

ECMA-386
1st Edition / December 2008

NFC-SEC-01:

NFC-SEC Cryptography
Standard using ECDH
and AES

 COPYRIGHT PROTECTED DOCUMENT

 © Ecma International 2008

patrick
Stamp

Ecma International Rue du Rhône 114 CH-1204 Geneva T/F: +41 22 849 6000/01 www.ecma-international.org

Standard
ECMA-386
1st Edition / December 2008

NFC-SEC-01

NFC-SEC Cryptography
Standard using ECDH and
AES

.

PC ECMA-386.doc 11/03/2009 16:04

Introduction

The NFC-SEC series of standards comprise a common services and protocol Standard and NFC-SEC
cryptography standards.

This NFC-SEC cryptography Standard specifies cryptographic mechanisms that use the Elliptic Curves
Diffie-Hellman (ECDH) protocol for key agreement and the AES algorithm for data encryption and integrity.

This Standard addresses secure communication of two NFC devices that do not share any common secret
data ("keys") before they start communicating which each other.

This Ecma Standard has been adopted by the General Assembly of December 2008.

Table of contents

1 Scope 1

2 Conformance 1

3 References 1

4 Definit ions 1

5 Conventions and notations 1

5.1 Concatenat ion 1

5.2 Hexadecimal numbers 1

6 Acronyms 2

7 General 3

8 NFC-SEC-01 Protocol Identif ier (PID) 3

9 NFC-SEC-01 Primit ives 3

9.1 Key agreement 3
9.1.1 Curve P-192 3
9.1.2 EC Key Pair Generat ion Pr imit ive 4
9.1.3 EC Publ ic key val idat ion 4
9.1.4 ECDH secret value der ivat ion Pr imi t ive 4
9.1.5 Random nonces 4

9.2 Key Der ivat ion Funct ions 4
9.2.1 KDF for the SSE 4
9.2.2 KDF for the SCH 4

9.3 Key Usage 5

9.4 Key Conf i rmat ion 5
9.4.1 Key conf i rmat ion tag generat ion 5
9.4.2 Key conf i rmat ion tag ver i f icat ion 5

9.5 Data Encrypt ion 5
9.5.1 In i t ia l value of counter (IV) 5
9.5.2 Encrypt ion 6
9.5.3 Decrypt ion 6

9.6 Data Integr i ty 6
9.6.1 Protect data integr i ty 6
9.6.2 Check data integr i ty 6

- i -

- ii -

9.7 Message Sequence Integr i ty 6

10 Data Conversions 6

10.1 Integer- to-Octet-Str ing Conversion 6

10.2 Octet-Str ing-to- Integer Conversion 6

10.3 Point- to-Octet-Str ing Conversion 7

10.4 Octet-Str ing-to-Point Conversion 7

11 SSE and SCH service invocation 8

11.1 Pre-requis i tes 8

11.2 Key Agreement 9
11.2.1 Sender (A) Transformat ion 9
11.2.2 Recipient (B) Transformat ion 9

11.3 Key Der ivat ion 10
11.3.1 Sender (A) Transformat ion 10
11.3.2 Recipient (B) Transformat ion 10

11.4 Key Conf i rmat ion 10
11.4.1 Sender (A) Transformat ion 10
11.4.2 Recipient (B) Transformat ion 10

12 SCH data exchange 11

12.1 Preparat ion 11

12.2 Data Exchange 12
12.2.1 Send 12
12.2.2 Receive 12

Annex A (normative) AES-XCBC-PRF-128 and AES-XCBC-MAC-96 algorithms 13

Annex B (normative) NFC-SEC-01 f ields sizes 15

Annex C (informative) Informative references 17

1 Scope
This Standard, NFC-SEC-01 specifies the message contents and the cryptographic methods for
PID 01.

This Standard specifies cryptographic mechanisms that use the Elliptic Curves Diffie-Hellman
(ECDH) protocol for key agreement and the AES algorithm for data encryption and integrity.

2 Conformance
Conformant implementations employ the security mechanisms specified in this NFC-SEC
cryptography Standard (identified by PID 01) and conform to ECMA-385.

The NFC-SEC security services shall be established through the protocol specified in ECMA-385
and the mechanisms specified in this Standard.

