensor. As with IO, where a given type of
device (e.g. a temperature sensor) has common capabilities across manufacturers, the individual sensor types
define a common way to access that functionality.

Higher-level sensor APIs may be built using instances of the Sensor Class Pattern. The W3C Generic Sensor
specification, for example, may be implemented using sensors conforming to The Sensor Class Pattern.

The Sensor Class Pattern may be used together with the Sensor Data Provenance Rules to improve the usability
of the data collected.

See Annex A for the formal algorithms of the Sensor Class Pattern.

13.1 constructor

Following the Peripheral Class Pattern, the constructor has a single options object argument. The options object
defines the hardware connections of the sensor.

26 © Ecma International 2021

»ecma

For example, here the temperature sensor has an interrupt on a Digital pin:

import I2C from "embedded:io/i2c";
import Digital from "embedded:io/digital”;

let t = new Temperature({
sensor: {
io: I2C,
data: 4,
clock: 5,
address: 0x30
}s
interrupt: {
io: Digital,
pin: 5
}
})s

The constructor must reset the sensor hardware to a consistent initial state so the sensor’'s behavior is not
dependent on a previous instantiation.

13.2 configure method

The configure method is inherited from the Peripheral Class Pattern. For sensors, it modifies how the sensor
operates. This may include the hardware’s sampling interval, what data is sampled, and the range of the data
sampled.

13.3 sample method

The sample method returns readings from the sensor. The Sensor Class Pattern defines no arguments for the
sample method, though individual sensor types may.

The sample method returns an object containing one or more properties. The returned object is mutable. The
implementation must return a different object on each invocation to allow calls to accumulate multiple sensor
readings.

NOTE A sensor implementation of sample may accept an input argument of the object to use for the sensor data as
an optimization to reduce memory manager work. If supported, this must be specified for the Sensor Class’ sample method.

If the sample data includes timestamps (e.g. when the sample was collected), those timestamps in the returned

sample object should conform to the time or ticks properties of the Sample Object specified by the
Provenance Sensor Class Pattern.

13.4 Callbacks

The Sensor Class Pattern specifies one callback that is set by the options object passed to the constructor.
Individual sensor classes may provide additional callbacks, for instance, to indicate when a sample is available
or a sensed condition has been met.

onError()

The onError callback is invoked on a nhon-recoverable error to indicate that the sensor instance can no longer
be used. The only method that should be called is close.

© Ecma International 2021 27

secma

14 Sensor classes
This section defines Sensor Classes conforming to the Sensor Class Pattern.

The classes support common sensor capabilities. Capabilities that are not supported here may be added using
the extensibility options of the Sensor Class Pattern and Base Class Pattern.

14.1 Accelerometer
The Accelerometer class implements access to a three-dimensional accelerometer.

See Annex A for the formal algorithms of the Accelerometer sensor class.

14.1.1 Properties of a sample object

These properties are compatible with the attributes of the same name in the W3C Accelerometer draft.

Property Description

X A number that represents the sampled acceleration along the x axis in
meters per second squared. This property is required.

y A number that represents the sampled acceleration along the y axis in
meters per second squared. This property is required.

z A number that represents the sampled acceleration along the z axis in
meters per second squared. This property is required.

14.2 Ambient light
The AmbientLight class implements access to an ambient light sensor.

See Annex A for the formal algorithms of the AmbientLight sensor class.

14.2.1 Properties of sample object

These properties are compatible with the attributes of the same name in the W3C Ambient Light Sensor draft.

Property Description

illuminance A number that represents the sampled ambient light level in Lux.
This property is required.

14.3 Atmospheric pressure
The AtmosphericPressure class implements access to an atmospheric pressure sensor or barometer.

See Annex A for the formal algorithms of the AtmosphericPressure sensor class.

28 © Ecma International 2021

https://w3c.github.io/accelerometer/
https://www.w3.org/TR/ambient-light/

secma

14.3.1 Properties of a sample object

Property Description

pressure A number that represents the sampled atmospheric pressure in Pascal.
This property is required.

14.4 Humidity
The Humidity class implements access to a humidity sensor.

See Annex A for the formal algorithms of the Humidity sensor class.

14.4.1 Properties of a sample object

Property Description

humidity A number that represents the sampled relative humidity as a
percentage. This property is required.

14.5 Proximity
The Proximity class implements access to a proximity sensor or range finder.

See Annex A for the formal algorithms of the Proximity sensor class.

14.5.1 Properties of a sample object

These properties are compatible with the attributes of the same name in the W3C Proximity Sensor draft.

Property Description

near A boolean that indicates if a proximate object is detected. This property
is required.

distance A number that represents the distance to the nearest sensed object in

centimeters or null if no object is detected. This property is optional:
some proximity sensors can only provide the near property.

max A number that represents the maximum sensing range of the sensor in
centimeters.

14.6 Temperature
The Temperature class implements access to a temperature sensor.

See Annex A for the formal algorithms of the Temperature sensor class.

© Ecma International 2021

29

https://w3c.github.io/proximity/

secma

14.6.1 Properties of a sample object

Property Description

temperature A number that represents the sampled temperature in degrees
Celsius. This property is required.

14.7 Touch
The Touch class implements access to a touch panel controller.

See Annex A for the formal algorithms of the Touch sensor class.

14.7.1 Sample object

The Touch class sample method returns an array of touch objects, as specified below. If there is no touch in
progress, sample returns undefined.

14.7.1.1 Properties of touch object
Property Description
X Number indicating the X coordinate of the touch point
y Number indicating the Y coordinate of the touch point
id Number indicating which touch point this entry corresponds to

15 Display Class Pattern

The Display Class Pattern builds on the Peripheral Class Pattern to provide a foundation for implementing
access to displays represented by a two-dimensional array of pixels.

The Display Class Pattern is designed to support displays independent of hardware architecture. For example,
it may be used efficiently with both frame buffers stored in local host memory and frame buffers connected with
the MIPI Display Serial Interface.

See Annex A for the formal algorithms of the Display Class Pattern.

15.1 constructor

Following the Peripheral Class Pattern, the constructor has a single options object argument. The options object
defines the hardware connections of the display. These use the same properties as the |0 types corresponding
to the hardware connection.

A Display Class is not required to have properties to configure its hardware connections. For example, a

memory-mapped display may have no external connections. Or, a Display Class may be preconfigured for the
hardware of a specific host.

