

ECMA-363
3rd Edition / June 2006

Universal 3D File
Format

Universal 3D File Format

ECMA-363
3rd Edition / June 2006

Ecma International Rue du Rhône 114 CH-1204 Geneva T/F: +41 22 849 6000/01 www.ecma-international.org

PC

.

Brief history

In 2004, Ecma International formed Technical Committee 43 (TC43) to specify Universal 3D (U3D) File Format
specification. The Universal 3D File Format specification is primarily intended for downstream 3D CAD repurposing
and visualization purposes. The 1st Edition of the U3D File Format was adopted by the General Assembly of
December 2004.

In 2005, TC43 added file format extensibility to the 2nd Edition of the U3D File Format specification. The 2nd Edition
of the U3D File Format was submitted to ISO/IEC for fast-track processing.

In 2006, changes were made as a result of comments received during the ISO/IEC DIS ballot process.

This Ecma Standard has been adopted by the General Assembly of June 2006.

Table of contents

1 Scope 1

2 Conformance 1

3 References 1

4 Definit ions 1

5 Notational Conventions 2

5.1 Diagrams and f ie ld descr ipt ions 2
5.2 Data types 4

5.2.1 U8 4
5.2.2 U16 4
5.2.3 U32 4
5.2.4 U64 4
5.2.5 I16 4
5.2.6 I32 4
5.2.7 F32 4
5.2.8 F64 4
5.2.9 Str ing 4

5.3 Funct ional notat ions 5
5.3.1 rgb(R,G,B) 5
5.3.2 rgba(R,G,B,A) 5
5.3.3 InverseQuant(P,S,QPD,IQF) 5

6 Acronyms and Abbreviations 5

7 General Description 6

8 Architecture 6

8.1 Execut ion archi tecture 6
8.2 Palet tes 6
8.3 Node resources 7

8.3.1 Model resource 7
8.3.2 Light resource 8
8.3.3 View resource 8

8.4 Shading resources 8
8.4.1 Texture resource 8
8.4.2 Mater ia l resource 8
8.4.3 Li t texture shader resource 8

8.5 Motion resource 9
- i -

8.6 Modif ier chains 9
8.7 Scene graph 10
8.8 CLOD mesh generator 12

8.8.1 Author mesh 12
8.8.2 Author mesh resolut ion updates 13
8.8.3 Renderable mesh 14
8.8.4 Renderable mesh resolut ion updates 15
8.8.5 CLOD modi f ier 15

8.9 Render ing and Shading 16
8.9.1 Transform Set 16
8.9.2 Renderable Group 16
8.9.3 Renderable Bound 17

8.10 Seria l izat ion 18
8.10.1 Object ser ia l izat ion 18
8.10.2 Fi le structure 18
8.10.3 Block structure 18
8.10.4 Fi le reference 18
8.10.5 Declarat ion block sect ion 19

8.11 Extensibi l i ty 19

9 File Format 19

9.1 Fi le structure 19
9.1.1 Fi le Header Block 19
9.1.2 Declarat ion Block 20
9.1.3 Cont inuat ion Block 20

9.2 Block structure 20
9.2.1 U32: Block Type 20
9.2.2 U32: Data Size 20
9.2.3 U32: Meta Data Size 21
9.2.4 Data 21
9.2.5 var iable: Data Padding 21
9.2.6 Meta Data 21
9.2.7 var iable: Meta Data Padding 22

9.3 Block def in i t ions 22
9.4 Fi le structure blocks 23

9.4.1 Fi le Header (b locktype: 0x00443355) 23
9.4.2 Fi le Reference (blocktype: 0xFFFFFF12) 24
9.4.3 Modif ier Chain (b locktype: 0xFFFFFF14) 28
9.4.4 Prior i ty Update (b locktype: 0xFFFFFF15) 32
9.4.5 New Object Type (blocktype: 0xFFFFFF16) 32
9.4.6 New Object Block (b locktype: 0x00000100 to 0x00FFFFFF) 35

9.5 Node blocks 36
9.5.1 Group Node (blocktype: 0xFFFFFF21) 36
9.5.2 Model Node (blocktype: 0xFFFFFF22) 38

- ii -

9.5.3 Light Node (blocktype: 0xFFFFFF23) 38
9.5.4 View Node (blocktype: 0xFFFFFF24) 39

9.6 Geometry generator b locks 46
9.6.1 CLOD Mesh Generator (b locktypes: 0xFFFFFF31; 0xFFFFFF3B;

0xFFFFFF3C) 46
9.6.2 Point Set (b locktypes: 0xFFFFFF36; 0xFFFFFF3E) 85
9.6.3 Line Set (b locktypes: 0xFFFFFF37; 0xFFFFFF3F) 97

9.7 Modif ier b locks 104
9.7.1 2D Glyph Modi f ier (b locktype: 0xFFFFFF41) 104
9.7.2 Subdiv is ion Modi f ier (b locktype: 0xFFFFFF42) 109
9.7.3 Animat ion Modi f ier (b locktype: 0xFFFFFF43) 110
9.7.4 Bone Weight Modi f ier (b locktype: 0xFFFFFF44) 112
9.7.5 Shading Modi f ier (b locktype: 0xFFFFFF45) 114
9.7.6 CLOD Modi f ier (b locktype: 0xFFFFFF46) 116

9.8 Resource blocks 117
9.8.1 Light Resource (blocktype: 0xFFFFFF51) 117
9.8.2 View Resource (blocktype: 0xFFFFFF52) 119
9.8.3 Li t Texture Shader (b locktype: 0xFFFFFF53) 122
9.8.4 Mater ia l Resource (blocktype: 0xFFFFFF54) 127
9.8.5 Texture Resource (blocktypes: 0xFFFFFF55; 0xFFFFFF5C) 131
9.8.6 Motion Resource (blocktype: 0xFFFFFF56) 135

10 Bit Encoding Algorithm 142

10.1 Defin i t ions 142
10.2 Acronyms and Abbreviat ions 143
10.3 Overview 143

10.3.1 Prerequis i tes and Inputs 143
10.3.2 Descr ipt ion 143

10.4 Encoding Algor i thm 144
10.4.1 General Requirements 144
10.4.2 Operat ions 144
10.4.3 In i t ia l izat ion 144
10.4.4 Algor i thm for Wri t ing a Compressed Symbol 145
10.4.5 Algor i thm for Wri t ing a Compressed U32 Value 146
10.4.6 Algor i thm for Wri t ing a Compressed U16 Value 146
10.4.7 Algor i thm for Wri t ing a Compressed U8 Value 146
10.4.8 Algor i thm for Wri t ing an Uncompressed U8 Value 146
10.4.9 Algor i thm for Updat ing the Compression Context 147
10.4.10 Algor i thm for Flushing the Compression State 147

Annex A (informative) Bit Encoding Algorithm – An Implementation 148

- iii -

- iv -

1 Scope
This Standard defines the syntax and semantics of the Universal 3D file format, an extensible format
for downstream 3D CAD repurposing and visualization, useful for many mainstream business
applications. Salient features of the U3D file format described in this document include: execution
architecture that facilitates optimal run-time modification of geometry, continuous-level-of-detail,
domain-specific compression, progressive data streaming and playback, key-frame and bones-
based animation, and extensibility of U3D format and run-time.

The U3D file format specification does not address issues regarding rendering of 3D content.

The U3D file format specification does not address issues regarding reliability of the transport layer
or communications channel. It is assumed that reliability issues will be addressed by a different
protocol layer.

The U3D file format specification does not address run-time extensibility of an implementation of the
U3D architecture. Run-time extensibility will be a feature of a future specification.

2 Conformance
A conforming implementation complies with all the mandatory clauses in this Standard.

3 References
ECMA-335: Common Language Infrastructure (CLI), 3rd edition (June 2005) (ISO/IEC 23271)

IEEE Computer Society (1985), IEEE Standard for Binary Floating-Point Arithmetic, IEEE Std 754-
1985.

IETF RFC 3629: UTF-8, a transformation format of ISO 10646. November 2003,
http://www.faqs.org/rfcs/rfc3629.html.

ISO/IEC 9899:1999 Programming languages -- C

ISO/IEC IS 10918-1 | ITU-T Recommendation T.81: JPEG, 1994, http://www.jpeg.org/jpeg.

TIFF™ 6.0 Specification, Adobe Systems Incorporated, June 1992.

W3C Recommendation on 1st October, 1996: Portable Network Graphics (PNG),
ISO/IEC 15948:2003 (E)., http://www.w3.org/Graphics/PNG/.

4 Definitions

Term Definition

Glyph A symbolic figure, image, or shape that conveys information.

Mandatory
clauses

All portions of the specification except those marked “Informative”.

New
Position

A position that is added to the mesh, point set, or line set.

- 1 -

Term Definition

One Point
projection

Working in a similar manner to a bellows camera, with one point projection the
orientation of the image plane is completely independent of the view direction. An
advantage of one point projection is that of dimensional correctness. That is, if the
image plane is parallel to a plane of the model, then the dimensions of the model in
that plane are to scale. This enables creation of an image that has both depth and
dimensional correctness in the selected plane.

Resolution Level of detail.

Screen Drawing area available for rendering.

Split
Position

A position in a mesh, point set or line set from which the new position will be created.
The new position is described relative to the split position.

Third
Position

A new face added to an author mesh uses three positions: the New Position, the Split
Position, and the Third Position.

Three point
projection

Is the most natural projection, and is used for conventional images. In this projection,
the image plane is normal to the direction of the view, as in a conventional camera.

5 Notational Conventions

5.1 Diagrams and field descriptions
Boxes represent information stored as one of the basic data types described in 5.2 Data types.
Ovals represent a logical collection of more than one of the basic data types. The information is
grouped for clarity and the basic data types that compose the grouping are described explicitly in
a following subsection of the document. Boxes with the right side corners cut off represent
information that is compressed. Arrows convey ordering information.

Each entry in the diagram is further documented below the diagram. The logical groups are noted
by name only. Basic data types are noted by an abbreviated data type symbol (defined in the next
section) and the field name. The compressed data is documented as basic data type; followed by
an open bracket “[”, the compression context, and a close bracket, “]”;followed by the field name.

The compression context identifies symbols with similar frequency statistics. The compression
routine adapts to the frequency of symbols encountered with adaptive contexts. Adaptive context
labels are prefixed with “c”. The compression routine can take advantage of range limitation
information. A range context indicates the symbols only use a limited portion of the range of the
data type. Range contexts are not adaptive. Range context labels are prefixed with “r”.

Clause 10 Bit Encoding Algorithm contains details regarding compression requirements.

Example: The following diagram and field description shows Data A, an unsigned 8-bit integer;
followed by Data B, a grouping of multiple fields; followed by Data C, a compressed unsigned
32-bit integer with an adaptive context “cCcontext”; followed by Data D, a compressed unsigned
8-bit integer with a range context of 0 to 6.

- 2 -

- 3 -

A

B

C

D

The fields are then noted as follows:

1.1.1.1.1 U8: A
1.1.1.1.2 B
1.1.1.1.3 U32 [cCcontext]: C
1.1.1.1.4 U8 [r7]: D

An arrow with a branch in its shaft represents two or more options for information to be stored in
the file.

Example: The following diagram shows C followed by D followed by G, or C followed by E followed
by F followed by G.

D

C

E

F

G

If the same data type repeats several times, a loop is used. The number of iterations appears next
to the loop arrow. The number of iterations may depend on information presented earlier in the
file.

Example: The following diagram shows data H followed by X data I.

X
I

H

Numbers:

 By default, all numbers are decimal (base 10). Numbers prefixed with “0x” are hexadecimal
numbers (base 16). For example, the number “0x10” is a hexadecimal number equivalent to the
decimal number “16”.

5.2 Data types
The binary file will contain the following types: U8, U16, U32, U64, I16, I32, F32, F64, and String.
Clause 10 contains encoding requirements for these types.

5.2.1 U8
An unsigned 8-bit integer value.

5.2.2 U16
An unsigned 16-bit integer value.

5.2.3 U32
An unsigned 32-bit integer value.

5.2.4 U64
An unsigned 64-bit integer value.

5.2.5 I16
A signed two’s complement 16-bit integer value.

5.2.6 I32
A signed two’s complement 32-bit integer value.

5.2.7 F32
An IEEE 32-bit floating-point number.

5.2.8 F64
An IEEE 64-bit double precision floating-point number.

5.2.9 String
The String type starts with an unsigned 16-bit integer that defines how many bytes of character
data the string contains. The character encoding is defined per file in the file header block.
Strings are always handled as case sensitive.

The empty string contains zero bytes of character data. The empty string is used to indicate the
name of a default palette entry. A field may use the empty string as a name referring to the
default entry. The empty string shall not be used as the name of an object defined by a block in
the file.

- 4 -

- 5 -

5.3 Functional notations
Some text descriptions use a functional notation for color values or quantized values. Those
functions are described in this section.

5.3.1 rgb(R,G,B)
A color value with red, green, and blue components can be described using rgb(R,G,B). The
values for R, G, and B indicate the intensity of that component. A value of 0.0 indicates black
and a value of +1.0 indicates full intensity. The ordinary range is 0.0 to +1.0 although values
outside this range are allowed. Gray colors are indicated by using the same value for R, G, and
B.

5.3.2 rgba(R,G,B,A)
A color value with red, green, blue, and alpha components can be described using
rgba(R,G,B,A). The values for R, G, and B are the same as in 5.3.1 rgb(R,G,B). The value for A
indicates the opacity of the color value. The ordinary range for the alpha component is 0.0 to
+1.0. The value 0.0 corresponds to fully transparent and the value +1.0 corresponds to fully
opaque. Values outside the ordinary range are allowed.

5.3.3 InverseQuant(P,S,QPD,IQF)
Reconstruction of a quantized value is described using InverseQuant(P,S,QPD,IQF). The
reconstructed value RV is calculated as

RV = P + (1 – 2*S) * QPD * IQF

where P is the predicted value, S is the sign of the prediction difference, QPD is the quantized
prediction difference, and IQF is the inverse quantization factor.

RV, P and IQF are floating point numbers. S and QPD are integers.

The document specifies the inverse quantization function that must be used but does not
specify a quantization function.

For information only: a suitable quantization function could calculate S and QPD from an
original value OV as

S = 1 if P > OV and S = 0 if P <= OV.

QPD = (|OV – P| + 0.5) * (1.0 / IQF).

Other quantization functions could be used.

6 Acronyms and Abbreviations

Acronym Description

CAD Computer Aided or Assisted Design.

CIL Common Intermediate Language.

CLI Common Language Infrastructure.

CLOD Continuous level of detail.

DID Data packet element ID. A DID is a 128-bit value with the same structure as a GUID.

GUID Globally Unique Identifier. A unique 128-bit number that is produced by the OS or by some
applications to identify a particular component, application, file, database entry, and/or
user.

LOD Level of detail.

Ref Reference.

7 General Description
The purpose of the Universal 3D file format is to provide a reliable, easy to use, easy to implement
file format that supports the streaming, progressive transmission, of 3D mesh and level of detail
information in a standard way. The format is for content creation tool developers who enable a
variety of end user applications with 3D data.

This format is intended to further the proliferation and ubiquity of 3D data. The motivation for this file
format is to address the growing need to reuse existing 3D data for applications and usage models
downstream from the engineering or design uses for which the data was originally created.

8 Architecture
This section describes the run-time architecture for the U3D file format. As the file format is a
serialization of the run-time architecture, it is important to understand that architecture to fully
understand the file format. The architecture here defines a foundation on which 3D applications can
be built.

8.1 Execution architecture
The execution architecture is based on the interaction of several key elements: palettes, nodes,
the scene graph, resources, and modifier chains. The palettes control access to nodes and
resources. Nodes have spatial information and hierarchical relationships that build the scene
graph. The nodes reference resources through the palettes. Together a node and a resource
compose a 3D object. The resources contain the majority of the information to create an object
while the light weight nodes are designed to take advantage of information sharing through
references to the resources. Multiple nodes may use the same resource, so the nodes can be
thought of as instances of the resources in the scene. Some types of resources and nodes are
used as modifiers in modifier chains that manage the manipulation of data. The sections below
give more detailed information about these elements and how they interact.

8.2 Palettes

Entry Name Ref
Object

A palette entry: Each palette entry
contains the entry’s Name and a
reference to an object. The entries are
organized in an ordered list.

Palette

Resources and nodes are accessed through palettes. The palettes are: model resource palette,
light resource palette, view resource palette, texture resource palette, shader resource palette,

- 6 -

- 7 -

material resource palette, motion resource palette, and node palette. The palettes are designed to
control access to resources and nodes and to aid in information sharing.

A palette is organized as an ordered list of entries composed of an identifying name and a
reference to an object or a reference to null. Entries can be accessed through the palette by
specifying a name or by iterating through the list of entries contained in a palette.

A new palette entry is created by specifying a name and a reference to an object or a null
reference. The palette entry is added to the list of entries in the palette. Because entries are
identified by name, each name within a palette must be unique. If the name of a new palette entry
is the same as an existing entry, the new entry replaces the existing entry. When an entry is
deleted, it is removed from the list of entries.

To access an entry in a palette, a client object specifies an identifying name to a palette. If an
entry with that name exists, the palette returns the object reference or null reference that is
associated with the entry. Because client objects reference palette entries indirectly, an object
may have the name for a palette entry that does not exist. If a client object specifies a name that
is not in the palette, the client object is warned that the palette entry does not exist. The client
object is responsible for correctly responding when the palette returns a null reference or the entry
requested does not exist.

Objects can also register with the palette as an observer of a palette entry. The object is then
notified by the palette when changes are made to the entry or the referenced object.

Each palette has one default entry associated with it. The default entries are identified by the
empty string (“”) and their properties are detailed below. The default entries may not be modified.
The values of the properties of the default entries were chosen to provide reasonable or neutral
behaviour for objects that use the default.

8.3 Node resources
The following subsections describe the resources that are referenced by nodes through the
palettes. Each resource type has a corresponding node type. The resources contain the majority
of the information needed to create a 3D object used when rendering. Nodes supply additional
information that differentiates the 3D objects in the scene that share the same resource. The
division of information between the resources and light weight nodes facilitates data sharing.

Each node contains hierarchical information about its parents and children and spatial information
that is relative to that node's parents. The node types are: group, model, light, and view. The
group node contains only the spatial and hierarchical information. More information on nodes can
be found in 8.7 Scene graph.

A node is the first modifier in a node modifier chain. More information on modifier chains can be
found in 8.6 Modifier chains.

The default node is a group node with no parents. The default node is located at the world origin
(the identity transform).

There is no default model node, default light node, nor default view node.

8.3.1 Model resource
Model resources contain information used to create renderable geometry. The information
includes geometry or a method to generate geometry and shading information that determines
how the geometry is rendered. Model resources are also the first modifier in a model resource
modifier chain. The output of a model resource modifier chain can then be used by model node
modifier chains.

There is a preference for having the coordinate system oriented such that the Z-axis is in the up
direction.

The default model resource is an empty CLOD mesh generator. This empty CLOD mesh
generator has all count fields in the maximum mesh description set to zero.

8.3.2 Light resource
Light resources contain the information specific to lights. The supported types of lights are
ambient, directional, point, and spot. The light resource defines the attributes associated with
the lights including color and specularity. Point and spot lights also have an attenuation factor.
Spot lights have an associated angle and decay rate. The light nodes provide spatial position
and orientation and hierarchical information.

The default light resource is an ambient light that is enabled, no specularity, and color values
rgb(0.75, 0.75, 0.75).

8.3.3 View resource
View resources have information regarding rendering, fog, and the portion of the scenegraph
that is available.

View nodes provide spatial position and orientation and hierarchical information as well as the
how the view is presented. Specifically, the node defines the clipping, projections (e.g. one, two
or three point perspective or orthogonal), the view port, backdrops and overlays.

View resources are intended to contain information that is likely to be shared by instances of
the view. View nodes are intended to contain information that is likely to be different for each
instance of the view.

A scene graph can have several view nodes that define different viewpoints in the world.
Although there is no default view node, there is a preference for having the coordinate system
oriented such that the Z-axis is in the up direction with the Y-axis oriented in the direction of the
view.

The default view resource has the following properties: pass count one, root node is the default
node, and fog disabled.

8.4 Shading resources
The shading resources are used to determine the visual appearance of geometry when rendered.
A list of shaders is applied to the geometry. Each shader refers to a number of textures and a
material. A more detailed description of shading is given in 8.9 Rendering and Shading.

8.4.1 Texture resource
Texture resources are image data that may be applied to geometry when shading to modify its
appearance. The texture resource contains image data and information about the size, method
of compression, and color components of the image data.

The default texture resource is an 8x8 RGB 24bit image. The upper left and lower right 4x4
areas of the image have color values of rgba(1.0, 1.0, 1.0,1.0). The upper right and lower left
4x4 areas of the image have color values of rgba(1.0, 0.40, 0.20, 1.0).

8.4.2 Material resource
The material resource describes the appearance of a surface at the lowest level. The material
describes which shading attributes are enabled and the colors associated with those attributes.
The available attributes are: ambient color, diffuse color, specular color, emissive color, opacity
and reflectivity.

The default material resource has an ambient color of rgb(0.75, 0.75, 0.75), an opacity of 1.0,
and reflectivity of 0.0. Other colors associated with the default material are rgb(0.0, 0.0, 0.0).

8.4.3 Lit texture shader resource
The lit texture shader resource details which material and textures are used when rendering
geometry and how the textures and material should be combined (i.e. blended). The lit texture
shader resource accesses the material and textures through the palettes. The lit texture shader
identifies the lighting properties used, the number of rendering passes, and the application of
textures to geometry.

- 8 -

- 9 -

The default lit texture shader has lighting enabled, alpha test disabled, and does not use vertex
color. Although not used, the alpha test reference value is 0.0, the alpha test function is
ALWAYS, and the color blend function is FB_ALPHA_BLEND. The render pass enabled flags
has a value of 0x00000001 indicating the default lit texture shader is only used in the first
render pass.

The default lit texture shader uses the default material and no textures. Because no textures
are used, the shader channels and alpha texture channels fields have no bits set.

8.5 Motion resource
The motion resource contains animation data. The data is stored in a number of tracks. Each track
is composed of key frames with rotation, displacement and time information. A motion track can
be used to animate the relative spatial information for a node or a bone in a bone hierarchy.

The default motion resource has zero motion tracks.

8.6 Modifier chains
Modifiers manipulate data associated with resources, nodes, and textures. A modifier receives as
input an array of data elements called a data packet. Each element is identified by a data element
id (DID) that is used to determine the type of data stored in the element. Each modifier defines a
set of data elements as outputs and a set of dependencies for each of the outputs. The outputs
may be dependent on data elements from the input data packet or data elements output by the
modifier.

Examples of data elements are transforms, renderable groups, and simulation time.

The modifier chain object collects and orders the modifiers, ensures that the required inputs for
each modifier are available, and maintains the dependency information associated with each data
element. The modifier chain passes a data packet to a modifier and constructs a new data packet
based on that modifier’s outputs and the previous data packet. The modifier chain will then
present the data packet to the next modifier or as an output of the modifier chain if all of the
modifiers have been evaluated.

Modifier A

Modifier B Modifier C

data flow

data packet 1 data packet 2 data packet 3 data packet 4

Modifier chain operation: The modifier chain presents data packet 1 to
modifier A. Modifier A creates outputs based on input data packet 1. The
modifier chain uses those outputs and data packet 1 to create data packet 2
which it passes to modifier B. Modifier B creates outputs based on data
packet 2. The modifier chain uses the outputs from modifier B and data
packet 2 to create data packet 3 which it passes to Modifier C. Modifier C
creates outputs based on data packet 3. The modifier chain uses those
outputs to create data packet 4 which will be the output of the modifier chain.

When creating a new data packet, the modifier chain adds the outputs of a modifier to the data
packet. The modifier chain consumes a data element in the input data packet if that data element
has the same DID as an output data element. Each of the remaining data elements from the input
data packet is copied to the new data packet unless the input element depends, directly or
indirectly, on one of the elements consumed by the modifier chain. Finally, the output data
elements of the modifier are added to the new data packet.

The modifier chain object allows the lazy evaluation of the modifiers. Data elements may be
cached and the modifier chain may then evaluate the dependency information when data
elements are modified outside of the modifiers in the chain to determine which, if any, of the
modifiers must be re-evaluated to update the modifier chain object’s output.

DID Name DID Description

Bone weights Weighting factors that associate vertices with bones

Renderable Group A group of renderable elements

Renderable Group Bounds A bounding structure for a Renderable Group

Simulation Time Time value used for animation and simulation

Skeleton Bone structure used in animation and inverse kinematics

Transform Set Set of transforms to place objects in space

View Frustum The volume of space visible to the view

View Size The dimensions of the view port

View Transform Transform that places the view in space

8.7 Scene graph
The scene graph maintains the hierarchical and spatial relationships between nodes. Each node
may have zero or more children and zero or more parents. Each node contains information about
its parents, and its position relative to each parent. The relationship information in the nodes is
used to build the scene graph.

Group nodes are the most basic node type. They contain positional and relational information that
is used to place them in the scene graph. Group nodes are useful for collecting other related
nodes together. The default node in the node palette is a group node identified by the empty string
(“”). The default node is referred to as the world. The default node’s transform is always the
identity transform.

- 10 -

- 11 -

A

C B

D

Palette A

Palette B
A simple scene graph.
The nodes have names of
palette entries and do not
maintain absolute object
references for long
durations. Multiple nodes
may use the same
resource.

Nodes have a transform for each parent that specifies its position relative to that parent. The
node’s spatial position is defined by the node’s parent’s transform multiplied by the node’s
transform for that parent. The node will appear once relative to each appearance of each parent.
In this way, one node may appear many times in a scene. A node with no parents will not appear
in the scene. To appear in the scene, a node must be a descendent of the world.

C

A

B

An abstract rendering of a scene graph
with a node that has multiple parents.
Node C has two parents

Node C appears twice in the rendered
scene, once in relation to each of its
parents.

C A B

C

Because a node’s transforms are determined based on its parents’ transforms, all relationships in
the scene graph must be acyclic. A node’s transforms can not be evaluated relative to its own
transforms.

An illegal scene graph. Cyclical
relationships make evaluation of
the transforms impossible.

8.8 CLOD mesh generator
The continuous level of detail (CLOD) mesh generator is a modifier that creates one or more
CLOD triangle meshes. The CLOD meshes contain information in addition to the geometry that
describes how to add or remove geometry from the mesh. The level of detail, or resolution, of the
mesh is the amount of the total available geometry that is actually used.

The CLOD mesh generator requires as input an author mesh and author mesh resolution updates
and creates a set of renderable meshes, a set of renderable mesh updates for each mesh
created, and a CLOD controller to manage the level of detail of the renderable meshes.

More details can be found in 9.6.1 CLOD Mesh Generator.

8.8.1 Author mesh
The author mesh structure is designed to be easy to modify and compress. The author mesh
has an associated group of shading IDs, lists of attribute values that will be associated with the
vertices of the mesh’s triangles (e.g. texture coordinates, position vectors, colors, normal
vectors), and a list of faces that specify the shading ID associated with each face and the
attributes associated with that face’s vertices. The shading IDs identify which shaders are used
for a face. The shading IDs dictate which attributes must be specified for each triangle corner.
For example, if a shading ID specifies 2 texture layers, 2 sets of texture coordinates are
required for each corner of the triangle.

- 12 -

- 13 -

Colors
(R,G,B,A)

Positions
(x,y,z)

Normals
(x,y,z)

Texture
Coordinates

(u,v)

Face list

(shading ID, corner A,
corner B, corner C)

Shading IDs
Each entry in the face list contains a shading
ID and indices into the lists that contain the
properties necessary for the shading ID
associated with the face.

8.8.2 Author mesh resolution updates
The author mesh resolution updates describe how to change the resolution of an author mesh.
A single update changes the number of vertex positions in the mesh by one. To increase the
resolution, the update contains the new entries for each attribute, the new faces, and updates to
existing faces. To decrease the resolution, the same information is used to remove the new
faces and undo the updates to the previously existing faces. The Author mesh resolution update
always increases the number of vertex positions by one. The Shading ID associated with a face
is constant through resolution updates. The other properties associated with a face may also
change. For example, the face’s corners may be associated with new vertex positions, normals,
colors, or texture coordinates.

Update the current face to
use the indices of the new
normal and position. And
add two new faces to the
face list.

An author mesh resolution
update. This is a simplified
example. Only updates to
the positions and normals
are shown.

Add a new position for the
new vertex.

For this example, each
face will use a different
normal for the new
position.

Position List

Face List

Normal list

8.8.3 Renderable mesh
Renderable meshes regroup the data in an author mesh so that it is optimized for rendering.
The CLOD mesh generator creates a group of renderable meshes and resolution updates for
those meshes from an author mesh and resolution updates for that mesh. While an author mesh
may have more than one shading ID associated with its faces, a single renderable mesh may
have only one shading ID. The CLOD mesh generator will create a renderable mesh and
updates for each shading ID used by the author mesh.

The renderable mesh consists of a list of vertices and a list of faces. Each vertex has a
complete set of per vertex attributes as specified in the author mesh. The faces contain indices
into the vertex list for each vertex.

- 14 -

- 15 -

Faces Vertices

The faces of the mesh index in to the
vertex list. Each entry in the vertex list
contains all of the properties necessary
for the Shading ID associated with the
renderable mesh.

8.8.4 Renderable mesh resolution updates
The renderable mesh resolution updates describe how the renderable mesh is modified to
increase or decrease the level of resolution in a render mesh. The process is similar to the
author mesh resolution updates described above. The update adds a new vertex position.
Because the vertex position is not unique for each entry in the vertex list, multiple new entries
may be created in the vertex list for the update. To increase the resolution, the update specifies
the new vertices to add to the vertex list, the new faces to add to the face list, and the updates
to existing faces. To decrease the resolution, the same information is used to remove the new
faces and undo the changes to the previously existing faces.

Render mesh resolution
update.

Add new entries to the
vertex list to add the new
position and normals. A
new entry is needed for
each combination.

Update the existing face to
use one of the new
vertices. Add two new
faces.

Vertex List

Face List

8.8.5 CLOD modif ier
The CLOD mesh generator may convert an author mesh into more than one renderable mesh.
The CLOD modifier manages the renderable mesh resolution updates to maintain a visually
consistent level of detail across renderable meshes generated from a common author mesh.

The CLOD controller translates the desired level of detail of an author mesh into levels of detail
appropriate for each renderable mesh.

8.9 Rendering and Shading
Each of the nodes in the node palette is the first modifier in an instance modifier chain. The final
data packet in the modifier chain is accessible to clients of the run-time system. This section
describes some of the data elements in the final data packet and how those data elements may be
used to draw renderable elements.

These data elements can be found in the final data packet of the node modifier chain. Interfaces
supported by these data elements will be specified in a future edition of this standard.

Details of rendering systems and culling systems are outside the scope of this specification.

8.9.1 Transform Set
The transform set data element is present for all node types.

The transform set is a set of transformations from local coordinate space to global coordinate
space. These transformations include the effects of all parent-child relationships and animation
modifiers. The transform set for a child node will have one transform for each transform in the
transform sets of its parents. A node with no parents will have an empty transform set.

A node will appear once in the world for each transform in the transform set. If the transform set
is empty, the node is disconnected from the world and does not appear in the rendered view.

8.9.2 Renderable Group
The renderable group data element is present for model nodes. The renderable group may also
be present for new node types added to the system through the extensibility mechanism.

The renderable group holds a renderable element group and an associated shading group.
There are three types of renderable element groups: renderable mesh group, renderable line
group, and renderable point group.

A data packet may contain more than one renderable group. Different types of renderable
elements are not mixed in the same renderable group.

8.9.2.1 Shader
A shader contains information needed to determine the appearance of a surface during
rendering. This edition specifies one shader called the Lit Texture Shader. Future editions
may specify additional types of shaders.

The Lit Texture Shader includes references to Material Resources and Texture Resources.
The Lit Texture Shader also indicates how to combine those resources when rendering.

- 16 -

- 17 -

Lit Texture
Shader

Material Palette

Texture Palette

Shader Palette

Material

Texture

Texture

8.9.2.2 Shading Group
The shading group holds a set of shader lists. There is one shader list for each renderable
element in the renderable element group. The shader list is a list of shaders that should be
used to draw the renderable element. The shader list contains names of shaders in the
shader resource palette. The shader list is ordered and the shaders are used in order.

8.9.2.3 Renderable Mesh Group
The renderable mesh group contains a set of renderable meshes. Each renderable mesh is
associated with a different shader list in the shader group. The renderable mesh consists of a
vertex array and a face array. Each vertex in the vertex array contains all of the per vertex
attributes (such as position, normal, texture coordinates, etc.) for that vertex. Each face in the
face array contains three indices into the vertex array; one index for each corner of the face.
All faces in the renderable mesh are triangles. Each face in the face array is drawn according
to the parameters of the shaders in the shader list.

8.9.2.4 Renderable Line Group
The renderable line group contains a set of renderable line sets. Each renderable line set is
associated with a different shader list in the shader group. The renderable line set consists of
a vertex array and a line array. Each vertex in the vertex array contains all of the per vertex
attributes (such as position, normal, texture coordinates, etc.) for that vertex. Each line in the
line array contains two indices into the vertex array; one index for each end of the line
segment. Each line in the line array is drawn according to the parameters of the shaders in
the shader list.