3 References
ECMA-385 NFC-SEC: NFCIP-1 Security Services and Protocol

ISO/IEC 10116:2006 Information technology -- Security techniques -- Modes of operation for an
n-bit block cipher

ISO/IEC 11770-3:2008 Information technology -- Security techniques -- Key management -- Part 3:
Mechanisms using asymmetric techniques

ISO/IEC 15946-1:2008 Information technology -- Security techniques -- Cryptographic techniques
based on elliptic curves -- Part 1: General

ISO/IEC 18031:2005 Information technology -- Security techniques -- Random bit generation

ISO/IEC 18033-3:2005 Information technology -- Security techniques -- Encryption algorithms --
Part 3: Block ciphers

IEEE 1363 IEEE Standard Specifications for Public-Key Cryptography

FIPS 186-2 Digital Signature Standard (DSS)

4 Definitions
For the purposes of this Standard, all terms and definitions from ECMA-385 apply.

5 Conventions and notations
The conventions and notations of ECMA-385 as well as the following apply in this document unless
otherwise stated.

5.1 Concatenation
A || B represents the concatenation of the fields A and B: content of A followed by content of B.

5.2 Hexadecimal numbers
(XY) denotes a hexadecimal number XY (i.e. with the Radix of 16) and each pair of characters is
encoded in one octet.

- 1 -

http://www.ecma-international.org/publications/standards/Ecma-385.htm

6 Acronyms
For the purposes of this Standard, all acronyms from ECMA-385 apply. Additionally, the following
acronyms apply.

A Sender, as specified in ECMA-385

AES Advanced Encryption Standard

B Receiver, as specified in ECMA-385

dA Sender’s private EC key

dB Recipient’s private EC key

DataLen Length of the UserData

EC Elliptic Curve

ECDH Elliptic Curve Diffie-Hellman

EncData Encrypted data

G The base point on EC

IDA Sender nfcid3

IDB Recipient nfcid3

IDR Any Recipient identification number (e.g. IDB)

IDS Any Sender identification number (e.g. IDA)

IV Initial Value

K Key

KDF Key Derivation Function

KE Encryption Key

KI Integrity Key

MAC Message Authentication Code

MacA /MacB Integrity protection value of Sender/ Recipient

MacTagA Key confirmation tag from Sender

MacTagB Key confirmation tag from Recipient

MK Master Key

NA / NB Nonce generated by Sender/Recipient

NAA / NBB Nonce generated by the pair of NFC-SEC entities

NonceS Sender’s nonce

NonceR Recipient’s nonce

PK Public Key

PKR Recipient’s Public Key

PKS Sender’s Public Key

PRNG Pseudo Random Number Generator

QA / QB Compressed EC public key of Sender / Recipient

QA / QB Decompressed EC public key of Sender / Recipient

RNG Random Number Generator

- 2 -

http://www.ecma-international.org/publications/standards/Ecma-385.htm
http://www.ecma-international.org/publications/standards/Ecma-385.htm
http://www.ecma-international.org/publications/standards/Ecma-385.htm

SharedSecret Shared secret

UserData NFC-SEC User data

z Unsigned integer representation of the Shared Secret

Z Octet string representation of z

The acronyms used in Clauses 9 and 10 not listed above are formal parameters.

7 General
This Standard specifies mechanisms for the Shared Secret Service (SSE) and the Secure Channel
Service (SCH) in ECMA-385.

To enable secure communication between NFC devices that do not share any common secret data
("keys") before they start communicating with each other, public key cryptography is used to
establish a shared secret between these devices, and more specifically the Elliptic Curve Diffie-
Hellman key exchange scheme. This shared secret is used to establish the SSE and the SCH.

8 NFC-SEC-01 Protocol Identifier (PID)
NFC-SEC-01 shall use the one octet protocol identifier PID with value 1.

9 NFC-SEC-01 Primitives
This clause specifies cryptographic primitives. Clauses 11 and 12 specify the actual use of these
primitives.

Table 1 summarizes the features of NFC-SEC-01.

