

Standard ECMA-379 3rd Edition / June 2010

Test Method for the Estimation of the Archival Lifetime of Optical Media

Rue du Rhône 114 CH-1204 Geneva T: +41 22 849 6000 F: +41 22 849 6001

COPYRIGHT PROTECTED DOCUMENT

Contents

Sectio	n 1 – General	1
1	Scope	1
2	Conformance	
3	Normative references	2
4	Terms and definitions	
5	Conventions and notations	
5.1	Representation of numbers	
5.2	Names	
6	List of acronyms	4
Sectio	n 2 – Test and Evaluation	5
7	Measurements	
, 7.1	Summary	
7.1.1	Stress Incubation and Measuring	
7.1.2	Assumptions	
7.1.3	Error Rate	
7.1.4	Data Quality	
7.1.5	Regression	
7.2	Test specimen	
7.3	Recording conditions	
7.3.1	Recording test environment	
7.3.2 7.4	Recording method	
7.4 7.4.1	Playback conditions Playback tester	
7.4.1	Playback test environment	
7.4.2	Calibration	
7.5	Disk testing locations	
7.5	5	
8	Accelerated stress test	
8.1	General	
8.2	Stress conditions	
8.2.1	General	
8.2.2	Temperature (T)	
8.2.3	Relative humidity (RH)	
8.2.4 8.3	Incubation and Ramp Profiles Measuring Time intervals	
8.4	Stress Conditions Design	
8.5	Media Orientation	
9	Data Evaluation	
9.1	Time-to-failure Eyring acceleration model (Eyring Method)	۲۲ ۸۸
9.2 9.3	Data analysis	
	A (normative) Data Analysis Steps Outline for Calculation of Media Life	
	B (normative) Analysis for Calculation of Media Life	
	C (normative) Uncontrolled Ambient Condition Media Life Calculation	
Annex	D (informative) Truncated Test Method (Determination of Media Life Lower Bound)	27

Annex E (informative) Relation between BER and PI Sum 8
Bibliography

Introduction

Markets and industry have developed the common understanding that the property referred to as the archival life of data recorded to optical media plays an increasingly important role for the intended applications. The existing standard test methodologies for recordable media include Magneto Optical media and recordable compact disk systems. It was agreed that the project represented by this document be undertaken in order to provide a methodology that includes the testing of newer, currently available products.

The Optical Storage Technology Association (OSTA) initiated work on this subject and developed the initial drafts. Following that development, the project was moved to Ecma International TC31 for further development and finalization. OSTA and Ecma wish to thank the members and organizations in NIST, CDs21 Solutions, and DCAj for their support of the development of this document.

ECMA-379 1st Edition was fast-tracked to ISO/IEC JTC 1 in August 2007 and during this process, its editorial content was slightly modified. The approved ISO/IEC IS 10995 Standard was published by ISO/IEC in April 2008. ECMA-379 2nd Edition is technically identical with the published ISO/IEC Standard IS 10995 1st Edition. ECMA-379 3rd Edition is editorial amendment including corrections of some calculations, and Bootstrap method was deleted. Although Bootstrap method has no problem in itself, however, miscalculation might be caused depending on the data set conditions.

This Ecma Standard has been adopted by the General Assembly of June 2010.

"DISCLAIMER

This document and possible translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published, and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this section are included on all such copies and derivative works. However, this document itself may not be modified in any way, including by removing the copyright notice or references to Ecma International, except as needed for the purpose of developing any document or deliverable produced by Ecma International (in which case the rules applied to copyrights must be followed) or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by Ecma International or its successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and ECMA INTERNATIONAL DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE."

Test Method for the Estimation of the Archival Lifetime of Optical Media

Section 1 – General

1 Scope

This Ecma Standard specifies an accelerated aging test method for estimating the life expectancy of the retrievability of information stored on recordable or rewritable optical disks.

This test includes details on the following formats: DVD-R/-RW/-RAM, +R/+RW. It may be applied to additional optical disk formats with the appropriate specification substitutions and may be updated by committee in the future as required.

This document includes;

- stress conditions
- assumptions
- ambient conditions
 - Controlled storage condition, e.g. 25 °C and 50 % RH, using the Eyring model
 - Uncontrolled storage condition, e.g. 30 °C and 80 % RH, using the Arrhenius model
- evaluation system description
- specimen preparation
- data acquisition procedure
- data interpretation

The methodology includes only the effects of temperature (T) and relative humidity (RH). It does not attempt to model degradation due to complex failure mechanism kinetics, nor does it test for exposure to light, corrosive gases, contaminants, handling, and variations in playback subsystems. Disks exposed to these additional sources of stress or higher levels of T and RH are expected to experience shorter usable lifetimes.

2 Conformance

Media tested by this methodology shall conform to all normative references specific to that media format.

3 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ECMA-267, *120 mm DVD - Read-Only Disk*, 3rd edition (ISO/IEC 16448:2002)

ECMA-268, 80 mm DVD – Read-Only Disk, 3rd edition (ISO/IEC 16449:2002)

ECMA-330, 120 mm (4,7 Gbytes per side) and 80 mm (1,46 Gbytes per side) DVD Rewritable Disk (DVD-RAM), 3rd edition (ISO/IEC 17592:2004)

ECMA-337, 120 mm and 80 mm - Optical Disk using +RW Format – Capacity: 4,7 and 1,46 Gbytes per side (Recording speed up to 4X), 3rd edition (ISO/IEC 17341:2006)

ECMA-338, 80 mm (1,46 Gbytes per side) and 120 mm (4,70 Gbytes per side) DVD Re-recordable Disk (DVD-RW) (ISO/IEC 17342:2004)

ECMA-349, 120 mm and 80 mm Optical Disk using +R Format – Capacity: 4,7 and 1,46 Gbytes per Side (Recording speed up to 16X), 3rd edition (ISO/IEC 17344:2006)

ECMA-359, 80 mm (1,46 Gbytes per side) and 120 mm (4,70 Gbytes per side) DVD Recordable Disk (DVD-R) (ISO/IEC 23912:2005)

ECMA-364, 120 mm and 80 mm Optical Disk using +R DL Format – Capacity: 8,55 and 2,66 Gbytes per Side (Recording speed up to 8x), 2nd edition (ISO/IEC 25434:2007)

ECMA-371, 120 mm and 80 mm Optical Disk using +RW HS Format – Capacity: 4,7 and 1,46 Gbytes per Side (Recording speed 8X) (ISO/IEC 26925:2006)

ECMA-374, 120 mm and 80 mm Optical Disk using +RW DL Format – Capacity: 8,55 and 2,66 Gbytes per Side (Recording speed 2,4x) (ISO/IEC 29642:2007)

ECMA-382, 120 mm (8,54 Gbytes per side) and 80 mm (2,66 Gbytes per side) DVD Recordable Disk for Dual Layer (DVD-R for DL) (ISO/IEC 12862:2009)

ECMA-384, 120 mm (8,54 Gbytes per side) and 80 mm (2,66 Gbytes per side) DVD re-recordable disk for dual layer (DVD-RW for DL) (ISO/IEC 13170: 2009)

ISO 18927:2002, Imaging materials – Recordable compact disc systems – Method for estimating the life expectancy based on the effects of temperature and relative humidity

4 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

4.1

archival (lifetime)

ability of a medium or system to maintain the retrievability of recorded information for a specified extended period of years

4.2

Arrhenius method

accelerated aging model based on the effects of temperature

4.3

baseline

initial test analysis measurements (e.g., initial error rate) after recording and before exposure to a stress condition; measurement at stress time t=0 hours

4.4

Eyring method

accelerated aging model based on the effects of temperature and relative humidity

4.5

error rate

rate of errors on the sample disk measured before error correction is applied

4.6

incubation

process of enclosing and maintaining controlled test sample environments

4.7

life expectancy (LE)

length of time estimation that information is predicted to be retrievable in a system while in a specified environmental condition

4.8

maximum error rate

maximum of the error rate measured anywhere in one of the relevant areas on the disk.