15.2 configure method

The following table enumerates the properties defined for the options object argument:

30 © Ecma International 2021

https://mipi.org/specifications/dsi

»ecma

Property Description

format A number indicating the format of pixel data passed to the instance
(for example, to the send method). This property is optional. If the
format provided is not supported by the Display Class, a
RangeError is thrown.

rotation The clockwise rotation of the display as a number. This property is
optional. If the value provided is not 0, 90, 180, or 270, or is
unsupported by the Display Class, a RangeError is thrown.

brightness The relative brightness of the display from 0 (off) to 1.0 (full
brightness). This property is optional.

flip A string indicating whether the pixels should be flipped horizontally
and/or vertically. Allowed values are "", "h", "v", and "hv". The

empty string indicates that neither horizontal nor vertical flip is
applied. This property is optional.

Note that no default values are defined by the Display Class Pattern for these configuration properties to allow
the host to provide default values that are appropriate for its hardware.

Proposed Because the defaults may be configured by the host, it is sometimes useful to retrieve the current configuration.
One solution is to return the current configuration from the configure call, perhaps as an option signalled by a property
(e.g. {get: true}). This approach is convenient for scripts that need to check if particular configuration options are applied.
Another approach is to have a separate method (e.g. getConfiguration()) to return the current configuration.

15.3 begin method

The begin method starts the process of updating the display’s pixels. If no arguments are passed, the entire
frame buffer is updated starting at the top-left corner (coordinate {0, ©}), proceeding left-to-right, top-to-bottom,
ending at the bottom-right corner (coordinate {width, height}).

If an options object is passed as the sole argument, the object may contain x, y, width, and height properties
that define a rectangular area to update. The rectangle must fit within the bounds of the display (e.g. {0, 0,
width, height}) or a RangeError is thrown.

A display may not support all possible update areas. For example, a display may only support updates aligned
to even horizontal pixels. A RangeError is thrown if an unsupported update area is passed to begin. Prior to
calling begin, the adaptInvalid method may be used to adjust the update area to the capabilities of the
display.

The options object has an optional continue property to support discontiguous updates on displays that use
page flipping to swap between multiple frame buffers. When continue is false, the default value, the call to
the begin method starts to update a new frame. Calling begin with continue set to true continues updating
the same frame rather than starting a new one.

An Error exception is thrown if the begin method is called more than once without an intervening call to the

end method, unless continue is set to true in the successive calls. For example, this is a valid call sequence
to update three horizontal slices of the display.

© Ecma International 2021 31

secma

display.begin({x: @, y: @, width: 240, height: 10});
display.send(pixels);

display.begin({x: @, y: 20, width: 240, height: 10, continue: true});
display.send(pixels);

display.begin({x: @, y: 40, width: 240, height: 10, continue: true});
display.send(pixels);

display.end();

15.4 send method

The send method delivers one or more horizontal scan lines of pixel data to the display. The sole argument to
send is a buffer of pixels stored either in an ArrayBuffer or an ArrayBuffer view. The pixels are stored in a
packed array with no padding between scan lines. The format of the pixels matches the format property of the
options object of the configure method.

15.5 end method

The end method finishes the process of updating the display’s pixels, by making all pixels visible on the display.
If the display instance buffers pixels, all pixels musts be flushed. If the display uses page flipping, the page must
be flipped to the most recently updated buffer.

15.6 adaptInvalid method

The adaptInvalid method accepts a single options object argument that includes x, y, width, and height
properties that describe an area of the display to be updated. It adjusts these properties as necessary so that
the result is valid for the display and encloses the original update area.

Consider a display which limits the update area horizontally to even pixel positions. The following code calls a
display’s adaptInvalid method with odd numbers for both left and right edges of the update area:

const area = {x: 3, y: 20, width: 10, height: 20};
display.adaptInvalid(area);

display.begin(area);

display.send(pixels);

display.end();

An implementation of adaptInvalid to apply the rules above, if implemented in JavaScript, would be:

function adaptInvalid(options) {
if (options.x & 1) {
options.x -= 1;
options.width += 1;
}
if (options.width & 1) {
options.width += 1;
}
}

Some displays require that the update area only include full scan lines. The following function shows the
implementation for such a display, assuming a scanline width of 128 pixels:

32 © Ecma International 2021

secmd

function adaptInvalid(options) {
options.x = 0;
options.width = 128;

}

For displays that only support full screen updates, adaptInvalid updates the rectangle to be the full display
dimensions. The following function shows the implementation for a QVGA (320 x 240) display:

function adaptInvalid(options) {
options.x = 0;
options.y = 0;
options.width = 320;
options.height = 240;

15.7 Instance properties

width

The width of the display in pixels as a number. This property is read-only. This value may change based on the
configuration, for example, when changing the rotation causes the orientation to change from portrait to
landscape.

height

The height of the display in pixels as a number. This property is read-only. This value may change based on

the configuration, for example, when changing the rotation causes the orientation to change from portrait to
landscape.

15.8 Pixel format values

Property Description
3 1-bit monochrome
4 4-bit grayscale (0 black, 15 white)
5 8-bit grayscale (0 black, 255 white)
6 8-bit RGB 3:3:2
7 16-bit RGB 5:6:5 little-endian
8 16-bit RGB 5:6:5 big-endian
9 24-bit RGB 8:8:8
10 32-bit RGBA 8:8:8:8
12 12-bit xRGB 4:4:4:4 (x is unused)

16 Host provider instance

The Host Provider instance aggregates data and code available to scripts from the host. The host provider
instance is available as a module import:

© Ecma International 2021 33

secma

import device from "embedded:provider/builtin”;

The Host Provider instance is instantiated before hosted scripts are executed. Only a single instance of the host
provider may be created, and the host provider cannot be closed or garbage collected.

The following sections define properties of the Host Provider instance. The Host Provider instance has no
required properties.

16.1 Global variable

Hosts are not required to make the host provider instance available in a global variable. A host that does should
use the global variable named device.

16.2 Pin name property

The pins property is an object that maps pin names to pin specifiers. More than one pin name may map to the
same pin specifier.

import Digital from "embedded:io/digital";
let led = new Digital({
pin: device.pin.led,

mode: Digital.Output
)

16.3 10 bus properties

An IO Bus is two or more pins used to implement a communication protocol such as Serial, SPI, or I2C. There
may be one or more instances of an |0 Bus and one may be designated as the default bus of that type.