8.9.2.5 Renderable Point Group
The renderable point group contains a set of renderable point sets. Each renderable point set
is associated with a different shader list in the shader group. The renderable point set
consists of a vertex array. Each vertex in the vertex array contains all of the per vertex
attributes (such as position, normal, texture coordinates, etc.) for that vertex. Each vertex in
the vertex array is drawn according to the parameters of the shaders in the shader list.

8.9.3 Renderable Bound
The renderable bound data element is present for model nodes. The renderable bound may
also be present for new node types added to the system through the extensibility mechanism.

The renderable bound may be either a bounding sphere or a bounding box. The choice of which
type of renderable bound to support is up to the implementation of the various nodes and
modifiers.

The final data packet shall contain either one renderable bounding sphere or one renderable
bounding box or both.

The renderable bound encompasses all renderable elements of the renderable geometry group.
The bounding sphere or box does not need to be a tightest bounding sphere or box.

If the data packet contains more than one renderable group, the renderable bound shall
encompass all the renderable groups.

The renderable bound can be used by a culling system to determine which nodes may have
visual impact on a particular frame rendering.

The renderable bound is described in local coordinate space. The transforms in the transform
set must be applied to the renderable bound for use by the culling system.

To make full use of the modifier chain’s lazy evaluation feature, modifiers should avoid making
the renderable bound depend on the renderable group.

8.10 Serialization
This section describes how the objects stored in the various palettes are serialized. Clause 9
provides details on the formatting of particular objects. Clause 10 contains additional details on
compression requirements.

8.10.1 Object serial ization
Each object is serialized as a sequence of one or more blocks. The first block is called the
declaration block. Any subsequent blocks are called continuation blocks. The declaration block
contains enough information to create the object and place it in the correct palette location. For
modifiers, the declaration block also indicates placement within the modifier chain. Most types
of objects have only the declaration block. Objects which require a large amount of information
use continuation blocks to carry most of the data.

Each block is assigned a priority number. The priority number is used for sequencing the blocks
and for interleaving the blocks from multiple objects. Declaration blocks have a priority number
of zero. The priority number increases for each continuation block; the amount of increase must
be greater than zero. The maximum priority number is 0x7FFFFFFF.

8.10.2 Fi le structure
A file is structured as a sequence of blocks. Blocks with lower priority numbers precede blocks
with higher priority numbers. The first block is the File Header Block. The File Header Block is
the only required block for a U3D file. The File Header Block is followed by declaration blocks.
Continuation blocks may follow the declaration blocks. 9.1 contains more details on sequencing
of blocks.

8.10.3 Block structure
Each block contains size fields so that the loader can determine the end of a block if the data in
that block is not required or if a decoder for that block type is unavailable.

Each block has a data section and a meta data section. The format of the data section will vary
based on the type of the object. The interpretation of the data section is specified in Clause 9 of
this specification. The format of the meta data section is always a sequence of Key/Value pairs.
Although the format of the meta data is defined in 9.2.6, the interpretation of the content of the
Key/Value pairs is outside the scope of this specification.

Each block contains a block type field to identify the formatting of the data section.

8.10.4 Fi le reference
A U3D file can reference other U3D files using a File Reference block. When the referencing file
is loaded, the referenced files are also loaded. Using this mechanism, a large file can be
partitioned into several smaller files. 9.4.2 File Reference contains details.

- 18 -

- 19 -

8.10.5 Declaration block section
The declaration block section contains the information necessary to create all of the objects in
the file. When a loader has completed processing the declaration section, all of the object in the
file have been created and added to the appropriate palettes.

Before processing the declaration section can be considered complete, the processing of
declaration sections of any referenced files must also be complete.

Details on when rendering may begin are outside the scope of the spec and are left to an
implementation.

8.11 Extensibility
The U3D run-time architecture may be extended by new objects not defined in this document.
These new objects shall be in the class of modifier objects within a modifier chain. File format
requirements for the new objects are in 9.4.6 New Object Type and 9.4.7 New Object Block.

The New Object Type block describes the extension and where to get more information about the
extension. The New Object Block blocks provide the minimal syntax required for the blocks that
serialize the extension objects.

Because the new objects must be within a modifier chain, these extensions are limited to the node
palette, model resource palette, and texture resource palette. These extensions can modify
existing data elements and can also introduce new data elements.

The meta-data feature can also be used to associate additional information with any object.

9 File Format

9.1 File structure
A file is structured as a sequence of blocks. The first block is the File Header Block. The File
Header Block is followed by declaration blocks. Continuation blocks may follow the declaration
blocks. Each block contains size fields so that the loader can determine the end of a block if the
data in that block is not required or if a decoder for that block type is unavailable.

File Header Block

Continuation Block

Declaration Block

9.1.1 Fi le Header Block

The File Header Block contains information about the file. The loader uses the File Header
Block to determine how to read the file.

9.1.2 Declaration Block
Declaration Blocks contain information about the objects in the file. All objects must be defined
in a Declaration Block. The File Header Block is considered to be a Declaration Block.

9.1.3 Continuation Block
The Continuation Blocks can provide additional information for objects declared in a Declaration
Block. Each Continuation Block must be associated with a Declaration Block.

9.2 Block structure
All block types have the same basic structure. The Block Type, Data Size, and Meta Data Size
determine how the remainder of the block is interpreted by the loader. Data Padding and Meta
Data Padding fields are used to keep 32-bit alignment relative to the start of the File Header
Block. The start of the Block Type field, Data section and Meta Data section are all 32-bit aligned.

Block Type

Data Size

Meta Data Size

Data

Meta Data

Data Padding

Meta Data Padding

9.2.1 U32: Block Type

Block Type identifies the type of object associated with this block. The interpretation of the data
section of this block depends on the Block Type. This specification defines valid block type
values for the base profile. The New Object Type block may be used to define additional valid
block type values for the extensible profile. Block type values other than those defined for the
base profile or defined through a New Object Type block shall not be used.

9.2.2 U32: Data Size
Data Size is the size of the Data section in bytes. Data Size does not include the size of the
Data Padding.

- 20 -

- 21 -

9.2.3 U32: Meta Data Size
Meta Data Size is the size of the Meta Data section in bytes. Meta Data Size does not include
the size of the Meta Data Padding.

9.2.4 Data
Data Size bytes of data. The interpretation of the Data section depends on the Block Type.

9.2.5 variable: Data Padding
Data Padding is a variable size field. Zero to three bytes are inserted to maintain 32-bit
alignment for the start of the Meta Data section. The value of the padding bytes is 0x00.

9.2.6 Meta Data
Meta Data is Meta Data Size bytes of data. The Meta Data section contains a sequence of
Key/Value pairs. The interpretation of the content of the Key/Value pairs is outside the scope of
this specification.

Key/Value Pair Count

Key/Value Pair Count

Key/Value Pair Attributes

Value String

Key String

Binary Value Size

Binary Value

9.2.6.1 U32: Key/Value Pair Count
Key/Value Pair Count is the number of Key/Value pairs in this Meta Data section.

9.2.6.2 U32: Key/Value Pair Attr ibutes:
The Key/Value Pair Attributes indicate formatting options for the Key/Value pair. The
following attribute values can be OR'd together:
0x00000000 - indicates the Value is formatted as a String
0x00000001 - indicates the Value is formatted as a binary sequence.
0x00000002 - indicates the Value is HIDDEN and should not be displayed by the viewer.
0x00000010 - indicates that this meta data should be used when double-clicked.
0x00000020 - indicates the Value should be displayed by the viewer in a right-click menu.
0x00000040 - indicates the Key should be displayed by the viewer in a right-click menu.
0x00000100 - indicates the Value is an ACTION and should executed by the viewer.
0x00000200 - indicates the Value is a FILE and should opened by the viewer.

0x00000400 - indicates the Value is MIME DATA and should opened by the viewer.

 value is formatted as a string or as binary. Note that

ct to possible translation depending on the client platform. Binary

ed by including an Attribute String in

te=myValue. The

e first character after the "="

 - defines two attributes bold and italic

alic

 mm

ing attribute containing

9.2.6.3 Key String
e key used to look up a value.

9.2.6.4
value associated with a key.

9.2.6.5
sociated with a key.

9.2.6.6
ary Value Size bytes of data that is associated with a key.

9.2.7 va
ze field. Zero to three bytes are inserted to maintain 32-bit

9.3 B
claration blocks unless stated otherwise. Blocks may contain names

All other attribute values are reserved.
The attributes must indicate whether the
this indication is determined from a single bit that may be set to zero or one. All other
attributes are optional.

String values are subje
values are not subject to any form of string translation.
Additional attributes of the key/value pair may be defin
the Key String. Multiple Attribute Strings can appear in a given Key String.

An Attribute String shall have the form #myAttribute or #myAttribu
myAttribute string may not contain any whitespace, "=" or "#" characters. The attribute starts
with the first character after the initial "#" character, and ends with the last character before a
whitespace, "#", or "=" character, or the end of the Key String.

When an attribute value is specified, the value starts with th
character, and ends with the last character before a whitespace or "#" character, or the end
of the Key String. If a value contains whitespace or "#" characters, it should be enclosed in
quotes ("). When a value string contains a quote, replace the quote with two consecutive
quotes. The quotes that delimit the value are not considered part of the value definition.

Examples:

#bold#italic

#bold #italic - also defines two attributes bold and it

#height=7mm - defines a height attribute with a value of 7

#height="7 mm" - defines a height attribute with a value of 7 mm

#index="#7" - defines an index attribute with a value of #7

#warning="Never yell ""Fire!"" in a crowded theater" - defines a warn
the quoted string "Fire!". The actual value of the attribute is: Never yell "Fire!" in a crowded
theater.

String:
A String representing th

String: Value String
A String representing the

U32: Binary Value Size
The size of the data that is as

Binary Value
Binary Value is Bin

r iable: Meta Data Padding
Meta Data Padding is a variable si
alignment for the start of the next block. The value of any padding bytes is 0x00.

lock definitions
All blocks are considered de
that reference objects that have not been defined. When loading a file, these names will be
accepted and it should be assumed that the needed objects will be loaded or created at some
future time. Object implementations shall use fallback values for references to undefined objects.
Definition of fallback values is implementation dependent.

- 22 -

- 23 -

9.4
9.4.1

required block in a file. It contains information about the rest of the
eclaration block. The Priority Update Block is the

9.4.1.1.1
at used to write this file. The current major

 shall use a major version number less than zero.

9.4.1.1.2
he Minor Version

 the encoder used to write this file.

9.4.1.2 U
Pr lues are

 no option features used

File structure blocks
File Header (blocktype: 0x00443355)
The File Header is the only
file. The File Header block is considered a d
continuation block type associated with the File Header.

9.4.1.1 Version

File Size

Declaration Size

Character Encoding

Profile Identifier

Units Scaling Factor

Version

Major Versio

I16: Major Version
Major Version is the version of the file form

n

Minor Version

version number is zero. Until compliance has been validated for an encoder, all files
created by that encoder

I16: Minor Version
Minor Version is implementation dependent and may contain any value. T
may be used to indicate the version of

32: Profi le Identif ier
ofile Identifier is used to identify optional features used by this file. Valid va

0x00000000 – Base profile;

0x00000002 – Extensible profile; uses extensibility features

0x00000004 – No compression mode

0x00000008 – Defined units

Profile bits may be combined using the OR operator.

icates this file may contain New Object Type blocks and other
ot support the extensible profile is not
le with the extensibility profile bit set. It

ing uncompressed value is used in a file with the no compression mode bit set.

9.4.1.3

he File Header block and all declaration blocks
 in those blocks.

9.4.1.4

hose blocks. File Size does not include the
al files referenced by the contents of any block.

9.4.1.5

ents/character-sets
 enum values to various character set encodings. Character

9.4.1.6

ts the units for those values to metres. The
sed by an application to scale objects appropriately when

9.4.2 Fi
A

f the file based on name or object type.

The Extensible profile bit ind
blocks defined for extensibility. A loader that does n
required to process those blocks or any blocks in a fi
is recommended that such a loader make a best effort to load those portions of the file that it
can load.

The no compression mode bit indicates this file does not contain any compressed values.
Where the file format syntax defined in Clause 9 calls for a compressed value, the
correspond
For example, a compressed U16 will be replaced with a U16. All readers shall support both
the default compressed mode and the no compression mode of operation. The setting of the
no compression mode bit applies to the entire U3D file but does not apply to other files
referenced by the U3D file.

The defined units bit indicates the objects in this file are defined with units. If this bit is not
set, then the objects are unitless.

U32: Declaration Size
Declaration Size is the number of bytes in the Declaration Block section of the file.
Declaration Size includes the size of t
including any padding bytes

U64: Fi le Size
File Size is the number of bytes in this file. File Size includes the size of all blocks including
the File Header block and any padding bytes in t
size of any extern

U32: Character Encoding
Character Encoding is the encoding used for strings in this file. The Internet Assigned

ttp://www.iana.org/assignmNumbers Authority (IANA) website at h
contains the assignment of MIB
Encoding can be used for translation of strings for a client application.

For the current version of U3D, the Character Encoding shall be UTF-8. UTF-8 corresponds
to a MIB enum value of 106.

F64: Units Scaling Factor
Units Scaling Factor defines the units used in this file. Multiplying Units Scaling Factor by the
values of positions and lengths in the file conver
Units Scaling Factor can be u
combining files that use different units.

For example, if the units in the file are millimetres, the Units Scaling Factor would be 0.001.
A value of 5 in the file would be 5 mm. Multiplying by 0.001 would convert 5 mm to 0.005 m.

Units Scaling Factor shall be present only if the defined units bit in the Profile Identifier is set.

le Reference (blocktype: 0xFFFFFF12)
File Reference block contains information for finding a single file that is associated with this

file and is loaded with it. Multiple locations for the file may be specified. The File Reference
block may also contain filters that load a portion o

An implementation could keep track of which external file reference was used to load which
objects but is not required to do so.

- 24 -

- 25 -

String: Scope Name
Scope Name is used to identify the external file reference. Depending on the collision policy,

Scope Name

URL Count

File Reference URL

Filter Count

Filter Type

URL Count

Object Name Filter Object Type Filter

Name Collision Policy

Filter Count

World Alias Name

File Reference Attributes

File Reference Bounding
Sphere

File Reference Axis-Aligned
Bounding Box

9.4.2.1

sed to modify the names of objects in the referenced file.

9.4.2.2
about the

external file. The bounding information is optional. All other values are reserved.

the scope name may be u

U32: Fi le Reference Attr ibutes
File Reference Attributes is a bitfield indicating the presence of optional information

0x00000001 – Bounding sphere information present

9.4.2.3
he bounding sphere should contain all of the geometry expected to be produced by the

ere is an initial estimate of the extent of
time after loading. The bounding sphere
whether to load the external file.

9.4.2.3.1
ordinate of the center of the bounding sphere.

9.4.2.3.2
e of the center of the bounding sphere.

9 ing Box
Th duced

. This axis-aligned bounding box is an initial estimate
f me after loading. The axis-

al termine whether to load the

0x00000002 – Axis-aligned bounding box present

File Reference Bounding Sphere
T
modifier chains in the external file. This bounding sph
the geometry and may be updated by the run-
information in this block may be used to determine

Bounding Sphere Center X

F32: Bounding Sphere Center X
Bounding Sphere Center X is the X co

F32: Bounding Sphere Center Y
Bounding Sphere Center Y is the Y coordinat

Bounding Sphere Radius

Bounding Sphere Center Z

Bounding Sphere Center Y

9.4.2.3.3 F32: Bounding Sphere Center Z
Bounding Sphere Center Z is the Z coordinate of the center of the bounding sphere.

9.4.2.3.4 F32: Bounding Sphere Radius
Bounding Sphere Radius is the radius of the bounding sphere.

.4.2.4 Fi le Reference Axis-Aligned Bound
e axis-aligned bounding box should contain all of the geometry expected to be pro

by the modifier chains in the external file
o the extent of the geometry and may be updated by the run-ti

igned bounding box information in this block may be used to de
external file.

- 26 -

- 27 -

Axis-Aligned Bounding Box Min Y

Axis-Aligned Bounding Box Min X

Axis-Aligned Bounding Box Max Z

Axis-Aligned Bounding Box Max Y

Axis-Aligned Bounding Box Max X

Axis-Aligned Bounding Box Min Z

9.4.2.4.1 F32: Axis-Aligned Bounding Box Min X

X coordinate of the bounding box minimum corner

9.4.2.4.2 F32: Axis-Aligned Bounding Box Min Y
Y coordinate of the bounding box minimum corner

9.4.2.4.3 F32: Axis-Aligned Bounding Box Min Z
Z coordinate of the bounding box minimum corner

9.4.2.4.4 F32: Axis-Aligned Bounding Box Max X
X coordinate of the bounding box maximum corner

9.4.2.4.5 F32: Axis-Aligned Bounding Box Max Y
Y coordinate of the bounding box maximum corner

9.4.2.4.6 F32: Axis-Aligned Bounding Box Max Z
Z coordinate of the bounding box maximum corner

9.4.2.5 U32: URL Count
URL Count is the number of URL strings that follow.

9.4.2.6 String: Fi le Reference URL
File Reference URL is a String identifying the external file location. Multiple locations can be
specified for the external file. The loader shall load the file from one of the locations. HTTP
and FTP protocols will be recognized with absolute and relative addressing.

9.4.2.7 U32: Fi l ter Count
Filter Count is the number of filters to apply when loading the referenced file. If the filter
count is zero, then all objects from the referenced file are loaded. If the filter count is greater
than zero, then objects from the referenced file shall only be loaded if they match the
specification of at least one of the filters. A modifier object shall be loaded if and only if the
object it modifies is loaded.

9.4.2.8 U8: Fi l ter Type
Filter Type is the type of the filter.

0x00 – Object Name Filter

0x01 – Object Type Filter

9.4.2.9 String: Object Name Fil ter
Object Name Filter is a string used to filter objects by name. An object shall be loaded if its
name matches Object Name Filter.

The Object Name Filter may contain the wildcard characters question mark ‘?’ and asterisk
‘*’. The question mark wildcard matches any one character at that position. The asterisk
wildcard matches any zero or more characters at that position. The numerical value and size
of the wildcard characters is dependent on the Character Encoding defined in the File Header
block.

9.4.2.10 U32: Object Type Fi l ter
Object Type Filter is used to filter objects by type. An object shall be loaded if the block type
of its declaration block matches Object Type Filter.

9.4.2.11 U8: Name Coll ision Policy
A name collision occurs when the file being loaded contains an object with the same name as
an object that already exists either loaded previously or created programmatically. Name
Collision Policy indicates how name collisions are to be handled. Valid values are:

0x00 – Replace existing object with the new object from external file.

0x01 – Discard the new object from external file.

0x02 – Prepend scope name to object name for all objects from the external file

0x03 – Prepend scope name to new object name if there is a collision.

0x04 – Append instance number to new object name if there is a collision.

Prepending the scope name avoids collisions but does not prevent them in all cases. The
new name with prepended scope name may still collide with an existing object. In this
situation, the new object from the external file will replace that existing object.

When appending instance numbers, instance numbers shall be chosen to avoid collision with
previously loaded objects.

9.4.2.12 String: World Alias Name
The world is the default node. The name of the default node is the empty string. Any
references to the default node in the external file are replaced with a reference to the node
named by World Alias Name.

9.4.3 Modif ier Chain (blocktype: 0xFFFFFF14)
Modifier Chain blocks are used to contain the declaration blocks for an object and its modifiers.

If an object does not have any modifiers, then the declaration block for that object may be
contained in a modifier chain block but is not required to be contained in a modifier chain block.

If an object does have modifiers, then the declaration blocks for the object and its modifiers
shall be contained in the data section of a modifier chain block. Note: The data size for the
modifier chain block includes the size of the contained modifier declaration blocks.

- 28 -

- 29 -

Modifier Chain Name

Modifier Chain Type

Modifier Count

Modifier Declaration
Block

Modifier Chain Padding

Modifier Count

Modifier Chain Attributes

Modifier Chain Bounding Sphere

Modifier Chain Axis-Aligned
Bounding Box

9.4.3.1 String: Modif ier Chain Name

Modifier Chain Name is the name of the modifier chain and also the name of all modifiers in
the chain.

9.4.3.2 U32: Modif ier Chain Type
Modifier Chain Type indicates the type of modifier chain.

0 – Node modifier chain (also called instance modifier chain).

1 – Model Resource modifier chain (also called resource modifier chain).

2 – Texture Resource modifier chain (also called texture modifier chain).

9.4.3.3 U32: Modif ier Chain Attr ibutes
Modifier Chain Attributes is a bitfield indicating the presence of optional information about the
modifer chain. The bounding information is optional. All other values are reserved.

0x00000001 – Bounding sphere information present

0x00000002 – Axis-aligned bounding box present

9.4.3.4 Modif ier Chain Bounding Sphere
The bounding sphere should contain all of the geometry expected to be produced by the
modifier chain. This bounding sphere is an initial estimate of the extent of the geometry and
may be updated by the run-time after loading. The bounding sphere information in this block
may be used to exclude the modifier chain from loading.

Bounding Sphere Center X

Bounding Sphere Radius

Bounding Sphere Center Z

Bounding Sphere Center Y

9.4.3.4.1 F32: Bounding Sphere Center X

X coordinate of the center of the bounding sphere

9.4.3.4.2 F32: Bounding Sphere Center Y
Y coordinate of the center of the bounding sphere

9.4.3.4.3 F32: Bounding Sphere Center Z
Z coordinate of the center of the bounding sphere

9.4.3.4.4 F32: Bounding Sphere Radius
Radius of the bounding sphere

9.4.3.5 Modif ier Chain Axis-Aligned Bounding Box
The axis-aligned bounding box should contain all of the geometry expected to be produced
by the modifier chain. This axis-aligned bounding box is an initial estimate of the extent of the
geometry and may be updated by the run-time after loading. The axis-aligned bounding box
information in this block may be used to exclude the modifier chain from loading.

- 30 -

- 31 -

Axis-Aligned Bounding Box Min Y

Axis-Aligned Bounding Box Min X

Axis-Aligned Bounding Box Max Z

Axis-Aligned Bounding Box Max Y

Axis-Aligned Bounding Box Max X

Axis-Aligned Bounding Box Min Z

9.4.3.5.1 F32: Axis-Aligned Bounding Box Min X

X coordinate of the bounding box minimum corner

9.4.3.5.2 F32: Axis-Aligned Bounding Box Min Y
Y coordinate of the bounding box minimum corner

9.4.3.5.3 F32: Axis-Aligned Bounding Box Min Z
Z coordinate of the bounding box minimum corner

9.4.3.5.4 F32: Axis-Aligned Bounding Box Max X
X coordinate of the bounding box maximum corner

9.4.3.5.5 F32: Axis-Aligned Bounding Box Max Y
Y coordinate of the bounding box maximum corner

9.4.3.5.6 F32: Axis-Aligned Bounding Box Max Z
Z coordinate of the bounding box maximum corner

9.4.3.6 variable: Modif ier Chain Padding
Modifier Chain Padding is a variable size field. Zero to three bytes shall be inserted to
maintain 32-bit alignment for the start of the Modifier Count field. This padding also provides
32-bit alignment for the start of the Modifier Declaration Blocks. The value of any padding
bytes is 0x00.

9.4.3.7 U32: Modif ier Count
Modifier Count is the number of modifiers in the modifier chain.

9.4.3.8 Modif ier Declaration Block
Modifier Declaration Block is a declaration block for a modifier in the modifier chain. All
declaration blocks for modifiers must be contained in a Modifier Chain Block. The modifier
name in the Modifier Declaration Block shall match the Modifier Chain Name. Details of the
Modifier Declaration Block can be found in the sections for those blocks.

9.4.4 Priority Update (blocktype: 0xFFFFFF15)
Priority Update blocks indicate the priority number of following continuation blocks. Priority
Update blocks are in the continuation section of the file. The Priority Update block is considered
a continuation of the File Header block. Priority Update blocks are not required.

New Priority

9.4.4.1 U32: New Priority

Blocks which follow this block have a priority number of New Priority. A lower priority number
means the block appears earlier in the file. The value of New Priority in this block shall not be
less than the value of New Priority in priority update blocks earlier in the file. New Priority
shall be greater than zero.

9.4.5 New Object Type (blocktype: 0xFFFFFF16)
The New Object Type block provides the mechanism for extending the file format.

Files that contain New Object Type blocks must indicate use of the Extensible profile in the
Profile Identifier in the File Header.

Like other objects, these new objects are serialized as a sequence of one or more blocks. The
declaration block may be followed by a sequence of continuation blocks. These new objects
shall be in the class of modifier objects within a modifier chain.

The New Object Type identifies the file format extension with a descriptive name and a unique
Extension ID. The Extension ID is a GUID chosen to avoid possibility of collision with other file
format extensions. The New Object Type also declares the values of blocktypes used by the
extension within this file. For different files using a particular extension, different blocktypes
may be used but the Extension ID shall remain the same.

New Declaration Block Type and any New Continuation Block Type shall have values in the
range from 0x00000100 to 0x00FFFFFF. These values shall not be the same as those used in
other New Object Type blocks in the same file. It may be necessary to renumber block type
values to meet this requirement (for example when merging two files). When renumbering
block type values, the order of continuation block types in the New Object Type block shall be
preserved.

Although unique extension names would be more useful, the New Object Type Name is not
required to be unique. New Obect Type blocks should not be discarded solely due to name
collision.

- 32 -

- 33 -

Extension URL Count

New Object Type Name

New Declaration Block Type

Continuation Block Type
Count

New Continuation Block Type
Continuation Block Type Count

Extension ID

Modifier Type

Extension URL Count

Extension Information URL

Extension Vendor Name

Extension Information String

9.4.5.1 String: New Object Type Name

New Object Type Name is the name of the new type of object.

9.4.5.2 U32: Modif ier Type
Modifier Type indicates the type of modifier chain used for the new object.

0 – Node modifier chain (also called instance modifier chain).

1 – Model Resource modifier chain (also called resource modifier chain).

2 – Texture Resource modifier chain (also called texture modifier chain).

9.4.5.3 Extension ID
Extension ID is a GUID used to identify the file format extension for this type of new object.

Extension ID A

Extension ID B

Extension ID C

Extension ID D7

Extension ID D6

Extension ID D5

Extension ID D4

Extension ID D3

Extension ID D2

Extension ID D1

Extension ID D0

9.4.5.3.1 U32: Extension ID A

Extension ID A is the 32-bit element of the Extension ID.

9.4.5.3.2 U16: Extension ID B
Extension ID B is the first 16-bit element of the Extension ID.

9.4.5.3.3 U16: Extension ID C
Extension ID C is the second 16-bit element of the Extension ID.

9.4.5.3.4 U8: Extension ID D0
Extension ID D0 is the first 8-bit element of the Extension ID.

- 34 -

- 35 -

9.4.5.3.5 U8: Extension ID D1
Extension ID D1 is the second 8-bit element of the Extension ID.

9.4.5.3.6 U8: Extension ID D2
Extension ID D2 is the third 8-bit element of the Extension ID.

9.4.5.3.7 U8: Extension ID D3
Extension ID D3 is the fourth 8-bit element of the Extension ID.

9.4.5.3.8 U8: Extension ID D4
Extension ID D4 is the fifth 8-bit element of the Extension ID.

9.4.5.3.9 U8: Extension ID D5
Extension ID D5 is the sixth 8-bit element of the Extension ID.

9.4.5.3.10 U8: Extension ID D6
Extension ID D6 is the seventh 8-bit element of the Extension ID.

9.4.5.3.11 U8: Extension ID D7
Extension ID D7 is the eighth 8-bit element of the Extension ID.

9.4.5.4 U32: New Declaration Block Type
New Declaration Block Type is the Block Type for the declaration block for the new object
type.

9.4.5.5 U32: Continuation Block Type Count
Continuation Block Type Count is the number of continuation block types for this new object
type.

9.4.5.6 U32: New Continuation Block Type
New Continuation Block Type is a Block Type of a continuation block that continues the
declaration block for this new object type.

9.4.5.7 String: Extension Vendor Name
Extension Vendor Name is a string containing the name of the provider of the technology in
the extension.

9.4.5.8 U32: Extension URL Count
Extension URL Count is the number of Extension Information URL strings.

9.4.5.9 String: Extension Information URL
Extension Information URL is a string containing a URI. The information at that URI should
contain information about the extension and how to obtain the decoder required for decoding
the new blocktypes.

9.4.5.10 String: Extension Information String
Extension Information String describes the purpose of this type of new objects. The string
should provide information about the extension and a reference to the specification that
describes the contents of the new object blocks.

9.4.6 New Object Block (blocktype: 0x00000100 to 0x00FFFFFF)
This section defines the syntax required for new object blocks. Both declaration blocks and
continuation blocks shall follow this syntax. A New Object Type block with a declaration of the
blocktypes used shall precede the New Object Block.

Object Name

Chain Index

Object Data

9.4.6.1 String: Object Name

Object Name is the name of this extension modifier. Object Name is also the name of the
modifier chain that contains this modifier.

9.4.6.2 U32: Chain Index
Chain Index indicates the position of this modifier in the modifier chain. The Chain Index for
new objects in the node palette shall be greater than zero. The first modifier (with a chain
index of zero) shall be a node object defined in 9.5 Node blocks.

9.4.6.3 Object Data
The interpretation of the Object Data is outside the scope of this standard. The Extension
Information URL and Extension Information String contained in the corresponding New
Object Type block may be consulted for more information on how to interpret Object Data.

The modifier chain can be used to avoid including within Object Data information already
defined for other basic block types. The modifier chain could contain both a basic block and
a new object block. For viewers unable to interpret the Object Data in the new object block,
the information in the basic block can still be used.

9.5 Node blocks
Nodes are the entities that populate the scene graph. Each node type contains a name, the
number of parents it has, the name of each parent, and a transform for each parent specifying the
position and orientation of the node relative to that parent. Nodes (except for the group node,
covered below) also have an associated resource that is specified by name. To allow data
sharing, multiple nodes may use the same resource. Nodes may also contain additional fields that
are used during rendering for each instance of a resource.

9.5.1 Group Node (blocktype: 0xFFFFFF21)
The Group Node contains: a name, the number of parents, the parents’ names, and a transform
relative to each parent. Group nodes are used to collect other nodes to build up larger objects.

The Group Node produces the following outputs: Transform Set.

The Group Node’s outputs have no dependencies.

Example: A car may be composed of many model nodes to make up the body, several light
nodes for lights on the car, and a few view nodes to simulate the car’s mirrors. Instead of
choosing one of the nodes to be the parent node and having all other nodes rendered relative to
that node, they can all be children of a group node named “car.” This allows any of the children
nodes to be modified or deleted without affecting the other nodes.

- 36 -

- 37 -

Group Node Name

Parent Node Data

9.5.1.1 String: Group Node Name

Group Node Name is the name of the group node.

9.5.1.2 Parent Node Data
Recursive parent child relationships (e.g. Node_1 is a child of Node_2 is a child of Node_1)
will cause infinite loops when evaluating transforms (because Node_2’s transform depends
on Node_1’s transform, and Node_1’s transform depends on Node_2’s transform). Recursion
in the parent child hierarchy is illegal and will generate an error. These relationships must be
checked at load time.

A parent’s name may be an empty string. In this case, the parent node is the default entry in
the node palette. The default node palette entry is a group node.

Parent Node Count

16
Parent Node Transform
Matrix Element

Parent Node Name

Parent Node Count

9.5.1.2.1 U32: Parent Node Count

Parent Node Count is the number of parent nodes for this node. A node may have zero
parents.

9.5.1.2.2 String: Parent Node Name
Each parent node is identified by the object’s name.

9.5.1.2.3 F32: Parent Node Transform Matrix Element
This node holds a transform matrix indicating the position and orientation of the node
relative to each parent node. There is a separate transformation matrix for each parent.
The matrix is written in the alphabetic order described below:

⎥
⎥

⎦
⎢
⎢

⎣ PLHD
OKGC

 ⎥
⎥

⎢
⎢ NJFB

⎤⎡ MIEA

9.5.2
de contains: a name, the number of parents, the parents’ names, and a transform

in. A

ified by the model resource name field in the

Transform Set, View Frustum, View Size.

9.5.2.1

odel Node Name.

9.5.2.2

Model Node (blocktype: 0xFFFFFF22)
The Model No
relative to each parent. The Model Node also contains the name of a model resource cha
model node is the first modifier in a node modifier chain. The node modifier chain takes input
from the model resource modifier chain that is spec
model node.

The Model Node produces the following outputs:

The Model Node’s outputs depend on: Transform.

Model Node Name

Model Resource Name

Model Visibility

Parent Node Data

String: Model Node Name
The Model Node is identified by the M

Parent Node Data
Described in 9.5.1.2 Parent Node Data for the group node block.

e Name

9.5.2.4 isibi l i ty
 used to indicate whether the front facing or back facing surface should be
alues are reserved.

9.5.3 0xFFFFFF23)
arents’ names, and a transform

All other
 light resource; so, the Light Node does not

have any additional fields.

The Light Node produces the following outputs: Transform Set.

The Light Node’s outputs have no dependencies.

9.5.2.3 String: Model Resourc
Model Resource Name is the name of the model resource chain used as input to the model
node’s modifier chain.

U32: Model V
Model Visibility is
drawn. All other v

0 – Not visible

1 – Front visible

2 – Back visible

3 – Front and back visible

Light Node (blocktype:
The Light Node contains: a name, the number of parents, the p
relative to each parent. The Light Node also contains the name of a light resource.
information needed for a light is contained in the

- 38 -

- 39 -

Light Node Name

Light Resource Name

Parent Node Data

9.5.3.1 String: Light Node Name

The Light Node is identified by Light Node Name.

