

Reference number
ECMA-123:2009

© Ecma International 2009

ECMA-408
4th Edition / December 2015

Dart Programming

Language Specification

COPYRIGHT PROTECTED DOCUMENT

 © Ecma International 2015

© Ecma International 2015 iii

This Ecma Standard has been adopted by the General Assembly of December 2015.

"COPYRIGHT NOTICE

© 2015 Ecma International

This document may be copied, published and distributed to others, and certain derivative works of it
may be prepared, copied, published, and distributed, in whole or in part, provided that the above
copyright notice and this Copyright License and Disclaimer are included on all such copies and
derivative works. The only derivative works that are permissible under this Copyright License and
Disclaimer are:

(i) works which incorporate all or portion of this document for the purpose of providing commentary or
explanation (such as an annotated version of the document),

(ii) works which incorporate all or portion of this document for the purpose of incorporating features
that provide accessibility,

(iii) translations of this document into languages other than English and into different formats and

(iv) works by making use of this specification in standard conformant products by implementing (e.g.
by copy and paste wholly or partly) the functionality therein.

However, the content of this document itself may not be modified in any way, including by removing the
copyright notice or references to Ecma International, except as required to translate it into languages
other than English or into a different format.

The official version of an Ecma International document is the English language version on the Ecma
International website. In the event of discrepancies between a translated version and the official
version, the official version shall govern.

The limited permissions granted above are perpetual and will not be revoked by Ecma International or
its successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and ECMA
INTERNATIONAL DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE
ANY OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR

A PARTICULAR PURPOSE."

iv © Ecma International 2015

Dart Programming Language Specification
(4th edition draft)

Version 1.11

August 19, 2015

Contents
1 Scope 6

2 Conformance 6

3 Normative References 6

4 Terms and Definitions 6

5 Notation 6

6 Overview 8
6.1 Scoping . 9
6.2 Privacy . 11
6.3 Concurrency . 11

7 Errors and Warnings 11

8 Variables 12
8.1 Evaluation of Implicit Variable Getters 16

9 Functions 16
9.1 Function Declarations . 18
9.2 Formal Parameters . 19

9.2.1 Required Formals . 20
9.2.2 Optional Formals . 20

9.3 Type of a Function . 21
9.4 External Functions . 22

1

10 Classes 22
10.1 Instance Methods . 24

10.1.1 Operators . 25
10.2 Getters . 26
10.3 Setters . 27
10.4 Abstract Instance Members . 27
10.5 Instance Variables . 28
10.6 Constructors . 29

10.6.1 Generative Constructors 29
10.6.2 Factories . 33
10.6.3 Constant Constructors . 34

10.7 Static Methods . 36
10.8 Static Variables . 37
10.9 Superclasses . 37

10.9.1 Inheritance and Overriding 37
10.10 Superinterfaces . 40

11 Interfaces 41
11.1 Superinterfaces . 41

11.1.1 Inheritance and Overriding 41

12 Mixins 43
12.1 Mixin Application . 43
12.2 Mixin Composition . 44

13 Enums 45

14 Generics 45

15 Metadata 46

16 Expressions 47
16.0.1 Object Identity . 48

16.1 Constants . 49
16.2 Null . 52
16.3 Numbers . 52
16.4 Booleans . 53

16.4.1 Boolean Conversion . 54
16.5 Strings . 55

16.5.1 String Interpolation . 58
16.6 Symbols . 58
16.7 Lists . 59
16.8 Maps . 60
16.9 Throw . 62
16.10 Function Expressions . 63
16.11 This . 64
16.12 Instance Creation . 65

2

16.12.1 New . 65
16.12.2 Const . 67

16.13 Spawning an Isolate . 69
16.14 Function Invocation . 69

16.14.1 Actual Argument List Evaluation 71
16.14.2 Binding Actuals to Formals 71
16.14.3 Unqualified Invocation 72
16.14.4 Function Expression Invocation 73

16.15 Lookup . 73
16.15.1 Method Lookup . 73
16.15.2 Getter and Setter Lookup 74

16.16 Top level Getter Invocation . 74
16.17 Method Invocation . 74

16.17.1 Ordinary Invocation . 74
16.17.2 Cascaded Invocations . 76
16.17.3 Super Invocation . 77
16.17.4 Sending Messages . 78

16.18 Property Extraction . 79
16.18.1 Getter Access and Method Extraction 79
16.18.2 Super Getter Access and Method Closurization 81
16.18.3 General Closurization . 82
16.18.4 Named Constructor Extraction 83
16.18.5 Anonymous Constructor Extraction 83
16.18.6 General Super Property Extraction 84
16.18.7 Ordinary Member Closurization 84
16.18.8 Named Constructor Closurization 85
16.18.9 Anonymous Constructor Closurization 86
16.18.10Super Closurization . 86

16.19 Assignment . 87
16.19.1 Compound Assignment 90

16.20 Conditional . 91
16.21If-null Expressions . 92
16.22 Logical Boolean Expressions . 92
16.23 Equality . 93
16.24 Relational Expressions . 94
16.25 Bitwise Expressions . 95
16.26 Shift . 96
16.27 Additive Expressions . 96
16.28 Multiplicative Expressions . 97
16.29 Unary Expressions . 98
16.30 Await Expressions . 99
16.31 Postfix Expressions . 99
16.32 Assignable Expressions . 101
16.33 Identifier Reference . 102
16.34 Type Test . 105
16.35 Type Cast . 106

3

17 Statements 106
17.1 Blocks . 107
17.2 Expression Statements . 107
17.3 Local Variable Declaration . 108
17.4 Local Function Declaration . 108
17.5 If . 109
17.6 For . 110

17.6.1 For Loop . 111
17.6.2 For-in . 111
17.6.3 Asynchronous For-in . 111

17.7 While . 112
17.8 Do . 112
17.9 Switch . 113
17.10 Rethrow . 116
17.11 Try . 117
17.12 Return . 119
17.13 Labels . 122
17.14 Break . 122
17.15 Continue . 123
17.16 Yield and Yield-Each . 124

17.16.1 Yield . 124
17.16.2 Yield-Each . 125

17.17 Assert . 126

18 Libraries and Scripts 127
18.1 Imports . 128
18.2 Exports . 133
18.3 Parts . 134
18.4 Scripts . 135
18.5 URIs . 136

19 Types 136
19.1 Static Types . 136

19.1.1 Type Promotion . 138
19.2 Dynamic Type System . 138
19.3 Type Declarations . 139

19.3.1 Typedef . 140
19.4 Interface Types . 140
19.5 Function Types . 141
19.6 Type dynamic . 143
19.7 Type Void . 144
19.8 Parameterized Types . 145

19.8.1 Actual Type of Declaration 145
19.8.2 Least Upper Bounds . 145

4

20 Reference 146
20.1 Lexical Rules . 146

20.1.1 Reserved Words . 147
20.1.2 Comments . 147

20.2 Operator Precedence . 148

5

Dart Programming Language Specification 6

1 Scope ecmaScope

This Ecma standard specifies the syntax and semantics of the Dart program-
ming language. It does not specify the APIs of the Dart libraries except where
those library elements are essential to the correct functioning of the language
itself (e.g., the existence of class Object with methods such as noSuchMethod,
runtimeType).

2 Conformance ecmaConformance

A conforming implementation of the Dart programming language must
provide and support all the APIs (libraries, types, functions, getters, setters,
whether top-level, static, instance or local) mandated in this specification.

A conforming implementation is permitted to provide additional APIs, but
not additional syntax, except for experimental features in support of null-aware
cascades and tear-offs that are likely to be introduced in the next revision of
this specification.

3 Normative References ecmaNormativeReferences

The following referenced documents are indispensable for the application
of this document. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including
any amendments) applies.

1. The Unicode Standard, Version 5.0, as amended by Unicode 5.1.0, or
successor.

2. Dart API Reference, https://api.dartlang.org/

4 Terms and Definitions ecmaTermsAndDefinitions

Terms and definitions used in this specification are given in the body of
the specification proper. Such terms are highlighted in italics when they are
introduced, e.g., ‘we use the term verbosity to refer to the property of excess
verbiage’.

5 Notation notation

We distinguish between normative and non-normative text. Normative text
defines the rules of Dart. It is given in this font. At this time, non-normative
text includes:

Dart Programming Language Specification 7

Rationale Discussion of the motivation for language design decisions appears in ital-
ics. Distinguishing normative from non-normative helps clarify what part
of the text is binding and what part is merely expository.

Commentary Comments such as “The careful reader will have noticed that the name Dart
has four characters” serve to illustrate or clarify the specification, but are
redundant with the normative text. The difference between commentary
and rationale can be subtle. Commentary is more general than rationale,
and may include illustrative examples or clarifications.

Open questions (in this font). Open questions are points that are unsettled in the mind
of the author(s) of the specification; expect them (the questions, not the
authors; precision is important in a specification) to be eliminated in the
final specification. Should the text at the end of the previous bullet
be rationale or commentary?

Reserved words and built-in identifiers (16.33) appear in bold.
Examples would be switch or class.
Grammar productions are given in a common variant of EBNF. The left

hand side of a production ends with a colon. On the right hand side, alternation
is represented by vertical bars, and sequencing by spacing. As in PEGs, alter-
nation gives priority to the left. Optional elements of a production are suffixed
by a question mark like so: anElephant?. Appending a star to an element of a
production means it may be repeated zero or more times. Appending a plus sign
to a production means it occurs one or more times. Parentheses are used for
grouping. Negation is represented by prefixing an element of a production with
a tilde. Negation is similar to the not combinator of PEGs, but it consumes
input if it matches. In the context of a lexical production it consumes a single
character if there is one; otherwise, a single token if there is one.

An example would be:

AProduction:
AnAlternative |
AnotherAlternative |
OneThing After Another |
ZeroOrMoreThings* |
OneOrMoreThings+ |
AnOptionalThing? |
(Some Grouped Things) |
˜NotAThing |
A LEXICAL THING

;

Both syntactic and lexical productions are represented this way. Lexical
productions are distinguished by their names. The names of lexical productions
consist exclusively of upper case characters and underscores. As always, within

Dart Programming Language Specification 8

grammatical productions, whitespace and comments between elements of the
production are implicitly ignored unless stated otherwise. Punctuation tokens
appear in quotes.

Productions are embedded, as much as possible, in the discussion of the
constructs they represent.

A list x1, . . . , xn denotes any list of n elements of the form xi, 1 ≤ i ≤ n.
Note that n may be zero, in which case the list is empty. We use such lists
extensively throughout this specification.

The notation [x1, . . . , xn/y1, . . . , yn]E denotes a copy of E in which all
occurrences of yi, 1 ≤ i ≤ n have been replaced with xi.

We sometimes abuse list or map literal syntax, writing [o1, . . . , on] (respec-
tively {k1 : o1, . . . , kn : on}) where the oi and ki may be objects rather than
expressions. The intent is to denote a list (respectively map) object whose
elements are the oi (respectively, whose keys are the ki and values are the oi).

The specifications of operators often involve statements such as x op y
is equivalent to the method invocation x.op(y). Such specifications should be
understood as a shorthand for:

• x op y is equivalent to the method invocation x.op′(y), assuming the class
of x actually declared a non-operator method named op′ defining the same
function as the operator op.

This circumlocution is required because x.op(y), where op is an operator, is
not legal syntax. However, it is painfully verbose, and we prefer to state this
rule once here, and use a concise and clear notation across the specification.

When the specification refers to the order given in the program, it means the
order of the program source code text, scanning left-to-right and top-to-bottom.

References to otherwise unspecified names of program entities (such as
classes or functions) are interpreted as the names of members of the Dart core
library.

Examples would be the classes Object and Type representing the root of the
class hierarchy and the reification of runtime types respectively.

6 Overview overview

Dart is a class-based, single-inheritance, pure object-oriented programming
language. Dart is optionally typed (19) and supports reified generics. The run-
time type of every object is represented as an instance of class Type which can
be obtained by calling the getter runtimeType declared in class Object, the root
of the Dart class hierarchy.

Dart programs may be statically checked. The static checker will report
some violations of the type rules, but such violations do not abort compilation
or preclude execution.

Dart programs may be executed in one of two modes: production mode
or checked mode. In production mode, static type annotations (19.1) have

Dart Programming Language Specification 9

absolutely no effect on execution with the exception of reflection and structural
type tests.

Reflection, by definition, examines the program structure. If we provide reflective
access to the type of a declaration, or to source code, it will inevitably produce results
that depend on the types used in the underlying code.

Type tests also examine the types in a program explicitly. Nevertheless, in most
cases, these will not depend on type annotations. The exceptions to this rule are
type tests involving function types. Function types are structural, and so depend
on the types declared for their parameters and on their return types.

In checked mode, assignments are dynamically checked, and certain viola-
tions of the type system raise exceptions at run time.

The coexistence between optional typing and reification is based on the following:

1. Reified type information reflects the types of objects at runtime and may
always be queried by dynamic typechecking constructs (the analogs of in-
stanceOf, casts, typecase etc. in other languages). Reified type information
includes class declarations, the runtime type (aka class) of an object, and type
arguments to constructors.

2. Static type annotations determine the types of variables and function decla-
rations (including methods and constructors).

3. Production mode respects optional typing. Static type annotations do not
affect runtime behavior.

4. Checked mode utilizes static type annotations and dynamic type information
aggressively yet selectively to provide early error detection during development.

Dart programs are organized in a modular fashion into units called libraries
(18). Libraries are units of encapsulation and may be mutually recursive.

However they are not first class. To get multiple copies of a library running
simultaneously, one needs to spawn an isolate.

6.1 Scoping scoping

A namespace is a mapping of names denoting declarations to actual decla-
rations. Let NS be a namespace. We say that a name n is in NS if n is a key
of NS. We say a declaration d is in NS if a key of NS maps to d.

A scope S0 induces a namespace NS0 that maps the simple name of each
variable, type or function declaration d declared in S0 to d. Labels are not
included in the induced namespace of a scope; instead they have their own
dedicated namespace.

It is therefore impossible, e.g., to define a class that declares a method and a
field with the same name in Dart. Similarly one cannot declare a top-level function
with the same name as a library variable or class.

It is a compile-time error if there is more than one entity with the same
name declared in the same scope.

Dart Programming Language Specification 10

In some cases, the name of the declaration differs from the identifier used to
declare it. Setters have names that are distinct from the corresponding getters
because they always have an = automatically added at the end, and unary minus
has the special name unary-.

Dart is lexically scoped. Scopes may nest. A name or declaration d is
available in scope S if d is in the namespace induced by S or if d is available
in the lexically enclosing scope of S. We say that a name or declaration d is in
scope if d is available in the current scope.

If a declaration d named n is in the namespace induced by a scope S, then d
hides any declaration named n that is available in the lexically enclosing scope
of S.

A consequence of these rules is that it is possible to hide a type with a method
or variable. Naming conventions usually prevent such abuses. Nevertheless,the
following program is legal:

class HighlyStrung {
String() => ”?”;
}
Names may be introduced into a scope by declarations within the scope or

by other mechanisms such as imports or inheritance.
The interaction of lexical scoping and inheritance is a subtle one. Ultimately,

the question is whether lexical scoping takes precedence over inheritance or vice
versa. Dart chooses the former.

Allowing inherited names to take precedence over locally declared names can
create unexpected situations as code evolves. Specifically, the behavior of code
in a subclass can change without warning if a new name is introduced in a
superclass. Consider:

library L1;
class S {}
library L2;
import ‘L1.dart’;
foo() => 42;
class C extends S{ bar() => foo();}
Now assume a method foo() is added to S.
library L1;
class S {foo() => 91;}
If inheritance took precedence over the lexical scope, the behavior of C would

change in an unexpected way. Neither the author of S nor the author of C are
necessarily aware of this. In Dart, if there is a lexically visible method foo(), it
will always be called.

Now consider the opposite scenario. We start with a version of S that con-
tains foo(), but do not declare foo() in library L2. Again, there is a change in
behavior - but the author of L2 is the one who introduced the discrepancy that
effects their code, and the new code is lexically visible. Both these factors make
it more likely that the problem will be detected.

These considerations become even more important if one introduces con-
structs such as nested classes, which might be considered in future versions of

Dart Programming Language Specification 11

the language.
Good tooling should of course endeavor to inform programmers of such situ-

ations (discreetly). For example, an identifier that is both inherited and lexically
visible could be highlighted (via underlining or colorization). Better yet, tight in-
tegration of source control with language aware tools would detect such changes
when they occur.

6.2 Privacy privacy

Dart supports two levels of privacy: public and private. A declaration is
private iff its name is private, otherwise it is public. A name q is private iff
any one of the identifiers that comprise q is private, otherwise it is public. An
identifier is private iff it begins with an underscore (the character) otherwise
it is public.

A declaration m is accessible to library L if m is declared in L or if m is
public.

This means private declarations may only be accessed within the library in which
they are declared.

Privacy applies only to declarations within a library, not to library declara-
tions themselves.

Libraries do not reference each other by name and so the idea of a private
library is meaningless. Thus, if the name of a library begins with an underscore,
it has no effect on the accessibility of the library or its members.

Privacy is, at this point, a static notion tied to a particular piece of code
(a library). It is designed to support software engineering concerns rather than
security concerns. Untrusted code should always run in an another isolate. It
is possible that libraries will become first class objects and privacy will be a
dynamic notion tied to a library instance.

Privacy is indicated by the name of a declaration - hence privacy and naming
are not orthogonal. This has the advantage that both humans and machines can
recognize access to private declarations at the point of use without knowledge of
the context from which the declaration is derived.

6.3 Concurrency concurrency

Dart code is always single threaded. There is no shared-state concurrency
in Dart. Concurrency is supported via actor-like entities called isolates.

An isolate is a unit of concurrency. It has its own memory and its own
thread of control. Isolates communicate by message passing (16.17.4). No state
is ever shared between isolates. Isolates are created by spawning (16.13).

7 Errors and Warnings errorsAndWarnings

This specification distinguishes between several kinds of errors.
Compile-time errors are errors that preclude execution. A compile-time

Dart Programming Language Specification 12

error must be reported by a Dart compiler before the erroneous code is executed.
A Dart implementation has considerable freedom as to when compilation

takes place. Modern programming language implementations often interleave
compilation and execution, so that compilation of a method may be delayed,
e.g., until it is first invoked. Consequently, compile-time errors in a method m
may be reported as late as the time of m’s first invocation.

As a web language, Dart is often loaded directly from source, with no inter-
mediate binary representation. In the interests of rapid loading, Dart implemen-
tations may choose to avoid full parsing of method bodies, for example. This can
be done by tokenizing the input and checking for balanced curly braces on method
body entry. In such an implementation, even syntax errors will be detected only
when the method needs to be executed, at which time it will be compiled (JITed).

In a development environment a compiler should of course report compilation
errors eagerly so as to best serve the programmer.

If an uncaught compile-time error occurs within the code of a running isolate
A, A is immediately suspended. The only circumstance where a compile-time
error could be caught would be via code run reflectively, where the mirror system
can catch it.

Typically, once a compile-time error is thrown and A is suspended, A will
then be terminated. However, this depends on the overall environment. A Dart
engine runs in the context of an embedder, a program that interfaces between the
engine and the surrounding computing environment. The embedder will often
be a web browser, but need not be; it may be a C++ program on the server for
example. When an isolate fails with a compile-time error as described above,
control returns to the embedder, along with an exception describing the problem.
This is necessary so that the embedder can clean up resources etc. It is then the
embedder’s decision whether to terminate the isolate or not.

Static warnings are those errors reported by the static checker. They have no
effect on execution. Many, but not all, static warnings relate to types, in which
case they are known as static type warnings. Static warnings must be provided
by Dart compilers used during development such as those incorporated in IDEs
or otherwise intended to be used by developers for developing code. Compilers
that are part of runtime execution environments such as virtual machines should
not issue static warnings.

Dynamic type errors are type errors reported in checked mode.
Run-time errors are exceptions raised during execution. Whenever we say

that an exception ex is raised or thrown, we mean that a throw expression (16.9)
of the form: throw ex; was implicitly evaluated or that a rethrow statement
(17.10) of the form rethrow was executed. When we say that a C is thrown,
where C is a class, we mean that an instance of class C is thrown.

If an uncaught exception is thrown by a running isolate A, A is immediately
suspended.

8 Variables variables

Dart Programming Language Specification 13

Variables are storage locations in memory.

variableDeclaration:
declaredIdentifier (‘, ’ identifier)*

;

declaredIdentifier:
metadata finalConstVarOrType identifier

;

finalConstVarOrType:
final type? |
const type? |
varOrType

;

varOrType:
var |
type

;

initializedVariableDeclaration:
declaredIdentifier (‘=’ expression)? (‘, ’ initializedIdentifier)*

;

initializedIdentifier:
identifier (‘=’ expression)?

;

initializedIdentifierList:
initializedIdentifier (‘, ’ initializedIdentifier)*

;

A variable that has not been initialized has the initial value null (16.2).
A variable declared at the top-level of a library is referred to as either a

library variable or simply a top-level variable.
A static variable is a variable that is not associated with a particular in-

stance, but rather with an entire library or class. Static variables include library
variables and class variables. Class variables are variables whose declaration is
immediately nested inside a class declaration and includes the modifier static.
A library variable is implicitly static. It is a compile-time error to preface a
top-level variable declaration with the built-in identifier (16.33) static.

Static variable declarations are initialized lazily. When a static variable v

Dart Programming Language Specification 14

is read, iff it has not yet been assigned, it is set to the result of evaluating its
initializer. The precise rules are given in section 8.1.

The lazy semantics are given because we do not want a language where one
tends to define expensive initialization computations, causing long application
startup times. This is especially crucial for Dart, which must support the coding
of client applications.

A final variable is a variable whose binding is fixed upon initialization; a
final variable v will always refer to the same object after v has been initialized.
The declaration of a final variable must include the modifier final.

It is a static warning if a final instance variable that has been initialized
at its point of declaration is also initialized in a constructor. It is a compile-
time error if a local variable v is final and v is not initialized at its point of
declaration.

A library or static variable is guaranteed to have an initializer at its declaration
by the grammar.

Attempting to assign to a final variable anywhere except in its declaration or in
a constructor header will cause a runtime error to be thrown as discussed below.
The assignment will also give rise to a static warning. Any repeated assignment to
a final variable will also lead to a runtime error.

Taken as a whole, the rules ensure that any attempt to execute multiple assign-
ments to a final variable will yield static warnings and repeated assignments will fail
dynamically.

A constant variable is a variable whose declaration includes the modifier
const. A constant variable is always implicitly final. A constant variable must
be initialized to a compile-time constant (16.1) or a compile-time error occurs.

We say that a variable v is potentially mutated in some scope s if v is not
final or constant and an assignment to v occurs in s.

If a variable declaration does not explicitly specify a type, the type of the
declared variable(s) is dynamic, the unknown type (19.6).

A variable is mutable if it is not final. Static and instance variable declara-
tions always induce implicit getters. If the variable is mutable it also introduces
an implicit setter. The scope into which the implicit getters and setters are
introduced depends on the kind of variable declaration involved.

A library variable introduces a getter into the top level scope of the enclosing
library. A static class variable introduces a static getter into the immediately
enclosing class. An instance variable introduces an instance getter into the
immediately enclosing class.

A mutable library variable introduces a setter into the top level scope of
the enclosing library. A mutable static class variable introduces a static setter
into the immediately enclosing class. A mutable instance variable introduces an
instance setter into the immediately enclosing class.

Local variables are added to the innermost enclosing scope. They do not
induce getters and setters. A local variable may only be referenced at a source
code location that is after its initializer, if any, is complete, or a compile-time
error occurs. The error may be reported either at the point where the premature
reference occurs, or at the variable declaration.

Dart Programming Language Specification 15

We allow the error to be reported at the declaration to allow implementations
to avoid an extra processing phase.

The example below illustrates the expected behavior. A variable x is declared
at the library level, and another x is declared inside the function f .

var x = 0;
f(y) {

var z = x; // compile-time error
if (y) {

x = x + 1; // two compile time errors
print(x); // compile time error
}

var x = x++; // compile time error
print(x);
}
The declaration inside f hides the enclosing one. So all references to x inside

f refer to the inner declaration of x. However, many of these references are illegal,
because they appear before the declaration. The assignment to z is one such case.
The assignment to x in the if statement suffers from multiple problems. The right
hand side reads x before its declaration, and the left hand side assigns to x before
its declaration. Each of these are, independently, compile time errors. The print
statement inside the if is also illegal.

The inner declaration of x is itself erroneous because its right hand side at-
tempts to read x before the declaration has terminated. The left hand side is not,
technically, a reference or an assignment but a declaration and so is legal. The last
print statement is perfectly legal as well.

As another example var x = 3, y = x; is legal, because x is referenced after its
initializer.

A particularly perverse example involves a local variable name shadowing a type.
This is possible because Dart has a single namespace for types, functions and vari-
ables.

class C {}
perverse() {

var v = new C(); // compile-time error
C aC; // compile-time error
var C = 10;

}

Inside perverse(), C denotes a local variable. The type C is hidden by the vari-
able of the same name. The attempt to instantiate C causes a compile-time error be-
cause it references a local variable prior to its declaration. Similarly, for the decla-
ration of aC (even though it is only a type annotation).

As a rule, type annotations are ignored in production mode. However, we do
not want to allow programs to compile legally in one mode and not an-

other, and in this extremely odd situation, that consideration takes precedence.
The following rules apply to all static and instance variables.
A variable declaration of one of the forms T v;, T v = e; , const T v =

Dart Programming Language Specification 16

e;, final T v; or final T v = e; always induces an implicit getter function (10.2)
with signature

T get v
whose invocation evaluates as described below (8.1).
A variable declaration of one of the forms var v;, var v = e; , const v = e;,

final v; or final v = e; always induces an implicit getter function with signature
get v
whose invocation evaluates as described below (8.1).
A non-final variable declaration of the form T v; or the form T v = e;

always induces an implicit setter function (10.3) with signature
void set v = (T x)
whose execution sets the value of v to the incoming argument x.
A non-final variable declaration of the form var v; or the form var v = e;

always induces an implicit setter function with signature
set v = (x)
whose execution sets the value of v to the incoming argument x.

8.1 Evaluation of Implicit Variable Getters evaluationOfImplicitVariableGetters

Let d be the declaration of a static or instance variable v. If d is an instance
variable, then the invocation of the implicit getter of v evaluates to the value
stored in v. If d is a static or library variable then the implicit getter method
of v executes as follows:

• Non-constant variable declaration with initializer. If d is of one
of the forms var v = e; , T v = e; , final v = e; , final T v = e;, static
v = e; , static T v = e; , static final v = e; or static final T v = e;
and no value has yet been stored into v then the initializer expression e
is evaluated. If, during the evaluation of e, the getter for v is invoked, a
CyclicInitializationError is thrown. If the evaluation succeeded yielding an
object o, let r = o, otherwise let r = null. In any case, r is stored into v.
The result of executing the getter is r.

• Constant variable declaration. If d is of one of the forms const v =
e; , const T v = e; , static const v = e; or static const T v = e; the
result of the getter is the value of the compile time constant e. Note that
a compile time constant cannot depend on itself, so no cyclic references can
occur. Otherwise

• Variable declaration without initializer. The result of executing the
getter method is the value stored in v.

9 Functions functions

Functions abstract over executable actions.

Dart Programming Language Specification 17

functionSignature:
metadata returnType? identifier formalParameterList

;

returnType:
void |

type
;

functionBody:
async? ‘=>’ expression ‘;’ |

(async | async* | sync*)? block
;

block:
‘{’ statements ‘}’

;

Functions include function declarations (9.1), methods (10.1, 10.7), getters
(10.2), setters (10.3), constructors (10.6) and function literals (16.10).

All functions have a signature and a body. The signature describes the
formal parameters of the function, and possibly its name and return type. A
function body is either:

• A block statement (17.1) containing the statements (17) executed by the
function, optionally marked with one of the modifiers: async, async* or
sync*. In this case, if the last statement of a function is not a return
statement (17.12), the statement return; is implicitly appended to the
function body.
Because Dart is optionally typed, we cannot guarantee that a function
that does not return a value will not be used in the context of an expres-
sion. Therefore, every function must return a value. A return without
an expression returns null. For generator functions, the situation is more
subtle. See further discussion in section 17.12.
OR

• of the form => e which is equivalent to a body of the form {return e;}
or the form async => e which is equivalent to a body of the form async
{return e;}. The other modifiers do not apply here, because they apply
only to generators, discussed below, and generators do not allow the form
return e; values are added to the generated stream or iterable using yield
instead.

A function is asynchronous if its body is marked with the async or async*

Dart Programming Language Specification 18

modifier. Otherwise the function is synchronous. A function is a generator if
its body is marked with the sync* or async* modifier.

Whether a function is synchronous or asynchronous is orthogonal to whether it
is a generator or not. Generator functions are a sugar for functions that produce
collections in a systematic way, by lazily applying a function that generates individual
elements of a collection. Dart provides such a sugar in both the synchronous case,
where one returns an iterable, and in the asynchronous case, where one returns a
stream. Dart also allows both synchronous and asynchronous functions that produce
a single value.

It is a compile-time error if an async, async* or sync* modifier is attached
to the body of a setter or constructor.

An asynchronous setter would be of little use, since setters can only be used
in the context of an assignment (16.19), and an assignment expression always
evaluates to the value of the assignment’s right hand side. If the setter actually
did its work asynchronously, one might imagine that one would return a future
that resolved to the assignment’s right hand side after the setter did its work.
However, this would require dynamic tests at every assignment, and so would be
prohibitively expensive.

An asynchronous constructor would, by definition, never return an instance
of the class it purports to construct, but instead return a future. Calling such
a beast via new would be very confusing. If you need to produce an object
asynchronously, use a method.

One could allow modifiers for factories. A factory for Future could be modi-
fied by async, a factory for Stream could be modified by async* and a factory
for Iterable could be modified by sync*. No other scenario makes sense because
the object returned by the factory would be of the wrong type. This situation
is very unusual so it is not worth making an exception to the general rule for
constructors in order to allow it. It is a static warning if the declared return
type of a function marked async may not be assigned to Future. It is a static
warning if the declared return type of a function marked sync* may not be as-
signed to Iterable. It is a static warning if the declared return type of a function
marked async* may not be assigned to Stream.

9.1 Function Declarations functionDeclarations

A function declaration is a function that is neither a member of a class nor
a function literal. Function declarations include library functions, which are
function declarations at the top level of a library, and local functions, which
are function declarations declared inside other functions. Library functions are
often referred to simply as top-level functions.

A function declaration consists of an identifier indicating the function’s
name, possibly prefaced by a return type. The function name is followed by a
signature and body. For getters, the signature is empty. The body is empty for
functions that are external.

The scope of a library function is the scope of the enclosing library. The

Dart Programming Language Specification 19

scope of a local function is described in section 17.4. In both cases, the name
of the function is in scope in its formal parameter scope (9.2).

It is a compile-time error to preface a function declaration with the built-in
identifier static.

When we say that a function f1 forwards to another function f2, we mean
that invoking f1 causes f2 to be executed with the same arguments and/or
receiver as f1, and returns the result of executing f2 to the caller of f1, unless f2
throws an exception, in which case f1 throws the same exception. Furthermore,
we only use the term for synthetic functions introduced by the specification.

9.2 Formal Parameters formalParameters

Every function includes a formal parameter list, which consists of a list
of required positional parameters (9.2.1), followed by any optional parameters
(9.2.2). The optional parameters may be specified either as a set of named
parameters or as a list of positional parameters, but not both.

The formal parameter list of a function introduces a new scope known as the
function’s formal parameter scope. The formal parameter scope of a function
f is enclosed in the scope where f is declared. Every formal parameter intro-
duces a local variable into the formal parameter scope. However, the scope of a
function’s signature is the function’s enclosing scope, not the formal parameter
scope.

The body of a function introduces a new scope known as the function’s body
scope. The body scope of a function f is enclosed in the scope introduced by
the formal parameter scope of f .

It is a compile-time error if a formal parameter is declared as a constant
variable (8).

formalParameterList:
‘(’ ‘)’ |
‘(’ normalFormalParameters (‘, ’ optionalFormalParameters)? ‘)’
|

‘(’ optionalFormalParameters ‘)’
;

normalFormalParameters:
normalFormalParameter (‘, ’ normalFormalParameter)*

;

optionalFormalParameters:
optionalPositionalFormalParameters |
namedFormalParameters

;

Dart Programming Language Specification 20

optionalPositionalFormalParameters:
‘[’ defaultFormalParameter (‘, ’ defaultFormalParameter)* ‘]’

;
namedFormalParameters:

‘{’ defaultNamedParameter (‘, ’ defaultNamedParameter)* ‘}’
;

9.2.1 Required Formals requiredFormals

A required formal parameter may be specified in one of three ways:

• By means of a function signature that names the parameter and describes
its type as a function type (19.5). It is a compile-time error if any default
values are specified in the signature of such a function type.

• As an initializing formal, which is only valid as a parameter to a generative
constructor (10.6.1).

• Via an ordinary variable declaration (8).

normalFormalParameter:
functionSignature |
fieldFormalParameter |
simpleFormalParameter

;

simpleFormalParameter:
declaredIdentifier |
metadata identifier

;

fieldFormalParameter:
metadata finalConstVarOrType? this ‘.’ identifier formalParam-

eterList?
;

9.2.2 Optional Formals optionalFormals

Optional parameters may be specified and provided with default values.

defaultFormalParameter:
normalFormalParameter (’=’ expression)?

;

Dart Programming Language Specification 21

defaultNamedParameter:
normalFormalParameter (‘:’ expression)?

;

It is a compile-time error if the default value of an optional parameter is
not a compile-time constant (16.1). If no default is explicitly specified for an
optional parameter an implicit default of null is provided.

It is a compile-time error if the name of a named optional parameter begins
with an ‘ ’ character.

The need for this restriction is a direct consequence of the fact that naming
and privacy are not orthogonal. If we allowed named parameters to begin with
an underscore, they would be considered private and inaccessible to callers from
outside the library where it was defined. If a method outside the library overrode
a method with a private optional name, it would not be a subtype of the original
method. The static checker would of course flag such situations, but the conse-
quence would be that adding a private named formal would break clients outside
the library in a way they could not easily correct.

9.3 Type of a Function typeOfAFunction

If a function does not declare a return type explicitly, its return type is
dynamic (19.6), unless it is a constructor function, in which case its return
type is the immediately enclosing class.

Let F be a function with required formal parameters T1 p1 . . . , Tn pn, return
type T0 and no optional parameters. Then the type of F is (T1, . . . , Tn)→ T0.