The Host Provider instance may contain properties corresponding to each bus type. The following bus types
are defined for those host provider instance.

Bus Type Property Name
12C i2c
Serial serial
SPI spi

Each bus type may contain one or more buses. Each bus may have one or more names. It is recommended to
provide a property named default when there is a default bus.

// example host implementation

const A = {
in: 12,
out: 13,

clock: 14,
select: 15,
hz: 10_000_000

}s

const B = {

34 © Ecma International 2021

secma

in: ©

3
out: 1,
clock: 2,
select: 3,
hz: 20_000_000
}s
device.spi = {
A,
B,
default: B
}

// example hosted script use
import SPI from "embedded:io/spi”;

let spi = new SPI(device.spi.default);

16.4 10 classes

The host provider instance may provide access to its 10 constructors through its 10 property. This is analogous
to the 10 constructors available from an 10 Provider.

// example host provider implementation
import Digital from "embedded:io/digital"”;
import I2C from "embedded:io/i2c";

import SPI from "embedded:io/spi”;

export default {

pin: {
button: o,
led: 2

}s

io: {
Digital,
I2C,
SPI

}

}s
// example hosted script use
import device from "embedded:provider/builtin”;

let spi = new device.io.SPI(device.spi.default);

16.5 10 Providers

The host provider instance should include its 1O Provider constructors in its provider property.

© Ecma International 2021 35

secma

16.6 Sensors

The host provider instance should include its Sensor constructors in its sensor property.

16.7 Displays

The host provider instance should include its Display constructors through its display property.

17 Provenance Sensor Class Pattern

Sensor data provenance is metadata associated with sensor samples. It encapsulates the specific, instance
source of data, the data transmission mechanism(s), and data transformations occurring at any point between
the sensor and the end-user or end-use application. Provenance applies both to direct and synthetic
measurements.

This section specifies the Provenance Sensor Class Pattern, which builds on the Sensor Class Pattern by
specifying an API for making sensor metadata available to scripts.

The Provenance Sensor Class Pattern adds one optional property to the constructor options object, two
required instance properties, and three properties to the object returned by the sample method.

The additions the Provenance Sensor Class Pattern makes to the Sensor Class Pattern are a lightweight means
of enabling provenance-aware scripts using Sensor Classes. Provenance-aware scripts may support more
robust analytics and/or high-assurance tasks.

A separate Technical Report, ECMA TR/110, Recommendations and best practices for scripts on connected
sensing devices, describes the best practices for using the Provenance Sensor Class Pattern to support scripts
running on connected sensing devices, for propagating static and dynamic device and state metadata, and for
accurately propagating sensor samples.

17.1 Properties of constructor options object

Property Description

onConfiguration Callback to invoke when a new sensor configuration has
been applied. The configuration details are obtained from the
configuration property of the instance. This property is
optional.

The onConfiguration callback is invoked whenever configuration parameters are changed from the
originally-constructed instance.

17.2 configuration property

The required read-only configuration property indicates the current configuration of the sensor. Non-default
values must be reported. All configured parameters may optionally be included.

The data format of this property is implementation-dependent. For instance, the data may be a binary value or
may be human-readable. The data do not have to be interoperable to the connected sensing device if they can
be parsed by the relevant endpoint.

Configuration information recommended for the configuration property includes, but is not limited to:

36 © Ecma International 2021

secma

Property Description
calibration Calibration factors / parameters that impact samples presented as
raw.
mode Sampling operating mode.
scaling Scaling factors that impact samples presented as raw.
units Configured sample unit.

17.3 identification property

The required read-only identification property provides static identification information about the physical

sensor and/or sensor driver.

The data format of this property is implementation-dependent. For instance, the data may be a binary value or
may be human-readable. The data do not have to be interoperable to the connected sensing device if they can
be parsed by the relevant endpoint.

Identification information recommended for the identification property includes, but is not limited to:

Property Description

model Identification of the manufacturer and part number of the
sensor. Required.

classification Identification of the sensor classification of the sensor instance.
Required for instances of defined classes.

uniquelD Hard-coded unique identifiers associated with the sensor part.
This includes serial numbers, time and date of manufacture,
etc. Optional.

17.3.1 Properties of sample Object

The Provenance Sensor Class Pattern extends the sample object described in the Sensor Class Pattern to

include the following properties.

© Ecma International 2021

37

2eCma

Property Description

time Number originating from an absolute clock describing the instant that the
sample returned was captured. If reported, time must be represented
as a time value as defined in ECMA-262 in “Time Values and Time
Range” (https://tc39.es/ecma262/#sec-time-values-and-time-range). The
time should originate from the most accurate clock associable to the start
of a sampling event, or be derived from the same.

ticks Number originating from a non-absolute clock describing the instant that
the sample returned was captured. If reported, ticks must be reported
as an integer representing the number of time units occurring from an
arbitrary, connected sensing device-consistent start time as reported by
the sensor instance.

faults Object representing a record of any sensor-level faults that occurred
during this sensor sample or since the previously reported sample.
Optional.

In the event disparate sensing modalities may be measured from a single sensor as discretely-sampled events
(e.g. requesting from an IMU first acceleration and only later angular rate), those modalities are assumed to be
treated as independent sensors for the purposes of recording time, ticks, and faults.

See Annex A for the formal algorithms of the Provenance Sensor Class Pattern.

38 © Ecma International 2021

https://tc39.es/ecma262/#sec-time-values-and-time-range

secmd

Annex A
(normative)

Formal algorithms

This annex defines formal algorithms for behaviors defined by this specification. These algorithms are useful
primarily for implementing the specification and validating implementations.

A.1 Internal fields

Internal fields are implementation-dependent and must not be accessible outside the implementation. For
instance, they can be C structure fields, JavaScript private fields, or a combination of both.

Every object conforming to a Class Pattern is expected to have one or several internal fields. This document
uses the following operators on internal fields.

A.1.1 ChecklinternalFields(object)
1. For each internal field of the class being defined
1. Let name be the name of the internal field
2. Throw if object has no internal field named name
CheckInternalFields throws if an internal field is absent. That can be implicit when internal fields are JavaScript

private fields, or can be explicit when internal fields are C structure fields. The purpose of ChecklInternalFields
is to ensure that object is an instance of the class being defined.