9.5.3.2 Parent Node Data
Described in 9.5.1.2 Parent Node Data for the group node block.

9.5.3.3 String: Light Resource Name
Light Resource Name identifies the light resource used by this Light Node.

9.5.4 View Node (blocktype: 0xFFFFFF24)
The View Node contains: a name, the number of parents, the parents’ names, and a transform
relative to each parent. The View Node also contains the name of a view resource, clipping,
projection, and view port fields that are specific to this instance and define how the view is
rendered on the screen. The clipping information specifies what part of the world is available to
the view. The view may be rendered with one, two, or three point perspective projection or
orthogonal projection. The view port fields determine where on the screen the view will be
rendered.

The Group Node produces the following outputs: Transform Set.

The Group Node’s outputs have no dependencies.

View Node Name

View Resource Name

View Clipping

View Projection

View Port

Parent Node Data

Backdrop Properties

Backdrop Count

Backdrop Count

Overlay Count

Overlay Properties
Overlay Count

View Node Attributes

9.5.4.1 String: View Node Name

View Node Name identifies the View Node.

9.5.4.2 Parent Node Data
Described in 9.5.1.2 Parent Node Data for the group node block.

9.5.4.3 String: View Resource Name
View Resource Name identifies the view resource used by this View Node.

9.5.4.4 U32: View Node Attr ibutes
View Node Attributes is a bitfield used to indicate different modes of operation of the view
node. View Node Attributes are defined for projection mode and for screen position units

- 40 -

- 41 -

mode. Attributes can be combined by OR operation. Only one projection mode can be
selected. All other values are reserved.

0x00000000 – default attributes: three-point perspective projection and screen position units
expressed in screen pixels.

0x00000001 – screen position units: expressed as percentage of screen dimension.

0x00000002 – projection mode: orthographic projection is used by the view

0x00000004 – projection mode: two-point perspective projection is used by the view

0x00000006 – projection mode: one-point perspective projection is used by the view

9.5.4.5 View Clipping

View Near Clip

View Far Clip

9.5.4.5.1 F32: View Near Clip

View Near Clip is the near clipping distance. Elements closer to the View Node than the
near clipping distance are not drawn.

9.5.4.5.2 F32: View Far Clip
View Far Clip is the far clipping distance. Elements farther from the View Node than the far
clipping distance are not drawn.

9.5.4.6 View Projection

View Orthographic Height View Projection View Projection Vector

9.5.4.6.1 F32: View Projection

View Projection is the field of view of the virtual camera in degrees. This value is only
present for three-point perspective projection mode. Projection mode is defined in View
Node Attributes. Details of rendering are outside the scope of this specification. A renderer
would be allowed to adjust the volume of space rendered by a particular view for various
purposes such as to reduce perspective distortion.

9.5.4.6.2 F32: View Orthographic Height
View Orthographic Height is the height of the orthographic view. This value is only present
for orthographic projection mode. Projection mode is defined in View Node Attributes.

9.5.4.6.3 View Projection Vector
View Projection Vector is only present for one-point and two-point perspective projection
mode. For one-point perspective projection, View Projection Vector is a vector normal to
the view plane. For two-point perspective projection, View Projection Vector is a vector in
the “up” direction for this view node.

View Projection Vector X

View Projection Vector Z

View Projection Vector Y

9.5.4.6.3.1 F32: View Projection Vector X

View Projection Vector X is the X-coordinate of the View Projection Vector.

9.5.4.6.3.2 F32: View Projection Vector Y

View Projection Vector Y is the Y-coordinate of the View Projection Vector.

9.5.4.6.3.3 F32: View Projection Vector Z

View Projection Vector Z is the Z-coordinate of the View Projection Vector.

9.5.4.7 View Port
The View Port describes the window in screen space in which the view will render. The units
used by the View Port are defined in View Node Attributes. The View Port values are
expressed either in screen pixels or as a fraction of the screen dimensions. When using
screen fraction units, the View Port will occupy the entire screen if the width and height are
set to 1.0 and the horizontal and vertical position are set to 0.0.

View Port Width

View Port Horizontal Position

View Port Height

View Port Vertical Position

9.5.4.7.1 F32: View Port Width

View Port Width is the width of the window in which the view will render.

9.5.4.7.2 F32: View Port Height
View Port Height is the height of the window in which the view will render.

9.5.4.7.3 F32: View Port Horizontal Posit ion
View Port Horizontal Position is the horizontal position on the screen of the window in
which the view will render. Position is measured from the upper left corner of the screen.

- 42 -

- 43 -

9.5.4.7.4 F32: View Port Vert ical Posit ion
View Port Vertical Position is the vertical position on the screen of the window in which the
view will render. Position is measured from the upper left corner of the screen.

9.5.4.8 U32: Backdrop Count
The Backdrop Count is the number of backdrops the view has. A backdrop is a texture
displayed in this view behind all objects rendered. Backdrops are displayed in order with the
first backdrop displayed behind the next backdrop.

9.5.4.9 Backdrop Properties

Texture Blend

Rotation

Location X

Location Y

Registration Point X

Registration Point Y

Scale X

Scale Y

Backdrop Texture Name

9.5.4.9.1 String: Backdrop Texture Name

Backdrop Texture Name is the name of the texture resource to use for this backdrop.

9.5.4.9.2 F32: Texture Blend
Texture Blend is the blend factor used with the backdrop’s texture.

9.5.4.9.3 F32: Rotation
The Rotation is how the texture used with the backdrop is rotated. Rotation is measured in
radians, counter clockwise.

9.5.4.9.4 F32: Location X
The Location X is the backdrop’s horizontal location. The position of the backdrop is
measured from the upper left corner of the display to the registration point. The units used
are defined in View Node Attributes.

9.5.4.9.5 F32: Location Y
The Location Y is the backdrop’s vertical location. The position of the backdrop is
measured from the upper left corner of the display to the registration point. The units used
are defined in View Node Attributes.

9.5.4.9.6 I32: Registration Point X
Registration Point X is the horizontal registration point. The registration point of the
backdrop texture is measured in texture pixels from the upper left corner of the texture.

9.5.4.9.7 I32: Registration Point Y
Registration Point Y is the vertical registration point. The registration point of the backdrop
texture is measured in texture pixels from the upper left corner of the texture.

9.5.4.9.8 F32: Scale X
Scale X is a scale factor applied to the backdrop horizontally.

9.5.4.9.9 F32: Scale Y
Scale Y is a scale factor applied to the backdrop vertically.

9.5.4.10 U32: Overlay Count
The Overlay Count is the number of overlays used with this view. An overlay is a texture
displayed in this view in front of all objects rendered. Overlays are displayed in order with the
first overlay displayed behind the next overlay.

- 44 -

- 45 -

9.5.4.11 Overlay Properties

Texture Blend

Rotation

Location X

Location Y

Registration Point X

Registration Point Y

Scale X

Scale Y

Overlay Texture Name

9.5.4.11.1 String: Overlay Texture Name

Overlay Texture Name is the name of the texture resource to use for this overlay.

9.5.4.11.2 F32: Texture Blend
Texture Blend is the blend factor applied to the texture used for this overlay.

9.5.4.11.3 F32: Rotation
Rotation is how much the texture is rotated. Rotation is measured in radians, counter
clockwise.

9.5.4.11.4 F32: Location X
Location X is the horizontal position of the overlay. The position of the overlay is measured
from the upper left corner of the display to the registration point. The units used are
defined in View Node Attributes.

9.5.4.11.5 F32: Location Y
Location Y is the vertical position of the overlay. The position of the overlay is measured
from the upper left corner of the display to the registration point. The units used are
defined in View Node Attributes.

9.5.4.11.6 I32: Registration Point X
Registration Point X is the horizontal registration point. The registration point of the overlay
texture is measured in texture pixels from the upper left corner of the texture.

9.5.4.11.7 I32: Registration Point Y
Registration Point Y is the vertical registration point. The registration point of the overlay
texture is measured in texture pixels from the upper left corner of the texture.

9.5.4.11.8 F32: Scale X
Scale X is the scale factor applied to the overlay horizontally.

9.5.4.11.9 F32: Scale Y
Scale Y is the scale factor applied to the overlay vertically.

9.6 Geometry generator blocks
Geometry generator blocks contain the declarative information for creating model resource
modifier chains. The model resource modifier chains serve as input to the node modifier chains.

9.6.1 CLOD Mesh Generator (blocktypes: 0xFFFFFF31; 0xFFFFFF3B; 0xFFFFFF3C)
The CLOD Mesh Generator contains the data needed to create a continuous level of detail
mesh. This data includes vertices, normal vectors, faces, shader lists, and level of detail
information for the base mesh and updates. The information in the CLOD Mesh Generator
blocks describes the author mesh. The CLOD Mesh Genarator converts the author mesh into a
render mesh for display. Description of differences between the author mesh and render mesh
can be found in 8.8 CLOD mesh generator.

The CLOD Mesh Generator produces the following outputs: Renderable Group, Renderable
Group Bounds, Transform Set.

The CLOD Mesh Generator’s outputs have no dependencies.

9.6.1.1 CLOD Mesh Declaration (blocktype: 0xFFFFFF31)
The CLOD Mesh Declaration contains the declaration information for a continuous level of
detail mesh generator. The declaration information is sufficient to allocate space for the mesh
data and create the mesh generator object. The mesh data is contained in following
continuation blocks.

- 46 -

- 47 -

Mesh Name

CLOD Description

Max Mesh Description

Resource Description

Chain Index

Skeleton Description

9.6.1.1.1 String: Mesh Name

Mesh Name is the name of the CLOD mesh generator. This name is also the name of the
model resource modifier chain that contains the CLOD mesh generator.

9.6.1.1.2 U32: Chain Index
Chain Index is the position of the CLOD mesh generator in the model resource modifier
chain. The value of Chain Index shall zero for this blocktype.

9.6.1.1.3 Max Mesh Description
Max Mesh Description describes the size of the mesh at full resolution. Max Mesh
Description can be used to allocate space for the mesh.

Face Count

Position Count

Normal Count

Diffuse Color Count

Specular Color Count

Texture Coord Count

Shading Count

Shading Description
Shading Count

Mesh Attributes

9.6.1.1.3.1 U32: Mesh Attributes

Mesh Attributes contains information that applies to the entire mesh. Mesh Attributes is a
collection of flags. The only flag currently defined indicates the usage of per vertex normals.
The flags are combined using a bitwise OR operation. All other values are reserved.

0x00000000 – Default: The faces in the mesh have a normal index at each corner.

0x00000001 – Exclude Normals: The faces in the mesh do not have a normal index at each
corner.

An implementation that requires normals may generate normals for a mesh which does not
have normals.

9.6.1.1.3.2 U32: Face Count

Face Count is the number of faces in the mesh.

9.6.1.1.3.3 U32: Position Count

Position Count is the number of positions in the position array.

- 48 -

- 49 -

9.6.1.1.3.4 U32: Normal Count

Normal Count is the number of normals in the normal array.

9.6.1.1.3.5 U32: Diffuse Color Count

Diffuse Color Count is the number of colors in the diffuse color array.

9.6.1.1.3.6 U32: Specular Color Count

Specular Color Count is the number of colors in the specular color array.

9.6.1.1.3.7 U32: Texture Coord Count

Texture Coord Count is the number of texture coordinates in the texture coordinate array.

9.6.1.1.3.8 U32: Shading Count

Shading Count is the number of shading descriptions used in the mesh. Each shading
description corresponds to one shader list in the shading group.

9.6.1.1.3.9 Shading Description

Shading Description indicates which per vertex attributes, in addition to position and normal,
are used by each shader list.

Shading Attributes

Texture Layer Count

Texture Coord Dimensions

Original Shading ID

Texture Layer Count

9.6.1.1.3.9.1 U32: Shading Attributes

Shading Attributes is a collection of flags combined using the binary OR operator. These
flags are used to indicate the usage of per vertex colors. The flags are combined using a
bitwise OR operation. All other values are reserved.

0x00000000 – The shader list uses neither diffuse colors nor specular colors.

0x00000001 – The shader list uses per vertex diffuse colors.

0x00000002 – The shader list uses per vertex specular colors.

0x00000003 – The shader list uses both diffuse and specular colors, per vertex.

9.6.1.1.3.9.2 U32: Texture Layer Count

Texture layer Count is the number of texture layers used by this shader list.

9.6.1.1.3.9.3 U32: Texture Coord Dimensions

Texture Coord Dimensions is the number of dimensions in the texture coordinate vector.
The texture coordinate vector can have 1, 2, 3, or 4 dimensions.

9.6.1.1.3.9.4 U32: Original Shading ID

Original Shading ID is the original shading index for this shader list. Shader lists may be re-
ordered during the encode process. Unused shader lists may be removed by the encode
process.

9.6.1.1.4 CLOD Description
CLOD Description describes the range of resolutions available for the continuous level of
detail mesh.

Two special cases are worth noting. If the Minimum Resolution is zero, then there is no
base mesh. If the Minimum Resolution is equal to the Final Maximum Resolution, then the
base mesh is the entire mesh and the CLOD mechanism cannot change the resolution of
the mesh.

Minimum Resolution

Final Maximum Resolution

9.6.1.1.4.1 U32: Minimum Resolution

Minimum Resolution shall be the number of positions in the base mesh.

9.6.1.1.4.2 U32: Final Maximum Resolution

Final Maximum Resolution shall be the number of positions in the Max Mesh Description.

9.6.1.1.5 Resource Description

Quality Factors

Inverse Quantization

Resource Parameters

9.6.1.1.5.1 Quality Factors

The quality factors are for information only and are not used. The quality factors enable the
user interface to provide the user with information on some of the parameters used to encode
the mesh.

- 50 -

- 51 -

Position Quality Factor

Texture Coord Quality Factor

Normal Quality Factor

9.6.1.1.5.1.1 U32: Position Quality Factor

Position Quality Factor is the quality factor associated with quantization of positions.

9.6.1.1.5.1.2 U32: Normal Quality Factor

Normal Quality Factor is the quality factor associated with quantization of normal vectors.

9.6.1.1.5.1.3 U32: Texture Coord Quality Factor

Texture Coord Quality Factor is the quality factor associated with quantization of texture
coordinates.

9.6.1.1.5.2 Inverse Quantization

Inverse Quantization contains the inverse quantization factors used to reconstruct floating
point values that had been quantized.

Position Inverse Quant

Texture Coord Inverse Quant

Normal Inverse Quant

Diffuse Color Inverse Quant

Specular Color Inverse Quant

9.6.1.1.5.2.1 F32: Position Inverse Quant

Position Inverse Quant is the inverse quantization factor used in the reconstruction of
position vectors.

9.6.1.1.5.2.2 F32: Normal Inverse Quant

Normal Inverse Quant is the inverse quantization factor used in the reconstruction of normal
vectors.

9.6.1.1.5.2.3 F32: Texture Coord Inverse Quant

ordinates.

9.6.1.1.5.2.4 F32: Diffuse Color Inverse Quant

Diffuse Color Inverse Quant is the inverse quantization factor used in the reconstruction of
diffuse colors.

9.6.1.1.5.2.5 F32: Specular Color Inverse Quant

Specular Color Inverse Quant is the inverse quantization factor used in the reconstruction of
specular colors.

9.6.1.1.5.3 Resource Parameters

Resource Parameters control the operation of the CLOD mesh generator. The parameters
defined in this section control the conversion of the mesh from Author Mesh format to Render
Mesh format.

9.6.1.1.5.3.1 F32: Normal Crease Parameter

In the conversion from Author Mesh to Render Mesh, normals that are sufficiently close
together are merged. The closeness of normals is measured by calculating the dot product
between them. The resulting closeness measure is in the range –1.0 to +1.0. – 1.0 is
farthest apart and + 1.0 is closest together.

Normals at the same position which are closer than Normal Crease Parameter are merged.
In other words, if the dot product between two normals is larger than Normal Crease
Parameter, then the two normals shall be merged.

Normal Crease Parameter can be used to trade off smoothing over edges against
preservation of sharp edges.

9.6.1.1.5.3.2 F32: Normal Update Parameter

In decoding the Author Mesh normals, a correction is made to a predicted normal. If the
corrected normal is closer to the predicted normal than Normal Update Parameter, then the
normal correction can be dropped.

9.6.1.1.5.3.3 F32: Normal Tolerance Parameter

Normals which are closer together than Normal Tolerance Parameter are considered
equivalent in the conversion of the Author Mesh to Render Mesh. A more compact Render
Mesh can be created if more normals are allowed to be replaced by similar normals. The
compactness of the Render Mesh is traded off against the accuracy or the Render Mesh
normals.

Texture Coord Inverse Quant is the inverse quantization factor used in the reconstruction of
texture co

Normal Crease Parameter

Normal Tolerance Parameter

Normal Update Parameter

- 52 -

- 53 -

9.
Skel
asso

h bone is described relative to a parent bone.

animation. The Animation Modifier uses
the b
The Animation Modifier also modifies the bone structure based on information in a Motion

In a
for additional features such as inverse ki

 that are inserted between the start of a bone and the end of its
is done automatically based on the position and

or

B
automatic bone weight generation extensions.

6.1.1.6 Skeleton Description
eton Description provides bone structure information. If there is no bone structure
ciated with the generator, then the Bone Count is zero. Bones are structured in a tree

hierarchy. The position and orientation of eac

The Skeleton Description is used in bones-based
one structure to deform geometry based on the position and orientation of the bones.

Resource.

future editions of this specification, it may be possible to use the Skeleton Description
nematics and automatic bone weight generation.

Bone links are small bones
parent bone. The placement of bone links

ientation of the bone and its parent.

one links and bone joint information may be useful for inverse kinematics extensions and

9.6.1.1.6.1 U32: Bone Count

Bone Count is the number of bones associated with the mesh.

9.6.1.1.6.2 String: Bone Name

Bone Name is the name of this bone.

Bone Count

Bone Name

Parent Bone Name

Bone Length

Bone Displacement

Bone Orientation

Bone Attributes

Bone Link Count

Bone Link Length

Bone Start Joint

Bone End Joint

Bone Rotation Constraints

Bone Count

- 54 -

- 55 -

9.6.1.1.6.3

 the empty string. The first bone is called the
shall be the Bone Name of a

9.6.1.1.6.4

ags are combined using the binary OR operator.
sections and whether

9.6.1.1.6.5

not modified by the Animation

one from the end of its parent

nt Y is the Y-coordinate of the bone displacement vector.

9.6.1.1.6.6.3

t Z is the Z-coordinate of the bone displacement vector.

9.6.1.1.6.7

String: Parent Bone Name

Parent Bone Name is the name of the parent of this bone.

For the first bone, the Parent Bone Name shall be
root bone. For bones after the first bone, the Parent Bone Name
previous bone.

U32: Bone Attributes

Bone Attributes is a collection of flags. The fl
These flags are used to indicate the presence of optional link and joint
the rotational constraints are enabled. All other values are reserved.

0x00000001 – The Bone Link Count and Bone Link Length are present.

0x00000002 – The Bone Start Joint and Bone End Joint sections are present.

0x00000004 – The X Rotation Constraint is active.

0x00000008 – The X Rotation Constraint is limited.

0x00000010 – The Y Rotation Constraint is active.

0x00000020 – The Y Rotation Constraint is limited.

0x00000040 – The Z Rotation Constraint is active.

0x00000080 – The Z Rotation Constraint is limited.

F32: Bone Length

Bone Length is the length of this bone. The length of the bone is
Modifier in 9.7.3.

9.6.1.1.6.6 Bone Displacement

Bone Displacement is the displacement of the start of this b
bone.

9.6.1.1.6.6.1 F32: Bone Displacement X

Bone Displacement X is the X-coordinate of the bone displacement vector.

9.6.1.1.6.6.2 F32: Bone Displacement Y

Bone Displacement X

Bone Displacement Z

Bone Displacement Y

Bone Displaceme

 F32: Bone Displacement Z

Bone Displacemen

Bone Orientation

Bone Orientation is the change in orientation of this bone relative to the orientation of its parent
on.

9.6.1.1.6.7.1

W is the W-component of the bone orientation quaternion. The W-
real part of the quaternion.

9.6.1.1.6.7.2

the X-coordinate of the bone orientation quaternion.

9.6.1.1.6.7.3

e Orientation Y is the Y-coordinate of the bone orientation quaternion.

9.6.1.1.6.7.4

9.6.1.1.6.8

start

9.6.1.1.6.9

9.6.1.1.6.10

enter is a displacement of the center for the ellipse from the

bone. The change in orientation is expressed as a quaterni

- 56 -

 F32: Bone Orientation W

Bone Orienation
component is the

 F32: Bone Orientation X

Bone Orientation X is

 F32: Bone Orientation Y

Bon

F32: Bone Orientation Z

Bone Orientation Z is the Z-coordinate of the bone orientation quaternion.

U32: Bone Link Count

Bone Link Count is the number of bone links between the end of the parent bone and the
of this bone.

F32: Bone Link Length

Bone Link Length is the length of the bone links.

Bone Start Joint

Bone Start Joint describes an ellipse that approximates the cross-section of the geometry
surrounding the bone at the start of the bone. The ellipse is oriented in the local coordinate
space of the bone. Start Joint C
axis of the bone. Start Joint Scale provides major and minor axis of the ellipse.

Bone Orientation X

Bone Orientation Z

Bone Orientation Y

Bone Orientation W

- 57 -

9.6.1.1.6.10.1 F32: Start Joint Center U

Start Joint Center U is the first coordinate of the displacement of the center of the start joint.
The displacement is in the local coordinate space of the bone.

ate space of the bone.

oordinate.

nd coordinate.

9

Bo of the geometry
 the end of the bone. The ellipse is oriented in the local coordinate
Joint Center is a displacement of the center for the ellipse from the

9.6.1.1.6.10.2 F32: Start Joint Center V

Start Joint Center V is the second coordinate of the displacement of the center of the start
joint. The displacement is in the local coordin

9.6.1.1.6.10.3 F32: Start Joint Scale U

Start Joint Scale U is the size of the axis of the start joint ellipse in the first c

9.6.1.1.6.10.4 F32: Start Joint Scale V

Start Joint Scale V is the size of the axis of the start joint ellipse in the seco

.6.1.1.6.11 Bone End Joint

ne End Joint describes an ellipse that approximates the cross-section
surrounding the bone at
space of the bone. End
axis of the bone. End Joint Scale provides major and minor axis of the ellipse.

End Joint Center V

End Joint Scale V

End Joint Scale U

Start Joint Center V

Start Joint Scale V

Start Joint Scale U

Start Joint Center U

End Joint Center U

9.6.1.1.6.11.1 F32: End Joint Center U

End Joint Center U is the first coordinate of the displacement of the center of the end joint.
The displacement is in the local coordinate space of the bone.

9.6.1.1.6.11.2 F32: End Joint Center V

End Joint Center V is the second coordinate of the displacement of the center of the end
joint. The displacement is in the local coordinate space of the bone.

9.6.1.1.6.11.3 F32: End Joint Scale U

End Joint Scale U is the size of the axis of the end joint ellipse in the first coordinate.

9.6.1.1.6.11.4 F32: End Joint Scale V

End Joint Scale V is the size of the axis of the end joint ellipse in the second coordinate.

9.6.1.1.6.12 Bone Rotation Constraints

An inverse kinematics extension could use these bone rotation constraints when updating the
bone positions and orientations. The Animation these Bone Rotation

1) F32: Rotation Constraint X Max

2) F32: Rotation Constraint X Min

3) F32: Rotation Constraint Y Max

4) F32: Rotation Constraint Y Min

5) F32: Rotation Constraint Z Max

6) F32: Rotation Constraint Z Min

9.6.1.2 CLOD Base Mesh Continuation (blocktype: 0xFFFFFF3B)
The CLOD Base Mesh Continuation block contains base mesh information for a continuous
level of detail mesh generator. The base mesh is the minimum LOD mesh. The base mesh

 Modifier does not use
Constraints.

Rotation Constraint X Max

Rotation Constraint X Min

Rotation Constraint Y Max

Rotation Constraint Y Min

Rotation Constraint Z Max

Rotation Constraint Z Min

- 58 -

- 59 -

does not contain resolution updates. As a result, a CLOD resolution controller cannot reduce
the me
zero re

tion block is a continuation type block. The CLOD Base Mesh
t if Minimum Resolution is greater than zero.

9.6.1.2.1 String: Mesh Name

Mesh Name is the name of the CLOD mesh generator. This name is also the name of the
model resource modifier chain that contains the CLOD mesh generator.

9.6.1.2.2 U32: Chain Index
Chain Index is the position of the CLOD mesh generator in the model resource modifier
chain. The value of Chain Index shall be zero for this blocktype.

9.6.1.2.3 Base Mesh Description
Base Mesh Description describes the size of the mesh at minimum resolution. Base Mesh
Description indicates the portion of space allocated for the mesh that is used by the base
mesh. The elements of the base mesh occupy the first part (lowest index) of each of the
various mesh arrays.

sh resolution to less than the size of the base mesh (other than reducing the mesh to
solution). The base mesh is not quantized.

The CLOD Base Mesh Continua
Continuation block is only presen

Mesh Name

Base Mesh Data

Base Mesh Description

Chain Index

Base Face Count

9.6.1.2.3.1

he number of faces in the base mesh.

9.6.1.2.3.2

esh in the position array.

9.6.1.2.3.4

ount is the number of colors used by the base mesh in the diffuse color
array.

9.6.1.2.3.5 U32: Base Specular Color Count

Base Specular Color Count is the number of colors used by the base mesh in the specular
color array.

9.6.1.2.3.6 U32: Base Texture Coord Count

Base Texture Coord Count is the number of texture coordinates used by the base mesh in the
texture coordinate array.

Base Position Count

Base Normal Count

Base Diffuse Color Count

Base Specular Color Count

Base Texture Coord Count

U32: Base Face Count

Base Face Count is t

U32: Base Position Count

Base Position Count is the number of positions used by the base m

9.6.1.2.3.3 U32: Base Normal Count

Base Normal Count is the number of normals used by the base mesh in the normal array.

 U32: Base Diffuse Color Count

Base Diffuse Color C

- 60 -

- 61 -

9.6.1.2.4 Base Mesh Data

9.6.1.2.4.1.1 F32: Base Position X

Base Position X is the X-coordinate of the base position vector.

9.6.1.2.4.1.2 F32: Base Position Y

Base Position Y is the Y-coordinate of the base position vector.

9.6.1.2.4.1.3 F32: Base Position Z

Base Position Z is the Z-coordinate of the base position vector.

9.6.1.2.4.1 Base Position

Base Position is a 3D position in the position array.

Base Position X

Base Position Y

Base Position Z

Base Position
Base Position Count

Base Normal
Base Normal Count

Base Diffuse Color
Base Diffuse Color Count

Base Specular Color
Base Specular Color Count

Base Texture Coord
Base Texture Coord Count

Base Face
Base Face Count

9.6.1.2.4.2 Base Normal

Base Normal is a 3D normal in the normal array.

9.6.1.2.4.2.1 F32: Base Normal X

Base Normal X is the X-coordinate of the base normal vector.

9.6.1.2.4.2.2 F32: Base Normal Y

Base Normal Y is the Y-coordinate of the base normal vector.

9.6.1.2.4.2.3 F32: Base Normal Z

Base Normal Z is the Z-coordinate of the base normal vector.

9.6.1.2.4.3 Base Diffuse Color

Base Diffuse Color is an RGBA color in the diffuse color array.

The ordinary range for the color components is 0.0 to +1.0. The value 0.0 corresponds to black
and the value +1.0 corresponds to full intensity. Values outside the ordinary range are allowed.

 for the alpha component is 0.0 to +1.0. The value 0.0 corresponds to fully
opaque. Values outside the ordinary range

9.6.1.2.4.3.1

 is the red component of the base diffuse color.

The ordinary range
transparent and the value +1.0 corresponds to fully
are allowed.

Base Diffuse Color Red

Base Diffuse Color Green

Base Diffuse Color Blue

Base Diffuse Color Alpha

Base Normal X

Base Normal Y

Base Normal Z

F32: Base Diffuse Color Red

Base Diffuse Color Red

- 62 -

- 63 -

9.6.1.2.4.3.2 F32: Base Diffuse Color Green

ent of the base diffuse color.

9.6.1.2.4.3.3 F32: Base Diffuse Color Blue

Base Diffuse Color Blue is the blue component of the base diffuse color.

9.6.1.2.4.3.4 F32: Base Diffuse Color Alpha

Base Diffuse Color Alpha is the alpha component of the base diffuse color.

9.6.1.2.4.4 Base Specular Color

Base Specular Color is an RGBA color in the specular color array.

The ordinary range for the color components is 0.0 to +1.0. The value 0.0 corresponds to black
and the value +1.0 corresponds to full intensity. Values outside the ordinary range are allowed.

The ordinary range for the alpha component is 0.0 to +1.0. The value 0.0 corresponds to fully
ansparent and the value +1.0 corresponds to fully opaque. Values outside the ordinary range

9.6.1.2.4.4.1

9.6.1.2.4.4.2

9.6.1.2.4.4.3

9.6.1.2.4.4.4

9.6.1.2.4.5

yers, only the U coordinate value is used. For
e U and V coordinate values are used. For 3D texture

co ordinate layers, the
U, V, S and T coordinates are used.

Base Diffuse Color Green is the green compon

tr
are allowed.

Base Specular Color Red

Base Specular Color Green

Base Specular Color Blue

F32: Base Specular Color Red

Base Specular Color Red is the red component of the base specular color.

F32: Base Specular Color Green

Base Specular Color Green is the green component of the base specular color.

F32: Base Specular Color Blue

Base Specular Color Blue is the blue component of the base specular color.

F32: Base Specular Color Alpha

Base Specular Color Alpha is the alpha component of the base specular color.

Base Texture Coord

Base Texture Coord is a 4D texture coordinate in the texture coordinate array.

The shader list description may define a texture coordinate layer to have 1, 2, 3 or 4 dimension

Base Specular Color Alpha

texture coordinates. For 1D texture coordinate la
2D texture coordinate layers, th

ordinate layers, the U, V ,and S coordinates are used. For 4D texture co

Base Tex Coord U

Base Tex Coord V

Base Tex Coord S

Base Tex Coord T

- 64 -

9.6.1.2.4.5.1

9.6.1.2.4.5.2

9.6.1.2.4.5.3

9.6.1.2.4.5.4

9.6.1.2.4.6 Base

list

Shading List

ner of a face in

F32: Base Tex Coord U

Base Tex Coord U is the first coordinate of the texture coordinate vector.

F32: Base Tex Coord V

Base Tex Coord V is the second coordinate of the texture coordinate vector.

F32: Base Tex Coord S

Base Tex Coord S is the third coordinate of the texture coordinate vector.

F32: Base Tex Coord T

Base Tex Coord T is the fourth coordinate of the texture coordinate vector.

Face

Base Face is a face in the base mesh. The face contains an index into the shader
description array and indices into the various mesh arrays for each corner.

Shading ID

Base Corner Info
3

9.6.1.2.4.6.1 U32 [cShading]: Shading ID

Shading ID is the index of the shader list descriptions used for this face. The
Description array is defined in the CLOD Mesh Declaration block.

9.6.1.2.4.6.2 Base Corner Info

Base Corner Info contains the indices into the various mesh arrays for a cor
the base mesh. The indices are limited to the sizes in Base Mesh Description.

- 65 -

Base Position Index

Base Normal Index

Base Diffuse Color Index

Base Specular Color Index

Base Texture Coord Index

9.6.1.2.4.6.2.1 U32

Mesh

9.6.1.2.4.6.

ormal Index must be less than Base Normal Count in the Base Mesh

 must be less than Base Texture Coord Count in Base Mesh

epeated at this corner.

Texture Layers Count

[rBasePositionCount]: Base Position Index

Base Position Index must be less than Base Position Count in the Base
Description.

2.2 U32 [rBaseNormalCount]: Base Normal Index

Base N
Description. Base Normal Index is not present if 9.6.1.1.3.1 Mesh Attributes in the Max
Mesh Description indicates Exclude Normals.

9.6.1.2.4.6.2.3 U32 [rBaseDiffColorCnt]: Base Diffuse Color Index

Base Diffuse Color Index must be less than Base Diffuse Color Count in Base Mesh
Description. Base Diffuse Color Index is present only if shader list description indicated
by Shading ID indicates diffuse colors are used.

9.6.1.2.4.6.2.4 U32 [rBaseSpecColorCnt]: Base Specular Color Index

Base Specular Color Index must be less than Base Specular Color Count in Base Mesh
Description. Base Specular Color Index is present only if shading description indicated
by Shading ID indicates specular colors are used.

9.6.1.2.4.6.2.5 U32 [rBaseTexCoordCnt]: Base Texture Coord Index

Base Texture Coord Index
Description. Texture Layer Count in the shading description indicated by Shading ID
determines the number of times Base Texture Coord Index in r

9.6.1.3

The
greater

than M

9.6.1
Mesh Na
model resource modifier chain that contains the CLOD mesh generator.

9.6.1
Chain In
chain. T

9.6.1.3.3 Resolu
mesh vertex updates provided

in this co

This co
Resolution) to (End Resolution – 1). The total number of positions added by this block is

9.6.1.3.3.1 U32: Start Resolution

Start Resolution is the index of the first position added by this block.

9.6.1.3.3.2 U32: End Resolution

End Resolution is one more than the index of the last position added by this block.

CLOD Progressive Mesh Continuation (blocktype: 0xFFFFFF3C)
The CLOD Mesh Progressive Continuation block contains progressive mesh information for a
continuous level of detail mesh generator.

