

Reference number
ECMA-123:2009

© Ecma International 2009

ECMA-402
4th Edition / June 2017

ECMAScript® 2017

Internationalization
API Specification

COPYRIGHT PROTECTED DOCUMENT

 © Ecma International 2017

© Ecma International 2017 i

Copyright notice

Copyright © 2017 Ecma International

Ecma International
Rue du Rhone 114
CH-1204 Geneva
Tel: +41 22 849 6000
Fax: +41 22 849 6001
Web: http://www.ecma-international.org

This document and possible translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published, and
distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this
section are included on all such copies and derivative works. However, this document itself may not be
modified in any way, including by removing the copyright notice or references to Ecma International, except as
needed for the purpose of developing any document or deliverable produced by Ecma International (in which
case the rules applied to copyrights must be followed) or as required to translate it into languages other than
English.

The limited permissions granted above are perpetual and will not be revoked by Ecma International or its
successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and ECMA
INTERNATIONAL DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE
ANY OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR
A PARTICULAR PURPOSE."

Software License

All Software contained in this document ("Software)" is protected by copyright and is being made available
under the "BSD License", included below. This Software may be subject to third party rights (rights from
parties other than Ecma International), including patent rights, and no licenses under such third party rights
are granted under this license even if the third party concerned is a member of Ecma International. SEE THE
ECMA CODE OF CONDUCT IN PATENT MATTERS AVAILABLE AT http://www.ecma-
international.org/memento/codeofconduct.htm FOR INFORMATION REGARDING THE LICENSING OF
PATENT CLAIMS THAT ARE REQUIRED TO IMPLEMENT ECMA INTERNATIONAL STANDARDS*.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.
3. Neither the name of the authors nor Ecma International may be used to endorse or promote products
derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE ECMA INTERNATIONAL "AS IS" AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL ECMA INTERNATIONAL BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

http://www.ecma-international.org/

ii © Ecma International 2017

Introduction
1	Scope
2	Conformance
3	Normative	References
4	Overview
4.1	Internationalization,	Localization,	and	Globalization
4.2	API	Overview
4.3	Implementation	Dependencies

5	Notational	Conventions
5.1	Well-Known	Intrinsic	Objects

6	IdentiLication	of	Locales,	Currencies,	and	Time	Zones
6.1	Case	Sensitivity	and	Case	Mapping
6.2	Language	Tags
6.2.1	Unicode	Locale	Extension	Sequences
6.2.2	IsStructurallyValidLanguageTag	(locale)
6.2.3	CanonicalizeLanguageTag	(locale)
6.2.4	DefaultLocale	()

6.3	Currency	Codes
6.3.1	IsWellFormedCurrencyCode	(currency)

6.4	Time	Zone	Names

ECMAScript®	2017
Internationalization
API	Speci9ication

Table	of	Contents

6.4.1	IsValidTimeZoneName	(timeZone)
6.4.2	CanonicalizeTimeZoneName
6.4.3	DefaultTimeZone	()

7	Requirements	for	Standard	Built-in	ECMAScript	Objects
8	The	Intl	Object
8.1	Constructor	Properties	of	the	Intl	Object
8.1.1	Intl.Collator	(...)
8.1.2	Intl.NumberFormat	(...)
8.1.3	Intl.DateTimeFormat	(...)

8.2	Function	Properties	of	the	Intl	Object
8.2.1	Intl.getCanonicalLocales	(locales)

9	Locale	and	Parameter	Negotiation
9.1	Internal	slots	of	Service	Constructors
9.2	Abstract	Operations
9.2.1	CanonicalizeLocaleList	(locales)
9.2.2	BestAvailableLocale	(availableLocales,	locale)
9.2.3	LookupMatcher	(availableLocales,	requestedLocales)
9.2.4	BestFitMatcher	(availableLocales,	requestedLocales)
9.2.5	UnicodeExtensionSubtags	(extension)
9.2.6	ResolveLocale	(availableLocales,	requestedLocales,	options,
relevantExtensionKeys,	localeData)
9.2.7	LookupSupportedLocales	(availableLocales,
requestedLocales)
9.2.8	BestFitSupportedLocales	(availableLocales,
requestedLocales)
9.2.9	SupportedLocales	(availableLocales,	requestedLocales,
options)
9.2.10	GetOption	(options,	property,	type,	values,	fallback)
9.2.11	GetNumberOption	(options,	property,	minimum,
maximum,	fallback)

10	Collator	Objects
10.1	The	Intl.Collator	Constructor
10.1.1	InitializeCollator	(collator,	locales,	options)

10.1.2	Intl.Collator	([locales	[,	options]])
10.2	Properties	of	the	Intl.Collator	Constructor
10.2.1	Intl.Collator.prototype
10.2.2	Intl.Collator.supportedLocalesOf	(locales	[,	options])
10.2.3	Internal	Slots

10.3	Properties	of	the	Intl.Collator	Prototype	Object
10.3.1	Intl.Collator.prototype.constructor
10.3.2	Intl.Collator.prototype	[@@toStringTag]
10.3.3	get	Intl.Collator.prototype.compare
10.3.4	Collator	Compare	Functions
10.3.5	Intl.Collator.prototype.resolvedOptions	()

10.4	Properties	of	Intl.Collator	Instances
11	NumberFormat	Objects
11.1	Abstract	Operations	For	NumberFormat	Objects
11.1.1	SetNumberFormatDigitOptions	(intlObj,	options,
mnfdDefault)
11.1.2	InitializeNumberFormat	(numberFormat,	locales,	options
)
11.1.3	CurrencyDigits	(currency)
11.1.4	Number	Format	Functions
11.1.5	FormatNumberToString	(numberFormat,	x)
11.1.6	PartitionNumberPattern	(numberFormat,	x)
11.1.7	FormatNumber(numberFormat,	x)
11.1.8	FormatNumberToParts(numberFormat,	x)
11.1.9	ToRawPrecision(x,	minPrecision,	maxPrecision)
11.1.10	ToRawFixed(x,	minInteger,	minFraction,	maxFraction)
11.1.11	UnwrapNumberFormat(nf)

11.2	The	Intl.NumberFormat	Constructor
11.2.1	Intl.NumberFormat	([locales	[,	options]])

11.3	Properties	of	the	Intl.NumberFormat	Constructor
11.3.1	Intl.NumberFormat.prototype
11.3.2	Intl.NumberFormat.supportedLocalesOf	(locales	[,
options])

11.3.3	Internal	slots
11.4	Properties	of	the	Intl.NumberFormat	Prototype	Object
11.4.1	Intl.NumberFormat.prototype.constructor
11.4.2	Intl.NumberFormat.prototype	[@@toStringTag]
11.4.3	get	Intl.NumberFormat.prototype.format
11.4.4	Intl.NumberFormat.prototype.resolvedOptions	()

11.5	Properties	of	Intl.NumberFormat	Instances
12	DateTimeFormat	Objects
12.1	Abstract	Operations	For	DateTimeFormat	Objects
12.1.1	InitializeDateTimeFormat	(dateTimeFormat,	locales,
options)
12.1.2	ToDateTimeOptions	(options,	required,	defaults)
12.1.3	BasicFormatMatcher	(options,	formats)
12.1.4	BestFitFormatMatcher	(options,	formats)
12.1.5	DateTime	Format	Functions
12.1.6	PartitionDateTimePattern	(dateTimeFormat,	x)
12.1.7	FormatDateTime(dateTimeFormat,	x)
12.1.8	FormatDateTimeToParts	(dateTimeFormat,	x)
12.1.9	ToLocalTime	(date,	calendar,	timeZone)
12.1.10	UnwrapDateTimeFormat(dtf)

13	The	Intl.DateTimeFormat	Constructor
13.1	Intl.DateTimeFormat	([locales	[,	options]])

14	Properties	of	the	Intl.DateTimeFormat	Constructor
14.1	Intl.DateTimeFormat.prototype
14.2	Intl.DateTimeFormat.supportedLocalesOf	(locales	[,	options]
)
14.3	Internal	slots

15	Properties	of	the	Intl.DateTimeFormat	Prototype	Object
15.1	Intl.DateTimeFormat.prototype.constructor
15.2	Intl.DateTimeFormat.prototype	[@@toStringTag]
15.3	get	Intl.DateTimeFormat.prototype.format
15.4	Intl.DateTimeFormat.prototype.formatToParts	([date])
15.5	Intl.DateTimeFormat.prototype.resolvedOptions	()

16	Properties	of	Intl.DateTimeFormat	Instances
17	Locale	Sensitive	Functions	of	the	ECMAScript	Language
SpeciLication
17.1	Properties	of	the	String	Prototype	Object
17.1.1	String.prototype.localeCompare	(that	[,	locales	[,	options
]])
17.1.2	String.prototype.toLocaleLowerCase	([locales])
17.1.3	String.prototype.toLocaleUpperCase	([locales])

17.2	Properties	of	the	Number	Prototype	Object
17.2.1	Number.prototype.toLocaleString	([locales	[,	options]])

17.3	Properties	of	the	Date	Prototype	Object
17.3.1	Date.prototype.toLocaleString	([locales	[,	options]])
17.3.2	Date.prototype.toLocaleDateString	([locales	[,	options]]
)
17.3.3	Date.prototype.toLocaleTimeString	([locales	[,	options]]
)

17.4	Properties	of	the	Array	Prototype	Object
17.4.1	Array.prototype.toLocaleString	([locales	[,	options]])

A	Implementation	Dependent	Behaviour
B	Additions	and	Changes	That	Introduce	Incompatibilities	with	Prior
Editions
C	Copyright	&	Software	License

This	speciLication's	source	can	be	found	at
https://github.com/tc39/ecma402.

The	ECMAScript	2017	Internationalization	API	SpeciLication	(ECMA-
402	4th	Edition),	provides	key	languagesensitive	functionality	as	a
complement	to	the	ECMAScript	2017	Language	SpeciLication	(ECMA-

Introduction

https://github.com/tc39/ecma402

262	8th	Edition	or	successor).	Its	functionality	has	been	selected
from	that	of	well-established	internationalization	APIs	such	as	those
of	the	Internationalization	Components	for	Unicode	(ICU)	library,	of
the	.NET	framework,	or	of	the	Java	platform.

The	1st	Edition	API	was	developed	by	an	ad-hoc	group	established	by
Ecma	TC39	in	September	2010	based	on	a	proposal	by	Nebojša	Ćirić
and	Jungshik	Shin.

Internationalization	of	software	is	never	complete.	We	expect
signiLicant	enhancements	in	future	editions	of	this	speciLication.

Editor,	4rd	Edition
Caridy	Patiño

Contributors
Zibi	Braniecki
Daniel	Ehrenberg

Editor,	3rd	Edition
Caridy	Patiño

Contributors
Rick	Waldron
André	Bargull
Eric	Ferraiuolo
Steven	R.	Loomis
Zibi	Braniecki

Editor,	2nd	Edition
Rick	Waldron

Contributors
Norbert	Lindenberg
Allen	Wirfs-Brock
André	Bargull
Steven	R.	Loomis

Editor,	1st	Edition
Norbert	Lindenberg

Contributors
Eric	Albright
Nebojša	Ćirić
Peter	Constable
Mark	Davis
Richard	Gillam
Steven	Loomis
Mihai	Nita
Addison	Phillips
Roozbeh	Pournader
Jungshik	Shin
Shawn	Steele
Allen	Wirfs-Brock

Feedback	and	Review	from
Erik	Arvidsson
John	J.	Barton
Zbigniew	Braniecki
Marcos	Cáceres
Brendan	Eich
John	Emmons
Gordon	P.	Hemsley
David	Herman
Luke	Hoban
Oliver	Hunt
Suresh	Jayabalan
Yehuda	Katz
Mark	S.	Miller
Andrew	Paprocki
Adam	Peller
Axel	Rauschmayer
Andreas	Rossberg

Alex	Russell
Markus	Scherer
Dmitry	Soshnikov
Yusuke	Suzuki
John	Tamplin
Rick	Waldron
Anton	Yatsenko
Nicholas	Zakas

This	Standard	deLines	the	application	programming	interface	for
ECMAScript	objects	that	support	programs	that	need	to	adapt	to	the
linguistic	and	cultural	conventions	used	by	different	human
languages	and	countries.

A	conforming	implementation	of	the	ECMAScript	2017
Internationalization	API	SpeciLication	must	conform	to	the
ECMAScript	2017	Language	SpeciLication	(ECMA-262	8th	Edition,	or
successor),	and	must	provide	and	support	all	the	objects,	properties,
functions,	and	program	semantics	described	in	this	speciLication.

A	conforming	implementation	of	the	ECMAScript	2017
Internationalization	API	SpeciLication	is	permitted	to	provide
additional	objects,	properties,	and	functions	beyond	those	described
in	this	speciLication.	In	particular,	a	conforming	implementation	of
the	ECMAScript	2017	Internationalization	API	SpeciLication	is

1 Scope

2 Conformance

permitted	to	provide	properties	not	described	in	this	speciLication,
and	values	for	those	properties,	for	objects	that	are	described	in	this
speciLication.	A	conforming	implementation	is	not	permitted	to	add
optional	arguments	to	the	functions	deLined	in	this	speciLication.

A	conforming	implementation	is	permitted	to	accept	additional
values,	and	then	have	implementation-deLined	behaviour	instead	of
throwing	a	RangeError,	for	the	following	properties	of	options
arguments:

The	options	property	localeMatcher	in	all	constructors	and
supportedLocalesOf	methods.
The	options	properties	usage	and	sensitivity	in	the	Collator
constructor.
The	options	properties	style	and	currencyDisplay	in	the
NumberFormat	constructor.
The	options	properties	minimumIntegerDigits,
minimumFractionDigits,	maximumFractionDigits,
minimumSigniLicantDigits,	and	maximumSigniLicantDigits	in
the	NumberFormat	constructor,	provided	that	the	additional
values	are	interpreted	as	integer	values	higher	than	the
speciLied	limits.
The	options	properties	listed	in	Table	4	in	the	DateTimeFormat
constructor.
The	options	property	formatMatcher	in	the	DateTimeFormat
constructor.

The	following	referenced	documents	are	required	for	the	application
of	this	document.	For	dated	references,	only	the	edition	cited	applies.
For	undated	references,	the	latest	edition	of	the	referenced

3 Normative	References

document	(including	any	amendments)	applies.

ECMAScript	2017	Language	SpeciLication	(ECMA-262	8th	Edition,	or
successor).
http://www.ecma-international.org/publications/standards/Ecma-
262.htm

NOTE Throughout	this	document,	the	phrase	"ES2017,	x"
(where	x	is	a	sequence	of	numbers	separated	by
periods)	may	be	used	as	shorthand	for	"ECMAScript
2017	Language	SpeciLication	(ECMA-262	8th	Edition,
sub	clause	x)".

ISO/IEC	10646:2014:	Information	Technology	–	Universal
Multiple-Octet	Coded	Character	Set	(UCS)	plus	Amendment
1:2015	and	Amendment	2,	plus	additional	amendments	and
corrigenda,	or	successor

http://www.iso.org/iso/catalogue_detail.htm?
csnumber=63182
http://www.iso.org/iso/catalogue_detail.htm?
csnumber=65047
http://www.iso.org/iso/catalogue_detail.htm?
csnumber=66791

ISO	4217:2015,	Codes	for	the	representation	of	currencies	and
funds,	or	successor
IETF	BCP	47:

RFC	5646,	Tags	for	Identifying	Languages,	or	successor
RFC	4647,	Matching	of	Language	Tags,	or	successor

IETF	RFC	6067,	BCP	47	Extension	U,	or	successor
IANA	Time	Zone	Database
The	Unicode	Standard
Unicode	Technical	Standard	35,	Unicode	Locale	Data	Markup
Language

http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.iso.org/iso/catalogue_detail.htm?csnumber=63182
http://www.iso.org/iso/catalogue_detail.htm?csnumber=65047
http://www.iso.org/iso/catalogue_detail.htm?csnumber=66791
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=64758
http://tools.ietf.org/html/rfc5646
http://tools.ietf.org/html/rfc4647
http://tools.ietf.org/html/rfc6067
http://www.iana.org/time-zones/
http://www.unicode.org/versions/latest
http://www.unicode.org/reports/tr35/

This	section	contains	a	non-normative	overview	of	the	ECMAScript
2017	Internationalization	API	SpeciLication.

Internationalization	of	software	means	designing	it	such	that	it
supports	or	can	be	easily	adapted	to	support	the	needs	of	users
speaking	different	languages	and	having	different	cultural
expectations,	and	enables	worldwide	communication	between	them.
Localization	then	is	the	actual	adaptation	to	a	speciLic	language	and
culture.	Globalization	of	software	is	commonly	understood	to	be	the
combination	of	internationalization	and	localization.	Globalization
starts	at	the	lowest	level	by	using	a	text	representation	that	supports
all	languages	in	the	world,	and	using	standard	identiLiers	to	identify
languages,	countries,	time	zones,	and	other	relevant	parameters.	It
continues	with	using	a	user	interface	language	and	data	presentation
that	the	user	understands,	and	Linally	often	requires	product-speciLic
adaptations	to	the	user’s	language,	culture,	and	environment.

The	ECMAScript	2017	Language	SpeciLication	lays	the	foundation	by
using	Unicode	for	text	representation	and	by	providing	a	few
language-sensitive	functions,	but	gives	applications	little	control	over
the	behaviour	of	these	functions.	The	ECMAScript	2017
Internationalization	API	SpeciLication	builds	on	this	by	providing	a
set	of	customizable	language-sensitive	functionality.	The	API	is	useful
even	for	applications	that	themselves	are	not	internationalized,	as
even	applications	targeting	only	one	language	and	one	region	need	to
properly	support	that	one	language	and	region.	However,	the	API
also	enables	applications	that	support	multiple	languages	and

4 Overview

4.1 Internationalization,	Localization,
and	Globalization

regions,	even	concurrently,	as	may	be	needed	in	server
environments.

The	ECMAScript	2017	Internationalization	API	SpeciLication	is
designed	to	complement	the	ECMAScript	2017	Language
SpeciLication	by	providing	key	language-sensitive	functionality.	The
API	can	be	added	to	an	implementation	of	the	ECMAScript	2017
Language	SpeciLication	(ECMA-262	8th	Edition,	or	successor).

The	ECMAScript	2017	Internationalization	API	SpeciLication
provides	several	key	pieces	of	language-sensitive	functionality	that
are	required	in	most	applications:	String	comparison	(collation),
number	formatting,	date	and	time	formatting,	and	case	conversion.
While	the	ECMAScript	2017	Language	SpeciLication	provides
functions	for	this	basic	functionality	(on	Array.prototype:
toLocaleString;	on	String.prototype:	localeCompare,
toLocaleLowerCase,	toLocaleUpperCase;	on	Number.prototype:
toLocaleString;	on	Date.prototype:	toLocaleString,
toLocaleDateString,	and	toLocaleTimeString),	it	leaves	the	actual
behaviour	of	these	functions	largely	up	to	implementations	to	deLine.
The	ECMAScript	2017	Internationalization	API	SpeciLication
provides	additional	functionality,	control	over	the	language	and	over
details	of	the	behaviour	to	be	used,	and	a	more	complete
speciLication	of	required	functionality.

Applications	can	use	the	API	in	two	ways:

1.	 Directly,	by	using	the	constructors	Intl.Collator,
Intl.NumberFormat,	or	Intl.DateTimeFormat	to	construct	an
object,	specifying	a	list	of	preferred	languages	and	options	to
conLigure	the	behaviour	of	the	resulting	object.	The	object	then

4.2 API	Overview

provides	a	main	function	(compare	or	format),	which	can	be
called	repeatedly.	It	also	provides	a	resolvedOptions	function,
which	the	application	can	use	to	Lind	out	the	exact	conLiguration
of	the	object.

2.	 Indirectly,	by	using	the	functions	of	the	ECMAScript	2017
Language	SpeciLication	mentioned	above.	The	collation	and
formatting	functions	are	respeciLied	in	this	speciLication	to
accept	the	same	arguments	as	the	Collator,	NumberFormat,	and
DateTimeFormat	constructors	and	produce	the	same	results	as
their	compare	or	format	methods.	The	case	conversion
functions	are	respeciLied	to	accept	a	list	of	preferred	languages.

The	Intl	object	is	used	to	package	all	functionality	deLined	in	the
ECMAScript	2017	Internationalization	API	SpeciLication	to	avoid
name	collisions.

Due	to	the	nature	of	internationalization,	the	API	speciLication	has	to
leave	several	details	implementation	dependent:

The	set	of	locales	that	an	implementation	supports	with	adequate
localizations:	Linguists	estimate	the	number	of	human
languages	to	around	6000,	and	the	more	widely	spoken	ones
have	variations	based	on	regions	or	other	parameters.	Even
large	locale	data	collections,	such	as	the	Common	Locale	Data
Repository,	cover	only	a	subset	of	this	large	set.
Implementations	targeting	resource-constrained	devices	may
have	to	further	reduce	the	subset.
The	exact	form	of	localizations	such	as	format	patterns:	In	many
cases	locale-dependent	conventions	are	not	standardized,	so
different	forms	may	exist	side	by	side,	or	they	vary	over	time.
Different	internationalization	libraries	may	have	implemented

4.3 Implementation	Dependencies

different	forms,	without	any	of	them	being	actually	wrong.	In
order	to	allow	this	API	to	be	implemented	on	top	of	existing
libraries,	such	variations	have	to	be	permitted.
Subsets	of	Unicode:	Some	operations,	such	as	collation,	operate
on	strings	that	can	include	characters	from	the	entire	Unicode
character	set.	However,	both	the	Unicode	standard	and	the
ECMAScript	standard	allow	implementations	to	limit	their
functionality	to	subsets	of	the	Unicode	character	set.	In
addition,	locale	conventions	typically	don’t	specify	the	desired
behaviour	for	the	entire	Unicode	character	set,	but	only	for
those	characters	that	are	relevant	for	the	locale.	While	the
Unicode	Collation	Algorithm	combines	a	default	collation	order
for	the	entire	Unicode	character	set	with	the	ability	to	tailor	for
local	conventions,	subsets	and	tailorings	still	result	in
differences	in	behaviour.

This	standard	uses	a	subset	of	the	notational	conventions	of	the
ECMAScript	2017	Language	SpeciLication	(ECMA-262	8th	Edition),	as
ES2017:

Object	Internal	Methods	and	Internal	Slots,	as	described	in
ES2017,	6.1.7.2.
Algorithm	conventions,	including	the	use	of	abstract	operations,
as	described	in	ES2017,	7.1,	7.2,	7.3.
Internal	Slots,	as	described	in	ES2017,	9.1.
The	List	and	Record	SpeciLication	Type,	as	described	in	ES2017,
6.2.1.

NOTE As	described	in	the	ECMAScript	Language
SpeciLication,	algorithms	are	used	to	precisely	specify

5 Notational	Conventions

https://tc39.github.io/ecma262/#sec-object-internal-methods-and-internal-slots
https://tc39.github.io/ecma262/#sec-type-conversion
https://tc39.github.io/ecma262/#sec-testing-and-comparison-operations
https://tc39.github.io/ecma262/#sec-operations-on-objects
https://tc39.github.io/ecma262/#sec-ordinary-object-internal-methods-and-internal-slots
https://tc39.github.io/ecma262/#sec-list-and-record-specification-type
https://tc39.github.io/ecma262/#sec-list-and-record-specification-type
https://tc39.github.io/ecma262/#sec-list-and-record-specification-type

the	required	semantics	of	ECMAScript	constructs,	but
are	not	intended	to	imply	the	use	of	any	speciLic
implementation	technique.	Internal	slots	are	used	to
deLine	the	semantics	of	object	values,	but	are	not	part
of	the	API.	They	are	deLined	purely	for	expository
purposes.	An	implementation	of	the	API	must	behave
as	if	it	produced	and	operated	upon	internal	slots	in
the	manner	described	here.

