

ECMA-363
2nd Edition / August 2005

Universal 3D File
Format

 Standard
ECMA-363
2nd Edition / August 2005

Universal 3D File Format

Ecma International Rue du Rhône 114 CH-1204 Geneva T/F: +41 22 849 6000/01 www.ecma-international.org

.

Brief history

In 2004, Ecma International formed Technical Committee 43 (TC43) to specify Universal 3D (U3D) File Format
specification. The Universal 3D File Format specification is primarily intended for downstream 3D CAD repurposing
and visualization purposes. The 1st Edition of the U3D File Format was adopted by the General Assembly of
December 2004.

In 2005, TC43 added file format extensibility to the 2nd Edition of the U3D File Format specification.

This Ecma Standard has been adopted by postal ballot by the General Assembly in August 2005.

Table of contents

1 Scope 1

2 Conformance 1

3 References 1

4 Definit ions 1

5 Notational Conventions 2

5.1 Diagrams and f ie ld descr ipt ions 2
5.2 Data types 4

5.2.1 U8 4
5.2.2 U16 4
5.2.3 U32 4
5.2.4 U64 4
5.2.5 I16 4
5.2.6 I32 4
5.2.7 F32 4
5.2.8 F64 4
5.2.9 Str ing 4

5.3 Funct ional notat ions 5
5.3.1 rgb(R,G,B) 5
5.3.2 rgba(R,G,B,A) 5
5.3.3 InverseQuant(P,S,QPD,IQF) 5

6 Acronyms and Abbreviations 5

7 General Description 6

8 Architecture 6

8.1 Execut ion archi tecture 6
8.2 Palet tes 6
8.3 Node resources 7

8.3.1 Model resource 7
8.3.2 Light resource 8
8.3.3 View resource 8

8.4 Shading resources 8
8.4.1 Texture resource 8
8.4.2 Mater ia l resource 8
8.4.3 Li t texture shader resource 8

8.5 Motion resource 9
- i -

8.6 Modif ier chains 9
8.7 Scene graph 10
8.8 CLOD mesh generator 12

8.8.1 Author mesh 12
8.8.2 Author mesh resolut ion updates 13
8.8.3 Renderable mesh 14
8.8.4 Renderable mesh resolut ion updates 15
8.8.5 CLOD modi f ier 15

8.9 Render ing and Shading 16
8.9.1 Transform Set 16
8.9.2 Renderable Group 16
8.9.3 Renderable Bound 17

8.10 Seria l izat ion 18
8.10.1 Object ser ia l izat ion 18
8.10.2 Fi le structure 18
8.10.3 Block structure 18
8.10.4 Fi le reference 18
8.10.5 Declarat ion block sect ion 19

8.11 Extensibi l i ty 19

9 File Format 19

9.1 Fi le structure 19
9.1.1 Fi le Header Block 19
9.1.2 Declarat ion Block 20
9.1.3 Cont inuat ion Block 20

9.2 Block structure 20
9.2.1 U32: Block Type 20
9.2.2 U32: Data Size 20
9.2.3 U32: Meta Data Size 21
9.2.4 Data 21
9.2.5 var iable: Data Padding 21
9.2.6 Meta Data 21
9.2.7 var iable: Meta Data Padding 22

9.3 Block def in i t ions 22
9.4 Fi le structure blocks 23

9.4.1 Fi le Header (b locktype: 0x00443355) 23
9.4.2 Fi le Reference (blocktype: 0xFFFFFF12) 24
9.4.3 Modif ier Chain (b locktype: 0xFFFFFF14) 28
9.4.4 Prior i ty Update (b locktype: 0xFFFFFF15) 32
9.4.5 New Object Type (blocktype: 0xFFFFFF16) 32
9.4.6 New Object Block (b locktype: 0x00000100 to 0x00FFFFFF) 34

9.5 Node blocks 35
9.5.1 Group Node (blocktype: 0xFFFFFF21) 35
9.5.2 Model Node (blocktype: 0xFFFFFF22) 36

- ii -

9.5.3 Light Node (blocktype: 0xFFFFFF23) 37
9.5.4 View Node (blocktype: 0xFFFFFF24) 38

9.6 Geometry generator b locks 45
9.6.1 CLOD Mesh Generator (b locktypes: 0xFFFFFF31; 0xFFFFFF3B;

0xFFFFFF3C) 45
9.6.2 Point Set (b locktypes: 0xFFFFFF36; 0xFFFFFF3E) 85
9.6.3 Line Set (b locktypes: 0xFFFFFF37; 0xFFFFFF3F) 97