CLOD Mesh Progressive Continuation block is a continuation type block. The CLOD
Mesh Progressive Continuation block is present only if Final Maximum Resolution is

inimum Resolution.

.3.1 String: Mesh Name

me is the name of the CLOD mesh generator. This name is also the name of the

.3.2 U32: Chain Index
dex is the position of the CLOD mesh generator in the model resource modifier

he value of Chain Index shall be zero for this blocktype.

t ion Update Range
Resolution Update Range specifies the range of progressive

ntinuation block.

ntinuation block contains CLOD mesh information for positions from (Start

Resolution Update Count = End Resolution – Start Resolution.

Mesh Name

Resolution Update

Resolution Update Range

Chain Index

Resolution Update Count

Start Resolution

End Resolution

- 66 -

- 67 -

9.6.1.3.4 Resolution Update

9.6.1.3.4.1 U32 [rCurrentPositionCount]: Split Position Index

he index of the position to be split by this Resolution Update. Each
Position Index will be less

use the split
sition. Each face updated by a Resolution Update will change the split

sition. The

Neighborhood Position Count

Move Face Count

New Face Position Info
New Face Count

Split Position Index

New Face Count

Stay Or Move
Faces Using Split Position Count

New Position Info

New Diffuse Color Info

New Normal Info

New Specular Color Info

New Texture Coord Info

Move Face Info

New Face Info
New Face Count

Split Position Index is t
Resolution Update adds one new position to the position array. Split
than the current position count. Each new face added by a Resolution Update will
position and the new po
position to the new position. The new position is predicted based on the split po
method for selecting the split position index is implementation dependent.

When the CurrentPositionCount has the value zero, the compression context used shall be
“cZero” instead of “r0”.

The zero vector shall be used for split position vertex if no vertices are available to serve as
split position vertex.

9.6.1.3.4.2 New Diffuse Color Info

New Diffuse Color Info describes new color values added to the diffuse color array of the mesh
in this resolution update. The prediction for the new diffuse color value is calculated as the
average of all diffuse color values used at the split position.

9.6.1.3.4.2.1 U16[cDiffuseCount]: NewDiffuse Color Count

New Diffuse Color Count is the number of new color values added in this resolution update.

9.6.1.3.4.2.2 U8 [cDiffuseColorSign]: Diffuse Color Difference Signs

Diffuse Color Difference Signs is a collection of sign bits for the prediction differences.

0x01 – Sign bit for Diffuse Color Difference Red

0x02 – Sign bit for Diffuse Color Difference Green

0x04 – Sign bit for Diffuse Color Difference Blue

0x08 – Sign bit for Diffuse Color Difference Alpha

9.6.1.3.4.2.3 U32[cColorDiffR]: Diffuse Color Difference Red

New Diffuse Color Count
Diffuse Color Difference Signs

Diffuse Color Difference Blue

Diffuse Color Difference Red

Diffuse Color Difference Green

Diffuse Color Difference Alpha

New Diffuse Color Count

Reconstructed Color red component is calculated as

Reconstructed Red = InverseQuant(predicted red,(Diffuse Color Difference Signs &
0x01),

Diffuse Color Difference Red, Diffuse Color Inverse Quant).

- 68 -

- 69 -

9.6.1.3.4.2.

green component is calculated as

lor Difference Green, Diffuse Color Inverse Quant).

9.6.1.3.4.2.

9.6.1.3.4.2.6 U32

ce Signs

9.6.1.3.4.3

9.6.1.3.4.3.1 U16[cSpecularCount]: New Specular Color Count

New Specu in this resolution
update.

4 U32 [cColorDiffG]: Diffuse Color Difference Green

Reconstructed Color

Reconstructed Green = InverseQuant(predicted green, ((Diffuse Color Difference Signs
& 0x02) >> 1),

Diffuse Co

5 U32 [cColorDiffB]: Diffuse Color Difference Blue

Reconstructed Color blue component is calculated as

Reconstructed Blue = InverseQuant(predicted blue, ((Diffuse Color Difference Signs &
0x04) >> 2),

Diffuse Color Difference Blue, Diffuse Color Inverse Quant).

[cColorDiffA]: Diffuse Color Difference Alpha

Reconstructed Color alpha component is calculated as

Reconstructed Alpha = InverseQuant(predicted alpha, ((Diffuse Color Differen
& 0x08) >> 3)

Diffuse Color Difference Alpha, Diffuse Color Inverse Quant).

New Specular Color Info

New Specular Color Info describes new color values added to the specular color array of the
mesh in this resolution update. The prediction for the new specular color value is calculated as
the average of all specular color values used at the split position.

New Specular Color Count
Specular Color Difference Signs

Specular Color Difference Red

Specular Color Difference Green

Specular Color Difference Blue

Specular Color Difference Alpha

New Specular Color Count

lar Color Count is the number of new color values added

9.6.1.3.4.3.2 U8 [cSpecularColorSign]: Specular Color Difference Signs

ts for the prediction differences.

0x0

0x02 – Sign bit for Specular Color Difference Green

0x04 – Sign

9.6.1.3.4.3.3

Rec

Recons fference Signs &
0x01),

olor Inverse Quant).

9.6.1.3.4.3.4

Rec

Reconstructed Green = InverseQuant(predicted green, ((Specular Color Difference
Signs &

lor Difference Green, Specular Color Inverse Quant).

9.6.1.3.4.3.5

Reconstructed Blue = InverseQuant(predicted blue, ((Specular Color Difference Signs &
0x04) >> 2)),

Specular Color Difference Blue, Specular Color Inverse Quant).

9.6.1.3.4.3.6 U32 [cColorDiffA]: Specular Color Difference Alpha

Reconstructed Color alpha component is calculated as

Reconstructed Alpha = InverseQuant(predicted alpha, ((Specular Color Difference
Signs & 0x08) >> 3)),

Specular Color Difference Alpha, Specular Color Inverse Quant).

9.6.1.3.4.4 New Texture Coord Info

New Texture Coord Info describes new texture coordinate values added to the texture
coordinate array of the mesh in this resolution update. The prediction for the new texture
coordinate value is calculated as the average of all texture coordinates used at the split
position in the first layer.

Specular Color Difference Signs is a collection of sign bi

1 – Sign bit for Specular Color Difference Red

 bit for Specular Color Difference Blue

0x08 – Sign bit for Specular Color Difference Alpha

U32[cColorDiffR]: Specular Color Difference Red

onstructed Color red component is calculated as

tructed Red = InverseQuant(predicted red, (Specular Color Di

Specular Color Difference Red, Specular C

U32 [cColorDiffG]: Specular Color Difference Green

onstructed Color green component is calculated as

 0x02) >> 1)),

Specular Co

 U32 [cColorDiffB]: Specular Color Difference Blue

Reconstructed Color blue component is calculated as

- 70 -

- 71 -

New Tex Coord Count
Tex Coord Difference Signs

Tex Coord Difference U

Tex Coord Difference S

Tex Coord Difference V

Tex Coord Difference T

9.6.1.3.4.4.1

New Tex Coord Count is the number
resolution update.

0x02 – Sign bit for Texture Coord Difference V

0x04 – Sign

re Coord Difference T

9.6.1.3.4.4.

Texture Coord Difference U, Texture Coord Inverse Quant).

9.6.1.3.4.4.4 U32 [cTexCDiffV]: Texture Coord Difference V

The reconstructed texture coordinate V is calculated as

Reconstructed TexCoord V = InverseQuant(predicted Tex Coord V, ((Tex Coord Signs
& 0x02) >> 1),

Texture Coord Difference V, Texture Coord Inverse Quant).

New Tex Coord Count

U16[cTexCoordCount]: New Tex Coord Count

of new texture coordinate values added in this

9.6.1.3.4.4.2 U8 [cTexCoordSign]: Tex Coord Difference Signs

Tex Coord Difference Signs is a collection of sign bits for the prediction differences.

0x01 – Sign bit for Texture Coord Difference U

 bit for Texture Coord Difference S

0x08 – Sign bit for Textu

3 U32 [cTexCDiffU]: Texture Coord Difference U

The reconstructed texture coordinate U is calculated as

Reconstructed TexCoord U = InverseQuant(predicted Tex Coord U, (Tex Coord Signs
& 0x01),

9.6.1.3.4.4.5 U32 [cTexCDiffS]: Texture Coord Difference S

The reconstructed texture coordinate S is calculated as

Reconstructed TexCoord S = InverseQuant(predicted Tex Coord S, ((Tex Coord Signs
& 0x04) >> 2),

Texture Coord Difference S, Texture Coord Inverse Quant).

9.6.1.3.4.4.6 U32 [cTexCDiffT]: Texture Coord Difference T

The reconstructed texture coordinate T is calculated as

Reconstructed TexCoord T = InverseQuant(predicted Tex Coord, ((Tex Coord Signs &
0x08) >> 3),

Texture Coord Difference T, Texture Coord Inverse Quant).

9.6.1.3.4.5 U32 [cFaceCnt]: New Face Count

New Face Count is the number of new faces added to the mesh by this Resolution Update.

9.6.1.3.4.6 New Face Position Info

New Face Position Info describes a new face to be added to the mesh. One of the corners of
the new face will use the Split Position and another of the corners will use the New Position.

9.6.1.3.4.6.1

Sha y
is defined in the CLOD Mesh Declaration block.

9.6.1.3.4.6.2 U8 [cFaceO

face.

d Position

0x0

9.6.1.3.4.6.3 U8 [cThrdPos

Third Position Type indicates whether the Third Po index into
the full position array or a smaller local position array.

0x01 – Local Third Position Index

0x02 – Global Third Position Index

Shading ID

Face Orientation

Third Position Type

Local Third Position Index Global Third Position Index

U32 [cShading]: Shading ID

ding ID is the index of the shader list used for this face. The Shading Description arra

rnt]: Face Orientation

Face Orientation refers to the winding order of the

0x01 – Left Orientation: Split Position; New Position; Thir

2 – Right Orientation: New Position; Split Position; Third Position

Type]: Third Position Type

sition Index that follows is an

- 72 -

- 73 -

9.6.1.3.4.6.4 U32 [cLocal3rdPos]: Local Third Position Index

ons used by faces that also use the
Spl
arra
larg

9.6.1.3.4.6.5 U32 [rCurre

ll position array. Current Position Count is

9.6.1.3.4.7 U8 [cS

For ea was using the Split Position, Stay Or Move specifies if that face should
continue to us The list of faces is

t.

 to use the New Position

0 – No prediction

1 – Predict move from use of third position by face

2 – Predict stay from use of third position by face

3 – Predict move from prediction used for neighboring face

4 – Predict stay from prediction used for neighboring face

For faces that use the split position and one third position from a new face: if the corner
winding order puts the split position before the third position, then predict stay if the new face
orientation was right or predict move if the new face orientation was left; if the corner winding
order puts the split position after the third position, then predict stay if the new face orientation
was left or predict move if the new face orientation was right.

For faces that use the split position and do not use a third position from a new face: if a
neighboring face has been predicted stay or move, then use that prediction for this face.

If there is a conflict where one neighboring face is predicted stay and another neighboring face
is predicted move, then make no prediction.

For faces where the preceding prediction rules do not apply, make no prediction.

9

Th
po
corner may also change. Move Face Info describes how those corners of move faces should

coordinate properties.

The local position array is generated by adding all positi
it Position. Each position is added only once to the local position array. The local position
y contains indices into the full position array. The local position array is sorted with the
er values first.

ntPositionCount]: Global Third Position Index

Global Third Position Index is an index into the fu
the number of positions in the full position array.

tayMove+StayMovePrediction]: Stay Or Move

ch face that
e the Split Position or be updated to use the New Position.

sorted with the larger index faces firs

0x00 – Stay; Continue to use the Split Position

0x01 – Move; Update face

The compression context depends on whether the face is predicted to stay or move. Valid
values for StayMovePrediction are:

.6.1.3.4.8 Move Face Info

e move faces are the faces for which one of the corners changes from using the split
sition to using the new position. For each face of the move faces, the other properties at that

be updated for vertex color and texture

Diffuse Color Face Update

Specular Color Face Update

- 74 -

9.6.1.3.4.8.1

 shading description for this face indicates

9.6.1.3.4

0x02 – Keep; The diffuse color should not change.

0x01 – Change; The diffuse color should change. The new value for the diffuse color
index can be found in the following change index.

 Diffuse Color Face Update

Diffuse Color Face Update is present only if the
that the face has diffuse colors at the corners of the face.

.8.1.1 U8 [cDiffuseKeepChange]: Diffuse Keep Change

For each face with diffuse colors and a split position that is moving to the New Position,
Diffuse Keep Change indicates whether the diffuse color at the same corner as the split
position should also change.

Diffuse Keep Change

Diffuse Change Type

Diffuse Change Index New

Diffuse Change Index Global

Diffuse Change Index Local

Texture Coordinate Face
Update Texture Layer Count

- 75 -

9.6.1.3.4.8.1.2 U8 [cDiffuseChangeType]: Diffuse Change Type

Diffuse Change Type indicates the type of change index that follows.

0x01 – New;

0x02 – Local;

0x03 – Global.

9.6.1.3.4.8.1.3 U32 [cDiffuseChangeIndexNew]: Diffuse Change Index New

Diffuse Change Index New is an index into the list of new diffuse
resolution update as described in 9.6.1.3.4.2 New Diffuse Color Info.

.8.1.4 U32 [cDiffuseChangeIndexLocal]: Diffuse Change Index Local

Diffuse Change Index Local is an index into the list of diffuse color indices used at the
split position. Larger indices appear first in the that list.

colors for this

9.6.1.3.4

exGlobal]: Diffuse Change Index Global

9.6.1.3.4.8.2 Specular Color Face Update

9.6.1.3.4.8.2.1

osition that is moving to the New
at the same

0x01 – Change; The specular color should change. The new value for the specular
color index can be found in the following change index.

9.6.1.3.4.8.1.5 U32 [cDiffuseChangeInd

Diffuse Change Index Global is an index into the full diffuse color pool.

Specular Color Face Update is present only if the shading description for this face indicates
that the face has specular colors at the corners of the face.

U8 [cSpecularKeepChange]: Specular Keep Change

For each face with specular colors and a split p
Position, Specular Keep Change indicates whether the specular color
corner as the split position should also change.

0x02 – Keep; The specular color should not change.

Specular Keep Change

Specular Change Type

Specular Change Index New

Specular Change Index Global

Specular Change Index Local

9.6.1.3.4.8.2.2 U8 [cSpecularChangeType]: Specular Change Type

.

w

.

al

st.

al

ol.

ate

Update is not present.

9.6.1.3.4.8.3.1 U8 [cTCKeepChange]: Tex Coord Keep Change

tion that is moving to the New

Specular Change Type indicates the type of change index that follows

0x01 – New;

0x02 – Local;

0x03 – Global.

9.6.1.3.4.8.2.3 U32 [cSpecularChangeIndexNew]: Specular Change Index Ne

Specular Change Index New is an index into the list of new specular colors for this
resolution update as described in 9.6.1.3.4.3 New Specular Color Info

9.6.1.3.4.8.2.4 U32 [cSpecularChangeIndexLocal]: Specular Change Index Loc

Specular Change Index Local is an index into the list of specular color indices used at
the split position. Larger indices appear first in the that li

9.6.1.3.4.8.2.5 U32 [cSpecularChangeIndexGlobal]: Specular Change Index Glob

Specular Change Index Global is an index into the full specular color po

9.6.1.3.4.8.3 Texture Coordinate Face Upd

Texture Coordinate Face Update is repeated once for each texture layer for the move face.
If there are no texture layers, then Texture Coordinate Face

For each face with texture coordinates and a split posi
Position, Tex Coord Keep Change indicates whether the texture coordinate at the same
corner as the split position should also change.

0x02 – Keep; The texture coordinate should not change.

0x01 – Change; The texture coordinate should change. The new value for the texture
coordinate can be found in the following change index.

Tex Coord Keep Change

Tex Coord Change Type

Tex Coord Change Index New

Tex Coord Change Index Global

Tex Coord Change Index Local

- 76 -

- 77 -

9.6.1.3.4.8.3.2 U8 [cTCChangeType]: Tex Coord Change Type

Tex Coord Change Type indicates the type of change index that follows.

 appear first in the that list.

ool.

9

Ne
de diffuse,
specular or texture coordinate face info is determined by the Shading Description indicated by
the Shading ID for this new face.

9.6.1.3.4.9.1 New Face Diffuse Color Info

New Face Diffuse Color Info indicates which colors from the diffuse color pool are used at
each corner of this face. New Face Diffuse Color Info is only present if the shader list

 One of the Shading Attributes flag

0x01 – New;

0x02 – Local;

0x03 – Global.

9.6.1.3.4.8.3.3 U32 [cTCChangeIndexNew]: Tex Coord Change Index New

Tex Coord Change Index New is an index into the list of new texture coordinates for this
resolution update as described in 9.6.1.3.4.4 New Texture Coord Info.

9.6.1.3.4.8.3.4 U32 [cTCChangeIndexLocal]: Tex Coord Change Index Local

Tex Coord Change Index Local is an index into the list of texture coordinate indices
used at the split position at this texture layer. Larger indices

9.6.1.3.4.8.3.5 U32 [cTCChangeIndexGlobal]: Tex Coord Change Index Global

Tex Coord Change Index Global is an index into the full texture coordinate p

.6.1.3.4.9 New Face Info

w Face Info completes the description of the new faces to be added to the mesh. The
scription was started in 9.6.1.3.4.6 New Face Position Info. The presence of the

identified by Shading ID uses diffuse color coordinates.
indicates the presence of diffuse color coordinates.

s

New Face Diffuse Color Info

New Face Texture Coord Info

New Face Specular Color Info

Diffuse Duplicate Flag

Split Vertex Diffuse Color

New Vertex Diffuse Color

Third Vertex Diffuse Color

9.6.1.3.4.9.1.1

uplicate Flag is a set of flags that indicates if the index for the color at a

are reserved.

if Diffuse Duplicate Flag indicates the Split
color index uses the list of diffuse color

index list. This color index uses the diffuse

9.6.1.3.4

U8 [cColorDup]: Diffuse Duplicate Flag

Diffuse D
particular corner is the same as the corresponding index from the previous diffuse face.
If the flag is set (one), then the most recently used color is used again. If the flag is not
set (zero), then a color index is used to indicate the color to be used from the diffuse
color pool. All other values

0x00 – Split Vertex uses color indicated by the color index.

0x01 – Split Vertex uses color used at previous diffuse split vertex.

0x02 – New Vertex uses color used at previous diffuse new vertex.

0x04 – Third Vertex uses color used at previous diffuse third vertex.

9.6.1.3.4.9.1.2 Split Vertex Diffuse Color

Split Vertex Diffuse Color is present only
Vertex does not use a duplicate color. This
indices used at the split position for the local
color pool.

.9.1.2.1 Color Index

Color Index Type

Color Index Local Color Index Global

Color Index

- 78 -

- 79 -

9.6.1.3.4.9.1.2.1.1 U8[cColorIndexType]: Color Index Type

Color Index Type indicates whether the following index is an index into the
complete color pool or an index into a smaller local list of color indices.

0x02 – Local;

0x03 – Global.

9.6.1.3.4.9.1.2.1.2 U32[cColorIndexLocal]: Color Index Local

Color Index Local is an index into a local list of colors. The indices in the list are
sorted with the larger indices first.

9.6.1.3.4.9.1.2.1.3 U32[cColorIndexGlobal]: Color Index Global

Color Index Global is an index into the complete color pool.

9.6.1.3.4.9.1.3 New Vertex Diffuse Color

New Vertex Diffuse Color is present only if Diffuse Duplicate Flag indicates the New
Vertex does not use a duplicate color. This color index uses the list of diffuse color

al index list. This color index uses the diffuse

.

9.6.1.3.4.9.1.4

indicates the Third
licate color. This color index uses the list of diffuse color
ition for the local index list. This color index uses the diffuse

1.2.1 Color Index.

9.6.1.3.4.9.2 New

olor Info indicates which colors from the specular color pool are used

identified

indices used at the split position for the loc
color pool for the complete color pool.

Details on the color index format are in 9.6.1.3.4.9.1.2.1 Color Index

Third Vertex Diffuse Color

Third Vertex Diffuse Color is present only if Diffuse Duplicate Flag
Vertex does not use a dup
indices used at the third pos
color pool for the complete color pool.

Details on the color index format are in 9.6.1.3.4.9.

 Face Specular Color Info

New Face Specular C
at each corner of this face. New Face Specular Color Info is only present if the shader list

by Shading ID uses specular color coordinates. One of the Shading Attributes
flags indicates the presence of specular color coordinates.

Color Index

Color Index

- 80 -

U8 [cColorDup]: Specular Duplicate Flag

Specular Duplicate Flag is a set of fla

9.6.1.3.4.9.2.1

gs that indicates if the index for the color at a
sponding index from the previous specular

used color is used again. If the flag is
color to be used from the

 previous specular split vertex.

r used at previous specular third vertex.

9.6.1.3.4.9.2.2

the local index list. This color index uses the

at are in 9.6.1.3.4.9.1.2.1 Color Index.

9.6.1.3.4.9.2

list. This color index uses the
specular color pool for the complete color pool.

Details on the color index format are in 9.6.1.3.4.9.1.2.1 Color Index.

particular corner is the same as the corre
face. If the flag is set (one), then the most recently
not set (zero), then a color index is used to indicate the
specular color pool. All other values are reserved.

0x01 – Split Vertex uses color used at

0x02 – New Vertex uses color used at previous specular new vertex.

0x04 – Third Vertex uses colo

Split Vertex Specular Color

Split Vertex Specular Color is present only if Specular Duplicate Flag indicates the Split
Vertex does not use a duplicate color. This color index uses the list of specular color
indices used at the split position for
specular color pool for the complete color pool.

Details on the color index form

.3 New Vertex Specular Color

New Vertex Specular Color is present only if Specular Duplicate Flag indicates the New
Vertex does not use a duplicate color. This color index uses the list of specular color
indices used at the split position for the local index

Color Index

Color Index

Specular Duplicate Flag

Split Vertex Specular Color

New Vertex Specular Color

Third Vertex Specular Color

- 81 -

9.6.1.3.4.9.2.4 Third Vertex Specular Color

Third Vertex Specular Color is present only if Specular Duplicate Flag indicates the
Third Vertex does not use a duplicate color. This color index uses the list of specular
color indices used at the third position for the local index list. This color index uses the
specular color pool for the complete color pool.

Details on the color index format are in 9.6.1.3.4.9.1.2.1 Color Index.

9.6.1.3.4.9.3 New Face Texture Coord Info

New Face Texture Coord Info indicates which texture coordinates from the texture
coordinate pool are used at each corner of this face for each texgture coordinate layer. New

ID uses
ater than zero indicates the presence of

text

9.6.1.3.4.9.3.1 U8 [cTexCDup]: Texture Coord Duplicate Flag

Texture Coord Duplicate Flag is a set of flags that indicates if the index for the texture
from the

xture coordinate is
t set (zero), then a texture coordinate index is used to

nate used at a new vertex in this mesh.

dinate used at a third vertex in this mesh.

Face Texture Coord Info is only present if the shader list identified by Shading
texture coordinates. A texture layer count gre

ure coordinates.

Texture Coord Duplicate Flag

coordinagte at a particular corner is the same as the corresponding index
previous corner. If the flag is set (one), then the most recently used te
used again. If the flag is no
indicate the texture coordinate to be used from the texture coordinate pool. All other
values are reserved.

0x01 – Split Vertex uses previous texture coordinate used at a split vertex in this mesh.

0x02 – New Vertex uses previous texture coordi

0x04 – Third Vertex uses previous texture coor

Split Vertex Texture Coord

New Vertex Texture Coord

Third Vertex Texture Coord

Texture Layer Count

Color Index

9.6.1.3.4.9.3.2 Split Vertex Texture Coordinate

9.6.1.3.4.9.3.

9.6.1.3.4.9.3.2.1.1 U8[cTexCIndexType]: Texture Coord Index Type

Texture Coord Index Type indicates whether the following index is an index into
the complete texture coordinate pool or an index into a smaller local list of
texture coordinate indices.

0x02 – Local;

0x03 – Global.

9.6.1.3.4.9.3.2.1.2 U32[cTextureIndexLocal]: Texture Coord Index Local

Texture Coord Index Local is an index into a local list of texture coordinates.
The indices in the list are sorted with the larger indices first.

9.6.1.3.4.9.3.2.1.3 U32[cTextureIndexGlobal]: Texture Coord Index Global

into the complete texture coordinate

9.6.1.3.4.9.3.3

cal index list.

Details on the texture coordinate index format are in 9.6.1.3.4.9.3.2.1 Texture Coord
Index.

Split Vertex Texture Coordinate is present only if Texture Coord Duplicate Flag
indicates the Split Vertex does not use a duplicate texture coordinate. This texture
coordinate index uses the list of texture coordinate indices used at the split position for
the local index list.

Texture Coordinate Index

2.1 Texture Coordinate Index

- 82 -

Texture Coord Index Global is an index
pool.

New Vertex Texture Coord

New Vertex Texture Coord is present only if Texture Coord Duplicate Flag indicates the
New Vertex does not use a duplicate texture coordinate. This texture coordinate index
uses the list of texture coordinates indices used at the split position for the current
texture layer for the lo

Texture Coord Index

Texture Coord Index Type

Texture Coord Index Local Texture Coord Index Global

- 83 -

9.6.1.3.4.9.3.4 Third Vertex Texture Coord

Third Vertex Texture Coord is present only if Texture Coord Duplicate Flag indicates the
Third Vertex does not use a duplicate texture coordinate. This texture coordinate index
uses the list of texture coordinate indices used at the third position for the current
texture layer for the local index list. This texture coordinate index uses the texture
coordinate pool for the complete texture coordinate pool.

Details on the texture coordinate index format are in 9.6.1.3.4.9.3.2.1 Texture Coord
Index.

9.6.1.3.4.10 New Position Info

New Position Info describes the position added to the mesh during this resolution upate. The
new position value is predicted as the split position value.

9.6.1.3.4.10.1 U8

Position Difference Signs is a collection of sign bits for the prediction differences.

nce X

0x0

0x0

9.6.1.3.4.10.2 U32

plit position X,(Position Difference

Texture Coord Index

Position Difference Signs

Position Difference X

Position Difference Y

Position Difference Z

[cPosDiffSign]: Position Difference Signs

0x01 – Sign bit for Position Differe

2 – Sign bit for Position Difference Y

4 – Sign bit for Position Difference Z

 [cPosDiffX]: Position Difference X

Reconstructed Position X coordinate is calculated as

Reconstructed Position X = InverseQuant(s
Signs & 0x01),

Position Difference X, Position Inverse Quant).

9.6 nce Y

Rec

t).

9.6.1.3.4.10.4 U32 [cPosDiffZ]: Position Difference Z

Reconstructed Position Z coordinate is calculated as

Reconstructed Position Z = InverseQuant(split position Z,((Position Difference
Signs & 0x04)>>2),

9.6.1.3.4.11 New Normal Info

repeated once for each position in the neighbourhood of the new position.

orner that uses that position. New
Normal Info is not present if 9.6.1.1.3.1 Mesh Attributes in the Max Mesh Description indicates
Exclude Normals.

.1.3.4.10.3 U32 [cPosDiffY]: Position Differe

onstructed Position Y coordinate is calculated as

Reconstructed Position Y = InverseQuant(split position Y,((Position Difference
Signs & 0x02)>>1),

Position Difference Y, Position Inverse Quan

Position Difference Z, Position Inverse Quant).

New Normal Info is
Positions with higher index values are handled first. This neighbourhood includes the new
position. New Normal Info describes new normals added to the normal pool. New Normal Info
also specifies which normal should be used by each c

Count of faces using position

New Normal Count

New Normal Count

- 84 -

Normal Local Index

Normal Difference Signs

Normal Difference X

Normal Difference Y

Normal Difference Z

- 85 -

9.6.1.3.4.11.1 U32 [cNormlCnt]: New Normal Count

New Normal Count is the number of normals added to the normal array. An array of
predicted nd
encoded by
putting the face normal for each face that uses this position into an array. While the size of
this array is larg normals that are closest.

d spherical-linear average where each normal is
rmals that it includes.

9.6.1.3.4.11.2

Normal D

0x01 – Sign bit fo

or Normal Difference Y

9.6.1.3.4.11

 0x01),

9.6.1.3.4.11.4 U32

9.6.1.3.4.11.5 U32

9.6.1.3.4.11.6 U32

9.6.2

The
Trans

The Point Set’s outputs have no dependencies.

9.6.2.1 Point Set Declaration (blocktype: 0xFFFFFF36)
The Point Set Declaration contains the declaration information for a point set generator. The
declaration information is sufficient to allocate space for the point set data and create the
point set generator object. The point set data is contained in following continuation blocks.

 normals is generated and the difference from the predictions is quantized a
 in the following sections. To generate the array of predicted normals, start

er than New Normal Count, merge the two
Merging normals is done using a weighte
weighted by the number of original face no

U8 [cDiffNormalSign]: Normal Difference Signs

ifference Signs is a collection of sign bits for the prediction differences.

r Normal Difference X

0x02 – Sign bit f

0x04 – Sign bit for Normal Difference Z

.3 U32 [cDiffNormalX]: Normal Difference X

Reconstructed Normal X coordinate is calculated as

Reconstructed Normal X = InverseQuant(predicted normal X,(Normal Difference
Signs &

Normal Difference X, Normal Inverse Quant).

[cDiffNormalY]: Normal Difference Y

Reconstructed Normal Y coordinate is calculated as

Reconstructed Normal Y = InverseQuant(predicted normal Y,((Normal Difference
Signs & 0x02)>>1),

Normal Difference Y, Normal Inverse Quant).

[cDiffNormalZ]: Normal Difference Z

Reconstructed Normal Z coordinate is calculated as

Reconstructed Normal Z = InverseQuant(predicted normal Z,((Normal Difference
Signs & 0x04)>>2),

Normal Difference Z, Normal Inverse Quant).

[cNormlIdx]: Normal Local Index

For each face using the position, the face shall use a New Normal from the new normal
array at the corner that is using the position. Normal Local Index specifies which of the new
normals should be used. The face may be a new face added during this resolution update
or may be a face that already existed in the mesh.

Point Set (blocktypes: 0xFFFFFF36; 0xFFFFFF3E)
The Point Set generator contains the data needed to represent a set of points.

Point Set produces the following outputs: Renderable Group, Renderable Group Bounds,
form Set.

Point Set Name

- 86 -

9.6.2.1.1 String: Point Set

enerator. This name is also the name of the
 point set generator.

9.6.2.1.2 U32: Chain Index
Chain Index
chain.The val hall zero for this blocktype.

9.6.2.1.3 Point Set Descrip
point set. Point Set Description can be used

to al

Name
Point Set Name is the name of the point set g
model resource modifier chain that contains the

is the position of the point set generator in the model resource modifier
ue of Chain Index s

t ion
Point Set Description describes the size of the

locate space for the point set.

Point Set Description

Resource Description

Chain Index

Skeleton Description

- 87 -

9.6.2.1.3.1 U32: Point Set Reserved

Point Set Reserved is a reserved field and shall have the value 0.

9.6.2.1.3.2 U32: Point Count

Point Count is the number of points in the point set.

9.6.2.1.3.3 U32: Position Count

Position Count is the number of positions in the position array.

9.6.2.1.3.4 U32: Normal Count

Normal Count is the number of normals in the normal array.

9.6.2.1.3.5 U32: Diffuse Color Count

Diffuse Color Count is the number of colors in the diffuse color array.

9.6.2.1.3.6 U32: Specular Color Count

Specular Color Count is the number of colors in the specular color array.

Point Count

Position Count

Normal Count

Diffuse Color Count

Specular Color Count

Texture Coord Count

Shading Count

Shading Description

Point Set Reserved

Shading Count

9.6.2.1.3.7 U32: Texture Coord Count

Texture Coord Count is the number of texture coordinates in the texture coordinate array.

9.6.2.1.3.8 U32: Shading List Count

Shading List Count Count is the number of materials used in the point set.

9.6.2.1.3.9 Shading Description

Shading Description indicates which per vertex attributes, in addition to position and normal,
are used by each shader list. Details are covered in 9.6.1.1.3.9 Shading Description.

9.6.2.1.4 Resource Description

9.6.2.1.4.1 Quality Factors

The quality factors are defined in 9.6.1.1.5.1 Quality Factors.

9.6.2.1.4.2 Inverse Quantization

Inverse quantization is defined in 9.6.1.1.5.2 Inverse Quantization.

9.6.2.1.4.3 Resource Parameters

Resource Parameters control the operation of the point set generator. The parameters defined
in this section control the creation of the renderable point set. These parameters are reserved
for future definition.

Reserved Point Set Parameter 2 shall have the value 0.

Reserved Point Set Parameter 1

- 88 -

9.6.2.1.4.3.1 U32: Reserved Point Set Parameter 1

Reserved Point Set Parameter 1 shall have the value 0.

9.6.2.1.4.3.2 U32: Reserved Point Set Parameter 2

Reserved Point Set Parameter 3

Reserved Point Set Parameter 2

Quality Factors

Inverse Quantization

Resource Parameters

- 89 -

9.6.2.1.4.3.3 U32: Reserved Point Set Parameter 3

9
S tion of Skeleton
Description is in

Reserved Point Set Parameter 3 shall have the value 0.

.6.2.1.5 Skeleton Description
keleton Description provides bone structure information. Defini

9.6.1.1.6 Skeleton Description.

9.6.2.2
The

k is a continuation type block.