Let F be a function with required formal parameters T1 p1 . . . , Tn pn, return
type T0 and positional optional parameters Tn+1 pn+1, . . . , Tn+k pn+k. Then
the type of F is (T1, . . . , Tn, [Tn+1 pn+1, . . . , Tn+k pn+k])→ T0.

Let F be a function with required formal parameters T1 p1 . . . , Tn pn, return
type T0 and named optional parameters Tn+1 pn+1, . . . , Tn+k pn+k. Then the
type of F is (T1, . . . , Tn, {Tn+1 pn+1, . . . , Tn+k pn+k})→ T0.

The run time type of a function object always implements the class Function.
One cannot assume, based on the above, that given a function f, f.runtimeType

will actually be Function, or that any two distinct function objects necessarily have
the same runtime type.

It is up to the implementation to choose an appropriate representation for
functions. For example, consider that a closure produced via property extraction
treats equality different from ordinary closures, and is therefore likely a different
class. Implementations may also use different classes for functions based on
arity and or type. Arity may be implicitly affected by whether a function is an
instance method (with an implicit receiver parameter) or not. The variations
are manifold, and so this specification only guarantees that function objects are
instances of some class that is considered to implement Function.

Dart Programming Language Specification 22

9.4 External Functions externalFunctions

An external function is a function whose body is provided separately from its
declaration. An external function may be a top-level function (18), a method
(10.1, 10.7), a getter (10.2), a setter (10.3) or a non-redirecting constructor
(10.6.1, 10.6.2). External functions are introduced via the built-in identifier
external (16.33) followed by the function signature.

External functions allow us to introduce type information for code that is
not statically known to the Dart compiler.

Examples of external functions might be foreign functions (defined in C, or
Javascript etc.), primitives of the implementation (as defined by the Dart runtime),
or code that was dynamically generated but whose interface is statically known.
However, an abstract method is different from an external function, as it has no
body.

An external function is connected to its body by an implementation spe-
cific mechanism. Attempting to invoke an external function that has not been
connected to its body will raise a NoSuchMethodError or some subclass thereof.

The actual syntax is given in sections 10 and 18 below.

10 Classes classes

A class defines the form and behavior of a set of objects which are its
instances. Classes may be defined by class declarations as described below, or
via mixin applications (12.1).

classDefinition:
metadata abstract? class identifier typeParameters? (superclass

mixins?)? interfaces?
‘{’ (metadata classMemberDefinition)* ‘}’ |

metadata abstract? class mixinApplicationClass
;

mixins:
with typeList

;

classMemberDefinition:
declaration ‘;’ |
methodSignature functionBody

;

methodSignature:
constructorSignature initializers? |

Dart Programming Language Specification 23

factoryConstructorSignature |
static? functionSignature |
static? getterSignature |
static? setterSignature |
operatorSignature

;

declaration:
constantConstructorSignature (redirection | initializers)? |
constructorSignature (redirection | initializers)? |
external constantConstructorSignature |
external constructorSignature |
((external static ?))? getterSignature |
((external static?))? setterSignature |
external? operatorSignature |
((external static?))? functionSignature |
static (final | const) type? staticFinalDeclarationList |
final type? initializedIdentifierList |
static? (var | type) initializedIdentifierList

;

staticFinalDeclarationList:
staticFinalDeclaration (‘, ’ staticFinalDeclaration)*

;

staticFinalDeclaration:
identifier ‘=’ expression

;

A class has constructors, instance members and static members. The in-
stance members of a class are its instance methods, getters, setters and instance
variables. The static members of a class are its static methods, getters, setters
and static variables. The members of a class are its static and instance members.

A class has several scopes:

• A type-parameter scope, which is empty if the class is not generic (14).
The enclosing scope of the type-parameter scope of a class is the enclosing
scope of the class declaration.

• A static scope. The enclosing scope of the static scope of a class is the
type parameter scope (14) of the class.

• An instance scope. The enclosing scope of a class’ instance scope is the
class’ static scope.

Dart Programming Language Specification 24

The enclosing scope of an instance member declaration is the instance scope
of the class in which it is declared.

The enclosing scope of a static member declaration is the static scope of the
class in which it is declared.

Every class has a single superclass except class Object which has no super-
class. A class may implement a number of interfaces by declaring them in its
implements clause (10.10).

An abstract class is a class that is explicitly declared with the abstract
modifier, either by means of a class declaration or via a type alias (19.3.1) for a
mixin application (12.1). A concrete class is a class that is not abstract.

We want different behavior for concrete classes and abstract classes. If A is
intended to be abstract, we want the static checker to warn about any attempt to
instantiate A, and we do not want the checker to complain about unimplemented
methods in A. In contrast, if A is intended to be concrete, the checker should
warn about all unimplemented methods, but allow clients to instantiate it freely.

The interface of class C is an implicit interface that declares instance mem-
bers that correspond to the instance members declared by C, and whose direct
superinterfaces are the direct superinterfaces of C (10.10). When a class name
appears as a type, that name denotes the interface of the class.

It is a compile-time error if a class declares two members of the same name.
It is a compile-time error if a class has an instance member and a static member
with the same name.

Here are simple examples, that illustrate the difference between “has a member”
and “declares a member”. For example, B declares one member named f, but has
two such members. The rules of inheritance determine what members a class has.

class A {
var i = 0;
var j;
f(x) => 3;
}
class B extends A {

int i = 1; // getter i and setter i= override versions from A
static j; // compile-time error: static getter & setter conflict with
//instance getter & setter
/* compile-time error: static method conflicts with instance method */
static f(x) => 3;
}
It is a compile time error if a class C declares a member with the same

name as C. It is a compile time error if a generic class declares a type variable
with the same name as the class or any of its members or constructors.

10.1 Instance Methods instanceMethods

Instance methods are functions (9) whose declarations are immediately con-
tained within a class declaration and that are not declared static. The instance

Dart Programming Language Specification 25

methods of a class C are those instance methods declared by C and the instance
methods inherited by C from its superclass.

It is a static warning if an instance method m1 overrides (10.9.1) an instance
member m2 and m1 has a greater number of required parameters than m2. It
is a static warning if an instance method m1 overrides an instance member m2
and m1 has fewer positional parameters than m2. It is a static warning if an
instance method m1 overrides an instance member m2 and m1 does not declare
all the named parameters declared by m2.

It is a static warning if an instance method m1 overrides an instance member
m2 and the type of m1 is not a subtype of the type of m2. It is a static warning
if an instance method m1 overrides an instance member m2, the signature of m2
explicitly specifies a default value for a formal parameter p and the signature
of m1 implies a different default value for p. It is a static warning if a class C
declares an instance method named n and has a setter named n =. It is a static
warning if a class C declares an instance method named n and an accessible
static member named n is declared in a superclass of C.

10.1.1 Operators operators

Operators are instance methods with special names.

operatorSignature:
returnType? operator operator formalParameterList

;

operator:
‘˜’ |
binaryOperator |
‘[’ ‘]’ |
‘[’ ‘]’ ‘=’

;

binaryOperator:
multiplicativeOperator |
additiveOperator |
shiftOperator |
relationalOperator |
‘==’ |
bitwiseOperator

;

An operator declaration is identified using the built-in identifier (16.33)
operator.

The following names are allowed for user-defined operators: <, >, <=, >=,
==, -, +, /, ˜/, *, %, |, ˆ, &, <<, >>, []=, [], ˜.

Dart Programming Language Specification 26

It is a compile-time error if the arity of the user-declared operator []= is not
2. It is a compile-time error if the arity of a user-declared operator with one of
the names: <, >, <=, >=, ==, -, +, ˜/, /, *, %, |, ˆ, &, <<, >>, [] is not 1.
It is a compile-time error if the arity of the user-declared operator - is not 0 or
1.

The - operator is unique in that two overloaded versions are permitted. If the
operator has no arguments, it denotes unary minus. If it has an argument, it denotes
binary subtraction.

The name of the unary operator - is unary-.
This device allows the two methods to be distinguished for purposes of method

lookup, override and reflection.
It is a compile-time error if the arity of the user-declared operator ˜ is not

0.
It is a compile-time error to declare an optional parameter in an operator.
It is a static warning if the return type of the user-declared operator []= is

explicitly declared and not void.

10.2 Getters getters

Getters are functions (9) that are used to retrieve the values of object
properties.

getterSignature:
returnType? get identifier

;

If no return type is specified, the return type of the getter is dynamic.
A getter definition that is prefixed with the static modifier defines a static

getter. Otherwise, it defines an instance getter. The name of the getter is given
by the identifier in the definition. The effect of a static getter declaration in
class C is to add an instance getter with the same name and signature to the
Type object for class C that forwards (9.1) to the static getter.

The instance getters of a class C are those instance getters declared by C,
either implicitly or explicitly, and the instance getters inherited by C from its
superclass. The static getters of a class C are those static getters declared by
C.

It is a compile-time error if a class has both a getter and a method with the
same name. This restriction holds regardless of whether the getter is defined
explicitly or implicitly, or whether the getter or the method are inherited or not.

This implies that a getter can never override a method, and a method can never
override a getter or field.

It is a static warning if the return type of a getter is void. It is a static
warning if a getter m1 overrides (10.9.1) a getter m2 and the type of m1 is not
a subtype of the type of m2.

It is a static warning if a class declares a static getter named v and also

Dart Programming Language Specification 27

has a non-static setter named v =. It is a static warning if a class C declares
an instance getter named v and an accessible static member named v or v =
is declared in a superclass of C. These warnings must be issued regardless of
whether the getters or setters are declared explicitly or implicitly.

10.3 Setters setters

Setters are functions (9) that are used to set the values of object properties.

setterSignature:
returnType? set identifier formalParameterList

;

If no return type is specified, the return type of the setter is dynamic.
A setter definition that is prefixed with the static modifier defines a static

setter. Otherwise, it defines an instance setter. The name of a setter is obtained
by appending the string ‘=’ to the identifier given in its signature. The effect of
a static setter declaration in class C is to add an instance setter with the same
name and signature to the Type object for class C that forwards (9.1) to the
static setter.

Hence, a setter name can never conflict with, override or be overridden by a
getter or method.

The instance setters of a class C are those instance setters declared by C
either implicitly or explicitly, and the instance setters inherited by C from its
superclass. The static setters of a class C are those static setters declared by C.

It is a compile-time error if a setter’s formal parameter list does not consist of
exactly one required formal parameter p. We could enforce this via the grammar,
but we’d have to specify the evaluation rules in that case.

It is a static warning if a setter declares a return type other than void. It
is a static warning if a setter m1 overrides (10.9.1) a setter m2 and the type of
m1 is not a subtype of the type of m2. It is a static warning if a class has a
setter named v = with argument type T and a getter named v with return type
S, and T may not be assigned to S.

It is a static warning if a class declares a static setter named v = and also
has a non-static member named v. It is a static warning if a class C declares
an instance setter named v = and an accessible static member named v = or v
is declared in a superclass of C.

These warnings must be issued regardless of whether the getters or setters
are declared explicitly or implicitly.

10.4 Abstract Instance Members abstractInstanceMembers

An abstract method (respectively, abstract getter or abstract setter) is an
instance method, getter or setter that is not declared external and does not
provide an implementation. A concrete method (respectively, concrete getter or
concrete setter) is an instance method, getter or setter that is not abstract.

Dart Programming Language Specification 28

Earlier versions of Dart required that abstract members be identified by pre-
fixing them with the modifier abstract. The elimination of this requirement is
motivated by the desire to use abstract classes as interfaces. Every Dart class
induces an implicit interface.

Using an abstract class instead of an interface has important advantages.
An abstract class can provide default implementations; it can also provide static
methods, obviating the need for service classes such as Collections or Lists, whose
entire purpose is to group utilities related to a given type.

Eliminating the requirement for an explicit modifier on members makes ab-
stract classes more concise, making abstract classes an attractive substitute for
interface declarations.

Invoking an abstract method, getter or setter results in an invocation of no-
SuchMethod exactly as if the declaration did not exist, unless a suitable member a
is available in a superclass, in which case a is invoked. The normative specification
for this appears under the definitions of lookup for methods, getters and setters.

The purpose of an abstract method is to provide a declaration for purposes
such as type checking and reflection. In classes used as mixins, it is often useful
to introduce such declarations for methods that the mixin expects will be provided
by the superclass the mixin is applied to.

It is a static warning if an abstract member m is declared or inherited in a
concrete class C unless:

• m overrides a concrete member, or

• C has a noSuchMethod() method distinct from the one declared in class
Object.

We wish to warn if one declares a concrete class with abstract members.
However, code like the following should work without warnings:

class Base {
int get one => 1;

}
abstract class Mix {

int get one;
int get two => one + one;

}
class C extends Base with Mix { }

At run time, the concrete method one declared in Base will be executed, and
no problem should arise. Therefore no warning should be issued and so we
suppress warnings if a corresponding concrete member exists in the hierarchy.

10.5 Instance Variables instanceVariables

Instance variables are variables whose declarations are immediately con-
tained within a class declaration and that are not declared static. The instance
variables of a class C are those instance variables declared by C and the instance
variables inherited by C from its superclass.

Dart Programming Language Specification 29

It is a compile-time error if an instance variable is declared to be constant.
The notion of a constant instance variable is subtle and confusing to pro-

grammers. An instance variable is intended to vary per instance. A constant
instance variable would have the same value for all instances, and as such is
already a dubious idea.

The language could interpret const instance variable declarations as instance
getters that return a constant. However, a constant instance variable could not
be treated as a true compile time constant, as its getter would be subject to
overriding.

Given that the value does not depend on the instance, it is better to use a
static class variable. An instance getter for it can always be defined manually if
desired.

10.6 Constructors constructors

A constructor is a special function that is used in instance creation expres-
sions (16.12) to produce objects. Constructors may be generative (10.6.1) or
they may be factories (10.6.2).

A constructor name always begins with the name of its immediately enclos-
ing class, and may optionally be followed by a dot and an identifier id. It is a
compile-time error if id is the name of a member declared in the immediately
enclosing class. It is a compile-time error if the name of a constructor is not a
constructor name.

Iff no constructor is specified for a class C, it implicitly has a default con-
structor C() : super() {}, unless C is class Object.

10.6.1 Generative Constructors generativeConstructors

A generative constructor consists of a constructor name, a constructor pa-
rameter list, and either a redirect clause or an initializer list and an optional
body.

constructorSignature:
identifier (‘.’ identifier)? formalParameterList

;

A constructor parameter list is a parenthesized, comma-separated list of
formal constructor parameters. A formal constructor parameter is either a for-
mal parameter (9.2) or an initializing formal. An initializing formal has the
form this.id, where id is the name of an instance variable of the immediately
enclosing class. It is a compile-time error if id is not an instance variable of the
immediately enclosing class. It is a compile-time error if an initializing formal
is used by a function other than a non-redirecting generative constructor.

If an explicit type is attached to the initializing formal, that is its static
type. Otherwise, the type of an initializing formal named id is Tid, where Tid is

Dart Programming Language Specification 30

the type of the field named id in the immediately enclosing class. It is a static
warning if the static type of id is not assignable to Tid.

Using an initializing formal this.id in a formal parameter list does not in-
troduce a formal parameter name into the scope of the constructor. However,
the initializing formal does effect the type of the constructor function exactly as
if a formal parameter named id of the same type were introduced in the same
position.

Initializing formals are executed during the execution of generative con-
structors detailed below. Executing an initializing formal this.id causes the field
id of the immediately surrounding class to be assigned the value of the corre-
sponding actual parameter, unless id is a final variable that has already been
initialized, in which case a runtime error occurs.

The above rule allows initializing formals to be used as optional parameters:
class A {

int x;
A([this.x]);
}
is legal, and has the same effect as
class A {

int x;
A([int x]): this.x = x;
}
A fresh instance is an instance whose identity is distinct from any previously

allocated instance of its class. A generative constructor always operates on a
fresh instance of its immediately enclosing class.

The above holds if the constructor is actually run, as it is by new. If a constructor
c is referenced by const, c may not be run; instead, a canonical object may be looked
up. See the section on instance creation (16.12).

If a generative constructor c is not a redirecting constructor and no body is
provided, then c implicitly has an empty body {}.
Redirecting Constructors

redirectingConstructors

A generative constructor may be redirecting, in which case its only action is
to invoke another generative constructor. A redirecting constructor has no body;
instead, it has a redirect clause that specifies which constructor the invocation
is redirected to, and with what arguments.

redirection:
‘:’ this (‘.’ identifier)? arguments

;

Initializer Lists
initializerLists

An initializer list begins with a colon, and consists of a comma-separated
list of individual initializers. There are two kinds of initializers.
• A superinitializer identifies a superconstructor - that is, a specific con-

structor of the superclass. Execution of the superinitializer causes the
initializer list of the superconstructor to be executed.

Dart Programming Language Specification 31

• An instance variable initializer assigns a value to an individual instance
variable.

initializers:
‘:’ superCallOrFieldInitializer (‘, ’ superCallOrFieldInitializer)*

;

superCallOrFieldInitializer:
super arguments |
super ‘.’ identifier arguments |
fieldInitializer

;

fieldInitializer:
(this ‘.’)? identifier ‘=’ conditionalExpression cascadeSection*

;

Let k be a generative constructor. Then k may include at most one superini-
tializer in its initializer list or a compile-time error occurs. If no superinitializer
is provided, an implicit superinitializer of the form super() is added at the end
of k’s initializer list, unless the enclosing class is class Object. It is a compile-
time error if more than one initializer corresponding to a given instance variable
appears in k’s initializer list. It is a compile-time error if k’s initializer list con-
tains an initializer for a variable that is initialized by means of an initializing
formal of k.

Each final instance variable f declared in the immediately enclosing class
must have an initializer in k’s initializer list unless it has already been initialized
by one of the following means:
• Initialization at the declaration of f .

• Initialization by means of an initializing formal of k.
or a static warning occurs. It is a compile-time error if k’s initializer list

contains an initializer for a variable that is not an instance variable declared in
the immediately surrounding class.

The initializer list may of course contain an initializer for any instance variable
declared by the immediately surrounding class, even if it is not final.

It is a compile-time error if a generative constructor of class Object includes
a superinitializer.

Execution of a generative constructor k is always done with respect to a set
of bindings for its formal parameters and with this bound to a fresh instance
i and the type parameters of the immediately enclosing class bound to a set of
actual type arguments V1, . . . , Vm.

These bindings are usually determined by the instance creation expression that
invoked the constructor (directly or indirectly). However, they may also be deter-
mined by a reflective call,.

Dart Programming Language Specification 32

If k is redirecting then its redirect clause has the form
this.g(a1, . . . , an, xn+1 : an+1, . . . , xn+k : an+k)
where g identifies another generative constructor of the immediately sur-

rounding class. Then execution of k proceeds by evaluating the argument list
(a1, . . . , an, xn+1 : an+1, . . . , xn+k : an+k), and then executing g with respect to
the bindings resulting from the evaluation of (a1, . . . , an, xn+1 : an+1, . . . , xn+k :
an+k) and with this bound to i and the type parameters of the immediately
enclosing class bound to V1, . . . , Vm.

Otherwise, execution proceeds as follows:
Any initializing formals declared in k’s parameter list are executed in the

order they appear in the program text. Then, k’s initializers are executed in
the order they appear in the program.

We could observe the order by side effecting external routines called. So we
need to specify the order.

After all the initializers have completed, the body of k is executed in a scope
where this is bound to i. Execution of the body begins with execution of the
body of the superconstructor with this bound to i, the type parameters of the
immediately enclosing class bound to a set of actual type arguments V1, . . . , Vm

and the formal parameters bindings determined by the argument list of the
superinitializer of k.

This process ensures that no uninitialized final field is ever seen by code.
Note that this is not in scope on the right hand side of an initializer (see 16.11)
so no instance method can execute during initialization: an instance method
cannot be directly invoked, nor can this be passed into any other code being
invoked in the initializer.

Execution of an initializer of the form this.v = e proceeds as follows:
First, the expression e is evaluated to an object o. Then, the instance

variable v of the object denoted by this is bound to o, unless v is a final variable
that has already been initialized, in which case a runtime error occurs. In
checked mode, it is a dynamic type error if o is not null and the interface of the
class of o is not a subtype of the actual type of the field v.

An initializer of the form v = e is equivalent to an initializer of the form
this.v = e.

Execution of a superinitializer of the form
super(a1, . . . , an, xn+1 : an+1, . . . , xn+k : an+k)
(respectively super.id(a1, . . . , an, xn+1 : an+1, . . . , xn+k : an+k)
proceeds as follows:
First, the argument list (a1, . . . , an, xn+1 : an+1, . . . , xn+k : an+k) is evalu-

ated.
Let C be the class in which the superinitializer appears and let S be the su-

perclass of C. If S is generic (14), let U1, , . . . , Um be the actual type arguments
passed to S in the superclass clause of C.

Then, the initializer list of the constructor S (respectively S.id) is executed
with respect to the bindings that resulted from the evaluation of the argument
list, with this bound to the current binding of this, and the type parameters
(if any) of class S bound to the current bindings of U1, , . . . , Um.

Dart Programming Language Specification 33

It is a compile-time error if class S does not declare a generative constructor
named S (respectively S.id).

10.6.2 Factories factories

A factory is a constructor prefaced by the built-in identifier (16.33) factory.

factoryConstructorSignature:
factory identifier (‘.’ identifier)? formalParameterList

;

The return type of a factory whose signature is of the form factory M or the
form factory M.id is M if M is not a generic type; otherwise the return type
is M < T1, . . . , Tn > where T1, . . . , Tn are the type parameters of the enclosing
class

It is a compile-time error if M is not the name of the immediately enclosing
class.

In checked mode, it is a dynamic type error if a factory returns a non-null
object whose type is not a subtype of its actual (19.8.1) return type.

It seems useless to allow a factory to return null. But it is more uniform to
allow it, as the rules currently do.

Factories address classic weaknesses associated with constructors in other
languages. Factories can produce instances that are not freshly allocated: they
can come from a cache. Likewise, factories can return instances of different
classes.
Redirecting Factory Constructors

redirectingFactoryConstructors

A redirecting factory constructor specifies a call to a constructor of another
class that is to be used whenever the redirecting constructor is called.

redirectingFactoryConstructorSignature:
const? factory identifier (‘.’ identifier)? formalParameterList

‘=’ type (‘.’ identifier)?
;

Calling a redirecting factory constructor k causes the constructor k′ denoted
by type (respectively, type.identifier) to be called with the actual arguments
passed to k, and returns the result of k′ as the result of k. The resulting
constructor call is governed by the same rules as an instance creation expression
using new (16.12).

It follows that if type or type.id are not defined, or do not refer to a class or
constructor, a dynamic error occurs, as with any other undefined constructor call.
The same holds if k is called with fewer required parameters or more positional
parameters than k′ expects, or if k is called with a named parameter that is not
declared by k′.

It is a compile-time error if k explicitly specifies a default value for an

Dart Programming Language Specification 34

optional parameter. Default values specified in k would be ignored, since it is the
actual parameters that are passed to k′. Hence, default values are disallowed.

It is a run-time error if a redirecting factory constructor redirects to itself,
either directly or indirectly via a sequence of redirections.

If a redirecting factory F1 redirects to another redirecting factory F2 and
F2 then redirects to F1, then both F1 and F2 are ill-defined. Such cycles are
therefore illegal.

It is a static warning if type does not denote a class accessible in the current
scope; if type does denote such a class C it is a static warning if the referenced
constructor (be it type or type.id) is not a constructor of C.

Note that it is not possible to modify the arguments being passed to k′. At
first glance, one might think that ordinary factory constructors could simply
create instances of other classes and return them, and that redirecting factories
are unnecessary. However, redirecting factories have several advantages:

• An abstract class may provide a constant constructor that utilizes the con-
stant constructor of another class.

• A redirecting factory constructors avoids the need for forwarders to repeat
the default values for formal parameters in their signatures.

It is a compile-time error if k is prefixed with the const modifier but k′ is
not a constant constructor (10.6.3).

It is a static warning if the function type of k′ is not a subtype of the type
of k.

This implies that the resulting object conforms to the interface of the immedi-
ately enclosing class of k.

It is a static type warning if any of the type arguments to k′ are not subtypes
of the bounds of the corresponding formal type parameters of type.

10.6.3 Constant Constructors constantConstructors

A constant constructor may be used to create compile-time constant (16.1)
objects. A constant constructor is prefixed by the reserved word const.

constantConstructorSignature:
const qualified formalParameterList

;

All the work of a constant constructor must be handled via its initializers.
It is a compile-time error if a constant constructor is declared by a class

that has a non-final instance variable.
The above refers to both locally declared and inherited instance variables.
It is a compile-time error if a constant constructor is declared by a class C

if any instance variable declared in C is initialized with an expression that is
not a constant expression.

Dart Programming Language Specification 35

A superclass of C cannot declare such an initializer either, because it must
necessarily declare constant constructor as well (unless it is Object, which declares
no instance variables).

The superinitializer that appears, explicitly or implicitly, in the initializer
list of a constant constructor must specify a constant constructor of the super-
class of the immediately enclosing class or a compile-time error occurs.

Any expression that appears within the initializer list of a constant construc-
tor must be a potentially constant expression, or a compile-time error occurs.

A potentially constant expression is an expression e that would be a valid
constant expression if all formal parameters of e’s immediately enclosing con-
stant constructor were treated as compile-time constants that were guaranteed
to evaluate to an integer, boolean or string value as required by their immedi-
ately enclosing superexpression.

Note that a parameter that is not used in a superexpression that is restricted to
certain types can be a constant of any type. For example

class A {
final m;
const A(this.m);
}
can be instantiated via const A(const[]);
The difference between a potentially constant expression and a compile-time

constant expression (16.12.2) deserves some explanation.
The key issue is whether one treats the formal parameters of a constructor as

compile-time constants.
If a constant constructor is invoked from a constant object expression, the ac-

tual arguments will be required to be compile-time constants. Therefore, if we
were assured that constant constructors were always invoked from constant object
expressions, we could assume that the formal parameters of a constructor were
compile-time constants.

However, constant constructors can also be invoked from ordinary instance cre-
ation expressions (16.12.1), and so the above assumption is not generally valid.

Nevertheless, the use of the formal parameters of a constant constructor within
the constructor is of considerable utility. The concept of potentially constant expres-
sions is introduced to facilitate limited use of such formal parameters. Specifically,
we allow the usage of the formal parameters of a constant constructor for expres-
sions that involve built-in operators, but not for constant objects, lists and maps.
This allows for constructors such as:

class C {
final x; final y; final z;
const C(p, q): x = q, y = p + 100, z = p + q;
}

The assignment to x is allowed under the assumption that q is a compile-time
constant (even though q is not, in general a compile-time constant). The assignment
to y is similar, but raises additional questions. In this case, the superexpression of p
is p + 100, and it requires that p be a numeric compile-time constant for the entire
expression to be considered constant. The wording of the specification allows us to

Dart Programming Language Specification 36

assume that p evaluates to an integer. A similar argument holds for p and q in the
assignment to z.

However, the following constructors are disallowed:
class D {

final w;
const D.makeList(p): w = const [p]; // compile-time error
const D.makeMap(p): w = const {“help”: q}; // compile-time error
const D.makeC(p): w = const C(p, 12); // compile-time error
}
The problem is not that the assignments to w are not potentially constant; they

are. However, all these run afoul of the rules for constant lists (16.7), maps (16.8)
and objects (16.12.2), all of which independently require their subexpressions to be
constant expressions.

All of the illegal constructors of D above could not be sensibly invoked via
new, because an expression that must be constant cannot depend on a formal
parameter, which may or may not be constant. In contrast, the legal examples
make sense regardless of whether the constructor is invoked via const or via
new.

Careful readers will of course worry about cases where the actual arguments
to C() are constants, but are not numeric. This is precluded by the following
rule, combined with the rules for evaluating constant objects (16.12.2).

When invoked from a constant object expression, a constant constructor
must throw an exception if any of its actual parameters is a value that would
prevent one of the potentially constant expressions within it from being a valid
compile-time constant.

10.7 Static Methods staticMethods

Static methods are functions, other than getters or setters, whose declara-
tions are immediately contained within a class declaration and that are declared
static. The static methods of a class C are those static methods declared by
C.

The effect of a static method declaration in class C is to add an instance
method with the same name and signature to the Type object for class C that
forwards (9.1) to the static method.

Inheritance of static methods has little utility in Dart. Static methods cannot
be overridden. Any required static function can be obtained from its declaring
library, and there is no need to bring it into scope via inheritance. Experience
shows that developers are confused by the idea of inherited methods that are not
instance methods.

Of course, the entire notion of static methods is debatable, but it is retained
here because so many programmers are familiar with it. Dart static methods
may be seen as functions of the enclosing library.

It is a static warning if a class C declares a static method named n and has
a setter named n =.

Dart Programming Language Specification 37

10.8 Static Variables staticVariables

Static variables are variables whose declarations are immediately contained
within a class declaration and that are declared static. The static variables of
a class C are those static variables declared by C.

10.9 Superclasses superclasses

The superclass of a class C that has a with clause with M1, . . . , Mk and an
extends clause extends S is the application of mixin (12) Mk ∗ · · · ∗M1 to S.
If no with clause is specified then the extends clause of a class C specifies its
superclass. If no extends clause is specified, then either:

• C is Object, which has no superclass. OR

• Class C is deemed to have an extends clause of the form extends Object,
and the rules above apply.

It is a compile-time error to specify an extends clause for class Object.

superclass:
extends type

;

The scope of the extends and with clauses of a class C is the type-
parameter scope of C.

It is a compile-time error if the extends clause of a class C specifies an
enumerated type (13), a malformed type or a deferred type (19.1) as a superclass.

The type parameters of a generic class are available in the lexical scope of
the superclass clause, potentially shadowing classes in the surrounding scope. The
following code is therefore illegal and should cause a compile-time error:

class T {}
/* Compilation error: Attempt to subclass a type parameter */
class G<T> extends T {}
A class S is a superclass of a class C iff either:

• S is the superclass of C, or

• S is a superclass of a class S′ and S′ is a superclass of C.

It is a compile-time error if a class C is a superclass of itself.

10.9.1 Inheritance and Overriding inheritanceAndOverriding

Let C be a class, let A be a superclass of C, and let S1 . . . Sk be superclasses
of C that are also subclasses of A. C inherits all accessible instance members
of A that have not been overridden by a declaration in C or in at least one of
S1 . . . Sk.

Dart Programming Language Specification 38

It would be more attractive to give a purely local definition of inheritance,
that depended only on the members of the direct superclass S. However, a class
C can inherit a member m that is not a member of its superclass S. This can
occur when the member m is private to the library L1 of C, whereas S comes
from a different library L2, but the superclass chain of S includes a class declared
in L1.

A class may override instance members that would otherwise have been
inherited from its superclass.

Let C = S0 be a class declared in library L, and let {S1 . . . Sk} be the set
of all superclasses of C, where Si is the superclass of Si−1 for i ∈ 1..k. Let C
declare a member m, and let m′ be a member of Sj , j ∈ 1..k, that has the same
name as m, such that m′ is accessible to L. Then m overrides m′ if m′ is not
already overridden by a member of at least one of S1 . . . Sj−1 and neither m nor
m′ are fields.

Fields never override each other. The getters and setters induced by fields do.
Again, a local definition of overriding would be preferable, but fails to account

for library privacy.
Whether an override is legal or not is described elsewhere in this specification

(see 10.1, 10.2 and 10.3).
For example getters may not legally override methods and vice versa. Setters

never override methods or getters, and vice versa, because their names always differ.
It is nevertheless convenient to define the override relation between members

in this way, so that we can concisely describe the illegal cases.
Note that instance variables do not participate in the override relation, but the

getters and setters they induce do. Also, getters don’t override setters and vice
versa. Finally, static members never override anything.

It is a static warning if a non-abstract class inherits an abstract method.
For convenience, here is a summary of the relevant rules. Remember that this

is not normative. The controlling language is in the relevant sections of the speci-
fication.

1. There is only one namespace for getters, setters, methods and constructors
(6.1). A field f introduces a getter f and a non-final field f also introduces a
setter f = (10.5, 10.8). When we speak of members here, we mean accessible
fields, getters, setters and methods (10).

2. You cannot have two members with the same name in the same class - be
they declared or inherited (6.1, 10).

3. Static members are never inherited.

4. It is a warning if you have an static member named m in your class or any
superclass (even though it is not inherited) and an instance member of the
same name (10.1, 10.2, 10.3).

5. It is a warning if you have a static setter v =, and an instance member v
(10.3).

Dart Programming Language Specification 39

6. It is a warning if you have a static getter v and an instance setter v = (10.2).

7. If you define an instance member named m, and your superclass has an
instance member of the same name, they override each other. This may or
may not be legal.

8. If two members override each other, it is a static warning if their type signa-
tures are not assignable to each other (10.1, 10.2, 10.3) (and since these are
function types, this means the same as ”subtypes of each other”).

9. If two members override each other, it is a static warning if the overriding
member has more required parameters than the overridden one (10.1).

10. If two members override each other, it is a static warning if the overriding
member has fewer positional parameters than the the overridden one (10.1).

11. If two members override each other, it is a static warning if the overriding
member does not have all the named parameters that the the overridden one
has (10.1).

12. Setters, getters and operators never have optional parameters of any kind; it’s
a compile-time error (10.1.1, 10.2, 10.3).

13. It is a compile-time error if a member has the same name as its enclosing
class (10).

14. A class has an implicit interface (10).

15. Superinterface members are not inherited by a class, but are inherited by its
implicit interface. Interfaces have their own inheritance rules (11.1.1).

16. A member is abstract if it has no body and is not labeled external (10.4,
9.4).

17. A class is abstract iff it is explicitly labeled abstract.

18. It is a static warning if a concrete class has an abstract member (declared or
inherited).

19. It is a static warning and a dynamic error to call a non-factory constructor of
an abstract class (16.12.1).

20. If a class defines an instance member named m, and any of its superinterfaces
have a member named m, the interface of the class overrides m.

21. An interface inherits all members of its superinterfaces that are not overridden
and not members of multiple superinterfaces.

22. If multiple superinterfaces of an interface define a member with the same
name m, then at most one member is inherited. That member (if it exists) is
the one whose type is a subtype of all the others. If there is no such member,
then:

Dart Programming Language Specification 40

• A static warning is given.
• If possible the interface gets a member named m that has the minimum

number of required parameters among all the members in the superin-
terfaces, the maximal number of positionals, and the superset of named
parameters. The types of these are all dynamic. If this is impossible
then no member m appears in the interface.

(11.1.1)

23. Rule 8 applies to interfaces as well as classes (11.1.1).

24. It is a static warning if a concrete class does not have an implementation for
a method in any of its superinterfaces unless it has a noSuchMethod method
(10.10).

25. The identifier of a named constructor cannot be the same as the name of a
member declared (as opposed to inherited) in the same class (10.6).