NOTE 1 for DVD-R/RW and +R/+RW, this is the Maximum PI Sum 8, for DVD-RAM, this is the Maximum BER.

4.9

retrievability

ability to recover physical information as recorded

4.10

stress

temperature and relative humidity variables to which the sample is exposed for the duration of test incubation intervals

4.11

system

combination of hardware, software, storage medium and documentation used to record, retrieve and reproduce information

5 Conventions and notations

5.1 Representation of numbers

A measured value is rounded off to the least significant digit of the corresponding specified value. For instance, it implies that a specified value of 1,26 with a positive tolerance of + 0,01 and a negative tolerance of - 0,02 allows a range of measured values from 1,235 to 1,275.

5.2 Names

The names of entities, e.g. specific tracks, fields, zones, etc. are given a capital initial.

6 List of acronyms

- BER byte error rate
- LE life expectancy
- PI parity (of the) inner (code)

Section 2 – Test and Evaluation

7 Measurements

7.1 Summary

7.1.1 Stress Incubation and Measuring

A sampling of disks will be measured at 4 stress conditions plus a control disk at room ambient condition. A minimum number of 20 disks will be included as a group for each stress condition as shown in Table 2.

Each stress condition's total time will be divided into interval time periods. Each disk in each group of disks will have their initial error rates measured before their exposure to stress conditions. Thereafter, each disk will be measured for its error rate after each stress condition incubation time interval. The control disk will also be measured following each incubation time interval.

7.1.2 Assumptions

This Standard makes the following assumptions for applicability of media to be tested

- specimen life distribution is appropriately modeled by a statistical distribution,
- the Eyring model can be used to model acceleration with the two both stresses involved (temperature and relative humidity),
- the dominant failure mechanism acting at the usage condition is the same as that at the accelerated conditions,
- the compatibility of the disk and drive combination will affect the disk's initial recording quality and the resulting archival test outcome,
- a hardware and software system needed to read the disk will be available at the time the retrievability of the information is attempted,
- the recorded format will be recognizable and interpretable by the reading software.

7.1.3 Error Rate

Of all specimen media the Error rate shall be measured in the disk testing locations as defined in 7.5. For each sample the Maximum error rate shall be determined.

Each DVD-R/RW, +R/+RW disk will have its maximum PI Sum 8 (Max PI Sum 8) determined.

Each DVD-RAM disk will have its maximum byte error rate (Max BER) determined.

Other disk formats not referenced in this document will have the maximum of their defined error rates determined.

Data collected at each time interval for each individual disk are then used to determine the estimated lifetime for that disk at that stress condition.

7.1.3.1 PI Sum 8

Per ISO/IEC 16448:2002, a row in an ECC block that has at least 1 byte in error constitutes a PI error. PI Sum 8 is measured over 8 ECC blocks. In any 8 consecutive ECC blocks the total number of PI errors, also called PI Sum 8, before error correction shall not exceed 280.

7.1.3.2 BER

The number of erroneous symbols shall be measured at any in consecutive 32 ECC blocks in the first pass of the decoder before correction. The BER is the number of erroneous symbols divided by the total number of symbols included in the 32 consecutive ECC blocks. The maximum value of the BER measured over the area specified in 7.5 shall not exceed 10^{-3} (See Annex E).

7.1.4 Data Quality

Data quality is checked by plotting the median rank of the estimated time to failure values with a best fit line for each stress condition. The lines are then checked for reasonable parallelism.

7.1.5 Regression

The mean lifetimes are regressed against temperature and relative humidity according to an Eyring acceleration model.

7.2 Test specimen

The disk sample set shall represent the construction, materials, manufacturing process, quality and variation of the final process output.

Consideration shall be made to shelf life. Disks with longer shelf time before recording and testing may impact test results. Shelf time shall be representative of normal usage shelf time.

7.3 Recording conditions

Before entering media are entered into accelerated aging tests, they shall be recorded as optimally as is practicable, according to the descriptions given in the related standard. OPC (optimum power control) during the writing process shall serve as the method to achieve recorded media minimum error rates. It is generally understood that optimally recorded media will yield the longest predicted life results. Media is deemed acceptable for entry into the aging tests when its error rate and all other media parametric specifications are found to be within its respective standard's specification limits.

Recording hardware is at the discretion of the recording party. It may be either commercial drive-based or specialty recording tester based. It shall be capable of producing recordings that meet all specifications.

The maximum recording speed shall be at the media's highest rated speed and this speed shall be reported.

7.3.1 Recording test environment

When performing the recordings, the air immediately surrounding the media shall have the following properties:

temperature: 23 °C to 35 °C

relative humidity: 45 % to 55 %

atmospheric pressure: 60 kPa to 106 kPa

No condensation on the disk shall occur. Before testing, the disk shall be conditioned in this environment for 48 h minimum. It is recommended that, before testing, the entrance surface be cleaned according to the instructions of the manufacturer of the disk.

7.3.2 Recording method

Specimen disks shall be recorded in a single session and finalized.

7.4 Playback conditions

7.4.1 Playback tester

All media shall be read by the playback tester as specified in each of that medium's standard or equivalent, and at their specified test conditions.

Specimen media shall be read as described in the format standards identified in Clause 3.

7.4.2 Playback test environment

When measuring the error rates, the air immediately surrounding the disk shall have the following properties:

temperature: 23 °C to 35 °C

relative humidity: 45 % to 55 %

atmospheric pressure: 60 kPa to 106 kPa

Unless otherwise stated, all tests and measurements shall be made in this test environment.

7.4.3 Calibration

The test equipment should be calibrated as prescribed by its manufacturer using calibration disks approved by said manufacturer and as needed before disk testing.

A control disk should be maintained at ambient conditions and its error rate measured at the same time the stressed disks are measured initially and after each stress interval.

The mean and standard deviation of the control disk shall be established by collecting at least five measurements. Should any individual error rate reading differ from the mean by more than three times the standard deviation, the problem shall be corrected and all data collected since the last valid control point shall be re-measured.

7.5 Disk testing locations

Testing locations shall be a minimum of three bands spaced evenly from the inner, middle and outer radius locations on the disk as indicated in Table 1. The total testing area shall represent a minimum of 5 % of the disk capacity. Each of the three test bands shall have more than 750 ECC Blocks for 80 mm disks, and 2 400 ECC Blocks for 120 mm disks.

		+R/+RW disk · / Dual Layer)	DVD-R	AM disk
	80mm	120mm	80mm	120mm
Band 1	25,0	25,0	24,1-25,0	24,1-25,0
Band 2	30,0	40,0	29,8-30,8	39,4-40,4
Band 3	35,0	55,0	34,6-35,6	54,9-55,8

Table 1 — Nominal radii of the three test bands (Unit; mm)

8 Accelerated stress test

8.1 General

Information properly recorded on an archival quality optical disk should have a life expectancy exceeding a predetermined number of years. Accelerated aging studies are used in order to conclude that a life expectancy exceeds the predetermined minimum number of years. This test plan is intended to provide the information necessary to satisfactorily evaluate the particular optical disk system including proposed archival quality optical disks.