9.6.2.2.1 S
e of the point set generator. This name is also the name of the

m

9.6.2.2.2 U
C sition of the point set generator in the model resource modifier chain.
The value of Chain Index shall zero for this blocktype.

9.6.2.2.3 Point Resolution Range
Point Resolution Range specifies the range of point description data provided in this
continuation block.

This continuation block contains point description data for positions from (Start Resolution)
to (End Resolution – 1). The total number of positions added by this block is Point
Resolution Count = End Resolution – Start Resolution.

Point Set Continuation (blocktype: 0xFFFFFF3E)
 Point Set Continuation contains point data for a point set generator.

The Point Set Continuation bloc

Point Set Name

Point Description

tr ing: Point Set Name
Point Set Name is the nam

odel resource modifier chain that contains the point set generator.

32: Chain Index
hain Index is the po

Point Resolution Range

Chain Index

Point Resolution Count

Start Resolution

End Resolution

9

St is block.

onCount]: Split Position Index

9.6.2.2.4.2

.6.2.2.3.1 U32: Start Resolution

art Resolution is the index of the first position added by th

9.6.2.2.3.2 U32: End Resolution

End Resolution is one more than the index of the last position added by this block.

9.6.2.2.4 Point Description

- 90 -

9.6.2.2.4.1 U32 [rCurrentPositi

Each Point Description adds one new position to the position array. Split Position Index is the
index of the position of the points used as a prediction reference by this Point Description. Split
Position Index will be less than the current position count.

When the CurrentPositionCount has the value zero, the compression context used shall be
“r1” instead of “r0”.

New Position Info

The new position is predicted as the split position. New Position Info is defined above in
9.6.1.3.4.10 New Position Info.

9.6.2.2.4.3 U32 [cNormlCnt]: New Normal Count

New Normal Count is the number of normals added to the normal array for use by points at
this position.

9.6.2.2.4.4 New Normal Info

The normals are predicted as the spherical-linear average of the normals used by points at the
split position.

New Point Info
New Point Count

Split Position Index

New Point Count

New Position Info

New Normal Info

New Normal Count

New Normal Count

- 91 -

Normal Difference Signs

Normal Difference X

9.6.2.2.4.4.1 U8 [cDiffNormalSign]: Normal Difference Signs

Normal Difference Signs is a collection of sign bits for the prediction differences.

0x01 – Sign bit for Normal Difference X

0x02 – Sign bit for Normal Difference Y

0x04 – Sign bit for Normal Difference Z

9.6.2.2.4.4.2 U32 [cDiffNormalX]: Normal Difference X

Reconstructed Normal X coordinate is calculated as

Reconstructed Normal X = InverseQuant(predicted normal X,(Normal Difference
Signs & 0x01),

Normal Difference X, Normal Inverse Quant).

9.6.2.2.4.4.3 U32 [cDiffNormalY]: Normal Difference Y

9.6.2.2.4.4.

rmal Z coordinate is calculated as

, Normal Inverse Quant).

9.6.2.2.4.5

unt is the number of new points added to the point set by this Point Description.

rent position count.

Normal Difference Y

Normal Difference Z

Reconstructed Normal Y coordinate is calculated as

Reconstructed Normal Y = InverseQuant(predicted normal Y,((Normal Difference
Signs & 0x02)>>1),

Normal Difference Y, Normal Inverse Quant).

4 U32 [cDiffNormalZ]: Normal Difference Z

Reconstructed No

Reconstructed Normal Z = InverseQuant(predicted normal Z,((Normal Difference
Signs & 0x04)>>2),

Normal Difference Z

U32 [cPointCnt]: New Point Count

New Point Co

9.6.2.2.4.6 New Point Info

New Point Info describes a new point to be added to the point set. The position index of the
point is the cur

Shading ID

New Point Diffuse Color Coords

New Point Specular Color Coords

New Point Texture Coords

9.6.2.2.4.6.1

description used for this point. The Shading
eclaration block.

9.6.2.2.4.6.2

The new l
Index spe

9.6.2.2.4.6.3 New Point Diffus

ent if the shading list identified by Shading ID
tributes flags indicates the presence of

ate Flag

r

ntly added color is used again. If the flag is not set (zero), then a new color is

cate color

9.6.2.2.4.6.3.2 New Point Diffuse Color

New Point Diffuse Color is present only if Diffuse Duplicate Flag indicates the new point
does not use a duplicate color.

U32 [cShading]: Shading ID

Shading ID is the index of the shading
Description array is defined in the Point Set D

U32 [cNormlIdx]: Normal Local Index

point shall use a normal the New Normal Info array for this point. Normal Loca
cifies which of the new normals should be used.

e Color Coords

New Point Diffuse Color Coords is only pres
uses diffuse color coordinates. One of the Shading At
diffuse color coordinates.

Normal Local Index

Diffuse Duplicate Flag

New Point Diffuse Color

9.6.2.2.4.6.3.1 U8 [cDiffDup]: Diffuse Duplic

Diffuse Duplicate Flag is a set of flags that indicates if a new color is added to the colo
pool or if the most recently added color is used again. If the flag is set (one), then the
most rece
added to the diffuse color pool. All other values are reserved.

0x02 – New point uses dupli

- 92 -

- 93 -

The New Point Diffuse Color is predicted as the average of the diffuse colors used by all
points that use the Split Position.

9.6.2.2.4.6.3.2.1 U8

ign bits for the prediction

olor Difference Blue

9.6.2.2.4

Reconstructed Color red component is calculated as

Reconstructed Red = InverseQuant(predicted red,(Diffuse Color Difference
Signs & 0x01),

Diffuse Color Difference Red, Diffuse Color Inverse Quant).

9.6.2.2.4.6.3.2.3 U32 [cColorDiffG]: Diffuse Color Difference Green

Reconstructed Color green component is calculated as

Reconstructed Green = InverseQuant(predicted green, ((Diffuse Color
Difference Signs & 0x02) >> 1),

n, Diffuse Color Inverse Quant).

9.6.2.2.4.6.3.

iffuse Color Difference

ifference Blue, Diffuse Color Inverse Quant).

Diffuse Color Difference Signs

Diffuse Color Difference Blue

Diffuse Color Difference Red

Diffuse Color Difference Green

Diffuse Color Difference Alpha

[cDiffuseColorSign]: Diffuse Color Difference Signs

Diffuse Color Difference Signs is a collection of s
differences.

0x01 – Sign bit for Diffuse Color Difference Red

0x02 – Sign bit for Diffuse Color Difference Green

0x04 – Sign bit for Diffuse C

0x08 – Sign bit for Diffuse Color Difference Alpha

.6.3.2.2 U32[cColorDiffR]: Diffuse Color Difference Red

Diffuse Color Difference Gree

2.4 U32 [cColorDiffB]: Diffuse Color Difference Blue

Reconstructed Color blue component is calculated as

Reconstructed Blue = InverseQuant(predicted blue, ((D
Signs & 0x04) >> 2),

Diffuse Color D

9.6.2.2.4.6.3.

omponent is calculated as

> 3)

9.6.2.2.4.6.4 New

of s

9.6.2.2.4.6.4.1 U8

the

erved.

0x0

9.6.2.2.4.6.4.2 New ular Color

New r Duplicate Flag indicates the new
poin

The erage of the specular colors used
at all points that use the Split Position.

2.5 U32 [cColorDiffA]: Diffuse Color Difference Alpha

Reconstructed Color alpha c

Reconstructed Alpha = InverseQuant(predicted alpha, ((Diffuse Color
Difference Signs & 0x08) >

Diffuse Color Difference Alpha, Diffuse Color Inverse Quant).

 Point Specular Color Coords

New Point Specular Color Coords is only present if the shading list identified by Shading ID
uses specular color coordinates. One of the Shading Attributes flags indicates the presence

pecular color coordinates.

[cSpecDup]: Specular Duplicate Flag

Specular Duplicate Flag is a set of flags that indicates if a new color is added to
color pool or if the most recently added color is used again. If the flag is set (one), then
the most recently added color is used again. If the flag is not set (zero), then a new
color is added to the specular color pool. All other values are res

2 – New point uses duplicate color

 Point Spec

 Point Specular Color is present only if Specula
t does not use a duplicate color.

 New Point Specular Color is predicted as the av

Specular Color Difference Signs

Specular Color Difference Red

Specular Color Difference Green

Specular Color Difference Blue

Specular Color Difference Alpha

Specular Duplicate Flag

New Point Specular Color

- 94 -

- 95 -

- 95 -

9.6.2.2.4.6.4.2.1 U8 [cSp

Specular Color Difference Signs is a collection of sign bits for the prediction
differences.

0x01 – Sign bit for Specular Color Difference Red

0x02 – Sign bit for Specular Color Difference Green

0x04 – Sign bit for Specular Color Difference Blue

0x08 – Sign bit for Specular Color Difference Alpha

9.6.2.2.4.6.4.2.2 U32[cColorDiffR]: Specular Color Difference Red

Reconstructed Color red component is calculated as

Reconstructed Red = InverseQuant(predicted red,(Specular Color Difference
Signs & 0x01),

Specular Color Difference Red, Specular Color Inverse Quant).

9.6.2.2.4.6.4.2.3 U32 [cColorDiffG]: Specular Color Difference Green

Reconstructed Color green component is calculated as

Reconstructed Green = InverseQuant(predicted green, ((Specular Color
Difference Signs & 0x02) >> 1),

Specular Color Difference Green, Specular Color Inverse Quant).

9.6.2.2.4.6.4.2.4 U32 [cColorDiffB]: Specular Color Difference Blue

Reconstructed Color blue component is calculated as

Reconstructed Blue = InverseQuant(predicted blue, ((Specular Color Difference
Signs & 0x04) >> 2),

Specular Color Difference Blue, Specular Color Inverse Quant).

9.6.2.2.4.6.4.2.5 U32 [cColorDiffA]: Specular Color Difference Alpha

Reconstructed Color alpha component is calculated as

Reconstructed Alpha = InverseQuant(predicted alpha, ((Specular Color
Difference Signs & 0x08) >> 3)

Specular Color Difference Alpha, Specular Color Inverse Quant)

9.6.2.2.4.6.5 New Point Texture Coords

ecularColorSign]: Specular Color Difference Signs

Tex Coord Duplicate Flag

New Tex Coord

Texture Layer Count

9.6

Tex a new texture coordinate is
added t rdinate is
used ag rdinate is
used ag then a new texture coordinate is added to the
texture coor

texture coordinate

9.6.2.2.4.6.5

ng the split position.

9.6.2.2.4.6.5.

Tex Coord Difference Signs is a collection of sign bits for the prediction differences.

0x01 – Sign bit for Texture Coord Difference U

0x02 – Sign bit for Texture Coord Difference V

0x04 – Sign bit for Texture Coord Difference S

0x08 – Sign bit for Texture Coord Difference T

9.6.2.2.4.6.5.2.2 U32 [cTexCDiffU]: Texture Coord Difference U

The reconstructed texture coordinate U is calculated as

Reconstructed TexCoord U = InverseQuant(predicted Tex Coord U, (Tex Coord
Signs & 0x01),

Texture Coord Difference U, Texture Coord Inverse Quant).

9.6.2.2.4.6.5.2.3 U32 [cTexCDiffV]: Texture Coord Difference V

The reconstructed texture coordinate V is calculated as

Reconstructed TexCoord V = InverseQuant(predicted Tex Coord V, ((Tex
Coord Signs & 0x02) >> 1)),

Texture Coord Difference V, Texture Coord Inverse Quant).

.2.2.4.6.5.1 U8 [cTexCDup]: Tex Coord Duplicate Flag

 Coord Duplicate Flag is a set of flags that indicates if
o the texture coordinate pool or if the most recently added texture coo
ain. If the flag is set (one), then the most recently added texture coo
ain. If the flag is not set (zero),

dinate pool. All other values are reserved.

0x02 – New point uses duplicate

.2 New Tex Coord

The New Tex Coord is predicted as the average of the texture coordinates at the same
layer used by all points usi

Tex Coord Difference Signs

Tex Coord Difference U

Tex Coord Difference V

Tex Coord Difference S

Tex Coord Difference T

2.1 U8 [cTexCoordSign]: Tex Coord Difference Signs

- 96 -

- 97 -

9.6.2.2.4.6.5.2.4 U32 [cTexCDiffS]: Texture Coord Difference S

The reconstructed texture coordinate S is calculated as

Reconstructed TexCoord S = InverseQuant(predicted Tex Coord S, ((Tex
Coord Signs & 0x04) >> 2),

Texture Coord Difference S, Texture Coord Inverse Quant).

9.6.2.2.4.6.5.2.5 U32 [cTexCDiffT]: Texture Coord Difference T

The reconstructed texture coordinate T is calculated as

Reconstructed TexCoord T = InverseQuant(predicted Tex Coord, ((Tex Coord
Signs & 0x08) >> 3),

Texture Coord Difference T, Texture Coord Inverse Quant).

9.6.3 Line Set (blocktypes: 0xFFFFFF37; 0xFFFFFF3F)
The Line Set generator contains the data needed to represent a set of lines.

The Line Set produces the following outputs: Renderable Group, Renderable Group Bounds,
Transform Set.

The Line Set’s outputs have no dependencies.

9.6.3.1
set generator. The

declaration inf
set generator object. The line set data is contained in following continuation blocks.

9.6.3.1.1 String: Lin

Line Set Name
model resource

9.6.3.1.2 U32: Chain Index
l resource modifier chain.

Line Set Declaration (blocktype: 0xFFFFFF37)
The Line Set Declaration contains the declaration information for a line

ormation is sufficient to allocate space for the line set data and create the line

Line Set Name

e Set Name
is the name of the line set generator. This name is also the name of the

 modifier chain that contains the line set generator.

Chain Index is the position of the line set generator in the mode
The value of Chain Index shall zero for this blocktype.

Line Set Description

Resource Description

Chain Index

Skeleton Description

9.6.3.1.3 Line Set Desc
Line Set Description describes the size of the line set. Line Set Description can be used to
allocate space for the

9.6.3.1.3.1 U32: Line Set Reserved

Line Set Reserved is a reserved field and shall have the value 0.

9.6.3.1.3.2 U32: Line Count

Line Count is the number of line segments in the line set.

9.6.3.1.3.3 U32: Position Count

Position Count is the number of positions in the position array.

9.6.3.1.3.4 U32: Normal Count

Normal Count is the number of normals in the normal array.

9.6.3.1.3.5 U32: Diffuse Color Count

Diffuse Color Count is the number of colors in the diffuse color array.

r iption

 line set.

Line Count

Position Count

Normal Count

Diffuse Color Count

Specular Color Count

Texture Coord Count

Shading Count

Shading Description

Line Set Reserved

Shading Count

- 98 -

- 99 -

9.6.

Specu

9.6.3.1.3.7 U32: T

Textur

9.6.3.1.3.8 U32: Shading Count

Shading Count is the number of shading descriptions used in the line set.

9.6.

Shadin
are us ve in 9.6.1.1.3.9 Shading Description

3.1.3.6 U32: Specular Color Count

lar Color Count is the number of colors in the specular color array.

exture Coord Count

e Coord Count is the number of texture coordinates in the texture coordinate array.

3.1.3.9 Shading Description

g Description indicates which per vertex attributes, in addition to position and normal,
ed by each shading list. Details are provided abo .

9.6.3.1.4 Resource Description

9.6.3.1.4.1 Quality Factors

The quality factors are defined in 9.6.1.1.5.1 Quality Factors.

9.6.3.1.4.2 Inverse Quantization

Inverse quantization is defined in 9.6.1.1.5.2 Inverse Quantization.

9.6.3.1

Resource
in this sec up. These parameters are reserved
for future d

9.6.3.1.4.3.1 U32: Reser

Reserved Line Set Parameter 1 shall have the value 0.

.4.3 Resource Parameters

Parameters control the operation of the line set generator. The parameters defined
tion control the creation of the renderable line gro
efinition.

Reserved Line Set Parameter 1

Reserved Line Set Parameter 2

Reserved Line Set Parameter 3

Quality Factors

Inverse Quantization

Resource Parameters

ved Line Set Parameter 1

9.6.3

Reserve

9.6.3.1.4.3.3 U32: Reser

Reserved Line Set Parameter 3 shall have the value 0.

9.6.3.1.5 Skeleton Descrip
etails are provided in 9.6.1.1.6

.1.4.3.2 U32: Reserved Line Set Parameter 2

d Line Set Parameter 2 shall have the value 0.

ved Line Set Parameter 3

t ion
Skeleton Description provides bone structure information. D
Skeleton Description.

9.6.3.2 Line Set Contin
The Line Set Continuation contains data for a line set generator.

The Line Set Continuat

9.6.3.2.1 String: Line Set Name
Line Set Name is the name of the line set generator. This name is also the name of the
model resource modifier chain that contains the line set generator.

9.6.3.2.2 U32: Chain Index
Chain Index is the position of the line set generator in the model resource modifier chain.
The value of Chain Index shall zero for this blocktype.

9.6.3.2.3 Line Resolution Range
Line Resolution Range specifies the range of line description data provided in this
continuation block.

This continuation block contains line description data for positions from (Start Resolution)
to (End Resolution – 1). The total number of positions added by this block is Point

uation (blocktype: 0xFFFFFF3F)

ion block is a continuation type block.

Line Set Name

- 100 -

Resolution Count = End Resolution – Start Resolution.

Line Description

Line Resolution Range

Chain Index

Line Resolution Count

- 101 -

Start Resolution

9.6.3.2.3.1 U32: Start Resolution

Start Resolution is the index of the first position added by this block.

9.6.3.2.3.2 U32: End Resolution

End Resolution is one more than the index of the last position added by this block.

9.6.3.2.4 Line Description

itionCount]: Split Position Index

tion array. Split Position Index is the
this Line Description. Split Position

the current position count.

pression context used shall be

9.6.3.2.4.2

ted as the split position. New Position Info is defined above in
fo

End Resolution

New Line Info
New Line Count

Split Position Index

New Line Count

New Position Info

New Normal Info

New Normal Count

New Normal Count

9.6.3.2.4.1 U32 [rCurrentPos

Each Line Description adds one new position to the posi
index of the position used as a prediction reference by
Index will be less than

When the CurrentPositionCount has the value zero, the com
“r1” instead of “r0”.

New Position Info

The new position is predic
9.6.1.3.4.10 New Position In .

9.6.3.2.4.3 U32 [cNormlCnt]: New Normal Count

New Normal Count is the number of normals added to the normal array for use by lines using

New

the new position.

9.6.3.2.4.4 New Normal Info

The normals are predicted as the average of the normals used at the split position.
Normal Info is defined in 9.6.2.2.4.4 New Normal Info.

9.6.3.2.4.5 U32 [cLineCnt]: New Line Count

New Line Count is the number of new lines added to the line set by this Line Description.

ent.

9.6.3.2.4.6.1 U32 [cShading]:Shading ID

Shading ID is the index of the shading description used for this line segment. The Shading
Description array is defined in the Line Set Declaration block.

9.6.3.2.4.6.2 U32 [rCurrentPositionCount]: First Position Index

First Position Index is the index of the first end of the line segment. The index of the second
end of the line segment is the current position count.

9.6.3.2.4.6.3 U32 [cNormlIdx]: Normal Local Index

The new line segment shall use a normal in the New Normal Info array fo line. Normal
ormals should be used.

9.6.3.2.4.6 New Line Info

New Line Info describes a new line segment to be added to the line set. The normal, color and
texture coordinate information is given first for the first end of the line segment and then for the
second end of the line segm

First Position Index

New Line Diffuse Color Coords

New Line Specular Color Coords

New Line Texture Coords

Normal Local Index

Shading ID

2

r this
Local Index specifies which of the new n

- 102 -

- 103 -

9.6.3.2.4.6.4 New Line Diffuse Color Coords

New Line Diffuse Color Coords is only present if the shading list identified by Shading List
ne of the Shading Attributes flags indicates the

9.6.3.2.4.6.4.1 U8 [cDiffDup]: Diffuse Duplicate Flag

Diffuse Duplicate Flag is a set of flags that indicates if a new color is added to the color
pool or if the most recently added color is used again. If the flag is set (one), then the
most recently added color is used again. If the flag is not set (zero), then a new color is
added to the diffuse color pool. All other values are reserved.

0x02 – New line segment end uses duplicate color

9.6.3.2.4.6.4.2 New Line Diffuse Color

New Line Diffuse Color is present only if Diffuse Duplicate Flag indicates the new line
does not use a duplicate color.

The New Line Diffuse Color is predicted as the average of the diffuse colors used by all
line segment ends that use the Split Position.

The formatting for New Line Diffuse Color is the same as for 9.6.2.2.4.6.3.2 New Point

ID uses diffuse color coordinates. O
presence of diffuse color coordinates.

Diffuse Color.

9.6.3.2.4.6.5 New Line Specular Color Coords

r Coords is only present if the shading list identified by Shading ID

9.6.3.2

Specular Duplicate Flag is a set of flags that indicates if a new color is added to the
color pool or if the most recently added color is used again. If the flag is set (one), then
the most recently added color is used again. If the flag is not set (zero), then a new
color is added to the specular color pool. All other values are reserved.

0x02 – New line segment end uses duplicate color

New Line Specular Colo
uses specular color coordinates. One of the Shading Attributes flags indicates the presence
of specular color coordinates.

.4.6.5.1 U8 [cSpecDup]: Specular Duplicate Flag

Specular Duplicate Flag

New Line Specular Color

Diffuse Duplicate Flag

New Line Diffuse Color

9.6.3.2.4.6.5.2 New Line Specular Color

New Line Specular Color is present only if Specular Duplicate Flag indicates the new
line segment end does not use a duplicate color.

The New Line Specular Color is predicted as the average of the specular colors used at
all line segment ends that use the Split Position.

The formatting for New Line Specular Color is the same as for 9.6.2.2.4.6.4.2 New Point
Specular Color.

9.6.3.2.4.6.6 New Line Texture Coords

9.6.3.2.4.6.6.1 U8 [cTexCDup]: Tex Coord Duplicate Flag

Tex Coord Duplicate Flag is a set of flags that indicates if a new texture coordinate is
added to the texture coordinate pool or if the most recently added texture coordinate is
used again. If the flag is set (one), then the most recently added texture coordinate is
used again. If the flag is not set (zero), then a new texture coordinate is added to the
texture coordinate pool. All other values are reserved.

0x02 – New line segment end uses duplicate texture coordinate

9.6.3.2.4.6.6.2 New Tex Coord

The New Tex Coord is predicted as the average of the texture coordinates at the same
layer used by all line segment ends using the split position. The formatting for New Tex
Coord is the same as for 9.6.2.2.4.6.5.2 New Tex Coord.

9.7 Modifier blocks
Modifier blocks contain the information necessary to create certain modifiers that can be added to
a modifier chain. Note that the declaration blocks for modifiers must be contained within a modifier
chain block.

9.7.1 2D Glyph Modif ier (blocktype: 0xFFFFFF41)
The 2D Glyph Modifier contains information used to create a 2D shape. The shape is defined by
a number of control points and parameters that define how to connect the points. The shape

 string. Each glyph in the glyph string

The 2D
Group

The 2D

Tex Coord Duplicate Flag

New Tex Coord

Texture Layer Count

consists of a sequence of individual glyphs called a glyph
is defined by a sequence of drawing commands.

 Glyph Modifier produces the following outputs: Renderable Group, and Renderable
Bounds.

 Glyph Modifier’s outputs depend on: Transfrom Set and View Transform.

- 104 -

- 105 -

9.7.1.1 String: 2D Glyph Modif ier Name

2D Glyph Modifier Name is the string used to identify this 2D Glyph Modifier.

9.7.1.2 U32: Chain Index
Chain Index is the position of this modifier in the modifier chain.

9.7.1.3 U32: Glyph Attr ibutes
Glyph Attributes is a bit field containing information about the Glyph. The bit field is combined
using a bitwise OR. Other values are reserved. Valid values are:

0x00000001: Billboard: the glyph should be oriented to the view.

0x00000002: Single Shader: a single shader list is used for all glyphs in the glyph string.

If Single Shader bit is not set, then each glyph in the glyph string uses a different shader list
from the associated shading group.

9.7.1.4 U32: Glyph Command Count
er of commands used to create this glyph.

9.7.1.5 Glyph

Glyph Command Count is the numb

 Command

Command Type

Glyph Move To Glyph Line To Glyph Curve To Glyph End Glyph

2D Glyph Modifier Name

Chain Index

Glyph Command Count

Glyph Transform Element

Glyph Attributes

Glyph Command Count

16

Glyph Command

9.
Valid

0: ST
this sequence are defined in the subsequent

commands until the next ENDGLYPHSTRING command.

1: ENDGLYPHSTRING End a sequence of glyph symbols.

2: STARTGLYPH Start a glyph. The glyph will be defined by the subsequent
commands until the next ENDGLYPH command.

3: ENDGLYPH End the current glyph definition.

4: STARTPATH Start a new path to be drawn. The path is defined by the
subsequent commands until the next ENDPATH command.

9: LINET

10: CUR ing position to the new
 determined by two control points.

, and CURVETO require addition information described

9.7.1.5.2 Glyph E
Glyph E
glyph by

9.7.1.5.2.1 F32: End Glyph Offset X

End Glyph Offset X is the horizontal offset between the starting point for this glyph and the
starting point for next glyph.

9.7.1.5.2.2 F32: End Glyph Offset Y

End Glyph Offset Y is the vertical offset between the starting point for this glyph and the
starting point for the next glyph.

7.1.5.1 U32: Command Type
 Glyph Commands are:

ARTGLYPHSTRING Start a sequence of glyph symbols. The glyphs symbols
included in

5: ENDPATH End the current path.

8: MOVETO Move the current drawing position.

O Draw a line from the current drawing position to the new
position.

VETO Draw a curve from the current draw
position. The curve shape is

ENDGLYPH, MOVETO, LINETO
below. The other commands do not require any additional parameters.

nd Glyph
nd Glyph completes the current glyph and moves the starting point for the next
 the offset vector.

End Glyph Offset X

End Glyph Offset Y

- 106 -

- 107 -

9.7.1
The Gly

9.7.1.5.3.1 F32: Move To X

Move To X is the new horizontal position of the active point.

9.7.1.5.3.2 F32: Move To Y

Move To Y is the new vertical position of the active point.

9.7.1.5.4 Glyph Line To

and draws a line to the specified point.

9.7.1.5.4.1 F32: L

Line T

.5.3 Glyph Move To
ph Move To command moves the active point without drawing.

Move To X

Move To Y

Line To X

Line To Y

The Glyph Line To comm

ine To X

o X is the horizontal position of the end point of the line.

9.7.1.5.4.2 F32: Line To Y

Line To Y is the vertical position of the end point of the line.

9.7.1.5.5 Glyph Curve To

 a curve to the specified point. The control points are

9.7.1.5.5

9.7.1.5.5

of the second control point.

End Point Y is the vertical position of the end point of the curve.

Control 1 X

Control 1 Y

Control 2 X

Control 2 Y

End Point X

End Point Y

The Glyph Curve To command draws
used to determine the curve.

9.7.1.5.5.1 F32: Control 1 X

Control 1 X is the horizontal position of the first control point.

9.7.1.5.5.2 F32: Control 1 Y

Control 1 Y is the vertical position of the first control point.

.3 F32: Control 2 X

Control 2 X is the horizontal position of the second control point.

.4 F32: Control 2 Y

Control 2 Y is the vertical position

9.7.1.5.5.5 F32: End Point X

End Point X is the horizontal position of the end point of the curve.

9.7.1.5.5.6 F32: End Point Y

- 108 -

- 109 -

9 lement
Th make up the Transform that is applied to the glyph modifier
af t
de

D
C
B

MIEA

9.7.2 Sub
The Subdivision Modifier increas er
poly ivision Modifi eters that control the performance and
appearance of the output of the s

The odifier produce

The Subdivision Modifier’s outp nd on: Renderable Group, Transform Set, View
Transform, and View Frustum.

9.7.2.1 String: Modif ier Name

Modifier Name is the name of this Subdivision Modifier. Modifier Name is also the name of
the object being modified and the name of the modifier chain that contains this modifier.

9.7.2.2 U32: Chain Index
Chain Index indicates the position of this modifier in the modifier chain.

9.7.2.3 U32: Subdivision Attr ibutes
Subdivision Attributes is a collection of flags. The flags are combined using the binary OR
operator. All other values are reserved.

.7.1.6 F32: Glyph Transform E
e Glyph Transform Elements

ter drawing to place it in he 3D world. The matrix is written in the alphabetic order
scribed below:

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎦PLH
⎥
⎥

OKG
NJF

⎥
⎤

division Modif ier (blocktype: 0xFFFFFF42)
es the resolution of a shape by dividing polygons into small

gons. The Subd er block contains param
ubdivision algorithm.

Subdivision M s the following outputs: Renderable Group Bounds.

uts depe

Chain Index

Subdivision Attributes

Subdivision Error

Subdivision Tension

Subdivision Depth

Modifier Name

0x00000001 – Enabled: The subdivision modifier is enabled.

0x division.

Uniform subdivision is used unless the adaptive subdivision flag is set. Uniform division
divides all of the polygons the same number of times. Adaptive subdivision divides the
polygons based on the model and if the polygons are visible.

9.7.2.4 U32: Subdivision Depth
Subdivision Depth is the maximum number of levels of subdivision.

9.7.2.5 F32: Subdivision Tension
Subdivision Tension is the tension value used for adaptive subdivision.

9.7.2.6
d the value of the screen space error metric. This value is used for

adap

9.7 a (blocktype: 0xFFFFFF43)
The An ting a node or a renderable group.

 modifer modifies the transforms for nodes and the transformations of
bones relative to their parent bones. The hierarchy of bones is called a skeleton and is defined
in the Skeleton Description of the geometry generator. The animation modifier uses the
skeleton and bone weights defined by a bone weight modifier to change the positions and
normals in the renderable group.

The animation modifier block is limited to modifying transformations of nodes and bones and
modifying positions and normals based on the changes in the transformations. There are many
other types of information that the animation modifier does not animate.

The Animation Modifier produces the following outputs: Transform Set, Renderable Group, and
Skeleton.

The ion Time, Skeleton, Bone
t le Group.

00000002 – Adaptive: The subdivision modifier should use adaptive sub

F32: Subdivision Error
Sub ivision Error is

tive subdivision.

.3 Anim tion Modif ier
imation Modifier block describes parameters for anima

sources should be used and how they should be These parameters indicate which motion re
applied. The animation

Animation Modifier’s outputs depend on: Transform Set, Simulat
Weigh s, and Renderab

- 110 -

- 111 -

9.7.3.1 String: Animation Modif ier Name

Anim this animation modifier. This is
o odifier chain that contains this modifier.

9.7.3.2 U32
a ition of this modifier in a modifier chain.

9.7.3.3 U32
m ttributes is a bit field that holds state information for this animation
d are combined using a bitwise OR operation. All other values are

rese

0 should start when possible.

0x00 form does not change as
n.

0x00

0x00000008: The bones’ transtorms should transition smoothly from one motion to the next
during the animation.

9.7.3.4 F32: Time Scale
Time Scale is a scaling value for the times of the motions.

9.7.3.5 U32: Motion Count
Motion Count is the number of motion resources referenced by this modifier. If the Motion
Count is zero, the Animation Modifier will use the default motion.

Chain Index

Animation Modifier Attributes

Time Scale

Motion Count

Blend Time

Motion Information Motion Count

Animation Modifier Name

ation Modifier Name is the string that is used to identify
als the name of the m

: Chain Index
Ch in Index is the pos

:Animation Modif ier Attr ibutes
Ani ation Modifier A
mo ifier. The values

rved.

0x0 000001: Animation

000002: The root bone is locked. The node’s root bone’s trans
a result of the animatio

000004: Playing a single track.

9.7.3.6 Motion Information

Motion Name

Time Offset

Motion Attributes

6.1 String: Motion Name

Time Scale

9.7.3.
Motion Name is a string that identifies a motion resource.

9.7.3.6.2 U32: Motion Attr ibutes
Motion Attributes is a bit field of flags about the animation modifier. The values are
combined with a bitwise or. Other values are reserved.

0x00000001: Loop: determines whether this motion repeats.

0x00000002: Sync: determines if all of the motion resources playing concurrently should
end at the same time.

9.7.3.6.3 F32: Time Offset
Time Offset is the number of milliseconds to offset the start time of the motion.

9.7.3.6.4 F32: Time Scale
Time Scale is a scaling factor for the time of this motion resource for this animation
modifier.

9.7.3.7 F32: Blend Time
The Blend Time specifies the amount of time in milliseconds used when blending between
motions.

9.7.4 Bone Weight Modif ier (blocktype: 0xFFFFFF44)
The Bone Weight Modifier block describes a set of bone weights that can be added to a
modifier chain. The animation modifier uses the bone weights in combination with the skeleton
to animate the positions in a renderable group (mesh, point set, or line set). The normals are
also changed by the animation modifier.

the following outputs: Bone Weights.

h

The Bone Weight Modifier produces

T e Bone Weight Modifier’s outputs have no dependencies.

- 112 -

- 113 -

 Str ing: Bone Weight Modif ier Name 9.7.4.1

9.7.4.2

9.7.4.3 U32: Bone Weight Attr ibutes
The bone weights may be applied to the type of geometry specified by the Bone Weight
Attributes. All other values are reserved.