10.10 Superinterfaces superinterfaces

A class has a set of direct superinterfaces. This set includes the interface of
its superclass and the interfaces specified in the the implements clause of the
class.

interfaces:
implements typeList

;

The scope of the implements clause of a class C is the type-parameter
scope of C.

It is a compile-time error if the implements clause of a class C specifies
a type variable as a superinterface. It is a compile-time error if the imple-
ments clause of a class C specifies an enumerated type (13), a malformed type
or deferred type (19.1) as a superinterface. It is a compile-time error if the
implements clause of a class C specifies type dynamic as a superinterface. It
is a compile-time error if the implements clause of a class C specifies a type T
as a superinterface more than once. It is a compile-time error if the superclass
of a class C is specified as a superinterface of C.

One might argue that it is harmless to repeat a type in the superinterface list,
so why make it an error? The issue is not so much that the situation described in
program source is erroneous, but that it is pointless. As such, it is an indication
that the programmer may very well have meant to say something else - and that
is a mistake that should be called to her or his attention. Nevertheless, we could
simply issue a warning; and perhaps we should and will. That said, problems
like these are local and easily corrected on the spot, so we feel justified in taking
a harder line.

Dart Programming Language Specification 41

It is a compile-time error if the interface of a class C is a superinterface of
itself.

Let C be a concrete class that does not have a noSuchMethod() method
distinct from the one declared in class Object. It is a static warning if the
implicit interface of C includes an instance member m of type F and C does
not declare or inherit a corresponding non-abstract instance member m of type
F ′ such that F ′ <: F .

A class does not inherit members from its superinterfaces. However, its implicit
interface does.

We choose to issue these warnings only for concrete classes; an abstract class
might legitimately be designed with the expectation that concrete subclasses will
implement part of the interface. We also disable these warnings if a noSuch-
Method() declaration is present or inherited from any class other than Object.
In such cases, the supported interface is going to be implemented via noSuch-
Method() and no actual declarations of the implemented interface’s members are
needed. This allows proxy classes for specific types to be implemented without
provoking type warnings.

It is a static warning if the implicit interface of a class C includes an instance
member m of type F and C declares or inherits a corresponding instance member
m of type F ′ if F ′ is not a subtype of F .

However, if a class does explicitly declare a member that conflicts with its
superinterface, this always yields a static warning.

11 Interfaces interfaces

An interface defines how one may interact with an object. An interface has
methods, getters and setters and a set of superinterfaces.

11.1 Superinterfaces interfaceSuperinterfaces

An interface has a set of direct superinterfaces.
An interface J is a superinterface of an interface I iff either J is a direct

superinterface of I or J is a superinterface of a direct superinterface of I.

11.1.1 Inheritance and Overriding interfaceInheritanceAndOverriding

Let J be an interface and K be a library. We define inherited(J, K) to be
the set of members m such that all of the following hold:

• m is accessible to K and

• A is a direct superinterface of J and either

– A declares a member m or
– m is a member of inherited(A, K).

• m is not overridden by J .

Dart Programming Language Specification 42

Furthermore, we define overrides(J, K) to be the set of members m′ such
that all of the following hold:

• J is the implicit interface of a class C.

• C declares a member m.

• m′ has the same name as m.

• m′ is accessible to K.

• A is a direct superinterface of J and either

– A declares a member m′ or
– m′ is a member of inherited(A, K).

Let I be the implicit interface of a class C declared in library L. I inherits
all members of inherited(I, L) and I overrides m′ if m′ ∈ overrides(I, L).

All the static warnings pertaining to the overriding of instance members
given in section 10 above hold for overriding between interfaces as well.

It is a static warning if m is a method and m′ is a getter, or if m is a getter
and m′ is a method.

However, if the above rules would cause multiple members m1, . . . , mk with
the same name n to be inherited (because identically named members existed
in several superinterfaces) then at most one member is inherited.

If some but not all of the mi, 1 ≤ i ≤ k are getters none of the mi are
inherited, and a static warning is issued.

Otherwise, if the static types T1, . . . , Tk of the members m1, . . . , mk are not
identical, then there must be a member mx such that Tx <: Ti, 1 ≤ x ≤ k for
all i ∈ 1..k, or a static type warning occurs. The member that is inherited is
mx, if it exists; otherwise: let numberOfPositionals(f) denote the number of
positional parameters of a function f , and let numberOfRequiredParams(f)
denote the number of required parameters of a function f . Furthermore, let s
denote the set of all named parameters of the m1, . . . , mk. Then let

h = max(numberOfPositionals(mi)),
r = min(numberOfRequiredParams(mi)), i ∈ 1..k.
Then I has a method named n, with r required parameters of type dy-

namic, h positional parameters of type dynamic, named parameters s of type
dynamic and return type dynamic.

The only situation where the runtime would be concerned with this would be
during reflection, if a mirror attempted to obtain the signature of an interface
member.

The current solution is a tad complex, but is robust in the face of type an-
notation changes. Alternatives: (a) No member is inherited in case of conflict.
(b) The first m is selected (based on order of superinterface list) (c) Inherited
member chosen at random.

Dart Programming Language Specification 43

(a) means that the presence of an inherited member of an interface varies
depending on type signatures. (b) is sensitive to irrelevant details of the decla-
ration and (c) is liable to give unpredictable results between implementations or
even between different compilation sessions.

12 Mixins mixins

A mixin describes the difference between a class and its superclass. A mixin
is always derived from an existing class declaration.

It is a compile-time error if a declared or derived mixin explicitly declares
a constructor.

This restriction is temporary. We expect to remove it in later versions of
Dart.

The restriction on constructors simplifies the construction of mixin applica-
tions because the process of creating instances is simpler.

12.1 Mixin Application mixinApplication

A mixin may be applied to a superclass, yielding a new class. Mixin ap-
plication occurs when a mixin is mixed into a class declaration via its with
clause. The mixin application may be used to extend a class per section (10);
alternately, a class may be defined as a mixin application as described in this
section. It is a compile-time error if the with clause of a mixin application C
includes a deferred type expression.

mixinApplicationClass:
identifier typeParameters? ‘=’ mixinApplication ‘;’

;

mixinApplication:
type mixins interfaces?

;

A mixin application of the form S with M ; defines a class C with superclass
S.

A mixin application of the form S with M1, . . . , Mk; defines a class C whose
superclass is the application of the mixin composition (12.2) Mk−1 ∗ . . . ∗M1 to
S.

In both cases above, C declares the same instance members as M (respec-
tively, Mk). If any of the instance fields of M (respectively, Mk) have initializers,
they are executed in the scope of M (respectively, Mk) to initialize the corre-
sponding fields of C.

Let LM be the library in which M is declared. For each generative con-
structor named qi(Ti1 ai1, . . . , Tiki

aiki
), i ∈ 1..n of S that is accessible to LM ,

C has an implicitly declared constructor named q′i = [C/S]qi of the form

Dart Programming Language Specification 44

q′i(ai1, . . . , aiki) : super(ai1, . . . , aiki);.
If the mixin application declares support for interfaces, the resulting class

implements those interfaces.
It is a compile-time error if S is an enumerated type (13) or a malformed

type. It is a compile-time error if M (respectively, any of M1, . . . , Mk) is an
enumerated type (13) or a malformed type. It is a compile time error if a well
formed mixin cannot be derived from M (respectively, from each of M1, . . . , Mk).

Let K be a class declaration with the same constructors, superclass and in-
terfaces as C, and the instance members declared by M (respectively M1, . . . , Mk).
It is a static warning if the declaration of K would cause a static warning. It is
a compile-time error if the declaration of K would cause a compile-time error.

If, for example, M declares an instance member im whose type is at odds with
the type of a member of the same name in S, this will result in a static warning
just as if we had defined K by means of an ordinary class declaration extending S,
with a body that included im.

The effect of a class definition of the form class C = M ; or the form class
C < T1, . . . , Tn > = M ; in library L is to introduce the name C into the scope
of L, bound to the class (10) defined by the mixin application M . The name
of the class is also set to C. Iff the class is prefixed by the built-in identifier
abstract, the class being defined is an abstract class.

Let MA be a mixin derived from a class M with direct superclass Sstatic.
Let A be an application of MA. It is a static warning if the superclass of A

is not a subtype of Sstatic.
Let C be a class declaration that includes MA in a with clause. It is a

static warning if C does not implement, directly or indirectly, all the direct
superinterfaces of M .

12.2 Mixin Composition mixinComposition

Dart does not directly support mixin composition, but the concept is useful
when defining how the superclass of a class with a mixin clause is created.

The composition of two mixins, M1 < T1 . . . TkM1
> and M2 < U1 . . . UkM2

>,
written M1 < T1 . . . TkM1

> ∗M2 < U1 . . . UkM2
> defines an anonymous mixin

such that for any class S < V1 . . . VkS
>, the application of

M1 < T1 . . . TkM1
> ∗M2 < U1 . . . UkM2

>
to S < V1 . . . VkS

> is equivalent to
abstract class Id1 < T1 . . . TkM1

, U1 . . . UkM2
, V1 . . . VkS

> =
Id2 < U1 . . . UkM2

, V1 . . . VkS
> with M1 < T1 . . . TkM1

>;
where Id2 denotes
abstract class Id2 < U1 . . . UkM2

, V1 . . . VkS
> =

S < V1 . . . VkS
> with M2 < U1 . . . UkM2

>;
and Id1 and Id2 are unique identifiers that do not exist anywhere in the

program.
The classes produced by mixin composition are regarded as abstract because

they cannot be instantiated independently. They are only introduced as anony-
mous superclasses of ordinary class declarations and mixin applications. Conse-

Dart Programming Language Specification 45

quently, no warning is given if a mixin composition includes abstract members,
or incompletely implements an interface.

Mixin composition is associative.
Note that any subset of M1, M2 and S may or may not be generic. For any

non-generic declaration, the corresponding type parameters may be elided, and if no
type parameters remain in the derived declarations Id1 and/or Id2 then the those
declarations need not be generic either.

13 Enums enums

An enumerated type, or enum, is used to represent a fixed number of constant
values.

enumType:
metadata enum id ‘{’ id [‘, ’ id]* [‘, ’] ‘}’

;

The declaration of an enum of the form metadata enum E { id0, . . . idn−1};
has the same effect as a class declaration

metadata class E {
final int index;
const E(this.index);
static const E id0 = const E(0);
. . .
static const E idn−1 = const E(n - 1);
static const List<E> values = const <E>[id0 . . . idn−1];
String toString() => { 0: ‘E.id0’, . . ., n-1: ‘E.idn−1’}[index]
}
It is also a compile-time error to subclass, mix-in or implement an enum or to

explicitly instantiate an enum. These restrictions are given in normative form in
sections 10.9, 10.10, 12.1 and 16.12 as appropriate.

14 Generics generics

A class declaration (10) or type alias (19.3.1) G may be generic, that is,
G may have formal type parameters declared. A generic declaration induces a
family of declarations, one for each set of actual type parameters provided in
the program.

typeParameter:
metadata identifier (extends type)?

;
typeParameters:

‘<’ typeParameter (‘,’ typeParameter)* ‘>’

Dart Programming Language Specification 46

;

A type parameter T may be suffixed with an extends clause that specifies
the upper bound for T . If no extends clause is present, the upper bound is
Object. It is a static type warning if a type parameter is a supertype of its
upper bound. The bounds of type variables are a form of type annotation and
have no effect on execution in production mode.

Type parameters are declared in the type-parameter scope of a class. The
type parameters of a generic G are in scope in the bounds of all of the type
parameters of G. The type parameters of a generic class declaration G are also
in scope in the extends and implements clauses of G (if these exist) and in
the body of G. However, a type parameter is considered to be a malformed type
when referenced by a static member.

The restriction is necessary since a type variable has no meaning in the
context of a static member, because statics are shared among all instantiations
of a generic. However, a type variable may be referenced from an instance
initializer, even though this is not available.

Because type parameters are in scope in their bounds, we support F-bounded
quantification (if you don’t know what that is, don’t ask). This enables typechecking
code such as:

interface Ordered<T> {
operator > (T x);
}
class Sorter<T extends Ordered<T>> {

sort(List<T> l) ... l[n] < l[n+1] ...
}
Even where type parameters are in scope there are numerous restrictions at this

time:

• A type parameter cannot be used to name a constructor in an instance creation
expression (16.12).

• A type parameter cannot be used as a superclass or superinterface (10.9,
10.10, 11.1).

• A type parameter cannot be used as a generic type.

The normative versions of these are given in the appropriate sections of this
specification. Some of these restrictions may be lifted in the future.

15 Metadata metadata

Dart supports metadata which is used to attach user defined annotations
to program structures.

Dart Programming Language Specification 47

metadata:
(‘@’ qualified (‘.’ identifier)? (arguments)?)*

;

Metadata consists of a series of annotations, each of which begin with the
character @, followed by a constant expression that starts with an identifier. It
is a compile time error if the expression is not one of the following:

• A reference to a compile-time constant variable.

• A call to a constant constructor.

Metadata is associated with the abstract syntax tree of the program con-
struct p that immediately follows the metadata, assuming p is not itself meta-
data or a comment. Metadata can be retrieved at runtime via a reflective call,
provided the annotated program construct p is accessible via reflection.

Obviously, metadata can also be retrieved statically by parsing the program and
evaluating the constants via a suitable interpreter. In fact many if not most uses of
metadata are entirely static.

It is important that no runtime overhead be incurred by the introduction of
metadata that is not actually used. Because metadata only involves constants,
the time at which it is computed is irrelevant so that implementations may skip
the metadata during ordinary parsing and execution and evaluate it lazily.

It is possible to associate metadata with constructs that may not be accessible
via reflection, such as local variables (though it is conceivable that in the future,
richer reflective libraries might provide access to these as well). This is not as useless
as it might seem. As noted above, the data can be retrieved statically if source
code is available.

Metadata can appear before a library, part header, class, typedef, type pa-
rameter, constructor, factory, function, field, parameter, or variable declaration
and before an import, export or part directive.

The constant expression given in an annotation is type checked and evalu-
ated in the scope surrounding the declaration being annotated.

16 Expressions expressions

An expression is a fragment of Dart code that can be evaluated at run time
to yield a value, which is always an object. Every expression has an associated
static type (19.1). Every value has an associated dynamic type (19.2).

expression:
assignableExpression assignmentOperator expression |
conditionalExpression cascadeSection* |
throwExpression

;

Dart Programming Language Specification 48

expressionWithoutCascade:
assignableExpression assignmentOperator expressionWithoutCas-

cade |
conditionalExpression |
throwExpressionWithoutCascade

;

expressionList:
expression (‘, ’ expression)*

;

primary:
thisExpression |
super unconditionalAssignableSelector |
functionExpression |
literal |
identifier |
newExpression |
new type ‘#’ (‘.’ identifier)? |
constObjectExpression |
‘(’ expression ‘)’

;

An expression e may always be enclosed in parentheses, but this never has
any semantic effect on e.

Sadly, it may have an effect on the surrounding expression. Given a class C with
static method m => 42, C.m() returns 42, but (C).m() produces a NoSuchMeth-
odError. This anomaly can be corrected by removing the restrictions on calling the
members of instances of Type. This issue may be addressed in future versions of
Dart.

16.0.1 Object Identity objectIdentity

The predefined Dart function identical() is defined such that identical(c1, c2)
iff:

• c1 evaluates to either null or an instance of bool and c1 == c2, OR

• c1 and c2 are instances of int and c1 == c2, OR

• c1 and c2 are constant strings and c1 == c2, OR

• c1 and c2 are instances of double and one of the following holds:

– c1 and c2 are non-zero and c1 == c2.
– Both c1 and c2 are +0.0.

Dart Programming Language Specification 49

– Both c1 and c2 are −0.0.
– Both c1 and c2 represent a NaN value with the same underlying bit

pattern.

OR

• c1 and c2 are constant lists that are defined to be identical in the specifi-
cation of literal list expressions (16.7), OR

• c1 and c2 are constant maps that are defined to be identical in the speci-
fication of literal map expressions (16.8), OR

• c1 and c2 are constant objects of the same class C and each member field
of c1 is identical to the corresponding field of c2. OR

• c1 and c2 are the same object.

The definition of identity for doubles differs from that of equality in that a NaN
is identical to itself, and that negative and positive zero are distinct.

The definition of equality for doubles is dictated by the IEEE 754 standard,
which posits that NaNs do not obey the law of reflexivity. Given that hardware
implements these rules, it is necessary to support them for reasons of efficiency.

The definition of identity is not constrained in the same way. Instead, it
assumes that bit-identical doubles are identical.

The rules for identity make it impossible for a Dart programmer to observe
whether a boolean or numerical value is boxed or unboxed.

16.1 Constants constants

A constant expression is an expression whose value can never change, and
that can be evaluated entirely at compile time.

A constant expression is one of the following:

• A literal number (16.3).

• A literal boolean (16.4).

• A literal string (16.5) where any interpolated expression (16.5.1) is a
compile-time constant that evaluates to a numeric, string or boolean value
or to null. It would be tempting to allow string interpolation where the in-
terpolated value is any compile-time constant. However, this would require
running the toString() method for constant objects, which could contain ar-
bitrary code.

• A literal symbol (16.6).

• null (16.2).

Dart Programming Language Specification 50

• A qualified reference to a static constant variable (8) that is not qualified
by a deferred prefix. For example, If class C declares a constant static variable
v, C.v is a constant. The same is true if C is accessed via a prefix p; p.C.v is
a constant unless p is a deferred prefix.

• An identifier expression that denotes a constant variable.

• A simple or qualified identifier denoting a class or type alias that is not
qualified by a deferred prefix. For example, If C is a class or typedef, C is a
constant, and if C is imported with a prefix p, p.C is a constant unless p is a
deferred prefix.

• A constant constructor invocation (16.12.2) that is not qualified by a de-
ferred prefix.

• A constant list literal (16.7).

• A constant map literal (16.8).

• A simple or qualified identifier denoting a top-level function (9) or a static
method (10.7) that is not qualified by a deferred prefix.

• A parenthesized expression (e) where e is a constant expression.

• An expression of the form identical(e1, e2) where e1 and e2 are constant ex-
pressions and identical() is statically bound to the predefined dart function
identical() discussed above (16.0.1).

• An expression of one of the forms e1 == e2 or e1 != e2 where e1 and
e2 are constant expressions that evaluate to a numeric, string or boolean
value or to null.

• An expression of one of the forms !e, e1 && e2 or e1||e2, where e, e1 and
e2 are constant expressions that evaluate to a boolean value.

• An expression of one of the forms ˜e, e1 ˆ e2, e1 & e2, e1|e2, e1 >> e2 or
e1 << e2, where e, e1 and e2 are constant expressions that evaluate to an
integer value or to null.

• An expression of the form e1 +e2 where e1 and e2 are constant expressions
that evaluate to a numeric or string value or to null.

• An expression of one of the forms −e, e1 - e2, e1 * e2, e1 / e2, e1 ˜/ e2,
e1 > e2, e1 < e2, e1 >= e2, e1 <= e2 or e1 % e2, where e, e1 and e2 are
constant expressions that evaluate to a numeric value or to null.

• An expression of the form e1?e2:e3 where e1, e2 and e3 are constant ex-
pressions and e1 evaluates to a boolean value.

• An expression of the form e.length where e is a constant expression that
evaluates to a string value.

Dart Programming Language Specification 51

It is a compile-time error if an expression is required to be a constant
expression but its evaluation would raise an exception.

Note that there is no requirement that every constant expression evaluate cor-
rectly. Only when a constant expression is required (e.g., to initialize a constant
variable, or as a default value of a formal parameter, or as metadata) do we insist
that a constant expression actually be evaluated successfully at compile time.

The above is not dependent on program control-flow. The mere presence of a
required compile time constant whose evaluation would fail within a program is an
error. This also holds recursively: since compound constants are composed out of
constants, if any subpart of a constant would raise an exception when evaluated,
that is an error.

On the other hand, since implementations are free to compile code late, some
compile-time errors may manifest quite late.

const x = 1/0;
final y = 1/0;
class K {

m1() {
var z = false;
if (z) {return x; }
else { return 2;}
}
m2() {

if (true) {return y; }
else { return 3;}
}
}
An implementation is free to immediately issue a compilation error for x, but it

is not required to do so. It could defer errors if it does not immediately compile
the declarations that reference x. For example, it could delay giving a compilation
error about the method m1 until the first invocation of m1. However, it could not
choose to execute m1, see that the branch that refers to x is not taken and return
2 successfully.

The situation with respect to an invocation m2 is different. Because y is not a
compile-time constant (even though its value is), one need not give a compile-time
error upon compiling m2. An implementation may run the code, which will cause
the getter for y to be invoked. At that point, the initialization of y must take place,
which requires the initializer to be compiled, which will cause a compilation error.

The treatment of null merits some discussion. Consider null + 2. This
expression always causes an error. We could have chosen not to treat it as a
constant expression (and in general, not to allow null as a subexpression of nu-
meric or boolean constant expressions). There are two arguments for including
it:

1. It is constant. We can evaluate it at compile-time.

2. It seems more useful to give the error stemming from the evaluation ex-
plicitly.

Dart Programming Language Specification 52

It is a compile-time error if the value of a compile-time constant expression
depends on itself.

As an example, consider:
class CircularConsts{
// Illegal program - mutually recursive compile-time constants

static const i = j; // a compile-time constant
static const j = i; // a compile-time constant
}

literal:
nullLiteral |
booleanLiteral |
numericLiteral |
stringLiteral |
symbolLiteral |
mapLiteral |
listLiteral

;

16.2 Null null

The reserved word null denotes the null object.

nullLiteral:
null

;

The null object is the sole instance of the built-in class Null. Attempting to
instantiate Null causes a run-time error. It is a compile-time error for a class to
attempt to extend, mix in or implement Null. Invoking a method on null yields
a NoSuchMethodError unless the method is explicitly implemented by class Null.

The static type of null is ⊥.
The decision to use ⊥ instead of Null allows null to be be assigned everywhere

without complaint by the static checker.

16.3 Numbers numbers

A numeric literal is either a decimal or hexadecimal integer of arbitrary
size, or a decimal double.

numericLiteral:
NUMBER |
HEX NUMBER

;

Dart Programming Language Specification 53

NUMBER:
DIGIT+ (‘.’ DIGIT+)? EXPONENT? |

‘.’ DIGIT+ EXPONENT?
;

EXPONENT:
(‘e’ | ‘E’) (’+’ | ‘-‘)? DIGIT+

;

HEX NUMBER:
‘0x’ HEX DIGIT+ |
‘0X’ HEX DIGIT+

;

HEX DIGIT:
‘a’..’f’ |
‘A’..’F’ |
DIGIT

;

If a numeric literal begins with the prefix ‘0x’ or ‘0X’, it denotes the hex-
adecimal integer represented by the part of the literal following ‘0x’ (respectively
‘0X’). Otherwise, if the numeric literal does not include a decimal point it de-
notes a decimal integer. Otherwise, the numeric literal denotes a 64 bit double
precision floating point number as specified by the IEEE 754 standard.

In principle, the range of integers supported by a Dart implementations is
unlimited. In practice, it is limited by available memory. Implementations may
also be limited by other considerations.

For example, implementations may choose to limit the range to facilitate ef-
ficient compilation to Javascript. These limitations should be relaxed as soon as
technologically feasible.

It is a compile-time error for a class to attempt to extend, mix in or imple-
ment int. It is a compile-time error for a class to attempt to extend, mix in or
implement double. It is a compile-time error for any type other than the types
int and double to attempt to extend, mix in or implement num.

An integer literal is either a hexadecimal integer literal or a decimal integer
literal. Invoking the getter runtimeType on an integer literal returns the Type
object that is the value of the expression int. The static type of an integer literal
is int.

A literal double is a numeric literal that is not an integer literal. Invoking
the getter runtimeType on a literal double returns the Type object that is the
value of the expression double. The static type of a literal double is double.

16.4 Booleans booleans

Dart Programming Language Specification 54

The reserved words true and false denote objects that represent the boolean
values true and false respectively. They are the boolean literals.

booleanLiteral:
true |
false

;

Both true and false implement the built-in class bool. It is a compile-time
error for a class to attempt to extend, mix in or implement bool.

It follows that the two boolean literals are the only two instances of bool.
Invoking the getter runtimeType on a boolean literal returns the Type object

that is the value of the expression bool. The static type of a boolean literal is
bool.

16.4.1 Boolean Conversion booleanConversion

Boolean conversion maps any object o into a boolean. Boolean conversion
is defined by the function application

(bool v){
assert(v != null);
return identical(v, true);

}(o)
Boolean conversion is used as part of control-flow constructs and boolean

expressions. Ideally, one would simply insist that control-flow decisions be based
exclusively on booleans. This is straightforward in a statically typed setting. In
a dynamically typed language, it requires a dynamic check. Sophisticated virtual
machines can minimize the penalty involved. Alas, Dart must be compiled into
Javascript. Boolean conversion allows this to be done efficiently.

At the same time, this formulation differs radically from Javascript, where
most numbers and objects are interpreted as true. Dart’s approach prevents
usages such if (a-b) ... ; because it does not agree with the low level conventions
whereby non-null objects or non-zero numbers are treated as true. Indeed, there
is no way to derive true from a non-boolean object via boolean conversion, so
this kind of low level hackery is nipped in the bud.

Dart also avoids the strange behaviors that can arise due to the interaction
of boolean conversion with autoboxing in Javascript. A notorious example is the
situation where false can be interpreted as true. In Javascript, booleans are
not objects, and instead are autoboxed into objects where “needed”. If false gets
autoboxed into an object, that object can be coerced into true (as it is a non-null
object).

Because boolean conversion requires its parameter to be a boolean, any con-
struct that makes use of boolean conversion will cause a dynamic type error in
checked mode if the value to be converted is not a boolean.

Dart Programming Language Specification 55

16.5 Strings strings

A string is a sequence of UTF-16 code units.
This decision was made for compatibility with web browsers and Javascript.

Earlier versions of the specification required a string to be a sequence of valid
Unicode code points. Programmers should not depend on this distinction.

stringLiteral:
(multilineString | singleLineString)+

;

A string can be either a sequence of single line strings or a multiline string.

singleLineString:
‘”’ stringContentDQ* ‘”’ |
‘’’ stringContentSQ* ‘’’ |
‘r’ ‘’’ (˜(‘’’ | NEWLINE))* ‘’’ |
‘r’ ‘”’ (˜(‘”’ | NEWLINE))* ‘”’

;

A single line string is delimited by either matching single quotes or matching
double quotes.

Hence, ‘abc’ and “abc” are both legal strings, as are ‘He said “To be or not to
be” did he not?’ and “He said ‘To be or not to be’ didn’t he”. However “This ‘ is
not a valid string, nor is ‘this”.

The grammar ensures that a single line string cannot span more than one line of
source code, unless it includes an interpolated expression that spans multiple lines.

Adjacent strings are implicitly concatenated to form a single string literal.
Here is an example
print(”A string” ”and then another”); // prints: A stringand then another
Dart also supports the operator + for string concatenation.
The + operator on Strings requires a String argument. It does not coerce its

argument into a string. This helps avoid puzzlers such as
print(”A simple sum: 2 + 2 = ” +

2 + 2);
which this prints ’A simple sum: 2 + 2 = 22’ rather than ’A simple sum:

2 + 2 = 4’. However, the use the concatenation operation is still discouraged
for efficiency reasons. Instead, the recommended Dart idiom is to use string
interpolation.

print(”A simple sum: 2 + 2 = ${2+2}”);
String interpolation works well for most cases. The main situation where it

is not fully satisfactory is for string literals that are too large to fit on a line.
Multiline strings can be useful, but in some cases, we want to visually align the
code. This can be expressed by writing smaller strings separated by whitespace,
as shown here:

Dart Programming Language Specification 56

’Imagine this is a very long string that does not fit on a line. What shall we do? ’
’Oh what shall we do? ’
’We shall split it into pieces ’
’like so’.

multilineString:
‘"""’ stringContentTDQ* ‘"""’ |
‘’’’’ stringContentTSQ* ‘’’’’ |
‘r’ ‘"""’ (˜ ‘"""’)* ‘"""’ |
‘r’ ‘’’’’ (˜ ‘’’’’)* ‘’’’’

;

ESCAPE SEQUENCE:
‘\ n’ |

‘\ r’ |
‘\ f’ |
‘\ b’ |
‘\ t’ |
‘\ v’ |
‘\ x’ HEX DIGIT HEX DIGIT |
‘\ u’ HEX DIGIT HEX DIGIT HEX DIGIT HEX DIGIT |
‘\ u{’ HEX DIGIT SEQUENCE ‘}’

;

HEX DIGIT SEQUENCE:
HEX DIGIT HEX DIGIT? HEX DIGIT? HEX DIGIT? HEX DIGIT?

HEX DIGIT?
;

Multiline strings are delimited by either matching triples of single quotes or
matching triples of double quotes. If the first line of a multiline string consists
solely of the whitespace characters defined by the production WHITESPACE
20.1), possibly prefixed by \, then that line is ignored, including the new line
at its end.

The idea is to ignore whitespace, where whitespace is defined as tabs, spaces
and newlines. These can be represented directly, but since for most characters
prefixing by backslash is an identity, we allow those forms as well.

Strings support escape sequences for special characters. The escapes are:

• \n for newline, equivalent to \x0A.

• \r for carriage return, equivalent to \x0D.

• \f for form feed, equivalent to \x0C.

• \b for backspace, equivalent to \x08.

Dart Programming Language Specification 57

• \t for tab, equivalent to \x09.

• \v for vertical tab, equivalent to \x0B

• \x HEX DIGIT1 HEX DIGIT2, equivalent to
\u{HEX DIGIT1 HEX DIGIT2}.

• \u HEX DIGIT1 HEX DIGIT2 HEX DIGIT3 HEX DIGIT4, equiv-
alent to \u{HEX DIGIT1 HEX DIGIT2 HEX DIGIT3 HEX DIGIT4}.

• \u{HEX DIGIT SEQUENCE} is the unicode scalar value represented
by the HEX DIGIT SEQUENCE. It is a compile-time error if the
value of the HEX DIGIT SEQUENCE is not a valid unicode scalar
value.

• $ indicating the beginning of an interpolated expression.

• Otherwise, \k indicates the character k for any k not in {n, r, f, b, t, v, x, u}.

Any string may be prefixed with the character ‘r’, indicating that it is a
raw string, in which case no escapes or interpolations are recognized.

It is a compile-time error if a non-raw string literal contains a character
sequence of the form \x that is not followed by a sequence of two hexadecimal
digits. It is a compile-time error if a non-raw string literal contains a charac-
ter sequence of the form \u that is not followed by either a sequence of four
hexadecimal digits, or by curly brace delimited sequence of hexadecimal digits.

stringContentDQ:
˜(‘\’ | ‘"’ | ‘$’ | NEWLINE) |
‘\’ ˜(NEWLINE) |
stringInterpolation

;

stringContentSQ:
˜(‘\’ | ‘’’ | ‘$’ | NEWLINE) |
‘\’ ˜(NEWLINE) |
stringInterpolation

;

stringContentTDQ:
˜(‘\’ | ‘"""’ | ‘$’) |
stringInterpolation

;

stringContentTSQ:
˜(‘\’ | ‘’’’’ | ‘$’) |
stringInterpolation

Dart Programming Language Specification 58

;

NEWLINE:
\ n |
\ r

;

All string literals implement the built-in class String. It is a compile-time
error for a class to attempt to extend, mix in or implement String. Invoking the
getter runtimeType on a string literal returns the Type object that is the value
of the expression String. The static type of a string literal is String.

16.5.1 String Interpolation stringInterpolation

It is possible to embed expressions within non-raw string literals, such that
the these expressions are evaluated, and the resulting values are converted into
strings and concatenated with the enclosing string. This process is known as
string interpolation.

stringInterpolation:
‘$’ IDENTIFIER NO DOLLAR |
‘$’ ‘{’ expression ‘}’

;

The reader will note that the expression inside the interpolation could itself
include strings, which could again be interpolated recursively.

An unescaped $ character in a string signifies the beginning of an interpo-
lated expression. The $ sign may be followed by either:

• A single identifier id that must not contain the $ character.

• An expression e delimited by curly braces.

The form $id is equivalent to the form ${id}. An interpolated string
‘s1${e}s2’ is equivalent to the concatenation of the strings ‘s1’, e.toString()
and ‘s2’. Likewise an interpolated string “s1${e}s2” is equivalent to the con-
catenation of the strings “s1”, e.toString() and “s2”.

16.6 Symbols symbols

A symbol literal denotes the name of a declaration in a Dart program.

symbolLiteral:
‘#’ (operator | (identifier (‘.’ identifier)*))

;

Dart Programming Language Specification 59

A symbol literal #id where id does not begin with an underscore (’ ’) is
equivalent to the expression const Symbol(’id’).

A symbol literal # id evaluates to the object that would be returned by
the call mirror.getPrivateSymbol(’id’) where mirror is an instance of the class
LibraryMirror defined in the library dart:mirrors, reflecting the current library.

One may well ask what is the motivation for introducing literal symbols? In
some languages, symbols are canonicalized whereas strings are not. However
literal strings are already canonicalized in Dart. Symbols are slightly easier to
type compared to strings and their use can become strangely addictive, but this is
not nearly sufficient justification for adding a literal form to the language. The
primary motivation is related to the use of reflection and a web specific practice
known as minification.

Minification compresses identifiers consistently throughout a program in or-
der to reduce download size. This practice poses difficulties for reflective pro-
grams that refer to program declarations via strings. A string will refer to an
identifier in the source, but the identifier will no longer be used in the minified
code, and reflective code using these would fail. Therefore, Dart reflection uses
objects of type Symbol rather than strings. Instances of Symbol are guaranteed to
be stable with repeat to minification. Providing a literal form for symbols makes
reflective code easier to read and write. The fact that symbols are easy to type
and can often act as convenient substitutes for enums are secondary benefits.

The static type of a symbol literal is Symbol.

16.7 Lists lists

A list literal denotes a list, which is an integer indexed collection of objects.

listLiteral:
const? typeArguments? ‘[’ (expressionList ‘, ’?)? ‘]’

;

A list may contain zero or more objects. The number of elements in a list
is its size. A list has an associated set of indices. An empty list has an empty
set of indices. A non-empty list has the index set {0 . . . n − 1} where n is the
size of the list. It is a runtime error to attempt to access a list using an index
that is not a member of its set of indices.

If a list literal begins with the reserved word const, it is a constant list literal
which is a compile-time constant (16.1) and therefore evaluated at compile-time.
Otherwise, it is a run-time list literal and it is evaluated at run-time. Only run-
time list literals can be mutated after they are created. Attempting to mutate
a constant list literal will result in a dynamic error.