Table 1 – Summary of NFC-SEC-01 features

Supported services SSE (see ECMA-385)

SCH (see ECMA-385)

Key agreement ECDH P-192

KDF AES-XCBC-PRF-128

Key confirmation AES-XCBC-MAC-96

Data encryption AES128-CTR

IV Init: AES-XCBC-PRF-128

Data integrity AES-XCBC-MAC-96

Sequence integrity SN (see ECMA-385)

Encryption order Encryption (9.5) before MAC
calculation (9.6)

9.1 Key agreement
Peer NFC-SEC entities shall agree on a shared secret using Key agreement mechanism 4 from
ISO/IEC 11770-3 and the Elliptic Curves Diffie-Hellman primitives from IEEE 1363 as further
specified below.

9.1.1 Curve P-192
Curve P-192 as specified in FIPS 186-2 shall be used.

- 3 -

http://www.ecma-international.org/publications/standards/Ecma-385.htm
http://www.ecma-international.org/publications/standards/Ecma-385.htm
http://www.ecma-international.org/publications/standards/Ecma-385.htm
http://www.ecma-international.org/publications/standards/Ecma-385.htm

9.1.2 EC Key Pair Generation Primit ive
The private key d shall be obtained from a random or pseudo-random process conforming to
ISO/IEC 18031.

a) Obtain the private key, d, from a random or pseudo-random process conforming to
ISO/IEC 18031.

b) Compute the public key, PK, as a point on EC, PK = dG.

9.1.3 EC Public key validation
The EC public key shall be validated as specified in Public Key Validation of ISO/IEC 15946-1.

9.1.4 ECDH secret value derivation Primit ive
The ECDH primitive as specified in 7.2.1 ECSVDP-DH of IEEE 1363 shall output the ‘valid’
shared secret z and ‘invalid’ otherwise.

9.1.5 Random nonces
Each peer NFC-SEC entity should send fresh random nonces with the EC public key of the
entity.

The nonces are used to provide more entropy to the keys derived from the shared secret (z),
and to facilitate the EC key pair management.

The correct generation of these nonces is under the responsibility of the entity.

The entity should guarantee that the nonces it generates have 96 bits of entropy valid for the
duration of the protocol. The nonces used in an NFC-SEC transaction shall be cryptographically
uncorrelated with the nonces from a previous transaction.

See ISO/IEC 18031 for further recommendations on random number generation.

9.2 Key Derivation Functions
Two Key Derivation Functions (KDF) are specified; one for the SSE and one for the SCH.

The KDFs shall use AES in XCBC-PRF-128 mode as specified in A.1.

For the following sections KDF is:

KDF (K, S) = AES-XCBC-PRF-128K (S)

The random source (nonces + shared secret z obtained from 9.1.4) used for the SCH shall be
different from the random source used for the SSE.

9.2.1 KDF for the SSE
The KDF for the SSE is:

MKSSE = KDF-SSE (NonceS, NonceR, SharedSecret, IDS, IDR)

Detail of the KDF-SSE function:

S = (NonceS [0..63] || NonceR [0..63])

SKEYSEED = KDF (S, SharedSecret)

MKSSE = KDF (SKEYSEED, S || IDS || IDR || (01))

9.2.2 KDF for the SCH
The KDF for the SCH is:

{MKSCH, KESCH, KISCH} = KDF-SCH (NonceS, NonceR, SharedSecret, IDS, IDR)

Detail of the KDF-SCH function:

S = (NonceS [0..63] ||NonceR [0..63])

SKEYSEED = KDF(S, SharedSecret)

MKSCH = KDF (SKEYSEED, S || IDS || IDR || (01))

- 4 -

KESCH = KDF (SKEYSEED, MKSCH || S || IDS || IDR || (02))

KISCH = KDF (SKEYSEED, KESCH || S || IDS || IDR || (03))

9.3 Key Usage
Each derived key MKSCH, KESCH, KISCH and MKSSE should be used only for the purpose specified in
Table 2.

The Keys MKSCH, KESCH, KISCH and MKSSE shall be different for each NFC-SEC transaction.