0x00000001 – these bone weights are for a mesh

0x00000002 – these bone weights are for a line set

0x00000004 – these bone weights are for a point set

9.7.4.4 F32: Bone Weight Inverse Quant
The bone weight inverse quant is the inverse quantization factor for the bone weights below.

9.7.4.5 U32: Posit ion Count
Position Count is the number of positions for which bone weights are provided by this
modifier.

9.7.4.6 Posit ion Bone Weight List
Position Bone Weight List indicates which bones have a non-zero influence at this
position.The reconstructed bone weights at this position should sum to +1.0. The bone
weights cannot be negative.

Bone Weight Modifier Name is the name of the modifier chain to which these bone weight
should be added.

 U32: Chain Index
Chain Index is the position of this modifier in a modifier chain.

Chain Index

Position Count

Position Count
Position Bone Weight List

Bone Weight Attributes

Bone Weight Modifier Name

Bone Weight Inverse Quant

9.7.4.6.1 U32 [cBoneWeightCnt]: Bone Weight Count

Bone Weight Count is the number of bones which have influence at this position.

9.7.4.6.2 U32 [cBoneIdx]: Bone Index
Bone Index is the index of the bone in the skeleton that has influence at this position. Bone
Index is present only if Bone Weight Count is greater than zero.

9.7.4.6.3 U32 [cQntBoneWeight]: Quantized Bone Weight
Quantized Bone Weight is the quantized bone weight value. Quantized Bone Weight is
present only if Bone Weight Count is greater than one.

For other than the last bone weight value, the reconstructed bone weight value is
calculated as:

(reconstructed bone weight) = (Quantized Bone Weight) * (Bone Weight Inverse Quant)

structed by subtracting the sum of all the other

9.7.5 pe: 0xFFFFFF45)
h of a

re ng group associated with a

Th

Th

Bone Weight Count

Bone Index

Quantized Bone Weight
Bone Weight Count - 1

Bone Weight Count

The last bone weight value is recon
reconstructed bone weight values from +1.0. The sum of all the bone weights at this
position will be +1.0.

Shading Modif ier (blockty
T e Shading Modifier block describes the shading group that is used in the drawing

nderable group. The shading modifier replaces the shadi
renderable group.

e Shading Modifier produces the following outputs: Renderable Group.

e Shading Modifier’s outputs depend on: Renderable Group.

- 114 -

- 115 -

Shader List Count

Shader Name

9.7.5.1 St

Th me identifies this shading modifier. Shading Modifier Name is also
r chain that contains this modifier.

9.7.5.2 U
he position of this modifier in the modifier chain.

9.7.5.3 U
Shading Attributes is a collection of flags. The flags are combined using the binary OR

utes are reserved.

02 – Line: the shading group is applied to the renderable line group.

9.7.5.4
hader lists in the shading group. Each shader list is

.

rable elements, the excess shader
lists have no effect. If the number of shader lists is less than the number of renderable
elements, the excess renderable elements shall be associated with a shader list containing
one shader and that one shader shall be the default shader.

9.7.5.5 U32: Shader Count
Shader Count is the number of shaders in the shader list.

Shader Count

Shader Count

Shader List Count

Chain Index

Shading Attributes

Shading Modifier Name

r ing: Shading Modif ier Name
e Shading Modifier Na

the name of the modifie

32: Chain Index
Chain Index indicates t

32: Shading Attr ibutes

operator. Other attrib

0x00000001 – Mesh: the shading group is applied to the renderable mesh group.

0x000000

0x00000004 – Point : the shading group is applied to the renderable point group.

0x00000008 – Glyph : the shading group is applied to the glyph string.

 U32: Shader List Count
Shader List Count is the number of s
associated with a renderable element in the associated renderable group

If the number of shader lists exceeds the number of rende

9.7.5.6 String: Shader Name
Each shader in the shader list is identified by Shader Name. Shader Name refers to a shader
in the shader resource palette.

9.7.6 CLOD Modif ier (blocktype: 0xFFFFFF46)
The CLOD Modifier adjusts the level of detail in the renderable meshes in the data packet. The
CLOD Modifier block contains parameters for how the level of detail should be adjusted.

The CLOD Modifier produces the following outputs: Renderable Group.

The CLOD Modifier’s outputs depend on: Renderable Group, Renderable Group Bounds,
Transform Set, View Transform, View Frustum, View Size.

S

9.7.6.2
ier chain.

9.7.6.3

detail control bit is set, the level of detail of the model should be

 level of detail for larger values of this
bias.

9.7.6.5 F32: CLOD Modif ier Level
The range for CLOD Modifier Level is 0.0 to 1.0.

Chain Index

CLOD Modifier Level

CLOD Modifier Attributes

CLOD Automatic LOD Bias

CLOD Modifier Name

9.7.6.1 tr ing: CLOD Modif ier Name
CLOD Modifier Name is the name of the modifier chain to which the CLOD Modifier should be
added.

U32: Chain Index
Chain Index is the position of this modifier in a modif

U32: CLOD Modif ier Attr ibutes
0x00000000 – Default attributes (automatic LOD control is disabled)

0x00000001 – automatic level of detail control.

If the automatic level of
determined automatically at runtime. The calculation of the level of detail is implementation
specific, but may be adjusted based on a target rendering frame rate or the size of the model
on screen. All other values are reserved.

9.7.6.4 F32: CLOD Automatic Level of Detai l Bias
The CLOD Modifier Automatic Level of Detail Bias is used when the level of detail of
geometry is to be determined at runtime. The range of bias is 0.0 to 1.0. When calculating the
level of detail used, the runtime should set a higher

- 116 -

- 117 -

The CLOD Modifier adjusts the resolution of the renderable meshes.

The target resolution is determined by multiplying the CLOD Modifier Level by the maximum
resolution of the author mesh. If the target resolution is less than the minimum resolution,
then the resolution will be adjusted to the minimum resolution.

If the automatic LOD control is enabled, then the automatic LOD control overrides the CLOD
Modifier Level specified in this block.

9.8 Resource blocks
Resource blocks contain the declarative information for resources. The resources can then be
referenced by nodes to create specific instances during rendering.

9.8.1 Light Resource (blocktype: 0xFFFFFF51)
The Light Resource contains information regarding the type of light, color, attenuation, and
intensity. Some of the fields are not used for all light types. Unused fields will not affect the

ot use attenuation.

9.8.1.1 String: Light Resource Name

Light Resource Name is the name used to identify this Light Resource.

9.8.1.2 U32: Light Attr ibutes
Light Attributes is a collection of flags. The flags are combined using the binary OR operator.

Other values are reserved.

0x00000001 – Light Enabled; the light is used.

0x00000002 – Specular; the light provides specular highlights.

0x00000004 – Spot Decay; the spot light has a smooth edge and not a hard edge cutoff.

appearance of the scene. For example, ambient lights do n

Light Attributes

Light Type

Light Resource Name

Light Spot Angle

Light Intensity

Light Color

Light Attenuation

9.8.1.3 U8: Light Type
Light Type is the type of this Light Resource.

0x00 – Ambient; Light provides uniform non-directional light to the scene.

0x01 – Directional; Light provides uniform directional light to the scene.

0x02 – Point; Light is emitted from a specific point in the scene.

0x03 – Spot; Like point light, but constrained to specific directions.

9.8.1.4 Light Color
Light Color is the color of the Light Resource.

9.8.1.4.1
 the red component of the Light Color. The normal range of color

is range are allowed.

9.8.1.4.3

e are allowed.

9.8.1.4.4
e the value 1.0. This

 loader.

9.8.1.5
 Point or Spot will

factor

Q: attenuation quadratic factor

 F32: Light Color Red

Light Color Red

Light Color Green

Light Color Blue

Light Reserved Parameter

Light Color Red is
component values is 0.0 (darkest) to 1.0 (brightest). Values outside th

9.8.1.4.2 F32: Light Color Green
Light Color Green is the green component of the Light Color. The normal range of color
component values is 0.0 (darkest) to 1.0 (brightest). Values outside this range are allowed.

 F32: Light Color Blue
Light Color Blue is the blue component of the Light Color. The normal range of color
component values is 0.0 (darkest) to 1.0 (brightest). Values outside this rang

 F32: Light Reserved Parameter
Light Color Reserved Parameter is a reserved field and shall hav
value shall not be used by a

Light Attenuation
Light Attenuation is a vector of attenuation factors. Lights that are of type
light objects based on the distance from the object’s vertices to the light’s position. The
formula for this attenuation is

1 / (C + L*D + Q*D*D)

D: distance from vertex position to light position

C: attenuation constant

L: attenuation linear factor

- 118 -

- 119 -

Light Attenuation Constant Factor

Light Attenuation Linear Factor

9.8.1.5.1 F32: Light Attenuation Constant Factor

Light Attenuation Constant Factor is used to calculate attenuation for spot and point lights.

9.8.1.5.2 F32: Light Attenuation Linear Factor
Light Attenuation Linear Factor is used to calculate attenuation for spot and point lights.

9.8.1.5.3 F32: Light Attenuation Quadratic Factor
Light Attenuation Quadratic Factor is used to calculate attenuation for spot and point lights.

9.8.1.6 F32: Light Spot Angle
Light Spot Angle is the angle of the cone that emanates from the light position and defines
what portions of the scene are affected by this light. The Light Spot Angle is only used if the
light is of Spot type.

9.8.1.7 F32: Light Intensity
Light Intensity is multiplied into the affect that this light has on a scene. It is similar in practice
to 1 / (Light Attenuation Constant Factor), but works on Directional lights in addition to Point
and Spot lights (this does not affect lights with type Ambient). Keep in mind that this value
can have any value (including negative and 0), resulting in the ability to produce some
strange effects.

9
Th
particular view instance. Fields include: fog and frame buffer properties. More fields, such as
i nd overlays are stored at the node level and are specific to each

in

Light Attenuation Quadratic Factor

.8.2 View Resource (blocktype: 0xFFFFFF52)
e View Resource contains information regarding the rendered view that is not specific to a

v ew port, backdrops a
stance.

View Resource Name

9.8.2.1 String: View Resource Name

The View Resource Name is the name used to identify this view resource.

9.8.2.2 U32: Pass Count
The Pass Count is the number of passes that are used when rendering this view. Note that
the rendering system may change the order to correctly render transparent objects.

9.8.2.3 String: Root Node Name
The Root Node Name is the name of a node. The view will render this node and all of the
node’s children.

9.8.2.4 U32: Render Attr ibutes
Render Attributes is a bit field that determines properties of the view. The only property
defined for this edition is Fog Enabled. The properties are combined with a bitwise or
operation. Other values are reserved.

0x00000001: Fog Enabled

Fog Properties

Pass Count

- 120 -

Render Attributes

Root Node Name

Pass Count

- 121 -

9.8.2.5 Fog Properties

Fog Mode

Fog Color Red

9.8.2.5.1

 the view. Fog is enabled or disabled by the flag in the render

Fog Color Green

Fog Color Blue

Fog Color Alpha

For Near Value

Fog Far Value

U32: Fog Mode
The fog mode determines the method used for rendering fog. In the following equations, d
represents the distance from
attributes field above.

0x00000000: Linear

startend
f

−
=

dend −

0x00000001: Exponential

)(densitydef ⋅−= ,
fogfar

density)100ln(
=

0x00000002: Exponential 2

2)(densitydef ⋅−= ,
fogfar

density
)100ln(

=

.2.5.7).

9.8.2.5.
mponent of the fog’s color.

9.8.2.5.3
 component of the fog’s color.

Fog far is the fog far value specified below (9.8

2 F32: Fog Color Red
Fog Color Red is the red co

F32: Fog Color Green
Fog Color Green is the green

9.8.2.5.4 F32: Fog Color Blue
Fog Color Blue is the blue component of the fog’s color.

9.8.2.5.5 F32: Fog Color Alpha
Fog Color Alpha is the alpha component of the fog’s color.

9.8.2.5.6 F32: Fog Near Value
For linear fog mode, the Fog Near Value is the distance from the view where fog begins.

9.8.2.5.7 F32: Fog Far Value
For linear fog mode, the Fog Far Value is the distance from the view where the fog reaches
its maximum density. The fog far value is also used to calculate the fog density scale factor
used with exp and exp2 fog modes (details are in 9.8.2.5.1 Fog Mode).

9.8.3

durin
urces when rendering.

Lit Texture Shader (blocktype: 0xFFFFFF53)
The Lit Texture Shader contains information needed to determine the appearance of a surface

g rendering. The Lit Texture Shader includes references to Material Resources and
Texture Resources and how to combine those reso

- 122 -

- 123 -

9.8.3.1 String: Lit Texture Shader Name

Lit Texture Shader Name is the string used to identify this shader.

9.8.3.2 U32: Lit Texture Shader Attr ibutes
Lit Texture Shader Attibutes is a bit field that stores information about the shader. The
attributes are combined by a bitwise OR operation. All other values are reserved.

0x00000001: Lighting Enabled

0x00000002: Alpha Test Enabled

0x00000004: Use Vertex Color

9.8.3.3 F32: Alpha Test Reference
Alpha Test Reference is the value used in comparisons when alpha test is enabled.

Lit Texture Shader Name

Lit Texture Shader Attributes

Alpha Test Reference

Alpha Test Function

Color Blend Function

Render Pass Flags

Alpha Texture Channels

Texture Information

Material Name

Shader Channels

Active Texture Count

9.8.3.4 U32: Alpha Test Function
0x00000610: NEVER: The test never passes. No pixels are drawn.

0x00000611: LESS: The rendered alpha value must be less than the reference value.

0x00000612: GREATER: The rendered alpha value must be greater than the ref. value.

0x00000613: EQUAL: The rendered alpha value must be equal to the reference value.

0x00000614: NOT_EQUAL: The rendered alpha value must not be equal to the ref. value.

0x00000615: LEQUAL: The rendered alpha value must be less than or equal to the reference
value.

0x00000616: GEQUAL: The rendered alpha value must be greater than or equal to the
reference value.

0x00000617: ALWAYS: The test always passes. No pixels are rejected.

9.8.3.5 U32: Color Blend Function
Color Blend Function is the function used to blend rendered pixels and the existing frame
buffer.

0x00000604: FB_ADD: Add the RGB components into the framebuffer

0x00000605: FB_MULTIPLY: Multiply the RGB components into the framebuffer

0x00000606: FB_ALPHA_BLEND: Linear blend the RGB components into the framebuffer
based on the rendered alpha value.

0x00000607: FB_INV_ALPHA_BLEND: Linear blend the RGB components into framebuffer
based on the inverse (1.0 - a) of the rendered alpha.

9.8.3.6 U32: Render Pass Enabled Flags
The Render Pass Enable Flags determines which passes this shader uses. Each bit (1<<n) in
the flags determines if the shader is used in pass n. The flags are combined with the bitwise

9.8.3.7 U
Sh
are used for this shader. The least significant 8 bits are used to store this information. A layer
is active if the corresponding bit is set. The Active Texture Count is the number of active
shader with a bitwise OR operation. The remaining
24 bits are reserved.

Ex l Value of (binary 00001001) would mean the first and fourth
texture coordinate layers are used. Another shader using the same model could have a
Shader Channel value of (binary 00000111) meaning the first, second, and third texture
coordinate layers are used by that shader.

9.8.3.8 U32: Alpha Texture Channels
Alpha Texture Channels is a bit field that determines which texture layers should use the
al Texture Channels bits correspond
to annel bit shall not be set if the

nel bit is not set. The least significant 8 bits are used to store this
in t. The active bits are combined with

Ex 000011) and an Alpha Texture
Ch shader should use the alpha

exture layer and should ignore the alpha component for the first
te assuming the alpha value is 1.0.

OR operation.

32: Shader Channels
ader Channels is a bit field that determines which of the model’s texture coordinate layers

channels. The active bits are combined

ample: A Shader Channe

pha component if an alpha component exists. The Alpha
 the Shader Channels bits. The Alpha Texture Ch

corresponding Shader Chan
formation. A layer is active if the corresponding bit is se

a bitwise OR operation. The remaining 24 bits are reserved.

ample: A shader has a Shader Channel value of (binary 00
annels value of (binary 00000010) would mean that the

component for the second t
xture layer. Ignoring the alpha component is equivalent to

- 124 -

- 125 -

9
Th ith this shader that determines

n lit.

9.8.3.10 Te
ifies the texture used by a particular shader channel. Texture

us
ch
9.

9.8.3.10.1 String: Texture Name

The Texture Name is the name of the texture resource that is used for this texture layer.

9.8.3.10.2 F32: Texture Intensity
Texture Intensity is a scale factor applied to the color components of the texture.

.8.3.9 String: Material Name
e Material Name is the name of the material associated w

how the shader appears whe

xture Information
Texture Information ident
Information also describes how the textures are blended and which texture coordinates to

e for that shader channel. Texture Information is repeated once for each active shader
annel. Active Texture Count is the number of active shader channels as described in
8.3.7 Shader Channels.

Texture Name

Blend Function

Blend Source

Blend Constant

Texture Mode

Texture Transform Matrix
Element

Texture Wrap Transform
Matrix Element

Texture Repeat

Texture Intensity

16

16

9.8.3.10.3 U8: Blend Function
The Blend Function determines how the current texture layer is combined with the result

t

rrentAlpha + previous * (1 – currentAlpha).

9.8.3.10
r the blending operation combines the current layer with the

xel.

9.8.3.10

9.8.3.10
re
he

: TM_NONE The shader does not generate texture coordinates.

wrap transform and then performs a planar x, y mapping of

e shader transforms the model by the inverse of the texture

is the cylinder axis.

pping of the

pherical reflection texture.

0

 alphabetic order described below:

from previous layers.

0 – Multiply: blended = current * previous

1 – Add: blended = current + previous

2 – Replace: blended = curren

3 – Blend: blended = current * cu

.4 U8: Blend Source
Blend Source indicates whethe
result from previous layers using a blending constant or the alpha value of each pi

0 – Alpha value of each pixel

1 – Blending constant.

.5 F32: Blend Constant
The Blending constant is used when combining the results of texture layers.

.6 U8: Texture Mode
The Texture Mode indicates the source of the texture coordinates used to map the textu
onto the model. TM_NONE indicates the shader should use the texture coordinates of t
model. All other coordinates are generated by the shader as needed.

0x00

0x01: TM_PLANAR The shader transforms the model by the inverse of the texture

the texture onto the model.

0x02: TM_CYLINDRICAL Th
wrap transform and then performs a cylindrical mapping of the
texture onto the model. The Z-axis of the transformed model

0x03: TM_SPHERICAL The shader transforms the model by the inverse of the texture
wrap transform and then performs a spherical ma
texture onto the model. The Z-axis of the transformed model
is the sphere’s vertical axis.

0x04: TM_REFLECTION: The shader performs a spherical reflection mapping. This is
used to generate texture coordinates for reflection mapping
when using a specially designed s

9.8.3.1 .7 F32: Texture Transform Matrix Element
The Texture Transform Matrix operates on the texture coordinates in this texture
coordinate layer of the model. This transform is used for all texture modes.

The matrix is written in the

⎥
⎥
⎥
⎥
⎤

⎢
⎢
⎢
⎢
⎡

PLHD
OKGC
NJFB
MIEA

.

⎦⎣

- 126 -

- 127 -

9.8.3.10.8 F32: Texture Wrap Transform Matrix Element
The Texture Wrap Transform is used for the following texture modes: TM_PLANAR;
TM_CYLINDRICAL; TM_SPHERICAL. In these texture modes, texture coordinates are
procedurely generated based on the position values of vertices in the model.

The texture coordinates from a reference shape are projected onto the model. The Texture
Wrap Transform operates on the procedurely generated texture coordinates before they
are applied to the model.

The matrix is written in the alphabetic order described below:

⎥
⎤

⎢
⎡ MIEA

⎥
⎥

⎦
⎢
⎢

⎣ PLHD
OKGC
⎥⎢ NJFB

.

NOTE
In an equivalent implementation, the inverse of the Texture Wrap Transform could operate on the
position value in the model to look up the texture coordinate values in the reference shape.

The Texture Wrap Transform is also discussed in 9.8.3.10.6 Texture Mode.

.9 U8: Texture Repeat 9.8.3.10
Texture Repeat indicates whether or not the texure in the specified texture layer should be
tiled beyond the coordinate range. Texture Repeat is a bitfield and the values below are
combined using a bitwise OR operator. All other values are reserved.

0x01 – Repeat in the direction of the first texture coordinate dimension

0x02 – Repeat in the direction of the second texture coordinate dimension

Repeating the texture shall be accomplished in the manner of tiling the texture image.
NOTE
This edition of the specification does not support 3 and 4-dimensional texture resources. Future
editions may support additional repeat modes and may support 3 and 4-dimensional textures.

9.8.4 Material Resource (blocktype: 0xFFFFFF54)
The Material Resource contains information defining how a material interacts with light in a
scene. A shader references a Material Resource to determine how surfaces will appear when
rendered.

9.8.4.1 String: Material Resource Name

Material Resource Name is the string used to identify this material.

9.8.4.2 U32: Material Attr ibutes
Material Attributes is a collection of flags that define which of the material attributes specified
below are enabled. The flags are combined using the binary OR operator. Other values are
reserved.

0x00000002 – Diffuse

0x

0x

Th

9.8.4.3 A
The Ambient Color defines the material’s appearance in ambient light. The normal range of
co his range are
al

Material Attributes

Opacity

Reflectivity

Material Resource Name

Ambient Color

Diffuse Color

Specular Color

Emissive Color

0x00000001 – Ambient

0x00000004 – Specular

0x00000008 – Emissive

00000010 – Reflectivity

00000020 – Opacity

e material attributes are described below.

mbient Color

lor component values is 0.0 (darkest) to 1.0 (brightest). Values outside t
lowed.

- 128 -

- 129 -

9.8.4.3.1

9.8.4.3.2 F32:
Green is the green compone

9.8.4.3.3
Blue is the blue component o

9.8.4.4 Diffuse Color
Th the
co 0.
allowed.

9.8.4.4.1 F32: Red

Red is the red component of the color.

9.8.4.4.3

9.8.4.5 Sp
Th the material’s appearance in specular light. The normal range of
co lues outside this range are
allowed.

F32: Red
Red is the red component of the color.

Green
nt of the color.

F32: Blue
f the color.

e Diffuse Color defines material’s appearance in diffuse light. The normal range of
lor component values is 0 (darkest) to 1.0 (brightest). Values outside this range are

9.8.4.4.2 F32: Green
Green is the green component of the color.

F32: Blue
Blue is the blue component of the color.

ecular Color
e Specular Color defines
lor component values is 0.0 (darkest) to 1.0 (brightest). Va

Red

Blue

Green

Red

G

Blue

reen

- 130 -

9.8.4.5.1 ed

9.8.4.
 the blue component of the color.

9.8.4.6 Emissive Color
The Emissive Color defines the light that the material appears to give off. The normal range
of color component values is 0.0 (darkest) to 1.0 (brightest). Values outside this range are
allowed.

9.8.4.6.1 F32: Red

Red is the red component of the color.

9.8.4.6.2 F32: Green
Green is the green component of the color.

9.8.4.6.3 F32: Blue
Blue is the blue component of the color.

9.8.4.7 F32: Reflectivity
Reflectivity measures how shiny a material appears to be. Specular reflections are calculated
based on the light position, surface normal, and camera position. The result is then raised to
an exponent to control specular light falloff. The exponent is determined from the reflectivity
value. The normal range of reflectivity is 0.0 (exponent of zero disables specular lighting) to
1.0 (exponent of 128). Values outside this range are allowed but are clamped before use.

F32: R
Red is the red component of the color.

9.8.4.5.2 F32: Green
Green is the green component of the color.

5.3 F32: Blue
Blue is

Red

Blue

Green

Red

Blue

Green

- 131 -

9.8.4.8 F32: Opacity
Opacity is a measure of on object’s transparency. The value is used when alpha blending.

ct is less transparent and objects behind it will be less visible.

9.8.5 Texture Resource (blockty
The Texture Resource contains information for creating a texture image to be applied to
ge e texture resource is controlled by a shader. The texture resource is
di e declaration and the continuation. The texture declaration contains
information for creating the texture resource object and allocating memory. The texture
co data for the texture.

The texture image may be created by composing more than one continuation image. For
example, an RGBA texture image may be created by composing an RGB continuation image
with an Alpha continuation image.

A continuation image may be contained in one or more continuation blocks in the same U3D file
as

ontinuation image may be contained in an external referenced image file.

9.8.5.1
re Declaration describes the texture image and the continuation images.

9.8.5.1.1

ame is the name used to identify the texture.

9.8.5.1.2
ormat describes the size (height and width) of the texture image and the

ng. For example, the rendering system may filter and re-size the image because it
is too big or the dimensions are not a power of two. Such rendering details are outside the
scope of this specification.

Higher Opacity means the obje
The normal range of opacity is 0.0 (invisible) to 1.0 (completely opaque). Values outside this
range are allowed.

pes: 0xFFFFFF55; 0xFFFFFF5C)

ometry. The usage of th
vided into two parts: th

ntinuation contains image

 the declaration block.

As an alternative, the c

Texture Declaration (blocktype: 0xFFFFFF55)
The Textu

Texture Name

Continuation Image Count

Continuation Image Count

Texture Image Format

Continuation Image Format

String: Texture Name
The Texture N

Texture Image Format
Texture Image F
format of the texture data.

A rendering system may convert the texture image to a different size (height and width) for
renderi

e in pixels. Texture Height shall be greater than zero.

Width

xels. Texture Width shall be greater than zero.

 Image Type

r channels present in the texture image. The valid

0x10 – luminance (greyscale)

0x11 – luminance and alpha (greyscale and alpha)

All other values are reserved.

9.8.5.1.3 U32: Continuation Image Count
Continuation Image Count is the number of continuation images used to compose the
texture image. This count is not the number of texture continuation blocks because each
continuation image is contained in one or more blocks. The index into the sequence of
continuation image formats that follows is used by the continuation blocks to indicate which
continuation image their image data is for.

9.8.5.1.4 Continuation Image Format
formation about the continuation image in the

ration.

Texture Height

Texture Width

Texture Image Type

9.8.5.1.2.1 U32: Texture Height

Texture Height is the height of the textur

9.8.5.1.2.2 U32: Texture

Texture Width is the width of the texture in pi

9.8.5.1.2.3 U8: Texture

Texture Image Type identifies the colo
values are:

0x01 – alpha component

0x0E – color RGB (red, green, and blue)

0x0F – color RGBA (red, green, blue, and alpha)

Continuation Image Format provides some in
texture decla

- 132 -

- 133 -

Image URL Count

Compression Type

Texture Image Channels

Image Data

9.8.5.1.4

0x02 – PNG

0x03 – JPEG-8 (greyscale, baseline profile)

0x04 – TIFF

9.8.5.1.4.2 U8: Texture Image Channels

Texture Image Channels indicates which color channels of the texture image are composed
using this continuation image. The texture image channel bits can be combined using the OR
operator. A particular texture image channel can be composed from only one continuation
image. The values for the texture image channel bits are:

0x01: alpha channel

0x02: blue channel

0x04: green channel

0x08: red channel

0x10: luminance (red, blue and green channels)

9.8.5.1.4.3 U16: Continuation Image Attributes

Continuation Image Attributes contains additional information about the continuation image. All
other values are reserved.

0x0000: default attributes

0x0001: external continuation image file reference

By default, the continuation image data is contained in texture continuation blocks in the same
U3D file as the texture declaration block. If the external continuation image file reference bit is
set, then the continuation image data is contained in an external file.

Byte Count

Continuation Image Attributes

Image URL Count

Image URL

.1 U8: Compression Type

Compression Type defines the scheme used to compress the Image Data in the texture
continuation blocks. The types are:

0x01 – JPEG-24 (color, baseline profile)

9.8.5.1.4.4 U32: Image Data Byte Count

ent if the external continuation image file reference bit is set.

9.8.5.

al image file location. Multiple locations can be

unt is greater than zero and the external continuation image file

9.8.5.2 n (blocktype: 0xFFFFFF5C)

9.8.5.2.1 String: Texture Name

Texture Name is the name of the texture resource with which this continuation block is
associated.

9.8.5.2.2 U32: Continuation Image Index
This block’s image data is used to decode the continuation image indicated by

ndex into the sequence of continuation image
ration.

9.8.5.2.3
for the continuation image used for a texture. The format of the

n be determined by subtracting the size of Texture Name and

The setting of the no compression mode bit in 9.4.1.2 Profile Identifier

Image Data Byte Count is the sum of the number of bytes of Image Data in all the continuation
blocks for this continuation image. This value can be useful for setting up an image decoder
and for determining when all of the image data is available for decoding. Image Data Byte
Count is not pres

9.8.5.1.4.5 U32: Image URL Count

Image URL Count is the number of URL strings that follow. Image URL Count is only present if
the external continuation image file reference bit is set.

1.4.6 String: Image URL

Image URL is a String identifying the extern
specified for the external file. A loader shall load the image file from one of the locations. HTTP
and FTP protocols will be recognized with absolute and relative addressing. Image URL is only
present if the Image URL Co
reference bit is set.

 Texture Continuatio
The Texture Continuation contains image data for a continuation image previously described
in the texture declaration.

Continuation Image Index. This value is an i
formats in the texture decla

Image Data
The Image Data is the data
image data is indicated by Compression Type in the texture declaration. The size of the
compressed image data ca
Continuation Image Index from the size of the data section. The image data can be
contained in multiple texture continuation blocks with the same Texture Name and
Continuation Image Index. Spreading the image data across several blocks is particularly
useful when used with a progressive compressed image format.

 does not affect the
encoding of Image Data.

Texture Name

Image Data

Continuation Image Index

- 134 -

- 135 -

9.8.6
The mot tracks. Each

also be used to

9.8.6.1 Stri

Motion Name is the name of this motion resource.

9.8.6.2 U32
Track Count is the number of motion tracks in this motion resource.

9
Ti

9.8.6.4 F3
Ro

Motion Resource (blocktype: 0xFFFFFF56)
ion resource contains animation data. The data is stored in a number of

track is composed of key frames with rotation, displacement and time information. A motion
track can be used to animate a bone in a bone hierarchy. A motion track can
animate a node in the scene graph.

Motion Name

Track Count

Time Inverse Quant

Rotation Inverse Quant

Motion Track
Track Count

ng: Motion Name

: Track Count

.8.6.3 F32: Time Inverse Quant
me Inverse Quant is the inverse quantization factor for time values.

2: Rotation Inverse Quant
tation Inverse Quant is the inverse quantization factor for rotation values.

9.8.6.5 Motion

9
Tr

9.8.6.5.2 U
Time Count is the number of time samples for this motion track.

9.8.6.5.3 F32: Displacement Inverse Quant
D uantization factor for displacement values for
th

9.8.6.5.4 F32: Scale Inverse Quant
or for scale values for this motion track.

9.8.6.5.5 K
Th
us

Track

Track Name

Time Count

Displacement Inverse Quant

Scale Inverse Quant

Key Frame
Time Count

.8.6.5.1 String: Track Name
ack Name is the name of this motion track.

32: Time Count

isplacement Inverse Quant is the inverse q
is motion track.

Scale Inverse Quant is the inverse quantization fact

ey Frame
e motion track has one Key Frame for each time sample. The first and last Key Frames
e unquantized values and all other key frames used quantized differential values.

- 136 -

- 137 -

F32: Time

Time Differential

Rotation Differential

Displacement Differential

Scale Differential

Rotation

Displacement

Scale

Time

9.8.6.5.5.1

Time is the time value for this Key Frame.

9.8.6.5.5.2 Displacement

Displacement is the translation of the start of the bone from the end of its parent bone. For a
root bone or for a node, Displacement is the translation from the origin of the local coordinate
space.

9.8.6.5.5.

nt X is the X coordinate of the Displacement.

9.8.6.5.5.

9.8.6.5.5.

9.8.6.5.5.3

n with the real part first.

Displacement X

Displacement Z

2.1 F32: Displacement X

Displacement Y

Displaceme

2.2 F32: Displacement Y

Displacement Y is the Y coordinate of the Displacement.

2.3 F32: Displacement Z

Displacement Z is the Z coordinate of the Displacement.

 Rotation

Rotation is the change in orientation of the bone relative to the parent bone. Rotation is
expressed as a quaternio

- 138 -

9.8.6.5.5.3.1 F32: Rotation 0

Rotation 0 is the real part of the Rotation quaternion.

9.8.6.5.5.3.2 F32: Rotation 1

Rotation 1 is the coefficient for i in the Rotation quaternion.

9.8.6.5.5.3.3 F32: Rotation 2

Rotation 2 is the coefficient for j in the Rotation quaternion.

 quaternion.

tive to its parent bone.

9.8.6.5.5.4.1 F32: Scale X

Scale X is the scaling factor in the X dimension.

9.8.6.5.5.4.2 F32: Scale Y

Scale Y is the scaling factor in the Y dimension.

9.8.6.5.5.4.3 F32: Scale Z

Scale X is the scaling factor in the Z dimension.

9.8.6.5.5.3.4 F32: Rotation 3

Rotation 3 is the coefficient for k in the Rotation

9.8.6.5.5.4 Scale

Scale is the scaling component of the transformation of the bone rela

Scale X

Scale Z

Scale Y

Rotation 0

Rotation 2

Rotation 1

Rotation 3

- 139 -

9.8.6.5.5.5 Time Differential

Time Differential is the quantized difference between the actual time value and the predicted
time value. The reconstructed time value from the previous Key Frame is used as a prediction
for this Key Frame.

The reconstructed time is calculated as

reconstructed time = InverseQuant(predicted time,Time Sign,Time Difference,Time Inverse
Quant).