It is a compile-time error if an element of a constant list literal is not a
compile-time constant. It is a compile-time error if the type argument of a
constant list literal includes a type parameter. The binding of a type parameter
is not known at compile-time, so we cannot use type parameters inside compile-
time constants.

Dart Programming Language Specification 60

The value of a constant list literal const < E > [e1 . . . en] is an object a
whose class implements the built-in class List < E >. The ith element of a is
vi+1, where vi is the value of the compile-time expression ei. The value of a
constant list literal const [e1 . . . en] is defined as the value of the constant list
literal const< dynamic > [e1 . . . en].

Let list1 = const < V > [e11 . . . e1n] and list2 = const < U > [e21 . . . e2n]
be two constant list literals and let the elements of list1 and list2 evaluate to
o11 . . . o1n and o21 . . . o2n respectively. Iff identical(o1i, o2i) for i ∈ 1..n and
V = U then identical(list1, list2).

In other words, constant list literals are canonicalized.
A run-time list literal < E > [e1 . . . en] is evaluated as follows:

• First, the expressions e1 . . . en are evaluated in order they appear in the
program, yielding objects o1 . . . on.

• A fresh instance (10.6.1) a, of size n, whose class implements the built-in
class List < E > is allocated.

• The operator []= is invoked on a with first argument i and second argu-
ment oi+1, 0 ≤ i < n.

• The result of the evaluation is a.

Note that this document does not specify an order in which the elements are
set. This allows for parallel assignments into the list if an implementation so desires.
The order can only be observed in checked mode (and may not be relied upon): if
element i is not a subtype of the element type of the list, a dynamic type error will
occur when a[i] is assigned oi−1.

A runtime list literal [e1 . . . en] is evaluated as < dynamic > [e1 . . . en].
There is no restriction precluding nesting of list literals. It follows from the

rules above that < List < int >> [[1, 2, 3], [4, 5, 6]] is a list with type parameter
List < int >, containing two lists with type parameter dynamic.

The static type of a list literal of the form const< E > [e1 . . . en] or the
form < E > [e1 . . . en] is List < E >. The static type a list literal of the form
const [e1 . . . en] or the form [e1 . . . en] is List < dynamic >.

It is tempting to assume that the type of the list literal would be computed
based on the types of its elements. However, for mutable lists this may be unwar-
ranted. Even for constant lists, we found this behavior to be problematic. Since
compile-time is often actually runtime, the runtime system must be able to per-
form a complex least upper bound computation to determine a reasonably precise
type. It is better to leave this task to a tool in the IDE. It is also much more
uniform (and therefore predictable and understandable) to insist that whenever
types are unspecified they are assumed to be the unknown type dynamic.

16.8 Maps maps

A map literal denotes a map object.

Dart Programming Language Specification 61

mapLiteral:
const? typeArguments? ‘{’ (mapLiteralEntry (‘, ’ mapLitera-

lEntry)* ‘, ’?)? ‘}’
;

mapLiteralEntry:
expression ‘:’ expression

;

A map literal consists of zero or more entries. Each entry has a key and a
value. Each key and each value is denoted by an expression.

If a map literal begins with the reserved word const, it is a constant map lit-
eral which is a compile-time constant (16.1) and therefore evaluated at compile-
time. Otherwise, it is a run-time map literal and it is evaluated at run-time.
Only run-time map literals can be mutated after they are created. Attempting
to mutate a constant map literal will result in a dynamic error.

It is a compile-time error if either a key or a value of an entry in a constant
map literal is not a compile-time constant. It is a compile-time error if the key
of an entry in a constant map literal is an instance of a class that implements
the operator == unless the key is a string, an integer, a literal symbol or the
result of invoking a constant constructor of class Symbol. It is a compile-time
error if the type arguments of a constant map literal include a type parameter.

The value of a constant map literal const< K, V > {k1 : e1 . . . kn : en} is an
object m whose class implements the built-in class Map < K, V >. The entries
of m are ui : vi, i ∈ 1..n, where ui is the value of the compile-time expression ki

and vi is the value of the compile-time expression ei. The value of a constant
map literal const {k1 : e1 . . . kn : en} is defined as the value of a constant map
literal const < dynamic, dynamic > {k1 : e1 . . . kn : en}.

Let map1 = const< K, V > {k11 : e11 . . . k1n : e1n} and map2 = const<
J, U > {k21 : e21 . . . k2n : e2n} be two constant map literals. Let the keys of
map1 and map2 evaluate to s11 . . . s1n and s21 . . . s2n respectively, and let the
elements of map1 and map2 evaluate to o11 . . . o1n and o21 . . . o2n respectively.
Iff identical(o1i, o2i) and identical(s1i, s2i) for i ∈ 1..n, and K = J, V = U then
identical(map1, map2).

In other words, constant map literals are canonicalized.
A runtime map literal < K, V > {k1 : e1 . . . kn : en} is evaluated as follows:

• First, the expression ki is evaluated yielding object ui, the ei is vaulted
yielding object oi, for i ∈ 1..n in left to right order, yielding objects
u1, o1 . . . un, on.

• A fresh instance (10.6.1) m whose class implements the built-in class
Map < K, V > is allocated.

• The operator []= is invoked on m with first argument ui and second ar-
gument oi, i ∈ 1..n.

Dart Programming Language Specification 62

• The result of the evaluation is m.

A runtime map literal {k1 : e1 . . . kn : en} is evaluated as
< dynamic, dynamic > {k1 : e1 . . . kn : en}.
Iff all the keys in a map literal are compile-time constants, it is a static

warning if the values of any two keys in a map literal are equal.
A map literal is ordered: iterating over the keys and/or values of the maps

always happens in the order the keys appeared in the source code.
Of course, if a key repeats, the order is defined by first occurrence, but the value

is defined by the last.
The static type of a map literal of the form const< K, V > {k1 : e1 . . . kn :

en} or the form < K, V > {k1 : e1 . . . kn : en} is Map < K, V >. The static type
a map literal of the form const{k1 : e1 . . . kn : en} or the form {k1 : e1 . . . kn :
en} is Map < dynamic, dynamic >.

16.9 Throw throw

The throw expression is used to raise an exception.

throwExpression:
throw expression

;

throwExpressionWithoutCascade:
throw expressionWithoutCascade

;

The current exception is the last exception raised and not subsequently
caught at a given moment during runtime.

Evaluation of a throw expression of the form throw e; proceeds as follows:
The expression e is evaluated yielding a value v.

There is no requirement that the expression e evaluate to a special kind of
exception or error object.

If e evaluates to null (16.2), then a NullThrownError is thrown. Otherwise
the current exception is set to v and the current return value (17.12) becomes
undefined.

The current exception and the current return value must never be simul-
taneously defined, as they represent mutually exclusive options for exiting the
current function.

Let f be the immediately enclosing function.
If f is synchronous (9), control is transferred to the nearest dynamically

enclosing exception handler.
If f is marked sync* then a dynamically enclosing exception handler encloses

the call to moveNext() that initiated the evaluation of the throw expression.
If f is asynchronous then if there is a dynamically enclosing exception

Dart Programming Language Specification 63

handler h (17.11) introduced by the current activation, control is transferred to
h, otherwise f terminates.

The rules for where a thrown exception will be handled must necessarily
differ between the synchronous and asynchronous cases. Asynchronous func-
tions cannot transfer control to an exception handler defined outside themselves.
Asynchronous generators post exceptions to their stream. Other asynchronous
functions report exceptions via their future.

If the object being thrown is an instance of class Error or a subclass thereof,
its stackTrace getter will return the stack trace current at the point where the
the object was first thrown.

The static type of a throw expression is ⊥.

16.10 Function Expressions functionExpressions

A function literal is an object that encapsulates an executable unit of code.

functionExpression:
formalParameterList functionBody

;

The class of a function literal implements the built-in class Function.
The static type of a function literal of the form

(T1 a1, . . . , Tn an, [Tn+1 xn+1 = d1, . . . , Tn+k xn+k = dk]) => e is
(T1 . . . , Tn, [Tn+1 xn+1, . . . , Tn+k xn+k])→ T0, where T0 is the static type of

e.
The static type of a function literal of the form

(T1 a1, . . . , Tn an, [Tn+1 xn+1 = d1, . . . , Tn+k xn+k = dk]) async => e is
(T1 . . . , Tn, [Tn+1 xn+1, . . . , Tn+k xn+k]) → Future < flatten(T0) >, where T0
is the static type of e and flatten(T) is defined as follows:

If T = Future < S > then flatten(T) = flatten(S).
Otherwise if T <: Future then let S be a type such that T << Future <

S > and for all R, if T << Future < R > then S << R.
This ensures that Future < S > is the most specific instantiation of Future

that is a super type of T .
Then flatten(T) = S.
In any other circumstance, flatten(T) = T .
We collapse multiple layers of futures into one. If e evaluates to a future f ,

the future will not invoke its then() callback until f completes to a non-future
value, and so the result of an await is never a future, and the result of an async
function will never have type Future< X > where X itself is an invocation of
Future.

The exception to that would be a type X that extended or implemented Future.
In that case, only one unwrapping takes place. As an example of why this is
done, consider

class C<T> implements Future<C<C<T>>> . . .

Dart Programming Language Specification 64

Here, a naive definition of flatten diverges; there is not even a fixed point.
A more sophisticated definition of flatten is possible, but the existing rule deals
with most realistic examples while remaining relatively simple to understand.

The static type of a function literal of the form
(T1 a1, . . . , Tn an, {Tn+1 xn+1 : d1, . . . , Tn+k xn+k : dk}) => e is
(T1 . . . , Tn, {Tn+1 xn+1, . . . , Tn+k xn+k}) → T0, where T0 is the static type

of e.
The static type of a function literal of the form

(T1 a1, . . . , Tn an, {Tn+1 xn+1 : d1, . . . , Tn+k xn+k : dk}) async => e
is (T1 . . . , Tn, {Tn+1 xn+1, . . . , Tn+k xn+k}) → Future < flatten(T0) >,

where T0 is the static type of e.
The static type of a function literal of the form

(T1 a1, . . . , Tn an, [Tn+1 xn+1 = d1, . . . , Tn+k xn+k = dk]){s}
is (T1 . . . , Tn, [Tn+1 xn+1, . . . , Tn+k xn+k])→ dynamic.
The static type of a function literal of the form

(T1 a1, . . . , Tn an, [Tn+1 xn+1 = d1, . . . , Tn+k xn+k = dk]) async {s} is
(T1 . . . , Tn, [Tn+1 xn+1, . . . , Tn+k xn+k])→ Future.

The static type of a function literal of the form
(T1 a1, . . . , Tn an, [Tn+1 xn+1 = d1, . . . , Tn+k xn+k = dk]) async ∗ {s} is

(T1 . . . , Tn, [Tn+1 xn+1, . . . , Tn+k xn+k])→ Stream.
The static type of a function literal of the form

(T1 a1, . . . , Tn an, [Tn+1 xn+1 = d1, . . . , Tn+k xn+k = dk]) sync ∗ {s} is
(T1 . . . , Tn, [Tn+1 xn+1, . . . , Tn+k xn+k])→ Iterable.

The static type of a function literal of the form
(T1 a1, . . . , Tn an, [Tn+1 xn+1 = d1, . . . , Tn+k xn+k = dk]){s}
is (T1 . . . , Tn, [Tn+1 xn+1, . . . , Tn+k xn+k])→ dynamic.
The static type of a function literal of the form

(T1 a1, . . . , Tn an, {Tn+1 xn+1 : d1, . . . , Tn+k xn+k : dk}) async {s}
is (T1 . . . , Tn, {Tn+1 xn+1, . . . , Tn+k xn+k})→ Future.
The static type of a function literal of the form

(T1 a1, . . . , Tn an, {Tn+1 xn+1 : d1, . . . , Tn+k xn+k : dk}) async ∗ {s}
is (T1 . . . , Tn, {Tn+1 xn+1, . . . , Tn+k xn+k})→ Stream.
The static type of a function literal of the form

(T1 a1, . . . , Tn an, {Tn+1 xn+1 : d1, . . . , Tn+k xn+k : dk}) sync ∗ {s}
is (T1 . . . , Tn, {Tn+1 xn+1, . . . , Tn+k xn+k})→ Iterable.
In all of the above cases, whenever Ti, 1 ≤ i ≤ n + k, is not specified, it is

considered to have been specified as dynamic.

16.11 This this

The reserved word this denotes the target of the current instance member
invocation.

thisExpression:
this

Dart Programming Language Specification 65

;

The static type of this is the interface of the immediately enclosing class.
We do not support self-types at this point.
It is a compile-time error if this appears, implicitly or explicitly, in a top-

level function or variable initializer, in a factory constructor, or in a static
method or variable initializer, or in the initializer of an instance variable.

16.12 Instance Creation instanceCreation

Instance creation expressions invoke constructors to produce instances.
It is a static type warning if the type T in an instance creation expression

of one of the forms
new T.id(a1, . . . , an, xn+1 : an+1, . . . , xn+k : an+k),
new T (a1, . . . , an, xn+1 : an+1, . . . , xn+k : an+k),
const T.id(a1, . . . , an, xn+1 : an+1, . . . , xn+k : an+k),
const T (a1, . . . , an, xn+1 : an+1, . . . , xn+k : an+k) is malformed (19.2) or

malbounded (19.8).
It is a compile-time error if the type T in an instance creation expression

of one of the forms
new T.id(a1, . . . , an, xn+1 : an+1, . . . , xn+k : an+k),
new T (a1, . . . , an, xn+1 : an+1, . . . , xn+k : an+k),
const T.id(a1, . . . , an, xn+1 : an+1, . . . , xn+k : an+k),
const T (a1, . . . , an, xn+1 : an+1, . . . , xn+k : an+k)
is an enumerated type (13).

16.12.1 New new

The new expression invokes a constructor (10.6).

newExpression:
new type (‘.’ identifier)? arguments

;

Let e be a new expression of the form
new T.id(a1, . . . , an, xn+1 : an+1, . . . , xn+k : an+k) or the form
new T (a1, . . . , an, xn+1 : an+1, . . . , xn+k : an+k).
If T is a class or parameterized type accessible in the current scope then:

• If e is of the form new T.id(a1, . . . , an, xn+1 : an+1, . . . , xn+k : an+k) it is
a static warning if T.id is not the name of a constructor declared by the
type T . If e is of the form new T (a1, . . . , an, xn+1 : an+1, . . . , xn+k : an+k)
it is a static warning if the type T does not declare a constructor with the
same name as the declaration of T .

Dart Programming Language Specification 66

If T is a parameterized type (19.8) S < U1, . . . , Um >, let R = S. If T
is not a parameterized type, let R = T . Furthermore, if e is of the form new
T.id(a1, . . . , an, xn+1 : an+1, . . . , xn+k : an+k) then let q be the constructor T.id,
otherwise let q be the constructor T .

If R is a generic with l = m type parameters then

• If T is not a parameterized type, then for i ∈ 1..l, let Vi = dynamic.

• If T is a parameterized type then let Vi = Ui for i ∈ 1..m.

If R is a generic with l 6= m type parameters then for i ∈ 1..l, let Vi =
dynamic. In any other case, let Vi = Ui for i ∈ 1..m.

Evaluation of e proceeds as follows:
First, the argument list (a1, . . . , an, xn+1 : an+1, . . . , xn+k : an+k) is evalu-

ated.
If T is a deferred type with prefix p, then if p has not been successfully

loaded, a dynamic error occurs.
Then, if q is a non-factory constructor of an abstract class then an Abstract-

ClassInstantiationError is thrown.
If T is malformed or if T is a type variable a dynamic error occurs. In

checked mode, if T or any of its superclasses is malbounded a dynamic error
occurs. Otherwise, if q is not defined or not accessible, a NoSuchMethodError
is thrown. If q has less than n positional parameters or more than n required
parameters, or if q lacks any of the keyword parameters {xn+1, . . . , xn+k} a
NoSuchMethodError is thrown.

Otherwise, if q is a generative constructor (10.6.1), then:
Note that it this point we are assured that the number of actual type arguments

match the number of formal type parameters.
A fresh instance (10.6.1), i, of class R is allocated. For each instance variable

f of i, if the variable declaration of f has an initializer expression ef , then ef

is evaluated, with the type parameters (if any) of R bound to the actual type
arguments V1, . . . , Vl, to an object of and f is bound to of . Otherwise f is
bound to null.

Observe that this is not in scope in ef . Hence, the initialization cannot depend
on other properties of the object being instantiated.

Next, q is executed with this bound to i, the type parameters (if any)
of R bound to the actual type arguments V1, . . . , Vl and the formal parameter
bindings that resulted from the evaluation of the argument list. The result of
the evaluation of e is i.

Otherwise, q is a factory constructor (10.6.2). Then:
If q is a redirecting factory constructor of the form T (p1, . . . , pn+k) = c;

or of the form T.id(p1, . . . , pn+k) = c; then the result of the evaluation of e is
equivalent to evaluating the expression

[V1, . . . , Vm/T1, . . . , Tm](new c(a1, . . . , an, xn+1 : an+1, . . . , xn+k : an+k)). If
evaluation of q causes q to be re-evaluated cyclically, a runtime error occurs.

Otherwise, the body of q is executed with respect to the bindings that
resulted from the evaluation of the argument list and the type parameters (if

Dart Programming Language Specification 67

any) of q bound to the actual type arguments V1, . . . , Vl resulting in an object
i. The result of the evaluation of e is i.

It is a static warning if q is a constructor of an abstract class and q is not
a factory constructor.

The above gives precise meaning to the idea that instantiating an abstract class
leads to a warning. A similar clause applies to constant object creation in the next
section.

In particular, a factory constructor can be declared in an abstract class and
used safely, as it will either produce a valid instance or lead to a warning inside
its own declaration.

The static type of an instance creation expression of either the form
new T.id(a1, . . . , an, xn+1 : an+1, . . . , xn+k : an+k)
or the form
new T (a1, . . . , an, xn+1 : an+1, . . . , xn+k : an+k)
is T . It is a static warning if the static type of ai, 1 ≤ i ≤ n + k may not be

assigned to the type of the corresponding formal parameter of the constructor
T.id (respectively T).

16.12.2 Const const

A constant object expression invokes a constant constructor (10.6.3).

constObjectExpression:
const type (’.’ identifier)? arguments

;

Let e be a constant object expression of the form
const T.id(a1, . . . , an, xn+1 : an+1, . . . , xn+k : an+k)
or the form const T (a1, . . . , an, xn+1 : an+1, . . . , xn+k : an+k). It is a

compile-time error if T does not denote a class accessible in the current scope.
It is a compile-time error if T is a deferred type (19.1).

In particular, T may not be a type variable.
If T is a parameterized type, it is a compile-time error if T includes a type

variable among its type arguments.
If e is of the form const T.id(a1, . . . , an, xn+1 : an+1, . . . , xn+k : an+k) it is a

compile-time error if T.id is not the name of a constant constructor declared by
the type T . If e is of the form const T (a1, . . . , an, xn+1 : an+1, . . . , xn+k : an+k)
it is a compile-time error if the type T does not declare a constant constructor
with the same name as the declaration of T .

In all of the above cases, it is a compile-time error if ai, i ∈ 1..n + k, is not
a compile-time constant expression.

Evaluation of e proceeds as follows:
First, if e is of the form

const T.id(a1, . . . , an, xn+1 : an+1, . . . , xn+k : an+k)
then let i be the value of the expression

Dart Programming Language Specification 68

new T.id(a1, . . . , an, xn+1 : an+1, . . . , xn+k : an+k).
Otherwise, e must be of the form

const T (a1, . . . , an, xn+1 : an+1, . . . , xn+k : an+k),
in which case let i be the result of evaluating
new T (a1, . . . , an, xn+1 : an+1, . . . , xn+k : an+k).
Then:

• If during execution of the program, a constant object expression has al-
ready evaluated to an instance j of class R with type arguments Vi, 1 ≤
i ≤ m, then:

– For each instance variable f of i, let vif be the value of the field f in
i, and let vjf be the value of the field f in j. If identical(vif , vjf) for
all fields f in i, then the value of e is j, otherwise the value of e is i.

• Otherwise the value of e is i.

In other words, constant objects are canonicalized. In order to determine if an
object is actually new, one has to compute it; then it can be compared to any
cached instances. If an equivalent object exists in the cache, we throw away the
newly created object and use the cached one. Objects are equivalent if they have
identical fields and identical type arguments. Since the constructor cannot induce
any side effects, the execution of the constructor is unobservable. The constructor
need only be executed once per call site, at compile-time.

The static type of a constant object expression of either the form
const T.id(a1, . . . , an, xn+1 : an+1, . . . , xn+k : an+k)
or the form
const T (a1, . . . , an, xn+1 : an+1, . . . , xn+k : an+k)
is T . It is a static warning if the static type of ai, 1 ≤ i ≤ n + k may not be

assigned to the type of the corresponding formal parameter of the constructor
T.id (respectively T).

It is a compile-time error if evaluation of a constant object results in an
uncaught exception being thrown.

To see how such situations might arise, consider the following examples:
class A {

final x;
const A(p): x = p * 10;

}
const A(”x”); // compile-time error
const A(5); // legal
class IntPair {
const IntPair(this.x, this.y);
final int x;
final int y;
operator *(v) => new IntPair(x*v, y*v);
}
const A(const IntPair(1,2)); // compile-time error: illegal in a subtler way

Dart Programming Language Specification 69

Due to the rules governing constant constructors, evaluating the constructor
A() with the argument ”x” or the argument const IntPair(1, 2) would cause it to
throw an exception, resulting in a compile-time error.

Given an instance creation expression of the form const q(a1, . . . , an) it is
a static warning if q is a constructor of an abstract class (10.4) but q is not a
factory constructor.

16.13 Spawning an Isolate spawningAnIsolate

Spawning an isolate is accomplished via what is syntactically an ordinary
library call, invoking one of the functions spawnUri() or spawn() defined in the
dart:isolate library. However, such calls have the semantic effect of creating a
new isolate with its own memory and thread of control.

An isolate’s memory is finite, as is the space available to its thread’s call
stack. It is possible for a running isolate to exhaust its memory or stack, result-
ing in a run-time error that cannot be effectively caught, which will force the
isolate to be suspended.

As discussed in section 7, the handling of a suspended isolate is the responsibility
of the embedder.

16.14 Function Invocation functionInvocation

Function invocation occurs in the following cases: when a function expres-
sion (16.10) is invoked (16.14.4), when a method (16.17), getter (16.16, 16.18)
or setter (16.19) is invoked or when a constructor is invoked (either via in-
stance creation (16.12), constructor redirection (10.6.1) or super initialization).
The various kinds of function invocation differ as to how the function to be
invoked, f , is determined, as well as whether this (16.11) is bound. Once f
has been determined, the formal parameters of f are bound to corresponding
actual arguments. When the body of f is executed it will be executed with the
aforementioned bindings.

If f is marked async (9), then a fresh instance (10.6.1) o implementing the
built-in class Future is associated with the invocation and immediately returned
to the caller. The body of f is scheduled for execution at some future time. The
future o will complete when f terminates. The value used to complete o is the
current return value (17.12), if it is defined, and the current exception (16.9)
otherwise.

If f is marked async* (9), then a fresh instance s implementing the built-in
class Stream is associated with the invocation and immediately returned. When
s is listened to, execution of the body of f will begin. When f terminates:

• If the current return value is defined then, if s has been canceled then its
cancellation future is completed with null (16.2).

• If the current exception x is defined:

– x is added to s.

Dart Programming Language Specification 70

– If s has been canceled then its cancellation future is completed with
x as an error.

• s is closed.

When an asynchronous generator’s stream has been canceled, cleanup will
occur in the finally clauses (17.11) inside the generator. We choose to direct
any exceptions that occur at this time to the cancellation future rather than have
them be lost.

If f is asynchronous then, when f terminates, any open stream subscriptions
associated with any asynchronous for loops (17.6.3) or yield-each statements
(17.16.2) executing within f are canceled, in the order of their nesting, innermost
first.

Such streams may be left open by for loops that were escaped when an excep-
tion was thrown within them for example.

If f is marked sync* (9), then a fresh instance i implementing the built-in
class Iterable is associated with the invocation and immediately returned.

A Dart implementation will need to provide a specific implementation of Iterable
that will be returned by sync* methods. A typical strategy would be to produce an
instance of a subclass of class IterableBase defined in dart:core. The only method
that needs to be added by the Dart implementation in that case is iterator.

The iterable implementation must comply with the contract of Iterable and
should not take any steps identified as exceptionally efficient in that contract.

The contract explicitly mentions a number of situations where certain iterables
could be more efficient than normal. For example, by precomputing their length.
Normal iterables must iterate over their elements to determine their length. This
is certainly true in the case of a synchronous generator, where each element is
computed by a function. It would not be acceptable to pre-compute the results of
the generator and cache them, for example.

When iteration over the iterable is started, by getting an iterator j from the
iterable and calling moveNext(), execution of the body of f will begin. When f
terminates, j is positioned after its last element, so that its current value is null
and the current call to moveNext() on j returns false, as will all further calls.

Each iterator starts a separate computation. If the sync* function is impure,
the sequence of values yielded by each iterator may differ.

One can derive more than one iterator from a given iterable. Note that op-
erations on the iterable itself can create distinct iterators. An example would be
length. It is conceivable that different iterators might yield sequences of different
length. The same care needs to be taken when writing sync* functions as when
writing an Iterator class. In particular, it should handle multiple simultaneous it-
erators gracefully. If the iterator depends on external state that might change,
it should check that the state is still valid after every yield (and maybe throw a
ConcurrentModificationError if it isn’t).

Each iterator runs with its own shallow copies of all local variables; in
particular, each iterator has the same initial arguments, even if their bindings
are modified by the function. Two executions of an iterator interact only via
state outside the function.

Dart Programming Language Specification 71

If f is synchronous and is not a generator (9) then execution of the body of
f begins immediately. When f terminates the current return value is returned
to the caller.

Execution of f terminates when the first of the following occurs:

• An exception is thrown and not caught within the current function acti-
vation.

• A return statement (17.12) immediately nested in the body of f is executed
and not intercepted in a finally (17.11) clause.

• The last statement of the body completes execution.

16.14.1 Actual Argument List Evaluation actualArguments

Function invocation involves evaluation of the list of actual arguments to
the function and binding of the results to the function’s formal parameters.

arguments:
‘(’ argumentList? ‘)’

;

argumentList:
namedArgument (‘, ’ namedArgument)* |
expressionList (‘, ’ namedArgument)*

;

namedArgument:
label expression

;

Evaluation of an actual argument list of the form
(a1, . . . , am, q1 : am+1, . . . , ql : am+l)
proceeds as follows:
The arguments a1, . . . , am+l are evaluated in the order they appear in the

program, yielding objects o1, . . . , om+l.
Simply stated, an argument list consisting of m positional arguments and l

named arguments is evaluated from left to right.

16.14.2 Binding Actuals to Formals bindingActualsToFormals

Let f be a function with h required parameters, let p1 . . . pn be the positional
parameters of f and let ph+1, . . . , ph+k be the optional parameters declared by
f .

An evaluated actual argument list o1 . . . om+l derived from an actual ar-

Dart Programming Language Specification 72

gument list of the form (a1, . . . , am, q1 : am+1, . . . , ql : am+l) is bound to the
formal parameters of f as follows:

We have an argument list consisting of m positional arguments and l named
arguments. We have a function with h required parameters and k optional param-
eters. The number of positional arguments must be at least as large as the number
of required parameters, and no larger than the number of positional parameters.
All named arguments must have a corresponding named parameter. You may not
provide a given named argument more than once. If an optional parameter has no
corresponding argument, it gets its default value. In checked mode, all arguments
must belong to subtypes of the type of their corresponding formal.

If l > 0, then it is necessarily the case that n = h, because a method cannot
have both optional positional parameters and named parameters.

If m < h, or m > n, a NoSuchMethodError is thrown. Furthermore,
each qi, 1 ≤ i ≤ l, must have a corresponding named parameter in the set
{pn+1, . . . , pn+k} or a NoSuchMethodError is thrown. Then pi is bound to
oi, i ∈ 1..m, and qj is bound to om+j , j ∈ 1..l. All remaining formal param-
eters of f are bound to their default values.

All of these remaining parameters are necessarily optional and thus have default
values.

In checked mode, it is a dynamic type error if oi is not null and the actual
type (19.8.1) of pi is not a supertype of the type of oi, i ∈ 1..m. In checked
mode, it is a dynamic type error if om+j is not null and the actual type (19.8.1)
of qj is not a supertype of the type of om+j , j ∈ 1..l.

It is a compile-time error if qi = qj for any i 6= j.
Let Ti be the static type of ai, let Si be the type of pi, i ∈ 1..h + k and let

Sq be the type of the named parameter q of f . It is a static warning if Tj may
not be assigned to Sj , j ∈ 1..m. It is a static warning if m < h or if m > n.
Furthermore, each qi, 1 ≤ i ≤ l, must have a corresponding named parameter
in the set {pn+1, . . . , pn+k} or a static warning occurs. It is a static warning if
Tm+j may not be assigned to Sqj , j ∈ 1..l.

16.14.3 Unqualified Invocation unqualifiedInvocation

An unqualified function invocation i has the form
id(a1, . . . , an, xn+1 : an+1, . . . , xn+k : an+k),
where id is an identifier.
If there exists a lexically visible declaration named id, let fid be the inner-

most such declaration. Then:

• If fid is a prefix object, a compile-time error occurs.

• If fid is a local function, a library function, a library or static getter or a
variable then i is interpreted as a function expression invocation (16.14.4).

• Otherwise, if fid is a static method of the enclosing class C, i is equivalent
to C.id(a1, . . . , an, xn+1 : an+1, . . . , xn+k : an+k).

Dart Programming Language Specification 73

• Otherwise, fid is considered equivalent to the ordinary method invocation
this.id(a1, . . . , an, xn+1 : an+1, . . . , xn+k : an+k).

Otherwise, if i occurs inside a top level or static function (be it function,
method, getter, or setter) or variable initializer, evaluation of i causes a No-
SuchMethodError to be thrown.

If i does not occur inside a top level or static function, i is equivalent to
this.id(a1, . . . , an, xn+1 : an+1, . . . , xn+k : an+k).

16.14.4 Function Expression Invocation functionExpressionInvocation

A function expression invocation i has the form
ef (a1, . . . , an, xn+1 : an+1, . . . , xn+k : an+k),
where ef is an expression. If ef is an identifier id, then id must necessarily

denote a local function, a library function, a library or static getter or a variable
as described above, or i is not considered a function expression invocation. If ef

is a property extraction expression (16.18), then i is is not a function expression
invocation and is instead recognized as an ordinary method invocation (16.17.1).

a.b(x) is parsed as a method invocation of method b() on object a, not as
an invocation of getter b on a followed by a function call (a.b)(x). If a method
or getter b exists, the two will be equivalent. However, if b is not defined on a,
the resulting invocation of noSuchMethod() would differ. The Invocation passed
to noSuchMethod() would describe a call to a method b with argument x in the
former case, and a call to a getter b (with no arguments) in the latter.

Otherwise:
A function expression invocation ef (a1, . . . , an, xn+1 : an+1, . . . , xn+k : an+k)

is equivalent to ef .call(a1, . . . , an, xn+1 : an+1, . . . , xn+k : an+k).
The implication of this definition, and the other definitions involving the method

call(), is that user defined types can be used as function values provided they define
a call method. The method call is special in this regard. The signature of the
call method determines the signature used when using the object via the built-in
invocation syntax.

It is a static warning if the static type F of ef may not be assigned to a
function type. If F is not a function type, the static type of i is dynamic.
Otherwise the static type of i is the declared return type of F .

16.15 Lookup lookup

16.15.1 Method Lookup methodLookup

The result of a lookup of a method m in object o with respect to library
L is the result of a lookup of method m in class C with respect to library L,
where C is the class of o.

The result of a lookup of method m in class C with respect to library L is:
If C declares a concrete instance method named m that is accessible to L, then
that method is the result of the lookup, and we say that the method was looked

Dart Programming Language Specification 74

up in C. Otherwise, if C has a superclass S, then the result of the lookup is
the result of looking up m in S with respect to L. Otherwise, we say that the
method lookup has failed.

The motivation for skipping abstract members during lookup is largely to
allow smoother mixin composition.

16.15.2 Getter and Setter Lookup getterAndSetterLookup

The result of a lookup of a getter (respectively setter) m in object o with
respect to library L is the result of looking up getter (respectively setter) m in
class C with respect to L, where C is the class of o.

The result of a lookup of a getter (respectively setter) m in class C with
respect to library L is: If C declares a concrete instance getter (respectively
setter) named m that is accessible to L, then that getter (respectively setter)
is the result of the lookup, and we say that the getter (respectively setter) was
looked up in C. Otherwise, if C has a superclass S, then the result of the lookup
is the result of looking up getter (respectively setter) m in S with respect to L.
Otherwise, we say that the lookup has failed.

The motivation for skipping abstract members during lookup is largely to
allow smoother mixin composition.

16.16 Top level Getter Invocation topLevelGetterInvocation

Evaluation of a top-level getter invocation i of the form m, where m is an
identifier, proceeds as follows:

The getter function m is invoked. The value of i is the result returned by
the call to the getter function. Note that the invocation is always defined. Per
the rules for identifier references, an identifier will not be treated as a top-level
getter invocation unless the getter i is defined.

The static type of i is the declared return type of m.

16.17 Method Invocation methodInvocation

Method invocation can take several forms as specified below.

16.17.1 Ordinary Invocation ordinaryInvocation

An ordinary method invocation can be conditional or unconditional.
Evaluation of a conditional ordinary method invocation e of the form
o?.m(a1, . . . , an, xn+1 : an+1, . . . , xn+k : an+k)
is equivalent to the evaluation of the expression
((x) => x == null?null : x.m(a1, . . . , an, xn+1 : an+1, . . . , xn+k : an+k))(o).
unless o is a type literal, in which case it is equivalent to o.m(a1, . . . , an, xn+1 :

an+1, . . . , xn+k : an+k).
The static type of e is the same as the static type of o.m(a1, . . . , an, xn+1 :

an+1, . . . , xn+k : an+k). Exactly the same static warnings that would be caused

Dart Programming Language Specification 75

by o.m(a1, . . . , an, xn+1 : an+1, . . . , xn+k : an+k) are also generated in the case
of o?.m(a1, . . . , an, xn+1 : an+1, . . . , xn+k : an+k).

An unconditional ordinary method invocation i has the form
o.m(a1, . . . , an, xn+1 : an+1, . . . , xn+k : an+k).
Evaluation of an unconditional ordinary method invocation i of the form

o.m(a1, . . . , an, xn+1 : an+1, . . . , xn+k : an+k)
proceeds as follows:
First, the expression o is evaluated to a value vo. Next, the argument list

(a1, . . . , an, xn+1 : an+1, . . . , xn+k : an+k) is evaluated yielding actual argument
objects o1, . . . , on+k. Let f be the result of looking up (16.15.1) method m in
vo with respect to the current library L.