Table 2 – Key usage

Key Key description Key usage

MKSCH Master Key for SCH Key Verification for the Secure Channel
Keys

KESCH Encryption Key for SCH Encryption of data packets sent through
SCH

KISCH Integrity protection Key for
SCH

Integrity protection of data packets sent
through SCH

MKSSE Master Key for SSE Master Key for SSE used as Shared secret
to be passed to the upper layer and as Key
Verification

9.4 Key Confirmation
When a key is derived using one of the KDF processes described in 9.2 both NFC-SEC entities
check that they indeed have the same key. Each entity shall generate a key confirmation tag as
specified in 9.4.1 and shall send it to the peer entity. Entities shall verify the key confirmation tag
upon reception as specified in 9.4.2.

This key confirmation mechanism is according to 9 Key Confirmation of ISO/IEC 11770-3.

The MAC used for Key Confirmation (MacTag) shall be AES in XCBC-MAC-96 mode as specified
in A.2.

9.4.1 Key confirmation tag generation
MacTag, the Key confirmation tag, equals

MAC-KC (K, MsgID, IDS, IDR, PKS, PKR) and shall be calculated using
AES-XCBC-MAC-96K (MsgID || IDS || IDR || PKS || PKR), specified in Annex A.2, with key K.

9.4.2 Key confirmation tag verif ication
‘status’, the return value of

MAC-KC-VER (K, MsgID, IDS, IDR, PKS, PKR, MacTag’) is true
if MacTag' equals MAC-KC (K, MsgID, IDS, IDR, PKS, PKR)

9.5 Data Encryption
The data encryption algorithm used is AES as specified in 5.1 AES of ISO/IEC 18033-3.

The data encryption mode shall be CTR mode as specified in 10 Counter (CTR) Mode of ISO/IEC
10116.

9.5.1 Init ial value of counter (IV)
To avoid having to send the initial value of the counter, it shall be computed by both entities
from the nonces.

IV, the initial value of the counter, equals
MAC-IV (MK, KI, NonceS, NonceR) and shall be calculated using
AES-XCBC-PRF-128MK (KI || NonceS || NonceR || (04)), specified in Annex A.1, with key
MK.

- 5 -

9.5.2 Encryption
The data shall be encrypted using the Encryption Key KE as specified in 10.2 Encryption of
ISO/IEC 10116:

EncData = ENCKE (Data)

Since the mode is CTR, no padding of the data shall be applied.

9.5.3 Decryption
The encrypted data shall be decrypted using the Encryption Key KE as specified in 10.3
Decryption of ISO/IEC 10116:

Data’ = DECKE (EncData)

9.6 Data Integrity
Integrity of all data transferred on the SCH shall be preserved through a MAC.

The MAC used for Data Integrity shall be AES in XCBC-MAC-96 mode as specified in A.2.

9.6.1 Protect data integrity
Mac, the Message Authentication Code, equals

MAC-DI (KI, SN, DataLen, EncData) and shall be calculated using
AES-XCBC-MAC-96KI (SN || DataLen || EncData), specified in Annex A.2, with key KI.

9.6.2 Check data integrity
‘status’, the return value of

MAC-DI-VER (KI, SN, DataLen, EncData, Mac’) is true
if Mac' equals MAC-DI (KI, SN || DataLen || EncData)

9.7 Message Sequence Integrity
Message sequence integrity shall be handled as specified in 12.3 of ECMA-385.

The SNV value shall be in the range of 0 to 2^24 – 1; with the initial value of 0.

Entities shall terminate the SCH when the SNV has reached 2^24 - 1.

10 Data Conversions

10.1 Integer-to-Octet-String Conversion
Input: A non-negative integer x, and the intended length k of the octet string satisfying: 28k > x.

Output: An octet string M of length k octets.

Let M1, M2, ..., Mk be the octets of M from leftmost to rightmost.

The octets of M shall satisfy:

∑
=

−=
k

i
i

k Mx
1

)1(82

10.2 Octet-String-to-Integer Conversion
Input: An octet string M of length k octets.

Output: An integer x.

Let M1, M2, ..., Mk be the octets of M from leftmost to rightmost.

M shall be converted to an integer x satisfying:

∑
=

−=
k

i
i

k Mx
1

)1(82

- 6 -

10.3 Point-to-Octet-String Conversion
The point on the EC shall be converted to an octet string in the following way:

Input: An elliptic curve point P = (xP ,yP).