9.8.6.5.5.5.1 U8 [cTimeSign]: Time Sign

Time Sign contains the sign bits for the time prediction difference.

0x00 – the prediction difference is positive or zero

e Difference

or the time value.

d displacement value. The reconstructed displacement value from the
prediction for this Key Frame.

9.8.6.5.5.6.1 U8 [cDispSign]: Displacement Difference Signs

Displacement Difference Signs is a collection of sign bits for the prediction differences.

0x01 – Sign bit for Displacement Difference X

0x02 – Sign bit for Displacement Difference Y

0x01 – the prediction difference is negative

9.8.6.5.5.5.2 U32 [cTimeDiff]: Tim

Time Difference is the quantized absolute prediction difference f

9.8.6.5.5.6 Displacement Differential

Displacement Differential is the quantized difference between the actual displacement value
and the predicte
previous Key Frame is used as a

Time Sign

Time Difference

Displacement Difference Signs

Displacement Difference X

Displacement Difference Z

Displacement Difference Y

0x04 – Sign bit for Displacement Difference Z

9.8.6.5.5.6.2 U32 [cDispDiff]: Displacement Difference X

reconstructed X = InverseQuant(predicted X, (DisplacementDifferenceSigns & 0x01),

Displacement Difference X, Displacement Inverse Quant).

9.8.6.5.5.6.3 U32 [cDispDiff]: Displacement Difference Y

reconstructed Y = InverseQuant(predicted Y, ((DisplacementDifferenceSigns & 0x02)>>1),

Displacement Difference Y, Displacement Inverse Quant).

9.8.6.5.5.6.4 U32 [cDispDiff]: Displacement Difference Z

reconstructed Z = InverseQuant(predicted Z, ((DisplacementDifferenceSigns & 0x04)>>2),

Displacement Difference Z, Displacement Inverse Quant).

9.8.6.5.5.7 Rotation Differential

The reconstructed Rotation quaternion from the previous Key Frame is used as the prediction
for this Key Frame. The reconstructed Rotation quaternion for this Key Frame is obtained by
multiplying the prediction quaternion by the reconstructed quaternion difference.

9.8.6.5.5.7.1 U8 [cRotSign]: Rotation Difference Signs

Rotation Difference Signs is a collection of sign bits for the prediction differences.

0x01 – Sign bit for Rotation Difference 0

tion Difference 1

tion Difference 3

9.8.6.5.5.7.2

e reconstructed quaternion difference is calculated as

&0x02)>>1),Rotation Difference
otation Inverse Quant)

Rotation Difference Signs

Rotation Difference 1

Rotation Difference 3

Rotation Difference 2

0x02 – Sign bit for Rota

0x04 – Sign bit for Rotation Difference 2

0x08 – Sign bit for Rota

U32 [cRotDiff]: Rotation Difference 1

The coefficient for i in th

RQD1 = InverseQuant(0,((RotationDifferenceSigns
1,R

- 140 -

- 141 -

9.8.6.5.5.7.3 U32

9.8.6.5.5.7.

[cRotDiff]: Rotation Difference 2

The coefficient for j in the reconstructed quaternion difference is calculated as

RQD2 = InverseQuant(0,((RotationDifferenceSigns&0x04)>>2),Rotation Difference
2,Rotation Inverse Quant)

4 U32 [cRotDiff]: Rotation Difference 3

The coefficient for k in the reconstructed quaternion difference is calculated as

RQD3 = InverseQuant(0,((RotationDifferenceSigns&0x08)>>3),Rotation Difference
3,Rotation Inverse Quant)

The real part of the reconstructed quaternion difference is calculated as

)321(0.1))010&(21(0 222 RQDRQDRQDxgnsfferenceSiRotationDiRQD ++−⋅⋅−=

9 c

Sc e actual scale value and the predicted
is used as a

y Frame.

9.8.6.5.5.8.1 U8 [cScalSign]: Scale Difference Signs

Scale Difference Signs is a collection of sign bits for the prediction differences.

0x01 – Sign bit for Scale Difference X

0x02 – Sign bit for Scale Difference Y

t for Scale Difference Z

9.8.6.5.5.8.2

X = InverseQuant(predicted X, (ScaleDifferenceSigns & 0x01),

uant).

f]: Scale Difference Y

caleDifferenceSigns & 0x02)>>1),

Scale Difference Y, Scale Inverse Quant).

.8.6.5.5.8 S ale Differential

ale Differential is the quantized difference between th
from the previous Key Frame scale value. The reconstructed scale value

prediction for this Ke

Scale Difference Signs

Scale Difference X

Scale Difference Z

Scale Difference Y

0x04 – Sign bi

U32 [cScalDiff]: Scale Difference X

reconstructed

Scale Difference X, Scale Inverse Q

9.8.6.5.5.8.3 U32 [cScalDif

reconstructed Y = InverseQuant(predicted Y, ((S

9.8.6.5.5.8.4 U32 [cScalDiff]: Scale Difference Z

10 Bit Encoding Algorithm

reconstructed Z = InverseQuant(predicted Z, ((ScaleDifferenceSigns & 0x04)>>2),

Scale Difference Z, Scale Inverse Quant).

10.1 Definitions
The following definitions are applicable to the U3D bit encoding algorithm.

Term Definition

Clear Set the bits to 0.

Context Captures the estimated probability distribution of the current symbol of a
particular type.

Cumulative
frequency

Sum of the occurrences of all of the symbols less than current symbol stored in
the histogram for a given context.

of a symbol

Dynamic
context

symbols. Estimated probability is based on previous occurrences of

Dynamic
Histogram

bols written by the encoding algorithm
itten have a corresponding symbol equal to

s the escape symbol and has an initial frequency of

Used to store the frequency counts of sym
in a dynamic context. The values wr
the value + 1. The symbol 0 i
1. All other symbols have an initial frequency of 0. A dynamic histogram is
updated as values are written by the bit encoding algorithm.

Frequency Number of occurren
of the
symbol

ces of a symbol stored in the histogram for a given context.

High High probability limit.

Low Low probability limit.

Set Assign the bits to the specified value (if no value specified, value is 1)

Static
context

Estimated probability is not based on previous occurrences of symbols, i.e. all
valid symbols have equal probability.

Static
Histogram

Used by the encoding algorithm to encode symbols. The static histogram is
defined by a number R that represents a range of valid values from 0 to R - 1.
Each value has a corresponding symbol equal to the value + 1. Each symbol has
a frequency of 1. The symbol 0 is the escape symbol used by the encoding
algorithm and has a frequency of 0 for all static histograms. Static Histograms are
constant.

Total
cumulative
frequency

Total occurrences of all symbols including the escape symbol stored in the
histogram for a given context.

Underflow A count of the series of bits that are the same between the high and low
gh and low and comparing until a
ize for Low and High).

bits probabilities starting with the QBits of hi
mismatch is found (due to the fixed storage s

Write-bit tput Write a bit in order with least significant bit of the byte written first to the ou
stream.

- 142 -

- 143 -

10.2 Acronyms
 the U3D bit encoding algorithm.

 and Abbreviations
The following acronyms and abbreviations are applicable to

Acronym Description

HBit ‘half’ bit repres ord this is the
th

enting 0.5 in the fixed-point 16.16 format (in a 32-bit w
17 most significant bit)

LBit Least significant bit

MBit Most significant bit

QBit ‘quarter’ bit representing 0.25 in the fixed-p
the 18th

oint 16.16 format (in a 32-bit word this is
 most significant bit)

10.3
This section provides an overview of the U3
shall be
represen

The bit encoding algorithm is a single pass statistical data compression method using an
arithmetic algorithm that transforms the input into a single floating point number between 0 and 1.
The encoding performed is lossless, i.e. data is not discarded during the encoding process and
the original data is obtained after the decoding process. All data blocks as defined in Clause 9 of
the specification are processed through the encoder. Only encoding is specified as normative.

The compression algorithm supports compression of unsigned integers. When a value is to be
compressed and encoded, a compression context must be specified. The compression context
determines which histogram is used to encode the value. The algorithm may use multiple
histograms to encode a series of values. Clause 9 identifies the values that are compressed and
the contexts for the compression. Compression is performed for parts of the file that are expected
to contain large amounts of compressible data, e.g. geometry and animation.

The algorithm uses static or dynamic histograms for the encoding. The static histograms represent
a uniform distribution over a range of numbers. The dynamic histograms build the distribution from
the values written using a context. The dynamic contexts are used for values that are expected to
have a narrow distribution.

10.3.1 Prerequisites and Inputs
uncompressed

as a sequence of compressed U8 using a
static con 2 values
into symbols based on the context given.

10.3.2 Descrip
When en ciated histogram is specified. Static histograms
are used umbers is expected to be roughly even or very
random a
cluster around a few values and is easy to predict.

one or more
symbols. ues with the
same number o it
values. The 8-b 0
to 255.

The symbols written by the algorithm are represented as a floating point number. Each value in
the histogram is given a portion of the numbers between 0 and 1. The size of the range
allocated to each value corresponds to the probability the value will appear. Each value in a
static context has the same probability and the same range size. For dynamic contexts, the

 Overview
D bit encoding algorithm. The bit encoding algorithm

used to write all U3D files. The bit encoding algorithm defines a platform independent
tation of the binary data that is a U3D file.

The algorithm accepts as input U8, U16, U32, U64, I32, F32 and F64 values. All
values are cast to unsigned integers and written

text with range 0-255. The algorithm transforms compressed U8, U16, and U3

t ion
coding a value, a context with an asso
when the distribution of the encoding n
nd difficult to predict. Dynamic contexts should be used to encode data that tends to

The bit encoding algorithm transforms all of the input value into a sequence of
 All of the uncompressed values written are cast to unsigned integer val

f bytes as the original type, and then broken into a series of unsigned 8-b
it values are then written as symbols using a static context with a range from

probability is based on the number of times that the symbol has been written to that context.
When wr onds to that
value. En o be written
with in the ra r
dependent, all of the steps must be performed in the order described in the algorithm below.

10.4
This section g algorithm.
Specifically, only e
encoding algorithm or the decoding algorithm needs to
for an example implementation

Note that the algorithm follows standard rules for operator precedence in arithmetic expressions.

Static contexts are specified
(16382). If R is larger than this value an uncompressed U16 or U32 is written, as appropriate.

10.4.1 General
al requirements for the bit encoding algorithm.

1. All

2. En
Fo

10.4.2 Operations
The operations of the algorithm shall be performed as in the following table:

iting a symbol, the encoding algorithm encodes the range that corresp
coding a sequence of values involves encoding the range of the value t

nge of the previous value. Because the encoding algorithm is very orde

 Encoding Algorithm
 describes the details and the normative requirements for the bit encodin

the encoding algorithm is specified in this clause since either one of th
 be specified normatively. Refer to Annex A

of the bit encoding algorithm.

by the range from: 0 to (R-1), maximum value for R is: 0x3FFE

Requirements
This section specifies gener

blocks shall be processed through the bit encoding algorithm.

coding procedure shall depend on the type of the block (as defined in Clause 9 File
rmat).

Type of value to be
written to output

stream

How value is written

Compressed U32 Refer to algorithm in section 10.4.5 below

Compressed U16 Refer to algorithm in section 10.4.6 below

Compressed U8 Refer to algorithm in section 10.4.7 below

U8 Refer to algorithm in section 10.4.8 below

U16 Low order U8 followed by high order U8

U32 Low order U16 followed by high order U16

U64 Low order U32 followed by high order U32

I32 Memory pattern of 2’s complement signed integer interpreted as U32

F32 Memory pattern of IEEE 32-bit format interpreted as U32

F64 EE 64-bit format interpreted as U64 Memory pattern of IE

String tring followed by the U8s in the string U16 count of U8s in s

10.4
The bit en

high probability limit = ed point equivalent of the binary
repeating number 0.111…)

underflow count = 0

.3 Init ial ization
coding algorithm shall perform the following initializations:

 0x0000FFFF (represents 1.0 as the fix

low probability limit = 0

- 144 -

- 145 -

initial histogram for a dynamic context: escape symbol frequency = 1 and all other frequencies
= 0 (the h

histogram for a static l symbols <= R the frequency = 1
and frequency for all o

ressed Symbol
all be written by the bit encoding algorithm are detailed in the

10.4.4.1
 symbol

tain tota ency of all symbols for this context

 tota

nc

bol

 total cumulative frequency of this symbol for this context.

ula

Obtain freq

10.4.4.2 Update th
ty

te the high probability limit: High = Low + probability range * (cumulative frequency of
l + frequency of the symbol) / (total cumulative frequency of all symbols) – 0x00000001

date the Low = Low + (probability range * cumulative frequency of
mbol / to cy of all symbols)

10.4.4 pdate th

l

10.4.4.4
bi

set output b

write-bit ou

clear HBit for High, left shift High, and set LBit of High

ar Hbit f

nd

NO

crement

END WHIL

HIL

istogram is modified as symbols are written to the context)

context: escape symbol frequency = 0, al
ther symbols = 0

10.4.4 Algorithm for Writ ing a Comp
The procedure for how symbols sh
following subsections.

Inputs: value to be written and context

Obtain Frequency
set

 Values
 = value + 1

Ob l cumulative frequ

Obtain l cumulative frequency of this symbol for this context

Obtain frequency of this symbol for this context

If freque
follows:

y of this symbol for this context is 0 then prepare to write the escape symbol as

Set sym

Obtain

 = 0

NOTE
Total cum tive frequency of the escape symbol for all contexts is 0.

uency of this symbol for this context

e Probabil i ty Limits
probabili

Upda
symbo

range = High - Low + 0x00000001

Up low probability limit:
sy tal cumulative frequen

.3 U e Compression Context
Update the compression context with this symbol
symbo

. Note that this symbol may be the escape

Write to Output Stream Based on Current Probabil i ty
WHILE H

 Range
t of High and Low are same

it = Hbit

tput bit

cle

WHILE u

or Low, left shift Low, and clear LBit of Low

erflow count > 0

write-bit

de

T(output bit)

underflow count

E

END W E

10.4.4.5 Determine Underflow Count
WHILE QBit Low is same as QBit High

clear Hb t shift High, set LBit High and set Hbit High

ar Hb

increme

D W

10.4.4 turn
turn

10.4.5 Algorithm for Writ ing a Compressed U32 Value
if context is static with (R > maximum R)

10.4.6

Writ ing a Compressed U8 Value

10.4.8

it for High, lef

cle it for Low, left shift Low, clear LBit Low and clear Hbit Low

nt underflow count

EN HILE

.6 Re
Re either success or a warning that an escape value was written

then

write uncompressed U32

else

result = write value as compressed symbol

if result is a warning that an escape was written

then

write value as an uncompressed U32

update the histogram for this context with value + 1

 Algorithm for Writ ing a Compressed U16 Value
if context is static with (R > maximum R)

then

write uncompressed U16

else

result = write value as compressed symbol

if result is a warning that an escape was written

then

write value as an uncompressed U16

update the histogram for this context with value + 1

10.4.7 Algorithm for
result = write value as compressed symbol

if result is a warning that an escape was written

then

write value as an uncompressed U8

update the histogram for this context with value + 1
NOTE
For static contexts, the maximum value of R = 256.

Algorithm for Writ ing an Uncompressed U8 Value
set symbol = value with bit order swapped, i.e. reverse order of bits (most significant bit
exchanged with least significant bit and so on…)

- 146 -

- 147 -

write symbol as compressed symbol with static context R=256

Algorithm for Updating the Compression Context
The histogram shall not be updated for symbols larger than 0xFFFF.

A histogram stores a limited number of symbol occurrences. When the total number of symb

10.4.9

ol
symbol frequencies in the histogram shall be divided by 2 rounding
f the escape symbol is then incremented by 1.

 this number allow for more efficient

10.4.1
alues have been written then an uncompressed U32 value of 0

 written to the output

occurrences = 0x1FFF all of
down. The frequency count o
NOTE
Limiting the number of occurrences stored allows the histogram to adapt to changing distributions within a
given context. More recent values will have a greater influence on the histogram for a given context. The
value 0x1FFF was determined empirically. Larger values for
compression for stable probability distributions, whereas, smaller values enable faster adaptation to
changing probability distributions. Additionally, values larger than 0x1FFF may cause numeric overflow
issues on some 32-bit hardware.

0 Algorithm for Flushing the Compression State
If one or more compressed v
shall be written in order to ensure that all the bits required for decoding are
stream.

Annex A
(informative)

Bit Encoding Algorithm – An Implementation

A.1 Introduction
This tation of the compression algorithm used to encode the

ntation of the corresponding decompression algorithm is also
provided. The algorithms are described in the C# Language (ECMA-334). It is highly recommended
that al compression algorithm presented with the same input sequence of
values of bytes. Refer to Clause 10
for the

The cl d decompression algorithms. The interfaces
suppo

The BitStreamWrite
methods accept a compression context parameter in addition to the value to be written. The
compression context is used to estimate the probability distribution of values. These probability
estima StreamWrite to attempt to
reduce

The Bi s from the encoded bits. The
BitSt class to re-create the same probability
estima

ability estimates that are based on the range of possible
value o ues encountered.

The D
also us

The Co

A
The
BitStreamWrite DataBlock

 would be modified
and a file according to the format in 9.2.

The usual reading operation would read a block from the file into a DataBlock class. To interpret
the ck, the DataBlock class would be provided to a BitStreamRead class
after which several calls to the read methods on would provide the encoded
valu

For sed by the reading operation must be
the

A.2 Inter

 Annex provides an example implemen
fields defined in Clause 9. An impleme

l implementations of the
 and compression contexts produce the same output sequence
 normative requirements of the bit encoding algorithm.

asses defined in A.3 define the compression an
rted by these classes are provided in A.2.

 class is used to encode the bits for a sequence of values. Compressed write

tes are provided by the ContextManager class and used by Bit
 the number of bits required to store the value.

tStreamRead class is used to recreate the sequence of value
reamRead class uses the ContextManager
tes as used by the BitStreamWrite class.

The ContextManager class supports prob
r based on an adapting history of previous val

ataBlock class is used as a container to hold the encoded bits. The DataBlock class is
ed to hold the other fields defined in 9.2 for the block structure.

nstants class provides names for certain constant values used in the other classes.

.1.1 Usage
 usual writing operation would make several calls to the write methods on the interface of the

 class. After all writing is done, the would be retrieved from the
BitStreamWrite class. The BitStreamWrite class provides the encoding for the Data field
(9.2.4) in the block format. Additional fields such as block type and meta data

 then the DataBlock would be stored in

Data field of the blo
BitStreamRead

es.

correct results, the sequence of context parameters u
same as the sequence used by the writing operation.

faces

A.2.1 Bit Stream Write
using Syste

namespace U

m;

3D

- 148 -

- 149 -

{

 /// <

 /// This file defines the IBitStreamWrite interface and the associated

 /// identifier. IBitStreamWrite is used to write compressed and

 sed data to a datablock.

 /// <

 /// <para> The IBitStreamWrite is supported by the BitStreamWrite class.

 /// ra>

 /// <para> Bytes are written in little-endian order.

 /// ra>

 ///

 pub

 {

 he datablock.

 datablock

 /// </param>

 s>

 /// void</returns>

 void

 /// </summary>

 alue">

 ck

 void WriteU16(UInt16 uValue);

 lock.

 ///

 /// void</returns>

summary> IBitStreamWrite.cs

/// uncompres

/summary>

/// <remarks>

</pa

</pa

 </remarks>

lic interface IBitStreamWrite

/// <summary>Write a U8 to t

/// </summary>

 /// uValue <param name = "uValue">

/// the value to write to the

/// reuturn <return

WriteU8(Byte uValue);

/// <summary>Write a U16 to the datablock.

/// uValue <param name = "uV

/// the value to write to the datablo

 /// </param>

/// returns <returns>

/// void</returns>

/// <summary>Write a U32 to the datab

</summary>

 /// uValue <param name = "uValue">

 /// the value to write to the datablock

/// </param>

/// returns <returns>

 uValue <param name = "uValue">

 <summary>Write an I32 to the datablock.

 /// </summary>

 /// iValue <param name = "iValue">

 /// the value to write to the datablock

 /// </param>

 /// returns <returns>

 /// void</returns>

 void WriteI32(Int32 iValue);

 /// <summary>Write a F32 datablock.

 /// </summary>

 /// fValue <param name = "fValue">

 /// the value to write to the datablock

 /// </param>

 /// returns <returns>

 /// void</returns>

 void WriteF32(Single fValue);

 /// <summary>Write a compressed U32 to the datablock.

 /// </summary>

 /// context <param name = "context">

 /// the context to use for the arithmetic encoder.

 /// </param>

 /// uValue <param name = "uValue">

 /// the value to compress and write to the datablock

 /// </param>

 /// returns <returns>

 /// void</returns>

 void WriteU32(UInt32 uValue);

/// <summary>Write a U64 to the datablock.

/// </summary>

///

/// the value to write to the datablock

/// </param>

/// return <returns>

 /// void</returns>

void WriteU64(UInt64 uValue);

///

- 150 -

- 151 -

 void WriteCompressedU32(UInt32 context, UInt32 uValue);

 /// <summary>Write a compressed U16 to the datablock.

 //

 /// context <param name = "context">

text to use for the arithmetic encoder.

 ///

 /// return <returns>

mary>Set the current position to the next byte boundary

 return <returns>

 /// void</returns>

/ </summary>

 /// the con

 /// </param>

 /// uValue <param name = "uValue">

 /// the value to compress and write to the datablock

 /// </param>

 /// return <returns>void</returns>

 void WriteCompressedU16(UInt32 context, UInt16 uValue);

 /// <summary>Write a compressed U8 to the datablock.

 /// </summary>

 /// context <param name = "context">

 /// the context to use for the arithmetic encoder.

 /// </param>

 /// uValue <param name = "uValue">

 /// the value to compress and write to the datablock

 /// </param>

 /// return <returns>

void</returns>

 void WriteCompressedU8(UInt32 context, Byte uValue);

/// <summary>Stores the data written by the bit stream writer

/// in a datablock.

/// </summary>

/// rDataBlock <param name = "rDataBlock">

/// returns the data written by the BitStreamWriter in a datablock

/// </param>

/// void</returns>

void GetDataBlock(out IDataBlock rDataBlock);

 /// <sum

 /// </summary>

 ///

 void AlignToByte();

ns>

yte();

interface and the associated

/ id compressed and uncompressed

ted by the BitStreamRead class.

 the datablock associated with this

description>

escription>

m the datablock.

 /// <summary>Set the current position to the next 4 byte boundary

 /// </summary>

 /// return <returns>

 /// void</retur

 void AlignTo4B

 }
}

A.2.2 Bit Stream Read
using System;

 namespace U3D

 {

d.cs /// <summary>IBitStreamRea

// Th / is file defines the IBitStreamRead

 // entifier. IBitStreamRead is used to read

. /// data to a data block

 /// </summary>

 /// <remarks>

 /// <para>The IBitStreamRead is suppor

/// </para>

 /// <para>Bytes are read in little-endian order.

 /// </para>

 /// </remarks>

 public interface IBitStreamRead

 {

 /// <summary>Read a U8 from

 /// bitstream.

 /// </summary>

alue <param name = "rValue">< /// rV

 /// the value read is returned in rValue.</d

 /// </param>

 /// return <returns>

 /// void</returns>

te rValue); void ReadU8(out By

 /// <summary>Read a U16

 /// </summary>

fro

- 152 -

- 153 -

 /// rValue <param name = "rValue"><description>

e value read is returned in rValue</description>

 /// <summary>Read a U32 from the datablock.

description>

Value</description>

param>

m the datablock.

<description>

rValue</description>

m the datablock.

description>

Value</description>

a F32 from the datablock.

ned in rValue</description>

 /// th

 /// </param>

 /// return <returns>

 /// void</returns>

 void ReadU16(out UInt16 rValue);

 /// </summary>

 /// rValue <param name = "rValue"><

 /// the value read is returned in r

 /// </

 /// return <returns>

 /// void</returns>

 void ReadU32(out UInt32 rValue);

 /// <summary>Read a U64 fro

 /// </summary>

 /// rValue <param name = "rValue">

 /// the value read is returned in

 /// </param>

 /// return <returns>

 /// void</returns>

 void ReadU64(out UInt64 rValue);

 /// <summary>Read a I32 fro

 /// </summary>

 /// rValue <param name = "rValue"><

 /// the value read is returned in r

 /// </param>

 /// return <returns>

 /// void</returns>

 void ReadI32(out Int32 rValue);

 /// <summary>Read

 /// </summary>

 /// rValue <param name = "rValue"><description>

 /// the value read is retur

 /// </param>

 /// return <returns>

 /// void</returns>

m the datablock.

 name="context">

iption>

// </param>

 out UInt32 rValue);

ck.

rValue"><description>

16(UInt32 context, out UInt16 rValue);

ntext">

terpret the compressed value

 void ReadCompressedU8(UInt32 context, out Byte rValue);

 void ReadF32(out Single rValue);

 /// <summary>Read a compressed U32 fro

 /// </summary>

 /// context <param

 /// the context used to interpret the compressed value

 /// </param>

 /// rValue <param name = "rValue"><descr

 /// the value read is returned in rValue</description>

 /

 /// return <returns>

 /// void</returns>

 void ReadCompressedU32(UInt32 context,

a compressed U16 from the datablo /// <summary>Read

 /// </summary>

 /// context <param name="context">

ed to interpret the compressed value /// the context us

 /// </param>

 " /// rValue <param name =

 /// the value read is returned in rValue</description>

aram> /// </p

 /// return <returns>

 /// void</returns>

 void ReadCompressedU

 /// <summary>Read a compressed U8 from the datablock.

 /// </summary>

 /// context <param name="co

in /// the context used to

 /// </param>

 /// rValue <param name = "rValue"><description>

 /// the value read is returned in rValue</description>

 /// </param>

 /// return <returns>

 /// void</returns>

- 154 -

- 155 -

 /// <summary>Set the data that is read by the BitStreamReader.

taBlock">the data that is to be read

ns>

ck dataBlock);

s used to access the static and dynamic contexts used

and writing of compressed data.

pecified as 0x0001

ogram that stores

 occurrences of symbols that are added through the

ra>

ntext - 0x4000) are equally likely. Static

ol method.

</

ontext

values from 0 through 255.

namic context is initialized,

pe symbol is initialized to 1.

</

as static.

 /// </summary>

 /// <param name = "da

 /// </param>

 /// <returns>void</retur

 void SetDataBlock(IDataBlo

 }
}

A.2.3 Context Manager
using System;

namespace U3D

{

 /// <summary>IContextManager.cs

 ///

ContextManager interface. /// This file defines the I

 /// IContextManager i

 /// for the reading

 /// </summary>

 /// <remarks>

 /// <para> Dynamic Context: dynamic contexts are s

. Dynamic contexts keep a hist /// through 0x3FFF

 of /// the number

 /// AddSymbol method.

 /// </pa

 /// <para> Static Context: static contexts are specified as 0x4000

 contexts represent histograms where each /// through 0x7FFF. Static

o /// value between 0 and (c

/ co // ntexts histograms are not changed by the AddSymb

 /// para>

Context8: context 0 is a shortcut to c /// <para> Context 0 or

 /// 0x40FF which corresponds to

 /// </para>

/ <p // ara> When a histogram for a dy

ol frequency of the esca /// the symb

 /// para>

than 0xFFFF are treated /// <para> Symbols larger

 /// </para>

 // ara> The IContextManager interface is supported by the / <p

.

o the specified

y>

ram>

name="symbol">

this symbol to the histogram</param>

ntext, UInt32 symbol);

he number of occurrences of the given symbol

bol">

 this symbol the symbol

umber of occurences of the specified symbol in the

symbol);

he total number of occurrences for all of the

han the given symbol in the context.

>

me="symbol">

s>

 /// ContextManager class

 /// </para>

 /// </remarks>

 public interface IContextManager

 {

 /// <summary>Add an occurance of the symbol t

 /// context.</summar

 /// context <param name="context">

 /// add the occurrence to this context's histogram</pa

 /// symbol <param

 /// add an occurrence of

 void AddSymbol(UInt32 co

 /// <summary>Get t

 /// in the context.

 /// </summary>

 /// context <param name="context">

 /// get the frequency from this context's histogram

 /// </param>

 /// symbol <param name="sym

 /// get the frequency of

 /// </param>

 /// <returns>the n

 /// specified context

 /// </returns>

 UInt32 GetSymbolFrequency(UInt32 context, UInt32

 /// <summary>Get t

 /// symbols that are less t

 /// </summary>

 /// context <param name="context"

 /// use this context's histogram

 /// </param>

 /// symbol <param na

 /// use this symbol

 /// </param>

 /// return <return

- 156 -

- 157 -

 /// sum of all symbol freqs for symbols less than the

given context

 UInt32 GetCumulativeSymbolFrequency(UInt32 context, UInt32 symbol);

es of all the symbols in this

name="context">use this context's

en context

ency(UInt32 context);

e="context">

sponds to the given cumulative frequency

<s

d with

 is used by the bitstream objects.

 /// given symbol in the

 /// </returns>

 /// <summary>Get the total occurrenc

 /// context.

 /// </summary>

 /// context<param
 /// histogram</param>

 /// <returns>total occurances of all symbols for the giv

 /// </returns>

 UInt32 GetTotalSymbolFrequ

 /// <summary>Find the symbol in a histogram that has

 frequency specified. /// the cumulative

 /// </summary>

 /// context<param nam

 /// use this context's histogram

 /// </param>

y<param name="symbolFrequency"> /// symbolFrequenc

 /// use this frequency

 /// </param>

> /// return<returns

 /// the symbol that corre

> /// and context</returns

 UInt32 GetSymbolFromFrequency(UInt32 context, UInt32
 symbolFrequency);

 }

}

A Block .2.4 Data
using System;

namespace U3D

 {

 /// ummary>

 /// The IDataBlock interface defines the properties associate

 /// a block of data. IDataBlock

 /// </summary>

 public interface IDataBlock

 {

 /// <summary>

 /// DataSize is the size of the data in bytes.

 /// </summary>

 UInt32 DataSize

 {

get;

set;

 }

 Data is an array that stores the information. The information

 in the DataBlock is in byte increments; so, not all of the array

/ will contain valid data. See the DataSize property for the

</summary>

ataSize

 The

ion in the DataBlock is in byte increments; so, not all

e

y>

 /// <summary>

 ///

 ///

 //

 /// amount of valid data.

 ///

 UInt32[] Data

 {

 get;

 set;

 }

 /// <summary>

 /// MetaDataSize is the size of the MetaData in bytes.

 /// </summary>

 UInt32 MetaD

 {

 get;

 set;

 }

 /// <summary>

 /// MetaData is an array that stores the information.

 /// informat

 /// of the array will contain valid data. See the MetaDataSiz

 /// property for the amount of valid data.

 /// </summar

 UInt32[] MetaData

- 158 -

- 159 -

 {

 get;

 set;

 }

 /// <summary>

 /// BlockType identifies the type of data stored in the data block

s where the block should be placed in relation

 Blocks should be ordered in increasing

 /// so that it can be interpreted correctly.

 /// </summary>

 UInt32 BlockType

 {

 get;

 set;

 }

 /// <summary>

 /// Priority indicate

 /// to other blocks.
 /// priority.

/ /// < summary>

 UInt32 Priority

 {

 get;

 set;

 }

 }

}

A.3 Classes

A.3.1 Bit Stream Write
using System;

namespace U3D

{

 /// <summary>BitStreamWrite.cs

ementation of IBitStreamWrite. /// BitStreamWrite is the impl

 /// summ ry> </ a

<r

 writes are converted to unsigned integers and

 method WriteSymbol with the associated context.

 UInt32[DataSizeIncrement];

UInt32 symbol = (UInt32) uValue;

 SwapBits8(ref symbol);

 bool escape = false;

WriteSymbol(Constants.Context8, symbol, out escape);

iteU16(UInt16 uValue)

Byte)(0x00FF & (uValue >> 8)));

 /// emarks>

 /// <para>All uncompressed

 /// broken down into a sequence of U8 values that are written with the

 /// private method WriteSymbol in the static context Context8.