9.7 Modif ier b locks 104
9.7.1 2D Glyph Modi f ier (b locktype: 0xFFFFFF41) 104
9.7.2 Subdiv is ion Modi f ier (b locktype: 0xFFFFFF42) 109
9.7.3 Animat ion Modi f ier (b locktype: 0xFFFFFF43) 110
9.7.4 Bone Weight Modi f ier (b locktype: 0xFFFFFF44) 112
9.7.5 Shading Modi f ier (b locktype: 0xFFFFFF45) 114
9.7.6 CLOD Modi f ier (b locktype: 0xFFFFFF46) 116

9.8 Resource blocks 117
9.8.1 Light Resource (blocktype: 0xFFFFFF51) 117
9.8.2 View Resource (blocktype: 0xFFFFFF52) 119
9.8.3 Li t Texture Shader (b locktype: 0xFFFFFF53) 122
9.8.4 Mater ia l Resource (blocktype: 0xFFFFFF54) 127
9.8.5 Texture Resource (blocktypes: 0xFFFFFF55; 0xFFFFFF5C) 131
9.8.6 Motion Resource (blocktype: 0xFFFFFF56) 135

10 Bit Encoding Algorithm 142

10.1 Defin i t ions 142
10.2 Acronyms and Abbreviat ions 143
10.3 Overview 143

10.3.1 Prerequis i tes and Inputs 143
10.3.2 Descr ipt ion 143

10.4 Encoding Algor i thm 144
10.4.1 General Requirements 144
10.4.2 Operat ions 144
10.4.3 In i t ia l izat ion 144
10.4.4 Algor i thm for Wri t ing a Compressed Symbol 145
10.4.5 Algor i thm for Wri t ing a Compressed U32 Value 146
10.4.6 Algor i thm for Wri t ing a Compressed U16 Value 146
10.4.7 Algor i thm for Wri t ing a Compressed U8 Value 146
10.4.8 Algor i thm for Wri t ing an Uncompressed U8 Value 146
10.4.9 Algor i thm for Updat ing the Compression Context 147
10.4.10 Algor i thm for Flushing the Compression State 147

Annex A (informative) Bit Encoding Algorithm – An Implementation 148

- iii -

- iv -

1 Scope
This Standard defines the syntax and semantics of the Universal 3D file format, an extensible format
for downstream 3D CAD repurposing and visualization, useful for many mainstream business
applications. Salient features of the U3D file format described in this document include: execution
architecture that facilitates optimal run-time modification of geometry, continuous-level-of-detail,
domain-specific compression, progressive data streaming and playback, key-frame and bones-
based animation, and extensibility of U3D format and run-time.

The U3D file format specification does not address issues regarding rendering of 3D content.

The U3D file format specification does not address issues regarding reliability of the transport layer
or communications channel. It is assumed that reliability issues will be addressed by a different
protocol layer.

The U3D file format specification does not address run-time extensibility of an implementation of the
U3D architecture. Run-time extensibility will be a feature of a future specification.

2 Conformance
A conforming implementation complies with all the mandatory clauses in this Standard.

3 References
ECMA-335: Common Language Infrastructure (CLI), 3rd edition (June 2005) (ISO/IEC 23271)

IEEE Computer Society (1985), IEEE Standard for Binary Floating-Point Arithmetic, IEEE Std 754-
1985.

IETF RFC 3629: UTF-8, a transformation format of ISO 10646. November 2003,
http://www.faqs.org/rfcs/rfc3629.html.

ISO/IEC 9899:1999 Programming languages -- C

ISO/IEC IS 10918-1 | ITU-T Recommendation T.81: JPEG, 1994, http://www.jpeg.org/jpeg.

TIFF™ 6.0 Specification, Adobe Systems Incorporated, June 1992.

W3C Recommendation on 1st October, 1996: Portable Network Graphics (PNG),
ISO/IEC 15948:2003 (E)., http://www.w3.org/Graphics/PNG/.

4 Definitions

Term Definition

Glyph A symbolic figure, image, or shape that conveys information.

Mandatory
clauses

All portions of the specification except those marked “Informative”.

New
Position

A position that is added to the mesh, point set, or line set.