8.2 Stress conditions

8.2.1 General

Stress conditions for this test method are increases in temperature and relative humidity. The stress conditions are used to accelerate the chemical reaction rate from what would occur normally at ambient or usage conditions. The chemical reaction is considered degradation in desired material property that eventually leads to disk failure.

Four stress conditions and the minimum number of specimens for those stress conditions that shall be used are shown in Table 2. Additional specimens and conditions may be used if desired for improved precision.

The total time for each stress condition as given in Table 2 is divided into four equal incubation durations. The temperature and relative humidity during each incubation cycle shall be controlled as depicted in Table 3 and Figure 1. After each cycle of incubation all specimens shall be measured.

Test cell number	Test stress condition (incubation)		Number of specimens	Incubation duration	Minimum Total time	Intermediate RH	Minimum equilibration duration
	Temp (°C)	%RH		hours	hours	%RH	hours
1a	85	85	20	250	1 000	30	7
2a	85	70	20	250	1 000	30	6
3a	65	85	20	500	2 000	35	9
4a	70	75	30	625	2 500	33	11

 Table 2 — Stress conditions for use with the Eyring Method

8.2.2 Temperature (T)

The temperature levels chosen for this test plan are based on the following:

- there shall be no change of phase within the test system over the test-temperature range. This restricts the temperature to greater than 0 °C and less than 100 °C,
- the temperature shall not be so high that plastic deformation occurs anywhere within the disk structure.

The typical substrate material for media is polycarbonate (glass transition temperature \sim 150 °C). The glass transition temperature of other layers may be lower. Experience with high-temperature testing of DVDs and +R/+RW disks indicates that an upper limit of 85 °C is practical for most applications.

8.2.3 Relative humidity (RH)

Experience indicates that 85 % RH is the generally accepted upper limit for control within most accelerated test cells.

8.2.4 Incubation and Ramp Profiles

The relative humidity transition (ramp) profile is intended to avoid moisture condensation within the substrate, minimize substantial moisture gradients in the substrate and to end at ramp down completion with the substrate equilibrated to ambient condition. This is accomplished by varying the moisture content of the chamber only at the stress incubation temperature, and allowing sufficient time for equilibration during ramp-down based on the diffusion coefficient of water in polycarbonate.

Process step	Temperature	Relative humidity	Duration
	°C	%	hours
Start	at T _{amb}	at RH _{amb}	—
T, RH ramp	to T _{inc}	to <i>RH</i> _{int}	1,5 ± 0,5
RH ramp	at T _{inc}	to <i>RH</i> _{inc}	1,5 ± 0,5
Incubation	at T _{inc}	at <i>RH</i> _{inc}	See Table 2
RH ramp	at T _{inc}	to <i>RH</i> _{int}	1,5 ± 0,5
Equilibration	at T _{inc}	at <i>RH</i> _{int}	See Table 2
T, RH ramp	to \mathcal{T}_{amb}	to <i>RH</i> _{amb}	1,5 ± 0,5
end	at T_{amb}	at <i>RH</i> _{amb}	—

Table 3 — T and RH transition (ramp) profile for each incubation cycle

amb = room ambient T or $RH(T_{amb} \text{ or } RH_{amb})$

- inc = stress incubation T or $RH(T_{inc} \text{ or } RH_{inc})$
- int = intermediate relative humidity (RH_{nt}) that at T_{inc} supports the same equilibrium moisture absorption in polycarbonate as that supported at T_{amb} and RH_{amb}

Figure 1 — Graph of typical transition (ramp) profile

8.3 Measuring Time intervals

For data collection, PI Sum 8 (DVD–R, DVD–RW, +R, +RW), or BER (DVD-RAM) measurements for each disk will occur: 1) before disk exposure to any stress condition to determine its baseline measurement and 2) after each cycle of incubation. The length of time for intervals is dependent on the severity of the stress condition.

Using each disk's regression equation, the failure time for each disk shall then be computed for the stress condition it was exposed to.

8.4 Stress Conditions Design

Table 2 specifies the temperatures, relative humidities, time intervals, minimum total test time, and minimum number of specimens for each stress condition. A separate group of specimens is used for each stress condition.

All temperatures may deviate ± 2 °C of the target temperature; all relative humidities may deviate ± 3 % RH of the target relative humidity.

The intermediate relative humidity (RH_{int}) in Table 2 is calculated assuming 25 °C and 50 % RH ambient conditions. If the ambient is different, the intermediate relative humidity to be used is calculated using the equation:

$$RH_{\text{int}} = \frac{0.24 + 0.0037 \times T_{amb}}{0.24 + 0.0037 \times T_{inc}} \times RH_{amb}$$

where: T_{amb} and T_{inc} are the ambient and incubation temperature in units of °C; RH_{amb} is the ambient relative humidity;

*RH*_{int} is the intermediate relative humidity.

The stress conditions tabulated in Tables 2 and 3 offer sufficient combinations of temperature and relative humidity to satisfy the mathematical requirements of the Eyring model to demonstrate linearity of either Max

PI Sum 8, or Max BER or their logs respectively, versus time, and to produce a satisfactory confidence level to make a meaningful conclusion.

8.5 Media Orientation

Media subjected to this test method shall be maintained in a vertical position with a minimum of 2 mm separation between disks to allow air flow between disks and to minimize deposition of debris on disk surfaces which could negatively influence the error rate measurements.

9 Data Evaluation

9.1 Time-to-failure

All disks subjected to stress conditions shall have their time-to-failure calculated at the stress condition they have been subjected to. Failure criteria values are: Max PI Sum 8 exceeding 280 for DVD-R/RW, +R/+RW, and Max BER exceeding 10^{-3} for DVD-RAM.

Material degradation manifests itself as data errors in the disk, providing a relationship between disk errors and material degradation. The chemical changes are generally expected to cause test data to have a distribution that follows an exponential function over time. Therefore, test data values of: PI Sum 8 or BER as a function of time are expected to exhibit an exponential distribution.

The best function fitting an error trend can be found by regression of the test data against time, for example, with a least squares fit. The time-to-failure per disk type can be calculated using the error trend function and the failure criteria.

9.2 Eyring acceleration model (Eyring Method)

Using the Eyring model, the following equation is derived from the laws of thermodynamics and can be used to handle the two critical stresses of temperature and relative humidity.

$$t = AT^{a}e^{\Delta H/kT}e^{(B+C/T)\times RH}$$

where

t is the time to failure;

- *A* is the pre-exponential time constant;
- T^a is the pre-exponential temperature factor;
- ΔH is the activation energy per molecule;
- k is the Boltzmann's constant (1,3807 × 10^{-23} J/molecule degree K);
- *T* is the temperature (in Kelvin);
- *B*, *C* are the RH exponential constants;
- *RH* is the relative humidity;

For the temperature range used in this test method, "*a*" and "*C*" shall be set to zero. The Eyring model equation then reduces to the following:

$$t = Ae^{\Delta H / kT}e^{B \times RH}$$
, or

$$\ln(t) = \ln(A) + \frac{\Delta H}{kT} + B \times RH$$

9.3 Data analysis

Data Analysis is contained in the following Annexes:

- Annex A: Data Analysis Steps Outline for Calculation of Media Life
- Annex B: Analysis for Calculation of Media Life
- Annex C: Uncontrolled Ambient Condition Media Life Calculation
- Annex D: Truncated Test Method (Determination of Media Life Lower Bound)

Annex A (normative)

Data Analysis Steps Outline for Calculation of Media Life

The following is an outline of steps to estimate the life expectancy value, as a function of ambient temperature and relative humidity, and used to determine if a disk will or will not exceed a life expectancy of X-years.