As	an	extension	to	the	Record	SpeciLication	Type,	the	notation	"
[[<name>]]"	denotes	a	Lield	whose	name	is	given	by	the	variable
name,	which	must	have	a	String	value.	For	example,	if	a	variable	s	has
the	value	"a",	then	[[<s>]]	denotes	the	Lield	[[<a>]].

For	ECMAScript	objects,	this	standard	may	use	variable-named
internal	slots:	The	notation	"[[<name>]]"	denotes	an	internal	slot
whose	name	is	given	by	the	variable	name,	which	must	have	a	String
value.	For	example,	if	a	variable	s	has	the	value	"a",	then	[[<s>]]
denotes	the	[[<a>]]	internal	slot.

This	speciLication	uses	blocks	demarcated	as	 NORMATIVE
OPTIONAL	to	denote	the	sense	of	Annex	B	in	ECMA	262.	That	is,
normative	optional	sections	are	required	when	the	ECMAScript	host
is	a	web	browser.	The	content	of	the	section	is	normative	but
optional	if	the	ECMAScript	host	is	not	a	web	browser.

The	following	table	extends	the	Well-Known	Intrinsic	Objects	table
deLined	in	ES2017,	6.1.7.4.

Table	1:	Well-known	Intrinsic	Objects	(Extensions)

Intrinsic	Name Global	Name ECMAScript	Language

5.1 Well-Known	Intrinsic	Objects

https://tc39.github.io/ecma262/#sec-list-and-record-specification-type
https://tc39.github.io/ecma262/#sec-additional-ecmascript-features-for-web-browsers
https://tc39.github.io/ecma262/#sec-well-known-intrinsic-objects

Association

%Date_now% Date.now The	initial	value	of	the
now	data	property	of	the
intrinsic	
(ES2017,	

%Intl% Intl The	Intl

%Collator% Intl.Collator The	Intl.Collator
constructor	(

%CollatorPrototype% Intl.Collator.prototype The	initial	value	of	the
prototype

property	of	the	intrinsic
%Collator%

%NumberFormat% Intl.NumberFormat The
Intl.NumberFormat

constructor	(

%NumberFormatPrototype% Intl.NumberFormat.prototype The	initial	value	of	the
prototype

property	of	the	intrinsic
%NumberFormat%
(11.3.1).

%DateTimeFormat% Intl.DateTimeFormat The
Intl.DateTimeFormat

constructor	(

%DateTimeFormatPrototype% Intl.DateTimeFormat.prototype The	initial	value	of	the
prototype

property	of	the	intrinsic
%DateTimeFormat%
(14.1).

%StringProto_includes% String.prototype.includes The	initial	value	of	the
includes

property	of	the	intrinsic
%StringPrototype%
(ES2017,	

%StringProto_indexOf% String.prototype.indexOf The	initial	value	of	the
indexOf

of	the	intrinsic
%StringPrototype%
(ES2017,	

%ArrayProto_indexOf% Array.prototype.indexOf The	initial	value	of	the
indexOf

of	the	intrinsic
%ArrayPrototype%
(ES2017,	

This	clause	describes	the	String	values	used	in	the	ECMAScript	2017
Internationalization	API	SpeciLication	to	identify	locales,	currencies,
and	time	zones.

The	String	values	used	to	identify	locales,	currencies,	and	time	zones
are	interpreted	in	a	case-insensitive	manner,	treating	the	Unicode

6 Identi9ication	of	Locales,
Currencies,	and	Time	Zones

6.1 Case	Sensitivity	and	Case	Mapping

https://tc39.github.io/ecma262/#sec-properties-of-the-string-prototype-object
https://tc39.github.io/ecma262/#sec-properties-of-the-string-prototype-object
https://tc39.github.io/ecma262/#sec-properties-of-the-array-prototype-object

Basic	Latin	characters	"A"	to	"Z"	(U+0041	to	U+005A)	as	equivalent
to	the	corresponding	Basic	Latin	characters	"a"	to	"z"	(U+0061	to
U+007A).	No	other	case	folding	equivalences	are	applied.	When
mapping	to	upper	case,	a	mapping	shall	be	used	that	maps
characters	in	the	range	"a"	to	"z"	(U+0061	to	U+007A)	to	the
corresponding	characters	in	the	range	"A"	to	"Z"	(U+0041	to	U+005A)
and	maps	no	other	characters	to	the	latter	range.

EXAMPLES	"ß"	(U+00DF)	must	not	match	or	be	mapped	to	"SS"
(U+0053,	U+0053).	"ı"	(U+0131)	must	not	match	or	be	mapped	to	"I"
(U+0049).

The	ECMAScript	2017	Internationalization	API	SpeciLication
identiLies	locales	using	language	tags	as	deLined	by	IETF	BCP	47
(RFCs	5646	and	4647	or	their	successors),	which	may	include
extensions	such	as	those	registered	through	RFC	6067.	Their
canonical	form	is	speciLied	in	RFC	5646	section	4.5	or	its	successor.

BCP	47	language	tags	that	meet	those	validity	criteria	of	RFC	5646
section	2.2.9	that	can	be	veriLied	without	reference	to	the	IANA
Language	Subtag	Registry	are	considered	structurally	valid.	All
structurally	valid	language	tags	are	valid	for	use	with	the	APIs
deLined	by	this	standard.	However,	the	set	of	locales	and	thus
language	tags	that	an	implementation	supports	with	adequate
localizations	is	implementation	dependent.	The	constructors
Collator,	NumberFormat,	and	DateTimeFormat	map	the	language
tags	used	in	requests	to	locales	supported	by	their	respective
implementations.

6.2 Language	Tags

6.2.1 Unicode	Locale	Extension	Sequences

This	standard	uses	the	term	"Unicode	locale	extension	sequence"	for
any	substring	of	a	language	tag	that	is	not	part	of	a	private	use	subtag
sequence,	starts	with	a	separator	"-"	and	the	singleton	"u",	and
includes	the	maximum	sequence	of	following	non-singleton	subtags
and	their	preceding	"-"	separators.

The	IsStructurallyValidLanguageTag	abstract	operation	veriLies	that
the	locale	argument	(which	must	be	a	String	value)

represents	a	well-formed	BCP	47	language	tag	as	speciLied	in
RFC	5646	section	2.1,	or	successor,
does	not	include	duplicate	variant	subtags,	and
does	not	include	duplicate	singleton	subtags.

The	abstract	operation	returns	true	if	locale	can	be	generated	from
the	ABNF	grammar	in	section	2.1	of	the	RFC,	starting	with	Language-
Tag,	and	does	not	contain	duplicate	variant	or	singleton	subtags
(other	than	as	a	private	use	subtag).	It	returns	false	otherwise.
Terminal	value	characters	in	the	grammar	are	interpreted	as	the
Unicode	equivalents	of	the	ASCII	octet	values	given.

The	CanonicalizeLanguageTag	abstract	operation	returns	the
canonical	and	case-regularized	form	of	the	locale	argument	(which
must	be	a	String	value	that	is	a	structurally	valid	BCP	47	language	tag
as	veriLied	by	the	IsStructurallyValidLanguageTag	abstract
operation).	It	takes	the	steps	speciLied	in	RFC	5646	section	4.5,	or
successor,	to	bring	the	language	tag	into	canonical	form,	and	to
regularize	the	case	of	the	subtags,	but	does	not	take	the	steps	to
bring	a	language	tag	into	"extlang	form"	and	to	reorder	variant
subtags.

6.2.2 IsStructurallyValidLanguageTag	(locale)

6.2.3 CanonicalizeLanguageTag	(locale)

The	speciLications	for	extensions	to	BCP	47	language	tags,	such	as
RFC	6067,	may	include	canonicalization	rules	for	the	extension
subtag	sequences	they	deLine	that	go	beyond	the	canonicalization
rules	of	RFC	5646	section	4.5.	Implementations	are	allowed,	but	not
required,	to	apply	these	additional	rules.

The	DefaultLocale	abstract	operation	returns	a	String	value
representing	the	structurally	valid	(6.2.2)	and	canonicalized	(6.2.3)
BCP	47	language	tag	for	the	host	environment’s	current	locale.

The	ECMAScript	2017	Internationalization	API	SpeciLication
identiLies	currencies	using	3-letter	currency	codes	as	deLined	by	ISO
4217.	Their	canonical	form	is	upper	case.

All	well-formed	3-letter	ISO	4217	currency	codes	are	allowed.
However,	the	set	of	combinations	of	currency	code	and	language	tag
for	which	localized	currency	symbols	are	available	is	implementation
dependent.	Where	a	localized	currency	symbol	is	not	available,	the
ISO	4217	currency	code	is	used	for	formatting.

The	IsWellFormedCurrencyCode	abstract	operation	veriLies	that	the
currency	argument	(which	must	be	a	String	value)	represents	a	well-
formed	3-letter	ISO	currency	code.	The	following	steps	are	taken:

1.	 Let	normalized	be	the	result	of	mapping	currency	to	upper	case
as	described	in	6.1.

6.2.4 DefaultLocale	()

6.3 Currency	Codes

6.3.1 IsWellFormedCurrencyCode	(currency)

2.	 If	the	string	length	of	normalized	is	not	3,	return	false.
3.	 If	normalized	contains	any	character	that	is	not	in	the	range	"A"
to	"Z"	(U+0041	to	U+005A),	return	false.

4.	 Return	true.

The	ECMAScript	2017	Internationalization	API	SpeciLication
identiLies	time	zones	using	the	Zone	and	Link	names	of	the	IANA
Time	Zone	Database.	Their	canonical	form	is	the	corresponding	Zone
name	in	the	casing	used	in	the	IANA	Time	Zone	Database.

All	registered	Zone	and	Link	names	are	allowed.	Implementations
must	recognize	all	such	names,	and	use	best	available	current	and
historical	information	about	their	offsets	from	UTC	and	their	daylight
saving	time	rules	in	calculations.	However,	the	set	of	combinations	of
time	zone	name	and	language	tag	for	which	localized	time	zone
names	are	available	is	implementation	dependent.

The	IsValidTimeZoneName	abstract	operation	veriLies	that	the
timeZone	argument	(which	must	be	a	String	value)	represents	a	valid
Zone	or	Link	name	of	the	IANA	Time	Zone	Database.

The	abstract	operation	returns	true	if	timeZone,	converted	to	upper
case	as	described	in	6.1,	is	equal	to	one	of	the	Zone	or	Link	names	of
the	IANA	Time	Zone	Database,	converted	to	upper	case	as	described
in	6.1.	It	returns	false	otherwise.

6.4 Time	Zone	Names

6.4.1 IsValidTimeZoneName	(timeZone)

6.4.2 CanonicalizeTimeZoneName

The	CanonicalizeTimeZoneName	abstract	operation	returns	the
canonical	and	case-regularized	form	of	the	timeZone	argument
(which	must	be	a	String	value	that	is	a	valid	time	zone	name	as
veriLied	by	the	IsValidTimeZoneName	abstract	operation).	The
following	steps	are	taken:

1.	 Let	ianaTimeZone	be	the	Zone	or	Link	name	of	the	IANA	Time
Zone	Database	such	that	timeZone,	converted	to	upper	case	as
described	in	6.1,	is	equal	to	ianaTimeZone,	converted	to	upper
case	as	described	in	6.1.

2.	 If	ianaTimeZone	is	a	Link	name,	let	ianaTimeZone	be	the
corresponding	Zone	name	as	speciLied	in	the	"backward"	Lile	of
the	IANA	Time	Zone	Database.

3.	 If	ianaTimeZone	is	"Etc/UTC"	or	"Etc/GMT",	return	"UTC".
4.	 Return	ianaTimeZone.

The	Intl.DateTimeFormat	constructor	allows	this	time	zone	name;	if
the	time	zone	is	not	speciLied,	the	host	environment’s	current	time
zone	is	used.	Implementations	shall	support	UTC	and	the	host
environment’s	current	time	zone	(if	different	from	UTC)	in
formatting.

The	DefaultTimeZone	abstract	operation	returns	a	String	value
representing	the	valid	(6.4.1)	and	canonicalized	(6.4.2)	time	zone
name	for	the	host	environment’s	current	time	zone.

6.4.3 DefaultTimeZone	()

7 Requirements	for	Standard
Built-in	ECMAScript	Objects

Unless	speciLied	otherwise	in	this	document,	the	objects,	functions,
and	constructors	described	in	this	standard	are	subject	to	the
generic	requirements	and	restrictions	speciLied	for	standard	built-in
ECMAScript	objects	in	the	ECMAScript	2017	Language	SpeciLication,
8th	edition,	clause	17,	or	successor.

The	Intl	object	is	the	%Intl%	intrinsic	object	and	the	initial	value	of
the	Intl	property	of	the	global	object.	The	Intl	object	is	a	single
ordinary	object.

The	value	of	the	[[Prototype]]	internal	slot	of	the	Intl	object	is	the
intrinsic	object	%ObjectPrototype%.

The	Intl	object	is	not	a	function	object.	It	does	not	have	a
[[Construct]]	internal	method;	it	is	not	possible	to	use	the	Intl	object
as	a	constructor	with	the	new	operator.	The	Intl	object	does	not	have
a	[[Call]]	internal	method;	it	is	not	possible	to	invoke	the	Intl	object
as	a	function.

The	Intl	object	has	an	internal	slot,	[[FallbackSymbol]],	which	is	a
new	%Symbol%	in	the	current	realm.

See	10.

8 The	Intl	Object

8.1 Constructor	Properties	of	the	Intl
Object

8.1.1 Intl.Collator	(...)

https://tc39.github.io/ecma262/#global-object
https://tc39.github.io/ecma262/#sec-properties-of-the-object-prototype-object
https://tc39.github.io/ecma262/#sec-symbol-constructor
https://tc39.github.io/ecma262/#realm

See	11.

See	12.

When	the	getCanonicalLocales	method	is	called	with	argument
locales,	the	following	steps	are	taken:

1.	 Let	ll	be	?	CanonicalizeLocaleList(locales).
2.	 Return	CreateArrayFromList(ll).

The	constructors	for	the	objects	providing	locale	sensitive	services,
Collator,	NumberFormat,	and	DateTimeFormat,	use	a	common
pattern	to	negotiate	the	requests	represented	by	the	locales	and
options	arguments	against	the	actual	capabilities	of	their
implementations.	The	common	behaviour	is	described	here	in	terms
of	internal	slots	describing	the	capabilities	and	of	abstract	operations
using	these	internal	slots.

8.1.2 Intl.NumberFormat	(...)

8.1.3 Intl.DateTimeFormat	(...)

8.2 Function	Properties	of	the	Intl	Object

8.2.1 Intl.getCanonicalLocales	(locales)

9 Locale	and	Parameter
Negotiation

https://tc39.github.io/ecma262/#sec-createarrayfromlist

The	constructors	Intl.Collator,	Intl.NumberFormat,	and
Intl.DateTimeFormat	have	the	following	internal	slots:

[[AvailableLocales]]	is	a	List	that	contains	structurally	valid
(6.2.2)	and	canonicalized	(6.2.3)	BCP	47	language	tags
identifying	the	locales	for	which	the	implementation	provides
the	functionality	of	the	constructed	objects.	Language	tags	on
the	list	must	not	have	a	Unicode	locale	extension	sequence.	The
list	must	include	the	value	returned	by	the	DefaultLocale
abstract	operation	(6.2.4),	and	must	not	include	duplicates.
Implementations	must	include	in	[[AvailableLocales]]	locales
that	can	serve	as	fallbacks	in	the	algorithm	used	to	resolve
locales	(see	9.2.6).	For	example,	implementations	that	provide	a
"de-DE"	locale	must	include	a	"de"	locale	that	can	serve	as	a
fallback	for	requests	such	as	"de-AT"	and	"de-CH".	For	locales
that	in	current	usage	would	include	a	script	subtag	(such	as
Chinese	locales),	old-style	language	tags	without	script	subtags
must	be	included	such	that,	for	example,	requests	for	"zh-TW"
and	"zh-HK"	lead	to	output	in	traditional	Chinese	rather	than
the	default	simpliLied	Chinese.	The	ordering	of	the	locales
within	[[AvailableLocales]]	is	irrelevant.
[[RelevantExtensionKeys]]	is	a	List	of	keys	of	the	language	tag
extensions	deLined	in	Unicode	Technical	Standard	35	that	are
relevant	for	the	functionality	of	the	constructed	objects.
[[SortLocaleData]]	and	[[SearchLocaleData]]	(for	Intl.Collator)
and	[[LocaleData]]	(for	Intl.NumberFormat	and
Intl.DateTimeFormat)	are	objects	that	have	properties	for	each
locale	contained	in	[[AvailableLocales]].	The	value	of	each	of
these	properties	must	be	an	object	that	has	properties	for	each
key	contained	in	[[RelevantExtensionKeys]].	The	value	of	each
of	these	properties	must	be	a	non-empty	array	of	those	values
deLined	in	Unicode	Technical	Standard	35	for	the	given	key	that

9.1 Internal	slots	of	Service	Constructors

https://tc39.github.io/ecma262/#sec-list-and-record-specification-type
https://tc39.github.io/ecma262/#sec-list-and-record-specification-type

are	supported	by	the	implementation	for	the	given	locale,	with
the	Lirst	element	providing	the	default	value.

EXAMPLE	An	implementation	of	DateTimeFormat	might	include	the
language	tag	"th"	in	its	[[AvailableLocales]]	internal	slot,	and	must
(according	to	14.3)	include	the	key	"ca"	in	its
[[RelevantExtensionKeys]]	internal	slot.	For	Thai,	the	"buddhist"
calendar	is	usually	the	default,	but	an	implementation	might	also
support	the	calendars	"gregory",	"chinese",	and	"islamicc"	for	the
locale	"th".	The	[[LocaleData]]	internal	slot	would	therefore	at	least
include	{"th":	{ca:	["buddhist",	"gregory",	"chinese",	"islamicc"]}}.

Where	the	following	abstract	operations	take	an	availableLocales
argument,	it	must	be	an	[[AvailableLocales]]	List	as	speciLied	in	9.1.

The	abstract	operation	CanonicalizeLocaleList	takes	the	following
steps:

1.	 If	locales	is	unde9ined,	then
a.	 Return	a	new	empty	List.

2.	 Let	seen	be	a	new	empty	List.
3.	 If	Type(locales)	is	String,	then

a.	 Let	O	be	CreateArrayFromList(«	locales	»).
4.	 Else,

a.	 Let	O	be	?	ToObject(locales).
5.	 Let	len	be	?	ToLength(?	Get(O,	"length")).
6.	 Let	k	be	0.
7.	 Repeat,	while	k	<	len

a.	 Let	Pk	be	ToString(k).

9.2 Abstract	Operations

9.2.1 CanonicalizeLocaleList	(locales)

https://tc39.github.io/ecma262/#sec-list-and-record-specification-type
https://tc39.github.io/ecma262/#sec-list-and-record-specification-type
https://tc39.github.io/ecma262/#sec-list-and-record-specification-type
https://tc39.github.io/ecma262/#sec-ecmascript-data-types-and-values
https://tc39.github.io/ecma262/#sec-createarrayfromlist
https://tc39.github.io/ecma262/#sec-toobject
https://tc39.github.io/ecma262/#sec-tolength
https://tc39.github.io/ecma262/#sec-get-o-p
https://tc39.github.io/ecma262/#sec-tostring

b.	 Let	kPresent	be	?	HasProperty(O,	Pk).
c.	 If	kPresent	is	true,	then

i.	 Let	kValue	be	?	Get(O,	Pk).
ii.	 If	Type(kValue)	is	not	String	or	Object,	throw	a
TypeError	exception.

iii.	 Let	tag	be	?	ToString(kValue).
iv.	 If	IsStructurallyValidLanguageTag(tag)	is	false,

throw	a	RangeError	exception.
v.	 Let	canonicalizedTag	be
CanonicalizeLanguageTag(tag).

vi.	 If	canonicalizedTag	is	not	an	element	of	seen,	append
canonicalizedTag	as	the	last	element	of	seen.

d.	 Increase	k	by	1.
8.	 Return	seen.

NOTE	1 Non-normative	summary:	The	abstract	operation
interprets	the	locales	argument	as	an	array	and	copies
its	elements	into	a	List,	validating	the	elements	as
structurally	valid	language	tags	and	canonicalizing
them,	and	omitting	duplicates.

NOTE	2 Requiring	kValue	to	be	a	String	or	Object	means	that
the	Number	value	NaN	will	not	be	interpreted	as	the
language	tag	"nan",	which	stands	for	Min	Nan	Chinese.

The	BestAvailableLocale	abstract	operation	compares	the	provided
argument	locale,	which	must	be	a	String	value	with	a	structurally
valid	and	canonicalized	BCP	47	language	tag,	against	the	locales	in
availableLocales	and	returns	either	the	longest	non-empty	preLix	of
locale	that	is	an	element	of	availableLocales,	or	unde9ined	if	there	is
no	such	element.	It	uses	the	fallback	mechanism	of	RFC	4647,	section

9.2.2 BestAvailableLocale	(availableLocales,
locale)

https://tc39.github.io/ecma262/#sec-list-and-record-specification-type
https://tc39.github.io/ecma262/#sec-hasproperty
https://tc39.github.io/ecma262/#sec-get-o-p
https://tc39.github.io/ecma262/#sec-ecmascript-data-types-and-values
https://tc39.github.io/ecma262/#sec-tostring

3.4.	The	following	steps	are	taken:

1.	 Let	candidate	be	locale.
2.	 Repeat

a.	 If	availableLocales	contains	an	element	equal	to	candidate,
return	candidate.

b.	 Let	pos	be	the	character	index	of	the	last	occurrence	of	"-"
(U+002D)	within	candidate.	If	that	character	does	not
occur,	return	unde9ined.

c.	 If	pos	≥	2	and	the	character	"-"	occurs	at	index	pos-2	of
candidate,	decrease	pos	by	2.

d.	 Let	candidate	be	the	substring	of	candidate	from	position
0,	inclusive,	to	position	pos,	exclusive.

The	LookupMatcher	abstract	operation	compares	requestedLocales,
which	must	be	a	List	as	returned	by	CanonicalizeLocaleList,	against
the	locales	in	availableLocales	and	determines	the	best	available
language	to	meet	the	request.	The	following	steps	are	taken:

1.	 Let	k	be	0.
2.	 Let	rLocales	be	CreateArrayFromList(requestedLocales).
3.	 Let	len	be	!	ToLength(!	Get(rLocales,	"length")).
4.	 Let	availableLocale	be	unde9ined.
5.	 Repeat	while	k	<	len	and	availableLocale	is	unde9ined:

a.	 Let	locale	be	!	Get(rLocales,	!	ToString(k))	.
b.	 Let	noExtensionsLocale	be	the	String	value	that	is	locale
with	all	Unicode	locale	extension	sequences	removed.

c.	 Let	availableLocale	be
BestAvailableLocale(availableLocales,	noExtensionsLocale).

d.	 Increase	k	by	1.
6.	 Let	result	be	a	new	Record.

9.2.3 LookupMatcher	(availableLocales,
requestedLocales)

https://tc39.github.io/ecma262/#sec-list-and-record-specification-type
https://tc39.github.io/ecma262/#sec-createarrayfromlist
https://tc39.github.io/ecma262/#sec-tolength
https://tc39.github.io/ecma262/#sec-get-o-p
https://tc39.github.io/ecma262/#sec-get-o-p
https://tc39.github.io/ecma262/#sec-tostring
https://tc39.github.io/ecma262/#sec-list-and-record-specification-type

7.	 If	availableLocale	is	not	unde9ined,	then
a.	 Set	result.[[locale]]	to	availableLocale.
b.	 If	locale	and	noExtensionsLocale	are	not	the	same	String
value,	then
i.	 Let	extension	be	the	String	value	consisting	of	the
Lirst	substring	of	locale	that	is	a	Unicode	locale
extension	sequence.

ii.	 Set	result.[[extension]]	to	extension.
8.	 Else,

a.	 Let	defLocale	be	DefaultLocale().
b.	 Set	result.[[locale]]	to	defLocale.