A.1.2 ClearinternalFields(object)
1. For each internal field of the class being defined
1. Let name be the name of the internal field
2. Clear the internal field named name of object
ClearInternalFields zeroes all internal fields. That can be storing null in JavaScript private fields, or can be

storing NULL in C structure fields. The purpose of ClearinternalFields is to ensure that object is in a consistent
state when constructed and closed.

A.1.3 GetinternalField(object, name)
1. Return the value stored in the internal field named name of object

GetInternalField is trivial for JavaScript private fields, but can involve value conversion for C structure field like
converting C NULL into JavaScript null.

A.1.4 SetinternalField(object, name, value)

1. Store value in the internal field named name of object

© Ecma International 2021 39

secma

SetInternalField is trivial for JavaScript private fields, but can involve value conversion for C structure field like
converting JavaScript null into C NULL.

A.2 Ranges

A.2.1 Booleans

For boolean ranges, the value is converted into a JavaScript boolean.

A.2.2 Numbers

For number ranges, the value is converted into a JavaScript number, then the value is checked to be in range.
The special value NaN is never in range.

For integer ranges, the value is converted into a JavaScript number, then the value is checked to be an integer,
then the value is checked to be in range.

Range From To
number -Infinity Infinity
negative -Infinity -Number .MIN_VALUE
number

positive Number .MIN_VALUE Infinity
number

integer Number .MIN_SAFE_INTEGER Number .MAX_SAFE_INTEGER
negative Number .MIN_SAFE_INTEGER -1
integer

positive 1 Number .MAX_SAFE_INTEGER
integer

8-hit -128 127
integer

8-bit (%] 255
unsigned

integer

16-bit -32768 32767
integer

16-bit (%] 65535
unsigned

integer

32-bit -2147483648 2147483647
integer

32-hit (%] 4294967295
unsigned

integer

40

© Ecma International 2021

secmd

Further restrictions are specified with from x to y, meaning the value must be >= x and <=vy.

A.2.3 Objects
For object ranges like ArrayBuffer, the value is checked to be an instance of one of specified class.
Further restrictions can be specified, for instance on the byteLength of the ArrayBuffer instance.

If the object can be null, it is explicitly specified like Function or null.

A.2.4 Strings

For string ranges like "buffer", the value is converted into a JavaScript string, then checked to be strictly
equal to one of the specified values.

A.3 Base Class Pattern

A.3.1 constructor(options)

1. ClearInternalFields(this)
2. Throw if options is not an object
3. Let params be an empty object
4. For each supported option
1. Let name be the name of the supported option
2. If HasProperty(options, name)
1. Letvalue be GetProperty(options, name)
2. Throw if value is not in the valid range of the supported option
3. Else
1. Throw if the supported option has no default value
2. Letvalue be the default value of the supported option
4. DefineProperty(params, name, value)
5. For each supported callback option
1. Let name be the name of the supported callback option
2. Let callback be GetProperty(params, name)
3. If callback is not null
1. SetinternalField(this, name, callback)
6. Letvalue be GetProperty(params, "target")
7. If value is not undefined

1. DefineProperty(this, "target", value)

© Ecma International 2021 41

»ecma

8.

Mark this as ineligible for garbage collection

A.3.1.1 Notes

Supported options, with their names, default values and valid ranges, are defined by a separate table for
each class conforming to the Base Class Pattern.

The params object is unobservable. Its purpose in the algorithm is to ensure that properties of the options
object are only accessed once and that the options object can be frozen. Local variables can be used
instead, for instance:

let pin = 2;
if (options !== undefined) {
if ("pin" in options)) {
pin = options.pin;
if ((pin < @) [| (3 < pin))
throw new RangeError(” invalid pin ${pin}’);

Most classes conforming to the Base Class Pattern are expected to support one or several callbacks.
Callbacks are supported options: their default value is null, their valid range is null or a JavaScript
function. Callbacks are stored in internal fields and are always called with this set to the constructed
object.

There is only one option that is always supported: its name is "target", its default value is undefined
and its range is any JavaScript value.

A.3.2 close()

ChecklinternalFields(this)
Mark this as eligible for garbage collection
Cancel any pending callbacks for this

ClearInternalFields(this)

A.4 10 Class Pattern

A.4.1 constructor(options)

42

Execute steps 1 to 7 of the Base Class Pattern constructor

Let value be GetProperty(params, "format™)
SetinternalField(this, "format", value)

Try

1. Let resources be the hardware resources specified by params

2. Throw if resources are unavailable

© Ecma International 2021

secmd

6.

3. Allocate and configure resources

4. Throw if allocation or configuration failed

5. SetInternalField(this, "resources", resources)
Catch exception

1. Call(this, GetProperty(this, “close™));

2. Throw exception

Execute step 8 of the Base Class Pattern constructor

A.4.2 close()

5.

6.

Execute step 1 of the Base Class Pattern close method

Let resources be GetinternalField(this, "resources");
Return if resources is null

Execute steps 2 and 3 of the Base Class Pattern close method
Free resources

Execute step 4 of the Base Class Pattern close method

A.4.3 read([option])

CheckinternalFields(this);
Let resources be GetInternalField(this, "resources");
Throw if resources is null
If resources is not readable
1. return undefined
Let format be GetInternalField(this, "format")
If format is "buffer”
1. Let available be the number of readable bytes
2. If option is absent
1. Throw if available is undefined
2. Letn be available
3. Letdata be Construct("ArrayBuffer”, n)
4. Let pointer be GetBytePointer(data)
5. Read n bytes from resources into pointer
6. Return data.

3. Else if option is a number

© Ecma International 2021

43

secma

1. Throw if option is no positive integer

2. Letn be option

3. If available is not undefined and n > available
1. Letn be available

4. Letdata be Construct("ArrayBuffer", n)’

5. Let pointer be GetBytePointer(data)

6. Read n bytes from resources into pointer

7. Return data.

1. Let pointer be GetBytePointer(option)
2. Letn be GetProperty(option, "byteLength")
3. If available is not undefined and n > available
1. Letn be available
4. Read n bytes from resources into pointer
5. Returnn.
7. Throw if option is present
8. Read data from resources
9. Format data according to format

10. Return data.
A.4.4 write(data)

1. CheckinternalFields(this);
2. Letresources be GetinternalField(this, "resources™);
3. Throw if resources is null or not writable
4. Throw if data is absent
5. Let format be GetinternalField(this, "format")
6. If formatis "buffer"
1. Let pointer be GetBytePointer(data)
2. Let n be GetProperty(data, "byteLength")
3. Throw if n bytes would overflow resources
4. Write n bytes from pointer into resources

5. Return

44 © Ecma International 2021

secmd

7.