- 1. For each specimen, compute (via linear regression), the predicted time-to-failure.
- 2. (Steps 2 and 3 are for data quality check)

For each stress condition, determine the median rank of each specimen, and plot the median rank versus time-to-failure on a lognormal graph.

3. Verify that the plots for all stress conditions are reasonably parallel to one another.

NOTE In the case where the plots are not determined to be reasonably parallel, 7.1.2 Assumptions shall be checked.

- 4. Using the *reduced* Eyring equation, carry out a least squares fit to the log failure times across all specimens and stress conditions.
- 5. Calculate acceleration factors for each stress condition.
- 6. For the ambient condition, calculate normalized time-to-failure for each disk.

For the ambient condition, calculate 95 % survival probability with 95 % confidence for lifetime.

Annex B (normative)

Analysis for Calculation of Media Life

Step 1

Determine the time-to-failure for each specimen at the stress applied following the procedure as described below. Error rates to be measured are as defined in 7.1.3:

For DVD-R/-RW, +R/+RW:	PI Sum 8
For DVD-RAM:	BER

Use the initial error rate measured prior to accelerated aging plus the error rates measured after each specified accelerated aging incubation interval.

For each specimen a linear regression is performed with the In (measured error rates), as the dependent variable and time as the independent variable. The time-to-failure of the specimen is calculated from the slope and intercept of the regression as the time at which the specimen would have a Max BLER of 220, or a Max PI Sum 8 of 280, or a Max BER of 10⁻³.

For example data, a purely hypothetical data set was generated. These values were completely fabricated for this assumption. The data is offered solely as an example of the mathematical methodology used in this test procedure.

Group 1a	85°C/85%RH									
Disk#				Hours to						
D13K#	0	250	500	750	1 000	Failure				
A1	16	78	116	278	445	788				
A2	25	64	134	342	532	743				
A3	26	94	190	335	642	685				
A4	26	111	247	343	718	647				
A5	27	89	185	246	466	762				
A6	21	111	207	567	896	607				
A7	26	121	274	589	781	588				
A8	31	108	223	315	745	654				
A9	24	118	285	723	754	578				
A10	12	85	178	312	988	669				
A11	28	111	167	312	771	671				
A12	24	136	267	444	719	614				
A13	35	76	265	567	610	626				
A14	19	53	112	278	534	778				
A15	28	88	158	308	654	704				
A16	27	68	120	263	432	807				
A17	18	87	176	302	558	723				
A18	26	109	238	421	641	645				
A19	26	111	253	378	638	649				
A20	31	91	206	367	728	656				

Table B.1 — Estimated time to failure for example data

Group 2a			85°C/70	%RH		
Disk#			Hours to			
DI3K#	0	250	500	750	1 000	Failure
B1	10	20	67	112	156	1 117
B2	8	20	47	84	188	1 118
B3	12	26	72	185	421	880
B4	20	43	120	166	219	999
B5	32	45	76	103	267	1 126
B6	21	37	104	222	368	870
B7	21	30	89	155	221	1 035
B8	22	26	72	125	267	1 043
B9	25	46	124	182	224	994
B10	17	38	67	179	378	911
B11	28	58	88	120	268	1 065
B12	8	15	36	144	189	1 059
B13	10	27	89	175	385	880
B14	23	54	111	148	221	1 037
B15	28	39	125	172	278	959
B16	25	53	88	130	188	1 149
B17	20	43	75	166	256	999
B18	22	26	50	172	229	1 058
B19	13	38	78	124	189	1 078
B20	10	19	28	121	268	1 046

Group 3a	65°C/85%RH									
Disk#				Hours to						
DISK#	0	500	1 000	1 500	2 000	failure				
C1	14	23	58	112	278	2 057				
C2	10	17	55	165	263	1 948				
C3	11	56	88	138	189	2 078				
C4	18	28	78	117	243	2 106				
C5	17	45	78	143	189	2 167				
C6	10	14	45	154	231	2 031				
C7	31	53	111	156	211	2 151				
C8	29	54	106	154	218	2 128				
C9	22	32	65	89	126	2 799				
C10	29	36	78	145	188	2 297				
C11	21	38	89	148	227	2 075				
C12	24	45	68	134	211	2 236				
C13	28	57	78	132	190	2 352				
C14	19	47	61	117	150	2 486				
C15	25	65	89	184	256	1 972				
C16	10	18	57	113	178	2 189				
C17	21	34	45	98	121	2 845				
C18	12	20	34	112	176	2 308				
C19	28	56	108	176	243	2 001				
C20	29	36	57	143	238	2 207				

Group 4a	70°C/75%RH								
Disk#				Hours to					
DISK#	0	625	1 250	1 875	2 500	failure			
D1	25	34	64	92	167	3 240			
D2	25	93	134	154	211	2 596			
D3	7	23	97	103	178	2 615			
D4	10	20	56	89	155	2 920			
D5	5	20	78	132	187	2 496			
D6	5	15	52	112	167	2 644			
D7	22	34	67	132	188	2 851			
D8	12	17	56	78	108	3 318			
D9	22	34	67	132	189	2 847			
D10	23	27	54	121	152	3 129			
D11	11	20	41	87	115	3 249			
D12	15	18	43	88	118	3 343			
D13	19	21	38	82	135	3 435			
D14	18	22	86	178	245	2 456			
D15	22	26	73	145	252	2 582			
D16	18	18	29	66	127	3 649			
D17	22	26	93	145	178	2 761			
D18	18	27	56	88	134	3 316			
D19	11	32	44	97	143	3 051			
D20	12	56	66	124	249	2 550			
D21	14	34	54	77	112	3 500			
D22	20	23	25	50	181	3 593			
D23	11	16	27	54	160	3 275			
D24	17	24	25	58	108	4 034			
D25	11	25	22	62	130	3 488			
D26	17	24	25	70	123	3 707			
D27	21	39	63	78	163	3 304			
D28	20	28	45	111	243	2 787			
D29	15	21	38	65	134	3 453			
D30	10	34	54	96	176	2 841			

Step 2

For each stress condition, specimens are ordered by increasing time-to-failure values.

The median rank of the specimens is calculated using the estimate (i -0,3)/(n+0,4), where i is the time-to-failure order and n is the total number of specimens at the stress condition.

The data can be plotted in different ways. If lognormal graph paper is employed, the data is plotted with timeto-failure on the abscissa and median rank on the ordinate.

NOTE On most lognormal graph paper, the actual ordinate scale is the probability of failure; the median rank is converted to the probability of failure by multiplying by 100.

If linear axes are desired, the data can be linearized by plotting the critical value for the normal cumulative distribution of the median rank on the ordinate and the natural logarithm of the time-to-failure on the abscissa.

The critical value for the normal cumulative distribution of the median rank is the value of t for which F (t) (the cumulative distribution function) equals the median rank.