9.	 Return	result.

NOTE The	algorithm	is	based	on	the	Lookup	algorithm
described	in	RFC	4647	section	3.4,	but	options
speciLied	through	Unicode	locale	extension	sequences
are	ignored	in	the	lookup.	Information	about	such
subsequences	is	returned	separately.	The	abstract
operation	returns	a	record	with	a	[[locale]]	Lield,
whose	value	is	the	language	tag	of	the	selected	locale,
which	must	be	an	element	of	availableLocales.	If	the
language	tag	of	the	request	locale	that	led	to	the
selected	locale	contained	a	Unicode	locale	extension
sequence,	then	the	returned	record	also	contains	an
[[extension]]	Lield	whose	value	is	the	Lirst	Unicode
locale	extension	sequence	within	the	request	locale
language	tag.

The	BestFitMatcher	abstract	operation	compares	requestedLocales,
which	must	be	a	List	as	returned	by	CanonicalizeLocaleList,	against
the	locales	in	availableLocales	and	determines	the	best	available

9.2.4 BestFitMatcher	(availableLocales,
requestedLocales)

https://tc39.github.io/ecma262/#sec-list-and-record-specification-type

language	to	meet	the	request.	The	algorithm	is	implementation
dependent,	but	should	produce	results	that	a	typical	user	of	the
requested	locales	would	perceive	as	at	least	as	good	as	those
produced	by	the	LookupMatcher	abstract	operation.	Options
speciLied	through	Unicode	locale	extension	sequences	must	be
ignored	by	the	algorithm.	Information	about	such	subsequences	is
returned	separately.	The	abstract	operation	returns	a	record	with	a
[[locale]]	Lield,	whose	value	is	the	language	tag	of	the	selected	locale,
which	must	be	an	element	of	availableLocales.	If	the	language	tag	of
the	request	locale	that	led	to	the	selected	locale	contained	a	Unicode
locale	extension	sequence,	then	the	returned	record	also	contains	an
[[extension]]	Lield	whose	value	is	the	Lirst	Unicode	locale	extension
sequence	within	the	request	locale	language	tag.

The	abstract	operation	UnicodeExtensionSubtags	splits	extension,
which	must	be	a	Unicode	locale	extension	sequence,	into	its	subtags.
The	following	steps	are	taken:

1.	 Let	size	be	the	number	of	elements	in	extension.
2.	 If	size	=	0,	then

a.	 Return	«	».
3.	 Let	extensionSubtags	be	«	».
4.	 Let	attribute	be	true.
5.	 Let	q	be	3.
6.	 Let	p	be	q.
7.	 Let	t	be	q.
8.	 Repeat,	while	q	<	size

a.	 Let	c	be	the	code	unit	value	of	the	element	at	index	q	in	the
String	extension.

b.	 If	c	is	0x002D	(HYPHEN-MINUS),	then
i.	 If	q	-	p	=	2,	then

9.2.5 UnicodeExtensionSubtags	(extension)

1.	 If	p	-	t	>	1,	then
a.	 Let	type	be	a	String	value	equal	to	the
substring	of	extension	consisting	of	the
code	units	at	indices	t	(inclusive)	through
p	-	1	(exclusive).

b.	 Append	type	as	the	last	element	of
extensionSubtags.

2.	 Let	key	be	a	String	value	equal	to	the	substring
of	extension	consisting	of	the	code	units	at
indices	p	(inclusive)	through	q	(exclusive).

3.	 Append	key	as	the	last	element	of
extensionSubtags.

4.	 Let	t	be	q	+	1.
5.	 Let	attribute	be	false.

ii.	 Else	if	attribute	is	true,	then
1.	 Let	attr	be	a	String	value	equal	to	the	substring
of	extension	consisting	of	the	code	units	at
indices	p	(inclusive)	through	q	(exclusive).

2.	 Append	attr	as	the	last	element	of
extensionSubtags.

3.	 Let	t	be	q	+	1.
iii.	 Let	p	be	q	+	1.

c.	 Let	q	be	q	+	1.
9.	 If	size	-	p	=	2,	then

a.	 If	p	-	t	>	1,	then
i.	 Let	type	be	a	String	value	equal	to	the	substring	of
extension	consisting	of	the	code	units	at	indices	t
(inclusive)	through	p	-	1	(exclusive).

ii.	 Append	type	as	the	last	element	of	extensionSubtags.
b.	 Let	t	be	p.

10.	 Let	tail	be	a	String	value	equal	to	the	substring	of	extension
consisting	of	the	code	units	at	indices	t	(inclusive)	through	size
(exclusive).

11.	 Append	tail	as	the	last	element	of	extensionSubtags.
12.	 Return	extensionSubtags.

The	ResolveLocale	abstract	operation	compares	a	BCP	47	language
priority	list	requestedLocales	against	the	locales	in	availableLocales
and	determines	the	best	available	language	to	meet	the	request.
availableLocales,	requestedLocales,	and	relevantExtensionKeys	must
be	provided	as	List	values,	options	as	a	Record.

The	following	steps	are	taken:

1.	 Let	matcher	be	options.[[localeMatcher]].
2.	 If	matcher	is	"lookup",	then

a.	 Let	r	be	LookupMatcher(availableLocales,
requestedLocales).

3.	 Else,
a.	 Let	r	be	BestFitMatcher(availableLocales,
requestedLocales).

4.	 Let	foundLocale	be	r.[[locale]].
5.	 If	r	has	an	[[extension]]	Lield,	then

a.	 Let	extension	be	r.[[extension]].
b.	 Let	extensionSubtags	be
CreateArrayFromList(UnicodeExtensionSubtags(extension)).

c.	 Let	extensionSubtagsLength	be	Get(extensionSubtags,
"length").

6.	 Let	result	be	a	new	Record.
7.	 Set	result.[[dataLocale]]	to	foundLocale.
8.	 Let	supportedExtension	be	"-u".
9.	 Let	k	be	0.
10.	 Let	rExtensionKeys	be

9.2.6 ResolveLocale	(availableLocales,
requestedLocales,	options,	relevantExtensionKeys,
localeData)

https://tc39.github.io/ecma262/#sec-list-and-record-specification-type
https://tc39.github.io/ecma262/#sec-list-and-record-specification-type
https://tc39.github.io/ecma262/#sec-createarrayfromlist
https://tc39.github.io/ecma262/#sec-get-o-p
https://tc39.github.io/ecma262/#sec-list-and-record-specification-type

CreateArrayFromList(relevantExtensionKeys).
11.	 Let	len	be	!	ToLength(!	Get(rExtensionKeys,	"length")).
12.	 Repeat	while	k	<	len

a.	 Let	key	be	!	Get(rExtensionKeys,	!	ToString(k)).
b.	 Let	foundLocaleData	be	?	Get(localeData,	foundLocale).
c.	 Let	keyLocaleData	be	?	ToObject(Get(foundLocaleData,
key)).

d.	 Let	value	be	?	ToString(Get(keyLocaleData,	"0")).
e.	 Let	supportedExtensionAddition	be	"".
f.	 If	extensionSubtags	is	not	unde9ined,	then

i.	 Let	keyPos	be	Call(%ArrayProto_indexOf%,
extensionSubtags,	«	key	»)	.

ii.	 If	keyPos	≠	-1,	then
1.	 If	keyPos	+	1	<	extensionSubtagsLength	and	the

length	property	of	the	result	of
Get(extensionSubtags,	ToString(keyPos	+1))	is
greater	than	2,	then
a.	 Let	requestedValue	be
Get(extensionSubtags,	ToString(keyPos
+1)).

b.	 If	the	result	of
Call(%StringProto_includes%,
keyLocaleData,	«	requestedValue	»)	is	true,
then
i.	 Let	value	be	requestedValue.
ii.	 Let	supportedExtensionAddition	be
the	concatenation	of	"-",	key,	"-",	and
value.

2.	 Else	if	the	result	of
Call(%StringProto_includes%,	keyLocaleData,	«
"true"	»)	is	true,	then
a.	 Let	value	be	"true".

g.	 If	options	has	a	Lield	[[<key>]],	then

https://tc39.github.io/ecma262/#sec-createarrayfromlist
https://tc39.github.io/ecma262/#sec-tolength
https://tc39.github.io/ecma262/#sec-get-o-p
https://tc39.github.io/ecma262/#sec-get-o-p
https://tc39.github.io/ecma262/#sec-tostring
https://tc39.github.io/ecma262/#sec-get-o-p
https://tc39.github.io/ecma262/#sec-toobject
https://tc39.github.io/ecma262/#sec-get-o-p
https://tc39.github.io/ecma262/#sec-tostring
https://tc39.github.io/ecma262/#sec-get-o-p
https://tc39.github.io/ecma262/#sec-call
https://tc39.github.io/ecma262/#sec-get-o-p
https://tc39.github.io/ecma262/#sec-tostring
https://tc39.github.io/ecma262/#sec-get-o-p
https://tc39.github.io/ecma262/#sec-tostring
https://tc39.github.io/ecma262/#sec-call
https://tc39.github.io/ecma262/#sec-call

i.	 Let	optionsValue	be	?	ToString(options.[[<key>]]).
ii.	 If	the	result	of	Call(%StringProto_includes%,
keyLocaleData,	«	optionsValue	»)	is	true,	then
1.	 If	optionsValue	is	not	equal	to	value,	then

a.	 Let	value	be	optionsValue.
b.	 Let	supportedExtensionAddition	be	"".

h.	 Set	result.[[<key>]]	to	value.
i.	 Append	supportedExtensionAddition	to
supportedExtension.

j.	 Increase	k	by	1.
13.	 If	the	number	of	elements	in	supportedExtension	is	greater	than

2,	then
a.	 Let	privateIndex	be	Call(%StringProto_indexOf%,
foundLocale,	«	"-x-"	»).

b.	 If	privateIndex	=	-1,	then
i.	 Let	foundLocale	be	the	concatenation	of	foundLocale
and	supportedExtension.

c.	 Else,
i.	 Let	preExtension	be	the	substring	of	foundLocale	from
position	0,	inclusive,	to	position	privateIndex,
exclusive.

ii.	 Let	postExtension	be	the	substring	of	foundLocale
from	position	privateIndex	to	the	end	of	the	string.

iii.	 Let	foundLocale	be	the	concatenation	of	preExtension,
supportedExtension,	and	postExtension.

d.	 Assert:	IsStructurallyValidLanguageTag(foundLocale)	is
true.

e.	 Let	foundLocale	be
CanonicalizeLanguageTag(foundLocale).

14.	 Set	result.[[locale]]	to	foundLocale.
15.	 Return	result.

NOTE Non-normative	summary:	Two	algorithms	are
available	to	match	the	locales:	the	Lookup	algorithm

https://tc39.github.io/ecma262/#sec-tostring
https://tc39.github.io/ecma262/#sec-call
https://tc39.github.io/ecma262/#sec-call

described	in	RFC	4647	section	3.4,	and	an
implementation	dependent	best-Lit	algorithm.
Independent	of	the	locale	matching	algorithm,	options
speciLied	through	Unicode	locale	extension	sequences
are	negotiated	separately,	taking	the	caller’s	relevant
extension	keys	and	locale	data	as	well	as	client-
provided	options	into	consideration.	The	abstract
operation	returns	a	record	with	a	[[locale]]	Lield
whose	value	is	the	language	tag	of	the	selected	locale,
and	Lields	for	each	key	in	relevantExtensionKeys
providing	the	selected	value	for	that	key.

The	LookupSupportedLocales	abstract	operation	returns	the	subset
of	the	provided	BCP	47	language	priority	list	requestedLocales	for
which	availableLocales	has	a	matching	locale	when	using	the	BCP	47
Lookup	algorithm.	Locales	appear	in	the	same	order	in	the	returned
list	as	in	requestedLocales.	The	following	steps	are	taken:

1.	 Let	rLocales	be	CreateArrayFromList(requestedLocales).
2.	 Let	len	be	!	ToLength(!	Get(rLocales,	"length")).
3.	 Let	subset	be	a	new	empty	List.
4.	 Let	k	be	0.
5.	 Repeat	while	k	<	len

a.	 Let	locale	be	!	Get(rLocales,	!	ToString(k)).
b.	 Let	noExtensionsLocale	be	the	String	value	that	is	locale
with	all	Unicode	locale	extension	sequences	removed.

c.	 Let	availableLocale	be
BestAvailableLocale(availableLocales,	noExtensionsLocale).

d.	 If	availableLocale	is	not	unde9ined,	append	locale	to	the
end	of	subset.

e.	 Increment	k	by	1.

9.2.7 LookupSupportedLocales	(availableLocales,
requestedLocales)

https://tc39.github.io/ecma262/#sec-createarrayfromlist
https://tc39.github.io/ecma262/#sec-tolength
https://tc39.github.io/ecma262/#sec-get-o-p
https://tc39.github.io/ecma262/#sec-list-and-record-specification-type
https://tc39.github.io/ecma262/#sec-get-o-p
https://tc39.github.io/ecma262/#sec-tostring

6.	 Return	subset.

The	BestFitSupportedLocales	abstract	operation	returns	the	subset
of	the	provided	BCP	47	language	priority	list	requestedLocales	for
which	availableLocales	has	a	matching	locale	when	using	the	Best	Fit
Matcher	algorithm.	Locales	appear	in	the	same	order	in	the	returned
list	as	in	requestedLocales.	The	steps	taken	are	implementation
dependent.

The	SupportedLocales	abstract	operation	returns	the	subset	of	the
provided	BCP	47	language	priority	list	requestedLocales	for	which
availableLocales	has	a	matching	locale.	Two	algorithms	are	available
to	match	the	locales:	the	Lookup	algorithm	described	in	RFC	4647
section	3.4,	and	an	implementation	dependent	best-Lit	algorithm.
Locales	appear	in	the	same	order	in	the	returned	list	as	in
requestedLocales.	The	following	steps	are	taken:

1.	 If	options	is	not	unde9ined,	then
a.	 Let	matcher	be	?	GetOption(options,	"localeMatcher",
"string",	«	"lookup",	"best	9it"	»,	"best	9it").

2.	 Else,	let	matcher	be	"best	9it".
3.	 If	matcher	is	"best	9it",

a.	 Let	supportedLocales	be
BestFitSupportedLocales(availableLocales,
requestedLocales).

4.	 Else,
a.	 Let	supportedLocales	be
LookupSupportedLocales(availableLocales,

9.2.8 BestFitSupportedLocales	(availableLocales,
requestedLocales)

9.2.9 SupportedLocales	(availableLocales,
requestedLocales,	options)

requestedLocales).
5.	 Let	subset	be	CreateArrayFromList(supportedLocales).
6.	 Let	keys	be	subset.[[OwnPropertyKeys]]().
7.	 Repeat	for	each	element	P	of	keys	in	List	order,

a.	 Let	desc	be	PropertyDescriptor	{	[[ConLigurable]]:	false,
[[Writable]]:	false	}.

b.	 Perform	!	DeLinePropertyOrThrow(subset,	P,	desc).
8.	 Return	subset.

The	abstract	operation	GetOption	extracts	the	value	of	the	property
named	property	from	the	provided	options	object,	converts	it	to	the
required	type,	checks	whether	it	is	one	of	a	List	of	allowed	values,
and	Lills	in	a	fallback	value	if	necessary.

1.	 Let	opts	be	?	ToObject(options).
2.	 Let	value	be	?	Get(opts,	property).
3.	 If	value	is	not	unde9ined,	then

a.	 Assert:	type	is	"boolean"	or	"string".
b.	 If	type	is	"boolean",	then

i.	 Let	value	be	ToBoolean(value).
c.	 If	type	is	"string",	then

i.	 Let	value	be	?	ToString(value).
d.	 If	values	is	not	unde9ined,	then

i.	 If	values	does	not	contain	an	element	equal	to	value,
throw	a	RangeError	exception.

e.	 Return	value.
4.	 Else,	return	fallback.

9.2.10 GetOption	(options,	property,	type,	values,
fallback)

9.2.11 GetNumberOption	(options,	property,
minimum,	maximum,	fallback)

https://tc39.github.io/ecma262/#sec-createarrayfromlist
https://tc39.github.io/ecma262/#sec-list-and-record-specification-type
https://tc39.github.io/ecma262/#sec-definepropertyorthrow
https://tc39.github.io/ecma262/#sec-list-and-record-specification-type
https://tc39.github.io/ecma262/#sec-toobject
https://tc39.github.io/ecma262/#sec-get-o-p
https://tc39.github.io/ecma262/#sec-toboolean
https://tc39.github.io/ecma262/#sec-tostring

The	abstract	operation	GetNumberOption	extracts	the	value	of	the
property	named	property	from	the	provided	options	object,	converts
it	to	a	Number	value,	checks	whether	it	is	in	the	allowed	range,	and
Lills	in	a	fallback	value	if	necessary.

1.	 Let	opts	be	?	ToObject(options).
2.	 Let	value	be	?	Get(opts,	property).
3.	 If	value	is	not	unde9ined,	then

a.	 Let	value	be	?	ToNumber(value).
b.	 If	value	is	NaN	or	less	than	minimum	or	greater	than
maximum,	throw	a	RangeError	exception.

c.	 Return	Lloor(value).
4.	 Else,	return	fallback.

The	Intl.Collator	constructor	is	the	%Collator%	intrinsic	object	and	a
standard	built-in	property	of	the	Intl	object.	Behaviour	common	to
all	service	constructor	properties	of	the	Intl	object	is	speciLied	in	9.1.

The	abstract	operation	InitializeCollator	accepts	the	arguments
collator	(which	must	be	an	object),	locales,	and	options.	It	initializes
collator	as	a	Collator	object.

Several	steps	in	the	algorithm	use	values	from	the	following	table,
which	associates	Unicode	locale	extension	keys,	internal	slots,

10 Collator	Objects

10.1 The	Intl.Collator	Constructor

10.1.1 InitializeCollator	(collator,	locales,	options
)

https://tc39.github.io/ecma262/#sec-toobject
https://tc39.github.io/ecma262/#sec-get-o-p
https://tc39.github.io/ecma262/#sec-tonumber
https://tc39.github.io/ecma262/#sec-algorithm-conventions

property	names,	types,	and	allowable	values:

Table	2:	Collator	options	settable	through	extension	keys,
internal	slots	and	options	properties

Key Internal
Slot

Property Type Values

kn [[Numeric]] "numeric" "boolean"

kf [[CaseFirst]] "caseFirst" "string" "upper",	"lower",
"false"

The	following	steps	are	taken:

1.	 If	collator.[[InitializedIntlObject]]	is	true,	throw	a	TypeError
exception.

2.	 Set	collator.[[InitializedIntlObject]]	to	true.
3.	 Let	requestedLocales	be	?	CanonicalizeLocaleList(locales).
4.	 If	options	is	unde9ined,	then

a.	 Let	options	be	ObjectCreate(%ObjectPrototype%).
5.	 Else,

a.	 Let	options	be	?	ToObject(options).
6.	 Let	u	be	?	GetOption(options,	"usage",	"string",	«	"sort",
"search"	»,	"sort").

7.	 Set	collator.[[Usage]]	to	u.
8.	 If	u	is	"sort",	then

a.	 Let	localeData	be	%Collator%.[[SortLocaleData]].
9.	 Else,

a.	 Let	localeData	be	%Collator%.[[SearchLocaleData]].
10.	 Let	opt	be	a	new	Record.
11.	 Let	matcher	be	?	GetOption(options,	"localeMatcher",	"string",

«	"lookup",	"best	9it"	»,	"best	9it").
12.	 Set	opt.[[localeMatcher]]	to	matcher.

https://tc39.github.io/ecma262/#sec-objectcreate
https://tc39.github.io/ecma262/#sec-properties-of-the-object-prototype-object
https://tc39.github.io/ecma262/#sec-toobject
https://tc39.github.io/ecma262/#sec-list-and-record-specification-type

13.	 For	each	row	in	Table	2,	except	the	header	row,	do:
a.	 Let	key	be	the	name	given	in	the	Key	column	of	the	row.
b.	 Let	prop	be	the	name	given	in	the	Property	column	of	the
row.

c.	 Let	type	be	the	string	given	in	the	Type	column	of	the	row.
d.	 Let	list	be	a	List	containing	the	Strings	given	in	the	Values
column	of	the	row,	or	unde9ined	if	no	strings	are	given.

e.	 Let	value	be	?	GetOption(options,	prop,	type,	list,
unde9ined).

f.	 If	the	string	given	in	the	Type	column	of	the	row	is
"boolean"	and	value	is	not	unde9ined,	then
i.	 Let	value	be	!	ToString(value).

g.	 Set	opt.[[<key>]]	to	value.
14.	 Let	relevantExtensionKeys	be	%Collator%.

[[RelevantExtensionKeys]].
15.	 Let	r	be	ResolveLocale(%Collator%.[[AvailableLocales]],

requestedLocales,	opt,	relevantExtensionKeys,	localeData).
16.	 Set	collator.[[Locale]]	to	r.[[locale]].
17.	 Let	k	be	0.
18.	 Let	rExtensionKeys	be

CreateArrayFromList(relevantExtensionKeys).
19.	 Let	len	be	!	ToLength(!	Get(rExtensionKeys,	"length")).
20.	 Repeat	while	k	<	len:

a.	 Let	key	be	!	Get(rExtensionKeys,	!	ToString(k)).
b.	 If	key	is	"co",	then

i.	 Let	value	be	r.[[co]].
ii.	 If	value	is	null,	let	value	be	"default".
iii.	 Set	collator.[[Collation]]	to	value.

c.	 Else	use	the	row	of	Table	2	that	contains	key	in	the	Key
column:
i.	 Let	value	be	r.[[<key>]].
ii.	 If	the	name	given	in	the	Type	column	of	the	row	is
"boolean",	let	value	be	the	result	of	comparing	value

https://tc39.github.io/ecma262/#sec-list-and-record-specification-type
https://tc39.github.io/ecma262/#sec-tostring
https://tc39.github.io/ecma262/#sec-createarrayfromlist
https://tc39.github.io/ecma262/#sec-tolength
https://tc39.github.io/ecma262/#sec-get-o-p
https://tc39.github.io/ecma262/#sec-get-o-p
https://tc39.github.io/ecma262/#sec-tostring

with	"true".
iii.	 Set	collator's	internal	slot	whose	name	is	the	Internal

Slot	column	of	the	row	to	value.
d.	 Increase	k	by	1.

21.	 Let	s	be	?	GetOption(options,	"sensitivity",	"string",	«	"base",
"accent",	"case",	"variant"	»,	unde9ined).

22.	 If	s	is	unde9ined,	then
a.	 If	u	is	"sort",	then

i.	 Let	s	be	"variant".
b.	 Else,

i.	 Let	dataLocale	be	r.[[dataLocale]].
ii.	 Let	dataLocaleData	be	Get(localeData,	dataLocale).
iii.	 Let	s	be	Get(dataLocaleData,	"sensitivity").

23.	 Set	collator.[[Sensitivity]]	to	s.
24.	 Let	ip	be	?	GetOption(options,	"ignorePunctuation",

"boolean",	unde9ined,	false).
25.	 Set	collator.[[IgnorePunctuation]]	to	ip.
26.	 Set	collator.[[BoundCompare]]	to	unde9ined.
27.	 Set	collator.[[InitializedCollator]]	to	true.
28.	 Return	collator.

When	the	Intl.Collator	function	is	called	with	optional
arguments	locales	and	options,	the	following	steps	are	taken:

1.	 If	NewTarget	is	unde9ined,	let	newTarget	be	the	active	function
object,	else	let	newTarget	be	NewTarget.

2.	 Let	internalSlotsList	be	«	[[InitializedIntlObject]],
[[InitializedCollator]],	[[Locale]],	[[Usage]],	[[Sensitivity]],
[[IgnorePunctuation]],	[[Collation]],	[[BoundCompare]]	».