Let p1 . . . ph be the required parameters of f , let p1 . . . pm be the positional
parameters of f and let ph+1, . . . , ph+l be the optional parameters declared by
f .

We have an argument list consisting of n positional arguments and k named
arguments. We have a function with h required parameters and l optional parame-
ters. The number of positional arguments must be at least as large as the number
of required parameters, and no larger than the number of positional parameters. All
named arguments must have a corresponding named parameter.

If n < h, or n > m, the method lookup has failed. Furthermore, each
xi, n + 1 ≤ i ≤ n + k, must have a corresponding named parameter in the set
{pm+1, . . . , ph+l} or the method lookup also fails. If vo is an instance of Type
but o is not a constant type literal, then if m is a method that forwards (9.1) to
a static method, method lookup fails. Otherwise method lookup has succeeded.

If the method lookup succeeded, the body of f is executed with respect to
the bindings that resulted from the evaluation of the argument list, and with
this bound to vo. The value of i is the value returned after f is executed.

If the method lookup has failed, then let g be the result of looking up getter
(16.15.2) m in vo with respect to L. If vo is an instance of Type but o is not a
constant type literal, then if g is a getter that forwards to a static getter, getter
lookup fails. If the getter lookup succeeded, let vg be the value of the getter invo-
cation o.m. Then the value of i is the result of invoking the static method Func-
tion.apply() with arguments v.g, [o1, . . . , on], {xn+1 : on+1, . . . , xn+k : on+k}.

If getter lookup has also failed, then a new instance im of the predefined
class Invocation is created, such that :

• im.isMethod evaluates to true.

• im.memberName evaluates to the symbol m.

• im.positionalArguments evaluates to an immutable list with the same values
as [o1, . . . , on].

• im.namedArguments evaluates to an immutable map with the same keys
and values as {xn+1 : on+1, . . . , xn+k : on+k}.

Then the method noSuchMethod() is looked up in vo and invoked with
argument im, and the result of this invocation is the result of evaluating i.

Dart Programming Language Specification 76

However, if the implementation found cannot be invoked with a single positional
argument, the implementation of noSuchMethod() in class Object is invoked on
vo with argument im′, where im′ is an instance of Invocation such that :

• im’.isMethod evaluates to true.

• im’.memberName evaluates to #noSuchMethod.

• im’.positionalArguments evaluates to an immutable list whose sole element
is im.

• im’.namedArguments evaluates to the value of const {}.

and the result of the latter invocation is the result of evaluating i.
It is possible to bring about such a situation by overriding noSuchMethod()

with the wrong number of arguments:
class Perverse { noSuchMethod(x,y) => x + y; }
new Perverse.unknownMethod();
Notice that the wording carefully avoids re-evaluating the receiver o and the

arguments ai.
Let T be the static type of o. It is a static type warning if T does not have

an accessible (6.2) instance member named m unless either:

• T or a superinterface of T is annotated with an annotation denoting a
constant identical to the constant @proxy defined in dart:core. Or

• T is Type, e is a constant type literal and the class corresponding to e has
a static getter named m.

• T is Function and m is call. The type Function is treated as if it has a
call method for any possible signature of call. The expectation is that any
concrete subclass of Function will implement call. Note that a warning will
be issue if this is not the case. Furthermore, any use of call on a subclass
of Function that fails to implement call will also provoke a a warning,
as this exemption is limited to type Function, and does not apply to its
subtypes.

If T.m exists, it is a static type warning if the type F of T.m may not be
assigned to a function type. If T.m does not exist, or if F is not a function type,
the static type of i is dynamic; otherwise the static type of i is the declared
return type of F .

It is a compile-time error to invoke any of the methods of class Object on
a prefix object (18.1) or on a constant type literal that is immediately followed
by the token ‘.’.

16.17.2 Cascaded Invocations cascadedInvocations

A cascaded method invocation has the form e..suffix where e is an expression
and suffix is a sequence of operator, method, getter or setter invocations.

Dart Programming Language Specification 77

cascadeSection:
‘..’ (cascadeSelector arguments*) (assignableSelector arguments*)*

(assignmentOperator expressionWithoutCascade)?
;

cascadeSelector:
‘[’ expression ‘]’ |
identifier

;

A cascaded method invocation expression of the form e..suffix is equivalent
to the expression (t){t.suffix; return t;}(e).

With the introduction of null-aware conditional assignable expressions (16.32),
it would make sense to extend cascades with a null-aware conditional form as
well. One might define e?..suffix to be equivalent to the expression (t){t?.suffix;
return t;}(e).

The present specification has not added such a construct, in the interests of
simplicity and rapid language evolution. However, Dart implementations may
experiment with such constructs, as noted in section 2.

16.17.3 Super Invocation superInvocation

A super method invocation i has the form
super.m(a1, . . . , an, xn+1 : an+1, . . . , xn+k : an+k).
Evaluation of i proceeds as follows:
First, the argument list (a1, . . . , an, xn+1 : an+1, . . . , xn+k : an+k) is evalu-

ated yielding actual argument objects o1, . . . , on+k. Let g be the method cur-
rently executing, and let C be the class in which g was looked up (16.15.1). Let
Sdynamic be the superclass of C, and let f be the result of looking up method
(16.15.1) m in Sdynamic with respect to the current library L. Let p1 . . . ph be
the required parameters of f , let p1 . . . pm be the positional parameters of f and
let ph+1, . . . , ph+l be the optional parameters declared by f .

If n < h, or n > m, the method lookup has failed. Furthermore, each
xi, n + 1 ≤ i ≤ n + k, must have a corresponding named parameter in the set
{pm+1, . . . , ph+l} or the method lookup also fails. Otherwise method lookup
has succeeded.

If the method lookup succeeded, the body of f is executed with respect to
the bindings that resulted from the evaluation of the argument list, and with
this bound to the current value of this. The value of i is the value returned
after f is executed.

If the method lookup has failed, then let g be the result of looking up
getter (16.15.2) m in Sdynamic with respect to L. If the getter lookup suc-
ceeded, let vg be the value of the getter invocation super.m. Then the value
of i is the result of invoking the static method Function.apply() with arguments
vg, [o1, . . . , on], {xn+1 : on+1, . . . , xn+k : on+k}.

Dart Programming Language Specification 78

If getter lookup has also failed, then a new instance im of the predefined
class Invocation is created, such that :

• im.isMethod evaluates to true.

• im.memberName evaluates to the symbol m.

• im.positionalArguments evaluates to an immutable list with the same values
as [o1, . . . , on].

• im.namedArguments evaluates to an immutable map with the same keys
and values as {xn+1 : on+1, . . . , xn+k : on+k}.

Then the method noSuchMethod() is looked up in Sdynamic and invoked on this
with argument im, and the result of this invocation is the result of evaluating i.
However, if the implementation found cannot be invoked with a single positional
argument, the implementation of noSuchMethod() in class Object is invoked on
this with argument im′, where im′ is an instance of Invocation such that :

• im’.isMethod evaluates to true.

• im’.memberName evaluates to #noSuchMethod.

• im’.positionalArguments evaluates to an immutable list whose sole element
is im.

• im’.namedArguments evaluates to the value of const {}.

and the result of this latter invocation is the result of evaluating i.
It is a compile-time error if a super method invocation occurs in a top-level

function or variable initializer, in an instance variable initializer or initializer
list, in class Object, in a factory constructor or in a static method or variable
initializer.

Let Sstatic be the superclass of the immediately enclosing class. It is a static
type warning if Sstatic does not have an accessible (6.2) instance member named
m unless Sstatic or a superinterface of Sstatic is annotated with an annotation
denoting a constant identical to the constant @proxy defined in dart:core. If
Sstatic.m exists, it is a static type warning if the type F of Sstatic.m may not
be assigned to a function type. If Sstatic.m does not exist, or if F is not a
function type, the static type of i is dynamic; otherwise the static type of i is
the declared return type of F .

16.17.4 Sending Messages sendingMessages

Messages are the sole means of communication among isolates. Messages
are sent by invoking specific methods in the Dart libraries; there is no specific
syntax for sending a message.

In other words, the methods supporting sending messages embody primitives of
Dart that are not accessible to ordinary code, much like the methods that spawn
isolates.

Dart Programming Language Specification 79

16.18 Property Extraction propertyExtraction

Property extraction allows for a member or constructor to be accessed as a
property rather than a function. A property extraction can be either:

1. A closurization which converts a method or constructor into a closure. Or

2. A getter invocation which returns the result of invoking of a getter method.

Closures derived from members via closurization are colloquially known as tear-
offs

Property extraction can be either conditional or unconditional.
Tear-offs using the x#id syntax cannot be conditional at this time; this

is inconsistent, and is likely to be addressed in the near future, perhaps via
notation such as x?#id . As indicated in section 2, experimentation in this
area is allowed.

Evaluation of a conditional property extraction expression e of the form e1?.id
is equivalent to the evaluation of the expression ((x) => x == null?null :
x.id)(e1). unless e1 is a type literal, in which case it is equivalent to e1.m.

The static type of e is the same as the static type of e1.id. Let T be the
static type of e1 and let y be a fresh variable of type T . Exactly the same static
warnings that would be caused by y.id are also generated in the case of e1?.id.

Unconditional property extraction takes several syntactic forms: e.m (16.18.1),
super.m (16.18.2), e#m (16.18.3), new T#m (16.18.4), new T# (16.18.5) and
super#m (16.18.6), where e is an expression, m is an identifier optionally fol-
lowed by an equal sign and T is a type.

16.18.1 Getter Access and Method Extraction getterAccessAndMethodExtraction

Evaluation of a property extraction i of the form e.m proceeds as follows:
First, the expression e is evaluated to an object o. Let f be the result of

looking up (16.15.1) method (10.1) m in o with respect to the current library
L. If o is an instance of Type but e is not a constant type literal, then if f is a
method that forwards (9.1) to a static method, method lookup fails. If method
lookup succeeds then i evaluates to the closurization of method f on object o
(16.18.7).

Note that f is never an abstract method, because method lookup skips abstract
methods. Hence, if m refers to an abstract method, we will continue to the next
step. However, since methods and getters never override each other, getter lookup
will necessarily fail as well, and noSuchMethod() will ultimately be invoked. The
regrettable implication is that the error will refer to a missing getter rather than an
attempt to closurize an abstract method.

Otherwise, i is a getter invocation. Let f be the result of looking up (16.15.2)
getter (10.2) m in o with respect to L. If o is an instance of Type but e is not a
constant type literal, then if f is a getter that forwards to a static getter, getter
lookup fails. Otherwise, the body of f is executed with this bound to o. The
value of i is the result returned by the call to the getter function.

If the getter lookup has failed, then a new instance im of the predefined

Dart Programming Language Specification 80

class Invocation is created, such that :
• im.isGetter evaluates to true.

• im.memberName evaluates to the symbol m.

• im.positionalArguments evaluates to the value of const [].

• im.namedArguments evaluates to the value of const {}.
Then the method noSuchMethod() is looked up in o and invoked with argument
im, and the result of this invocation is the result of evaluating i. However, if the
implementation found cannot be invoked with a single positional argument, the
implementation of noSuchMethod() in class Object is invoked on o with argument
im′, where im′ is an instance of Invocation such that :
• im’.isMethod evaluates to true.

• im’.memberName evaluates to #noSuchMethod.

• im’.positionalArguments evaluates to an immutable list whose sole element
is im.

• im’.namedArguments evaluates to the value of const {}.
and the result of this latter invocation is the result of evaluating i.
It is a compile-time error if m is a member of class Object and e is either a

prefix object (18.1) or a constant type literal.
This precludes int.toString but not (int).toString because in the latter case, e

is a parenthesized expression.
Let T be the static type of e. It is a static type warning if T does not have

a method or getter named m unless either:
• T or a superinterface of T is annotated with an annotation denoting a

constant identical to the constant @proxy defined in dart:core. Or

• T is Type, e is a constant type literal and the class corresponding to e has
a static method or getter named m.

The static type of i is:
• The declared return type of T.m, if T has an accessible instance getter

named m.

• The declared return type of m, if T is Type, e is a constant type literal and
the class corresponding to e declares an accessible static getter named m.

• The static type of function T.m if T has an accessible instance method
named m.

• The static type of function m, if T is Type, e is a constant type literal and
the class corresponding to e declares an accessible static method named
m.

• The type dynamic otherwise.

Dart Programming Language Specification 81

16.18.2 Super Getter Access and Method Closurization superGetterAccessAndMethodClosurization

Evaluation of a property extraction i of the form super.m proceeds as
follows:

Let g be the method currently executing, and let C be the class in which
g was looked up. Let Sdynamic be the superclass of C. Let f be the result
of looking up method m in Sdynamic with respect to the current library L. If
method lookup succeeds then i evaluates to the closurization of method f with
respect to superclass Sdynamic (16.18.10).

Otherwise, i is a getter invocation. Let f be the result of looking up getter
m in Sdynamic with respect to L. The body of f is executed with this bound
to the current value of this. The value of i is the result returned by the call to
the getter function.

If the getter lookup has failed, then a new instance im of the predefined
class Invocation is created, such that :

• im.isGetter evaluates to true.

• im.memberName evaluates to the symbol m.

• im.positionalArguments evaluates to the value of const [].

• im.namedArguments evaluates to the value of const {}.

Then the method noSuchMethod() is looked up in Sdynamic and invoked with
argument im, and the result of this invocation is the result of evaluating i.
However, if the implementation found cannot be invoked with a single positional
argument, the implementation of noSuchMethod() in class Object is invoked on
this with argument im′, where im′ is an instance of Invocation such that :

• im’.isMethod evaluates to true.

• im’.memberName evaluates to #noSuchMethod.

• im’.positionalArguments evaluates to an immutable list whose sole element
is im.

• im’.namedArguments evaluates to the value of const {}.

and the result of this latter invocation is the result of evaluating i.
Let Sstatic be the superclass of the immediately enclosing class. It is a static

type warning if Sstatic does not have an accessible instance method or getter
named m.

The static type of i is:

• The declared return type of Sstatic.m, if Sstatic has an accessible instance
getter named m.

• The static type of function Sstatic.m if Sstatic has an accessible instance
method named m.

• The type dynamic otherwise.

Dart Programming Language Specification 82

16.18.3 General Closurization generalClosurization

Evaluation of a property extraction i of the form e#m proceeds as follows:
First, the expression e is evaluated to an object o. Then:
if m is a setter name, let f be the result of looking up setter m in o with

respect to the current library L. If o is an instance of Type but e is not a constant
type literal, then if f is a method that forwards to a static setter, setter lookup
fails. If setter lookup succeeds then i evaluates to the closurization of setter f
on object o (16.18.7). If setter lookup failed, a NoSuchMethodError is thrown.

It would be more in keeping with the rules of Dart to invoke noSuchMethod
in this and similar cases below. However, current implementations of noSuch-
Method cannot distinguish between an invocation of a closurization and an ac-
tual call. It is likely that future versions of Dart will provide a mechanism to
detect whether noSuchMethod is invoked in response to a closurization, say by
means of a getter like isTearOff. By being conservative at this stage and insist-
ing on failure, we can ensure that no functioning code will break when/if this
functionality is introduced.

If m is not a setter name, let f be the result of looking up method m
in o with respect to the current library L. If o is an instance of Type but e
is not a constant type literal, then if f is a method that forwards to a static
method, method lookup fails. If method lookup succeeds then i evaluates to the
closurization of method f on object o (16.18.7).

If method lookup failed, let f be the result of looking up getter m in o
with respect to the current library L. If o is an instance of Type but e is not a
constant type literal, then if f is a method that forwards to a static getter, getter
lookup fails. If getter lookup succeeds then i evaluates to the closurization of
getter f on object o (16.18.7). If getter lookup failed, a NoSuchMethodError is
thrown.

It is a compile-time error if e is a prefix object (18.1) and m refers to a type
or a member of class Object.

This restriction is in line with other limitations on the use of prefixes as objects.
The only permitted uses of p#m are closurizing top level methods and getters
imported via the prefix p. Top level methods are directly available by their qualified
names: p.m. However, getters and setters are not, and allowing their closurization
is the whole point of the e#m syntax.

Let T be the static type of e. It is a static type warning if T does not have
an accessible instance method or getter named m unless either:

• T or a superinterface of T is annotated with an annotation denoting a
constant identical to the constant @proxy defined in dart:core. Or

• T is Type, e is a constant type literal and the class corresponding to e
declares an accessible static method or getter named m.

• T is Function and m is call.

The static type of i is:

Dart Programming Language Specification 83

• The static type of function T.m, if T has an accessible instance member
named m.

• The static type of function T.m, if T is Type, e is a constant type literal
and the class corresponding to e declares an accessible static member or
constructor named m.

• Function if T is Function and m is call.

• The type dynamic otherwise.

16.18.4 Named Constructor Extraction namedConstructorExtraction

Evaluation of a property extraction i of the form new T#m proceeds as
follows:

If T is a malformed type (19.1), a dynamic error occurs. If T is a deferred
type with prefix p, then if p has not been successfully loaded, a dynamic error
occurs. If T does not denote a class, a dynamic error occurs. In checked mode,
if T or any of its superclasses is malbounded a dynamic error occurs. Otherwise,
if the type T does not declare an accessible named constructor f with name m,
a NoSuchMethodError is thrown. Otherwise, i evaluates to the closurization of
constructor f of type T (16.18.8).

Note that if T is malformed or malbounded, a static warning occurs, as always.
The static type of i is the type of the constructor function, if T denotes

a class in the surrounding scope with an accessible constructor f named m.
Otherwise the static type of i is dynamic.

16.18.5 Anonymous Constructor Extraction anonymousConstructorExtraction

Evaluation of a property extraction i of the form new T# proceeds as
follows:

If T is a malformed type (19.1), a dynamic error occurs. If T is a deferred
type with prefix p, then if p has not been successfully loaded, a dynamic error
occurs. If T does not denote a class, a dynamic error occurs. In checked
mode, if T or any of its superclasses is malbounded a dynamic error occurs.
Otherwise, if the type T does not declare an accessible anonymous constructor,
a NoSuchMethodError is thrown. Otherwise, i evaluates to the closurization of
the anonymous constructor of type T (16.18.9).

Again, note that if T is malformed or malbounded, existing rules ensure that a
static warning occurs. This also means that x# where x is not a type will always
give a static warning.

The static type of i is the type of the constructor function T (), if T denotes
a class in the surrounding scope with an anonymous constructor T (). Otherwise
the static type of i is dynamic.

Dart Programming Language Specification 84

16.18.6 General Super Property Extraction generalSuperPropertyExtraction

Evaluation of a property extraction i of the form super#m proceeds as
follows:

Let g be the method currently executing, and let C be the class in which g
was looked up. Let Sdynamic be the superclass of C.

If m is a setter name, let f be the result of looking up setter m in Sdynamic

with respect to the current library L. If setter lookup succeeds then i evaluates
to the closurization of setter f with respect to superclass Sdynamic (16.18.10).
If setter lookup failed, a NoSuchMethodError is thrown.

If m is not a setter name, let f be the result of looking up method m in
Sdynamic with respect to the current library L. If method lookup succeeds then
i evaluates to the closurization of method m with respect to superclass Sdynamic

(16.18.10).
Otherwise, let f be the result of looking up getter m in Sdynamic with

respect to the current library L. If getter lookup succeeds then i evaluates to
the closurization of getter f with respect to superclass Sdynamic (16.18.10). If
getter lookup failed, a NoSuchMethodError is thrown.

Let Sstatic be the superclass of the immediately enclosing class.It is a static
type warning if Sstatic does not have an accessible instance member named m.

The static type of i is the static type of the function Sstatic.m, if Sstatic

has an accessible instance member named m. Otherwise the static type of i is
dynamic.

16.18.7 Ordinary Member Closurization ordinaryMemberClosurization

Let o be an object, and let u be a fresh final variable bound to o. The
closurization of method f on object o is defined to be equivalent to:

• (a){return u op a;} if f is named op and op is one of <, >, <=, >=, ==,
-, +, /, ˜/, *, %, |, ˆ, &, <<, >> (this precludes closurization of unary
-).

• (){return ˜ u;} if f is named ˜.

• (a){return u[a];} if f is named [].

• (a, b){return u[a] = b;} if f is named [] =.

• (r1, . . . , rn, {p1 : d1, . . . , pk : dk}) {
return u.m(r1, . . . , rn, p1 : p1, . . . , pk : pk);
}
if f is named m and has required parameters r1, . . . , rn, and named pa-
rameters p1, . . . , pk with defaults d1, . . . , dk.

• (r1, . . . , rn, [p1 = d1, . . . , pk = dk]){
return u.m(r1, . . . , rn, p1, . . . , pk);

Dart Programming Language Specification 85

}
if f is named m and has required parameters r1, . . . , rn, and optional
positional parameters p1, . . . , pk with defaults d1, . . . , dk.

Except that iff identical(o1, o2) then o1#m == o2#m, o1.m == o2.m, o1#m
== o2.m and o1.m == o2#m.

The closurization of getter f on object o is defined to be equivalent to
(){return u.m;} if f is named m, except that iff identical(o1, o2) then o1#m ==
o2#m.

The closurization of setter f on object o is defined to be equivalent to
(a){return u.m = a;} if f is named m =, except that iff identical(o1, o2) then
o1#m = == o2#m =.

There is no guarantee that identical(o1.m, o2.m). Dart implementations are not
required to canonicalize these or any other closures.

The special treatment of equality in this case facilitates the use of extracted
property functions in APIs where callbacks such as event listeners must often be
registered and later unregistered. A common example is the DOM API in web
browsers.

Observations:
One cannot closurize a constructor, getter or a setter via the dot based syntax.

One must use the # based form. One can tell whether one implemented a property
via a method or via a field/getter, which means that one has to plan ahead as to
what construct to use, and that choice is reflected in the interface of the class.

16.18.8 Named Constructor Closurization namedConstructorClosurization

The closurization of constructor f of type T is defined to be equivalent to:

• (r1, . . . , rn, {p1 : d1, . . . , pk : dk}) {
return new T.m(r1, . . . , rn, p1 : p1, . . . , pk : pk);
}
if f is a named constructor with name m that has required parameters
r1, . . . , rn, and named parameters p1, . . . , pk with defaults d1, . . . , dk.

• (r1, . . . , rn, [p1 = d1, . . . , pk = dk]){
return new T.m(r1, . . . , rn, p1, . . . , pk);
}
if f is a named constructor with name m that has required parame-
ters r1, . . . , rn, and optional positional parameters p1, . . . , pk with defaults
d1, . . . , dk.

Except that iff identical(T1, T2) then new T1#m == new T2#m.
The above implies that for non-parameterized types, one can rely on the equality

of closures resulting from closurization on the “same” type. For parameterized types,
one cannot, since there is no requirement to canonicalize them.

Dart Programming Language Specification 86

16.18.9 Anonymous Constructor Closurization anonymousConstructorClosurization

The closurization of anonymous constructor f of type T is defined to be
equivalent to:

• (r1, . . . , rn, {p1 : d1, . . . , pk : dk}) {
return new T (r1, . . . , rn, p1 : p1, . . . , pk : pk);
}
if f is an anonymous constructor that has required parameters r1, . . . , rn,
and named parameters p1, . . . , pk with defaults d1, . . . , dk.

• (r1, . . . , rn, [p1 = d1, . . . , pk = dk]){
return new T (r1, . . . , rn, p1, . . . , pk);
}
if f is an anonymous constructor that has required parameters r1, . . . , rn,
and optional positional parameters p1, . . . , pk with defaults d1, . . . , dk.

Except that iff identical(T1, T2) then new T1# == new T2#.

16.18.10 Super Closurization superClosurization

The closurization of method f with respect to superclass S is defined to be
equivalent to:

• (a){return super op a;} if f is named op and op is one of <, >, <=, >=,
==, -, +, /, ˜/, *, %, |, ˆ, &, <<, >>.

• (){return ˜super;} if f is named ˜.

• (a){return super[a];} if f is named [].

• (a, b){return super[a] = b;} if f is named [] =.

• (r1, . . . , rn, {p1 : d1, . . . , pk : dk}) {
return super.m(r1, . . . , rn, p1 : p1, . . . , pk : pk);
}
if f is named m and has required parameters r1, . . . , rn, and named pa-
rameters p1, . . . , pk with defaults d1, . . . , dk.

• (r1, . . . , rn, [p1 = d1, . . . , pk = dk]){
return super.m(r1, . . . , rn, p1, . . . , pk);
}
if f is named m and has required parameters r1, . . . , rn, and optional
positional parameters p1, . . . , pk with defaults d1, . . . , dk.

Dart Programming Language Specification 87

Except that iff two closurizations were created by code declared in the same
class with identical bindings of this then super1#m == super2#m, super1.m
== super2.m, super1#m == super2.m and super1.m == super2#m.

The closurization of getter f with respect to superclass S is defined to be
equivalent to (){return super.m;} if f is named m, except that iff two closur-
izations were created by code declared in the same class with identical bindings
of this then super1#m == super2#m.

The closurization of setter f with respect to superclass S is defined to be
equivalent to (a){return super.m = a;} if f is named m =, except that iff two
closurizations were created by code declared in the same class with identical
bindings of this then super1#m = == super2#m =.

16.19 Assignment assignment

An assignment changes the value associated with a mutable variable or
property.

assignmentOperator:
‘=’ |
compoundAssignmentOperator

;

Evaluation of an assignment a of the form v = e proceeds as follows:
Let d be the innermost declaration whose name is v or v =, if it exists. It

is a compile-time error if d denotes a prefix object.
If d is the declaration of a local variable, the expression e is evaluated to an

object o. Then, the variable v is bound to o unless v is final or const, in which
case a dynamic error occurs. If no error occurs, the value of the assignment
expression is o.

If d is the declaration of a library variable, top level getter or top level setter,
the expression e is evaluated to an object o. Then the setter v = is invoked with
its formal parameter bound to o. The value of the assignment expression is o.

Otherwise, if d is the declaration of a static variable, static getter or static
setter in class C, then the assignment is equivalent to the assignment C.v = e.

Otherwise, If a occurs inside a top level or static function (be it function,
method, getter, or setter) or variable initializer, evaluation of a causes e to be
evaluated, after which a NoSuchMethodError is thrown.

Otherwise, the assignment is equivalent to the assignment this.v = e.
In checked mode, it is a dynamic type error if o is not null and the interface

of the class of o is not a subtype of the actual type (19.8.1) of v.
It is a static type warning if the static type of e may not be assigned to the

static type of v. The static type of the expression v = e is the static type of e.
Evaluation of an assignment a of the form e1?.v = e2 is equivalent to the

evaluation of the expression ((x) => x == null?null : x.v = e2)(e1) unless e1
is a type literal, in which case it is equivalent to e1.v = e2. . The static type

Dart Programming Language Specification 88

of a is the static type of e2. Let T be the static type of e1 and let y be a fresh
variable of type T . Exactly the same static warnings that would be caused by
y.v = e2 are also generated in the case of e1?.v = e2.

Evaluation of an assignment of the form e1.v = e2 proceeds as follows:
The expression e1 is evaluated to an object o1. Then, the expression e2 is

evaluated to an object o2. Then, the setter v = is looked up (16.15.2) in o1 with
respect to the current library. If o1 is an instance of Type but e1 is not a constant
type literal, then if v = is a setter that forwards (9.1) to a static setter, setter
lookup fails. Otherwise, the body of v = is executed with its formal parameter
bound to o2 and this bound to o1.

If the setter lookup has failed, then a new instance im of the predefined
class Invocation is created, such that :

• im.isSetter evaluates to true.

• im.memberName evaluates to the symbol v=.

• im.positionalArguments evaluates to an immutable list with the same values
as [o2].

• im.namedArguments evaluates to the value of const {}.

Then the method noSuchMethod() is looked up in o1 and invoked with
argument im. However, if the implementation found cannot be invoked with
a single positional argument, the implementation of noSuchMethod() in class
Object is invoked on o1 with argument im′, where im′ is an instance of Invocation
such that :

• im’.isMethod evaluates to true.

• im’.memberName evaluates to #noSuchMethod.

• im’.positionalArguments evaluates to an immutable list whose sole element
is im.

• im’.namedArguments evaluates to the value of const {}.

The value of the assignment expression is o2 irrespective of whether setter
lookup has failed or succeeded.

In checked mode, it is a dynamic type error if o2 is not null and the interface
of the class of o2 is not a subtype of the actual type of e1.v.

Let T be the static type of e1. It is a static type warning if T does not have
an accessible instance setter named v = unless either:

• T or a superinterface of T is annotated with an annotation denoting a
constant identical to the constant @proxy defined in dart:core. Or

• T is Type, e1 is a constant type literal and the class corresponding to e1
has a static setter named v =.

Dart Programming Language Specification 89

It is a static type warning if the static type of e2 may not be assigned to
the static type of the formal parameter of the setter v =. The static type of the
expression e1.v = e2 is the static type of e2.

Evaluation of an assignment of the form super.v = e proceeds as follows:
Let g be the method currently executing, and let C be the class in which

g was looked up. Let Sdynamic be the superclass of C. The expression e is
evaluated to an object o. Then, the setter v = is looked up (16.15.2) in Sdynamic

with respect to the current library. The body of v = is executed with its formal
parameter bound to o and this bound to this.

If the setter lookup has failed, then a new instance im of the predefined
class Invocation is created, such that :

• im.isSetter evaluates to true.

• im.memberName evaluates to the symbol v=.

• im.positionalArguments evaluates to an immutable list with the same values
as [o].

• im.namedArguments evaluates to the value of const {}.

Then the method noSuchMethod() is looked up in Sdynamic and invoked
with argument im. However, if the implementation found cannot be invoked
with a single positional argument, the implementation of noSuchMethod() in
class Object is invoked on this with argument im′, where im′ is an instance of
Invocation such that :

• im’.isMethod evaluates to true.

• im’.memberName evaluates to #noSuchMethod.

• im’.positionalArguments evaluates to an immutable list whose sole element
is im.

• im’.namedArguments evaluates to the value of const {}.

The value of the assignment expression is o irrespective of whether setter
lookup has failed or succeeded.

In checked mode, it is a dynamic type error if o is not null and the interface
of the class of o is not a subtype of the actual type of S.v.

Let Sstatic be the superclass of the immediately enclosing class. It is a
static type warning if Sstatic does not have an accessible instance setter named
v = unless Sstatic or a superinterface of Sstatic is annotated with an annotation
denoting a constant identical to the constant @proxy defined in dart:core.

It is a static type warning if the static type of e may not be assigned to the
static type of the formal parameter of the setter v =. The static type of the
expression super.v = e is the static type of e.

Evaluation of an assignment of the form e1[e2] = e3 is equivalent to the
evaluation of the expression (a, i, e){a.[]=(i, e); return e; } (e1, e2, e3). The
static type of the expression e1[e2] = e3 is the static type of e3.

Dart Programming Language Specification 90

An assignment of the form super[e1] = e2 is equivalent to the expression
super.[e1] = e2. The static type of the expression super[e1] = e2 is the static
type of e2.

It is a static warning if an assignment of the form v = e occurs inside a
top level or static function (be it function, method, getter, or setter) or variable
initializer and there is neither a local variable declaration with name v nor setter
declaration with name v = in the lexical scope enclosing the assignment.

It is a compile-time error to invoke any of the setters of class Object on a
prefix object (18.1) or on a constant type literal that is immediately followed
by the token ‘.’.

16.19.1 Compound Assignment compoundAssignment

Evaluation of a compound assignment of the form v ??= e is equivalent to
the evaluation of the expression ((x) => x == null ? v = e : x)(v) where x is
a fresh variable that is not used in e.

Evaluation of a compound assignment of the form C.v ??= e, where C is a
type literal, is equivalent to the evaluation of the expression ((x) => x == null?
C.v = e : x)(C.v) where x is a fresh variable that is not used in e.

The two rules above also apply when the variable v or the type C is prefixed.
Evaluation of a compound assignment of the form e1.v ??= e2 is equivalent

to the evaluation of the expression ((x) => ((y) => y == null ? x.v = e2 :
y)(x.v))(e1) where x and y are distinct fresh variables that are not used in e2.

Evaluation of a compound assignment of the form e1[e2] ??= e3 is equivalent
to the evaluation of the expression ((a, i) => ((x) => x == null ? a[i] = e3 :
x)(a[i]))(e1, e2) where x, a and i are distinct fresh variables that are not used
in e3.

Evaluation of a compound assignment of the form super.v ??= e is equiv-
alent to the evaluation of the expression ((x) => x == null ? super.v = e :
x)(super.v) where x is a fresh variable that is not used in e.

Evaluation of a compound assignment of the form e1?.v ??= e2 is equivalent
to the evaluation of the expression ((x) => x == null ? null: x.v?? = e2)(e1)
where x is a variable that is not used in e2.

A compound assignment of the form C?.v ??= e2 is equivalent to the ex-
pression C.v ??= e.

The static type of a compound assignment of the form v ??= e is the least
upper bound of the static type of v and the static type of e. Exactly the same
static warnings that would be caused by v = e are also generated in the case of
v ??= e.

The static type of a compound assignment of the form C.v ??= e is the
least upper bound of the static type of C.v and the static type of e. Exactly
the same static warnings that would be caused by C.v = e are also generated
in the case of C.v ??= e.

The static type of a compound assignment of the form e1.v ??= e2 is the
least upper bound of the static type of e1.v and the static type of e2. Let T be
the static type of e1 and let z be a fresh variable of type T . Exactly the same

Dart Programming Language Specification 91

static warnings that would be caused by z.v = e2 are also generated in the case
of e1.v ??= e2.

The static type of a compound assignment of the form e1[e2] ??= e3 is the
least upper bound of the static type of e1[e2] and the static type of e3. Exactly
the same static warnings that would be caused by e1[e2] = e3 are also generated
in the case of e1[e2] ??= e3.

The static type of a compound assignment of the form super.v ??= e is
the least upper bound of the static type of super.v and the static type of e.
Exactly the same static warnings that would be caused by super.v = e are also
generated in the case of super.v ??= e.

For any other valid operator op, a compound assignment of the form v
op =e is equivalent to v=v op e. A compound assignment of the form C.v op=e
is equivalent to C.v=C.v op e. A compound assignment of the form e1.v op = e2
is equivalent to ((x) => x.v = x.v op e2)(e1) where x is a variable that is not
used in e2. A compound assignment of the form e1[e2] op=e3 is equivalent to
((a, i) => a[i] = a[i] op e3)(e1, e2) where a and i are a variables that are not
used in e3.