Output: An octet string PO with the y-coordinate in the leftmost octet and the x-coordinate in the
remainder of the octet string.

1. Convert the field element xP to an octet string X as specified in 10.1.

2. Compute the bit ỹP as specified in 6.6: Elliptic curve point / octet string conversion: EC2OSPE
and OS2ECPE of ISO/IEC 15946-1.

3. Assign the value (02) to the single octet PC if ỹP is 0, or the value (03) if ỹP is 1

4. The result is the octet string PO = PC || X.

10.4 Octet-String-to-Point Conversion
The octet string shall be converted to a point on the EC in the following way:

Input: An octet string PO, with the y-coordinate in the leftmost octet and the x-coordinate in the
remainder of the octet string

Output: An elliptic curve point P = (xP , yP).

1. Parse PO as follows: PO = PC || X, where PC is a single octet, and X is an octet string of
length k octets.

2. Convert X to a field element xP as specified in 10.2.

3. Verify that PC is either (02) or (03). It is an error if this is not the case.

4. Set the bit ỹP to be equal to 0 if PC = (02), or 1 if PC = (03).

5. Convert (xP, ỹP) to an elliptic curve point (xP ,yP) as specified in 6.6: Elliptic curve point / octet
string conversion: EC2OSPE and OS2ECPE of ISO/IEC 15946-1.

6. The result is P = (xP ,yP).

- 7 -

11 SSE and SCH service invocation
SSE and SCH are invoked by establishment of a shared secret between two NFC-SEC entities using
the key agreement and key confirmation protocol specified in ECMA-385, in the way illustrated in
Figure 1 and further specified in this clause.

Figure 1 – Key agreement and confirmation overview

11.1 Pre-requisites
Before starting the service, the followings shall be available on each NFC-SEC entity:

• Its own EC public and private key, generated as specified in 9.1.2.
NOTE
It is outside the scope of this standard when (and at which frequency) this EC key pair is generated.

• Its own nfcid3 and the other NFC-SEC entity’s nfcid3 as specified in ECMA-340.

- 8 -

http://www.ecma-international.org/publications/standards/Ecma-340.htm

11.2 Key Agreement
Sender (A) PDU

Communication direction is
indicated by arrow character
Payload is between ()

Recipient (B)

Generate nonce NA

Compress QA

Send to B A→B:

ACT_REQ (QA || NA)

 Generate nonce NB

 Compress QB

 A←B:

ACT_RES (QB || NB)

Send to A

Reconstruct QB’ from QB’ Reconstruct QA’ from QA’

Check QB’ Check QA’

Compute shared secret: Z Compute shared secret: Z

11.2.1 Sender (A) Transformation
1. Generate a nonce NA as specified in 9.1.5.

2. Ensure QA equals the octet string of QA as specified in 10.3.

3. Send QA || NA as the payload of the ACT_REQ PDU.

4. Receive QB’ || NB’ from the payload of the ACT_RES PDU.

5. Reconstruct QB’ from QB’ as specified in 10.4.

a) If the public keys have already been received, the previously calculated and stored
value QB’ may be reused and the following steps may be skipped.

6. Verify that QB’ is a valid key for the EC parameters as specified in 9.1.3. If it is invalid, then
set the ‘PDU content valid’ to false in the Protocol Machine and skip step 7 and 8.

7. Use the Diffie-Hellman primitive in 9.1.4. If its output z is ‘invalid’ then set the ’PDU content
valid’ to false in the Protocol Machine and skip step 8.

8. Convert z to octet string Z using the convention specified in 10.1.

11.2.2 Recipient (B) Transformation
1. Receive QA’ || NA’ from the payload of the ACT_REQ PDU

2. Generate a nonce NB as specified in 9.1.5.

3. Ensure QB equals the octet string of QB as specified in 10.3.

4. Send QB || NB as the payload of the ACT_RES PDU.

5. Reconstruct QA’ from QA’ as specified in 10.4.

a) If the public keys have already been received, the previously calculated and stored
value QA’ may be reused and the following steps may be skipped.

6. Verify that QA’ is a valid key for the EC parameters as specified in 9.1.3. If it is invalid, then
set the ’PDU content valid’ to false in the Protocol Machine and skip step 7 and 8.