8.

Throw if data is not formatted according to format

Write data into resources

A.45 set format(value)

1.

2.

3.

CheckinternalFields(this);
Throw if value is not in the valid range of "format"

SetinternalField(this, "format", value)

A.4.6 get format()

1.

2.

ChecklinternalFields(this);

Return GetinternalField(this, "format")

A.4.6.1 Notes

GetBytePointer(buffer) is a host specific operator that returns a pointer to the data contained in an
ArrayBuffer, SharedArrayBuffer or TypedArray instance. The operator throws if buffer is
no instance of ArrayBuffer, SharedArrayBuffer or TypedArray, or if buffer is detached. For
a TypedArray instance, the pointer takes the view byte offset into account.

Hardware resources can require one or several internal fields which should be all cleared and
checked. The "resources" internal field is only a convention in this document.

Several 10 classes read/write bytes into/from buffers so the read and write methods detail the
relevant steps, for instance to optimize the read method memory usage by passing a buffer.

IO classes that do not use buffers can skip steps 6 of the read and write methods.

The ranges of read and write data are defined by a separate table for each class conforming to
the 10 Class Pattern.

When the parameters of read or write differ from the 10 Class Pattern, they are defined by a
separate table.

© Ecma International 2021

45

secma

A.5 10 Classes

A.5.1 Digital

A.5.1.1 constructor options

Property Required Range Default
pin yes pin specifier
mode yes Digital.Input,
Digital.InputPullUp,
Digital.InputPullDown,
Digital.InputPullUpDown,
Digital.Output, or
Digital.OutputOpenDrain.
edge no* Digital.Rising,
Digital.Falling, and
Digital.Rising |
Digital.Falling
onReadable no null or Function null
format no "number" "number"
. If the onReadable option is not null, edge is required to have a non-zero value.
A5.1.2 read/write data
Format Read Write
"number" Oorl Oorl

46

© Ecma International 2021

secma

A.5.2 Digital bank

A.5.2.1 constructor options

Property Required Range Default

pins yes 32-bit unsigned integer

mode yes Digital.Input,
Digital.InputPullUp,
Digital.InputPullDown,
Digital.InputPullUpDown,
Digital.Output, or
Digital.OutputOpenDrain.

rises no* 32-bit unsigned integer 0

falls no* 32-bit unsigned integer 0

bank no number or string

onReadable no null or Function null

format no "number" "number"

. Both rises and falls cannot be 0; at least one pin must be selected.

A.5.2.2 read/write data
Format Read Write
"number" 32-bit unsigned integer 32-bit unsigned integer

A.5.3 Analog input

A.5.3.1 constructor options

Property Required Range Default

pin yes pin specifier

resolution no positive integer host-dependent

format no "number" "number"
A.5.3.2 read/write data

Format Read Write

"number" all

© Ecma International 2021

secmd

A.5.4 Pulse-width modulation

A.5.4.1 constructor options
Property Required Range Default
pin yes pin specifier
hz no positive number host-dependent
format no "number" "number"
A5.4.2 read/writedata
Format Read Write
"number" positive integer
A.5.5 I2C
A.5.5.1 constructor options
Property Required Range Default
data yes pin specifier
clock yes pin specifier
hz yes positive integer
address yes 8-bit unsigned
integer from 0 to
127
port no port specifier host-
dependent
onReadable no null or Function null
format no "buffer" "buffer"
A.5.5.2 read/write data
Format Read Write
"buffer" ArrayBuffer ArrayBuffer, TypedArray

48

© Ecma International 2021

secma

A.5.5.3 read(option[, stop])

Param Required Range Default
option yes* positive integer, ArrayBuffer,
TypedArray
stop no true or false true
. The number of readable bytes is undefined so option is required
A.554 write(datal, stop])
Param Required Range Default
data yes ArrayBuffer, TypedArray
stop no true or false true
A.5.6 System management bus (SMBus)
A.5.6.1 constructor options
All properties from I2C plus the following:
Property Required Range Default
stop no true or false false
A5.6.2 read/writedata
Format Read Write
"buffer" any any
A.5.6.3 read(option)
Param Required Range Default
option yes* positive integer, ArrayBuffer,
TypedArray

. The number of readable bytes is undefined so option is required

© Ecma International 2021

oelind

A.5.6.4 readUint8(register)

Param Required Range Default
register yes integer
A.5.6.5 writeUint8(register, value)
Param Required Range Default
register yes integer
value yes 8-bit unsigned integer
A.5.6.6 readUint16(register, bigEndian)
Param Required Range Default
register yes integer
bigEndian no true or false false
A.5.6.7 writeUintl6(register, value)
Param Required Range Default
register yes integer
value yes 16-bit unsigned integer

A.5.6.8 readBuffer(register, buffer)

Param Required Range Default
register yes integer
buffer yes ArrayBuffer or

TypedArray or Number

50

© Ecma International 2021

secma

A.5.6.9 writeBuffer(register, buffer)

Param Required Range Default
register yes integer
buffer yes ArrayBuffer or
TypedArray
A.5.7 Serial
A.5.7.1 constructor options
Property Required Range Default
receive no* pin specifier
transmit no* pin specifier
baud yes positive integer
flowControl no "hardware" and "none"
"none"
dataTerminalReady no pin specifier
requestToSend no pin specifier
clearToSend no pin specifier
dataSetReady no pin specifier
port no port specifier
onReadable no null or Function null
onlWritable no null or Function null
format no "number" or "buffer"
"buffer"

. A host may require the receive and/or transmit properties.