3.	 If	%Collator%.[[RelevantExtensionKeys]]	contains	"kn",	then
a.	 Append	[[Numeric]]	as	the	last	element	of

10.1.2 Intl.Collator	([locales	[,	options]])

https://tc39.github.io/ecma262/#sec-get-o-p
https://tc39.github.io/ecma262/#sec-get-o-p
https://tc39.github.io/ecma262/#active-function-object

internalSlotsList.
4.	 If	%Collator%.[[RelevantExtensionKeys]]	contains	"kf",	then

a.	 Append	[[CaseFirst]]	as	the	last	element	of
internalSlotsList.

5.	 Let	collator	be	?	OrdinaryCreateFromConstructor(newTarget,
"%CollatorPrototype%",	internalSlotsList).

6.	 Return	?	InitializeCollator(collator,	locales,	options).

The	Intl.Collator	constructor	has	the	following	properties:

The	value	of	Intl.Collator.prototype	is	%CollatorPrototype%.

This	property	has	the	attributes	{	[[Writable]]:	false,
[[Enumerable]]:	false,	[[ConLigurable]]:	false	}.

When	the	supportedLocalesOf	method	is	called,	the	following
steps	are	taken:

1.	 Let	requestedLocales	be	?	CanonicalizeLocaleList(locales).
2.	 Return	?	SupportedLocales(%Collator%.[[AvailableLocales]],
requestedLocales,	options).

The	value	of	the	length	property	of	the	supportedLocalesOf
method	is	1.

10.2 Properties	of	the	Intl.Collator
Constructor

10.2.1 Intl.Collator.prototype

10.2.2 Intl.Collator.supportedLocalesOf	(locales	[
,	options])

https://tc39.github.io/ecma262/#sec-ordinarycreatefromconstructor

The	value	of	the	[[AvailableLocales]]	internal	slot	is	implementation
deLined	within	the	constraints	described	in	9.1.	The	value	of	the
[[RelevantExtensionKeys]]	internal	slot	is	a	List	that	must	include
the	element	"co",	may	include	any	or	all	of	the	elements	"kn"	and
"kf",	and	must	not	include	any	other	elements.

NOTE Unicode	Technical	Standard	35	describes	ten	locale
extension	keys	that	are	relevant	to	collation:	"co"	for
collator	usage	and	specializations,	"ka"	for	alternate
handling,	"kb"	for	backward	second	level	weight,	"kc"
for	case	level,	"kn"	for	numeric,	"kh"	for	hiragana
quaternary,	"kk"	for	normalization,	"kf"	for	case	Lirst,
"kr"	for	reordering,	"ks"	for	collation	strength,	and	"vt"
for	variable	top.	Collator,	however,	requires	that	the
usage	is	speciLied	through	the	usage	property	of	the
options	object,	alternate	handling	through	the
ignorePunctuation	property	of	the	options	object,	and
case	level	and	the	strength	through	the	sensitivity
property	of	the	options	object.	The	"co"	key	in	the
language	tag	is	supported	only	for	collator
specializations,	and	the	keys	"kb",	"kh",	"kk",	"kr",	and
"vt"	are	not	allowed	in	this	version	of	the
Internationalization	API.	Support	for	the	remaining
keys	is	implementation	dependent.

The	values	of	the	[[SortLocaleData]]	and	[[SearchLocaleData]]
internal	slots	are	implementation	deLined	within	the	constraints
described	in	9.1	and	the	following	additional	constraints:

The	Lirst	element	of	[[SortLocaleData]][locale].co	and
[[SearchLocaleData]][locale].co	must	be	null	for	all	locale
values.
The	values	"standard"	and	"search"	must	not	be	used	as

10.2.3 Internal	Slots

https://tc39.github.io/ecma262/#sec-list-and-record-specification-type

elements	in	any	[[SortLocaleData]][locale].co	and
[[SearchLocaleData]][locale].co	array.
[[SearchLocaleData]][locale]	must	have	a	sensitivity	property
with	a	String	value	equal	to	"base",	"accent",	"case",	or
"variant"	for	all	locale	values.

The	Intl.Collator	prototype	object	is	the	intrinsic	object
%CollatorPrototype%.	The	Intl.Collator	prototype	object	is	itself	an
Intl.Collator	instance	as	speciLied	in	10.4,	whose	internal	slots	are	set
as	if	it	had	been	constructed	by	the	expression
Construct(%Collator%,	«	»,	%Object%).

In	the	following	descriptions	of	functions	that	are	properties	or
[[Get]]	attributes	of	properties	of	%CollatorPrototype%,	the	phrase
"this	Collator	object"	refers	to	the	object	that	is	the	this	value	for	the
invocation	of	the	function;	a	TypeError	exception	is	thrown	if	the
this	value	is	not	an	object	or	an	object	that	does	not	have	an
[[InitializedCollator]]	internal	slot	with	value	true.

The	initial	value	of	Intl.Collator.prototype.constructor	is
the	intrinsic	object	%Collator%.

The	initial	value	of	the	@@toStringTag	property	is	the	string	value
"Object".

10.3 Properties	of	the	Intl.Collator
Prototype	Object

10.3.1 Intl.Collator.prototype.constructor

10.3.2 Intl.Collator.prototype	[@@toStringTag]

https://tc39.github.io/ecma262/#sec-construct
https://tc39.github.io/ecma262/#sec-object-constructor

This	property	has	the	attributes	{	[[Writable]]:	false,
[[Enumerable]]:	false,	[[ConLigurable]]:	true	}.

This	named	accessor	property	returns	a	function	that	compares	two
strings	according	to	the	sort	order	of	this	Collator	object.

The	value	of	the	[[Get]]	attribute	is	a	function	that	takes	the
following	steps:

1.	 Let	collator	be	this	value.
2.	 If	Type(collator)	is	not	Object,	throw	a	TypeError	exception.
3.	 If	collator	does	not	have	an	[[InitializedCollator]]	internal	slot,
throw	a	TypeError	exception.

4.	 If	collator.[[BoundCompare]]	is	unde9ined,	then
a.	 Let	F	be	a	new	built-in	function	object	as	deLined	in	10.3.4.
b.	 Let	bc	be	BoundFunctionCreate(F,	collator,	«	»).
c.	 Perform	!	DeLinePropertyOrThrow(bc,	"length",
PropertyDescriptor	{[[Value]]:	2,	[[Writable]]:	false,
[[Enumerable]]:	false,	[[ConLigurable]]:	true}).

d.	 Set	collator.[[BoundCompare]]	to	bc.
5.	 Return	collator.[[BoundCompare]].

NOTE The	function	returned	by	[[Get]]	is	bound	to	this
Collator	object	so	that	it	can	be	passed	directly	to
Array.prototype.sort	or	other	functions.

The	value	of	the	[[Set]]	attribute	is	unde9ined.

A	Collator	compare	function	is	an	anonymous	built-in	function.

10.3.3 get	Intl.Collator.prototype.compare

10.3.4 Collator	Compare	Functions

https://tc39.github.io/ecma262/#sec-ecmascript-data-types-and-values
https://tc39.github.io/ecma262/#sec-boundfunctioncreate
https://tc39.github.io/ecma262/#sec-definepropertyorthrow

When	a	Collator	compare	function	is	called	with	arguments	x	and	y,
the	following	steps	are	taken:

1.	 Let	collator	be	the	this	value.
2.	 Assert:	Type(collator)	is	Object	and	collator	.
[[InitializedCollator]]	is	true.

3.	 If	x	is	not	provided,	let	x	be	unde9ined.
4.	 If	y	is	not	provided,	let	y	be	unde9ined.
5.	 Let	X	be	?	ToString(x).
6.	 Let	Y	be	?	ToString(y).
7.	 Return	CompareStrings(collator,	X,	Y).

When	the	CompareStrings	abstract	operation	is	called	with
arguments	collator	(which	must	be	an	object	initialized	as	a
Collator),	x	and	y	(which	must	be	String	values),	it	returns	a	Number
other	than	NaN	that	represents	the	result	of	a	locale-sensitive	String
comparison	of	x	with	y.	The	two	Strings	are	compared	in	an
implementation-deLined	fashion.	The	result	is	intended	to	order
String	values	in	the	sort	order	speciLied	by	the	effective	locale	and
collation	options	computed	during	construction	of	collator,	and	will
be	negative,	zero,	or	positive,	depending	on	whether	x	comes	before	y
in	the	sort	order,	the	Strings	are	equal	under	the	sort	order,	or	x
comes	after	y	in	the	sort	order,	respectively.	String	values	must	be
interpreted	as	UTF-16	code	unit	sequences,	and	a	surrogate	pair	(a
code	unit	in	the	range	0xD800	to	0xDBFF	followed	by	a	code	unit	in
the	range	0xDC00	to	0xDFFF)	within	a	string	must	be	interpreted	as
the	corresponding	code	point.

The	sensitivity	of	collator	is	interpreted	as	follows:

base:	Only	strings	that	differ	in	base	letters	compare	as
unequal.	Examples:	a	≠	b,	a	=	á,	a	=	A.
accent:	Only	strings	that	differ	in	base	letters	or	accents	and
other	diacritic	marks	compare	as	unequal.	Examples:	a	≠	b,	a	≠
á,	a	=	A.

https://tc39.github.io/ecma262/#sec-ecmascript-data-types-and-values
https://tc39.github.io/ecma262/#sec-tostring
https://tc39.github.io/ecma262/#sec-tostring

case:	Only	strings	that	differ	in	base	letters	or	case	compare	as
unequal.	Examples:	a	≠	b,	a	=	á,	a	≠	A.
variant:	Strings	that	differ	in	base	letters,	accents	and	other
diacritic	marks,	or	case	compare	as	unequal.	Other	differences
may	also	be	taken	into	consideration.	Examples:	a	≠	b,	a	≠	á,	a	≠
A.

NOTE	1 In	some	languages,	certain	letters	with	diacritic	marks
are	considered	base	letters.	For	example,	in	Swedish,
“ö”	is	a	base	letter	that’s	different	from	“o”.

If	the	collator	is	set	to	ignore	punctuation,	then	strings	that	differ
only	in	punctuation	compare	as	equal.

For	the	interpretation	of	options	settable	through	extension	keys,	see
Unicode	Technical	Standard	35.

The	CompareStrings	abstract	operation	with	any	given	collator
argument,	if	considered	as	a	function	of	the	remaining	two
arguments	x	and	y,	must	be	a	consistent	comparison	function	(as
deLined	in	ES2017,	22.1.3.25)	on	the	set	of	all	Strings.

The	actual	return	values	are	implementation-deLined	to	permit
implementers	to	encode	additional	information	in	the	value.	The
method	is	required	to	return	0	when	comparing	Strings	that	are
considered	canonically	equivalent	by	the	Unicode	standard.

NOTE	2 It	is	recommended	that	the	CompareStrings	abstract
operation	be	implemented	following	Unicode
Technical	Standard	10,	Unicode	Collation	Algorithm
(available	at	http://unicode.org/reports/tr10/),	using
tailorings	for	the	effective	locale	and	collation	options
of	collator.	It	is	recommended	that	implementations
use	the	tailorings	provided	by	the	Common	Locale
Data	Repository	(available	at

http://unicode.org/reports/tr10/
https://tc39.github.io/ecma262/#sec-array.prototype.sort

http://cldr.unicode.org/).

NOTE	3 Applications	should	not	assume	that	the	behaviour	of
the	CompareStrings	abstract	operation	for	Collator
instances	with	the	same	resolved	options	will	remain
the	same	for	different	versions	of	the	same
implementation.

This	function	provides	access	to	the	locale	and	collation	options
computed	during	initialization	of	the	object.

The	function	returns	a	new	object	whose	properties	and	attributes
are	set	as	if	constructed	by	an	object	literal	assigning	to	each	of	the
following	properties	the	value	of	the	corresponding	internal	slot	of
this	Collator	object	(see	10.4):	locale,	usage,	sensitivity,
ignorePunctuation,	collation,	as	well	as	those	properties	shown	in
Table	2	whose	keys	are	included	in	the	%Collator%.
[[RelevantExtensionKeys]]	internal	slot	of	the	standard	built-in
object	that	is	the	initial	value	of	Intl.Collator.

Intl.Collator	instances	are	ordinary	objects	that	inherit	properties
from	%CollatorPrototype%.

Intl.Collator	instances	and	other	objects	that	have	been	successfully
initialized	as	a	Collator	have	[[InitializedIntlObject]]	and
[[InitializedCollator]]	internal	slots	whose	values	are	true.

Objects	that	have	been	successfully	initialized	as	a	Collator	also	have
several	internal	slots	that	are	computed	by	the	constructor:

10.3.5 Intl.Collator.prototype.resolvedOptions	()

10.4 Properties	of	Intl.Collator	Instances

http://cldr.unicode.org/

[[Locale]]	is	a	String	value	with	the	language	tag	of	the	locale
whose	localization	is	used	for	collation.
[[Usage]]	is	one	of	the	String	values	"sort"	or	"search",
identifying	the	collator	usage.
[[Sensitivity]]	is	one	of	the	String	values	"base",	"accent",
"case",	or	"variant",	identifying	the	collator’s	sensitivity.
[[IgnorePunctuation]]	is	a	Boolean	value,	specifying	whether
punctuation	should	be	ignored	in	comparisons.
[[Collation]]	is	a	String	value	with	the	"type"	given	in	Unicode
Technical	Standard	35	for	the	collation,	except	that	the	values
"standard"	and	"search"	are	not	allowed,	while	the	value
"default"	is	allowed.

Objects	that	have	been	successfully	initialized	as	a	Collator	also	have
the	following	internal	slots	if	the	key	corresponding	to	the	name	of
the	internal	slot	in	Table	2	is	included	in	the
[[RelevantExtensionKeys]]	internal	slot	of	Intl.Collator:

[[Numeric]]	is	a	Boolean	value,	specifying	whether	numeric
sorting	is	used.
[[CaseFirst]]	is	a	String	value;	allowed	values	are	speciLied	in
Table	2.

Finally,	objects	that	have	been	successfully	initialized	as	a	Collator
have	a	[[BoundCompare]]	internal	slot	that	caches	the	function
returned	by	the	compare	accessor	(10.3.3).

11 NumberFormat	Objects

11.1 Abstract	Operations	For
NumberFormat	Objects

The	abstract	operation	SetNumberFormatDigitOptions	applies	digit
options	used	for	number	formatting	onto	the	intl	object.

1.	 Assert:	Type(intlObj)	is	Object	and	intlObj.
[[InitializedIntlObject]]	is	true.

2.	 Assert:	Type(options)	is	Object.
3.	 Assert:	type(mnfdDefault)	is	Number.
4.	 Let	mnid	be	?	GetNumberOption(options,
"minimumIntegerDigits,",	1,	21,	1).

5.	 Let	mnfd	be	?	GetNumberOption(options,
"minimumFractionDigits",	0,	20,	mnfdDefault).

6.	 Let	mxfd	be	?	GetNumberOption(options,
"maximumFractionDigits",	mnfd,	20).

7.	 Let	mnsd	be	?	Get(options,	"minimumSigni9icantDigits").
8.	 Let	mxsd	be	?	Get(options,	"maximumSigni9icantDigits").
9.	 Set	intlObj.[[MinimumIntegerDigits]]	to	mnid.
10.	 Set	intlObj.[[MinimumFractionDigits]]	to	mnfd.
11.	 Set	intlObj.[[MaximumFractionDigits]]	to	mxfd.
12.	 If	mnsd	is	not	unde9ined	or	mxsd	is	not	unde9ined,	then

a.	 Let	mnsd	be	?	GetNumberOption(options,
"minimumSigni9icantDigits",	1,	21,	1).

b.	 Let	mxsd	be	?	GetNumberOption(options,
"maximumSigni9icantDigits",	mnsd,	21,	21).

c.	 Set	intlObj.[[MinimumSigniLicantDigits]]	to	mnsd.
d.	 Set	intlObj.[[MaximumSigniLicantDigits]]	to	mxsd.

The	abstract	operation	InitializeNumberFormat	accepts	the
arguments	numberFormat	(which	must	be	an	object),	locales,	and

11.1.1 SetNumberFormatDigitOptions	(intlObj,
options,	mnfdDefault)

11.1.2 InitializeNumberFormat	(numberFormat,
locales,	options)

https://tc39.github.io/ecma262/#sec-ecmascript-data-types-and-values
https://tc39.github.io/ecma262/#sec-ecmascript-data-types-and-values
https://tc39.github.io/ecma262/#sec-get-o-p
https://tc39.github.io/ecma262/#sec-get-o-p

options.	It	initializes	numberFormat	as	a	NumberFormat	object.

The	following	steps	are	taken:

1.	 If	numberFormat.[[InitializedIntlObject]]	is	true,	throw	a
TypeError	exception.

2.	 Set	numberFormat.[[InitializedIntlObject]]	to	true.
3.	 Let	requestedLocales	be	?	CanonicalizeLocaleList(locales).
4.	 If	options	is	unde9ined,	then

a.	 Let	options	be	ObjectCreate(%ObjectPrototype%).
5.	 Else,

a.	 Let	options	be	?	ToObject(options).
6.	 Let	opt	be	a	new	Record.
7.	 Let	matcher	be	?	GetOption(options,	"localeMatcher",	"string",
«	"lookup",	"best	9it"	»,	"best	9it").

8.	 Set	opt.[[localeMatcher]]	to	matcher.
9.	 Let	localeData	be	%NumberFormat%.[[LocaleData]].
10.	 Let	r	be	ResolveLocale(%NumberFormat%.[[AvailableLocales]],

requestedLocales,	opt,	%NumberFormat%.
[[RelevantExtensionKeys]],	localeData).

11.	 Set	numberFormat.[[Locale]]	to	r.[[locale]].
12.	 Set	numberFormat.[[NumberingSystem]]	to	r.[[nu]].
13.	 Let	dataLocale	be	r.[[dataLocale]].
14.	 Let	style	be	?	GetOption(options,	"style",	"string",	«	"decimal",

"percent",	"currency"	»,	"decimal").
15.	 Set	numberFormat.[[Style]]	to	style.
16.	 Let	c	be	?	GetOption(options,	"currency",	"string",	unde9ined,

unde9ined).
17.	 If	c	is	not	unde9ined,	then

a.	 If	the	result	of	IsWellFormedCurrencyCode(c)	is	false,
throw	a	RangeError	exception.

18.	 If	style	is	"currency"	and	c	is	unde9ined,	throw	a	TypeError
exception.

19.	 If	style	is	"currency",	then

https://tc39.github.io/ecma262/#sec-objectcreate
https://tc39.github.io/ecma262/#sec-properties-of-the-object-prototype-object
https://tc39.github.io/ecma262/#sec-toobject
https://tc39.github.io/ecma262/#sec-list-and-record-specification-type

a.	 Let	c	be	the	result	of	converting	c	to	upper	case	as
speciLied	in	6.1.

b.	 Set	numberFormat.[[Currency]]	to	c.
c.	 Let	cDigits	be	CurrencyDigits(c).

20.	 Let	cd	be	?	GetOption(options,	"currencyDisplay",	"string",	«
"code",	"symbol",	"name"	»,	"symbol").

21.	 If	style	is	"currency",	set	numberFormat.[[CurrencyDisplay]]	to
cd.

22.	 If	style	is	"currency",	then
a.	 Let	mnfdDefault	be	cDigits.

23.	 Else,
a.	 Let	mnfdDefault	be	0.

24.	 Perform	?	SetNumberFormatDigitOptions(numberFormat,
options,	mnfdDefault).

25.	 If	numberFormat.[[MaximumFractionDigits]]	is	unde9ined,
then
a.	 If	style	is	"currency",	then

i.	 Set	numberFormat.[[MaximumFractionDigits]]	to
max(numberFormat.[[MinimumFractionDigits]],
cDigits).

b.	 Else	if	style	is	"percent",	then
i.	 Set	numberFormat.[[MaximumFractionDigits]]	to
max(numberFormat.[[MinimumFractionDigits]],	0).

c.	 Else,
i.	 Set	numberFormat.[[MaximumFractionDigits]]	to
max(numberFromat.[[MinimumFractionDigits]],	3).

26.	 Let	g	be	?	GetOption(options,	"useGrouping",	"boolean",
unde9ined,	true).

27.	 Set	numberFormat.[[UseGrouping]]	to	g.
28.	 Let	dataLocaleData	be	Get(localeData,	dataLocale).
29.	 Let	patterns	be	Get(dataLocaleData,	"patterns").
30.	 Assert:	patterns	is	an	object	(see	11.3.3).
31.	 Let	stylePatterns	be	Get(patterns,	s).

https://tc39.github.io/ecma262/#sec-algorithm-conventions
https://tc39.github.io/ecma262/#sec-algorithm-conventions
https://tc39.github.io/ecma262/#sec-algorithm-conventions
https://tc39.github.io/ecma262/#sec-get-o-p
https://tc39.github.io/ecma262/#sec-get-o-p
https://tc39.github.io/ecma262/#sec-get-o-p

32.	 Set	numberFormat.[[PositivePattern]]	to	Get(stylePatterns,
"positivePattern").

33.	 Set	numberFormat.[[NegativePattern]]	to	Get(stylePatterns,
"negativePattern").

34.	 Set	numberFormat.[[BoundFormat]]	to	unde9ined.
35.	 Set	numberFormat.[[InitializedNumberFormat]]	to	true.
36.	 Return	numberFormat.

When	the	abstract	operation	CurrencyDigits	is	called	with	an
argument	currency	(which	must	be	an	upper	case	String	value),	the
following	steps	are	taken:

1.	 If	the	ISO	4217	currency	and	funds	code	list	contains	currency
as	an	alphabetic	code,	return	the	minor	unit	value
corresponding	to	the	currency	from	the	list;	otherwise,	return	2.

A	Number	format	function	is	an	anonymous	built-in	function.

When	a	Number	format	function	is	called	with	optional	argument
value,	the	following	steps	are	taken:

1.	 Let	nf	be	the	this	value.
2.	 Assert:	Type(nf)	is	Object	and	nf.[[InitializedNumberFormat]]	is
true.

3.	 If	value	is	not	provided,	let	value	be	unde9ined.
4.	 Let	x	be	?	ToNumber(value).
5.	 Return	FormatNumber(nf,	x).

The	length	property	of	a	Number	format	function	is	1.

11.1.3 CurrencyDigits	(currency)

11.1.4 Number	Format	Functions

https://tc39.github.io/ecma262/#sec-get-o-p
https://tc39.github.io/ecma262/#sec-get-o-p
https://tc39.github.io/ecma262/#sec-ecmascript-data-types-and-values
https://tc39.github.io/ecma262/#sec-tonumber

The	FormatNumberToString	abstract	operation	is	called	with
arguments	numberFormat	(which	must	be	an	object	with	Lields
minimumSigniLicantDigits,	maximumSigniLicantDigits,
minimumIntegerDigits,	minimumFractionDigits	and
maximumFractionDigits),	and	x	(which	must	be	a	Number	value),
and	returns	x	as	a	string	value	with	digits	formatted	according	to	the
5	formatting	parameters.

1.	 Assert:	numberFormat.[[InitializedIntlObject]]	is	true.
2.	 If	the	numberFormat.[[MinimumSigniLicantDigits]]	and
numberFormat.[[MaximumSigniLicantDigits]]	are	present,	then
a.	 Let	result	be	ToRawPrecision(x,	numberFormat.
[[MinimumSigniLicantDigits]],	numberFormat.
[[MaximumSigniLicantDigits]]).

3.	 Else,
a.	 Let	result	be	ToRawFixed(x,	numberFormat.
[[MinimumIntegerDigits]],	numberFormat.
[[MinimumFractionDigits]],	numberFormat.
[[MaximumFractionDigits]]).