Group 1a			85°C/85%RH								
ascending	Disk#			Hours			Hours to	ascending	median	critical	
order number	DISK#	0	250	500	750	1 000	Failure(H)	In(H)	rank	value	
1	A9	24	118	285	723	754	578	6,3596	0,034	-1,821	
2	A7	26	121	274	589	781	588	6,3767	0,083	-1,383	
3	A6	21	111	207	567	896	607	6,4085	0,132	-1,115	
4	A12	24	136	267	444	719	614	6,4200	0,181	-0,910	
5	A13	35	76	265	567	610	626	6,4394	0,230	-0,738	
6	A18	26	109	238	421	641	645	6,4693	0,279	-0,585	
7	A4	26	111	247	343	718	647	6,4723	0,328	-0,444	
8	A19	26	111	253	378	638	649	6,4754	0,377	-0,312	
9	A8	31	108	223	315	745	654	6,4831	0,426	-0,185	
10	A20	31	91	206	367	728	656	6,4862	0,475	-0,061	
11	A10	12	85	178	312	988	669	6,5058	0,525	0,061	
12	A11	28	111	167	312	771	671	6,5088	0,574	0,185	
13	A3	26	94	190	335	642	685	6,5294	0,623	0,312	
14	A15	28	88	158	308	654	704	6,5568	0,672	0,444	
15	A17	18	87	176	302	558	723	6,5834	0,721	0,585	
16	A2	25	64	134	342	532	743	6,6107	0,770	0,738	
17	A5	27	89	185	246	466	762	6,6359	0,819	0,910	
18	A14	19	53	112	278	534	778	6,6567	0,868	1,115	
19	A1	16	78	116	278	445	788	6,6695	0,917	1,383	
20	A16	27	68	120	263	432	807	6,6933	0,966	1,821	
					me	dian	663	6,4960			

Group	2a					85°	C/70%RH				
order	Disk#			Hours			Hours to	ascending	median	critical	
number	DISK#	0	250	500	750	1 000	Failure(H)	In(H)	rank	value	
1	B6	21	37	104	222	368	870	6,7685	0,034	-1,821	
2	B3	12	26	72	185	421	880	6,7799	0,083	-1,383	
3	B13	10	27	89	175 385		880	6,7799	0,132	-1,115	
4	B10	17	38	67	179	378	911	6,8145	0,181	-0,910	
5	B15	28	39	125	172	278	959	6,8659	0,230	-0,738	
6	B9	25	46	124	182	224	994	6,9017	0,279	-0,585	
7	B4	20	43	120	166	219	999	6,9068	0,328	-0,444	
8	B17	20	43	75	166	256	999	6,9068	0,377	-0,312	
9	B7	21	30	89	155	221	1 035	6,9422	0,426	-0,185	
10	B14	23	54	111	148	221	1 037	6,9441	0,475	-0,061	
11	B8	22	26	72	125	267	1 043	6,9499	0,525	0,061	
12	B20	10	19	28	121	268	1 046	6,9527	0,574	0,185	
13	B18	22	26	50	172	229	1 058	6,9641	0,623	0,312	
14	B12	8	15	36	144	189	1 059	6,9651	0,672	0,444	
15	B11	28	58	88	120	268	1 065	6,9707	0,721	0,585	
16	B19	13	38	78	124	189	1 078	6,9829	0,770	0,738	
17	B1	10	20	67	112	156	1 117	7,0184	0,819	0,910	
18	B2	8	20	47	84	188	1 118	7,0193	0,868	1,115	
19	B5	32	45	76	103	267	1 126	7,0264	0,917	1,383	
20	B16	25	53	88	130	188	1 149	7,0466	0,966	1,821	
					me	dian	1 040	6,9470			

Group	3a					65°	C/85%RH				
order	Disk#			Hours			Hours to	ascending	median	critical	
number	D13K#	0	500	1 000	1 500	2 000	failure(H)	In(H)	rank	value	
1	C2	10	17	55	165	263	1 948	7,5746	0,034	-1,821	
2	C15	25 65 89 184 256		256	1 972	7,5868	0,083	-1,383			
3	C19	28	56	108	176	243	2 001	7,6014	0,132	-1,115	
4	C6	10	14	45	154	231	2 031	7,6163	0,181	-0,910	
5	C1	14	23	58	112	278	2 057	7,6290	0,230	-0,738	
6	C11	21	38	89	148	227	2 075	7,6377	0,279	-0,585	
7	C3	11	56	88	138	189	2 078	7,6392	0,328	-0,444	
8	C4	18	28	78	117	243	2 106	7,6525	0,377	-0,312	
9	C8	29	54	106	154	218	2 128	7,6629	0,426	-0,185	
10	C7	31	53	111	156	211	2 151	7,6737	0,475	-0,061	
11	C5	17	45	78	143	189	2 167	7,6811	0,525	0,061	
12	C16	10	18	57	113	178	2 189	7,6912	0,574	0,185	
13	C20	29	36	57	143	238	2 207	7,6994	0,623	0,312	
14	C12	24	45	68	134	211	2 236	7,7124	0,672	0,444	
15	C10	29	36	78	145	188	2 297	7,7394	0,721	0,585	
16	C18	12	20	34	112	176	2 308	7,7441	0,770	0,738	
17	C13	28	57	78	132	190	2 352	7,7630	0,819	0,910	
18	C14	19	47	61	117	150	2 486	7,8184	0,868	1,115	
19	C9	22	32	65	89	126	2 799	7,9370	0,917	1,383	
20	C17	21	34	45	98	121	2 845	7,9533	0,966	1,821	
					me	dian	2 159	7,6774			

Table B.2 — Median rank and the critical value for estimated time to failure (continued)

		a 70°C/75%RH								
order	Disk#			Hours			Hours to	ascending	median	critical
number	DISK#	0	625	1 250	1 875	2 500	failure(H)	ln(H)	rank	value
1	D14	18	22	86	178	245	2 456	7,8063	0,023	-1,995
2	D5	5	20	78	132	187	2 496	7,8224	0,056	-1,590
3	D20	12	56	66	124	249	2 550	7,8438	0,089	-1,348
4	D15	22	26	73	145	252	2 582	7,8563	0,122	-1,166
5	D2	25	93	134	154	211	2 596	7,8617	0,155	-1,017
6	D3	7	23	97	103	178	2 615	7,8690	0,188	-0,887
7	D6	5	15	52	112	167	2 644	7,8800	0,220	-0,771
8	D17	22	26	93	145	178	2 761	7,9233	0,253	-0,664
9	D28	20	28	45	111	243	2 787	7,9327	0,286	-0,565
10	D30	10	34	54	96	176	2 841	7,9519	0,319	-0,470
11	D9	22	34	67	132	189	2 847	7,9540	0,352	-0,380
12	D7	22	34	67	132	188	2 851	7,9554	0,385	-0,293
13	D4	10	20	56	89	155	2 920	7,9793	0,418	-0,208
14	D19	11	32	44	97	143	3 051	8,0232	0,451	-0,124
15	D10	23	27	54	121	152	3 129	8,0485	0,484	-0,041
16	D1	25	34	64	92	167	3 240	8,0833	0,516	0,041
17	D11	11	20	41	87	115	3 249	8,0861	0,549	0,124
18	D23	11	16	27	54	160	3 275	8,0941	0,582	0,208
19	D27	21	39	63	78	163	3 304	8,1029	0,615	0,293
20	D18	18	27	56	88	134	3 316	8,1065	0,648	0,380
21	D8	12	17	56	78	108	3 318	8,1071	0,681	0,470
22	D12	15	18	43	88	118	3 343	8,1146	0,714	0,565
23	D13	19	21	38	82	135	3 435	8,1418	0,747	0,664
24	D29	15	21	38	65	134	3 453	8,1470	0,780	0,771
25	D25	11	25	22	62	130	3 488	8,1571	0,813	0,887
26	D21	14	34	54	77	112	3 500	8,1605	0,845	1,017
27	D22	20	23	25	50	181	3 593	8,1867	0,878	1,166
28	D16	18	18	29	66	127	3 649	8,2022	0,911	1,348
29	D26	17	24	25	70	123	3 707	8,2180	0,944	1,590
30	D24	17	24	25	58	108	4 034	8,3025	0,977	1,995
					me	dian	3 185	8,0659		

Table B.2 — Median rank and the critical value for estimated time to failure (concluded)

Step 3

Best-fit straight lines are drawn through the plotted data. If the lines are judged to be sufficiently parallel, the assumption of equivalent log standard deviation among the individual data sets is verified.