A5.7.2 read/write data

Format Read Write
"number" 8-bit unsigned integer 8-bit unsigned integer
"buffer" ArrayBuffer ArrayBuffer, TypedArray

© Ecma International 2021

secma

A5.7.3 flush([input, output])

1. CheckinternalFields(this)
2. Ifinput and output are absent
1. Let flushinput be true
2. Let flushOutput be true
3. Else if input and output are present
1. Convert input into a JavaScript boolean
2. Let flushinput be input
3. Convert output into a JavaScript boolean
4. Let flushOutput be output
4. Else
1. Throw
5. Ifflushinput is true
1. Flush all received but unread data
6. If flushOutput is true

1. Flush all written but unsent data

A.5.7.4 set(options)

1. CheckinternalFields(this)
2. Throw if options is not an object
3. If HasProperty(options, "dataTerminalReady")
1. Let value be GetProperty(options, "dataTerminalReady")
2. Convert value into a JavaScript boolean
3. If value is true, set serial connection’s DTR pin
4. Else clear serial connection’s DTR pin
4. If HasProperty(options, "requestToSend")
1. Let value be GetProperty(options, "requestToSend")
2. Convert value into a JavaScript boolean
3. If value is true, set serial connection’s RTS pin
4. Else clear serial connection’s RTS pin
5. If HasProperty(options, "break")

1. Let value be GetProperty(options, "break")

52 © Ecma International 2021

secma

2. Convert value into a JavaScript boolean
3. If value is true, set serial connection’s break signal

4. Else clear serial connection’s break signal

A.5.7.5 get([options])

1. ChecklInternalFields(this)
2. If options is absent

1. Let result be an empty object
3. Else

1. Throw if options is not an object

2. Let result be options
4. If serial connection’s CTS pin is set

1. SetProperty(result, "clearToSend", true)
5. Else

1. SetProperty(result, "clearToSend", false)
6. If serial connection’s DSR pin is set

1. SetProperty(result, "dataSetReady", true)
7. Else

1. SetProperty(result, "dataSetReady", false)

8. Return result

© Ecma International 2021

53

oelind

A.5.8 Serial Peripheral Interface (SPI)

A.5.8.1 constructor options

Property Required Range Default

out no* pin specifier

in no* pin specifier

clock yes pin specifier

select no* pin specifier

active no Oorl 0

hz yes positive integer

mode no 0,1,2,0r3 0

port no port specifier

format no "buffer" "buffer"
A5.8.2 read/writedata

Format Read Write

"buffer" ArrayBuffer ArrayBuffer
A.5.8.3 read(option)

Param Required Range Default

option yes* positive integer, ArrayBuffer,

TypedArray

. The number of readable bytes is undefined so option is required

A.5.8.4 transfer(buffer)

1. CheckinternalFields(this)

2. If buffer is an ArrayBuffer

1. Let transferBuffer be buffer

2. Let transferOffset be 0

3. Else

1. Let transferBuffer be GetProperty(buffer, “buffer”)

54

© Ecma International 2021

secma

2. Let transferOffset be GetProperty(buffer, “byteOffset”)

4. If HasProperty(buffer, “bitLength”)

1. Let transferBits be GetProperty(buffer, “bitLength”)

2. Let availableBits be GetProperty(buffer, “byteLength”) * 8

3. Throw if transferBits is greater than availableBits

5. Else

1. Let transferBits be GetProperty(buffer, “byteLength”) * 8

6. Simultaneously write and read transferBits bits into buffer starting at byte offset transferOffset

7. Return buffer

A.5.8.5 flush([deselect])

1. ChecklInternalFields(this)

2. Flush all written but unsent data

3. If deselect is present

1. Convert deselect into a JavaScript boolean

2. If deselect is true

1. If GetinternalField(this, "active")is 0

1.

2. Else

1.

A.5.9 Pulse count

Set the select pin to 1

Set the select pinto 0

A.5.9.1 constructor options

Property Required Range Default

signal yes pin specifier

control yes pin specifier

onReadable no null or Function null

format no "number" "number"
A.5.9.2 read/writedata

Format Read Write

"number" integer integer

© Ecma International 2021

55

secmd

A.5.10 TCP socket

A.5.10.1 constructor options

Property Required Range Default
address yes* string
host yes* string
port yes _16—bit unsigned
integer
noDelay no true or false false
keepAlive no positive integer N/A
from no instance of TCP N/A
Socket
onError no null or Function null
onlWritable no null or Function null
onReadable no null or Function null
format no "number" or "buffer"
"buffer"

A.5.10.2 read/write data

Either the address or host must be present, but not both.

Format Read Write
"buffer" ArrayBuffer ArrayBuffer, TypedArray
"number" 8-bit unsigned integer 8-bit unsigned integer

56

© Ecma International 2021

secma

A.5.11 TCP listener socket

Property Required Range Default

port yes 16-bit unsigned
integer

address no string N/A

onError no null or null
Function

onReadable no null or null
Function

format no "socket/tcp" "socket/tcp"

A.5.11.1 read/write data
Format Read Write

"socket/tcp" instance of TCP Socket

A.5.12 UDP socket

A.5.12.1 constructor options

Property Required Range Default

address no string N/A

port no 16-bit signed N/A
integer

multicast no string N/A

timeToLive yes, if multicast integer from 1 N/A

used to 255

onError no null or null
Function

onhritable no null or null
Function

format no "buffer" "buffer"

Either the address or host must be present, but not both.

© Ecma International 2021

57

secma

A.5.12.2 read/write data

Format

Read

Write

"buffer"

ArrayBuffer

ArrayBuffer, TypedArray

A.5.12.3 write(data, address, port)

Param Required Range Default
data yes ArrayBuffer, TypedArray

address yes string

port yes 16-bit unsigned integer

A.6 Peripheral Class Pattern

A.6.1 constructor(options)

1. Execute steps 1 to 7 of the Base Class Pattern constructor

2. Try

1. For each supported 10 connection

1. Let name be the name of the supported 10 connection.

2. LetioOptions be GetProperty(params, name)

3. LetioConstructor be GetProperty(ioOptions, "io")

4. LetioConnection be Construct(ioConstructor, ioOptions)

5. SetinternalField(this, name, ioConnection);

2. Configure the peripheral with params

3. Throw if the communication with the peripheral is not operational

4. Activate the peripheral

5. SetInternalField(this, "status"”, "ready");

3. Catch exception
1. Call(this, GetProperty(this, “close™));

2. Throw exception

4. Execute step 8 of the Base Class Pattern constructor

A.6.2 close()

1. Execute step 1 of the Base Class Pattern close method

58

© Ecma International 2021

secmd

2. Let status be GetInternalField(this, "status");
3. Return if status is null
4. Execute steps 2 and 3 of the Base Class Pattern close method
5. Deactivate the peripheral
6. For each supported IO connection

1. Let name be the name of the supported IO connection.

2. Let ioConnection be GetInternalField(this, name);

3. If ioConnection is not null

1. Call(ioConnection, "close");

7. Execute step 4 of the Base Class Pattern close method

A.6.3 configure(options)

1. ChecklInternalFields(this);
2. Let status be GetInternalField(this, "status");
3. Throw if status is null
4. Throw if options is undefined or null
5. For each supported option
1. Let name be the name of the supported option
2. If HasProperty(options, name)
1. Letvalue be GetProperty(options, name)
2. Throw if value is not in the valid range of the supported option

6. Configure the peripheral with options

A.6.3.1 Notes

. Supported 10 connections are supported options. Their value must be an object with an io
property, which is the class of the 10 connection.