7. Use the Diffie-Hellman primitive in 9.1.4. If its output z is ‘invalid’, then set the ‘PDU content
valid’ to false in the Protocol Machine and skip step 8.

- 9 -

8. Convert z to octet string Z using the convention specified in 10.1.

11.3 Key Derivation
11.3.1 Sender (A) Transformation

For the SSE service, derive MKSSE = KDF-SSE (NA, NB’, Z, IDA, IDB) as specified in 9.2.1.

For the SCH service, derive {MKSCH, KESCH, KISCH} = KDF-SCH (NA, NB’, Z, IDA, IDB) as
specified in 9.2.2.

11.3.2 Recipient (B) Transformation
For the SSE service, derive MKSSE = KDF-SSE (NA’, NB, Z, IDA, IDB) as specified in 9.2.1.

For the SCH service, derive {MKSCH, KESCH, KISCH} = KDF-SCH (NA’, NB, Z, IDA, IDB) as
specified in 9.2.2.

11.4 Key Confirmation
Sender (A) PDU

Communication direction is
indicated by arrow character
Payload is between ()

Recipient (B)

Compute key confirmation tag:
MacTagA(MK)

Send to B A→B:

VFY_REQ (MacTagA)

 Check key confirmation tag
received from A: MacTagA’(MK)

 Compute key confirmation tag:
MacTagB(MK)

 A←B:

VFY_RES (MacTagB)

Send to A

Check key confirmation tag
received from B: MacTagB’(MK)

For SSE, set the Shared Secret
Value to MK

 For SSE, set the Shared Secret
Value to MK

11.4.1 Sender (A) Transformation
1. Compute the key confirmation tag from A to B MacTagA = MAC-KC(MK , (03), IDA, IDB,

QA, QB’) as specified in 9.4.1.

2. Send MacTagA as the payload of the VFY_REQ PDU.

3. Receive MacTagB’ from the payload of the VFY_RES PDU.

4. Check the key confirmation tag from B to A. Set ‘PDU content valid’ in the Protocol Machine
to the output of MAC-KC-VER(MK, (02), IDB, IDA, QB’, QA, MacTagB’) as specified in
9.4.2. If it is ‘invalid’ then skip step 5.

5. For the SSE service, set SharedSecret = MKSSE.

11.4.2 Recipient (B) Transformation
1. Receive MacTagA’ from the payload of the VFY_REQ PDU.

2. Check the key confirmation tag from A to B. Set ‘PDU content valid’ in the Protocol Machine
to the output of MAC-KC-VER (MK, (03), IDA, IDB, QA’, QB, MacTagA’) as specified in
9.4.2. If it is ‘invalid’ then skip step 3, 4 and 5.

- 10 -

3. Compute the key confirmation tag from B to A MacTagB = MAC-KC(MK , (02), IDB, IDA,
QB, QA’) as specified in 9.4.1.

4. Send MacTagB as the payload of the VFY_RES PDU .

5. For the SSE service, set SharedSecret = MKSSE.

12 SCH data exchange
After invocation of the SCH as specified in 11, the data exchange between two NFC-SEC entities
uses the protocol specified in ECMA-385 as illustrated in Figure 2 and further specified in this
clause.

Figure 2 – SCH: protocol overview

12.1 Preparation
NFC-SEC entity (AA and BB) shall perform the following preparatory steps:

1. Generate the initial value of the CTR counter IV = MAC-IV (MK, KI, NAA, NBB) as specified in
9.5.1.

2. Initialise the Sequence Number variable (SNV) as specified in 9.7.

- 11 -

12.2 Data Exchange
Sending peer entity AA

 (A or B)

PDU transmitted

Communication direction is
indicated by arrow character
Payload is between ()

Receiving peer entity BB

 (A or B)

• Receive UserData from
SendData SDU

• Check SNV
• Increment SNV
• Encrypt Data: EncData
• Apply MAC: Mac

 ENC (SNV || DataLen ||
EncData || Mac)

 Receiving:
• Check sequence integrity
• Check data integrity
• Decrypt data

12.2.1 Send
To send data, the sending NFC-SEC peer entity AA (A or B) shall perform the following steps:

1. Receive UserData from the SendData SDU.

2. If SNV = 2^24-1, then set the ‘PDU content valid’ to false in the Protocol Machine, otherwise
proceed to the next step.