- 1 -

http://www.faqs.org/rfcs/rfc3629.html
http://www.jpeg.org/jpeg
http://www.w3.org/Graphics/PNG/

Term Definition

One Point
projection

Working in a similar manner to a bellows camera, with one point projection the
orientation of the image plane is completely independent of the view direction. An
advantage of one point projection is that of dimensional correctness. That is, if the
image plane is parallel to a plane of the model, then the dimensions of the model in
that plane are to scale. This enables creation of an image that has both depth and
dimensional correctness in the selected plane.

Resolution Level of detail.

Screen Drawing area available for rendering.

Split
Position

A position in a mesh, point set or line set from which the new position will be created.
The new position is described relative to the split position.

Third
Position

A new face added to an author mesh uses three positions: the New Position, the Split
Position, and the Third Position.

Three point
projection

Is the most natural projection, and is used for conventional images. In this projection,
the image plane is normal to the direction of the view, as in a conventional camera.

5 Notational Conventions

5.1 Diagrams and field descriptions
Boxes represent information stored as one of the basic data types described in 5.2 Data types.
Ovals represent a logical collection of more than one of the basic data types. The information is
grouped for clarity and the basic data types that compose the grouping are described explicitly in
a following subsection of the document. Boxes with the right side corners cut off represent
information that is compressed. Arrows convey ordering information.

Each entry in the diagram is further documented below the diagram. The logical groups are noted
by name only. Basic data types are noted by an abbreviated data type symbol (defined in the next
section) and the field name. The compressed data is documented as basic data type; followed by
an open bracket “[”, the compression context, and a close bracket, “]”;followed by the field name.

The compression context identifies symbols with similar frequency statistics. The compression
routine adapts to the frequency of symbols encountered with adaptive contexts. Adaptive context
labels are prefixed with “c”. The compression routine can take advantage of range limitation
information. A range context indicates the symbols only use a limited portion of the range of the
data type. Range contexts are not adaptive. Range context labels are prefixed with “r”.

Clause 10 Bit Encoding Algorithm contains details regarding compression requirements.

Example: The following diagram and field description shows Data A, an unsigned 8-bit integer;
followed by Data B, a grouping of multiple fields; followed by Data C, a compressed unsigned
32-bit integer with an adaptive context “cCcontext”; followed by Data D, a compressed unsigned
8-bit integer with a range context of 0 to 6.

- 2 -

- 3 -

A

B

C

D

The fields are then noted as follows:

1.1.1.1.1 U8: A
1.1.1.1.2 B
1.1.1.1.3 U32 [cCcontext]: C
1.1.1.1.4 U8 [r7]: D

An arrow with a branch in its shaft represents two or more options for information to be stored in
the file.

Example: The following diagram shows C followed by D followed by G, or C followed by E followed
by F followed by G.

C

D E

F

G

If the same data type repeats several times, a loop is used. The number of iterations appears next
to the loop arrow. The number of iterations may depend on information presented earlier in the
file.

Example: The following diagram shows data H followed by X data I.

I

H

X

Numbers:

 By default, all numbers are decimal (base 10). Numbers prefixed with “0x” are hexadecimal
numbers (base 16). For example, the number “0x10” is a hexadecimal number equivalent to the
decimal number “16”.

5.2 Data types
The binary file will contain the following types: U8, U16, U32, U64, I16, I32, F32, F64, and String.
Clause 10 contains encoding requirements for these types.

5.2.1 U8
An unsigned 8-bit integer value.

5.2.2 U16
An unsigned 16-bit integer value.

5.2.3 U32
An unsigned 32-bit integer value.

5.2.4 U64
An unsigned 64-bit integer value.

5.2.5 I16
A signed two’s complement 16-bit integer value.

5.2.6 I32
A signed two’s complement 32-bit integer value.

5.2.7 F32
An IEEE 32-bit floating-point number.

5.2.8 F64
An IEEE 64-bit double precision floating-point number.

5.2.9 String
The String type starts with an unsigned 16-bit integer that defines how many bytes of character
data the string contains. The character encoding is defined per file in the file header block.
Strings are always handled as case sensitive.

The empty string contains zero bytes of character data. The empty string is used to indicate the
name of a default palette entry. A field may use the empty string as a name referring to the
default entry. The empty string shall not be used as the name of an object defined by a block in
the file.

- 4 -

- 5 -

5.3 Functional notations
Some text descriptions use a functional notation for color values or quantized values. Those
functions are described in this section.

5.3.1 rgb(R,G,B)
A color value with red, green, and blue components can be described using rgb(R,G,B). The
values for R, G, and B indicate the intensity of that component. A value of 0.0 indicates black
and a value of +1.0 indicates full intensity. The ordinary range is 0.0 to +1.0 although values
outside this range are allowed. Gray colors are indicated by using the same value for R, G, and
B.