A.7 Sensor Class Pattern
A.7.1 constructor(options)

1. Execute all steps of the Peripheral Class Pattern constructor

A.7.2 close()

1. Execute all steps of the Peripheral Class Pattern close method

© Ecma International 2021 59

secma

A.7.3 configure(options)

1. Execute all steps of the Peripheral Class Pattern configure method

A.7.4 sample([params])

1. CheckinternalFields(this);
2. Let status be GetInternalField(this, "status");
3. Throw if status is null
4. Throw if params are absent but required, or present but not in the valid range
5. If the peripheral is readable
1. Let result be an empty object
2. For each sample property
1. Let name be the name of the sample property
2. Letvalue be undefined
3. Read from the peripheral into value
4. DefineProperty(result, name, value);
6. Else
1. Let result be undefined

7. Return result.

A.7.4.1 Notes

. The order, requirements and ranges of sample params are defined by a separate table for each
class conforming to the Sensor Class Pattern.

. The requirements and ranges of properties in sample result are defined by a separate table for
each class conforming to the Sensor Class Pattern.

A.8 Sensor Classes
A.8.1 Accelerometer

A.8.1.1 sample params:

None

60 © Ecma International 2021

oecnd

A.8.1.2 sample result:

Property Required Range Description
X yes number acceleration along the x axis
in meters per second squared
y yes number acceleration along the y axis
in meters per second squared
z yes number acceleration along the z axis
in meters per second squared
A.8.2 Ambient light
A.8.2.1 sample params:
None
A.8.2.2 sample result:
Property Required Range Description
illuminance yes positive ambient light level
number in lux
A.8.3 Atmospheric pressure
A.8.3.1 sample params:
None
A.8.3.2 sampleresult:
Property Required Range Description
pressure yes number atmospheric pressure in

Pascal

A.8.4 Humidity

A.8.4.1 sample params:

None

© Ecma International 2021

61

2eCma

A.8.4.2 sample result:

Property Required Range Description
humidity yes number from relative humidity as a
Oto1l percentage
A.8.5 Proximity
A.85.1 sample params:
None
A.8.5.2 sample result:
Property Required Range Description
near yes boolean indicator of a detected
proximate object
distance yes positive distance to the nearest
number or sensed object in
null centimeters or null if
no object is detected
max yes positive maximum sensing
number range of the sensor in
centimeters
A.8.6 Temperature
A.8.6.1 sample params:
None
A.8.6.2 sample result:
Property Required Range Description
temperature yes number temperature in degrees
Celsius
A.8.7 Touch

A.8.7.1 sample params:

None

A.8.7.2 sample result:

Array of touch objects or undefined if no touch is in progress.

62

© Ecma International 2021

secma

A.8.7.3 touch object:

Property Required Range Description

X yes number X coordinate of the touch
point

y yes number Y coordinate of the touch
point

id yes positive indicator of which touch

integer point this entry

corresponds to

A.9 Display Class Pattern

A.9.1 constructor(options)

1.

Execute all steps of the Peripheral Class Pattern constructor

A.9.2 adaptInvalid(area)

CheckinternalFields(this)

Throw if area is absent

If HasProperty(area, "x")

1. Let x be GetProperty(area, "x")

Else

1. Letxbe©

If HasProperty(area, "y")

1. Lety be GetProperty(area, "y")

Else

1. Letybe®©

If HasProperty(area, "width")

1. Let width be GetProperty(area, "width")
Else

1. Let width be the width of the frame buffer in pixels

If HasProperty(area, "height")

1. Let height be GetProperty(area, "height")

© Ecma International 2021

63

secma

10. Else
1. Let height be the height of the frame buffer in pixels
11. Adjust x, y, width, height to define a valid area to update
12. SetProperty(area, "x", x)
13. SetProperty(area, "y",y)
14. SetProperty(area, "width", width)
15. SetProperty(area, "height", height)
A.9.3 close()

1. Execute all steps of the Peripheral Class Pattern close method

A.9.4 begin(options)

1. CheckinternalFields(this)

2. Let status be GetInternalField(this, "status™)
3. Throw if status is null

4. Letxbeo

5. Letybe®

6. Let width be the width of the frame buffer in pixels
7. Let height be the height of the frame buffer in pixels
8. Letcontinue be false

9. If options is present

1. If HasProperty(options, "x")

1. Letx be GetProperty(options, "x")

2. If HasProperty(options, "y")

1. Lety be GetProperty(options, "y")
3. If HasProperty(options, "width")

1. Letwidth be GetProperty(options, "width")
4. If HasProperty(options, "height™")

1. Let height be GetProperty(options, "height™)
5. If HasProperty(options, "continue")

1. Let continue be GetProperty(options, "continue")

10. Throw if the area defined by x, y, width and height is invalid.

64 © Ecma International 2021

secmd

11. If status is ready

1. SetinternalField(this, "status", "updating")
12. Else

1. Throw if continue is false

13. Use x, y, width, height to prepare the frame buffer to receive scanlines

A.9.5 configure(options)

1. Execute all steps of the Peripheral Class Pattern configure method

A.9.6 end()

1. ChecklInternalFields(this)

2. Let status be GetInternalField(this, "status")
3. Throw if status is not "updating"

4. SetinternalField(this, "status”, "finishing")
5. Make updated frame buffer visible

6. SetinternalField(this, "status"”, "ready")

A.9.7 send(scanlines)

1. ChecklInternalFields(this)

2. Let status be GetInternalField(this, "status")
3. Throw if status is not "updating"

4. Throw if scanlines is absent

5. Let pointer be GetBytePointer(scanlines)

6. Letn be GetProperty(lines, "byteLength")

7. Transfer n bytes from pointer to the frame buffer

A.9.8 get width()

1. ChecklInternalFields(this)

2. Return the width of the frame buffer in pixels

A.9.9 get height()

1. CheckinternalFields(this)

2. Return the height of the frame buffer in pixels

© Ecma International 2021

secma

A.9.9.1 Notes

GetBytePointer(buffer) is a host specific operator that returns a pointer to the data contained in an
ArrayBuffer, SharedArrayBuffer or TypedArray instance. The operator throws if buffer is
no instance of ArrayBuffer, SharedArrayBuffer or TypedArray, or if buffer is detached. For

a TypedArray instance, the pointer takes the view byte offset into account.