Evaluation of a compound assignment of the form e1?.v op = e2 is equivalent
to ((x) => x?.v = x.v op e2)(e1) where x is a variable that is not used in e2.
The static type of e1?.v op = e2 is the static type of e1.v op e2. Exactly the
same static warnings that would be caused by e1.v op = e2 are also generated
in the case of e1?.v op = e2.

A compound assignment of the form C?.v op = e2 is equivalent to the
expression C.v op = e2.

compoundAssignmentOperator:
‘*=’ |
‘/=’ |
‘˜/=’ |
‘%=’ |
‘+=’ |
‘-=’ |
‘<<=’ |
‘>>=’ |
‘&=’ |
‘ˆ=’ |
‘|=’ |
‘??=’ |

;

16.20 Conditional conditional

A conditional expression evaluates one of two expressions based on a boolean
condition.

Dart Programming Language Specification 92

conditionalExpression:
ifNullExpression (‘?’ expressionWithoutCascade ‘:’ expression-

WithoutCascade)?
;

Evaluation of a conditional expression c of the form e1?e2 : e3 proceeds as
follows:

First, e1 is evaluated to an object o1. Then, o1 is subjected to boolean
conversion (16.4.1) producing an object r. If r is true, then the value of c is
the result of evaluating the expression e2. Otherwise the value of c is the result
of evaluating the expression e3.

If all of the following hold:

• e1 shows that a variable v has type T .

• v is not potentially mutated in e2 or within a closure.

• If the variable v is accessed by a closure in e2 then the variable v is not
potentially mutated anywhere in the scope of v.

then the type of v is known to be T in e2.
It is a static type warning if the static type of e1 may not be assigned to

bool. The static type of c is the least upper bound (19.8.2) of the static type of
e2 and the static type of e3.

16.21 If-null Expressions
An if-null expressionevaluates an expression and if the result is null, evaluates

another.

ifNullExpression:
logicalOrExpression (‘??’ logicalOrExpression)*

Evaluation of an if-null expression e of the form e1??e2 is equivalent to the
evaluation of the expression ((x) => x == null?e2 : x)(e1). The static type of
e is least upper bound (19.8.2) of the static type of e1 and the static type of e2.

16.22 Logical Boolean Expressions logicalBooleanExpressions

The logical boolean expressions combine boolean objects using the boolean
conjunction and disjunction operators.

logicalOrExpression:
logicalAndExpression (‘||’ logicalAndExpression)*

;

Dart Programming Language Specification 93

logicalAndExpression:
equalityExpression (‘&&’ equalityExpression)*

;

A logical boolean expression is either an equality expression (16.23), or an
invocation of a logical boolean operator on an expression e1 with argument e2.

Evaluation of a logical boolean expression b of the form e1||e2 causes the
evaluation of e1 which is then subjected to boolean conversion, yielding an object
o1; if o1 is true, the result of evaluating b is true, otherwise e2 is evaluated to
an object o2, which is then subjected to boolean conversion (16.4.1) producing
an object r, which is the value of b.

Evaluation of a logical boolean expression b of the form e1&&e2 causes the
evaluation of e1 which is then subjected to boolean conversion, yielding an object
o1; if o1 is not true, the result of evaluating b is false, otherwise e2 is evaluated
to an object o2, which is then subjected to boolean conversion producing an
object r, which is the value of b.

A logical boolean expression b of the form e1&&e2 shows that a variable v
has type T if all of the following conditions hold:

• Either e1 shows that v has type T or e2 shows that v has type T .

• v is a local variable or formal parameter.

• The variable v is not mutated in e2 or within a closure.

Furthermore, if all of the following hold:

• e1 shows that v has type T .

• v is not mutated in either e1, e2 or within a closure.

• If the variable v is accessed by a closure in e2 then the variable v is not
potentially mutated anywhere in the scope of v.

then the type of v is known to be T in e2.
It is a static warning if the static type of e1 may not be assigned to bool or

if the static type of e2 may not be assigned to bool. The static type of a logical
boolean expression is bool.

16.23 Equality equality

Equality expressions test objects for equality.

equalityExpression:
relationalExpression (equalityOperator relationalExpression)? |
super equalityOperator relationalExpression

;

Dart Programming Language Specification 94

equalityOperator:
‘==’ |
‘!=’

;

An equality expression is either a relational expression (16.24), or an invoca-
tion of an equality operator on either super or an expression e1, with argument
e2.

Evaluation of an equality expression ee of the form e1 == e2 proceeds as
follows:

• The expression e1 is evaluated to an object o1.

• The expression e2 is evaluated to an object o2.

• If either o1 or o2 is null, then ee evaluates to true if both o1 and o2 are
null and to false otherwise. Otherwise,

• ee is equivalent to the method invocation o1.==(o2).

Evaluation of an equality expression ee of the form super == e proceeds as
follows:

• The expression e is evaluated to an object o.

• If either this or o is null, then ee evaluates to evaluates to true if both
this and o are null and to false otherwise. Otherwise,

• ee is equivalent to the method invocation super.==(o).

As a result of the above definition, user defined == methods can assume that
their argument is non-null, and avoid the standard boiler-plate prelude:

if (identical(null, arg)) return false;
Another implication is that there is never a need to use identical() to test against

null, nor should anyone ever worry about whether to write null == e or e == null.
An equality expression of the form e1 != e2 is equivalent to the expression

!(e1 == e2). An equality expression of the form super != e is equivalent to the
expression !(super == e).

The static type of an equality expression is bool.

16.24 Relational Expressions relationalExpressions

Relational expressions invoke the relational operators on objects.

relationalExpression:
bitwiseOrExpression (typeTest | typeCast | relationalOperator bit-

wiseOrExpression)? |
super relationalOperator bitwiseOrExpression

Dart Programming Language Specification 95

;

relationalOperator:
‘>=’ |
‘>’ |
‘<=’ |
‘<’

;

A relational expression is either a bitwise expression (16.25), or an invocation
of a relational operator on either super or an expression e1, with argument e2.

A relational expression of the form e1 op e2 is equivalent to the method in-
vocation e1.op(e2). A relational expression of the form super op e2 is equivalent
to the method invocation super.op(e2).

16.25 Bitwise Expressions bitwiseExpressions

Bitwise expressions invoke the bitwise operators on objects.

bitwiseOrExpression:
bitwiseXorExpression (‘|’ bitwiseXorExpression)* |
super (‘|’ bitwiseXorExpression)+

;

bitwiseXorExpression:
bitwiseAndExpression (‘ˆ’ bitwiseAndExpression)* |
super (‘ˆ’ bitwiseAndExpression)+

;

bitwiseAndExpression:
shiftExpression (‘&’ shiftExpression)* |
super (‘&’ shiftExpression)+

;

bitwiseOperator:
‘&’ |
‘ˆ’ |
‘|’

;

A bitwise expression is either a shift expression (16.26), or an invocation of
a bitwise operator on either super or an expression e1, with argument e2.

A bitwise expression of the form e1 op e2 is equivalent to the method invo-

Dart Programming Language Specification 96

cation e1.op(e2). A bitwise expression of the form super op e2 is equivalent to
the method invocation super.op(e2).

It should be obvious that the static type rules for these expressions are defined
by the equivalence above - ergo, by the type rules for method invocation and the
signatures of the operators on the type e1. The same holds in similar situations
throughout this specification.

16.26 Shift shift

Shift expressions invoke the shift operators on objects.

shiftExpression:
additiveExpression (shiftOperator additiveExpression)* |
super (shiftOperator additiveExpression)+

;

shiftOperator:
‘<<’ |
‘>>’

;

A shift expression is either an additive expression (16.27), or an invocation
of a shift operator on either super or an expression e1, with argument e2.

A shift expression of the form e1 op e2 is equivalent to the method invocation
e1.op(e2). A shift expression of the form super op e2 is equivalent to the method
invocation super.op(e2).

Note that this definition implies left-to-right evaluation order among shift ex-
pressions:

e1 << e2 << e3
is evaluated as (e1 << e2). << (e3) which is equivalent to (e1 << e2) << e3.

The same holds for additive and multiplicative expressions.

16.27 Additive Expressions additiveExpressions

Additive expressions invoke the addition operators on objects.

additiveExpression:
multiplicativeExpression (additiveOperator multiplicativeExpres-

sion)* |
super (additiveOperator multiplicativeExpression)+

;

additiveOperator:
‘+’ |
‘-’

Dart Programming Language Specification 97

;

An additive expression is either a multiplicative expression (16.28), or an
invocation of an additive operator on either super or an expression e1, with
argument e2.

An additive expression of the form e1 op e2 is equivalent to the method in-
vocation e1.op(e2). An additive expression of the form super op e2 is equivalent
to the method invocation super.op(e2).

The static type of an additive expression is usually determined by the sig-
nature given in the declaration of the operator used. However, invocations of
the operators + and - of class int are treated specially by the typechecker. The
static type of an expression e1 +e2 where e1 has static type int is int if the static
type of e2 is int, and double if the static type of e2 is double. The static type of
an expression e1 − e2 where e1 has static type int is int if the static type of e2
is int, and double if the static type of e2 is double.

16.28 Multiplicative Expressions multiplicativeExpressions

Multiplicative expressions invoke the multiplication operators on objects.

multiplicativeExpression:
unaryExpression (multiplicativeOperator unaryExpression)* |
super (multiplicativeOperator unaryExpression)+

;

multiplicativeOperator:
‘*’ |
‘/’ |
‘%’ |
‘˜/’

;

A multiplicative expression is either a unary expression (16.29), or an in-
vocation of a multiplicative operator on either super or an expression e1, with
argument e2.

A multiplicative expression of the form e1 op e2 is equivalent to the method
invocation e1.op(e2). A multiplicative expression of the form super op e2 is
equivalent to the method invocation super.op(e2).

The static type of an multiplicative expression is usually determined by the
signature given in the declaration of the operator used. However, invocations of
the operators *, % and ˜/ of class int are treated specially by the typechecker.
The static type of an expression e1 ∗ e2 where e1 has static type int is int if the
static type of e2 is int, and double if the static type of e2 is double. The static
type of an expression e1%e2 where e1 has static type int is int if the static type

Dart Programming Language Specification 98

of e2 is int, and double if the static type of e2 is double. The static type of an
expression e1 ˜/ e2 where e1 has static type int is int if the static type of e2 is
int.

16.29 Unary Expressions unaryExpressions

Unary expressions invoke unary operators on objects.

unaryExpression:
prefixOperator unaryExpression |
awaitExpression |
postfixExpression |
(minusOperator | tildeOperator) super |
incrementOperator assignableExpression

;

prefixOperator:
minusOperator |
negationOperator |
tildeOperator

;

minusOperator:
‘-’ |

;

negationOperator:
‘!’ |

;

tildeOperator:
‘˜’

;

A unary expression is either a postfix expression (16.31), an await expression
(16.30) or an invocation of a prefix operator on an expression or an invocation
of a unary operator on either super or an expression e.

The expression !e is equivalent to the expression e? false : true.
Evaluation of an expression of the form ++e is equivalent to e += 1.

Evaluation of an expression of the form --e is equivalent to e -= 1.
An expression of the form op e is equivalent to the method invocation e.op().

An expression of the form op super is equivalent to the method invocation
(16.17.3) super.op().

Dart Programming Language Specification 99

16.30 Await Expressions awaitExpressions

An await expression allows code to yield control until an asynchronous
operation (9) completes.

awaitExpression:
await unaryExpression

Evaluation of an await expression a of the form await e proceeds as follows:
First, the expression e is evaluated. Next:

If e raises an exception x, then an instance f of class Future is allocated
and later completed with x. Otherwise, if e evaluates to an object o that is not
an instance of Future, then let f be the result of calling Future.value() with o as
its argument; otherwise let f be the result of evaluating e.

Next, execution of the function m immediately enclosing a is suspended
until after f completes. The stream associated with the innermost enclosing
asynchronous for loop (17.6.3), if any, is paused. At some time after f is com-
pleted, control returns to the current invocation. The stream associated with
the innermost enclosing asynchronous for loop (17.6.3), if any, is resumed. If f
has completed with an exception x, a raises x. If f completes with a value v, a
evaluates to v.

It is a compile-time error if the function immediately enclosing a is not declared
asynchronous. However, this error is simply a syntax error, because in the context
of a normal function, await has no special meaning.

An await expression has no meaning in a synchronous function. If such
a function were to suspend waiting for a future, it would no longer be syn-
chronous.

It is not a static warning if the type of e is not a subtype of Future. Tools may
choose to give a hint in such cases.

The static type of a is flatten(T) (the flatten function is defined in section
16.10) where T is the static type of e.

16.31 Postfix Expressions postfixExpressions

Postfix expressions invoke the postfix operators on objects.

postfixExpression:
assignableExpression postfixOperator |
primary (selector* | (‘#’ ((identifier ‘=’?) | operator)))

;

postfixOperator:
incrementOperator

;

selector:
assignableSelector |

Dart Programming Language Specification 100

arguments
;

incrementOperator:
‘++’ |
‘--’

;

A postfix expression is either a primary expression, a function, method or
getter invocation, or an invocation of a postfix operator on an expression e.

Execution of a postfix expression of the form v++, where v is an identifier,
is equivalent to executing (){var r = v; v = r + 1; return r}().

The static type of such an expression is the static type of v.
The above ensures that if v is a field, the getter gets called exactly once.

Likewise in the cases below.
Execution of a postfix expression of the form C.v ++ is equivalent to exe-

cuting
(){var r = C.v; C.v = r + 1; return r}().
The static type of such an expression is the static type of C.v.
Execution of a postfix expression of the form e1.v++ is equivalent to exe-

cuting
(x){var r = x.v; x.v = r + 1; return r}(e1).
The static type of such an expression is the static type of e1.v.
Execution of a postfix expression of the form e1[e2]++, is equivalent to

executing
(a, i){var r = a[i]; a[i] = r + 1; return r}(e1, e2).
The static type of such an expression is the static type of e1[e2].
Execution of a postfix expression of the form v--, where v is an identifier,

is equivalent to executing
(){var r = v; v = r - 1; return r}().
The static type of such an expression is the static type of v.
Execution of a postfix expression of the form C.v-- is equivalent to executing

(){var r = C.v; C.v = r - 1; return r}().
The static type of such an expression is the static type of C.v.
Execution of a postfix expression of the form e1.v-- is equivalent to executing

(x){var r = x.v; x.v = r - 1; return r}(e1).
The static type of such an expression is the static type of e1.v.
Execution of a postfix expression of the form e1[e2]--, is equivalent to exe-

cuting
(a, i){var r = a[i]; a[i] = r - 1; return r}(e1, e2).
The static type of such an expression is the static type of e1[e2].
Execution of a postfix expression of the form e1?.v++ is equivalent to

executing
((x) => x == null? null: x.v++)(e1) unless e1 is a type literal, in which

case it is equivalent to e1.v++ .

Dart Programming Language Specification 101

The static type of such an expression is the static type of e1.v.
Execution of a postfix expression of the form e1?.v-- is equivalent to exe-

cuting
((x) => x == null? null: x.v--)(e1) unless e1 is a type literal, in which case

it is equivalent to e1.v-- .
The static type of such an expression is the static type of e1.v.

16.32 Assignable Expressions assignableExpressions

Assignable expressions are expressions that can appear on the left hand
side of an assignment. This section describes how to evaluate these expressions
when they do not constitute the complete left hand side of an assignment.

Of course, if assignable expressions always appeared as the left hand side,
one would have no need for their value, and the rules for evaluating them would
be unnecessary. However, assignable expressions can be subexpressions of other
expressions and therefore must be evaluated.

assignableExpression:
primary (arguments* assignableSelector)+ |
super unconditionalAssignableSelector |
identifier

;

unconditionalAssignableSelector:
‘[’ expression ‘]’ |
‘.’ identifier

;

assignableSelector:
unconditionalAssignableSelector |

‘?.’ identifier
;

An assignable expression is either:

• An identifier.

• An invocation (possibly conditional) of a getter (10.2) or list access oper-
ator on an expression e.

• An invocation of a getter or list access operator on super.

An assignable expression of the form id is evaluated as an identifier expres-
sion (16.33).

An assignable expression of the form e.id or e?.id is evaluated as a property
extraction (16.18).

Dart Programming Language Specification 102

An assignable expression of the form e1[e2] is evaluated as a method invo-
cation of the operator method [] on e1 with argument e2.

An assignable expression of the form super.id is evaluated as a property
extraction.

An assignable expression of the form super[e2] is equivalent to the method
invocation super.[](e2).

16.33 Identifier Reference identifierReference

An identifier expression consists of a single identifier; it provides access to
an object via an unqualified name.

identifier:
IDENTIFIER

;

IDENTIFIER NO DOLLAR:
IDENTIFIER START NO DOLLAR IDENTIFIER PART NO DOLLAR*

;

IDENTIFIER:
IDENTIFIER START IDENTIFIER PART*

;

BUILT IN IDENTIFIER:
abstract |

as |
deferred |
dynamic |
export |
external |
factory |
get |
implements |
import |
library |
operator |
part |
set |
static |
typedef

;

IDENTIFIER START:
IDENTIFIER START NO DOLLAR |

Dart Programming Language Specification 103

‘$’
;

IDENTIFIER START NO DOLLAR:
LETTER |
‘ ’

;

IDENTIFIER PART NO DOLLAR:
IDENTIFIER START NO DOLLAR |
DIGIT

;

IDENTIFIER PART:
IDENTIFIER START |
DIGIT

;

qualified:
identifier (‘.’ identifier)?

;

A built-in identifier is one of the identifiers produced by the production
BUILT IN IDENTIFIER. It is a compile-time error if a built-in identifier is
used as the declared name of a prefix, class, type parameter or type alias. It is
a compile-time error to use a built-in identifier other than dynamic as a type
annotation or type parameter.

Built-in identifiers are identifiers that are used as keywords in Dart, but are
not reserved words in Javascript. To minimize incompatibilities when porting
Javascript code to Dart, we do not make these into reserved words. A built-in
identifier may not be used to name a class or type. In other words, they are
treated as reserved words when used as types. This eliminates many confus-
ing situations without causing compatibility problems. After all, a Javascript
program has no type declarations or annotations so no clash can occur. Fur-
thermore, types should begin with an uppercase letter (see the appendix) and so
no clash should occur in any Dart user program anyway.

It is a compile-time error if any of the identifiers async, await or yield is
used as an identifier in a function body marked with either async, async* or
sync*.

For compatibility reasons, new constructs cannot rely upon new reserved
words or even built-in identifiers. However, the constructs above are only us-
able in contexts that require special markers introduced concurrently with these
constructs, so no old code could use them. Hence the restriction, which treats
these names as reserved words in a limited context.

Dart Programming Language Specification 104

Evaluation of an identifier expression e of the form id proceeds as follows:
Let d be the innermost declaration in the enclosing lexical scope whose

name is id or id =. If no such declaration exists in the lexical scope, let d be
the declaration of the inherited member named id if it exists.

• if d is a prefix p, a compile-time error occurs unless the token immediately
following d is ’.’.

• If d is a class or type alias T , the value of e is an instance of class Type
(or a subclass thereof) reifying T .

• If d is a type parameter T , then the value of e is the value of the actual
type argument corresponding to T that was passed to the generative con-
structor that created the current binding of this. If, however, e occurs
inside a static member, a compile-time error occurs.

• If d is a constant variable of one of the forms const v = e; or const T v
= e; then the value id is the value of the compile-time constant e.

• If d is a local variable or formal parameter then e evaluates to the current
binding of id.

• If d is a static method, top-level function or local function then e evaluates
to the function defined by d.

• If d is the declaration of a static variable, static getter or static setter
declared in class C, then e is equivalent to the property extraction (16.18)
C.id.

• If d is the declaration of a library variable, top-level getter or top-level
setter, then e is equivalent to the top level getter invocation (16.16) id.

• Otherwise, if e occurs inside a top level or static function (be it function,
method, getter, or setter) or variable initializer, evaluation of e causes a
NoSuchMethod to be thrown.

• Otherwise, e is equivalent to the property extraction (16.18) this.id.

The static type of e is determined as follows:

• If d is a class, type alias or type parameter the static type of e is Type.

• If d is a local variable or formal parameter the static type of e is the type
of the variable id, unless id is known to have some type T , in which case
the static type of e is T , provided that T is more specific than any other
type S such that v is known to have type S.

• If d is a static method, top-level function or local function the static type
of e is the function type defined by d.

Dart Programming Language Specification 105

• If d is the declaration of a static variable, static getter or static setter
declared in class C, the static type of e is the static type of the getter
invocation (16.18) C.id.

• If d is the declaration of a library variable, top-level getter or top-level set-
ter, the static type of e is the static type of the top level getter invocation
id.

• Otherwise, if e occurs inside a top level or static function (be it function,
method, getter, or setter) or variable initializer, the static type of e is
dynamic.

• Otherwise, the static type of e is the type of the property extraction (16.18)
this.id.

Note that if one declares a setter, we bind to the corresponding getter even if it
does not exist.

This prevents situations where one uses uncorrelated setters and getters.
The intent is to prevent errors when a getter in a surrounding scope is used
accidentally.

It is a static warning if an identifier expression id occurs inside a top level or
static function (be it function, method, getter, or setter) or variable initializer
and there is no declaration d with name id in the lexical scope enclosing the
expression.

16.34 Type Test typeTest

The is-expression tests if an object is a member of a type.

typeTest:
isOperator type

;

isOperator:
is ‘!’?

;

Evaluation of the is-expression e is T proceeds as follows:
The expression e is evaluated to a value v. Then, if T is a malformed or

deferred type (19.1), a dynamic error occurs. Otherwise, if the interface of the
class of v is a subtype of T , the is-expression evaluates to true. Otherwise it
evaluates to false.

It follows that e is Object is always true. This makes sense in a language where
everything is an object.

Also note that null is T is false unless T = Object, T = dynamic or T = Null.
The former two are useless, as is anything of the form e is Object or e is dynamic.
Users should test for a null value directly rather than via type tests.

Dart Programming Language Specification 106

The is-expression e is! T is equivalent to !(e is T).
Let v be a local variable or a formal parameter. An is-expression of the

form v is T shows that v has type T iff T is more specific than the type S of
the expression v and both T 6= dynamic and S 6= dynamic.

The motivation for the “shows that v has type T” relation is to reduce spu-
rious warnings thereby enabling a more natural coding style. The rules in the
current specification are deliberately kept simple. It would be upwardly compati-
ble to refine these rules in the future; such a refinement would accept more code
without warning, but not reject any code now warning-free.

The rule only applies to locals and parameters, as fields could be modified via
side-effecting functions or methods that are not accessible to a local analysis.

It is pointless to deduce a weaker type than what is already known. Further-
more, this would lead to a situation where multiple types are associated with a
variable at a given point, which complicates the specification. Hence the require-
ment that T << S (we use << rather than subtyping because subtyping is not
a partial order).

We do not want to refine the type of a variable of type dynamic, as this
could lead to more warnings rather than less. The opposite requirement, that
T 6= dynamic is a safeguard lest S ever be ⊥.

The static type of an is-expression is bool.

16.35 Type Cast typeCast

The cast expression ensures that an object is a member of a type.

typeCast:
asOperator type

;

asOperator:
as

;

Evaluation of the cast expression e as T proceeds as follows:
The expression e is evaluated to a value v. Then, if T is a malformed or

deferred type (19.1), a dynamic error occurs. Otherwise, if the interface of the
class of v is a subtype of T , the cast expression evaluates to v. Otherwise, if
v is null, the cast expression evaluates to v. In all other cases, a CastError is
thrown.

The static type of a cast expression e as T is T .

17 Statements statements

Dart Programming Language Specification 107

statements:
statement*

;

statement:
label* nonLabelledStatement

;

nonLabelledStatement:
block |
localVariableDeclaration |
forStatement |
whileStatement |
doStatement |
switchStatement |
ifStatement |
rethrowStatement |
tryStatement |
breakStatement |
continueStatement |
returnStatement |
yieldStatement |
yieldEachStatement |
expressionStatement |
assertStatement |
localFunctionDeclaration

;

17.1 Blocks blocks

A block statement supports sequencing of code.
Execution of a block statement {s1, . . . , sn} proceeds as follows:
For i ∈ 1..n, si is executed.
A block statement introduces a new scope, which is nested in the lexically

enclosing scope in which the block statement appears.

17.2 Expression Statements expressionStatements

An expression statement consists of an expression other than a non-constant
map literal (16.8) that has no explicit type arguments.

The restriction on maps is designed to resolve an ambiguity in the grammar,
when a statement begins with {.

expressionStatement:
expression? ‘;’

Dart Programming Language Specification 108

;

Execution of an expression statement e; proceeds by evaluating e.
It is a compile-time error if a non-constant map literal that has no explicit

type arguments appears in a place where a statement is expected.

17.3 Local Variable Declaration localVariableDeclaration

A variable declaration statement declares a new local variable.

localVariableDeclaration:
initializedVariableDeclaration ’;’

;

Executing a variable declaration statement of one of the forms var v = e;,
T v = e;, const v = e;, const T v = e;, final v = e; or final T v = e; proceeds
as follows:

The expression e is evaluated to an object o. Then, the variable v is set to
o.

A variable declaration statement of the form var v; is equivalent to var
v = null;. A variable declaration statement of the form T v; is equivalent to T
v = null;.

This holds regardless of the type T . For example, int i; does not cause i to be
initialized to zero. Instead, i is initialized to null, just as if we had written var i; or
Object i; or Collection<String> i;.

To do otherwise would undermine the optionally typed nature of Dart, caus-
ing type annotations to modify program behavior.

17.4 Local Function Declaration localFunctionDeclaration

A function declaration statement declares a new local function (9.1).

localFunctionDeclaration:
functionSignature functionBody

;

A function declaration statement of one of the forms id signature {statements}
or T id signature {statements} causes a new function named id to be added
to the innermost enclosing scope. It is a compile-time error to reference a local
function before its declaration.

This implies that local functions can be directly recursive, but not mutually
recursive. Consider these examples:

f(x) => x++; // a top level function
top() { // another top level function

Dart Programming Language Specification 109

f(3); // illegal
f(x) => x > 0? x*f(x-1): 1; // recursion is legal
g1(x) => h(x, 1); // error: h is not declared yet
h(x, n) => x > 1? h(x-1, n*x): n; // again, recursion is fine
g2(x) => h(x, 1); // legal
p1(x) => q(x,x); // illegal
q1(a, b) => a > 0 ? p1(a-1): b; // fine
q2(a, b) => a > 0 ? p2(a-1): b; // illegal
p1(x) => q2(x,x); // fine
}
There is no way to write a pair of mutually recursive local functions, because

one always has to come before the other is declared. These cases are quite rare,
and can always be managed by defining a pair of variables first, then assigning them
appropriate closures:

top2() { // a top level function
var p, q;
p = (x) => q(x,x);
q = (a, b) => a > 0 ? p(a-1): b;
}
The rules for local functions differ slightly from those for local variables in

that a function can be accessed within its declaration but a variable can only
be accessed after its declaration. This is because recursive functions are use-
ful whereas recursively defined variables are almost always errors. It therefore
makes sense to harmonize the rules for local functions with those for functions
in general rather than with the rules for local variables.

17.5 If if

The if statement allows for conditional execution of statements.

ifStatement:
if ‘(’ expression ‘)’ statement (else statement)?

;

Execution of an if statement of the form if (b)s1 else s2 proceeds as follows:
First, the expression b is evaluated to an object o. Then, o is subjected

to boolean conversion (16.4.1), producing an object r. If r is true, then the
statement {s1} is executed, otherwise statement {s2} is executed.

Put another way, if (b)s1 else s2 is equivalent to if (b){s1} else {s2}
The reason for this equivalence is to catch errors such as
void main() {

if (somePredicate)
var v = 2;

print(v);
}

Dart Programming Language Specification 110

Under reasonable scope rules such code is problematic. If we assume that v
is declared in the scope of the method main(), then when somePredicate is false, v
will be uninitialized when accessed. The cleanest approach would be to require a
block following the test, rather than an arbitrary statement. However, this goes
against long standing custom, undermining Dart’s goal of familiarity. Instead,
we choose to insert a block, introducing a scope, around the statement following
the predicate (and similarly for else and loops). This will cause both a warning
and a runtime error in the case above. Of course, if there is a declaration of v
in the surrounding scope, programmers might still be surprised. We expect tools
to highlight cases of shadowing to help avoid such situations.

It is a static type warning if the type of the expression b may not be assigned
to bool.

If:

• b shows that a variable v has type T .

• v is not potentially mutated in s1 or within a closure.

• If the variable v is accessed by a closure in s1 then the variable v is not
potentially mutated anywhere in the scope of v.

then the type of v is known to be T in s1.
An if statement of the form if (b)s1 is equivalent to the if statement

if (b)s1 else {}.

17.6 For for

The for statement supports iteration.

forStatement:
await? for ‘(’ forLoopParts ‘)’ statement

;

forLoopParts:
forInitializerStatement expression? ‘;’ expressionList? |
declaredIdentifier in expression |
identifier in expression

;

forInitializerStatement:
localVariableDeclaration |
expression? ‘;’

;

The for statement has three forms - the traditional for loop and two forms
of the for-in statement - synchronous and asynchronous.

Dart Programming Language Specification 111

17.6.1 For Loop forLoop

Execution of a for statement of the form for (var v = e0 ; c; e) s proceeds
as follows:

If c is empty then let c′ be true otherwise let c′ be c.
First the variable declaration statement var v = e0 is executed. Then:

1. If this is the first iteration of the for loop, let v′ be v. Otherwise, let v′ be
the variable v′′ created in the previous execution of step 4.

2. The expression [v′/v]c is evaluated and subjected to boolean conversion
(16.4). If the result is false, the for loop completes. Otherwise, execution
continues at step 3.

3. The statement [v′/v]{s} is executed.

4. Let v′′ be a fresh variable. v′′ is bound to the value of v′.

5. The expression [v′′/v]e is evaluated, and the process recurses at step 1.

The definition above is intended to prevent the common error where users
create a closure inside a for loop, intending to close over the current binding
of the loop variable, and find (usually after a painful process of debugging and
learning) that all the created closures have captured the same value - the one
current in the last iteration executed.

Instead, each iteration has its own distinct variable. The first iteration uses
the variable created by the initial declaration. The expression executed at the
end of each iteration uses a fresh variable v′′, bound to the value of the current
iteration variable, and then modifies v′′ as required for the next iteration.

It is a static warning if the static type of c may not be assigned to bool.

17.6.2 For-in for-in

A for statement of the form for (finalConstV arOrType? id in e) s is
equivalent to the following code:

var n0 = e.iterator;
while (n0.moveNext()) {

finalConstV arOrType? id = n0.current;
s

}
where n0 is an identifier that does not occur anywhere in the program, except

that for purposes of static typechecking, it is checked under the assumption that
n0 is declared to be of type T , where T is the static type of e.iterator.

17.6.3 Asynchronous For-in asynchronousFor-in

A for-in statement may be asynchronous. The asynchronous form is de-
signed to iterate over streams. An asynchronous for loop is distinguished by the
keyword await immediately preceding the keyword for.

Dart Programming Language Specification 112

Execution of a for-in statement of the form await for (finalConstVarOrType?
id in e) s proceeds as follows:

The expression e is evaluated to an object o. It is a dynamic error if o is
not an instance of a class that implements Stream. Otherwise, the expression
await vf (16.30) is evaluated, where vf is a fresh variable whose value is a fresh
instance (10.6.1) f implementing the built-in class Future.

The stream o is listened to, and on each data event in o the statement s is
executed with id bound to the value of the current element of the stream. If s
raises an exception, or if o raises an exception, then f is completed with that
exception. Otherwise, when all events in the stream o have been processed, f
is completed with null (16.2).

Let u be the stream associated with the immediately enclosing asynchronous
for loop or generator function (9), if any. If another event eu of u occurs before
execution of s is complete, handling of eu must wait until s is complete.

The future f and the corresponding await expression ensure that execution
suspends as an asynchronous for loop begins and resumes after the for statement
when it ends. They also ensure that the stream of any enclosing asynchronous
for loop is paused for the duration of this loop.

It is a compile-time error if an asynchronous for-in statement appears inside
a synchronous function (9). It is a compile-time error if a traditional for loop
(17.6.1) is prefixed by the await keyword.

An asynchronous loop would make no sense within a synchronous function,
for the same reasons that an await expression makes no sense in a synchronous
function.

17.7 While while

The while statement supports conditional iteration, where the condition is
evaluated prior to the loop.

whileStatement:
while ‘(’ expression ‘)’ statement

;

Execution of a while statement of the form while (e) s; proceeds as follows:
The expression e is evaluated to an object o. Then, o is subjected to boolean

conversion (16.4.1), producing an object r. If r is true, then the statement {s}
is executed and then the while statement is re-executed recursively. If r is false,
execution of the while statement is complete.

It is a static type warning if the static type of e may not be assigned to
bool.

17.8 Do do

The do statement supports conditional iteration, where the condition is
evaluated after the loop.

Dart Programming Language Specification 113

doStatement:
do statement while ‘(’ expression ‘)’ ‘;’

;

Execution of a do statement of the form do s while (e); proceeds as follows:
The statement {s} is executed. Then, the expression e is evaluated to an

object o. Then, o is subjected to boolean conversion (16.4.1), producing an
object r. If r is false, execution of the do statement is complete. If r is true,
then the do statement is re-executed recursively.

It is a static type warning if the static type of e may not be assigned to
bool.

17.9 Switch switch

The switch statement supports dispatching control among a large number
of cases.

switchStatement:
switch ‘(’ expression ‘)’ ‘{’ switchCase* defaultCase? ‘}’

;

switchCase:
label* case expression ‘:’ statements

;

defaultCase:
label* default ‘:’ statements

;

Given a switch statement of the form
switch (e) {

label11 . . . label1j1 case e1 : s1
. . .
labeln1 . . . labelnjn

case en : sn

label(n+1)1 . . . label(n+1)jn+1 default: sn+1
}
or the form
switch (e) {

label11 . . . label1j1 case e1 : s1
. . .
labeln1 . . . labelnjn case en : sn

}
it is a compile-time error if the expressions ek are not compile-time constants

for all k ∈ 1..n. It is a compile-time error if the values of the expressions ek are
not either:

Dart Programming Language Specification 114

• instances of the same class C, for all k ∈ 1..n, or

• instances of a class that implements int, for all k ∈ 1..n, or

• instances of a class that implements String, for all k ∈ 1..n.

In other words, all the expressions in the cases evaluate to constants of the
exact same user defined class or are of certain known types. Note that the values of
the expressions are known at compile-time, and are independent of any static type
annotations.