 /// </para>

 // ara> All compressed writes are for unsigned integers and are passed/ <p

 /// through to the private

 /// </para>

 /// </remarks>

 public class BitStreamWrite : IBitStreamWrite

 {

 public BitStreamWrite()

 {

 this.contextManager = new ContextManager();

 this.high = 0x0000FFFF;

 this.data = new

 this.compressed = false;

 }

 ~BitStreamWrite()

 {

 }

 #region IBitStreamWrite implementation

 public void WriteU8(Byte uValue)

 {

 }

 public void Wr

 {

 WriteU8((Byte)(0x00FF & uValue));

 WriteU8((

 }

- 160 -

- 161 -

 public void WriteU32(UInt32 uValue)

6)(0x0000FFFF & (uValue >> 16)));

eU64(UInt64 uValue)

iteU32((UInt32)(0x00000000FFFFFFFF & uValue));

ue);

oid WriteF32(Single fValue)

ue =

BitConverter.ToUInt32(BitConverter.GetBytes(fValue), 0);

 WriteU32((UInt32) uValue);

ressedU32(UInt32 context, UInt32 uValue)

mpressed = true;

 = false;

 != 0) && (context < Constants.MaxRange))

 WriteSymbol(context, uValue, out escape);

e == true)

 {

 WriteU16((UInt16)(0x0000FFFF & uValue));

 WriteU16((UInt1

 }

 public void Writ

 {

 Wr

 WriteU32((UInt32)(0x00000000FFFFFFFF & (uValue >> 32)));

 }

 public void WriteI32(Int32 iValue)

 {

 WriteU32((UInt32)iVal

 }

 public v

 {

 UInt32 uVal

 }

 public void WriteComp

 {

 co

 bool escape

 if((context

 {

 if(escap

 {

 WriteU32(uValue);

 this.contextManager.AddSymbol(context, uValue + 1U);

 }

 }

 else

 {

 WriteU32(uValue);

 }

ue;

se;

) && (context < Constants.MaxRange))

Symbol(context, uValue, out escape);

scape == true)

{

iteU16(uValue);

WriteU16(uValue);

 }

blic void WriteCompressedU8(UInt32 context, Byte uValue)

 {

 compressed = true;

bool escape = false;

if((context != 0) && (context < Constants.MaxRange))

 WriteSymbol(context, uValue, out escape);

 if(escape == true)

 {

 WriteU8(uValue);

 this.contextManager.AddSymbol(context, uValue + 1U);

 }

 }

 public void WriteCompressedU16(UInt32 context, UInt16 uValue)

 {

 compressed = tr

 bool escape = fal

((context != 0 if

 {

 Write

if(e

 Wr

 this.contextManager.AddSymbol(context, uValue + 1U);

 }

 }

 else

 {

 }

 pu

 {

 }

 else

- 162 -

- 163 -

 {

 WriteU8(uValue);

GetDataBlock(out IDataBlock rDataBlock)

s.WriteU32(0);

AlignToByte();

32)this.dataPosition << 2)

 + ((UInt32)this.dataBitOffset >> 3);

Data;

ray.Copy(this.data, tempData, tempData.Length);

 rDataBlock.Data = tempData;

AlignToByte()

 {

 Int32 uBitCount = 0;

& 7;

unt;

this.dataBitOffset -= 32;

AlignTo4Byte()

 }

 }

 public void

 {

 if(compressed) //Flush the arithmetic coder

 {

 thi

 }

 UInt32 numBytes = ((UInt

 rDataBlock = new DataBlock();

 PutLocal();

 rDataBlock.DataSize = numBytes;

 UInt32[] tempData = rDataBlock.

 Ar

 }

 public void

 // Check input(s)

 GetBitCount(ref uBitCount);

 uBitCount = (8 - (uBitCount & 7))

 this.dataBitOffset += uBitCo

 if(this.dataBitOffset >= 32)

 {

 IncrementPosition();

 }

 }

 public void

 {

 if(this.dataBitOffset > 0)

 {

 this.dataBitOffset = 0;

 IncrementPosition();

 }

 }

 #endregion IBitStreamWriter methods

eSymbol

ablock in the specified context.

ape returns as false if the symbol was written successfully.

ing in dynamically compressed

exts when the symbol to write has not appeared yet in the

ext's histogram. In this case, the escape symbol, 0, is

t32 context, UInt32 symbol, out bool

mbol++;

Escape = false;

=

umFreq = this.contextManager

bol);

ntextManager.GetSymbolFrequency(context, symbol);

ymbol has not occurred yet.

Write out the escape symbol, 0.

l = 0;

 #region private helper methods

 /*

 * Writ

 * Write the given symbol to the dat

 * rEsc

 * rEscape will return true when writ

 * cont

 * cont

 * written.

 */

 private void WriteSymbol(UIn
 rEscape)

 {

 sy

 r

 UInt32 totalCumFreq = 0;

nt32 symbolCumFreq = 0; UI

 UInt32 symbolFreq = 0;

 totalCumFreq
this.contextManager.GetTotalSymbolFrequency(context);

 symbolC

 .GetCumulativeSymbolFrequency(context, sym

 symbolFreq =

 this.co

 if(0 == symbolFreq)

 { //the s

 //

 symbo

- 164 -

- 165 -

 symbolCumFreq = this.contextManager

ulativeSymbolFrequency(context,
 symbol);

mbolFreq =

 this.contextManager.GetSymbolFrequency(context,
 symbol);

 escape symbol.

e

* (symbolCumFreq + symbolFreq) / totalCumFreq;

anager.AddSymbol(context, symbol);

s

ighmask = this.high & Constants.HalfMask;

nt32 lowmask = this.low & Constants.HalfMask;

nts.HalfMask;

h + 1;

.low &= ~Constants.HalfMask;

 GetCum

 sy

 }

 (0 == symbol) if

 { //the symbol is the

 rEscape = true;

 }

- this.low; UInt32 range = this.high + 1

 this.high = this.low -1 + rang

 this.low = this.low + range * symbolCumFreq / totalCumFreq;

 this.contextM

 //write bit

 UInt32 bit = this.low >> 15;

 UInt32 h

 UI

 while ((this.high & Constants.HalfMask)

 == (this.low & Constants.HalfMask))

 {

 this.high &= ~Consta

 this.high += this.hig

 WriteBit(bit);

 while(this.underflow > 0)

 {

 this.underflow--;

 WriteBit((~bit) & 1);

 }

 this

 this.low += this.low;

 //check for underflow

his.high and

 this.low differ only in the most significant bit.

ict the next symbol.

stants.QuarterMask))

 (Constants.QuarterMask

ow & Constants.QuarterMask)))

 1;

 }

bit value so that the first

e last 4 bits become

first 4. E.g. abcdefgh -> efghabcd

/

 {

 & 0xf] << 4)

| (Constants.Swap8[(rValue) >> 4]);

eBit

 * Write the given bit to the datablock.

 bit = this.low >> 15;

 }

 // Underflow occurs when the values stored in t

 //

 // The precision of the variables is not large enough to

 // pred

 while ((0 == (this.high & Con

 &&

 == (this.l

 {

 this.high &= ~Constants.HalfMask;

 this.high <<= 1;

 this.low <<=

 this.high |= Constants.HalfMask;

 this.high |= 1;

 this.low &= ~Constants.HalfMask;

 this.underflow++;

 }

 /*

 * SwapBits8

 * changes the ordering of an 8

 * 4 bits become the last 4 bits and th

 * the

 *

 private void SwapBits8(ref UInt32 rValue)

 rValue = (Constants.Swap8[(rValue)

 }

 /*

 * Writ

 */

- 166 -

- 167 -

 private void WriteBit(UInt32 bit)

ataLocal &= ~(mask << this.dataBitOffset);

itOffset);

his.dataBitOffset >= 32)

ion

 values in the datablock.

on()

1] = this.dataLocal;

his.dataLocalNext;

taPosition+1];

 * store the initial 64 bits of the datablock in dataLocal and

voi

 {

NOTE
Shift operations on U32s are only valid for shifts of 0 to 31 bits.

 UInt32 mask = 1;

 bit &= mask;

 this.d

 this.dataLocal |= (bit << this.dataB

 this.dataBitOffset += 1;

 if(t

 {

 this.dataBitOffset -= 32;

 IncrementPosition();

 }

 }

 /*

entPosit * Increm

 * Updates the values of the datablock stored in dataLocal and
 dataLocalNext

e next * to th

 */

 private void IncrementPositi

 {

 this.dataPosition++;

 CheckPosition();

 this.data[this.dataPosition-

 this.dataLocal = t

 this.dataLocalNext = this.data[this.da

 }

 /*

 * GetLocal

 * dataLocalNext

 */

 private d GetLocal()

 {

 CheckPosition();

 this.dataLocal = this.data[this.dataPosition];

 this.dataLocalNext = this.data[this.dataPosition+1];

 sto s t ata array

 {

 this.data[this.dataPosition] = dataLocal;

ataLocalNext;

 /*

 che for writing is large

Reallocates if necessary.

/

 {

h)

locateDataBuffer(this.dataPosition + 2 +

er

data written. Copies

 private void AllocateDataBuffer(Int32 size)

sts

 }

 /*

 * PutLocal

 * re he local values of the data to the d

 *

 */

 private void PutLocal()

 this.data[this.dataPosition+1] = d

 }

 * CheckPosition

 * cks that the array allocated

 * enough.

 *

 private void CheckPosition()

 if(this.dataPosition + 2 > this.data.Lengt

 {

 Al
 DataSizeIncrement);

 }

 }

 /*

 * AllocateDataBuff

 * Creates and new array for storing the

 * values of the old array to the new arry.

 */

 {

 // Store an old buffer if it exi

- 168 -

- 169 -

 if(null != this.data)

 {

 UInt32[] oldData = this.data;

[size];

ata[i];

en in rCount

BitCount(ref Int32 rCount)

unt = (this.dataPosition << 5) + this.dataBitOffset;

ember variables

IContextManager contextManager; //the context manager handles

 the ntexts.

UInt32 high; //high and low are the upper and
 lower

UInt32 low; //limits on the probability

erflow; //stores the number of bits of

he limited range of high

 this.data = new UInt32

 for(int i = 0; i < oldData.Length; i++)

 {

 this.data[i] = oldD

 }

 }

 else

 {

 this.data = new UInt32[size];

 }

 }

 /*

 * GetBitCount

 * returns the number of bits writt

 */

 void Get

 {

 rCo

 }

 #endregion private helper methods

 #region m

 private

 // updates to the histograms for the compression co

 private

 private

 private UInt32 und
 underflow

 //caused by t
 and

 //low

 private bool compressed; //this is true if a compressed value was

 when the datablock is retrieved,

2 bit 0 is written to reset the values of

/high, low, and underflow.

atablock to

 private Int32 dataPosition; //the position currently to write in the

ock specified in 32 bit increments.

value of the data

ion

e 32 bits in data after

 dataBitOffset; //the offset into dataLocal that the

 //write will occur

= 0x000023F8;

ion constants

lementation of IBitStreamRead.</summary>

l uncompressed reads are read in as a sequence of U8s

mbol in context Context8 and then built

 //written.

 //a 3

 /

 private UInt32[] data; //the data section of the d
 write.

 //databl

 private UInt32 dataLocal; //the local
 corresponding

 //to dataposit

 private UInt32 dataLocalNext; //th
 dataLocal

 private Int32
 next

 #endregion member variables

 #region constants

 private const Int32 DataSizeIncrement

 #endreg

 }

}

A.3.2 Bit Stream Read

using System;

namespace U3D

{

 /// <summary> BitStreamRead.cs

 /// BitStreamRead is the imp

 ///

 /// <remarks>

 /// <para> Al

 /// with the private method ReadSy

- 170 -

- 171 -

 /// up to the appropriate size and cast to the appropriate type for

quence of U8 values that are writen with the private method

/// WriteSymbol in the static context Context8.

/ <p re passed

 the private method ReadSymbol with the associated context.

lic BitStreamRead()

 {

his.contextManager = new ContextManager();

 this.high = 0x0000FFFF;

eadU8(out Byte rValue)

adSymbol(Constants.Context8, out uValue);

lue--;

 /// the read call. are converted to unsigned integers and broken down

 /// into a se

 /// </para>

 ///

 // ara> All compressed reads are for unsigned integers and a

 /// through to

 /// </para>

 /// </remarks>

 public class BitStreamRead : IBitStreamRead

 {

 pub

 t

 }

 ~BitStreamRead()

 {

 }

 #region

 IBitStreamRead interface implementation

 public void R

 {

 UInt32 uValue = 0;

 Re

 uVa

 SwapBits8(ref uValue);

 rValue = (Byte) uValue;

 }

 public void ReadU16(out UInt16 rValue)

 {

 Byte low = 0;

 Byte high = 0;

igh);

t16) (((UInt16) low) | (((UInt16) high) << 8));

eadU32(out UInt32 rValue)

low = 0;

eadU16(out low);

U16(out high);

< 16));

ue)

 UInt32 high = 0;

 0

 ReadU8(out low);

 ReadU8(out h

 rValue = (UIn

 }

 public void R

 {

 UInt16

 UInt16 high = 0;

 R

 Read

 rValue = ((UInt32) low) | ((UInt32) (high <

 }

void ReadU64(out UInt64 rVal public

 {

nt32 low = 0; UI

 ReadU32(out low);

 ReadU32(out high);

 rValue = ((UInt64) low) | (((UInt64) high) << 32);

 }

 public void ReadI32(out Int32 rValue)

 {

 UInt32 uValue = ;

 ReadU32(out uValue);

 rValue = (Int32)(uValue);

 }

- 172 -

- 173 -

 public void ReadF32(out Single rValue)

 {

 UInt32 uValue = 0;

 ReadU32(out uValue);

er.T ;

t != Constants.Context8 && context < Constants.MaxRange)

- 1;

extManager.AddSymbol(context, rValue + 1U);

}

 else

 he context specified is uncompressed.

dU32(out rValue);

}

 public void ReadCompressedU16(UInt32 context, out UInt16 rValue)

ext != 0 && context < Constants.MaxRange)

 rValue = BitConvert oSingle(BitConverter.GetBytes(uValue), 0)

 }

 public void ReadCompressedU32(UInt32 context, out UInt32 rValue)

 {

 UInt32 symbol = 0;

 if (contex

 { //the context is a compressed context

 ReadSymbol(context, out symbol);

 if (symbol != 0)

 { //the symbol is compressed

 rValue = symbol

 }

 else

 { //escape character, the symbol was not compressed

 ReadU32(out rValue);

 this.cont

 }

 { //T

 Rea

 }

 {

 UInt32 symbol = 0;

 if (cont

 { //the context is a compressed context

 ReadSymbol(context, out symbol);

 if (symbol != 0)

 { //the symbol is compressed

 rValue = (UInt16) (symbol - 1);

 }

 else

 { //the symbol is uncompressed

}

else

ot compressed

 ReadU16(out rValue);

 context, out Byte rValue)

 {

nt32 symbol = 0;

&& context < Constants.MaxRange)

 //the context is a compressed context

ReadSymbol(context, out symbol);

 (symbol != 0)

ol - 1);

}

 //the symbol is not compressed

.contextManager.AddSymbol(context, rValue +

//the context specified is not compressed

 public void SetDataBlock(IDataBlock dataBlock)

 ReadU16(out rValue);

 this.contextManager.AddSymbol(context, rValue + 1U);

 }

 { //the context specified is n

 }

 }

 public void ReadCompressedU8(UInt32

 UI

 if (context != 0

 {

 if

 { //the symbol is compressed

 rValue = (Byte)(symb

 else

 {

 ReadU8(out rValue);

 this
 (UInt32)1);

 }

 }

se el

 {

 ReadU8(out rValue);

 }

 }

- 174 -

- 175 -

 { //set the data to be read to data and get the first part of the

 //into local variables

rray.Copy(tempData, this.data, tempData.Length);

ndregion IBitStreamRead implementation

 /* internally the BitStreamRead object stores 64 bits from the

an 8 bit value so that the first

bits and the last 4 bits become

t32 rValue)

 {

block using the specified context.

mpressed.

t, out UInt32 rSymbol)

 UInt32 uValue = 0;

 data

 UInt32[] tempData = dataBlock.Data;

is.data = new UInt32[tempData.Length]; th

 A

 this.dataPosition = 0;

is.dataBitOffset = 0; th

 GetLocal();

 }

#e

#region private helper methods

 DataBlock's

section in dataLocal and dataLocalNext. * data

 */

its8 /* SwapB

 * changes the ordering of

 * 4 bits become the last 4

 * the first 4. E.g. abcdefgh -> efghabcd

 */

 private void SwapBits8(ref UIn

 rValue = (Constants.Swap8[(rValue) & 0xf] << 4)

 | (Constants.Swap8[(rValue) >> 4]);

 }

ymbol /* ReadS

 * Read a symbol from the data

 * The symbol 0 represents the escape value and signifies that the

 * next symbol read will be unco

 */

 private void ReadSymbol(UInt32 contex

 {

 Fill in the code word //

 UInt32 position = 0;

 GetBitCount(out position);

 ReadBit(out this.code);

 this.dataBitOffset += (Int32)this.underflow;

-= 32;

 IncrementPosition();

ition);

the cumulative frequency of the current symbol

ge = this.high + 1 - this.low;

CumFreq <= (totalCumFreq * (this.code - this.low)) / range

 // is used to calculate the cumulative frequency of the current

teract

y
nge.

 ((totalCumFreq) * (1 + this.code - this.low) - 1) / (range);

text, codeCumFreq);

etCumulativeSymbolFrequency(context, uValue);

 while (this.dataBitOffset >= 32)

 {

 this.dataBitOffset

 }

 UInt32 temp = 0;

 Read15Bits(out temp);

 this.code <<= 15;

 this.code |= temp;

 SeekToBit(pos

 // Get total count to calculate probabilites

 UInt32 totalCumFreq =

 this.contextManager.GetTotalSymbolFrequency(context);

 // Get

 UInt32 ran

 // The relationship:

 // code

 // symbol. The +1 and -1 in the line below are used to coun

 finite word length problems resulting from the division b //
 ra

 UInt32 codeCumFreq =

 // Get the current symbol

 uValue = this.contextManager

 .GetSymbolFromFrequency(con

 // Update state and context

 UInt32 valueCumFreq =

 this.contextManager

 .G

- 176 -

- 177 -

 UInt32 valueFreq =

ontext, uValue);

 this.high;

- 1 + range * (valueCumFreq + valueFreq) /

eq;

ntext, uValue);

 high

(high >> 12)) & 0x0000000F];

ask[bitCount];

32) ((1 << bitCount) -1);

ar count the rest

 & high;

 while (((maskedLow | maskedHigh) == 0)

|| ((maskedLow == Constants.HalfMask)

 && maskedHigh == Constants.HalfMask))

= ((Constants.NotHalfMask & high) << 1) | 1;

 this.contextManager.GetSymbolFrequency(c

 UInt32 low = this.low;

 UInt32 high =

 high = low
 totalCumFreq;

eq) / totalCumFr low = low + range * (valueCumFr

textManager.AddSymbol(co this.con

 Int32 bitCount;

nt32 maskedLow; UI

 UInt32 maskedHigh;

 // Count bits to read

 // Fast count the first 4 bits

 //compare most significant 4 bits of low and

 bitCount =

 (Int32)ReadCount[((low >> 12) ^

tMask[bitCount]; low &= FastNo

 high &= FastNotM

 high <<= bitCount;

 low <<= bitCount;

 high |= (UInt

 // Regul

 maskedLow = Constants.HalfMask & low;

 maskedHigh = Constants.HalfMask

 {

 low = (Constants.NotHalfMask & low) << 1;

 high

 maskedLow = Constants.HalfMask & low;

gh;

w;

igh = maskedHigh;

f(bitCount > 0)

 bitCount += (Int32)this.underflow;

rflow = 0;

edLow = Constants.QuarterMask & low;

 maskedHigh = Constants.QuarterMask & high;

dHigh == 0))

rMask;

high += high;

1;

low;

 low |= savedBitsLow;

 maskedHigh = Constants.HalfMask & hi

 bitCount++;

 }

 UInt32 savedBitsLow = maskedLo

 UInt32 savedBitsH

 i

 {

 this.unde

 }

 // Count underflow bits

 mask

 UInt32 underflow = 0;

 while ((maskedLow == 0x4000) && (maske

 {

 low &= Constants.NotThreeQuarte

 high &= Constants.NotThreeQuarterMask;

 low += low;

 high |=

 maskedLow = Constants.QuarterMask & low;

 maskedHigh = Constants.QuarterMask & high;

 underflow++;

 }

 // Store the state

 this.underflow += underf

 high |= savedBitsHigh;

 this.low = low;

- 178 -

- 179 -

 this.high = high;

 // Update bit read position

is.dataBitOffset -= 32;

 IncrementPosition();

*

 Get

 in rCount

 private void GetBitCount(out UInt32 rCount)

 + this.dataBitOffset);

 }

Rea

 rVa

/

taBitOffset;

 this.dataBitOffset += bitCount;

 while(this.dataBitOffset >= 32)

 {

 th

 }

 // Set return value

 rSymbol = uValue;

 }

 /

 * BitCount

 * returns the number of bits read

 */

 {

 rCount = (UInt32)((this.dataPosition << 5)

 /* dBit

 * Read the next bit in the datablock. The value is returned in

 * lue.

 *

 private void ReadBit(out UInt32 rValue)

 {

 UInt32 uValue = 0;

 uValue = this.dataLocal >> this.da

 uValue &= 1;

 this.dataBitOffset ++;

 if(this.dataBitOffset >= 32)

 {

 this.dataBitOffset -= 32;

 IncrementPosition();

 }

from the datablock. the value is returned

taLocal >> this.dataBitOffset;

17)

 8) & 0xf]) << 4)

4) & 0xf]) << 8)

)

 Upd tes ocal and

 rValue = uValue;

 }

 /* Read15Bits

 * Read the next 15 bits

 * in rValue.

 */

 private void Read15Bits(out UInt32 rValue)

 {

 UInt32 uValue = this.da

 if(this.dataBitOffset >

 {

 uValue |= (this.dataLocalNext << (32 - this.dataBitOffset));

 }

 uValue += uValue;

 uValue = (Constants.Swap8[(uValue >> 12) & 0xf])

 | ((Constants.Swap8[(uValue >>

 | ((Constants.Swap8[(uValue >>

 | ((Constants.Swap8[uValue & 0xf]) << 12);

 rValue = uValue;

 this.dataBitOffset += 15;

 if(this.dataBitOffset >= 32

 {

 this.dataBitOffset -= 32;

 IncrementPosition();

 }

 }

 /*

 * IncrementPosition

 * a the values of the datablock stored in dataL
 dataLocalNext

 * to the next values in the datablock.

 */

- 180 -

- 181 -

 private void IncrementPosition()

 this.dataPosition++;

 if(this.data.Length > this.dataPosition+1)

is.dataLocalNext = this.data[this.dataPosition+1];

 this.dataLocalNext = 0;

 /* SeekToBit

ext and bitOffSet values so that

 * the next read will occur at position in the datablock.

/

SeekToBit(UInt32 position)

 this.dataBitOffset = (Int32)(position & 0x0000001F);

nd

 private void GetLocal()

taPosition];

.dataPosition + 1)

xt = this.data[this.dataPosition+1];

 }

 {

 this.dataLocal = this.data[dataPosition];

 {

 th

 }

 else

 {

 }

 }

 * Sets the dataLocal, dataLocalN

 *

 private void

 {

 this.dataPosition = position >> 5;

 GetLocal();

 }

 /*

 * GetLocal

 * store the initial 64 bits of the datablock in dataLocal a

 * dataLocalNext

 */

 {

 this.dataLocal = this.data[this.da

 if(this.data.Length > this

 {

 this.dataLocalNe

 }

 #endregion private helper methods

 #region member variables

extManager contextManager; //the context manager handles

ates to the histograms

r the compression contexts.

 //high and low are the upper and

 //lower limits on the

 //probability

 private UInt32 underflow; //stores the number of bits of

 //underflow caused by the

 //limited range of high and low

value as represented in

 //the datablock

 UInt32[] data; //the data section of the

 UInt32 dataPosition; //the position currently read in

 //the datablock specified in 32

 //bit increments.

taLocal; //the local value of the data

 //corresponding to dataposition.

Local

//the offset into dataLocal that

// the next read will occur

0007FFF, 0x00003FFF, 0x00001FFF, 0x00000FFF};

eadCount

, 0, 0, 0, 0, 0};

 private ICont

 //the upd

 //fo

 private UInt32 high;

 private UInt32 low;

 private UInt32 code; //the

 private

 //datablock to read from.

 private

 private UInt32 da

 private UInt32 dataLocalNext; //the 32 bits in data after

 //data

 private Int32 dataBitOffset;

 private static readonly UInt32[] FastNotMask

 = {0x0000FFFF, 0x0

 private static readonly UInt32[] R

 = {4, 3, 2, 2, 1, 1, 1, 1, 0, 0, 0

 #endregion member variables

 }

}

- 182 -

- 183 -

A.3.3 Context Manager
ing System;

stants.StaticFull][];

ulativeCount = new UInt16[Constants.StaticFull][];

context, UInt32 symbol)

 the

lowed in the

 //histogram

veCount = this.cumulativeCount[context];

s.symbolCount[context];

 (cumulativeCount == null || cumulativeCount.Length <=

 if they do not exist yet or if they

//are too small.

 cumulativeCount = new UInt16[symbol + ArraySizeIncr];

 symbolCount = new UInt16[symbol + ArraySizeIncr];

tiveCount != null && symbolCount != null)

ully

if (this.cumulativeCount[context] == null)

w context set up the histogram

 this.cumulativeCount[context] =
Count;

 this.cumulativeCount[context][0] = 1;

us

namespace U3D

{

 public class ContextManager : IContextManager

 {

 public ContextManager()

 {

 this.symbolCount = new UInt16[Con

 this.cum

 }

extManager Members #region ICont

 public void AddSymbol(UInt32

 {

 if (context < Constants.StaticFull && context !=
 Constants.Context8

 && symbol < MaximumSymbolInHistogram)

 { //check if dynamic. nothing to do if static or if

 //symbol is larger than the maximum symbol al

 UInt16[] cumulati

 UInt16[] symbolCount = thi

 if
 symbol)

 { //allocate new arrays

 if(cumula

 {//check that the arrays were allocated successf

 {//if this is a ne

 cumulative

 this.symbolCount[context] = symbolCount;

 this.symbolCount[context][0] = 1;

 {//if this is an old context, copy over the values in

 this.cumulativeCount[context]

 .CopyTo(cumulativeCount, 0);

}

his.cumulativeCount[context] = cumulativeCount;

hant)

oid overflow

 {

 symbolCount[i] >>= 1;

 tempAccum += symbolCount[i];

 cumulative count

0]++;

r(int i = 0; i <= symbol; i++)

++;

 }

 }

 else

 //the histogram to the new arrays

 this.symbolCount[context].CopyTo(symbolCount, 0);

 }

 t

 this.symbolCount[context] = symbolCount;

 }

 if(cumulativeCount[0] >= Elep

{//if total number of occurances is larger than Elephant,

 //scale down the values to av

 int len = cumulativeCount.Length;

 tempAccum = 0; UInt16

 for(int i = len - 1; i >= 0; i--)

 cumulativeCount[i] = tempAccum;

 }

 //preserve the initial escape value of 1 for the symbol

 //count and

 symbolCount[

 cumulativeCount[0]++;

 }

 symbolCount[symbol]++;

 fo

{

 cumulativeCount[i]

 }

- 184 -

- 185 -

 }

 UInt32 rValue = 1;

t

 rValue = (UInt32) his.symbolCount[context][symbol];

tants.Context8)

 if != null)

 {

 if(symbol < this.cumulativeCount[context].Length)

 {

 rValue = (UInt32)(this.cumulativeCount[context][0]

 - this.cumulativeCount[context][symbol]);

 public UInt32 GetSymbolFrequency(UInt32 context, UInt32 symbol)

 {

 //the static case is 1.

 if (context < Constants.StaticFull && context !=
x Constants.Conte 8)

 {

 //the default for the dynamic case is 0

 rValue = 0;

 if ((this.symbolCount[context] != null)

y ol this ymbo && (s mb < .s lCount[context].Length))

 {

 }

 else if (symbol == 0)

 { //if the histogram hasn't been created yet, the
 symbol 0 is

 //the escape value and should return 1

 rValue = 1;

 }

 }

 return rValue;

 }

 public UInt32 GetCumulativeSymbolFrequency(UInt32 context, UInt32 symbol)

 {

 //the static case is just the value of the symbol.

 UInt32 rValue = symbol - 1;

 if (context < Constants.StaticFull && context != Cons

 {

 rValue = 0;

(this.cumulativeCount[context]

 }

 else

 rValue = (UInt32)(this.cumulativeCount[context][0]);

 }

 }

 return rValue;

 }

 public UInt32 GetTotalSymbolFrequency(UInt32 context)

 {

 if (context < Constants.StaticFull && context != Constants.Context8)

 {

 UInt32 rValue = 1;

 if(this.cumulativeCount[context] != null)

 rValue = this.cumulativeCount[context][0];

 return rValue;

 }

 else

 {

 if (context == Constants.Context8)

 return 256;

 else

 return context - Constants.StaticFull;

 }

 }

 public UInt32 GetSymbolFromFrequency(UInt32 context, UInt32
 symbolFrequency)

 {

 UInt32 rValue = 0;

 if (context < Constants.StaticFull && context !=
 Constants.Context8)

 {

 rValue = 0;

 if (this.cumulativeCount[context] != null

 && symbolFrequency != 0

 && this.cumulativeCount[context][0] >= symbolFrequency)

 {

 UInt32 i = 0;

- 186 -

- 187 -

 for(i = 0; i < this.cumulativeCount[context].Length;
 i++)

 {

 if (this.GetCumulativeSymbolFrequency(context, i)

 <= symbolFrequency)

 rValue = i;

 else

 break;

 }

 }

 }

 else

 {

 rValue = symbolFrequency + 1;

 }

 return rValue;

 }

 #endregion

 #region Member variables

 private UInt16[][] symbolCount; //an array of arrays that store the

 //number of occurrences of each

 // symbol for each dynamic context.

 private UInt16[][] cumulativeCount; //an array of arrays that store the

 //cumulative frequency of each

 //symbol in each context. the value

 //is the number of occurences of a

 //symbol and every symbol with a

 //larger value.

 #endregion Member variables

 #region constants

 // The Elephant is a value that determines the number of

 // symbol occurences that are stored in each dynamic histogram.

 // Limiting the number of occurences avoids overflow of the U16 array

 // elements and allows the histogram to adapt to changing symbol

 // distributions in files.

 private const UInt32 Elephant = 0x00001fff;

 //the maximum value that is stored in a histogram

 private const UInt32 MaximumSymbolInHistogram = 0x0000FFFF;

 //the ammount to increase the size of an array when reallocating

 //an array.

 private const UInt32 ArraySizeIncr = 32;

 #endregion constants

 }

}

A.3.4 Data Block
using System;

namespace U3D

{

 public class DataBlock : IDataBlock

 {

 public DataBlock()

 {

 this.dataSize = 0;

 this.data = null;

 this.metaDataSize = 0;

 this.metaData = null;

 this.blockType = 0;

 this.priority = 0;

 }

 public UInt32 DataSize

 {

 get

ize;

 = value;

 {

 return this.dataS

 }

 set

 {

 this.dataSize

 //allocate data buffer for block.

 //the data is generally aligned to byte values

 //but array is 4 bytes values . . .

- 188 -

- 189 -

 if ((this.dataSize & 0x3) == 0)

 new UInt32[value >> 2];

is.data = new UInt32[(value >> 2) + 1];

 public UInt32[] Data

t

turn this.data;

turn this.metaDataSize;

 set

taSize = value;

for block.

s

 ((this.metaDataSize & 0x3) == 0)

a = new UInt32[value >> 2];

alue >> 2) + 1];

 this.data =

 else

 th

 }

 }

 {

 ge

 {

 re

 }

 set

 {

 this.data = value;

 }

 }

 public UInt32 MetaDataSize

 {

 get

 {

 re

 }

 {

 this.metaDa

 //allocate data buffer

 //the data is generally aligned to byte value

 //but array is 4 bytes values . . .

 if

 this.metaDat

 else

 this.metaData = new UInt32[(v

 }

 }

 public UInt32[] MetaData

 {

ata.Length)

opy(value, this.metaData, value.Length);

n this.blockType;

 set

et

y = value;

 }

 get

 {

 return this.metaData;

 }

 set

 {

 if(value.Length == this.metaD

 {

 Array.C

 }

 }

 }

 public UInt32 BlockType

 {

 get

 {

 retur

 }

 {

 this.blockType = value;

 }

 }

 public UInt32 Priority

 {

 get

 {

 return this.priority;

 }

 s

 {

 this.priorit

 }

 private UInt32[] data;

- 190 -

- 191 -

 private UInt32 dataSize;

 private UInt32[] metaData;

 private UInt32 metaDataSize;

 private UInt32 priority;

 private UInt32 blockType;

 }

}

A.3.5 Constants
using System;

n

 /// <summary>Constants is a class that holds constants that are needed by
more than

mespace.</summary>

lass Constants

 constants

d U8

onst UInt32 Context8 = 0;

exts >= StaticFull are static contexts.

UInt32 StaticFull = 0x00000400;

allowable static context. values written to contexts
e

amespace U3D

{

 /// one of the objects in the U3D na

 public c

 {

 #region arithmetic compression

 //context ranges

 /// <summary>

 /// the context for uncompresse

 /// </summary>

 public c

 /// <summary>

 /// cont

 /// </summary>

 public const

 ///<summary>

 ///The largest
 > MaxRange ar

 ///written as uncompressed.

 ///</summary>

 public const UInt32 MaxRange = StaticFull + 0x00003FFF;

 // u y> / <s mmar

UInt32 SizeBuff = 1024;

mmary>

 initial size allocated for buffers

const UInt32 DataSizeInitial = 0x00000010;

or reading and writing symbols.

 but the most significan bit

UInt32 HalfMask = 0x00008000;

 most significant bit

ummary>

 public const UInt32 NotHalfMask = 0x00007FFF;

ks all but the 2nd most significan bit

UInt32 QuarterMask = 0x00004000;

 most significant bits

>

00003FFF;

 /// <summary>

 /// used to swap 8 bits in place

 /// </summary>

 public static readonly UInt32[] Swap8

 = {0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3,
 11, 7, 15};

 #endregion

 }

}

 /// a defualt buffer size for U3D

 /// </summary>

 public const

 /// <su

 /// the

 /// </summary>

 public

 //Bit masks f

 /// <summary>

 /// masks all

 /// </summary>

 public const

 /// <summary>

 /// masks the

 /// </s

 /// <summary>

 /// mas

 /// </summary>

 public const

 /// <summary>

 /// masks the 2

 /// </summary

 public const UInt32 NotThreeQuarterMask = 0x

- 192 -

- 193 -