When the frame buffer rotation is 90 or 270 degrees, get width returns the height of the frame

buffer in pixels and get height returns the width of the frame buffer in pixels.

A.9.9.2 constructor options:

Property Required Range Default
format no see text

rotation no 0, 90, 180, or 270

brightness no 0.0to 1.0

flip no " h v or’hy!

A.10 Provenance Sensor Class Pattern

A.10.1 configure(options)

1.

Execute all steps of the Sensor Class Pattern configure method

A.10.2 sample([params])

66

Execute steps 1 to 6 of the Sensor Class Pattern sample method
If result is an object
1. If an absolute clock is available
1. Lettime be the value of the absolute clock upon sampling
2. DefineProperty(result, "time", time);
2. If arelative clock is available
1. Letticks be the value of a relative clock upon sampling
2. DefineProperty(result, "ticks", ticks);
3. If faults are readable from the sensor upon sampling
1. Read from the sensor into faults
2. DefineProperty(result, "faults", faults);

Execute steps 7 of the Sensor Class Pattern sample method

© Ecma International 2021

secma

A.10.2.1 Notes

. The absolute clock is the most precise clock available to get an absolute time value (since the Epoch),
from either the sensor, the microcontroller, or another peripheral.

. The relative clock is any clock available to get a consistent relative time value (for instance since the
device started), from either the sensor, the microcontroller, or another peripheral.

A.10.2.2 sample params:
None
A.10.2.3 sample result:

In addition to the sample results defined in the Sensor Class Pattern, the Provenance Sensor Class Pattern
adds properties as follows:

Property Required Range Description
time yes, if positive number originating from
available number an absolute clock

describing the instant
that the sample returned
was captured

ticks yes, if positive number originating from
available number a non-absolute clock
describing the instant
that the sample returned
was captured

faults no boolean, object representing a
number, record of any sensor-
or string level faults that occurred

during this sensor
sample or since the
previously reported
sample

A.10.2.4 Notes

. The order, requirements, and ranges of options for configure extend those found in a separate table
for every class conforming to the Sensor Class Pattern, and add the options configuration and
identification as defined in the Sensor Provenance Class Pattern.

. Metadata (time, ticks, faults) reflect only the metadata associated with the first sample. In cases
where multiple samples may be taken from a single device, timing and fault data may be imprecise
for subsequent samples.

A.11 10 Provider Class Pattern
A.11.1 constructor(options)

1. Execute steps 1 to 7 of the Base Class Pattern constructor

© Ecma International 2021 67

secma

68

Let onReadable be a function with the following steps:
1. Let data be Call(this, GetProperty(this, “read™));
2. Let provider be GetProperty(this, "target");
3. Dispatch data among IO objects of provider
Let count be the number of supported 10 connection
Let onWritable be a function with the following steps:
1. Let count be count - 1
2. If countis O
1. Let provider be GetProperty(this, "target");
2. Configure provider with params
3. Add supported IO constructors to provider
4. SetinternalField(provider, "status”, "ready");
5. Let callback be GetiInternalField(provider, "onReady");
6. If callback is not null
1. Call(provider, callback);
Let onError be a function with the following steps:
1. Let provider be GetProperty(this, "target");
2. Dispatch the error to open IO objects of provider
3. Call(provider , GetProperty(provider, “close™));
4. Let callback be GetlInternalField(provider , "onError");
5. If callback is not null
1. Call(provider, callback);
Try
1. For each supported IO connection
1. Let name be the name of the supported IO connection.
2. LetioOptions be GetProperty(params, name)
3. LetioParams be a copy of ioOptions

4. LetioConstructor be GetProperty(ioParams, "io")

5. DefineProperty(ioParams, "onReadable", onReadable);

6. DefineProperty(ioParams, "onWritable", onWritable);

7. DefineProperty(ioParams, "onError", onError);

© Ecma International 2021

secmd

8. DefineProperty(ioParams, "target", this);
9. LetioConnection be Construct(ioConstructor, ioParams)
10. SetinternalField(this, name, ioConnection);
7. Catch exception
1. Call(this, GetProperty(this, “close™));
2. Throw exception

8. Execute step 8 of the Base Class Pattern constructor

A.11.2 close()

1. Execute all steps of the Peripheral Class Pattern close method

© Ecma International 2021

69

cecma

70 © Ecma International 2021

secma

[1]
(2]

3]
[4]
[5]
[6]
[7]
(8]
9]

Bibliography

12C-bus specification and user manual, Rev. 6. https://www.nxp.com/docs/en/user-quide/UM10204.pdf

System Management Bus (SMBus) Specification Version 3.1.
http://smbus.org/specs/SMBus 3 1 20180319.pdf

W3C Generic Sensor specification. https://www.w3.0rg/TR/generic-sensor/

W3C Accelerometer draft. https://w3c.github.io/accelerometer/

W3C Ambient Light Sensor draft. https://www.w3.0org/TR/ambient-light/

W3C Proximity Sensor draft. https://w3c.github.io/proximity/

Ecma TC39 - Compartments Proposal. https://github.com/tc39/proposal-compartments

Ecma TC39 - SES Proposal. https://github.com/tc39/proposal-ses

Draft Specification for Standalone SES. https://github.com/Agoric/SES-
shim/blob/master/packages/ses/docs/source/draft-standalone-spec.md

© Ecma International 2021 71

https://www.nxp.com/docs/en/user-guide/UM10204.pdf
http://smbus.org/specs/SMBus_3_1_20180319.pdf
https://www.w3.org/TR/generic-sensor/
https://w3c.github.io/accelerometer/
https://www.w3.org/TR/ambient-light/
https://w3c.github.io/proximity/
https://github.com/tc39/proposal-compartments
https://github.com/tc39/proposal-ses
https://github.com/Agoric/SES-shim/blob/master/packages/ses/docs/source/draft-standalone-spec.md
https://github.com/Agoric/SES-shim/blob/master/packages/ses/docs/source/draft-standalone-spec.md

oecma

© Ecma International 2021