4.	 Return	result.

The	PartitionNumberPattern	abstract	operation	is	called	with
arguments	numberFormat	(which	must	be	an	object	initialized	as	a
NumberFormat)	and	x	(which	must	be	a	Number	value),	interprets	x
as	a	numeric	value,	and	creates	the	corresponding	parts	according	to
the	effective	locale	and	the	formatting	options	of	numberFormat.	The
following	steps	are	taken:

11.1.5 FormatNumberToString	(numberFormat,	x
)

11.1.6 PartitionNumberPattern	(numberFormat,
x)

1.	 If	x	is	not	NaN	and	x	<	0,	then:
a.	 Let	x	be	-x.
b.	 Let	pattern	be	numberFormat.[[NegativePattern]].

2.	 Else,
a.	 Let	pattern	be	numberFormat.[[PositivePattern]].

3.	 Let	result	be	a	new	empty	List.
4.	 Let	beginIndex	be	Call(%StringProto_indexOf%,	pattern,	"{",	0).
5.	 Let	endIndex	be	0.
6.	 Let	nextIndex	be	0.
7.	 Let	length	be	the	number	of	code	units	in	pattern.
8.	 Repeat	while	beginIndex	is	an	integer	index	into	pattern:

a.	 Set	endIndex	to	Call(%StringProto_indexOf%,	pattern,	"}",
beginIndex)

b.	 Assert:	endIndex	is	greater	than	than	beginIndex.
c.	 If	beginIndex	is	greater	than	nextIndex,	then:

i.	 Let	literal	be	a	substring	of	pattern	from	position
nextIndex,	inclusive,	to	position	beginIndex,	exclusive.

ii.	 Append	a	new	Record	{	[[Type]]:	"literal",	[[Value]]:
literal	}	as	the	last	element	of	result.

d.	 Let	p	be	the	substring	of	pattern	from	position	beginIndex,
exclusive,	to	position	endIndex,	exclusive.

e.	 If	p	is	equal	"number",	then:
i.	 If	x	is	NaN,

1.	 Let	n	be	an	ILD	String	value	indicating	the	NaN
value.

2.	 Append	a	new	Record	{	[[Type]]:	"nan",
[[Value]]:	n	}	as	the	last	element	of	result.

ii.	 Else	if	isFinite(x)	is	false,
1.	 Let	n	be	an	ILD	String	value	indicating	inLinity.
2.	 Append	a	new	Record	{	[[Type]]:	"in9inity",
[[Value]]:	n	}	as	the	last	element	of	result.

iii.	 Else,
1.	 If	numberFormat.[[Style]]	is	"percent",	let	x	be

https://tc39.github.io/ecma262/#sec-list-and-record-specification-type
https://tc39.github.io/ecma262/#sec-call
https://tc39.github.io/ecma262/#sec-call
https://tc39.github.io/ecma262/#sec-list-and-record-specification-type
https://tc39.github.io/ecma262/#sec-list-and-record-specification-type
https://tc39.github.io/ecma262/#sec-list-and-record-specification-type

100	×	x.
2.	 Let	n	be
FormatNumberToString(numberFormat,	x).

3.	 If	the	numberFormat.[[NumberingSystem]]
matches	one	of	the	values	in	the	"Numbering
System"	column	of	Table	3	below,	then
a.	 Let	digits	be	an	array	whose	10	String
valued	elements	are	the	UTF-16	string
representations	of	the	10	digits	speciLied
in	the	"Digits"	column	of	the	matching	row
in	Table	3.

b.	 Replace	each	digit	in	n	with	the	value	of
digits[digit].

4.	 Else	use	an	implementation	dependent
algorithm	to	map	n	to	the	appropriate
representation	of	n	in	the	given	numbering
system.

5.	 Let	decimalSepIndex	be
Call(%StringProto_indexOf%,	n,	".",	0).

6.	 If	decimalSepIndex	>	0,	then:
a.	 Let	integer	be	the	substring	of	n	from
position	0,	inclusive,	to	position
decimalSepIndex,	exclusive.

b.	 Let	fraction	be	the	substring	of	n	from
position	decimalSepIndex,	exclusive,	to	the
end	of	n.

7.	 Else:
a.	 Let	integer	be	n.
b.	 Let	fraction	be	unde9ined.

8.	 If	the	numberFormat.[[UseGrouping]]	is	true,
a.	 Let	groupSepSymbol	be	the	ILND	String
representing	the	grouping	separator.

b.	 Let	groups	be	a	List	whose	elements	are,	in

https://tc39.github.io/ecma262/#sec-call
https://tc39.github.io/ecma262/#sec-list-and-record-specification-type

left	to	right	order,	the	substrings	deLined
by	ILND	set	of	locations	within	the	integer.

c.	 Assert:	The	number	of	elements	in	groups
List	is	greater	than	0.

d.	 Repeat,	while	groups	List	is	not	empty:
i.	 Remove	the	Lirst	element	from	groups
and	let	integerGroup	be	the	value	of
that	element.

ii.	 Append	a	new	Record	{	[[Type]]:
"integer",	[[Value]]:	integerGroup	}	as
the	last	element	of	result.

iii.	 If	groups	List	is	not	empty,	then:
i.	 Append	a	new	Record	{
[[Type]]:	"group",	[[Value]]:
groupSepSymbol	}	as	the	last
element	of	result.

9.	 Else,
a.	 Append	a	new	Record	{	[[Type]]:
"integer",	[[Value]]:	integer	}	as	the	last
element	of	result.

10.	 If	fraction	is	not	unde9ined,	then:
a.	 Let	decimalSepSymbol	be	the	ILND	String
representing	the	decimal	separator.

b.	 Append	a	new	Record	{	[[Type]]:
"decimal",	[[Value]]:	decimalSepSymbol	}
as	the	last	element	of	result.

c.	 Append	a	new	Record	{	[[Type]]:
"fraction",	[[Value]]:	fraction	}	as	the	last
element	of	result.

f.	 Else	if	p	is	equal	"plusSign",	then:
i.	 Let	plusSignSymbol	be	the	ILND	String	representing
the	plus	sign.

ii.	 Append	a	new	Record	{	[[Type]]:	"plusSign",

https://tc39.github.io/ecma262/#sec-list-and-record-specification-type
https://tc39.github.io/ecma262/#sec-list-and-record-specification-type
https://tc39.github.io/ecma262/#sec-list-and-record-specification-type
https://tc39.github.io/ecma262/#sec-list-and-record-specification-type
https://tc39.github.io/ecma262/#sec-list-and-record-specification-type
https://tc39.github.io/ecma262/#sec-list-and-record-specification-type
https://tc39.github.io/ecma262/#sec-list-and-record-specification-type
https://tc39.github.io/ecma262/#sec-list-and-record-specification-type
https://tc39.github.io/ecma262/#sec-list-and-record-specification-type

[[Value]]:	plusSignSymbol	}	as	the	last	element	of
result.

g.	 Else	if	p	is	equal	"minusSign",	then:
i.	 Let	minusSignSymbol	be	the	ILND	String	representing
the	minus	sign.

ii.	 Append	a	new	Record	{	[[Type]]:	"minusSign",
[[Value]]:	minusSignSymbol	}	as	the	last	element	of
result.

h.	 Else	if	p	is	equal	"percentSign"	and	numberFormat.
[[Style]]	is	"percent",	then:
i.	 Let	percentSignSymbol	be	the	ILND	String
representing	the	percent	sign.

ii.	 Append	a	new	Record	{	[[Type]]:	"percentSign",
[[Value]]:	percentSignSymbol	}	as	the	last	element	of
result.

i.	 Else	if	p	is	equal	"currency"	and	numberFormat.[[Style]]	is
"currency",	then:
i.	 Let	currency	be	numberFormat.[[Currency]].
ii.	 Assert:	numberFormat.[[CurrencyDisplay]]	is	"code",
"symbol"	or	"name".

iii.	 If	numberFormat.[[CurrencyDisplay]]	is	"code",	then
1.	 Let	cd	be	currency.

iv.	 Else	if	numberFormat.[[CurrencyDisplay]]	is
"symbol",	then
1.	 Let	cd	be	an	ILD	string	representing	currency	in
short	form.	If	the	implementation	does	not	have
such	a	representation	of	currency,	use	currency
itself.

v.	 Else	if	numberFormat.[[CurrencyDisplay]]	is	"name",
then
1.	 Let	cd	be	an	ILD	string	representing	currency	in
long	form.	If	the	implementation	does	not	have
such	a	representation	of	currency,	then	use

https://tc39.github.io/ecma262/#sec-list-and-record-specification-type
https://tc39.github.io/ecma262/#sec-list-and-record-specification-type

currency	itself.
vi.	 Append	a	new	Record	{	[[Type]]:	"currency",

[[Value]]:	cd	}	as	the	last	element	of	result.
j.	 Else,

i.	 Let	literal	be	the	substring	of	pattern	from	position
beginIndex,	inclusive,	to	position	endIndex,	inclusive.

ii.	 Append	a	new	Record	{	[[Type]]:	"literal",	[[Value]]:
literal	}	as	the	last	element	of	result.

k.	 Set	nextIndex	to	endIndex	+	1.
l.	 Set	beginIndex	to	Call(%StringProto_indexOf%,	pattern,	"
{",	nextIndex)

9.	 If	nextIndex	is	less	than	length,	then:
a.	 Let	literal	be	the	substring	of	pattern	from	position
nextIndex,	inclusive,	to	position	length,	exclusive.

b.	 Append	a	new	Record	{	[[Type]]:	"literal",	[[Value]]:	literal
}	as	the	last	element	of	result.

10.	 Return	result.

Table	3:	Numbering	systems	with	simple	digit	mappings

Numbering
System

Digits

arab U+0660	to	U+0669

arabext U+06F0	to	U+06F9

bali U+1B50	to	U+1B59

beng U+09E6	to	U+09EF

deva U+0966	to	U+096F

fullwide U+FF10	to	U+FF19

gujr U+0AE6	to	U+0AEF

guru U+0A66	to	U+0A6F

https://tc39.github.io/ecma262/#sec-list-and-record-specification-type
https://tc39.github.io/ecma262/#sec-list-and-record-specification-type
https://tc39.github.io/ecma262/#sec-call
https://tc39.github.io/ecma262/#sec-list-and-record-specification-type

hanidec U+3007,	U+4E00,	U+4E8C,	U+4E09,	U+56DB,
U+4E94,	U+516D,	U+4E03,	U+516B,	U+4E5D

khmr U+17E0	to	U+17E9

knda U+0CE6	to	U+0CEF

laoo U+0ED0	to	U+0ED9

latn U+0030	to	U+0039

limb U+1946	to	U+194F

mlym U+0D66	to	U+0D6F

mong U+1810	to	U+1819

mymr U+1040	to	U+1049

orya U+0B66	to	U+0B6F

tamldec U+0BE6	to	U+0BEF

telu U+0C66	to	U+0C6F

thai U+0E50	to	U+0E59

tibt U+0F20	to	U+0F29

NOTE	1 The	computations	rely	on	String	values	and	locations
within	numeric	strings	that	are	dependent	upon	the
implementation	and	the	effective	locale	of
numberFormat	(“ILD")	or	upon	the	implementation,
the	effective	locale,	and	the	numbering	system	of
numberFormat	(“ILND").	The	ILD	and	ILND	Strings
mentioned,	other	than	those	for	currency	names,	must
not	contain	any	characters	in	the	General	Category
“Number,	decimal	digit"	as	speciLied	by	the	Unicode

Standard.

NOTE	2 It	is	recommended	that	implementations	use	the
locale	provided	by	the	Common	Locale	Data
Repository	(available	at	http://cldr.unicode.org/).

The	FormatNumber	abstract	operation	is	called	with	arguments
numberFormat	(which	must	be	an	object	initialized	as	a
NumberFormat)	and	x	(which	must	be	a	Number	value),	and
performs	the	following	steps:

1.	 Let	parts	be	?	PartitionNumberPattern(numberFormat,	x).
2.	 Let	result	be	the	empty	String.
3.	 For	each	part	in	parts,	do:

a.	 Set	result	to	a	String	value	produced	by	concatenating
result	and	part.[[Value]].

4.	 Return	result.

The	FormatNumberToParts	abstract	operation	is	called	with
arguments	numberFormat	(which	must	be	an	object	initialized	as	a
NumberFormat)	and	x	(which	must	be	a	Number	value),	and
performs	the	following	steps:

1.	 Let	parts	be	?	PartitionNumberPattern(numberFormat,	x).
2.	 Let	result	be	ArrayCreate(0).
3.	 Let	n	be	0.
4.	 For	each	part	in	parts,	do:

a.	 Let	O	be	ObjectCreate(%ObjectPrototype%).
b.	 Perform	?	CreateDataPropertyOrThrow(O,	"type",	part.
[[Type]]).

11.1.7 FormatNumber(numberFormat,	x)

11.1.8 FormatNumberToParts(numberFormat,	x)

http://cldr.unicode.org/
https://tc39.github.io/ecma262/#sec-arraycreate
https://tc39.github.io/ecma262/#sec-objectcreate
https://tc39.github.io/ecma262/#sec-properties-of-the-object-prototype-object
https://tc39.github.io/ecma262/#sec-createdatapropertyorthrow

c.	 Perform	?	CreateDataPropertyOrThrow(O,	"value",	part.
[[Value]]).

d.	 Perform	?	CreateDataPropertyOrThrow(result,
?	ToString(n),	O).

e.	 Increment	n	by	1.
5.	 Return	result.

When	the	ToRawPrecision	abstract	operation	is	called	with
arguments	x	(which	must	be	a	Linite	non-negative	number),
minPrecision,	and	maxPrecision	(both	must	be	integers	between	1
and	21),	the	following	steps	are	taken:

1.	 Let	p	be	maxPrecision.
2.	 If	x	=	0,	then

a.	 Let	m	be	the	String	consisting	of	p	occurrences	of	the
character	"0".

b.	 Let	e	be	0.
3.	 Else,

a.	 Let	e	and	n	be	integers	such	that	10p–1	≤	n	<	10p	and	for
which	the	exact	mathematical	value	of	n	×	10e–p+1	–	x	is	as
close	to	zero	as	possible.	If	there	are	two	such	sets	of	e	and
n,	pick	the	e	and	n	for	which	n	×	10e–p+1	is	larger.

b.	 Let	m	be	the	String	consisting	of	the	digits	of	the	decimal
representation	of	n	(in	order,	with	no	leading	zeroes).

4.	 If	e	≥	p,	then
a.	 Return	the	concatenation	of	m	and	e-p+1	occurrences	of
the	character	"0".

5.	 If	e	=	p-1,	then
a.	 Return	m.

6.	 If	e	≥	0,	then

11.1.9 ToRawPrecision(x,	minPrecision,
maxPrecision)

https://tc39.github.io/ecma262/#sec-createdatapropertyorthrow
https://tc39.github.io/ecma262/#sec-createdatapropertyorthrow
https://tc39.github.io/ecma262/#sec-tostring

a.	 Let	m	be	the	concatenation	of	the	Lirst	e+1	characters	of	m,
the	character	".",	and	the	remaining	p–(e+1)	characters	of
m.

7.	 If	e	<	0,	then
a.	 Let	m	be	the	concatenation	of	the	String	"0.",	–(e+1)
occurrences	of	the	character	"0",	and	the	string	m.

8.	 If	m	contains	the	character	".",	and	maxPrecision	>	minPrecision,
then
a.	 Let	cut	be	maxPrecision	–	minPrecision.
b.	 Repeat	while	cut	>	0	and	the	last	character	of	m	is	"0":

i.	 Remove	the	last	character	from	m.
ii.	 Decrease	cut	by	1.

c.	 If	the	last	character	of	m	is	".",	then
i.	 Remove	the	last	character	from	m.

9.	 Return	m.

When	the	ToRawFixed	abstract	operation	is	called	with	arguments	x
(which	must	be	a	Linite	non-negative	number),	minInteger	(which
must	be	an	integer	between	1	and	21),	minFraction,	and	maxFraction
(which	must	be	integers	between	0	and	20),	the	following	steps	are
taken:

1.	 Let	f	be	maxFraction.
2.	 Let	n	be	an	integer	for	which	the	exact	mathematical	value	of	n
÷	10f	–	x	is	as	close	to	zero	as	possible.	If	there	are	two	such	n,
pick	the	larger	n.

3.	 If	n	=	0,	let	m	be	the	String	"0".	Otherwise,	let	m	be	the	String
consisting	of	the	digits	of	the	decimal	representation	of	n	(in
order,	with	no	leading	zeroes).

4.	 If	f	≠	0,	then
a.	 Let	k	be	the	number	of	characters	in	m.

11.1.10 ToRawFixed(x,	minInteger,	minFraction,
maxFraction)

b.	 If	k	≤	f,	then
i.	 Let	z	be	the	String	consisting	of	f+1–k	occurrences	of
the	character	"0".

ii.	 Let	m	be	the	concatenation	of	Strings	z	and	m.
iii.	 Let	k	be	f+1.

c.	 Let	a	be	the	Lirst	k–f	characters	of	m,	and	let	b	be	the
remaining	f	characters	of	m.

d.	 Let	m	be	the	concatenation	of	the	three	Strings	a,	".",	and
b.

e.	 Let	int	be	the	number	of	characters	in	a.
5.	 Else,	let	int	be	the	number	of	characters	in	m.
6.	 Let	cut	be	maxFraction	–	minFraction.
7.	 Repeat	while	cut	>	0	and	the	last	character	of	m	is	"0":

a.	 Remove	the	last	character	from	m.
b.	 Decrease	cut	by	1.

8.	 If	the	last	character	of	m	is	".",	then
a.	 Remove	the	last	character	from	m.

9.	 If	int	<	minInteger,	then
a.	 Let	z	be	the	String	consisting	of	minInteger–int
occurrences	of	the	character	"0".

b.	 Let	m	be	the	concatenation	of	Strings	z	and	m.
10.	 Return	m.

The	UnwrapNumberFormat	abstract	operation	gets	the	underlying
NumberFormat	operation	for	various	methods	which	implement
ECMA-402	v1	semantics	for	supporting	initializing	existing	Intl
objects.

NORMATIVE	OPTIONAL

1.	 If	Type(nf)	is	Object	and	nf	does	not	have	an
[[InitializedNumberFormat]]	internal	slot	and

11.1.11 UnwrapNumberFormat(nf)

https://tc39.github.io/ecma262/#sec-ecmascript-data-types-and-values

?	InstanceofOperator(nf,	%NumberFormat%)	is	equal	true,
then
a.	 Let	nf	be	Get(nf,	Intl.[[FallbackSymbol]]).

2.	 If	Type(nf)	is	not	Object	or	nf	does	not	have	an
[[InitializedNumberFormat]]	internal	slot,	then
a.	 Throw	a	TypeError	exception.

3.	 Return	nf.

The	NumberFormat	constructor	is	the	%NumberFormat%	intrinsic
object	and	a	standard	built-in	property	of	the	Intl	object.	Behaviour
common	to	all	service	constructor	properties	of	the	Intl	object	is
speciLied	in	9.1.

When	the	Intl.NumberFormat	function	is	called	with	optional
arguments	locales	and	options,	the	following	steps	are	taken:

1.	 If	NewTarget	is	unde9ined,	let	newTarget	be	the	active	function
object,	else	let	newTarget	be	NewTarget.

2.	 Let	numberFormat	be
?	OrdinaryCreateFromConstructor(newTarget,
"%NumberFormatPrototype%",	«	[[InitializedIntlObject]],
[[InitializedNumberFormat]],	[[Locale]],	[[NumberingSystem]],
[[Style]],	[[Currency]],	[[CurrencyDisplay]],
[[MinimumIntegerDigits]],	[[MinimumFractionDigits]],
[[MaximumFractionDigits]],	[[MinimumSigniLicantDigits]],
[[MaximumSigniLicantDigits]],	[[UseGrouping]],

11.2 The	Intl.NumberFormat
Constructor

11.2.1 Intl.NumberFormat	([locales	[,	options]]
)

https://tc39.github.io/ecma262/#sec-instanceofoperator
https://tc39.github.io/ecma262/#sec-get-o-p
https://tc39.github.io/ecma262/#sec-ecmascript-data-types-and-values
https://tc39.github.io/ecma262/#active-function-object
https://tc39.github.io/ecma262/#sec-ordinarycreatefromconstructor

[[PositivePattern]],	[[NegativePattern]],	[[BoundFormat]]	»).
3.	 Perform	?	InitializeNumberFormat(numberFormat,	locales,
options).

NORMATIVE	OPTIONAL

4.	 Let	this	be	the	this	value.
5.	 If	NewTarget	is	unde9ined	and	?	InstanceofOperator(this,
%NumberFormat%),	then
a.	 Perform	?	DeLineOwnPropertyOrThrow(this,	Intl.
[[FallbackSymbol]],	{	[[Value]]:	numberFormat,
[[Writable]]:	false,	[[Enumerable]]:	false,
[[ConLigurable]]:	false	}).

b.	 Return	this.

6.	 Return	numberFormat.

The	Intl.NumberFormat	constructor	has	the	following	properties:

The	value	of	Intl.NumberFormat.prototype	is
%NumberFormatPrototype%.

This	property	has	the	attributes	{	[[Writable]]:	false,
[[Enumerable]]:	false,	[[ConLigurable]]:	false	}.

11.3 Properties	of	the
Intl.NumberFormat	Constructor

11.3.1 Intl.NumberFormat.prototype

11.3.2 Intl.NumberFormat.supportedLocalesOf	(
locales	[,	options])

https://tc39.github.io/ecma262/#sec-instanceofoperator

When	the	supportedLocalesOf	method	is	called	with	arguments
locales	and	options,	the	following	steps	are	taken:

1.	 Let	availableLocales	be	%NumberFormat%.
[[AvailableLocales]].

2.	 Let	requestedLocales	be	?	CanonicalizeLocaleList(locales).
3.	 Return	?	SupportedLocales(availableLocales,	requestedLocales,
options).

The	value	of	the	length	property	of	the	supportedLocalesOf
method	is	1.

The	value	of	the	[[AvailableLocales]]	internal	slot	is	implementation
deLined	within	the	constraints	described	in	9.1.

The	value	of	the	[[RelevantExtensionKeys]]	internal	slot	is	«	"nu"	».

NOTE	1 Unicode	Technical	Standard	35	describes	two	locale
extension	keys	that	are	relevant	to	number	formatting,
"nu"	for	numbering	system	and	"cu"	for	currency.
Intl.NumberFormat,	however,	requires	that	the
currency	of	a	currency	format	is	speciLied	through	the
currency	property	in	the	options	objects.

The	value	of	the	[[LocaleData]]	internal	slot	is	implementation
deLined	within	the	constraints	described	in	9.1	and	the	following
additional	constraints:

The	array	that	is	the	value	of	the	"nu"	property	of	any	locale
property	of	[[LocaleData]]	must	not	include	the	values	"native",
"traditio",	or	"Linance".
[[LocaleData]][locale]	must	have	a	patterns	property	for	all
locale	values.	The	value	of	this	property	must	be	an	object,

11.3.3 Internal	slots

which	must	have	properties	with	the	names	of	the	three
number	format	styles:	"decimal",	"percent",	and	"currency".
Each	of	these	properties	in	turn	must	be	an	object	with	the
properties	positivePattern	and	negativePattern.	The	value	of
these	properties	must	be	string	values	that	must	contain	the
substring	"{number}"	and	may	contain	the	substrings	"
{plusSign}",	and	"{minusSign}";	the	values	within	the	percent
property	must	also	contain	the	substring	"{percentSign}";	the
values	within	the	currency	property	must	also	contain	the
substring	"{currency}".	The	pattern	strings	must	not	contain
any	characters	in	the	General	Category	“Number,	decimal	digit"
as	speciLied	by	the	Unicode	Standard.

NOTE	2 It	is	recommended	that	implementations	use	the
locale	data	provided	by	the	Common	Locale	Data
Repository	(available	at	http://cldr.unicode.org/).