5.3.2 rgba(R,G,B,A)
A color value with red, green, blue, and alpha components can be described using
rgba(R,G,B,A). The values for R, G, and B are the same as in 5.3.1 rgb(R,G,B). The value for A
indicates the opacity of the color value. The ordinary range for the alpha component is 0.0 to
+1.0. The value 0.0 corresponds to fully transparent and the value +1.0 corresponds to fully
opaque. Values outside the ordinary range are allowed.

5.3.3 InverseQuant(P,S,QPD,IQF)
Reconstruction of a quantized value is described using InverseQuant(P,S,QPD,IQF). The
reconstructed value RV is calculated as

RV = P + (1 – 2*S) * QPD * IQF

where P is the predicted value, S is the sign of the prediction difference, QPD is the quantized
prediction difference, and IQF is the inverse quantization factor.

RV, P and IQF are floating point numbers. S and QPD are integers.

The document specifies the inverse quantization function that must be used but does not
specify a quantization function.

For information only: a suitable quantization function could calculate S and QPD from an
original value OV as

S = 1 if P > OV and S = 0 if P <= OV.

QPD = (|OV – P| + 0.5) * (1.0 / IQF).

Other quantization functions could be used.

6 Acronyms and Abbreviations

Acronym Description

CAD Computer Aided or Assisted Design.

CIL Common Intermediate Language.

CLI Common Language Infrastructure.

CLOD Continuous level of detail.

DID Data packet element ID. A DID is a 128-bit value with the same structure as a GUID.

GUID Globally Unique Identifier. A unique 128-bit number that is produced by the OS or by some
applications to identify a particular component, application, file, database entry, and/or
user.

LOD Level of detail.

Ref Reference.

7 General Description
The purpose of the Universal 3D file format is to provide a reliable, easy to use, easy to implement
file format that supports the streaming, progressive transmission, of 3D mesh and level of detail
information in a standard way. The format is for content creation tool developers who enable a
variety of end user applications with 3D data.

This format is intended to further the proliferation and ubiquity of 3D data. The motivation for this file
format is to address the growing need to reuse existing 3D data for applications and usage models
downstream from the engineering or design uses for which the data was originally created.

8 Architecture
This section describes the run-time architecture for the U3D file format. As the file format is a
serialization of the run-time architecture, it is important to understand that architecture to fully
understand the file format. The architecture here defines a foundation on which 3D applications can
be built.

8.1 Execution architecture
The execution architecture is based on the interaction of several key elements: palettes, nodes,
the scene graph, resources, and modifier chains. The palettes control access to nodes and
resources. Nodes have spatial information and hierarchical relationships that build the scene
graph. The nodes reference resources through the palettes. Together a node and a resource
compose a 3D object. The resources contain the majority of the information to create an object
while the light weight nodes are designed to take advantage of information sharing through
references to the resources. Multiple nodes may use the same resource, so the nodes can be
thought of as instances of the resources in the scene. Some types of resources and nodes are
used as modifiers in modifier chains that manage the manipulation of data. The sections below
give more detailed information about these elements and how they interact.

8.2 Palettes

- 6 -

Palette

Resources and nodes are accessed through palettes. The palettes are: model resource palette,
light resource palette, view resource palette, texture resource palette, shader resource palette,

Entry Name Ref
Object

A palette entry: Each palette entry
contains the entry’s Name and a
reference to an object. The entries are
organized in an ordered list.

- 7 -

material resource palette, motion resource palette, and node palette. The palettes are designed to
control access to resources and nodes and to aid in information sharing.

A palette is organized as an ordered list of entries composed of an identifying name and a
reference to an object or a reference to null. Entries can be accessed through the palette by
specifying a name or by iterating through the list of entries contained in a palette.

A new palette entry is created by specifying a name and a reference to an object or a null
reference. The palette entry is added to the list of entries in the palette. Because entries are
identified by name, each name within a palette must be unique. If the name of a new palette entry
is the same as an existing entry, the new entry replaces the existing entry. When an entry is
deleted, it is removed from the list of entries.

To access an entry in a palette, a client object specifies an identifying name to a palette. If an
entry with that name exists, the palette returns the object reference or null reference that is
associated with the entry. Because client objects reference palette entries indirectly, an object
may have the name for a palette entry that does not exist. If a client object specifies a name that
is not in the palette, the client object is warned that the palette entry does not exist. The client
object is responsible for correctly responding when the palette returns a null reference or the entry
requested does not exist.