It is a compile-time error if the class C has an implementation of the op-
erator == other than the one inherited from Object unless the value of the
expression is a string, an integer, literal symbol or the result of invoking a
constant constructor of class Symbol.

The prohibition on user defined equality allows us to implement the switch
efficiently for user defined types. We could formulate matching in terms of
identity instead with the same efficiency. However, if a type defines an equality
operator, programmers would find it quite surprising that equal objects did not
match.

The switch statement should only be used in very limited situations (e.g., in-
terpreters or scanners).

Execution of a switch statement of the form
switch (e) {

label11 . . . label1j1 case e1 : s1
. . .
labeln1 . . . labelnjn case en : sn

label(n+1)1 . . . label(n+1)jn+1 default: sn+1
}
or the form
switch (e) {

label11 . . . label1j1 case e1 : s1
. . .
labeln1 . . . labelnjn

case en : sn

}
proceeds as follows:
The statement var id = e; is evaluated, where id is a variable whose name

is distinct from any other variable in the program. In checked mode, it is a run
time error if the value of e is not an instance of the same class as the constants
e1 . . . en.

Note that if there are no case clauses (n = 0), the type of e does not matter.
Next, the case clause case e1 : s1 is executed if it exists. If case e1 : s1 does

not exist, then if there is a default clause it is executed by executing sn+1.
A case clause introduces a new scope, nested in the lexically surrounding

scope. The scope of a case clause ends immediately after the case clause’s
statement list.

Execution of a case clause case ek : sk of a switch statement
switch (e) {

Dart Programming Language Specification 115

label11 . . . label1j1 case e1 : s1
. . .
labeln1 . . . labelnjn

case en : sn

label(n+1)1 . . . label(n+1)jn+1 default: sn+1
}
proceeds as follows:
The expression ek == id is evaluated to an object o which is then subjected

to boolean conversion yielding a value v. If v is not true the following case,
case ek+1 : sk+1 is executed if it exists. If case ek+1 : sk+1 does not exist, then
the default clause is executed by executing sn+1. If v is true, let h be the
smallest number such that h ≥ k and sh is non-empty. If no such h exists, let
h = n+1. The sequence of statements sh is then executed. If execution reaches
the point after sh then a runtime error occurs, unless h = n + 1.

Execution of a case clause case ek : sk of a switch statement
switch (e) {

label11 . . . label1j1 case e1 : s1
. . .
labeln1 . . . labelnjn case en : sn

}
proceeds as follows:
The expression ek == id is evaluated to an object o which is then subjected

to boolean conversion yielding a value v. If v is not true the following case,
case ek+1 : sk+1 is executed if it exists. If v is true, let h be the smallest
integer such that h ≥ k and sh is non-empty. The sequence of statements sh

is executed if it exists. If execution reaches the point after sh then a runtime
error occurs, unless h = n.

In other words, there is no implicit fall-through between non-empty cases. The
last case in a switch (default or otherwise) can ‘fall-through’ to the end of the
statement.

It is a static warning if the type of e may not be assigned to the type of ek.
It is a static warning if the last statement of the statement sequence sk is not a
break, continue, return or throw statement.

The behavior of switch cases intentionally differs from the C tradition. Im-
plicit fall through is a known cause of programming errors and therefore disal-
lowed. Why not simply break the flow implicitly at the end of every case, rather
than requiring explicit code to do so? This would indeed be cleaner. It would also
be cleaner to insist that each case have a single (possibly compound) statement.
We have chosen not to do so in order to facilitate porting of switch statements
from other languages. Implicitly breaking the control flow at the end of a case
would silently alter the meaning of ported code that relied on fall-through, poten-
tially forcing the programmer to deal with subtle bugs. Our design ensures that
the difference is immediately brought to the coder’s attention. The programmer
will be notified at compile-time if they forget to end a case with a statement
that terminates the straight-line control flow. We could make this warning a
compile-time error, but refrain from doing so because do not wish to force the
programmer to deal with this issue immediately while porting code. If developers

Dart Programming Language Specification 116

ignore the warning and run their code, a run time error will prevent the program
from misbehaving in hard-to-debug ways (at least with respect to this issue).

The sophistication of the analysis of fall-through is another issue. For now,
we have opted for a very straightforward syntactic requirement. There are obvi-
ously situations where code does not fall through, and yet does not conform to
these simple rules, e.g.:

switch (x) {
case 1: try { . . . return;} finally { . . . return;}
}
Very elaborate code in a case clause is probably bad style in any case, and

such code can always be refactored.
It is a static warning if all of the following conditions hold:

• The switch statement does not have a default clause.

• The static type of e is an enumerated typed with elements id1, . . . , idn.

• The sets {e1, . . . , ek} and {id1, . . . , idn} are not the same.

In other words, a warning will be issued if a switch statement over an enum is
not exhaustive.

17.10 Rethrow rethrow

The rethrow statement is used to re-raise an exception.

rethrowStatement:
rethrow ‘;’

;

Execution of a rethrow statement proceeds as follows:
Let f be the immediately enclosing function, and let on T catch (p1, p2)

be the immediately enclosing catch clause (17.11).
A rethrow statement always appears inside a catch clause, and any catch

clause is semantically equivalent to some catch clause of the form on T catch
(p1, p2). So we can assume that the rethrow is enclosed in a catch clause of
that form.

The current exception (16.9) is set to p1, the current return value (17.12)
becomes undefined, and the active stack trace (17.11) is set to p2.

If f is marked async or async* (9) and there is a dynamically enclosing
exception handler (17.11) h introduced by the current activation, control is
transferred to h, otherwise f terminates.

In the case of an asynchronous function, the dynamically enclosing exception
handler is only relevant within the function. If an exception is not caught within
the function, the exception value is channelled through a future or stream rather
than propagating via exception handlers.

Otherwise, control is transferred to the innermost enclosing exception han-

Dart Programming Language Specification 117

dler.
The change in control may result in multiple functions terminating if these

functions do not catch the exception via a catch or finally clause, both of which
introduce a dynamically enclosing exception handler.

It is a compile-time error if a rethrow statement is not enclosed within an
on-catch clause.

17.11 Try try

The try statement supports the definition of exception handling code in a
structured way.

tryStatement:
try block (onPart+ finallyPart? | finallyPart)

;

onPart:
catchPart block |
on type catchPart? block

;

catchPart:
catch ‘(’ identifier (‘, ’ identifier)? ‘)’

;

finallyPart:
finally block

;

A try statement consists of a block statement, followed by at least one of:

1. A set of on-catch clauses, each of which specifies (either explicitly or
implicitly) the type of exception object to be handled, one or two exception
parameters and a block statement.

2. A finally clause, which consists of a block statement.

The syntax is designed to be upward compatible with existing Javascript pro-
grams. The on clause can be omitted, leaving what looks like a Javascript catch
clause.

An on-catch clause of the form on T catch (p1, p2) s matches an object o
if the type of o is a subtype of T . If T is a malformed or deferred type (19.1),
then performing a match causes a run time error.

It is of course a static warning if T is a deferred or malformed type.
An on-catch clause of the form on T catch (p1, p2) s introduces a new

Dart Programming Language Specification 118

scope CS in which final local variables specified by p1 and p2 are defined. The
statement s is enclosed within CS. The static type of p1 is T and the static
type of p2 is StackTrace.

An on-catch clause of the form on T catch (p1) s is equivalent to an on-
catch clause on T catch (p1, p2) s where p2 is an identifier that does not occur
anywhere else in the program.

An on-catch clause of the form catch (p) s is equivalent to an on-catch
clause on dynamic catch (p) s. An on-catch clause of the form catch (p1, p2)
s is equivalent to an on-catch clause on dynamic catch (p1, p2) s.

The active stack trace is an object whose toString() method produces a string
that is a record of exactly those function activations within the current isolate
that had not completed execution at the point where the current exception
(16.9) was thrown.

This implies that no synthetic function activations may be added to the trace,
nor may any source level activations be omitted. This means, for example, that
any inlining of functions done as an optimization must not be visible in the trace.
Similarly, any synthetic routines used by the implementation must not appear in the
trace.

Nothing is said about how any native function calls may be represented in the
trace.

Note that we say nothing about the identity of the stack trace, or what notion
of equality is defined for stack traces.

The term position should not be interpreted as a line number, but rather as
a precise position - the exact character index of the expression that raised the
exception.

A try statement try s1 on − catch1 . . . on − catchn finally sf defines an
exception handler h that executes as follows:

The on-catch clauses are examined in order, starting with catch1, until
either an on-catch clause that matches the current exception (16.9) is found,
or the list of on-catch clauses has been exhausted. If an on-catch clause
on−catchk is found, then pk1 is bound to the current exception, pk2, if declared,
is bound to the active stack trace, and then catchk is executed. If no on-catch
clause is found, the finally clause is executed. Then, execution resumes at the
end of the try statement.

A finally clause finally s defines an exception handler h that executes as
follows:

Let r be the current return value (17.12). Then the current return value
becomes undefined. Any open streams associated with any asynchronous for
loops (17.6.3) and yield-each (17.16.2) statements executing within the dynamic
scope of h are canceled, in the order of their nesting, innermost first.

Streams left open by for loops that were escaped for whatever reason would
be canceled at function termination, but it is best to cancel them as soon as
possible.

Then the finally clause is executed. Let m be the immediately enclosing
function. If r is defined then the current return value is set to r and then:

Dart Programming Language Specification 119

• if there is a dynamically enclosing error handler g defined by a finally
clause in m, control is transferred to g.

• Otherwise m terminates.

Otherwise, execution resumes at the end of the try statement.
Execution of an on-catch clause on T catch (p1, p2) s of a try statement

t proceeds as follows: The statement s is executed in the dynamic scope of the
exception handler defined by the finally clause of t. Then, the current exception
and active stack trace both become undefined.

Execution of a finally clause finally s of a try statement proceeds as follows:
Let x be the current exception and let t be the active stack trace. Then

the current exception and the active stack trace both become undefined. The
statement s is executed. Then, if x is defined, it is rethrown as if by a rethrow
statement (17.10) enclosed in a catch clause of the form catch (vx, vt) where
vx and vt are fresh variables bound to x and t respectively.

Execution of a try statement of the form try s1 on− catch1 . . . on− catchn

finally sf ; proceeds as follows:
The statement s1 is executed in the dynamic scope of the exception handler

defined by the try statement. Then, the finally clause is executed.
Whether any of the on-catch clauses is executed depends on whether a matching

exception has been raised by s1 (see the specification of the throw statement).
If s1 has raised an exception, it will transfer control to the try statement’s

handler, which will examine the catch clauses in order for a match as specified
above. If no matches are found, the handler will execute the finally clause.

If a matching on-catch was found, it will execute first, and then the finally
clause will be executed.

If an exception is thrown during execution of an on-catch clause, this will
transfer control to the handler for the finally clause, causing the finally clause to
execute in this case as well.

If no exception was raised, the finally clause is also executed. Execution of the
finally clause could also raise an exception, which will cause transfer of control to
the next enclosing handler.

A try statement of the form try s1 on− catch1 . . . on− catchn; is equivalent
to the statement try s1 on− catch1 . . . on− catchn finally {}.

17.12 Return return

The return statement returns a result to the caller of a synchronous function,
completes the future associated with an asynchronous function or terminates the
stream or iterable associated with a generator (9).

returnStatement:
return expression? ‘;’

;

Dart Programming Language Specification 120

Due to finally clauses, the precise behavior of return is a little more involved.
Whether the value a return statement is supposed to return is actually returned
depends on the behavior of any finally clauses in effect when executing the return.
A finally clause may choose to return another value, or throw an exception, or even
redirect control flow leading to other returns or throws. All a return statement really
does is set a value that is intended to be returned when the function terminates.

The current return value is a unique value specific to a given function
activation. It is undefined unless explicitly set in this specification.

Executing a return statement return e; proceeds as follows:
First the expression e is evaluated, producing an object o. Next:

• The current return value is set to o and the current exception (16.9) and
active stack trace (17.11) become undefined.

• Let c be the finally clause of the innermost enclosing try-finally statement
(17.11), if any. If c is defined, let h be the handler induced by c. If h is
defined, control is transferred to h.

• Otherwise execution of the current method terminates.

In the simplest case, the immediately enclosing function is an ordinary, syn-
chronous non-generator, and upon function termination, the current return value
is given to the caller. The other possibility is that the function is marked async,
in which case the current return value is used to complete the future associated
with the function invocation. Both these scenarios are specified in section 16.14.
The enclosing function cannot be marked as generator (i.e, async* or sync*), since
generators are not allowed to contain a statement of the form return e; as discussed
below.

Let T be the static type of e and let f be the immediately enclosing function.
It is a static type warning if the body of f is marked async and the type

Future<flatten(T)> (16.10) may not be assigned to the declared return type of
f . Otherwise, it is a static type warning if T may not be assigned to the declared
return type of f .

Let S be the runtime type of o. In checked mode:

• If the body of f is marked async (9) it is a dynamic type error if o is
not null (16.2) and Future<S> is not a subtype of the actual return type
(19.8.1) of f .

• Otherwise, it is a dynamic type error if o is not null and the runtime type
of o is not a subtype of the actual return type of f .

It is a compile-time error if a return statement of the form return e; appears
in a generative constructor (10.6.1).

It is quite easy to forget to add the factory prefix for a constructor, acci-
dentally converting a factory into a generative constructor. The static checker
may detect a type mismatch in some, but not all, of these cases. The rule above
helps catch such errors, which can otherwise be very hard to recognize. There

Dart Programming Language Specification 121

is no real downside to it, as returning a value from a generative constructor is
meaningless.

It is a compile-time error if a return statement of the form return e; appears
in a generator function.

In the case of a generator function, the value returned by the function is the
iterable or stream associated with it, and individual elements are added to that
iterable using yield statements, and so returning a value makes no sense.

Let f be the function immediately enclosing a return statement of the
form return; It is a static warning f is neither a generator nor a generative
constructor and either:

• f is synchronous and the return type of f may not be assigned to void
(19.7) or,

• f is asynchronous and the return type of f may not be assigned to
Future<Null>.

Hence, a static warning will not be issued if f has no declared return type, since
the return type would be dynamic and dynamic may be assigned to void and to
Future<Null>. However, any synchronous non-generator function that declares a
return type must return an expression explicitly. This helps catch situations where
users forget to return a value in a return statement.

An asynchronous non-generator always returns a future of some sort. If no
expression is given, the future will be completed with null and this motivates
the requirement above. Leaving the return type of a function marked async blank
will be interpreted as dynamic as always, and cause no type error. Using Future
or Future<Object> is acceptable as well, but any other type will cause a warning,
since null has no subtypes.

A return statement with no expression, return; is executed as follows:
If the immediately enclosing function f is a generator, then:

• The current return value is set to null.

• Let c be the finally clause of the innermost enclosing try-finally statement,
if any. If c is defined, let h be the handler induced by c. If h is defined,
control is transferred to h.

• Otherwise, execution of the current method terminates.

Otherwise the return statement is executed by executing the statement
return null; if it occurs inside a method, getter, setter or factory; otherwise, the
return statement necessarily occurs inside a generative constructor, in which
case it is executed by executing return this;.

Despite the fact that return; is executed as if by a return e;, it is important
to understand that it is not a static warning to include a statement of the form
return; in a generative constructor. The rules relate only to the specific syntactic
form return e;.

Dart Programming Language Specification 122

The motivation for formulating return; in this way stems from the basic
requirement that all function invocations indeed return a value. Function in-
vocations are expressions, and we cannot rely on a mandatory typechecker to
always prohibit use of void functions in expressions. Hence, a return statement
must always return a value, even if no expression is specified.

The question then becomes, what value should a return statement return when
no return expression is given. In a generative constructor, it is obviously the
object being constructed (this). A void function is not expected to participate
in an expression, which is why it is marked void in the first place. Hence, this
situation is a mistake which should be detected as soon as possible. The static
rules help here, but if the code is executed, using null leads to fast failure, which
is desirable in this case. The same rationale applies for function bodies that do
not contain a return statement at all.

It is a static warning if a function contains both one or more explicit return
statements of the form return; and one or more return statements of the form
return e;.

17.13 Labels labels

A label is an identifier followed by a colon. A labeled statement is a statement
prefixed by a label L. A labeled case clause is a case clause within a switch
statement (17.9) prefixed by a label L.

The sole role of labels is to provide targets for the break (17.14) and continue
(17.15) statements.

label:
identifier ‘:’

;

The semantics of a labeled statement L : s are identical to those of the
statement s. The namespace of labels is distinct from the one used for types,
functions and variables.

The scope of a label that labels a statement s is s. The scope of a label
that labels a case clause of a switch statement s is s.

Labels should be avoided by programmers at all costs. The motivation for
including labels in the language is primarily making Dart a better target for
code generation.

17.14 Break break

The break statement consists of the reserved word break and an optional
label (17.13).

breakStatement:
break identifier? ‘;’

Dart Programming Language Specification 123

;

Let sb be a break statement. If sb is of the form break L;, then let sE be
the the innermost labeled statement with label L enclosing sb. If sb is of the
form break;, then let sE be the the innermost do (17.8), for (17.6), switch
(17.9) or while (17.7) statement enclosing sb. It is a compile-time error if
no such statement sE exists within the innermost function in which sb occurs.
Furthermore, let s1, . . . , sn be those try statements that are both enclosed in sE

and that enclose sb, and that have a finally clause. Lastly, let fj be the finally
clause of sj , 1 ≤ j ≤ n. Executing sb first executes f1, . . . , fn in innermost-
clause-first order and then terminates sE .

If sE is an asynchronous for loop (17.6.3), its associated stream subscription
is canceled. Furthermore, let ak be the set of asynchronous for loops and yield-
each statements (17.16.2) enclosing sb that are enclosed in sE , 1 ≤ k ≤ m,
where ak is enclosed in ak+1. The stream subscriptions associated with aj are
canceled, 1 ≤ j ≤ m, innermost first, so that aj is canceled before aj+1.

17.15 Continue continue

The continue statement consists of the reserved word continue and an
optional label (17.13).

continueStatement:
continue identifier? ‘;’

;

Let sc be a continue statement. If sc is of the form continue L;, then let sE

be the the innermost labeled do (17.8), for (17.6) or while (17.7) statement or
case clause with label L enclosing sc. If sc is of the form continue; then let sE

be the the innermost do (17.8), for (17.6) or while (17.7) statement enclosing
sc. It is a compile-time error if no such statement or case clause sE exists within
the innermost function in which sc occurs. Furthermore, let s1, . . . , sn be those
try statements that are both enclosed in sE and that enclose sc, and that have
a finally clause. Lastly, let fj be the finally clause of sj , 1 ≤ j ≤ n. Executing
sc first executes f1, . . . , fn in innermost-clause-first order. Then, if sE is a case
clause, control is transferred to the case clause. Otherwise, sE is necessarily a
loop and execution resumes after the last statement in the loop body.

In a while loop, that would be the boolean expression before the body. In a do
loop, it would be the boolean expression after the body. In a for loop, it would be
the increment clause. In other words, execution continues to the next iteration of
the loop.

If sE is an asynchronous for loop (17.6.3), let ak be the set of asynchronous
for loops and yield-each statements (17.16.2) enclosing sc that are enclosed
in sE , 1 ≤ k ≤ m, where ak is enclosed in ak+1. The stream subscriptions

Dart Programming Language Specification 124

associated with aj are canceled, 1 ≤ j ≤ m, innermost first, so that aj is
canceled before aj+1.

17.16 Yield and Yield-Each yieldAndYieldEach

17.16.1 Yield yield

The yield statement adds an element to the result of a generator function
(9).

yieldStatement:
yield expression ‘;’

;

Execution of a statement s of the form yield e; proceeds as follows:
First, the expression e is evaluated to an object o. If the enclosing function

m is marked async* (9) and the stream u associated with m has been paused,
then execution of m is suspended until u is resumed or canceled.

Next, o is added to the iterable or stream associated with the immediately
enclosing function.

If the enclosing function m is marked async* and the stream u associated
with m has been canceled, then let c be the finally clause (17.11) of the inner-
most enclosing try-finally statement, if any. If c is defined, let h be the handler
induced by c. If h is defined, control is transferred to h. If h is undefined, the
immediately enclosing function terminates.

The stream associated with an asynchronous generator could be canceled by
any code with a reference to that stream at any point where the generator was
passivated. Such a cancellation constitutes an irretrievable error for the genera-
tor. At this point, the only plausible action for the generator is to clean up after
itself via its finally clauses.

Otherwise, if the enclosing function m is marked async* (9) then the en-
closing function may suspend.

If a yield occurred inside an infinite loop and the enclosing function never
suspended, there might not be an opportunity for consumers of the enclosing
stream to run and access the data in the stream. The stream might then ac-
cumulate an unbounded number of elements. Such a situation is untenable.
Therefore, we allow the enclosing function to be suspended when a new value is
added to its associated stream. However, it is not essential (and in fact, can be
quite costly) to suspend the function on every yield. The implementation is free
to decide how often to suspend the enclosing function. The only requirement is
that consumers are not blocked indefinitely.

If the enclosing function m is marked sync* (9) then:

• Execution of the function m immediately enclosing s is suspended until the
nullary method moveNext() is invoked upon the iterator used to initiate
the current invocation of m.

Dart Programming Language Specification 125

• The current call to moveNext() returns true.

It is a compile-time error if a yield statement appears in a function that is
not a generator function.

Let T be the static type of e and let f be the immediately enclosing function.
It is a static type warning if either:

• the body of f is marked async* and the type Stream<T> may not be
assigned to the declared return type of f .

• the body of f is marked sync* and the type Iterable<T> may not be
assigned to the declared return type of f .

17.16.2 Yield-Each yieldEach

The yield-each statement adds a series of values to the result of a generator
function (9).

yieldEachStatement:
yield* expression ‘;’

;

Execution of a statement s of the form yield* e; proceeds as follows:
First, the expression e is evaluated to an object o.
If the immediately enclosing function m is marked sync* (9), then:

1. It is a dynamic error if the class of o does not implement Iterable. Other-
wise

2. The method iterator is invoked upon o returning an object i.

3. The moveNext method of i is invoked on it with no arguments. If moveNext
returns false execution of s is complete. Otherwise

4. The getter current is invoked on i. If the invocation raises an exception ex,
execution of s throws ex. Otherwise, the result x of the getter invocation
is added to the iterable associated with m. Execution of the function m
immediately enclosing s is suspended until the nullary method moveNext()
is invoked upon the iterator used to initiate the current invocation of m,
at which point execution of s continues at 3.

5. The current call to moveNext() returns true.

If m is marked async* (9), then:

• It is a dynamic error if the class of o does not implement Stream. Otherwise

• For each element x of o:

Dart Programming Language Specification 126

– If the stream u associated with m has been paused, then execution
of m is suspended until u is resumed or canceled.

– If the stream u associated with m has been canceled, then let c be
the finally clause (17.11) of the innermost enclosing try-finally state-
ment, if any. If c is defined, let h be the handler induced by c. If h is
defined, control is transferred to h. If h is undefined, the immediately
enclosing function terminates.

– Otherwise, x is added to the stream associated with m in the order
it appears in o. The function m may suspend.

• If the stream o is done, execution of s is complete.

It is a compile-time error if a yield-each statement appears in a function
that is not a generator function.

Let T be the static type of e and let f be the immediately enclosing function.
It is a static type warning if T may not be assigned to the declared return type
of f . If f is synchronous it is a static type warning if T may not be assigned to
Iterable. If f is asynchronous it is a static type warning if T may not be assigned
to Stream.

17.17 Assert assert

An assert statement is used to disrupt normal execution if a given boolean
condition does not hold.

assertStatement:
assert ‘(’ conditionalExpression ‘)’ ‘;’

;

The assert statement has no effect in production mode. In checked mode,
execution of an assert statement assert(e); proceeds as follows:

The conditional expression e is evaluated to an object o. If the class of o is
a subtype of Function then let r be the result of invoking o with no arguments.
Otherwise, let r be o. It is a dynamic type error if o is not of type bool or
of type Function, or if r is not of type bool. If r is false, we say that the
assertion failed. If r is true, we say that the assertion succeeded. If the assertion
succeeded, execution of the assert statement is complete. If the assertion failed,
an AssertionError is thrown.

It is a static type warning if the type of e may not be assigned to either
bool or ()→ bool.

Why is this a statement, not a built in function call? Because it is handled
magically so it has no effect and no overhead in production mode. Also, in
the absence of final methods. one could not prevent it being overridden (though
there is no real harm in that). It cannot be viewed as a function call that is
being optimized away because the argument might have side effects.

Dart Programming Language Specification 127

18 Libraries and Scripts librariesAndScripts

A Dart program consists of one or more libraries, and may be built out of
one or more compilation units. A compilation unit may be a library or a part
(18.3).

A library consists of (a possibly empty) set of imports, a set of exports, and
a set of top-level declarations. A top-level declaration is either a class (10), a
type alias declaration (19.3.1), a function (9) or a variable declaration (8). The
members of a library L are those top level declarations given within L.

topLevelDefinition:
classDefinition |
enumType |
typeAlias |
external? functionSignature ‘;’ |
external? getterSignature ‘;’ |
external? setterSignature ‘;’ |
functionSignature functionBody |
returnType? get identifier functionBody |
returnType? set identifier formalParameterList functionBody |
(final | const) type? staticFinalDeclarationList ‘;’ |
variableDeclaration ‘;’

;

getOrSet:
get |

set
;

libraryDefinition:
scriptTag? libraryName? importOrExport* partDirective* topLevelDef-

inition*
;

scriptTag:
‘#!’ (˜NEWLINE)* NEWLINE

;

libraryName:
metadata library identifier (‘.’ identifier)* ‘;’

;

importOrExport:
libraryImport |
libraryExport

Dart Programming Language Specification 128

Libraries may be explicitly named or implicitly named. An explicitly named
library begins with the word library (possibly prefaced with any applicable
metadata annotations), followed by a qualified identifier that gives the name of
the library.

Technically, each dot and identifier is a separate token and so spaces between
them are acceptable. However, the actual library name is the concatenation of the
simple identifiers and dots and contains no spaces.

An implicitly named library has the empty string as its name.
The name of a library is used to tie it to separately compiled parts of the

library (called parts) and can be used for printing and, more generally, reflection.
The name may be relevant for further language evolution.

Libraries intended for widespread use should avoid name collisions. Dart’s pub
package management system provides a mechanism for doing so. Each pub package
is guaranteed a unique name, effectively enforcing a global namespace.

A library may optionally begin with a script tag. Script tags are intended
for use with scripts (18.4). A script tag can be used to identify the interpreter of
the script to whatever computing environment the script is embedded in. The
script tag must appear before any whitespace or comments. A script tag begins
with the characters #! and ends at the end of the line. Any characters that
follow #! in the script tag are ignored by the Dart implementation.

Libraries are units of privacy. A private declaration declared within a library
L can only be accessed by code within L. Any attempt to access a private
member declaration from outside L will cause a method, getter or setter lookup
failure.

Since top level privates are not imported, using the top level privates of another
library is never possible.

The public namespace of library L is the mapping that maps the simple
name of each public top-level member m of L to m. The scope of a library L
consists of the names introduced by all top-level declarations declared in L, and
the names added by L’s imports (18.1).

18.1 Imports imports

An import specifies a library to be used in the scope of another library.

libraryImport:
metadata importSpecification

;

importSpecification:
import uri (as identifier)? combinator* ‘;’ |

import uri deferred as identifier combinator* ‘;’
;

combinator:
show identifierList |

Dart Programming Language Specification 129

hide identifierList
;

identifierList:
identifier (, identifier)*

An import specifies a URI x where the declaration of an imported library
is to be found.

Imports may be deferred or immediate. A deferred import is distinguished
by the appearance of the built-in identifier deferred after the URI. Any import
that is not deferred is immediate.

It is a compile-time error if the specified URI of an immediate import does
not refer to a library declaration. The interpretation of URIs is described in
section 18.5 below.

It is a static warning if the specified URI of a deferred import does not refer
to a library declaration.

One cannot detect the problem at compile time because compilation often
occurs during execution and one does not know what the URI refers to. However
the development environment should detect the problem.

The current library is the library currently being compiled. The import
modifies the namespace of the current library in a manner that is determined
by the imported library and by the optional elements of the import.

An immediate import directive I may optionally include a prefix clause of
the form as Id used to prefix names imported by I. A deferred import must
include a prefix clause or a compile time error occurs. It is a compile-time error
if a prefix used in a deferred import is used in another import clause.

An import directive I may optionally include a namespace combinator
clauses used to restrict the set of names imported by I. Currently, two names-
pace combinators are supported: hide and show.

Let I be an import directive that refers to a URI via the string s1. Evalu-
ation of I proceeds as follows:

If I is a deferred import, no evaluation takes place. Instead, a mapping of
the name of the prefix, p to a deferred prefix object is added to the scope of the
current library L. The deferred prefix object has the following methods:

• loadLibrary. This method returns a future f . When called, the method
causes an immediate import I ′ to be executed at some future time, where
I ′ is is derived from I by eliding the word deferred and adding a hide
loadLibrary combinator clause. When I ′ executes without error, f com-
pletes successfully. If I ′ executes without error, we say that the call to
loadLibrary has succeeded, otherwise we say the call has failed.

• For every top level function f named id in the imported library B, a
corresponding method named id with the same signature as f . Calling
the method results in a runtime error.

Dart Programming Language Specification 130

• For every top level getter g named id in B, a corresponding getter named
id with the same signature as g. Calling the method results in a runtime
error.

• For every top level setter s named id in B, a corresponding setter named
id with the same signature as s. Calling the method results in a runtime
error.

• For every type T named id in B, a corresponding getter named id with
return type Type. Calling the method results in a runtime error.

The purpose of adding members of B to p is to ensure that any warnings
issued when using p are correct, and no spurious warnings are generated. In
fact, at runtime we cannot add these members until B is loaded; but any such
invocations will fail at runtime as specified by virtue of being completely absent.

The static type of the prefix object p is a unique interface type that has
those members whose names and signatures are listed above.

After a call succeeds, the name p is mapped to a non-deferred prefix object
as described below. In addition, the prefix object also supports the loadLibrary
method, and so it is possible to call loadLibrary again. If a call fails, nothing
happens, and one again has the option to call loadLibrary again. Whether a
repeated call to loadLibrary succeeds will vary as described below.

The effect of a repeated call to p.loadLibrary is as follows:

• If another call to p.loadLibrary has already succeeded, the repeated call
also succeeds. Otherwise,

• If another call to to p.loadLibrary has failed:

– If the failure is due to a compilation error, the repeated call fails for
the same reason.

– If the failure is due to other causes, the repeated call behaves as if
no previous call had been made.

In other words, one can retry a deferred load after a network failure or because
a file is absent, but once one finds some content and loads it, one can no longer
reload.

We do not specify what value the future returned resolves to.
If I is an immediate import then, first

• If the URI that is the value of s1 has not yet been accessed by an import
or export (18.2) directive in the current isolate then the contents of the
URI are compiled to yield a library B. Because libraries may have mutually
recursive imports, care must be taken to avoid an infinite regress.

• Otherwise, the contents of the URI denoted by s1 have been compiled into
a library B within the current isolate.

Dart Programming Language Specification 131

Let NS0 be the exported namespace (18.2) of B. Then, for each combinator
clause Ci, i ∈ 1..n in I:

• If Ci is of the form
show id1, . . . , idk

then let NSi = show([id1, . . . , idk], NSi−1)
where show(l, n) takes a list of identifiers l and a namespace n, and pro-
duces a namespace that maps each name in l to the same element that n
does. Furthermore, for each name x in l, if n defines the name x = then
the new namespace maps x = to the same element that n does. Otherwise
the resulting mapping is undefined.

• If Ci is of the form
hide id1, . . . , idk

then let NSi = hide([id1, . . . , idk], NSi−1)
where hide(l, n) takes a list of identifiers l and a namespace n, and pro-
duces a namespace that is identical to n except that for each name k in l,
k and k = are undefined.

Next, if I includes a prefix clause of the form as p, let NS = NSn ∪
{p : prefixObject(NSn)} where prefixObject(NSn) is a prefix object for the
namespace NSn, which is an object that has the following members:

• For every top level function f named id in NSn, a corresponding method
with the same name and signature as f that forwards (9.1) to f .

• For every top level getter with the same name and signature as g named
id in NSn, a corresponding getter that forwards to g.

• For every top level setter s with the same name and signature as named
id in NSn, a corresponding setter that forwards to s.

• For every type T named id in NSn, a corresponding getter named id with
return type Type, that, when invoked, returns the type object for T .

Otherwise, let NS = NSn. It is a compile-time error if the current library
declares a top-level member named p.

The static type of the prefix object p is a unique interface type that has
those members whose names and signatures are listed above.

Then, for each entry mapping key k to declaration d in NS, d is made
available in the top level scope of L under the name k unless either:

• a top-level declaration with the name k exists in L, OR

• a prefix clause of the form as k is used in L.

Dart Programming Language Specification 132

The greatly increases the chance that a member can be added to a library
without breaking its importers.

A system library is a library that is part of the Dart implementation. Any
other library is a non-system library. If a name N is referenced by a library
L and N would be introduced into the top level scope of L by imports of two
libraries, L1 and L2, and the exported namespace of L1 binds N to a declaration
originating in a system library:

• The import of L1 is implicitly extended by a hide N clause.

• A static warning is issued.

Whereas normal conflicts are resolved at deployment time, the functionality
of dart: libraries is injected into an application at run time, and may vary over
time as browsers are upgraded. Thus, conflicts with dart: libraries can arise at
runtime, outside the developer’s control. To avoid breaking deployed applications
in this way, conflicts with the dart: libraries are treated specially.

It is recommended that tools that deploy Dart code produce output in which
all imports use show clauses to ensure that additions to the namespace of a
library never impact deployed code.

If a name N is referenced by a library L and N is introduced into the top
level scope of L by more than one import, and not all the imports denote the
same declaration, then:

• A static warning occurs.

• If N is referenced as a function, getter or setter, a NoSuchMethodError is
thrown.

• If N is referenced as a type, it is treated as a malformed type.

We say that the namespace NS has been imported into L.
It is neither an error nor a warning if N is introduced by two or more imports

but never referred to.
The policy above makes libraries more robust in the face of additions made

to their imports.
A clear distinction needs to be made between this approach, and seemingly

similar policies with respect to classes or interfaces. The use of a class or
interface, and of its members, is separate from its declaration. The usage and
declaration may occur in widely separated places in the code, and may in fact
be authored by different people or organizations. It is important that errors are
given at the offending declaration so that the party that receives the error can
respond to it a meaningful way.

In contrast a library comprises both imports and their usage; the library is
under the control of a single party and so any problem stemming from the import
can be resolved even if it is reported at the use site.

It is a static warning to import two different libraries with the same name
unless their name is the empty string.