3. Increment the SNV as specified in 12.3 of ECMA-385.

4. Compute the encrypted data EncData from UserData as specified in 9.5.2.

5. Compute the MAC Mac on SNV || DateLen || EncData as specified in 9.6.1.

6. Send SNV || DataLen || EncData || Mac as the payload of the ENC PDU.

12.2.2 Receive
To receive data, the receiving NFC-SEC peer entity BB (A or B) shall perform the following
steps:

1. Receive SNV || DataLen || EncData || Mac from the payload of the ENC PDU.

2. If SNV = 2^24-1, then set the ‘PDU content valid’ to false in the Protocol Machine, otherwise
proceed to the next step.

3. Check the sequence integrity as specified in 12.3 of ECMA-385.

4. Check the data integrity of SNV || DataLen || EncData as specified in 9.6.2. If it is invalid,
then set the ‘PDU content valid’ to false in the Protocol Machine, otherwise proceed to the
next step.

5. Compute the decrypted data UserData from EncData as specified in 9.5.3.

- 12 -

http://www.ecma-international.org/publications/standards/Ecma-385.htm
http://www.ecma-international.org/publications/standards/Ecma-385.htm

Annex A
(normative)

AES-XCBC-PRF-128 and AES-XCBC-MAC-96 algorithms

A.1 AES-XCBC-PRF-128
The AES-XCBC-PRF-128 algorithm is a variant of the basic CBC-MAC with obligatory “10*
padding”, which makes it secure for messages of arbitrary length.

The encryption operations must be accomplished using AES with a 128-bit key.

Given a 128-bit secret key K, AES-XCBC-PRF-128 is calculated as follows for a message M that
consists of n blocks, M[1] ... M[n], in which the block size of blocks M[1] ... M[n-1] is 128 bits and
the block size of block M[n] is between 1 and 128 bits:

1. Derive 3 128-bit keys (K1, K2 and K3) from the 128-bit secret key K, as follows:
K1 = (01010101010101010101010101010101) encrypted with Key K
K2 = (02020202020202020202020202020202) encrypted with Key K
K3 = (03030303030303030303030303030303) encrypted with Key K

2. Define E[0] = 0x00000000000000000000000000000000

3. For each block M[i], where i = 1 ... n-1:
XOR M[i] with E[i-1],
then encrypt the result with Key K1, yielding E[i].

4. For block M[n]:

a. If the block size of M[n] is 128 bits:
XOR M[n] with E[n-1] and Key K2,
then encrypt the result with Key K1, yielding E[n].

b. If the block size of M[n] is less than 128 bits:

i. Pad M[n] with a single "1" bit, followed by the number of "0" bits (possibly
none) required to increase M[n]'s block size to 128 bits (this is the “10*
padding”)

ii. XOR M[n] with E[n-1] and Key K3,
then encrypt the result with Key K1, yielding E[n].

5. The output is the last 128 bits block E[n].

A.2 AES-XCBC-MAC-96
The AES-XCBC-MAC-96 algorithm is the AES-XCBC-PRF-128 algorithm, followed by a truncation
step:

1. Take the first 96 bits of E[n].

Upon sending, the truncated value is stored within the authenticator field (Mac).

Upon receipt, the entire 128-bit value is computed and the first 96 bits are compared to the value
stored in the authenticator field (Mac).

- 13 -

- 14 -

Annex B
(normative)

NFC-SEC-01 fields sizes

Table B.1 – NFC-SEC-01 f ie lds s izes

Field Size

NA 96 bits

NB 96 bits

dA 192 bits

dB 192 bits

DataLen 24 bits

QA 384 bits

QB 384 bits

QA 200 bits

QB 200 bits

Z 192 bits

MK 128 bits

KE 128 bits

KI 128 bits

MacTagA 96 bits

MacTagB 96 bits

IV 128 bits

SNV 24 bits

Mac 96 bits

- 15 -

- 16 -

- 17 -

Annex C
(informative)

Informative references

RFC 4303 IP Encapsulating Security Payload (ESP)

RFC 4306 Internet Key Exchange (IKEv2) Protocol

RFC 4434 The AES-XCBC-PRF-128 Algorithm for the Internet Key
Exchange Protocol (IKE)

RFC 3566 The AES-XCBC-MAC-96 Algorithm and Its Use With IPSec

The AES-XCBC-PRF-128 algorithm is specified in RFC 4434 (IPSEC v2).