The	Intl.NumberFormat	prototype	object	is	the	intrinsic	object
%NumberFormatPrototype%.	The	Intl.NumberFormat	prototype
object	is	itself	an	Intl.NumberFormat	instance	as	speciLied	in	11.5,
whose	internal	slots	are	set	as	if	it	had	been	constructed	by	the
expression	Construct(%NumberFormat%,	«	»,	%Object%).

In	the	following	descriptions	of	functions	that	are	properties	or
[[Get]]	attributes	of	properties	of	%NumberFormatPrototype%,	the
phrase	"this	NumberFormat	object"	refers	to	the	object	that	is	the
this	value	for	the	invocation	of	the	function;	a	TypeError	exception
is	thrown	if	the	this	value	is	not	an	object	or	an	object	that	does	not
have	an	[[InitializedNumberFormat]]	internal	slot	with	value	true.

11.4 Properties	of	the
Intl.NumberFormat	Prototype	Object

http://cldr.unicode.org/
https://tc39.github.io/ecma262/#sec-construct
https://tc39.github.io/ecma262/#sec-object-constructor

The	initial	value	of
Intl.NumberFormat.prototype.constructor	is	the	intrinsic
object	%NumberFormat%.

The	initial	value	of	the	@@toStringTag	property	is	the	string	value
"Object".

This	property	has	the	attributes	{	[[Writable]]:	false,
[[Enumerable]]:	false,	[[ConLigurable]]:	true	}.

Intl.NumberFormat.prototype.format	is	an	accessor	property	whose
set	accessor	function	is	unde9ined.	Its	get	accessor	function
performs	the	following	steps:

1.	 Let	nf	be	this	value.
2.	 If	Type(nf)	is	not	Object,	throw	a	TypeError	exception.
3.	 Let	nf	be	?	UnwrapNumberFormat(nf);
4.	 If	nf.[[BoundFormat]]	is	unde9ined,	then

a.	 Let	F	be	a	new	built-in	function	object	as	deLined	in
Number	Format	Functions	(11.1.4).

b.	 Let	bf	be	BoundFunctionCreate(F,	nf,	«	»).
c.	 Perform	!	DeLinePropertyOrThrow(bf,	"length",
PropertyDescriptor	{[[Value]]:	1,	[[Writable]]:	false,
[[Enumerable]]:	false,	[[ConLigurable]]:	true}).

d.	 Set	nf.[[BoundFormat]]	to	bf.
5.	 Return	nf.[[BoundFormat]].

11.4.1 Intl.NumberFormat.prototype.constructor

11.4.2 Intl.NumberFormat.prototype	[
@@toStringTag]

11.4.3 get	Intl.NumberFormat.prototype.format

https://tc39.github.io/ecma262/#sec-ecmascript-data-types-and-values
https://tc39.github.io/ecma262/#sec-boundfunctioncreate
https://tc39.github.io/ecma262/#sec-definepropertyorthrow

This	function	provides	access	to	the	locale	and	formatting	options
computed	during	initialization	of	the	object.	This	function	initially
invokes	the	internal	algorithm	UnwrapNumberFormat	to	get	the
%NumberFormat%	object	on	which	to	operate.

The	function	returns	a	new	object	whose	properties	and	attributes
are	set	as	if	constructed	by	an	object	literal	assigning	to	each	of	the
following	properties	the	value	of	the	corresponding	internal	slot	of
this	NumberFormat	object	(see	11.5):	locale,	numberingSystem,
style,	currency,	currencyDisplay,	minimumIntegerDigits,
minimumFractionDigits,	maximumFractionDigits,
minimumSigniLicantDigits,	maximumSigniLicantDigits,	and
useGrouping.	Properties	whose	corresponding	internal	slots	have	the
value	unde9ined	are	not	assigned.

Intl.NumberFormat	instances	inherit	properties	from
%NumberFormatPrototype%.

Intl.NumberFormat	instances	and	other	objects	that	have	been
successfully	initialized	as	a	NumberFormat	have
[[InitializedIntlObject]]	and	[[InitializedNumberFormat]]	internal
slots	whose	values	are	true.

Objects	that	have	been	successfully	initialized	as	a	NumberFormat
object	also	have	several	internal	slots	that	are	computed	by	the
constructor:

[[Locale]]	is	a	String	value	with	the	language	tag	of	the	locale

11.4.4 Intl.NumberFormat.prototype.resolvedOptions
()

11.5 Properties	of	Intl.NumberFormat
Instances

whose	localization	is	used	for	formatting.
[[NumberingSystem]]	is	a	String	value	with	the	“type”	given	in
Unicode	Technical	Standard	35	for	the	numbering	system	used
for	formatting.
[[Style]]	is	one	of	the	String	values	"decimal",	"currency",	or
"percent",	identifying	the	number	format	style	used.
[[Currency]]	is	a	String	value	with	the	currency	code	identifying
the	currency	to	be	used	if	formatting	with	the	"currency"	style.
It	is	only	used	when	[[Style]]	has	the	value	"currency".
[[CurrencyDisplay]]	is	one	of	the	String	values	"code",
"symbol",	or	"name",	specifying	whether	to	display	the
currency	as	an	ISO	4217	alphabetic	currency	code,	a	localized
currency	symbol,	or	a	localized	currency	name	if	formatting
with	the	"currency"	style.	It	is	only	used	when	[[Style]]	has	the
value	"currency".
[[MinimumIntegerDigits]]	is	a	non-negative	integer	Number
value	indicating	the	minimum	integer	digits	to	be	used.
Numbers	will	be	padded	with	leading	zeroes	if	necessary.
[[MinimumFractionDigits]]	and	[[MaximumFractionDigits]]	are
non-negative	integer	Number	values	indicating	the	minimum
and	maximum	fraction	digits	to	be	used.	Numbers	will	be
rounded	or	padded	with	trailing	zeroes	if	necessary.
[[MinimumSigniLicantDigits]]	and
[[MaximumSigniLicantDigits]]	are	positive	integer	Number
values	indicating	the	minimum	and	maximum	fraction	digits	to
be	shown.	Either	none	or	both	of	these	properties	are	present;
if	they	are,	they	override	minimum	and	maximum	integer	and
fraction	digits	–	the	formatter	uses	however	many	integer	and
fraction	digits	are	required	to	display	the	speciLied	number	of
signiLicant	digits.
[[UseGrouping]]	is	a	Boolean	value	indicating	whether	a
grouping	separator	should	be	used.
[[PositivePattern]]	and	[[NegativePattern]]	are	String	values	as

described	in	11.3.3.

Finally,	objects	that	have	been	successfully	initialized	as	a
NumberFormat	have	a	[[BoundFormat]]	internal	slot	that	caches	the
function	returned	by	the	format	accessor	(11.4.3).

Several	DateTimeFormat	algorithms	use	values	from	the	following
table,	which	provides	internal	slots,	property	names	and	allowable
values	for	the	components	of	date	and	time	formats:

Table	4:	Components	of	date	and	time	formats

Internal	Slot Property Values

[[Weekday]] "weekday" "narrow",	"short",	"long"

[[Era]] "era" "narrow",	"short",	"long"

[[Year]] "year" "2-digit",	"numeric"

[[Month]] "month" "2-digit",	"numeric",
"narrow",	"short",	"long"

[[Day]] "day" "2-digit",	"numeric"

[[Hour]] "hour" "2-digit",	"numeric"

[[Minute]] "minute" "2-digit",	"numeric"

[[Second]] "second" "2-digit",	"numeric"

12 DateTimeFormat	Objects

12.1 Abstract	Operations	For
DateTimeFormat	Objects

[[TimeZoneName]] "timeZoneName" "short",	"long"

The	abstract	operation	InitializeDateTimeFormat	accepts	the
arguments	dateTimeFormat	(which	must	be	an	object),	locales,	and
options.	It	initializes	dateTimeFormat	as	a	DateTimeFormat	object.
This	abstract	operation	functions	as	follows:

1.	 If	dateTimeFormat.[[InitializedIntlObject]]	is	true,	throw	a
TypeError	exception.

2.	 Set	dateTimeFormat.[[InitializedIntlObject]]	to	true.
3.	 Let	requestedLocales	be	?	CanonicalizeLocaleList(locales).
4.	 Let	options	be	?	ToDateTimeOptions(options,	"any",	"date").
5.	 Let	opt	be	a	new	Record.
6.	 Let	matcher	be	?	GetOption(options,	"localeMatcher",	"string",
«	"lookup",	"best	9it"	»,	"best	9it").

7.	 Set	opt.[[localeMatcher]]	to	matcher.
8.	 Let	localeData	be	%DateTimeFormat%.[[LocaleData]].
9.	 Let	r	be	ResolveLocale(%DateTimeFormat%.
[[AvailableLocales]],	requestedLocales,	opt,
%DateTimeFormat%.[[RelevantExtensionKeys]],	localeData).

10.	 Set	dateTimeFormat.[[Locale]]	to	r.[[locale]].
11.	 Set	dateTimeFormat.[[Calendar]]	to	r.[[ca]].
12.	 Set	dateTimeFormat.[[NumberingSystem]]	to	r.[[nu]].
13.	 Let	dataLocale	be	r.[[dataLocale]].
14.	 Let	tz	be	?	Get(options,	"timeZone").
15.	 If	tz	is	not	unde9ined,	then

a.	 Let	tz	be	?	ToString(tz).
b.	 If	the	result	of	IsValidTimeZoneName(tz)	is	false,	then

i.	 Throw	a	RangeError	exception.
c.	 Let	tz	be	CanonicalizeTimeZoneName(tz).

12.1.1 InitializeDateTimeFormat	(
dateTimeFormat,	locales,	options)

https://tc39.github.io/ecma262/#sec-list-and-record-specification-type
https://tc39.github.io/ecma262/#sec-get-o-p
https://tc39.github.io/ecma262/#sec-tostring

16.	 Else,
a.	 Let	tz	be	DefaultTimeZone().

17.	 Set	dateTimeFormat.[[TimeZone]]	to	tz.
18.	 Let	opt	be	a	new	Record.
19.	 For	each	row	of	Table	4,	except	the	header	row,	do:

a.	 Let	prop	be	the	name	given	in	the	Property	column	of	the
row.

b.	 Let	value	be	?	GetOption(options,	prop,	"string",	«	the
strings	given	in	the	Values	column	of	the	row	»,
unde9ined).

c.	 Set	opt.[[<prop>]]	to	value.
20.	 Let	dataLocaleData	be	Get(localeData,	dataLocale).
21.	 Let	formats	be	Get(dataLocaleData,	"formats").
22.	 Let	matcher	be	?	GetOption(options,	"formatMatcher",

"string",	«	"basic",	"best	9it"	»,	"best	9it").
23.	 If	matcher	is	"basic",	then

a.	 Let	bestFormat	be	BasicFormatMatcher(opt,	formats).
24.	 Else,

a.	 Let	bestFormat	be	BestFitFormatMatcher(opt,	formats).
25.	 For	each	row	in	Table	4,	except	the	header	row,	do

a.	 Let	prop	be	the	name	given	in	the	Property	column	of	the
row.

b.	 Let	p	be	Get(bestFormat,	prop).
c.	 If	p	not	unde9ined,	then

i.	 Set	dateTimeFormat's	internal	slot	whose	name	is	the
Internal	Slot	column	of	the	row	to	p.

26.	 Let	hr12	be	?	GetOption(options,	"hour12",	"boolean",
unde9ined,	unde9ined).

27.	 If	dateTimeFormat	has	an	internal	slot	[[Hour]],	then
a.	 If	hr12	is	unde9ined,	then

i.	 Let	hr12	be	Get(dataLocaleData,	"hour12").
b.	 Set	dateTimeFormat.[[Hour12]]	to	hr12.
c.	 If	hr12	is	true,	then

https://tc39.github.io/ecma262/#sec-list-and-record-specification-type
https://tc39.github.io/ecma262/#sec-get-o-p
https://tc39.github.io/ecma262/#sec-get-o-p
https://tc39.github.io/ecma262/#sec-get-o-p
https://tc39.github.io/ecma262/#sec-get-o-p

i.	 Let	hourNo0	be	Get(dataLocaleData,	"hourNo0").
ii.	 Set	dateTimeFormat.[[HourNo0]]	to	hourNo0.
iii.	 Let	pattern	be	Get(bestFormat,	"pattern12").

d.	 Else,
i.	 Let	pattern	be	Get(bestFormat,	"pattern").

28.	 Else,
a.	 Let	pattern	be	Get(bestFormat,	"pattern").

29.	 Set	dateTimeFormat.[[Pattern]]	to	pattern.
30.	 Set	dateTimeFormat.[[BoundFormat]]	to	unde9ined.
31.	 Set	dateTimeFormat.[[InitializedDateTimeFormat]]	to	true.
32.	 Return	dateTimeFormat.

When	the	ToDateTimeOptions	abstract	operation	is	called	with
arguments	options,	required,	and	defaults,	the	following	steps	are
taken:

1.	 If	options	is	unde9ined,	let	options	be	null;	otherwise	let
options	be	?	ToObject(options).

2.	 Let	options	be	ObjectCreate(options).
3.	 Let	needDefaults	be	true.
4.	 If	required	is	"date"	or	"any",

a.	 For	each	of	the	property	names	"weekday",	"year",
"month",	"day":
i.	 Let	prop	be	the	property	name.
ii.	 Let	value	be	?	Get(options,	prop).
iii.	 If	value	is	not	unde9ined,	let	needDefaults	be	false.

5.	 If	required	is	"time"	or	"any",
a.	 For	each	of	the	property	names	"hour",	"minute",
"second":
i.	 Let	prop	be	the	property	name.
ii.	 Let	value	be	?	Get(options,	prop).

12.1.2 ToDateTimeOptions	(options,	required,
defaults)

https://tc39.github.io/ecma262/#sec-get-o-p
https://tc39.github.io/ecma262/#sec-get-o-p
https://tc39.github.io/ecma262/#sec-get-o-p
https://tc39.github.io/ecma262/#sec-get-o-p
https://tc39.github.io/ecma262/#sec-toobject
https://tc39.github.io/ecma262/#sec-objectcreate
https://tc39.github.io/ecma262/#sec-get-o-p
https://tc39.github.io/ecma262/#sec-get-o-p

iii.	 If	value	is	not	unde9ined,	let	needDefaults	be	false.
6.	 If	needDefaults	is	true	and	defaults	is	either	"date"	or	"all",
then
a.	 For	each	of	the	property	names	"year",	"month",	"day":

i.	 Perform	?	CreateDataPropertyOrThrow(options,
prop,	"numeric").

7.	 If	needDefaults	is	true	and	defaults	is	either	"time"	or	"all",
then
a.	 For	each	of	the	property	names	"hour",	"minute",
"second":
i.	 Perform	?	CreateDataPropertyOrThrow(options,
prop,	"numeric").

8.	 Return	options.

When	the	BasicFormatMatcher	abstract	operation	is	called	with	two
arguments	options	and	formats,	the	following	steps	are	taken:

1.	 Let	removalPenalty	be	120.
2.	 Let	additionPenalty	be	20.
3.	 Let	longLessPenalty	be	8.
4.	 Let	longMorePenalty	be	6.
5.	 Let	shortLessPenalty	be	6.
6.	 Let	shortMorePenalty	be	3.
7.	 Let	bestScore	be	-In9inity.
8.	 Let	bestFormat	be	unde9ined.
9.	 Let	k	be	0.
10.	 Assert:	formats	is	an	Array	object.
11.	 Let	len	be	Get(formats,	"length").
12.	 Repeat	while	k	<	len:

a.	 Let	format	be	Get(formats,	ToString(k)).
b.	 Let	score	be	0.

12.1.3 BasicFormatMatcher	(options,	formats)

https://tc39.github.io/ecma262/#sec-createdatapropertyorthrow
https://tc39.github.io/ecma262/#sec-createdatapropertyorthrow
https://tc39.github.io/ecma262/#sec-get-o-p
https://tc39.github.io/ecma262/#sec-get-o-p
https://tc39.github.io/ecma262/#sec-tostring

c.	 For	each	property	shown	in	Table	4:
i.	 Let	optionsProp	be	options.[[<property>]].
ii.	 Let	formatProp	be	Get(format,	property).
iii.	 If	optionsProp	is	unde9ined	and	formatProp	is	not

unde9ined,	then	decrease	score	by	additionPenalty.
iv.	 Else	if	optionsProp	is	not	unde9ined	and	formatProp

is	unde9ined,	then	decrease	score	by	removalPenalty.
v.	 Else	if	optionsProp	≠	formatProp,

1.	 Let	values	be	the	array	["2-digit",	"numeric",
"narrow",	"short",	"long"].

2.	 Let	optionsPropIndex	be	the	index	of
optionsProp	within	values.

3.	 Let	formatPropIndex	be	the	index	of	formatProp
within	values.

4.	 Let	delta	be	max(min(formatPropIndex	-
optionsPropIndex,	2),	-2).

5.	 If	delta	=	2,	decrease	score	by	longMorePenalty.
6.	 Else	if	delta	=	1,	decrease	score	by
shortMorePenalty.

7.	 Else	if	delta	=	-1,	decrease	score	by
shortLessPenalty.

8.	 Else	if	delta	=	-2,	decrease	score	by
longLessPenalty.

d.	 If	score	>	bestScore,
i.	 Let	bestScore	be	score.
ii.	 Let	bestFormat	be	format.

e.	 Increase	k	by	1.
13.	 Return	bestFormat.

When	the	BestFitFormatMatcher	abstract	operation	is	called	with
two	arguments	options	and	formats,	it	performs	implementation

12.1.4 BestFitFormatMatcher	(options,	formats)

https://tc39.github.io/ecma262/#sec-get-o-p
https://tc39.github.io/ecma262/#sec-algorithm-conventions
https://tc39.github.io/ecma262/#sec-algorithm-conventions

dependent	steps,	which	should	return	a	set	of	component
representations	that	a	typical	user	of	the	selected	locale	would
perceive	as	at	least	as	good	as	the	one	returned	by
BasicFormatMatcher.

A	DateTime	format	function	is	an	anonymous	built-in	function.

When	a	DateTime	format	function	is	called	with	optional	argument
date,	the	following	steps	are	taken:

1.	 Let	dtf	be	the	this	value.
2.	 Assert:	Type(dtf)	is	Object	and	dtf.
[[InitializedDateTimeFormat]]	is	true.

3.	 If	date	is	not	provided	or	is	unde9ined,	then
a.	 Let	x	be	Call(%Date_now%,	unde9ined).

4.	 Else,
a.	 Let	x	be	?	ToNumber(date).

5.	 Return	FormatDateTime(dtf,	x).

NOTE The	function	returned	by	[[Get]]	is	bound	to	this
DateTimeFormat	object	so	that	it	can	be	passed
directly	to	Array.prototype.map	or	other	functions.

The	length	property	of	a	DateTime	format	function	is	1.

The	PartitionDateTimePattern	abstract	operation	is	called	with
arguments	dateTimeFormat	(which	must	be	an	object	initialized	as	a
DateTimeFormat)	and	x	(which	must	be	a	Number	value),	interprets
x	as	a	time	value	as	speciLied	in	ES2015,	20.3.1.1,	and	creates	the

12.1.5 DateTime	Format	Functions

12.1.6 PartitionDateTimePattern	(
dateTimeFormat,	x)

https://tc39.github.io/ecma262/#sec-ecmascript-data-types-and-values
https://tc39.github.io/ecma262/#sec-call
https://tc39.github.io/ecma262/#sec-tonumber
https://tc39.github.io/ecma262/#sec-time-values-and-time-range
https://tc39.github.io/ecma262/#sec-time-values-and-time-range

corresponding	parts	according	to	the	effective	locale	and	the
formatting	options	of	dateTimeFormat.	The	following	steps	are
taken:

1.	 If	x	is	not	a	Linite	Number,	throw	a	RangeError	exception.
2.	 Let	locale	be	dateTimeFormat.[[Locale]].
3.	 Let	nfLocale	be	CreateArrayFromList(«	locale	»).
4.	 Let	nfOptions	be	ObjectCreate(%ObjectPrototype%).
5.	 Perform	!	CreateDataPropertyOrThrow(nfOptions,

"useGrouping",	false).
6.	 Let	nf	be	?	Construct(%NumberFormat%,	«	nfLocale,	nfOptions
»).

7.	 Let	nf2Options	be	ObjectCreate(%ObjectPrototype%).
8.	 Perform	!	CreateDataPropertyOrThrow(nf2Options,

"minimumIntegerDigits",	2).
9.	 Perform	!	CreateDataPropertyOrThrow(nf2Options,

"useGrouping",	false).
10.	 Let	nf2	be	?	Construct(%NumberFormat%,	«	nfLocale,

nf2Options	»).
11.	 Let	tm	be	ToLocalTime(x,	dateTimeFormat.[[Calendar]],

dateTimeFormat.[[TimeZone]]).
12.	 Let	pattern	be	dateTimeFormat.[[Pattern]].
13.	 Let	result	be	a	new	empty	List.
14.	 Let	beginIndex	be	Call(%StringProto_indexOf%,	pattern,	"{",	0).
15.	 Let	endIndex	be	0.
16.	 Let	nextIndex	be	0.
17.	 Let	length	be	the	number	of	code	units	in	pattern.
18.	 Repeat	while	beginIndex	is	an	integer	index	into	pattern:

a.	 Set	endIndex	to	Call(%StringProto_indexOf%,	pattern,	"}",
beginIndex)

b.	 If	endIndex	=	-1,	throw	new	Error	exception.
c.	 If	beginIndex	is	greater	than	nextIndex,	then:

i.	 Let	literal	be	a	substring	of	pattern	from	position

https://tc39.github.io/ecma262/#sec-createarrayfromlist
https://tc39.github.io/ecma262/#sec-objectcreate
https://tc39.github.io/ecma262/#sec-properties-of-the-object-prototype-object
https://tc39.github.io/ecma262/#sec-createdatapropertyorthrow
https://tc39.github.io/ecma262/#sec-construct
https://tc39.github.io/ecma262/#sec-objectcreate
https://tc39.github.io/ecma262/#sec-properties-of-the-object-prototype-object
https://tc39.github.io/ecma262/#sec-createdatapropertyorthrow
https://tc39.github.io/ecma262/#sec-createdatapropertyorthrow
https://tc39.github.io/ecma262/#sec-construct
https://tc39.github.io/ecma262/#sec-list-and-record-specification-type
https://tc39.github.io/ecma262/#sec-call
https://tc39.github.io/ecma262/#sec-call

nextIndex,	inclusive,	to	position	beginIndex,	exclusive.
ii.	 Add	new	part	record	{	[[Type]]:	"literal",	[[Value]]:
literal	}	as	a	new	element	of	the	list	result.

d.	 Let	p	be	the	substring	of	pattern	from	position	beginIndex,
exclusive,	to	position	endIndex,	exclusive.

e.	 If	p	matches	a	Property	column	of	the	row	in	Table	4,	then:
i.	 Let	f	be	the	value	of	dateTimeFormat's	internal	slot
whose	name	is	the	Internal	Slot	column	of	the
matching	row.

ii.	 Let	v	be	the	value	of	tm's	Lield	whose	name	is	the
Internal	Slot	column	of	the	matching	row.

iii.	 If	p	is	"year"	and	v	≤	0,	let	v	be	1	-	v.
iv.	 If	p	is	"month",	increase	v	by	1.
v.	 If	p	is	"hour"	and	dateTimeFormat.[[Hour12]]	is
true,	then
1.	 Let	v	be	v	modulo	12.
2.	 If	v	is	0	and	dateTimeFormat.[[HourNo0]]	is
true,	let	v	be	12.

vi.	 If	f	is	"numeric",	then
1.	 Let	fv	be	FormatNumber(nf,	v).

vii.	 Else	if	f	is	"2-digit",	then
1.	 Let	fv	be	FormatNumber(nf2,	v).
2.	 If	the	length	property	of	fv	is	greater	than	2,	let
fv	be	the	substring	of	fv	containing	the	last	two
characters.

viii.	 Else	if	f	is	"narrow",	"short",	or	"long",	then	let	fv	be
a	String	value	representing	f	in	the	desired	form;	the
String	value	depends	upon	the	implementation	and
the	effective	locale	and	calendar	of	dateTimeFormat.
If	p	is	"month",	then	the	String	value	may	also
depend	on	whether	dateTimeFormat	has	a	[[Day]]
internal	slot.	If	p	is	"timeZoneName",	then	the	String
value	may	also	depend	on	the	value	of	the	[[inDST]]

https://tc39.github.io/ecma262/#sec-algorithm-conventions

Lield	of	tm.	If	p	is	"era",	then	the	String	value	may
also	depend	on	whether	dateTimeFormat	has	a
[[Era]]	internal	slot	and	if	the	implementation	does
not	have	a	localized	representation	of	f,	then	use	f
itself.

ix.	 Add	new	part	record	{	[[Type]]:	p,	[[Value]]:	fv	}	as	a
new	element	of	the	list	result.

f.	 Else	if	p	is	equal	"ampm",	then:
i.	 Let	v	be	tm.[[hour]].
ii.	 If	v	is	greater	than	11,	then:

1.	 Let	fv	be	an	implementation	and	locale
dependent	String	value	representing	"post
meridiem";

iii.	 Else,
1.	 Let	fv	be	an	implementation	and	locale
dependent	String	value	representing	"ante
meridiem".

iv.	 Add	new	part	record	{	[[Type]]:	"dayPeriod",
[[Value]]:	fv	}	as	a	new	element	of	the	list	result.

v.	 Let	literal	be	the	substring	of	pattern	from	position
beginIndex,	inclusive,	to	position	endIndex,	inclusive.

vi.	 Add	new	part	record	{	[[Type]]:	"literal",	[[Value]]:
literal	}	as	a	new	element	of	the	list	result.

g.	 Set	nextIndex	to	endIndex	+	1.
h.	 Set	beginIndex	to	Call(%StringProto_indexOf%,	pattern,
"}",	nextIndex)

19.	 If	nextIndex	is	less	than	length,	then:
a.	 Let	literal	be	the	substring	of	pattern	from	position
nextIndex,	exclusive,	to	position	length,	exclusive.

b.	 Add	new	part	record	{	[[Type]]:	"literal",	[[Value]]:	literal
}	as	a	new	element	of	the	list	result.