Dart Programming Language Specification 133

A widely disseminated library should be given a name that will not conflict
with other such libraries. The preferred mechanism for this is using pub, the Dart
package manager, which provides a global namespace for libraries, and conventions
that leverage that namespace.

Note that no errors or warnings are given if one hides or shows a name that is
not in a namespace. This prevents situations where removing a name from a
library would cause breakage of a client library.

The dart core library dart:core is implicitly imported into every dart library
other than itself via an import clause of the form

import ‘dart:core’;
unless the importing library explicitly imports dart:core.
Any import of dart:core, even if restricted via show, hide or as, preempts the

automatic import.
It would be nice if there was nothing special about dart:core. However, its use

is pervasive, which leads to the decision to import it automatically. However,
some library L may wish to define entities with names used by dart:core (which
it can easily do, as the names declared by a library take precedence). Other
libraries may wish to use L and may want to use members of L that conflict
with the core library without having to use a prefix and without encountering
warnings. The above rule makes this possible, essentially canceling dart:core’s
special treatment by means of yet another special rule.

18.2 Exports exports

A library L exports a namespace (6.1), meaning that the declarations in
the namespace are made available to other libraries if they choose to import L
(18.1). The namespace that L exports is known as its exported namespace.

libraryExport:
metadata export uri combinator* ‘;’

;

An export specifies a URI x where the declaration of an exported library is
to be found. It is a compile-time error if the specified URI does not refer to a
library declaration.

We say that a name is exported by a library (or equivalently, that a library
exports a name) if the name is in the library’s exported namespace. We say that
a declaration is exported by a library (or equivalently, that a library exports a
declaration) if the declaration is in the library’s exported namespace.

A library always exports all names and all declarations in its public names-
pace. In addition, a library may choose to re-export additional libraries via
export directives, often referred to simply as exports.

Let E be an export directive that refers to a URI via the string s1. Evalu-
ation of E proceeds as follows:

First,

Dart Programming Language Specification 134

• If the URI that is the value of s1 has not yet been accessed by an import
or export directive in the current isolate then the contents of the URI are
compiled to yield a library B.

• Otherwise, the contents of the URI denoted by s1 have been compiled into
a library B within the current isolate.

Let NS0 be the exported namespace of B. Then, for each combinator clause
Ci, i ∈ 1..n in E:

• If Ci is of the form show id1, . . . , idk then let
NSi = show([id1, . . . , idk], NSi−1).

• If Ci is of the form hide id1, . . . , idk

then let NSi = hide([id1, . . . , idk], NSi−1).

For each entry mapping key k to declaration d in NSn an entry mapping
k to d is added to the exported namespace of L unless a top-level declaration
with the name k exists in L.

If a name N is referenced by a library L and N would be introduced into
the exported namespace of L by exports of two libraries, L1 and L2, and the
exported namespace of L1 binds N to a declaration originating in a system
library:

• The export of L1 is implicitly extended by a hide N clause.

• A static warning is issued.

See the discussion in section 18.1 for the reasoning behind this rule.
We say that L re-exports library B, and also that L re-exports namespace

NSn. When no confusion can arise, we may simply state that L re-exports B,
or that L re-exports NSn.

It is a compile-time error if a name N is re-exported by a library L and N
is introduced into the export namespace of L by more than one export, unless
all exports refer to same declaration for the name N . It is a static warning
to export two different libraries with the same name unless their name is the
empty string.

18.3 Parts parts

A library may be divided into parts, each of which can be stored in a separate
location. A library identifies its parts by listing them via part directives.

A part directive specifies a URI where a Dart compilation unit that should
be incorporated into the current library may be found.

partDirective:
metadata part uri ‘;’

Dart Programming Language Specification 135

;

partHeader:
metadata part of identifier (‘.’ identifier)* ‘;’

;
partDeclaration:

partHeader topLevelDefinition* EOF
;

A part header begins with part of followed by the name of the library
the part belongs to. A part declaration consists of a part header followed by a
sequence of top-level declarations.

Compiling a part directive of the form part s; causes the Dart system to
attempt to compile the contents of the URI that is the value of s. The top-level
declarations at that URI are then compiled by the Dart compiler in the scope of
the current library. It is a compile-time error if the contents of the URI are not a
valid part declaration. It is a static warning if the referenced part declaration p
names a library other than the current library as the library to which p belongs.

18.4 Scripts scripts

A script is a library whose exported namespace (18.2) includes a top-level
member named main. It is a static warning if the static type of main is not
assignable to a function type or is a function type with more than two required
parameters.

A script S may be executed as follows:
First, S is compiled as a library as specified above. Then, the top-level

function main that is in the exported namespace of S is invoked. If main has no
positional parameters, it is invoked with no arguments. Otherwise if main has
exactly one positional parameter, it is invoked with a single actual argument
whose runtime type implements List<String>. Otherwise main is invoked with
the following two actual arguments:

1. An object whose runtime type implements List<String>.

2. The initial message of the current isolate i as determined by the invocation
of Isolate.spawnUri that spawned i.

It is a run time error if S does not declare or export either:
• A top-level function named main, or

• A top-level getter named main that returns a function.
Note that if main requires more than two arguments, a run time error will occur.
The names of scripts are optional, in the interests of interactive, informal

use. However, any script of long term value should be given a name as a matter
of good practice.

A Dart program will typically be executed by executing a script.

Dart Programming Language Specification 136

18.5 URIs uris

URIs are specified by means of string literals:

uri:
stringLiteral

;

It is a compile-time error if the string literal x that describes a URI is not
a compile-time constant, or if x involves string interpolation.

This specification does not discuss the interpretation of URIs, with the
following exceptions.

The interpretation of URIs is mostly left to the surrounding computing en-
vironment. For example, if Dart is running in a web browser, that browser will
likely interpret some URIs. While it might seem attractive to specify, say, that
URIs are interpreted with respect to a standard such as IETF RFC 3986, in
practice this will usually depend on the browser and cannot be relied upon.

A URI of the form dart:s is interpreted as a reference to a system library
(18.1) s.

A URI of the form package:s is interpreted in an implementation specific
manner.

The intent is that, during development, Dart programmers can rely on a
package manager to find elements of their program.

Otherwise, any relative URI is interpreted as relative to the the location
of the current library. All further interpretation of URIs is implementation
dependent.

This means it is dependent on the embedder.

19 Types types

Dart supports optional typing based on interface types.
The type system is unsound, due to the covariance of generic types. This is

a deliberate choice (and undoubtedly controversial). Experience has shown that
sound type rules for generics fly in the face of programmer intuition. It is easy
for tools to provide a sound type analysis if they choose, which may be useful
for tasks like refactoring.

19.1 Static Types staticTypes

Static type annotations are used in variable declarations (8) (including
formal parameters (9.2)), in the return types of functions (9) and in the bounds
of type variables. Static type annotations are used during static checking and
when running programs in checked mode. They have no effect whatsoever in
production mode.

Dart Programming Language Specification 137

type:
typeName typeArguments?

;

typeName:
qualified

;

typeArguments:
’<’ typeList ’>’

;

typeList:
type (’, ’ type)*

;

A Dart implementation must provide a static checker that detects and
reports exactly those situations this specification identifies as static warnings
and only those situations. However:

• Running the static checker on a program P is not required for compiling
and running P .

• Running the static checker on a program P must not prevent successful
compilation of P nor may it prevent the execution of P , regardless of
whether any static warnings occur.

Nothing precludes additional tools that implement alternative static analyses
(e.g., interpreting the existing type annotations in a sound manner such as either
non-variant generics, or inferring declaration based variance from the actual decla-
rations). However, using these tools must not preclude successful compilation and
execution of Dart code.

A type T is malformed iff:

• T has the form id or the form prefix.id, and in the enclosing lexical scope,
the name id (respectively prefix.id) does not denote a type.

• T denotes a type variable in the enclosing lexical scope, but occurs in the
signature or body of a static member.

• T is a parameterized type of the form G < S1, . . . , Sn >, and G is mal-
formed.

• T denotes declarations that were imported from multiple imports clauses.

Any use of a malformed type gives rise to a static warning. A malformed

Dart Programming Language Specification 138

type is then interpreted as dynamic by the static type checker and the runtime
unless explicitly specified otherwise.

This ensures that the developer is spared a series of cascading warnings as
the malformed type interacts with other types.

A type T is deferred iff it is of the form p.T where p is a deferred prefix. It
is a static warning to use a deferred type in a type annotation, type test, type
cast or as a type parameter. However, all other static warnings must be issued
under the assumption that all deferred libraries have successfully been loaded.

19.1.1 Type Promotion typePromotion

The static type system ascribes a static type to every expression. In some
cases, the types of local variables and formal parameters may be promoted from
their declared types based on control flow.

We say that a variable v is known to have type T whenever we allow the
type of v to be promoted. The exact circumstances when type promotion is
allowed are given in the relevant sections of the specification (16.22, 16.20 and
17.5).

Type promotion for a variable v is allowed only when we can deduce that
such promotion is valid based on an analysis of certain boolean expressions. In
such cases, we say that the boolean expression b shows that v has type T . As
a rule, for all variables v and types T , a boolean expression does not show that
v has type T . Those situations where an expression does show that a variable
has a type are mentioned explicitly in the relevant sections of this specification
(16.34 and 16.22).

19.2 Dynamic Type System dynamicTypeSystem

A Dart implementation must support execution in both production mode
and checked mode. Those dynamic checks specified as occurring specifically in
checked mode must be performed iff the code is executed in checked mode.

Note that this is the case even if the deferred type belongs to a prefix that has
already been loaded. This is regrettable, since it strongly discourages the use of
type annotations that involve deferred types because Dart programmers use checked
mode much of the time.

In practice, many scenarios involving deferred loading involve deferred loading
of classes that implement eagerly loaded interfaces, so the situation is often less
onerous than it seems. The current semantics were adopted based on considerations
of ease of implementation.

Clearly, if a deferred type has not yet been loaded, it is impossible to do a correct
subtype test involving it, and one would expect a dynamic failure, as is the case
with type tests and casts. By the same token, one would expect checked mode to
work seamlessly once a type had been loaded. We hope to adopt these semantics
in the future; such a change would be upwardly compatible.

In checked mode, it is a dynamic type error if a deferred, malformed or
malbounded (19.8) type is used in a subtype test.

Dart Programming Language Specification 139

Consider the following program
typedef F(bool x);
f(foo x) => x;
main() {

if (f is F) {
print(”yoyoma”);
}
}
The type of the formal parameter of f is foo, which is undeclared in the lexical

scope. This will lead to a static type warning. At runtime the program will print
yoyoma, because foo is treated as dynamic.

As another example take
var i;
i j; // a variable j of type i (supposedly)
main() {

j = ’I am not an i’;
}
Since i is not a type, a static warning will be issue at the declaration of j.

However, the program can be executed without incident in production mode because
he undeclared type i is treated as dynamic. However, in checked mode, the implicit
subtype test at the assignment will trigger an error at runtime.

Here is an example involving malbounded types:
class I<T extends num> {}
class J {}
class A<T> implements J, I<T> // type warning: T is not a subtype of num
{ ...
}
Given the declarations above, the following
I x = new A<String>();
will cause a dynamic type error in checked mode, because the assignment re-

quires a subtype test A<String> <: I. To show that this holds, we need to show
that A<String> << I<String>, but I<String> is a malbounded type, causing the
dynamic error. No error is thrown in production mode. Note that

J x = new A<String>();
does not cause a dynamic error, as there is no need to test against I<String>

in this case. Similarly, in production mode
A x = new A<String>();
bool b = x is I;
b is bound to true, but in checked mode the second line causes a dynamic type

error.

19.3 Type Declarations typeDeclarations

Dart Programming Language Specification 140

19.3.1 Typedef typedef

A type alias declares a name for a type expression.

typeAlias:
metadata typedef typeAliasBody

;

typeAliasBody:
functionTypeAlias

;

functionTypeAlias:
functionPrefix typeParameters? formalParameterList ’;’

;

functionPrefix:
returnType? identifier

;

The effect of a type alias of the form typedef T id(T1 p1, . . . , Tn pn, [Tn+1
pn+1, . . . , Tn+k pn+k]) declared in a library L is is to introduce the name id into
the scope of L, bound to the function type (T1, . . . , Tn, [Tn+1 pn+1, . . . , Tn+k

pn+k]) → T . The effect of a type alias of the form typedef T id(T1 p1, . . . , Tn

pn, {Tn+1 pn+1, . . . , Tn+k pn+k}) declared in a library L is is to introduce the
name id into the scope of L, bound to the function type (T1, . . . , Tn, {Tn+1
pn+1, . . . , Tn+k pn+k}) → T . . In either case, iff no return type is specified, it
is taken to be dynamic. Likewise, if a type annotation is omitted on a formal
parameter, it is taken to be dynamic.

It is a compile-time error if any default values are specified in the signature
of a function type alias. Any self reference in a typedef, either directly, or
recursively via another typedef, is a compile time error.

19.4 Interface Types interfaceTypes

The implicit interface of class I is a direct supertype of the implicit interface
of class J iff:

• If I is Object, and J has no extends clause

• If I is listed in the extends clause of J .

• If I is listed in the implements clause of J

• If I is listed in the with clause of J

• If J is a mixin application (12.1) of the mixin of I.

Dart Programming Language Specification 141

A type T is more specific than a type S, written T << S, if one of the
following conditions is met:

• T is S.

• T is ⊥.

• S is dynamic.

• S is a direct supertype of T .

• T is a type parameter and S is the upper bound of T .

• T is a type parameter and S is Object.

• T is of the form I < T1, . . . , Tn > and S is of the form I < S1, . . . , Sn >
and: Ti << Si, 1 ≤ i ≤ n

• T and S are both function types, and T << S under the rules of section
19.5.

• T is a function type and S is Function.

• T << U and U << S.

<< is a partial order on types. T is a subtype of S, written T <: S, iff
[⊥/dynamic]T << S.

Note that <: is not a partial order on types, it is only binary relation on
types. This is because <: is not transitive. If it was, the subtype rule would have
a cycle. For example: List <: List < String > and List < int ><: List, but
List < int > is not a subtype of List < String >. Although <: is not a partial
order on types, it does contain a partial order, namely <<. This means that,
barring raw types, intuition about classical subtype rules does apply.

S is a supertype of T , written S :> T , iff T is a subtype of S.
The supertypes of an interface are its direct supertypes and their supertypes.
An interface type T may be assigned to a type S, written T ⇐⇒ S, iff either

T <: S or S <: T .
This rule may surprise readers accustomed to conventional typechecking. The

intent of the⇐⇒ relation is not to ensure that an assignment is correct. Instead,
it aims to only flag assignments that are almost certain to be erroneous, without
precluding assignments that may work.

For example, assigning a value of static type Object to a variable with static
type String, while not guaranteed to be correct, might be fine if the runtime value
happens to be a string.

19.5 Function Types functionTypes

Function types come in two variants:

1. The types of functions that only have positional parameters. These have
the general form (T1, . . . , Tn, [Tn+1 . . . , Tn+k])→ T .

Dart Programming Language Specification 142

2. The types of functions with named parameters. These have the general
form (T1, . . . , Tn, {Tx1 x1 . . . , Txk

xk})→ T .

A function type (T1, . . . Tk, [Tk+1 . . . , Tn+m])→ T is a subtype of the func-
tion type (S1, . . . , Sk+j , [Sk+j+1 . . . , Sn]) → S, if all of the following conditions
are met:

1. Either

• S is void, Or
• T ⇐⇒ S.

2. ∀i ∈ 1..n, Ti ⇐⇒ Si.

A function type (T1, . . . Tn, {Tx1 x1, . . . , Txk
xk}) → T is a subtype of the

function type (S1, . . . , Sn, {Sy1 y1, . . . , Sym ym}) → S, if all of the following
conditions are met:

1. Either

• S is void, Or
• T ⇐⇒ S.

2. ∀i ∈ 1..n, Ti ⇐⇒ Si.

3. k ≥ m and yi ∈ {x1, . . . , xk}, i ∈ 1..m.

4. For all yi ∈ {y1, . . . , ym}, yi = xj ⇒ Tj ⇐⇒ Si

In addition, the following subtype rules apply:
(T1, . . . , Tn, [])→ T <: (T1, . . . , Tn)→ T .
(T1, . . . , Tn)→ T <: (T1, . . . , Tn, {})→ T .
(T1, . . . , Tn, {})→ T <: (T1, . . . , Tn)→ T .
(T1, . . . , Tn)→ T <: (T1, . . . , Tn, [])→ T .
The naive reader might conclude that, since it is not legal to declare a func-

tion with an empty optional parameter list, these rules are pointless. However,
they induce useful relationships between function types that declare no optional
parameters and those that do.

A function type T may be assigned to a function type S, written T ⇐⇒ S,
iff T <: S.

A function is always an instance of some class that implements the class
Function and implements a call method with the same signature as the function.
All function types are subtypes of Function. If a type I includes an instance
method named call, and the type of call is the function type F , then I is
considered to be more specific than F . It is a static warning if a concrete
class implements Function and does not have a concrete method named call
unless that class has an implementation of noSuchMethod() distinct from the
one declared in class Object.

A function type (T1, . . . Tk, [Tk+1 . . . , Tn+m]) → T is more specific than
the function type (S1, . . . , Sk+j , [Sk+j+1 . . . , Sn]) → S, if all of the following
conditions are met:

Dart Programming Language Specification 143

1. Either

• S is void, Or
• T << S.

2. ∀i ∈ 1..n, Ti << Si.

A function type (T1, . . . Tn, {Tx1 x1, . . . , Txk
xk})→ T is more specific than

the function type (S1, . . . , Sn, {Sy1 y1, . . . , Sym
ym})→ S, if all of the following

conditions are met:

1. Either

• S is void, Or
• T << S.

2. ∀i ∈ 1..n, Ti << Si.

3. k ≥ m and yi ∈ {x1, . . . , xk}, i ∈ 1..m.

4. For all yi ∈ {y1, . . . , ym}, yi = xj ⇒ Tj << Si

Furthermore, if F is a function type, F << Function.

19.6 Type dynamic typeDynamic

The type dynamic denotes the unknown type.
If no static type annotation has been provided the type system assumes the

declaration has the unknown type. If a generic type is used but type arguments
are not provided, then the type arguments default to the unknown type.

This means that given a generic declaration G < T1, . . . , Tn >, the type G is
equivalent to G < dynamic, . . . , dynamic >.

Type dynamic has methods for every possible identifier and arity, with
every possible combination of named parameters. These methods all have dy-
namic as their return type, and their formal parameters all have type dynamic.
Type dynamic has properties for every possible identifier. These properties all
have type dynamic.

From a usability perspective, we want to ensure that the checker does not
issue errors everywhere an unknown type is used. The definitions above ensure
that no secondary errors are reported when accessing an unknown type.

The current rules say that missing type arguments are treated as if they were
the type dynamic. An alternative is to consider them as meaning Object. This
would lead to earlier error detection in checked mode, and more aggressive errors
during static typechecking. For example:

(1) typedAPI(G<String>g){...}
(2) typedAPI(new G());
Under the alternative rules, (2) would cause a runtime error in checked

mode. This seems desirable from the perspective of error localization. However,

Dart Programming Language Specification 144

when a dynamic error is thrown at (2), the only way to keep running is rewriting
(2) into

(3) typedAPI(new G<String>());
This forces users to write type information in their client code just because

they are calling a typed API. We do not want to impose this on Dart program-
mers, some of which may be blissfully unaware of types in general, and genericity
in particular.

What of static checking? Surely we would want to flag (2) when users have
explicitly asked for static typechecking? Yes, but the reality is that the Dart static
checker is likely to be running in the background by default. Engineering teams
typically desire a “clean build” free of warnings and so the checker is designed
to be extremely charitable. Other tools can interpret the type information more
aggressively and warn about violations of conventional (and sound) static type
discipline.

The name dynamic denotes a Type object even though dynamic is not a
class.

19.7 Type Void typeVoid

The special type void may only be used as the return type of a function:
it is a compile-time error to use void in any other context.

For example, as a type argument, or as the type of a variable or parameter
Void is not an interface type.
The only subtype relations that pertain to void are therefore:

• void <: void (by reflexivity)

• ⊥ <: void (as bottom is a subtype of all types).

• void <: dynamic (as dynamic is a supertype of all types)

The analogous rules also hold for the << relation for similar reasons.
Hence, the static checker will issue warnings if one attempts to access a member

of the result of a void method invocation (even for members of null, such as ==).
Likewise, passing the result of a void method as a parameter or assigning it to a
variable will cause a warning unless the variable/formal parameter has type dynamic.

On the other hand, it is possible to return the result of a void method from
within a void method. One can also return null; or a value of type dynamic.
Returning any other result will cause a type warning. In checked mode, a dynamic
type error would arise if a non-null object was returned from a void method (since
no object has runtime type dynamic).

The name void does not denote a Type object.
It is syntacticly illegal to use void as an expression, and it would make no

sense to do so. Type objects reify the runtime types of instances. No instance
ever has type void.

Dart Programming Language Specification 145

19.8 Parameterized Types parameterizedTypes

A parameterized type is an invocation of a generic type declaration.
Let T be a parameterized type G < S1, . . . , Sn >. If G is not a generic

type, the type arguments Si, 1 ≤ i ≤ n are discarded. If G has m 6= n type
parameters, T is treated as as a parameterized type with m arguments, all of
which are dynamic.

In short, any arity mismatch results in all type arguments being dropped, and
replaced with the correct number of type arguments, all set to dynamic. Of course,
a static warning will be issued.

Otherwise, let Ti be the type parameters of G and let Bi be the bound of
Ti, i ∈ 1..n,. T is malbounded iff either Si is malbounded or Si is not a subtype
of [S1, . . . , Sn/T1, . . . , Tn]Bi, i ∈ 1..n.

Note, that, in checked mode, it is a dynamic type error if a malbounded type is
used in a type test as specified in 19.2.

Any use of a malbounded type gives rise to a static warning.
If S is the static type of a member m of G, then the static type of the member

m of G < A1, . . . , An > is [A1, . . . , An/T1, . . . , Tn]S where T1, . . . , Tn are the
formal type parameters of G. Let Bi, be the bounds of Ti, 1 ≤ i ≤ n. It is a static
type warning if Ai is not a subtype of [A1, . . . , An/T1, . . . , Tn]Bi, i ∈ 1..n. It is
a static type warning if G is not a generic type with exactly n type parameters.

19.8.1 Actual Type of Declaration actualTypeOfADeclaration

A type T depends on a type parameter U iff:

• T is U .

• T is a parameterized type, and one of the type arguments of T depends
on U .

Let T be the declared type of a declaration d, as it appears in the program
source. The actual type of d is

• [A1, . . . , An/U1, . . . , Un]T if d depends on type parameters U1, . . . , Un, and
Ai is the value of Ui, 1 ≤ i ≤ n.

• T otherwise.

19.8.2 Least Upper Bounds leastUpperBounds

Given two interfaces I and J , let SI be the set of superinterfaces of I, let SJ

be the set of superinterfaces of J and let S = (I ∪ SI)∩ (J ∪ SJ). Furthermore,
we define Sn = {T |T ∈ S ∧ depth(T) = n} for any finite n where depth(T) is
the number of steps in the longest inheritance path from T to Object. Let q be
the largest number such that Sq has cardinality one. The least upper bound of
I and J is the sole element of Sq.

The least upper bound of dynamic and any type T is dynamic. The least

Dart Programming Language Specification 146

upper bound of void and any type T 6= dynamic is void. The least upper
bound of ⊥ and any type T is T . Let U be a type variable with upper bound
B. The least upper bound of U and a type T 6= ⊥ is the least upper bound of
B and T .

The least upper bound relation is symmetric and reflexive.
The least upper bound of a function type and an interface type T is the

least upper bound of Function and T . Let F and G be function types. If F and
G differ in their number of required parameters, then the least upper bound of
F and G is Function. Otherwise:

• If
F = (T1 . . . Tr, [Tr+1, . . . , Tn]) −→ T0,
G = (S1 . . . Sr, [Sr+1, . . . , Sk]) −→ S0

where k ≤ n then the least upper bound of F and G is
(L1 . . . Lr, [Lr+1, . . . , Lk]) −→ L0

where Li is the least upper bound of Ti and Si, i ∈ 0..k.

• If
F = (T1 . . . Tr, [Tr+1, . . . , Tn]) −→ T0,
G = (S1 . . . Sr, {. . .}) −→ S0

then the least upper bound of F and G is
(L1 . . . Lr) −→ L0

where Li is the least upper bound of Ti and Si, i ∈ 0..r.

• If
F = (T1 . . . Tr, {Tr+1 pr+1, . . . , Tf pf}) −→ T0,
G = (S1 . . . Sr, {Sr+1 qr+1, . . . , Sg qg}) −→ S0

then let {xm, . . . xn} = {pr+1, . . . , pf} ∩ {qr+1, . . . , qg} and let Xj be the
least upper bound of the types of xj in F and G, j ∈ m..n. Then the least
upper bound of F and G is
(L1 . . . Lr, {Xm xm, . . . , Xn xn}) −→ L0

where Li is the least upper bound of Ti and Si, i ∈ 0..r

20 Reference reference

20.1 Lexical Rules lexicalRules

Dart source text is represented as a sequence of Unicode code points. This
sequence is first converted into a sequence of tokens according to the lexical
rules given in this specification. At any point in the tokenization process, the
longest possible token is recognized.

Dart Programming Language Specification 147

20.1.1 Reserved Words reservedWords

A reserved word may not be used as an identifier; it is a compile-time error
if a reserved word is used where an identifier is expected.

assert, break, case, catch, class, const, continue, default, do, else,
enum, extends, false, final, finally, for, if , in, is, new, null, rethrow,
return, super, switch, this, throw, true, try, var, void, while, with.

LETTER:
‘a’ .. ‘z’ |
‘A’ ..‘Z’

;

DIGIT:
‘0’ .. ‘9’

;

WHITESPACE:
(‘\t’ | ‘ ’ | NEWLINE)+

;

20.1.2 Comments comments

Comments are sections of program text that are used for documentation.

SINGLE LINE COMMENT:
‘//’ ˜(NEWLINE)* (NEWLINE)?

;

MULTI LINE COMMENT:
‘/*’ (MULTI LINE COMMENT | ˜ ‘*/’)* ‘*/’

;

Dart supports both single-line and multi-line comments. A single line com-
ment begins with the token //. Everything between // and the end of line
must be ignored by the Dart compiler unless the comment is a documentation
comment. .

A multi-line comment begins with the token /* and ends with the token */.
Everything between /* and */ must be ignored by the Dart compiler unless the
comment is a documentation comment. Comments may nest.

Documentation comments are comments that begin with the tokens ///
or /**. Documentation comments are intended to be processed by a tool that
produces human readable documentation.

The scope of a documentation comment immediately preceding the decla-

Dart Programming Language Specification 148

ration of a class C is the instance scope of C.
The scope of a documentation comment immediately preceding the decla-

ration of a function f is the scope in force at the very beginning of the body of
f .

20.2 Operator Precedence operatorPrecedence

Operator precedence is given implicitly by the grammar.
The following non-normative table may be helpful

Description Operator Associativity Precedence
Unary postfix ., ?., e++, e–, e1[e2], e1() , () None 16

Unary prefix -e, !e, ˜e, ++e, –e None 15
Multiplicative *, /, /̃, % Left 14

Additive +, - Left 13
Shift <<, >> Left 12

Bitwise AND & Left 11
Bitwise XOR ˆ Left 10

Bitwise Or | Left 9
Relational <, >, <=, >=, as, is, is! None 8

Equality ==, != None 7
Logical AND && Left 6

Logical Or || Left 5
If-null ?? Left 4

Conditional e1? e2: e3 Right 3
Cascade .. Left 2

Assignment =, *=, /=, +=, -= ,&=, ˆ= etc. Right 1

Appendix: Naming Conventions namingConventions

The following naming conventions are customary in Dart programs.

• The names of compile time constant variables never use lower case letters.
If they consist of multiple words, those words are separated by underscores.
Examples: PI, I AM A CONSTANT.

• The names of functions (including getters, setters, methods and local or library
functions) and non-constant variables begin with a lowercase letter. If the
name consists of multiple words, each word (except the first) begins with an
uppercase letter. No other uppercase letters are used. Examples: camlCase,
dart4TheWorld

• The names of types (including classes and type aliases) begin with an upper
case letter. If the name consists of multiple words, each word begins with an
uppercase letter. No other uppercase letters are used. Examples: CamlCase,
Dart4TheWorld.

Dart Programming Language Specification 149

• The names of type variables are short (preferably single letter). Examples: T,
S, K, V , E.

• The names of libraries or library prefixes never use upper case letters. If they
consist of multiple words, those words are separated by underscores. Example:
my favorite library.

© Ecma International 2015

	Scope
	Conformance
	Normative References
	Terms and Definitions
	Notation
	Overview
	Scoping
	Privacy
	Concurrency

	Errors and Warnings
	Variables
	Evaluation of Implicit Variable Getters

	Functions
	Function Declarations
	Formal Parameters
	Required Formals
	Optional Formals

	Type of a Function
	External Functions

	Classes
	Instance Methods
	Operators

	Getters
	Setters
	Abstract Instance Members
	Instance Variables
	Constructors
	Generative Constructors
	Factories
	Constant Constructors

	Static Methods
	Static Variables
	Superclasses
	Inheritance and Overriding

	 Superinterfaces

	Interfaces
	Superinterfaces
	Inheritance and Overriding

	Mixins
	Mixin Application
	Mixin Composition

	Enums
	Generics
	Metadata
	Expressions
	Object Identity
	Constants
	Null
	Numbers
	Booleans
	Boolean Conversion

	Strings
	String Interpolation

	Symbols
	Lists
	Maps
	Throw
	 Function Expressions
	 This
	 Instance Creation
	 New
	 Const

	 Spawning an Isolate
	 Function Invocation
	 Actual Argument List Evaluation
	 Binding Actuals to Formals
	 Unqualified Invocation
	 Function Expression Invocation

	 Lookup
	Method Lookup
	 Getter and Setter Lookup

	 Top level Getter Invocation
	 Method Invocation
	Ordinary Invocation
	Cascaded Invocations
	Super Invocation
	Sending Messages

	 Property Extraction
	Getter Access and Method Extraction
	Super Getter Access and Method Closurization
	General Closurization
	Named Constructor Extraction
	Anonymous Constructor Extraction
	General Super Property Extraction
	Ordinary Member Closurization
	Named Constructor Closurization
	Anonymous Constructor Closurization
	Super Closurization

	 Assignment
	Compound Assignment

	 Conditional
	If-null Expressions
	 Logical Boolean Expressions
	 Equality
	 Relational Expressions
	 Bitwise Expressions
	 Shift
	 Additive Expressions
	 Multiplicative Expressions
	 Unary Expressions
	 Await Expressions
	 Postfix Expressions
	 Assignable Expressions
	 Identifier Reference
	 Type Test
	 Type Cast

	Statements
	Blocks
	Expression Statements
	Local Variable Declaration
	Local Function Declaration
	If
	For
	For Loop
	For-in
	Asynchronous For-in

	While
	Do
	Switch
	 Rethrow
	 Try
	 Return
	 Labels
	 Break
	 Continue
	 Yield and Yield-Each
	 Yield
	 Yield-Each

	 Assert

	Libraries and Scripts
	Imports
	Exports
	Parts
	Scripts
	URIs

	Types
	Static Types
	Type Promotion

	Dynamic Type System
	Type Declarations
	Typedef

	Interface Types
	Function Types
	Type dynamic
	Type Void
	Parameterized Types
	Actual Type of Declaration
	Least Upper Bounds

	Reference
	Lexical Rules
	Reserved Words
	Comments

	Operator Precedence

	ECMA-408 4th edition cover pages.pdf
	Scope
	Conformance
	Normative References
	Terms and Definitions
	Notation
	Overview
	Scoping
	Privacy
	Concurrency

	Errors and Warnings
	Variables
	Evaluation of Implicit Variable Getters

	Functions
	Function Declarations
	Formal Parameters
	Required Formals
	Optional Formals

	Type of a Function
	External Functions

	Classes
	Instance Methods
	Operators

	Getters
	Setters
	Abstract Instance Members
	Instance Variables
	Constructors
	Generative Constructors
	Factories
	Constant Constructors

	Static Methods
	Static Variables
	Superclasses
	Inheritance and Overriding

	 Superinterfaces

	Interfaces
	Superinterfaces
	Inheritance and Overriding

	Mixins
	Mixin Application
	Mixin Composition

	Enums
	Generics
	Metadata
	Expressions
	Object Identity
	Constants
	Null
	Numbers
	Booleans
	Boolean Conversion

	Strings
	String Interpolation

	Symbols
	Lists
	Maps
	Throw
	 Function Expressions
	 This
	 Instance Creation
	 New
	 Const

	 Spawning an Isolate
	 Function Invocation
	 Actual Argument List Evaluation
	 Binding Actuals to Formals
	 Unqualified Invocation
	 Function Expression Invocation

	 Lookup
	Method Lookup
	 Getter and Setter Lookup

	 Top level Getter Invocation
	 Method Invocation
	Ordinary Invocation
	Cascaded Invocations
	Super Invocation
	Sending Messages

	 Property Extraction
	Getter Access and Method Extraction
	Super Getter Access and Method Closurization
	General Closurization
	Named Constructor Extraction
	Anonymous Constructor Extraction
	General Super Property Extraction
	Ordinary Member Closurization
	Named Constructor Closurization
	Anonymous Constructor Closurization
	Super Closurization

	 Assignment
	Compound Assignment

	 Conditional
	If-null Expressions
	 Logical Boolean Expressions
	 Equality
	 Relational Expressions
	 Bitwise Expressions
	 Shift
	 Additive Expressions
	 Multiplicative Expressions
	 Unary Expressions
	 Await Expressions
	 Postfix Expressions
	 Assignable Expressions
	 Identifier Reference
	 Type Test
	 Type Cast

	Statements
	Blocks
	Expression Statements
	Local Variable Declaration
	Local Function Declaration
	If
	For
	For Loop
	For-in
	Asynchronous For-in

	While
	Do
	Switch
	 Rethrow
	 Try
	 Return
	 Labels
	 Break
	 Continue
	 Yield and Yield-Each
	 Yield
	 Yield-Each

	 Assert

	Libraries and Scripts
	Imports
	Exports
	Parts
	Scripts
	URIs

	Types
	Static Types
	Type Promotion

	Dynamic Type System
	Type Declarations
	Typedef

	Interface Types
	Function Types
	Type dynamic
	Type Void
	Parameterized Types
	Actual Type of Declaration
	Least Upper Bounds

	Reference
	Lexical Rules
	Reserved Words
	Comments

	Operator Precedence