Objects can also register with the palette as an observer of a palette entry. The object is then
notified by the palette when changes are made to the entry or the referenced object.

Each palette has one default entry associated with it. The default entries are identified by the
empty string (“”) and their properties are detailed below. The default entries may not be modified.
The values of the properties of the default entries were chosen to provide reasonable or neutral
behaviour for objects that use the default.

8.3 Node resources
The following subsections describe the resources that are referenced by nodes through the
palettes. Each resource type has a corresponding node type. The resources contain the majority
of the information needed to create a 3D object used when rendering. Nodes supply additional
information that differentiates the 3D objects in the scene that share the same resource. The
division of information between the resources and light weight nodes facilitates data sharing.

Each node contains hierarchical information about its parents and children and spatial information
that is relative to that node's parents. The node types are: group, model, light, and view. The
group node contains only the spatial and hierarchical information. More information on nodes can
be found in 8.7 Scene graph.

A node is the first modifier in a node modifier chain. More information on modifier chains can be
found in 8.6 Modifier chains.

The default node is a group node with no parents. The default node is located at the world origin
(the identity transform).

There is no default model node, default light node, nor default view node.

8.3.1 Model resource
Model resources contain information used to create renderable geometry. The information
includes geometry or a method to generate geometry and shading information that determines
how the geometry is rendered. Model resources are also the first modifier in a model resource
modifier chain. The output of a model resource modifier chain can then be used by model node
modifier chains.

There is a preference for having the coordinate system oriented such that the Z-axis is in the up
direction.

The default model resource is an empty CLOD mesh generator. This empty CLOD mesh
generator has all count fields in the maximum mesh description set to zero.

8.3.2 Light resource
Light resources contain the information specific to lights. The supported types of lights are
ambient, directional, point, and spot. The light resource defines the attributes associated with
the lights including color and specularity. Point and spot lights also have an attenuation factor.
Spot lights have an associated angle and decay rate. The light nodes provide spatial position
and orientation and hierarchical information.

The default light resource is an ambient light that is enabled, no specularity, and color values
rgb(0.75, 0.75, 0.75).

8.3.3 View resource
View resources have information regarding rendering, fog, and the portion of the scenegraph
that is available.

View nodes provide spatial position and orientation and hierarchical information as well as the
how the view is presented. Specifically, the node defines the clipping, projections (e.g. one, two
or three point perspective or orthogonal), the view port, backdrops and overlays.

View resources are intended to contain information that is likely to be shared by instances of
the view. View nodes are intended to contain information that is likely to be different for each
instance of the view.

A scene graph can have several view nodes that define different viewpoints in the world.
Although there is no default view node, there is a preference for having the coordinate system
oriented such that the Z-axis is in the up direction with the Y-axis oriented in the direction of the
view.

The default view resource has the following properties: pass count one, root node is the default
node, and fog disabled.

8.4 Shading resources
The shading resources are used to determine the visual appearance of geometry when rendered.
A list of shaders is applied to the geometry. Each shader refers to a number of textures and a
material. A more detailed description of shading is given in 8.9 Rendering and Shading.

8.4.1 Texture resource
Texture resources are image data that may be applied to geometry when shading to modify its
appearance. The texture resource contains image data and information about the size, method
of compression, and color components of the image data.

The default texture resource is an 8x8 RGB 24bit image. The upper left and lower right 4x4
areas of the image have color values of rgba(1.0, 1.0, 1.0,1.0). The upper right and lower left
4x4 areas of the image have color values of rgba(1.0, 0.40, 0.20, 1.0).

8.4.2 Material resource
The material resource describes the appearance of a surface at the lowest level. The material
describes which shading attributes are enabled and the colors associated with those attributes.
The available attributes are: ambient color, diffuse color, specular color, emissive color, opacity
and reflectivity.

The default material resource has an ambient color of rgb(0.75, 0.75, 0.75), an opacity of 1.0,
and reflectivity of 0.0. Other colors associated with the default material are rgb(0.0, 0.0, 0.0).

8.4.3 Lit texture shader resource
The lit texture shader resource details which material and textures are used when rendering
geometry and how the textures and material should be combined (i.e. blended). The lit texture
shader resource accesses the material and textures through the palettes. The lit texture shader
identifies the lighting properties used, the number of rendering passes, and the application of
textures to geometry.