20.	 Return	result.

NOTE	1 It	is	recommended	that	implementations	use	the

https://tc39.github.io/ecma262/#sec-call

locale	and	calendar	dependent	strings	provided	by	the
Common	Locale	Data	Repository	(available	at
http://cldr.unicode.org/),	and	use	CLDR	"abbreviated"
strings	for	DateTimeFormat	"short"	strings,	and	CLDR
"wide"	strings	for	DateTimeFormat	"long"	strings.

NOTE	2 It	is	recommended	that	implementations	use	the	time
zone	information	of	the	IANA	Time	Zone	Database.

The	FormatDateTime	abstract	operation	is	called	with	arguments
dateTimeFormat	(which	must	be	an	object	initialized	as	a
DateTimeFormat)	and	x	(which	must	be	a	Number	value),	and
performs	the	following	steps:

1.	 Let	parts	be	?	PartitionDateTimePattern(dateTimeFormat,	x).
2.	 Let	result	be	the	empty	String.
3.	 For	each	part	in	parts,	do:

a.	 Set	result	to	a	String	value	produced	by	concatenating
result	and	part.[[Value]].

4.	 Return	result.

The	FormatDateTimeToParts	abstract	operation	is	called	with
arguments	dateTimeFormat	(which	must	be	an	object	initialized	as	a
DateTimeFormat)	and	x	(which	must	be	a	Number	value),	and
performs	the	following	steps:

1.	 Let	parts	be	?	PartitionDateTimePattern(dateTimeFormat,	x).
2.	 Let	result	be	ArrayCreate(0).
3.	 Let	n	be	0.

12.1.7 FormatDateTime(dateTimeFormat,	x)

12.1.8 FormatDateTimeToParts	(
dateTimeFormat,	x)

http://cldr.unicode.org/
https://tc39.github.io/ecma262/#sec-arraycreate

4.	 For	each	part	in	parts,	do:
a.	 Let	O	be	ObjectCreate(%ObjectPrototype%).
b.	 Perform	?	CreateDataPropertyOrThrow(O,	"type",	part.
[[Type]]).

c.	 Perform	?	CreateDataPropertyOrThrow(O,	"value",	part.
[[Value]]).

d.	 Perform	?	CreateDataProperty(result,	?	ToString(n),	O).
e.	 Increment	n	by	1.

5.	 Return	result.

When	the	ToLocalTime	abstract	operation	is	called	with	arguments
date,	calendar,	and	timeZone,	the	following	steps	are	taken:

1.	 Apply	calendrical	calculations	on	date	for	the	given	calendar
and	timeZone	to	produce	weekday,	era,	year,	month,	day,	hour,
minute,	second,	and	inDST	values.	The	calculations	should	use
best	available	information	about	the	speciLied	calendar	and
timeZone,	including	current	and	historical	information	about
time	zone	offsets	from	UTC	and	daylight	saving	time	rules.	If	the
calendar	is	"gregory",	then	the	calculations	must	match	the
algorithms	speciLied	in	ES2017,	20.3.1.

2.	 Return	a	Record	with	Lields	[[weekday]],	[[era]],	[[year]],
[[month]],	[[day]],	[[hour]],	[[minute]],	[[second]],	and
[[inDST]],	each	with	the	corresponding	calculated	value.

NOTE It	is	recommended	that	implementations	use	the	time
zone	information	of	the	IANA	Time	Zone	Database.

The	UnwrapDateTimeFormat	abstract	operation	gets	the	underlying
DateTimeFormat	operation	for	various	methods	which	implement

12.1.9 ToLocalTime	(date,	calendar,	timeZone)

12.1.10 UnwrapDateTimeFormat(dtf)

https://tc39.github.io/ecma262/#sec-objectcreate
https://tc39.github.io/ecma262/#sec-properties-of-the-object-prototype-object
https://tc39.github.io/ecma262/#sec-createdatapropertyorthrow
https://tc39.github.io/ecma262/#sec-createdatapropertyorthrow
https://tc39.github.io/ecma262/#sec-createdataproperty
https://tc39.github.io/ecma262/#sec-tostring
https://tc39.github.io/ecma262/#sec-overview-of-date-objects-and-definitions-of-abstract-operations
https://tc39.github.io/ecma262/#sec-list-and-record-specification-type

ECMA-402	v1	semantics	for	supporting	initializing	existing	Intl
objects.

NORMATIVE	OPTIONAL

2.	 If	Type(dtf)	is	Object	and	dtf	does	not	have	an
[[initializedDateTimeFormat]]	internal	slot	and
?	InstanceofOperator(dtf,	%DateTimeFormat%)	is	true,	then

3.	 If	dtf	does	not	have	an	[[InitializedDateTimeFormat]]	internal
slot	and	?	InstanceofOperator(dtf,	%DateTimeFormat%)	is
equal	true,	then
a.	 Let	dtf	be	Get(dtf,	Intl.[[FallbackSymbol]]).

2.	 If	Type(dtf)	is	not	Object	or	dtf	does	not	have	an
[[initializedDateTimeFormat]]	internal	slot,	then
a.	 Throw	a	TypeError	exception.

3.	 Return	dtf.

The	Intl.DateTimeFormat	constructor	is	the	%DateTimeFormat%
intrinsic	object	and	a	standard	built-in	property	of	the	Intl	object.
Behaviour	common	to	all	service	constructor	properties	of	the	Intl
object	is	speciLied	in	9.1.

When	the	Intl.DateTimeFormat	function	is	called	with	optional

13 The	Intl.DateTimeFormat
Constructor

13.1 Intl.DateTimeFormat	([locales	[,
options]])

https://tc39.github.io/ecma262/#sec-ecmascript-data-types-and-values
https://tc39.github.io/ecma262/#sec-instanceofoperator
https://tc39.github.io/ecma262/#sec-instanceofoperator
https://tc39.github.io/ecma262/#sec-get-o-p
https://tc39.github.io/ecma262/#sec-ecmascript-data-types-and-values

arguments	locales	and	options,	the	following	steps	are	taken:

1.	 If	NewTarget	is	unde9ined,	let	newTarget	be	the	active	function
object,	else	let	newTarget	be	NewTarget.

2.	 Let	dateTimeFormat	be
?	OrdinaryCreateFromConstructor(newTarget,
"%DateTimeFormatPrototype%",	«	[[InitializedIntlObject]],
[[InitializedDateTimeFormat]],	[[Locale]],	[[Calendar]],
[[NumberingSystem]],	[[TimeZone]],	[[Weekday]],	[[Era]],
[[Year]],	[[Month]],	[[Day]],	[[Hour]],	[[Minute]],	[[Second]],
[[TimeZoneName]],	[[Hour12]],	[[HourNo0]],	[[Pattern]],
[[BoundFormat]]	»).

3.	 Perform	?	InitializeDateTimeFormat(dateTimeFormat,	locales,
options).

NORMATIVE	OPTIONAL

4.	 Let	this	be	the	this	value.
5.	 If	NewTarget	is	unde9ined	and	?	InstanceofOperator(this,
%DateTimeFormat%),	then
a.	 Perform	?	DeLineOwnPropertyOrThrow(this,	Intl.
[[FallbackSymbol]],	{	[[Value]]:	dateTimeFormat,
[[Writable]]:	false,	[[Enumerable]]:	false,
[[ConLigurable]]:	false	}).

b.	 Return	this.

6.	 Return	dateTimeFormat.

14 Properties	of	the
Intl.DateTimeFormat
Constructor

https://tc39.github.io/ecma262/#active-function-object
https://tc39.github.io/ecma262/#sec-ordinarycreatefromconstructor
https://tc39.github.io/ecma262/#sec-instanceofoperator

The	Intl.DateTimeFormat	constructor	has	the	following	properties:

The	value	of	Intl.DateTimeFormat.prototype	is
%DateTimeFormatPrototype%.

This	property	has	the	attributes	{	[[Writable]]:	false,
[[Enumerable]]:	false,	[[ConLigurable]]:	false	}.

When	the	supportedLocalesOf	method	is	called	with	arguments
locales	and	options,	the	following	steps	are	taken:

1.	 Let	availableLocales	be	%DateTimeFormat%.
[[AvailableLocales]].

2.	 Let	requestedLocales	be	?	CanonicalizeLocaleList(locales).
3.	 Return	?	SupportedLocales(availableLocales,	requestedLocales,
options).

The	value	of	the	length	property	of	the	supportedLocalesOf
method	is	1.

The	value	of	the	[[AvailableLocales]]	internal	slot	is	implementation
deLined	within	the	constraints	described	in	9.1.

The	value	of	the	[[RelevantExtensionKeys]]	internal	slot	is	«	"ca",

14.1 Intl.DateTimeFormat.prototype

14.2 Intl.DateTimeFormat.supportedLocalesOf
(locales	[,	options])

14.3 Internal	slots

"nu"	».

NOTE	1 Unicode	Technical	Standard	35	describes	three	locale
extension	keys	that	are	relevant	to	date	and	time
formatting,	"ca"	for	calendar,	"tz"	for	time	zone,	and
implicitly	"nu"	for	the	numbering	system	of	the
number	format	used	for	numbers	within	the	date
format.	DateTimeFormat,	however,	requires	that	the
time	zone	is	speciLied	through	the	timeZone	property
in	the	options	objects.

The	value	of	the	[[LocaleData]]	internal	slot	is	implementation
deLined	within	the	constraints	described	in	9.1	and	the	following
additional	constraints:

The	array	that	is	the	value	of	the	"nu"	property	of	any	locale
property	of	[[LocaleData]]	must	not	include	the	values	"native",
"traditio",	or	"Linance".
[[LocaleData]][locale]	must	have	hour12	and	hourNo0
properties	with	Boolean	values	for	all	locale	values.
[[LocaleData]][locale]	must	have	a	formats	property	for	all
locale	values.	The	value	of	this	property	must	be	an	array	of
objects,	each	of	which	has	a	subset	of	the	properties	shown	in
Table	4,	where	each	property	must	have	one	of	the	values
speciLied	for	the	property	in	Table	4.	Multiple	objects	in	an
array	may	use	the	same	subset	of	the	properties	as	long	as	they
have	different	values	for	the	properties.	The	following	subsets
must	be	available	for	each	locale:

weekday,	year,	month,	day,	hour,	minute,	second
weekday,	year,	month,	day
year,	month,	day
year,	month
month,	day
hour,	minute,	second

hour,	minute
Each	of	the	objects	must	also	have	a	pattern	property,	whose
value	is	a	String	value	that	contains	for	each	of	the	date	and
time	format	component	properties	of	the	object	a	substring
starting	with	"{",	followed	by	the	name	of	the	property,	followed
by	"}".	If	the	object	has	an	hour	property,	it	must	also	have	a
pattern12	property,	whose	value	is	a	String	value	that,	in
addition	to	the	substrings	of	the	pattern	property,	contains	a
substring	"{ampm}".

EXAMPLE	An	implementation	might	include	the	following	object	as
part	of	its	English	locale	data:	{hour:	"numeric",	minute:	"2-digit",
second:	"2-digit",	pattern:	"{hour}:{minute}:{second}",	pattern12:	"
{hour}:{minute}:{second}	{ampm}"}.

NOTE	2 It	is	recommended	that	implementations	use	the
locale	data	provided	by	the	Common	Locale	Data
Repository	(available	at	http://cldr.unicode.org/).

The	Intl.DateTimeFormat	prototype	object	is	the	intrinsic	object
%DateTimeFormatPrototype%.	The	Intl.DateTimeFormat	prototype
object	is	itself	an	%DateTimeFormat%	instance,	whose	internal	slots
are	set	as	if	it	had	been	constructed	by	the	expression
Construct(%DateTimeFormat%,	«	»,	%Object%).

In	the	following	descriptions	of	functions	that	are	properties	or
[[Get]]	attributes	of	properties	of	the	Intl.DateTimeFormat	prototype

15 Properties	of	the
Intl.DateTimeFormat	Prototype
Object

http://cldr.unicode.org/
https://tc39.github.io/ecma262/#sec-construct
https://tc39.github.io/ecma262/#sec-object-constructor

object,	the	phrase	"this	DateTimeFormat	object"	refers	to	the	object
that	is	the	this	value	for	the	invocation	of	the	function;	a	TypeError
exception	is	thrown	if	the	this	value	is	not	an	object	or	an	object	that
does	not	have	an	[[InitializedDateTimeFormat]]	internal	slot	with
value	true.

The	initial	value	of
Intl.DateTimeFormat.prototype.constructor	is	the	intrinsic
object	%DateTimeFormat%.

The	initial	value	of	the	@@toStringTag	property	is	the	string	value
"Object".

This	property	has	the	attributes	{	[[Writable]]:	false,
[[Enumerable]]:	false,	[[ConLigurable]]:	true	}.

Intl.DateTimeFormat.prototype.format	is	an	accessor	property
whose	set	accessor	function	is	unde9ined.	Its	get	accessor	function
performs	the	following	steps:

1.	 Let	dtf	be	this	value.
2.	 If	Type(dtf)	is	not	Object,	throw	a	TypeError	exception.

15.1 Intl.DateTimeFormat.prototype.constructor

15.2 Intl.DateTimeFormat.prototype	[
@@toStringTag]

15.3 get
Intl.DateTimeFormat.prototype.format

https://tc39.github.io/ecma262/#sec-ecmascript-data-types-and-values

3.	 Let	dtf	be	?	UnwrapDateTimeFormat(dtf).
4.	 If	dtf.[[BoundFormat]]	is	unde9ined,	then

a.	 Let	F	be	a	new	built-in	function	object	as	deLined	in
DateTime	Format	Functions	(12.1.5).

b.	 Let	bf	be	BoundFunctionCreate(F,	dft,	«	»).
c.	 Perform	!	DeLinePropertyOrThrow(bf,	"length",
PropertyDescriptor	{[[Value]]:	1,	[[Writable]]:	false,
[[Enumerable]]:	false,	[[ConLigurable]]:	true}).

d.	 Set	dtf.[[BoundFormat]]	to	bf.
5.	 Return	dtf.[[BoundFormat]].

When	the	formatToParts	method	is	called	with	an	optional
argument	date,	the	following	steps	are	taken:

1.	 Let	dtf	be	this	value.
2.	 If	Type(dtf)	is	not	Object,	throw	a	TypeError	exception.
3.	 If	dtf	does	not	have	an	[[InitializedDateTimeFormat]]	internal
slot,	throw	a	TypeError	exception.

4.	 If	date	is	not	provided	or	is	unde9ined,	then
a.	 Let	x	be	%Date_now%().

5.	 Else,
a.	 Let	x	be	?	ToNumber(date).

6.	 Return	?	FormatDateTimeToParts(dtf,	x).

This	function	provides	access	to	the	locale	and	formatting	options

15.4 Intl.DateTimeFormat.prototype.formatToParts
([date])

15.5 Intl.DateTimeFormat.prototype.resolvedOptions
()

https://tc39.github.io/ecma262/#sec-boundfunctioncreate
https://tc39.github.io/ecma262/#sec-definepropertyorthrow
https://tc39.github.io/ecma262/#sec-ecmascript-data-types-and-values
https://tc39.github.io/ecma262/#sec-tonumber

computed	during	initialization	of	the	object.	This	function	initially
invokes	the	internal	algorithm	UnwrapDateTimeFormat	to	get	the
%DateTimeFormat%	object	on	which	to	operate.

The	function	returns	a	new	object	whose	properties	and	attributes
are	set	as	if	constructed	by	an	object	literal	assigning	to	each	of	the
following	properties	the	value	of	the	corresponding	internal	slot	of
this	DateTimeFormat	object	(see	16):	locale,	calendar,
numberingSystem,	timeZone,	hour12,	weekday,	era,	year,	month,	day,
hour,	minute,	second,	and	timeZoneName.	Properties	whose
corresponding	internal	slots	have	the	value	unde9ined	are	not
assigned.

NOTE In	this	version	of	the	ECMAScript	2017
Internationalization	API,	the	timeZone	property	will
be	the	name	of	the	default	time	zone	if	no	timeZone
property	was	provided	in	the	options	object	provided
to	the	Intl.DateTimeFormat	constructor.	The	Lirst
edition	left	the	timeZone	property	unde9ined	in	this
case.

Intl.DateTimeFormat	instances	inherit	properties	from
%DateTimeFormatPrototype%.

Intl.DateTimeFormat	instances	and	other	objects	that	have	been
successfully	initialized	as	a	DateTimeFormat	object	have
[[InitializedIntlObject]]	and	[[InitializedDateTimeFormat]]	internal
slots	whose	values	are	true.

16 Properties	of
Intl.DateTimeFormat	Instances

Objects	that	have	been	successfully	initialized	as	a	DateTimeFormat
also	have	several	internal	slots	that	are	computed	by	the	constructor:

[[Locale]]	is	a	String	value	with	the	language	tag	of	the	locale
whose	localization	is	used	for	formatting.
[[Calendar]]	is	a	String	value	with	the	"type"	given	in	Unicode
Technical	Standard	35	for	the	calendar	used	for	formatting.
[[NumberingSystem]]	is	a	String	value	with	the	"type"	given	in
Unicode	Technical	Standard	35	for	the	numbering	system	used
for	formatting.
[[TimeZone]]	is	a	String	value	with	the	IANA	time	zone	name	of
the	time	zone	used	for	formatting.
[[Weekday]],	[[Era]],	[[Year]],	[[Month]],	[[Day]],	[[Hour]],
[[Minute]],	[[Second]],	[[TimeZoneName]]	are	each	either
unde9ined,	indicating	that	the	component	is	not	used	for
formatting,	or	one	of	the	String	values	given	in	Table	4,
indicating	how	the	component	should	be	presented	in	the
formatted	output.
[[Hour12]]	is	a	Boolean	value	indicating	whether	12-hour
format	(true)	or	24-hour	format	(false)	should	be	used.	It	is
only	used	when	[[Hour]]	is	not	unde9ined.
[[HourNo0]]	is	a	Boolean	value	indicating	whether	hours	from
1	to	12	(true)	or	from	0	to	11	(false)	should	be	used.	It	is	only
used	when	[[Hour12]]	has	the	value	true.
[[Pattern]]	is	a	String	value	as	described	in	14.3.

Finally,	objects	that	have	been	successfully	initialized	as	a
DateTimeFormat	have	a	[[BoundFormat]]	internal	slot	that	caches
the	function	returned	by	the	format	accessor	(15.3).

17 Locale	Sensitive	Functions	of
the	ECMAScript	Language

The	ECMAScript	Language	SpeciLication,	edition	6	or	successor,
describes	several	locale	sensitive	functions.	An	ECMAScript
implementation	that	implements	this	Internationalization	API
SpeciLication	shall	implement	these	functions	as	described	here.

NOTE The	Collator,	NumberFormat,	or	DateTimeFormat
objects	created	in	the	algorithms	in	this	clause	are
only	used	within	these	algorithms.	They	are	never
directly	accessed	by	ECMAScript	code	and	need	not
actually	exist	within	an	implementation.

This	deLinition	supersedes	the	deLinition	provided	in	ES2017,
21.1.3.10.

When	the	localeCompare	method	is	called	with	argument	that	and
optional	arguments	locales,	and	options,	the	following	steps	are
taken:

1.	 Let	O	be	RequireObjectCoercible(this	value).
2.	 Let	S	be	?	ToString(O).
3.	 Let	thatValue	be	?	ToString(that).
4.	 Let	collator	be	?	Construct(%Collator%,	«	locales,	options	»).
5.	 Return	CompareStrings(collator,	S,	thatValue).

The	value	of	the	length	property	of	the	localeCompare	method	is

Speci9ication

17.1 Properties	of	the	String	Prototype
Object

17.1.1 String.prototype.localeCompare	(that	[,
locales	[,	options]])

https://tc39.github.io/ecma262/#sec-string.prototype.localecompare
https://tc39.github.io/ecma262/#sec-requireobjectcoercible
https://tc39.github.io/ecma262/#sec-tostring
https://tc39.github.io/ecma262/#sec-tostring
https://tc39.github.io/ecma262/#sec-construct

1.

NOTE	1 The	localeCompare	method	itself	is	not	directly
suitable	as	an	argument	to	Array.prototype.sort
because	the	latter	requires	a	function	of	two
arguments.

NOTE	2 The	localeCompare	function	is	intentionally	generic;
it	does	not	require	that	its	this	value	be	a	String	object.
Therefore,	it	can	be	transferred	to	other	kinds	of
objects	for	use	as	a	method.

This	deLinition	supersedes	the	deLinition	provided	in	ES2017,
21.1.3.22.

This	function	interprets	a	string	value	as	a	sequence	of	code	points,
as	described	in	ES2017,	6.1.4.	The	following	steps	are	taken:

1.	 Let	O	be	RequireObjectCoercible(this	value).
2.	 Let	S	be	?	ToString(O).
3.	 Let	requestedLocales	be	?	CanonicalizeLocaleList(locales).
4.	 Let	len	be	the	number	of	elements	in	requestedLocales.
5.	 If	len	>	0,	then

a.	 Let	requestedLocale	be	the	Lirst	element	of
requestedLocales.

6.	 Else,
a.	 Let	requestedLocale	be	DefaultLocale().

7.	 Let	noExtensionsLocale	be	the	String	value	that	is
requestedLocale	with	all	Unicode	locale	extension	sequences
(6.2.1)	removed.

8.	 Let	availableLocales	be	a	List	with	the	language	tags	of	the

17.1.2 String.prototype.toLocaleLowerCase	([
locales])

https://tc39.github.io/ecma262/#sec-string.prototype.tolocalelowercase
https://tc39.github.io/ecma262/#sec-ecmascript-language-types-string-type
https://tc39.github.io/ecma262/#sec-requireobjectcoercible
https://tc39.github.io/ecma262/#sec-tostring
https://tc39.github.io/ecma262/#sec-list-and-record-specification-type

languages	for	which	the	Unicode	character	database	contains
language	sensitive	case	mappings.