An estimate of the log standard deviation can be obtained from the graphical treatment of the failure data. First, for each stress, estimate the times corresponding to 16 %, 50 %, and 84 % failure based on the best fit straight line through the time-to-failure data. The estimated log standard deviation σ 1 is then calculated from the equation:

$$\sigma_1 = \ln[\frac{1}{2} \left(\frac{t_{50\%}}{t_{16\%}} + \frac{t_{84\%}}{t_{50\%}} \right)]$$

Figure B.1 — Lognormal plot of Table B.2

Step 4

Using the *reduced* Eyring equation, carry out a least squares fit to the log *median* failure times *for each stress condition* across all specimens and stress conditions.

Group	Log <i>median</i>	Temp.	1/T(Kelvin)	Humidity
1a	6,4960	85	0.00279213	85
2a	6,9470	85	0.00279213	70
3a	7,6774	65	0.00295727	85
4a	8,0659	70	0.00291418	75

Table B.3 — Log mean for each stress condition

В	ΔH/k	ln(A)
-0,0432	8 427,9450	-13,4380

Step 5

Calculate acceleration factors for each stress condition

Life_{stress} = Exp {In(A) + (Δ H/k \times 1/Temp_{stress}) + (B \times RH_{stress}) }

Temp_{stress} = Temperature (in Kelvin)

Calculating stress life using "best fit" B, $\Delta H/k$, In(A)

 $85^{\circ}C/85\%RH = Exp \{ (-13,4380) + (8 427,9450 \times 1/358,15) + (-0,0432 \times 85) \} = 615,16 \text{ hours}$ $85^{\circ}C/70\%RH = Exp \{ (-13,4380) + (8 427,9450 \times 1/358,15) + (-0,0432 \times 70) \} = 1 176,01 \text{ hours}$ $65^{\circ}C/85\%RH = Exp \{ (-13,4380) + (8 427,9450 \times 1/338,15) + (-0,0432 \times 85) \} = 2 474,24 \text{ hours}$ $70^{\circ}C/75\%RH = Exp \{ (-13,4380) + (8 427,9450 \times 1/343,15) + (-0,0432 \times 75) \} = 2 650,56 \text{ hours}$ $25^{\circ}C/50\%RH = Exp \{ (-13,4380) + (8 427,9450 \times 1/298,15) + (-0,0432 \times 50) \} = 31 7891,70 \text{ hours}$

Calculating acceleration factor for each stress condition

Acceleration factor = (Calculated ambient life) divided by (calculated stress life)

Table B.5 — Acceleration factor for each stress condition

Stress	Calculated life using "best fit" Β, ΔΗ/k, In(A)	Acceleration factor
85°C/85%RH	615,16 hours	516,76
85°C/70%RH	1 176,01 hours	270,31
65°C/85%RH	2 474,24 hours	128,48
70°C/75%RH	2 650,56 hours	119,93
25°C/50%RH	317 891,70 hours	

Step 6

Calculate normalized time-to-failure at 25 °C/50%RH for each disk

Use the acceleration factor to calculate the normalized time-to-failure. Log the normalized time-to-failure values. Calculate median and standard deviation for all disks.

Median Exp (12,66) = 314 896,7 hours (35,9 years)