The AES-XCBC-MAC-96 algorithm is specified in RFC 3566 (IPSEC v2).

The KDF is specified in RFC 4306 (IPSEC v2).

The ENC then MAC protection mechanism is specified in RFC 4303 (IPSEC v2).

	1 Scope
	2 Conformance
	3 References
	4 Definitions
	5 Conventions and notations
	5.1 Concatenation
	5.2 Hexadecimal numbers

	6 Acronyms
	7 General
	8 NFC-SEC-01 Protocol Identifier (PID)
	9 NFC-SEC-01 Primitives
	9.1 Key agreement
	9.1.1 Curve P-192
	9.1.2 EC Key Pair Generation Primitive
	9.1.3 EC Public key validation
	9.1.4 ECDH secret value derivation Primitive
	9.1.5 Random nonces

	9.2 Key Derivation Functions
	9.2.1 KDF for the SSE
	9.2.2 KDF for the SCH

	9.3 Key Usage
	9.4 Key Confirmation
	9.4.1 Key confirmation tag generation
	9.4.2 Key confirmation tag verification

	9.5 Data Encryption
	9.5.1 Initial value of counter (IV)
	9.5.2 Encryption
	9.5.3 Decryption

	9.6 Data Integrity
	9.6.1 Protect data integrity
	9.6.2 Check data integrity

	9.7 Message Sequence Integrity

	10 Data Conversions
	10.1 Integer-to-Octet-String Conversion
	10.2 Octet-String-to-Integer Conversion
	10.3 Point-to-Octet-String Conversion
	10.4 Octet-String-to-Point Conversion

	11 SSE and SCH service invocation
	11.1 Pre-requisites
	11.2 Key Agreement
	11.2.1 Sender (A) Transformation
	11.2.2 Recipient (B) Transformation

	11.3 Key Derivation
	11.3.1 Sender (A) Transformation
	11.3.2 Recipient (B) Transformation

	11.4 Key Confirmation
	11.4.1 Sender (A) Transformation
	11.4.2 Recipient (B) Transformation

	12 SCH data exchange
	12.1 Preparation
	12.2 Data Exchange
	12.2.1 Send
	12.2.2 Receive

	A.1 AES-XCBC-PRF-128
	A.2 AES-XCBC-MAC-96

	Ecma Standard 2nd page with registered logo 2008.pdf
	OLE_LINK6
	OLE_LINK7
	DDHeadingPage1
	DDOrganization
	LibEnteteISO
	LIBTypeTitreISO
	DDTITLE4
	DDTITLE3
	DDTITLE2
	DDTITLE1
	DDDocLanguage
	DDWorkDocDate
	DDDocStage
	DDOrganization3
	DDOrganization1
	DDBASEYEAR
	DDAmno
	DDDocSubType
	DDDocType
	DDWorkDocNo
	DDpubYear
	DDRefNoPart
	DDRefGen
	DDRefNum
	DDSCSecr
	DDSecr
	DDSCTitle
	DDTCTitle
	DDWGNum
	DDSCNum
	DDTCNum
	LIBLANG
	libH2NAME
	libH1NAME
	LibDesc
	LibDescD
	LibDescE
	LibDescF
	NATSubVer
	CENSubVer
	ISOSubVer
	LIBVerMSDN
	LIBStageCode
	LibRpl
	LibICS
	LIBFIL
	LIBEnFileName
	LIBFrFileName
	LIBDeFileName
	LIBNatFileName
	LIBFileOld
	LIBTypeTitre
	LIBTypeTitreCEN
	LIBTypeTitreNAT
	LibFileEnTete
	LibEntete
	LibEnteteCEN
	LibEnteteNAT
	LIBASynchro
	LIBASynchroVF
	LIBASynchroVE
	LIBASynchroVD
	LIBPATENT
	DDEditionNo
	OLE_LINK5