9.	 Let	locale	be	BestAvailableLocale(availableLocales,
noExtensionsLocale).

10.	 If	locale	is	unde9ined,	let	locale	be	"und".
11.	 Let	cpList	be	a	List	containing	in	order	the	code	points	of	S	as

deLined	in	ES2017,	6.1.4,	starting	at	the	Lirst	element	of	S.
12.	 For	each	code	point	c	in	cpList,	if	the	Unicode	Character

Database	provides	a	lower	case	equivalent	of	c	that	is	either
language	insensitive	or	for	the	language	locale,	replace	c	in
cpList	with	that/those	equivalent	code	point(s).

13.	 Let	cuList	be	a	new	empty	List.
14.	 For	each	code	point	c	in	cpList,	in	order,	append	to	cuList	the

elements	of	the	UTF-16	Encoding	(deLined	in	ES2017,	6.1.4)	of
c.

15.	 Let	L	be	a	String	whose	elements	are,	in	order,	the	elements	of
cuList.

16.	 Return	L.

The	result	must	be	derived	according	to	the	case	mappings	in	the
Unicode	character	database	(this	explicitly	includes	not	only	the
UnicodeData.txt	Lile,	but	also	the	SpecialCasings.txt	Lile	that
accompanies	it).

NOTE	1 As	of	Unicode	5.1,	the	availableLocales	list	contains	the
elements	"az",	"lt",	and	"tr".

NOTE	2 The	case	mapping	of	some	code	points	may	produce
multiple	code	points.	In	this	case	the	result	String	may
not	be	the	same	length	as	the	source	String.	Because
both	toLocaleUpperCase	and	toLocaleLowerCase
have	context-sensitive	behaviour,	the	functions	are	not
symmetrical.	In	other	words,
s.toLocaleUpperCase().toLocaleLowerCase()	is	not

https://tc39.github.io/ecma262/#sec-list-and-record-specification-type
https://tc39.github.io/ecma262/#sec-ecmascript-language-types-string-type
https://tc39.github.io/ecma262/#sec-list-and-record-specification-type
https://tc39.github.io/ecma262/#sec-ecmascript-language-types-string-type

necessarily	equal	to	s.toLocaleLowerCase().

NOTE	3 The	toLocaleLowerCase	function	is	intentionally
generic;	it	does	not	require	that	its	this	value	be	a
String	object.	Therefore,	it	can	be	transferred	to	other
kinds	of	objects	for	use	as	a	method.

This	deLinition	supersedes	the	deLinition	provided	in	ES2017,
21.1.3.23.

This	function	interprets	a	string	value	as	a	sequence	of	code	points,
as	described	in	ES2017,	6.1.4.	This	function	behaves	in	exactly	the
same	way	as	String.prototype.toLocaleLowerCase,	except	that
characters	are	mapped	to	their	uppercase	equivalents	as	speciLied	in
the	Unicode	character	database.

NOTE The	toLocaleUpperCase	function	is	intentionally
generic;	it	does	not	require	that	its	this	value	be	a
String	object.	Therefore,	it	can	be	transferred	to	other
kinds	of	objects	for	use	as	a	method.

The	following	deLinition(s)	refer	to	the	abstract	operation
thisNumberValue	as	deLined	in	ES2017,	20.1.3.

17.1.3 String.prototype.toLocaleUpperCase	([
locales])

17.2 Properties	of	the	Number	Prototype
Object

17.2.1 Number.prototype.toLocaleString	([
locales	[,	options]])

https://tc39.github.io/ecma262/#sec-string.prototype.tolocaleuppercase
https://tc39.github.io/ecma262/#sec-ecmascript-language-types-string-type
https://tc39.github.io/ecma262/#sec-properties-of-the-number-prototype-object

This	deLinition	supersedes	the	deLinition	provided	in	ES2017,
20.1.3.4.

When	the	toLocaleString	method	is	called	with	optional
arguments	locales	and	options,	the	following	steps	are	taken:

1.	 Let	x	be	?	thisNumberValue(this	value).
2.	 Let	numberFormat	be	?	Construct(%NumberFormat%,	«	locales,
options	»).

3.	 Return	FormatNumber(numberFormat,	x).

The	following	deLinition(s)	refer	to	the	abstract	operation
thisTimeValue	as	deLined	in	ES2017,	20.3.4.

This	deLinition	supersedes	the	deLinition	provided	in	ES2017,
20.3.4.39.

When	the	toLocaleString	method	is	called	with	optional
arguments	locales	and	options,	the	following	steps	are	taken:

1.	 Let	x	be	?	thisTimeValue(this	value).
2.	 If	x	is	NaN,	return	"Invalid	Date".
3.	 Let	options	be	?	ToDateTimeOptions(options,	"any",	"all").
4.	 Let	dateFormat	be	?	Construct(%DateTimeFormat%,	«	locales,
options	»).

5.	 Return	FormatDateTime(dateFormat,	x).

17.3 Properties	of	the	Date	Prototype
Object

17.3.1 Date.prototype.toLocaleString	([locales	[,
options]])

https://tc39.github.io/ecma262/#sec-number.prototype.tolocalestring
https://tc39.github.io/ecma262/#sec-construct
https://tc39.github.io/ecma262/#sec-properties-of-the-date-prototype-object
https://tc39.github.io/ecma262/#sec-properties-of-the-date-prototype-object
https://tc39.github.io/ecma262/#sec-date.prototype.tolocalestring
https://tc39.github.io/ecma262/#sec-properties-of-the-date-prototype-object
https://tc39.github.io/ecma262/#sec-construct

This	deLinition	supersedes	the	deLinition	provided	in	ES2017,
20.3.4.38.

When	the	toLocaleDateString	method	is	called	with	optional
arguments	locales	and	options,	the	following	steps	are	taken:

1.	 Let	x	be	?	thisTimeValue(this	value).
2.	 If	x	is	NaN,	return	"Invalid	Date".
3.	 Let	options	be	?	ToDateTimeOptions(options,	"date",	"date").
4.	 Let	dateFormat	be	?	Construct(%DateTimeFormat%,	«	locales,
options	»).

5.	 Return	FormatDateTime(dateFormat,	x).

This	deLinition	supersedes	the	deLinition	provided	in	ES2017,
20.3.4.40.

When	the	toLocaleTimeString	method	is	called	with	optional
arguments	locales	and	options,	the	following	steps	are	taken:

1.	 Let	x	be	?	thisTimeValue(this	value).
2.	 If	x	is	NaN,	return	"Invalid	Date".
3.	 Let	options	be	?	ToDateTimeOptions(options,	"time",	"time").
4.	 Let	timeFormat	be	?	Construct(%DateTimeFormat%,	«	locales,
options	»).

5.	 Return	FormatDateTime(timeFormat,	x).

17.3.2 Date.prototype.toLocaleDateString	([
locales	[,	options]])

17.3.3 Date.prototype.toLocaleTimeString	([
locales	[,	options]])

17.4 Properties	of	the	Array	Prototype
Object

https://tc39.github.io/ecma262/#sec-date.prototype.tolocaledatestring
https://tc39.github.io/ecma262/#sec-properties-of-the-date-prototype-object
https://tc39.github.io/ecma262/#sec-construct
https://tc39.github.io/ecma262/#sec-date.prototype.tolocaletimestring
https://tc39.github.io/ecma262/#sec-properties-of-the-date-prototype-object
https://tc39.github.io/ecma262/#sec-construct

This	deLinition	supersedes	the	deLinition	provided	in	ES2017,
22.1.3.27.

When	the	toLocaleString	method	is	called	with	optional
arguments	locales	and	options,	the	following	steps	are	taken:

1.	 Let	A	be	?	ToObject(this	value).
2.	 Let	len	be	?	ToLength(?	Get(A,	"length")).
3.	 Let	separator	be	the	String	value	for	the	list-separator	String
appropriate	for	the	host	environment’s	current	locale	(this	is
derived	in	an	implementation-deLined	way).

4.	 If	len	is	zero,	return	the	empty	String.
5.	 Let	UirstElement	be	?	Get(A,	"0").
6.	 If	UirstElement	is	unde9ined	or	null,	then

a.	 Let	R	be	the	empty	String.
7.	 Else,

a.	 Let	R	be	?	ToString(?	Invoke(UirstElement,
"toLocaleString",	«	locales,	options	»)).

8.	 Let	k	be	1.
9.	 Repeat,	while	k	<	len

a.	 Let	S	be	a	String	value	produced	by	concatenating	R	and
separator.

b.	 Let	nextElement	be	?	Get(A,	ToString(k)).
c.	 If	nextElement	is	unde9ined	or	null,	then

i.	 Let	R	be	the	empty	String.
d.	 Else,

i.	 Let	R	be	?	ToString(?	Invoke(nextElement,
"toLocaleString",	«	locales,	options	»)).

e.	 Let	R	be	a	String	value	produced	by	concatenating	S	and	R.
f.	 Increase	k	by	1.

10.	 Return	R.

NOTE	1 The	elements	of	the	array	are	converted	to	Strings

17.4.1 Array.prototype.toLocaleString	([locales	[,
options]])

https://tc39.github.io/ecma262/#sec-array.prototype.tolocalestring
https://tc39.github.io/ecma262/#sec-toobject
https://tc39.github.io/ecma262/#sec-tolength
https://tc39.github.io/ecma262/#sec-get-o-p
https://tc39.github.io/ecma262/#sec-get-o-p
https://tc39.github.io/ecma262/#sec-tostring
https://tc39.github.io/ecma262/#sec-invoke
https://tc39.github.io/ecma262/#sec-get-o-p
https://tc39.github.io/ecma262/#sec-tostring
https://tc39.github.io/ecma262/#sec-tostring
https://tc39.github.io/ecma262/#sec-invoke

NOTE	1 The	elements	of	the	array	are	converted	to	Strings
using	their	toLocaleString	methods,	and	these	Strings
are	then	concatenated,	separated	by	occurrences	of	a
separator	String	that	has	been	derived	in	an
implementationdeLined	locale-speciLic	way.	The	result
of	calling	this	function	is	intended	to	be	analogous	to
the	result	of	toString,	except	that	the	result	of	this
function	is	intended	to	be	locale-speciLic.

NOTE	2 The	toLocaleString	function	is	intentionally
generic;	it	does	not	require	that	its	this	value	be	an
Array	object.	Therefore	it	can	be	transferred	to	other
kinds	of	objects	for	use	as	a	method.

The	following	aspects	of	the	ECMAScript	2017	Internationalization
API	SpeciLication	are	implementation	dependent:

In	all	functionality:
Additional	values	for	some	properties	of	options
arguments	(2)
Canonicalization	of	extension	subtag	sequences	beyond
the	rules	of	RFC	5646	(6.2.3)
The	default	locale	(6.2.4)
The	default	time	zone	(6.4.3)
The	set	of	available	locales	for	each	constructor	(9.1)
The	BestFitMatcher	algorithm	(9.2.4)
The	BestFitSupportedLocales	algorithm	(9.2.8)

In	Collator:
Support	for	the	Unicode	extensions	keys	kn,	kf	and	the

A Implementation	Dependent
Behaviour

parallel	options	properties	numeric,	caseFirst	(10.1.1)
The	set	of	supported	"co"	key	values	(collations)	per
locale	beyond	a	default	collation	(10.2.3)
The	set	of	supported	"kn"	key	values	(numeric	collation)
per	locale	(10.2.3)
The	set	of	supported	"kf"	key	values	(case	order)	per
locale	(10.2.3)
The	default	search	sensitivity	per	locale	(10.2.3)
The	sort	order	for	each	supported	locale	and	options
combination	(10.3.4)

In	NumberFormat:
The	set	of	supported	"nu"	key	values	(numbering
systems)	per	locale	(11.3.3)
The	patterns	used	for	formatting	positive	and	negative
values	as	decimal,	percent,	or	currency	values	per	locale
(11.1.7)
Localized	representations	of	NaN	and	In9inity	(11.1.7)
The	implementation	of	numbering	systems	not	listed	in
Table	3	(11.1.7)
Localized	decimal	and	grouping	separators	(11.1.7)
Localized	digit	grouping	schemata	(11.1.7)
Localized	currency	symbols	and	names	(11.1.7)

In	DateTimeFormat:
The	BestFitFormatMatcher	algorithm	(12.1.1)
The	set	of	supported	"ca"	key	values	(calendars)	per	locale
(14.3)
The	set	of	supported	"nu"	key	values	(numbering
systems)	per	locale	(14.3)
The	default	hour12	and	hourNo0	settings	per	locale	(14.3)
The	set	of	supported	date-time	formats	per	locale	beyond
a	core	set,	including	the	representations	used	for	each
component	and	the	associated	patterns	(14.3)
Localized	weekday	names,	era	names,	month	names,

am/pm	indicators,	and	time	zone	names	(12.1.7)
The	calendric	calculations	used	for	calendars	other	than
"gregory",	and	adjustments	for	local	time	zones	and
daylight	saving	time	(12.1.7)

10.1,	11.2,	13	In	ECMA-402,	1st	Edition,	constructors	could	be
used	to	create	Intl	objects	from	arbitrary	objects.	This	is	no
longer	possible	in	2nd	Edition.
15.3	In	ECMA-402,	1st	Edition,	the	length	property	of	the
function	object	F	was	set	to	0.	In	2nd	Edition,	length	is	set	to	1.

Ecma	International

Rue	du	Rhone	114

CH-1204	Geneva

Tel:	+41	22	849	6000

Fax:	+41	22	849	6001

Web:	http://www.ecma-international.org

B Additions	and	Changes	That
Introduce	Incompatibilities
with	Prior	Editions

C Copyright	&	Software	License

http://www.ecma-international.org/

©	2017	Ecma	International

This	draft	document	may	be	copied	and	furnished	to	others,	and
derivative	works	that	comment	on	or	otherwise	explain	it	or	assist	in
its	implementation	may	be	prepared,	copied,	published,	and
distributed,	in	whole	or	in	part,	without	restriction	of	any	kind,
provided	that	the	above	copyright	notice	and	this	section	are
included	on	all	such	copies	and	derivative	works.	However,	this
document	itself	may	not	be	modiLied	in	any	way,	including	by
removing	the	copyright	notice	or	references	to	Ecma	International,
except	as	needed	for	the	purpose	of	developing	any	document	or
deliverable	produced	by	Ecma	International.

This	disclaimer	is	valid	only	prior	to	Linal	version	of	this	document.
After	approval	all	rights	on	the	standard	are	reserved	by	Ecma
International.

The	limited	permissions	are	granted	through	the	standardization
phase	and	will	not	be	revoked	by	Ecma	International	or	its
successors	or	assigns	during	this	time.

This	document	and	the	information	contained	herein	is	provided	on
an	"AS	IS"	basis	and	ECMA	INTERNATIONAL	DISCLAIMS	ALL
WARRANTIES,	EXPRESS	OR	IMPLIED,	INCLUDING	BUT	NOT
LIMITED	TO	ANY	WARRANTY	THAT	THE	USE	OF	THE
INFORMATION	HEREIN	WILL	NOT	INFRINGE	ANY	OWNERSHIP
RIGHTS	OR	ANY	IMPLIED	WARRANTIES	OF	MERCHANTABILITY	OR
FITNESS	FOR	A	PARTICULAR	PURPOSE.

All	Software	contained	in	this	document	("Software")	is	protected	by

Copyright	Notice

Software	License

copyright	and	is	being	made	available	under	the	"BSD	License",
included	below.	This	Software	may	be	subject	to	third	party	rights
(rights	from	parties	other	than	Ecma	International),	including	patent
rights,	and	no	licenses	under	such	third	party	rights	are	granted
under	this	license	even	if	the	third	party	concerned	is	a	member	of
Ecma	International.	SEE	THE	ECMA	CODE	OF	CONDUCT	IN	PATENT
MATTERS	AVAILABLE	AT	http://www.ecma-
international.org/memento/codeofconduct.htm	FOR	INFORMATION
REGARDING	THE	LICENSING	OF	PATENT	CLAIMS	THAT	ARE
REQUIRED	TO	IMPLEMENT	ECMA	INTERNATIONAL	STANDARDS.

Redistribution	and	use	in	source	and	binary	forms,	with	or	without
modiLication,	are	permitted	provided	that	the	following	conditions
are	met:

1.	 Redistributions	of	source	code	must	retain	the	above	copyright
notice,	this	list	of	conditions	and	the	following	disclaimer.

2.	 Redistributions	in	binary	form	must	reproduce	the	above
copyright	notice,	this	list	of	conditions	and	the	following
disclaimer	in	the	documentation	and/or	other	materials
provided	with	the	distribution.

3.	 Neither	the	name	of	the	authors	nor	Ecma	International	may	be
used	to	endorse	or	promote	products	derived	from	this
software	without	speciLic	prior	written	permission.

THIS	SOFTWARE	IS	PROVIDED	BY	THE	ECMA	INTERNATIONAL	"AS
IS"	AND	ANY	EXPRESS	OR	IMPLIED	WARRANTIES,	INCLUDING,	BUT
NOT	LIMITED	TO,	THE	IMPLIED	WARRANTIES	OF
MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE
ARE	DISCLAIMED.	IN	NO	EVENT	SHALL	ECMA	INTERNATIONAL	BE
LIABLE	FOR	ANY	DIRECT,	INDIRECT,	INCIDENTAL,	SPECIAL,
EXEMPLARY,	OR	CONSEQUENTIAL	DAMAGES	(INCLUDING,	BUT	NOT
LIMITED	TO,	PROCUREMENT	OF	SUBSTITUTE	GOODS	OR	SERVICES;
LOSS	OF	USE,	DATA,	OR	PROFITS;	OR	BUSINESS	INTERRUPTION)

HOWEVER	CAUSED	AND	ON	ANY	THEORY	OF	LIABILITY,	WHETHER
IN	CONTRACT,	STRICT	LIABILITY,	OR	TORT	(INCLUDING
NEGLIGENCE	OR	OTHERWISE)	ARISING	IN	ANY	WAY	OUT	OF	THE
USE	OF	THIS	SOFTWARE,	EVEN	IF	ADVISED	OF	THE	POSSIBILITY	OF
SUCH	DAMAGE.

	Copyright notice
	1 Scope
	2 Conformance
	3 Normative References
	4 Overview
	4.1 Internationalization, Localization, and Globalization
	4.2 API Overview
	4.3 Implementation Dependencies

	5 Notational Conventions
	5.1 Well-Known Intrinsic Objects

	6 Identification of Locales, Currencies, and Time Zones
	6.1 Case Sensitivity and Case Mapping
	6.2 Language Tags
	6.2.1 Unicode Locale Extension Sequences
	6.2.2 IsStructurallyValidLanguageTag (locale)
	6.2.3 CanonicalizeLanguageTag (locale)
	6.2.4 DefaultLocale ()

	6.3 Currency Codes
	6.3.1 IsWellFormedCurrencyCode (currency)

	6.4 Time Zone Names
	6.4.1 IsValidTimeZoneName (timeZone)
	6.4.2 CanonicalizeTimeZoneName (timeZone)
	6.4.3 DefaultTimeZone ()

	7 Requirements for Standard Built-in ECMAScript Objects
	8 The Intl Object
	8.1 Properties of the Intl Object

	9 Locale and Parameter Negotiation
	9.1 Internal slots of Service Constructors
	9.2 Abstract Operations
	9.2.1 CanonicalizeLocaleList (locales)
	9.2.2 BestAvailableLocale (availableLocales, locale)
	9.2.3 LookupMatcher (availableLocales, requestedLocales)
	9.2.4 BestFitMatcher (availableLocales, requestedLocales)
	9.2.5 ResolveLocale (availableLocales, requestedLocales, options, relevantExtensionKeys, localeData)
	9.2.6 LookupSupportedLocales (availableLocales, requestedLocales)
	9.2.7 BestFitSupportedLocales (availableLocales, requestedLocales)
	9.2.8 SupportedLocales (availableLocales, requestedLocales, options)
	9.2.9 GetOption (options, property, type, values, fallback)
	9.2.10 GetNumberOption (options, property, minimum, maximum, fallback)

	10 Collator Objects
	10.1 The Intl.Collator Constructor
	10.1.1 InitializeCollator (collator, locales, options)
	10.1.2 Intl.Collator([locales [, options]])

	10.2 Properties of the Intl.Collator Constructor
	10.2.1 Intl.Collator.prototype
	10.2.2 Intl.Collator.supportedLocalesOf (locales [, options])
	10.2.3 Internal slots

	10.3 Properties of the Intl.Collator Prototype Object
	10.3.1 Intl.Collator.prototype.constructor
	10.3.2 Intl.Collator.prototype[@@toStringTag]
	10.3.3 Intl.Collator.prototype.compare
	10.3.4 Collator Compare Functions
	10.3.5 Intl.Collator.prototype.resolvedOptions ()

	10.4 Properties of Intl.Collator Instances

	11 NumberFormat Objects
	11.1 The Intl.NumberFormat Constructor
	11.1.1 InitializeNumberFormat (numberFormat, locales, options)
	11.1.2 Intl.NumberFormat([locales [, options]])

	11.2 Properties of the Intl.NumberFormat Constructor
	11.2.1 Intl.NumberFormat.prototype
	11.2.2 Intl.NumberFormat.supportedLocalesOf (locales [, options])
	11.2.3 Internal slots

	11.3 Properties of the Intl.NumberFormat Prototype Object
	11.3.1 Intl.NumberFormat.prototype.constructor
	11.3.2 Intl.NumberFormat.prototype[@@toStringTag]
	11.3.3 Intl.NumberFormat.prototype.format
	11.3.4 Number Format Functions
	11.3.5 Intl.NumberFormat.prototype.resolvedOptions ()

	11.4 Properties of Intl.NumberFormat Instances

	12 DateTimeFormat Objects
	12.1 The Intl.DateTimeFormat Constructor
	12.1.1 InitializeDateTimeFormat (dateTimeFormat, locales, options)
	12.1.2 Intl.DateTimeFormat([locales [, options]])

	12.2 Properties of the Intl.DateTimeFormat Constructor
	12.2.1 Intl.DateTimeFormat.prototype
	12.2.2 Intl.DateTimeFormat.supportedLocalesOf (locales [, options])
	12.2.3 Internal slots

	12.3 Properties of the Intl.DateTimeFormat Prototype Object
	12.3.1 Intl.DateTimeFormat.prototype.constructor
	12.3.2 Intl.DateTimeFormat.prototype[@@toStringTag]
	12.3.3 Intl.DateTimeFormat.prototype.format
	12.3.4 DateTime Format Functions
	12.3.5 Intl.DateTimeFormat.prototype.resolvedOptions ()

	12.4 Properties of Intl.DateTimeFormat Instances

	13 Locale Sensitive Functions of the ECMAScript Language Specification
	13.1 Properties of the String Prototype Object
	13.1.1 String.prototype.localeCompare (that [, locales [, options]])
	13.1.2 String.prototype.toLocaleLowerCase ([locales])
	13.1.3 String.prototype.toLocaleUpperCase ([locales])

	13.2 Properties of the Number Prototype Object
	13.2.1 Number.prototype.toLocaleString ([locales [, options]])

	13.3 Properties of the Date Prototype Object
	13.3.1 Date.prototype.toLocaleString ([locales [, options]])
	13.3.2 Date.prototype.toLocaleDateString ([locales [, options]])
	13.3.3 Date.prototype.toLocaleTimeString ([locales [, options]])

	13.4 Properties of the Array Prototype Object
	13.4.1 Array.prototype.toLocaleString([locales [, options]])

	Annex A (informative) Implementation Dependent Behaviour
	Annex B (informative) Additions and Changes That Introduce Incompatibilities with Prior Editions