	1				-	_	1	-	-
Hours to Failure	Group#	normalized to 25C/50%RH	In of	Group#		nding	order	media rank	critical value
		(A)	(A)		(A)	In (A)			
788	1	407,206.88	12.92	2	235,169.70	12.37	1	0.0077	-2.4208
743 685	1 1	383,952.68 353,980.60	12.86 12.78	2	237,872.80 237,872.80	12.38 12.38	2 3	0.0188 0.0299	-2.0791 -1.8827
647	1	334,343.72	12.70	2	246,252.41	12.30	4	0.0409	-1.7400
762	1	393,771.12	12.88	3	250,279.04	12.43	5	0.0520	-1.6258
607	1	313,673.32	12.66	3	253,362.56	12.44	6	0.0631	-1.5296
588	1	303,854.88	12.62	3	257,088.48	12.46	7	0.0741	-1.4458
654 578	1 1	337,961.04 298,687.28	12.73 12.61	2 3	259,227.29 260,942.88	12.47 12.47	8 9	0.0852 0.0962	-1.3711 -1.3033
669	1	345,712.44	12.01	3	264,283.36	12.47	10	0.1073	-1.2410
671	1	346,745.96	12.76	3	266,596.00	12.49	11	0.1184	-1.1832
614	1	317,290.64	12.67	3	266,981.44	12.49	12	0.1294	-1.1291
626	1	323,491.76	12.69	2	268,688.14	12.50	13	0.1405	-1.0781
778 704	1 1	402,039.28	12.90 12.80	2	270,039.69	12.51 12.51	14 15	0.1515 0.1626	-1.0298 -0.9838
807	1	363,799.04 417,025.32	12.80	3	270,039.69 270,578.88	12.51	16	0.1626	-0.9838
723	1	373,617.48	12.83	3	273,405.44	12.52	17	0.1847	-0.8975
645	1	333,310.20	12.72	3	276,360.48	12.53	18	0.1958	-0.8567
649	1	335,377.24	12.72	3	278,416.16	12.54	19	0.2069	-0.8174
656	1	338,994.56	12.73	2	279,770.85	12.54	20	0.2179	-0.7792
1,117 1,118	2 2	301,936.27 302,206.58	12.62 12.62	2 3	280,311.47 281,242.72	12.54 12.55	21 22	0.2290	-0.7422 -0.7062
880	2	237,872.80	12.38	2	281,933.33	12.55	23	0.2400	-0.6710
999	2	270,039.69	12.50	2	282,744.26	12.55	24	0.2622	-0.6367
1,126	2	304,369.06	12.63	3	283,555.36	12.56	25	0.2732	-0.6031
870	2	235,169.70	12.37	2	285,987.98	12.56	26	0.2843	-0.5701
1,035	2	279,770.85	12.54	2	286,258.29	12.56	27	0.2954	-0.5378
1,043 994	2 2	281,933.33 268.688.14	12.55 12.50	3 2	287,281.28 287,880.15	12.57 12.57	28 29	0.3064 0.3175	-0.5060 -0.4748
994	2	246,252.41	12.50	2	207,000.15	12.57	30	0.3285	-0.4748
1,065	2	287,880.15	12.57	4	294,548.08	12.59	31	0.3396	-0.4136
1,059	2	286,258.29	12.56	3	295,118.56	12.60	32	0.3507	-0.3835
880	2	237,872.80	12.38	3	296,531.84	12.60	33	0.3617	-0.3538
1,037 959	2 2	280,311.47 259,227.29	12.54 12.47	1 4	298,687.28 299,345.28	12.61 12.61	34 35	0.3728	-0.3245 -0.2954
1,149	2	310,586.19	12.47	2	299,345.28 301,936.27	12.61	36	0.3838	-0.2954
999	2	270,039.69	12.51	3	302,184.96	12.62	37	0.4060	-0.2379
1,058	2	285,987.98	12.56	2	302,206.58	12.62	38	0.4170	-0.2095
1,078	2	291,394.18	12.58	1	303,854.88	12.62	39	0.4281	-0.1812
1,046	2	282,744.26	12.55	2	304,369.06	12.63	40	0.4392	-0.1531
2,057	3 3	264,283.36	12.48	4	305,821.50	12.63	41	0.4502	-0.1251
1,948 2,078	3	250,279.04 266,981.44	12.43 12.49	2	309,659.26 310,586.19	12.64 12.65	42 43	0.4613 0.4723	-0.0972 -0.0694
2,106	3	270,578.88	12.51	4	311,338.28	12.65	44	0.4834	-0.0416
2,167	3	278,416.16	12.54	4	313,616.95	12.66	45	0.4945	-0.0139
2,031	3	260,942.88	12.47	1	313,673.32	12.66	46	0.5055	0.0139
2,151	3	276,360.48	12.53	4	317,094.92	12.67	47	0.5166	0.0416
2,128 2,799	3 3	273,405.44 359,615.52	12.52 12.79	1 3	317,290.64 319,401.28	12.67 12.67	48 49	0.5277 0.5387	0.0694 0.0972
2,795	3	295,118.56	12.60	1	323,491.76	12.69	50	0.5498	0.1251
2,075	3	266,596.00	12.49	4	331,126.73	12.71	51	0.5608	0.1531
2,236	3	287,281.28	12.57	1	333,310.20	12.72	52	0.5719	0.1812
2,352	3	302,184.96	12.62	4	334,244.91	12.72	53	0.5830	0.2095
2,486	3	319,401.28	12.67	1	334,343.72	12.72	54	0.5940	0.2379
1,972	3	253,362.56	12.44	1	335,377.24	12.72	55	0.6051	0.2665
2,189 2,845	3 3	281,242.72 365,525.60	12.55 12.81	1	337,961.04 338,994.56	12.73 12.73	56 57	0.6162	0.2954 0.3245
2,3045	3	296,531.84	12.60	4	340,721.13	12.73	58	0.6383	0.3538
2,001	3	257,088.48	12.46	4	341,440.71	12.74	59	0.6493	0.3835
2,207	3	283,555.36	12.56	4	341,920.43	12.74	60	0.6604	0.4136
3,240	4	388,573.20	12.87	1	345,712.44	12.75	61	0.6715	0.4439
2,596 2,615	4	311,338.28 313,616.95	12.65 12.66	1	346,745.96	12.76 12.77	62 63	0.6825 0.6936	0.4748
2,615	4	313,616.95	12.66	4	350,195.60 353,980.60	12.77	64	0.6936	0.5060
2,496	4	299,345.28	12.61	3	359,615.52	12.79	65	0.7157	0.5701
2,644	4	317,094.92	12.67	1	363,799.04	12.80	66	0.7268	0.6031
2,851	4	341,920.43	12.74	3	365,525.60		67	0.7378	0.6367
3,318	4	397,927.74	12.89	4	365,906.43		68 60	0.7489	0.6710
2,847 3,129	4	341,440.71 375,260.97	12.74 12.84	1 4	373,617.48 375,260.97	12.83 12.84	69 70	0.7600 0.7710	0.7062 0.7422
3,129	4	389,652.57	12.84	1	383,952.68	12.86	70	0.7821	0.7792
3,343	4	400,925.99	12.90	4	388,573.20		72	0.7931	0.8174
3,435	4	411,959.55	12.93	4	389,652.57	12.87	73	0.8042	0.8567
2,456	4	294,548.08	12.59	4	392,770.75	12.88	74	0.8153	0.8975
2,582	4	309,659.26	12.64	1	393,771.12	12.88	75	0.8263	0.9398
3,649 2,761	4	437,624.57 331,126.73	12.99 12.71	4	396,248.72 397,687.88	12.89 12.89	76 77	0.8374 0.8485	0.9838 1.0298
3,316	4	397,687.88	12.71	4	397,007.00	12.89	78	0.8595	1.0298
3,051	4	365,906.43	12.81	4	400,925.99	12.90	79	0.8706	1.1291
2,550	4	305,821.50	12.63	1	402,039.28	12.90	80	0.8816	1.1832
3,500	4	419,755.00	12.95	1	407,206.88		81	0.8927	1.2410
3,593	4 4	430,908.49	12.97	4	411,959.55		82	0.9038	1.3033
3,275 4,034	4	392,770.75 483,797.62	12.88 13.09	4	414,118.29 417,025.32	12.93 12.94	83 84	0.9148 0.9259	1.3711 1.4458
3,488	4	418,315.84	12.94	4	418,315.84	12.94	85	0.9369	1.5296
3,707	4	444,580.51	13.00	4	419,755.00		86	0.9480	1.6258
3,304	4	396,248.72	12.89	4	430,908.49	12.97	87	0.9591	1.7400
2,787	4	334,244.91	12.72	4	437,624.57	12.99	88	0.9701	1.8827
3,453	4 4	414,118.29 340 721 13	12.93	4	444,580.51	13.00	89 90	0.9812	2.0791
2,841	4	340,721.13	12.74	4	483,797.62	13.09 Total	90 90	0.9923	2.4208
		median Deviation	12.66 0.168			rola	30		
		95% confidence							

Table B.6 — Data for composite lognormal plot

Step 7

Calculate 95 % survival probability for lifetime at 25 °C/50%RH

Calculate 5 % lower limit of 12,66 median value with Standard deviation of 0,168

95 % confidence = 0,0347

Calculate 95 % survival probability with 95 % confidence.

230 721,0 hours = 26,3 years

Figure B.2 — Plot of normalized data

Annex C (normative)

Uncontrolled Ambient Condition Media Life Calculation

A test method for a storage or usage condition of higher temperature and relative humidity than 25 $^{\circ}$ C and 50 % relative humidity.

This test method follows the scope in this document except for the ambient storage condition, which will be based on an environment of 30 °C and 80 % relative humidity. This test method will also use a different stress test design that makes possible the use of the Arrhenius equation.

This test demonstrates with a certainty of 95 % that information stored on a recordable or rewriteable optical disk will be viable for a predetermined minimum number of years when storage conditions do not exceed 30 $^{\circ}$ C and 80 % relative humidity.

The same method and assumptions apply except where the ambient condition, stress design, and Eyring equation is addressed. The controlled ambient condition of 25 °C and 50 % relative humidity will be replaced by an expected harsher user environment of 30 °C and 80 % relative humidity.

The *reduced* Eyring equation: $t = Ae^{\Delta H/kT}e^{B \times RH}$ will be replaced by the Arrhenius equation: $t = Ae^{\Delta H/kT}$

The ambient condition will be as stated above. The stress test design will be as follows:

Test cell	Test stress condition (inc)				Min total time	Intermediate RH	Min equilibration duration
	Temp (°C) %RH			hours	hours	%RH	hours
1b	85	80	20	250	1 000	30	5
2b	75	80	25	425	1 700	33	7
3b	65	80	30	600	2 400	35	10

Table C.1 — Summary of Stress conditions for use with Arrhenius Method

Replace Step 4 in Annex A and B with:

Step 4

Using the Arrhenius equation, carry out a least squares fit to the log *median* failure times for each stress condition across all specimens and stress conditions.

Annex D

(informative)

Truncated Test Method (Determination of Media Life Lower Bound)

This test method is to confirm the target minimum life expectancy and to calculate the minimum test time required to do so when media survives at a certain stress condition.

It eliminates the problem with "flat line" data where media continues to survive. Media is tested until failure (normally at the higher stress conditions). A desired minimum number of years lifetime is chosen and the number of hours at the minimum stress condition (without failure) is calculated. When this number is reached, the minimum life target is verified.

Example: See Table D.1 (media survives at high temperature and lower RH)

Using 30 years at 25 °C, 50 % RH as a constraint:

The following is an outline of steps to estimate the minimal life expectancy using the reduced Eyring equation, as a function of ambient temperature and relative humidity.

1. Solve for coefficient ΔH (activation energy per molecule) of Eyring equation.

Subtract two stress conditions with the same % RH.

$$\ln(Time_{Stress1}) - \ln(Time_{Stress2}) = [\ln A + \frac{\Delta H}{kT_{Stress1}} + B \times RH_{Stress1}] - [\ln A + \frac{\Delta H}{kT_{Stress2}} + B \times RH_{Stress2}]$$

where *Time*_{Stress1} is time to failure at stress1 condition, *Time*_{Stress2} is time to failure at stress2 condition.

Example using stress conditions of 85 °C, 85 % RH and 65 °C, 85 % RH

$$\ln(Time_{85,85}) - \ln(Time_{65,85}) = [\ln A + \frac{\Delta H}{kT_{85}} + B \times RH_{85}] - [\ln A + \frac{\Delta H}{kT_{65}} + B \times RH_{85}]$$

$$\Delta H = \left\{ \ln(Time_{85,85}) - \ln(Time_{65,85}) \right\} \times (-8,3607 \times 10^{-20})$$

Solve for ΔH using these example times for the above stress conditions:

At: 85 °C, 85 % RH <u>Time_{85,85} = 500 h</u> at 65 °C, 85 % RH <u>Time_{65,85} = 1 852 h</u>

Solve for ΔH , ΔH = 1,0948×10⁻¹⁹

2. Solve for coefficient B (RH exponential constant) of Eyring equation.

Solving for *B* after solving for ΔH ($\Delta H = 1,0948 \times 10^{-19}$, using the example above).

Subtract two stress conditions with different Temperature and % RH

$$\ln(Time_{Stress1}) - \ln(Time_{Stress2}) = [\ln A + \frac{\Delta H}{kT_{Stress1}} + B \times RH_{Stress1}] - [\ln A + \frac{\Delta H}{kT_{Stress2}} + B \times RH_{Stress2}]$$

Example using stress conditions at 85 $^\circ\text{C},$ 85 % RH and 25 $^\circ\text{C},$ 50 % RH.

$$\ln(Time_{85,85}) - \ln(Time_{25,50}) = [\ln A + \frac{\Delta H}{kT_{85}} + B \times RH_{85}] - [\ln A + \frac{\Delta H}{kT_{25}} + B \times RH_{50}]$$

Using the example of 500 hours at 85 °C, 85 % RH and solving for 30 years lifetime:

85 °C, 85 % RH <u>*Time* 85.85</u> = 500 h, 25 °C, 50 % RH <u>*Time*_{25.50} = 262 800 h</u> (30 years = 30×8760) Solve for *B*

$$\ln(500) - \ln(262,800) = \left[\frac{1,0948 \times 10^{-19}}{1,3807 \times 10^{-23}} \times (-5,6189 \times 10^{-4})\right] + B \times 35$$

3. Solve for coefficient *A* (pre-exponential time constant) of Eyring equation.

Solving for A after solving for
$$\Delta H$$
 and B (ΔH = 1,0948×10⁻¹⁹, B = -5,169×10⁻² using above)

Eying equation logged:

Example below using ambient condition of 25 °C, 50 % RH for 30 years

$$\ln(Time_{25,50}) = \ln A + \frac{\Delta H}{kT_{25}} + B \times RH_{50}$$

Substitute ΔH and B with the calculated values and Time with the selected archival time

 ΔH = 1,0948×10⁻¹⁹ B = -5,169×10⁻² Time = 30 years (262 800 h)

Solve for *A*, $A = 9,828 \times 10^{-6}$.

4. Solve for third stress condition

Solving time for a third stress condition (example: 85 °C, 70 % RH) that equals 30 years life expectancy at 25 °C, 50 % RH.

Eying equation logged:

t = 358,15 Kelvin = 85 °C

RH = 70 = 70 % Relative Humidity

$$\ln(Time_{85,70}) = -11,5303 + \frac{1,0948 \times 10^{-19}}{(1,3807 \times 10^{-23}) \times (85 + 273,15)} + (-5,169 \times 10^{-2} \times 70)$$

Solve for *Time*_{85,70}, *Time*_{85,70} = 1 086 h

Therefore,

lf:

- 1. Archival time is selected to be 30 years,
- 2. Disks fail at 500 h at 85 °C, 85 % RH
- 3. And disks fail at 1 852 h at 65 $^\circ\text{C},$ 85 % RH

Then:

According to the acceleration model, disks must not fail before 1 086 h (at 85 $^{\circ}$ C, 70 $^{\circ}$ RH) to have a minimum of 30 years life expectancy at 25 $^{\circ}$ C, 50 $^{\circ}$ RH.

The failure time for the third stress condition is dependent on the failure times at the first two stress conditions and the archival years target selected.

	ln(h	rs)	Years	`	In(Hours)	Hours	In(Hours)	Hours	In(Hours)	Hours	In(Hours)	Hours	In(Hours)	Hours	In(Hours)	Hours
100																
90								actual								actual
85							7,52	1 852							6,21	500
80																
75																target
RH 70															6,99	1 086
65																
60																
55																
50	12,	48	30,02													
40																
30																
	2	5	25	٢	60	60	65	65	70	70	75	75	80	80	85	85

Table D.1 — Example using stress conditions of 85 °C, 85 % RH and 65 °C, 85 % RH

Annex E (informative)

Relation between BER and PI Sum 8

The byte error rate BER is the number of erroneous symbols divided by the total number of symbols. Because the length of one code word of the inner code is 182, number of erroneous symbol in one inner code word N_{pi} can be expressed by binomial probability, and it is

$$N_{pi} = \sum_{i=1}^{182} {}_{182}C_i \times BER^i \times (1 - BER)^{182 - i}$$
(1)

The number of PI errors in 8 ECC blocks N_{pis8} can be expressed by formula (2) because the length of the outer code word is 208.

$$N_{pis8} = 208 \times 8 \times N_{pi} \tag{2}$$

Figure E.1 — Relationship between BER and PI Sum 8

Bibliography

- [1] Experimental statistics, US National Bureau of Standards Handbook 91, 1963
- [2] Applied Regression Analysis, Draper and Smith, Wiley Edition 2
- [3] Statistical Methods for Reliability Data, Meeker, Escobar, 1998, John Wiley & Sons Inc.