- 8 -

- 9 -

The default lit texture shader has lighting enabled, alpha test disabled, and does not use vertex
color. Although not used, the alpha test reference value is 0.0, the alpha test function is
ALWAYS, and the color blend function is FB_ALPHA_BLEND. The render pass enabled flags
has a value of 0x00000001 indicating the default lit texture shader is only used in the first
render pass.

The default lit texture shader uses the default material and no textures. Because no textures
are used, the shader channels and alpha texture channels fields have no bits set.

8.5 Motion resource
The motion resource contains animation data. The data is stored in a number of tracks. Each track
is composed of key frames with rotation, displacement and time information. A motion track can
be used to animate the relative spatial information for a node or a bone in a bone hierarchy.

The default motion resource has zero motion tracks.

8.6 Modifier chains
Modifiers manipulate data associated with resources, nodes, and textures. A modifier receives as
input an array of data elements called a data packet. Each element is identified by a data element
id (DID) that is used to determine the type of data stored in the element. Each modifier defines a
set of data elements as outputs and a set of dependencies for each of the outputs. The outputs
may be dependent on data elements from the input data packet or data elements output by the
modifier.

Examples of data elements are transforms, renderable groups, and simulation time.

The modifier chain object collects and orders the modifiers, ensures that the required inputs for
each modifier are available, and maintains the dependency information associated with each data
element. The modifier chain passes a data packet to a modifier and constructs a new data packet
based on that modifier’s outputs and the previous data packet. The modifier chain will then
present the data packet to the next modifier or as an output of the modifier chain if all of the
modifiers have been evaluated.

data flow

Modifier A Modifier B Modifier C

data packet 1 data packet 2 data packet 3 data packet 4

Modifier chain operation: The modifier chain presents data packet 1 to
modifier A. Modifier A creates outputs based on input data packet 1. The
modifier chain uses those outputs and data packet 1 to create data packet 2
which it passes to modifier B. Modifier B creates outputs based on data
packet 2. The modifier chain uses the outputs from modifier B and data
packet 2 to create data packet 3 which it passes to Modifier C. Modifier C
creates outputs based on data packet 3. The modifier chain uses those
outputs to create data packet 4 which will be the output of the modifier chain.

When creating a new data packet, the modifier chain adds the outputs of a modifier to the data
packet. The modifier chain consumes a data element in the input data packet if that data element
has the same DID as an output data element. Each of the remaining data elements from the input
data packet is copied to the new data packet unless the input element depends, directly or
indirectly, on one of the elements consumed by the modifier chain. Finally, the output data
elements of the modifier are added to the new data packet.

The modifier chain object allows the lazy evaluation of the modifiers. Data elements may be
cached and the modifier chain may then evaluate the dependency information when data
elements are modified outside of the modifiers in the chain to determine which, if any, of the
modifiers must be re-evaluated to update the modifier chain object’s output.

DID Name DID Description

Bone weights Weighting factors that associate vertices with bones

Renderable Group A group of renderable elements

Renderable Group Bounds A bounding structure for a Renderable Group

Simulation Time Time value used for animation and simulation

Skeleton Bone structure used in animation and inverse kinematics

Transform Set Set of transforms to place objects in space

View Frustum The volume of space visible to the view

View Size The dimensions of the view port

View Transform Transform that places the view in space

8.7 Scene graph
The scene graph maintains the hierarchical and spatial relationships between nodes. Each node
may have zero or more children and zero or more parents. Each node contains information about
its parents, and its position relative to each parent. The relationship information in the nodes is
used to build the scene graph.

Group nodes are the most basic node type. They contain positional and relational information that
is used to place them in the scene graph. Group nodes are useful for collecting other related
nodes together. The default node in the node palette is a group node identified by the empty string
(“”). The default node is referred to as the world. The default node’s transform is always the
identity transform.

- 10 -

- 11 -

Palette AA

Nodes have a transform for each parent that specifies its position relative to that parent. The
node’s spatial position is defined by the node’s parent’s transform multiplied by the node’s
transform for that parent. The node will appear once relative to each appearance of each parent.
In this way, one node may appear many times in a scene. A node with no parents will not appear
in the scene. To appear in the scene, a node must be a descendent of the world.

Because a node’s transforms are determined based on its parents’ transforms, all relationships in
the scene graph must be acyclic. A node’s transforms can not be evaluated relative to its own
transforms.

C B

D

A simple scene graph.
The nodes have names of
palette entries and do not
maintain absolute object
references for long
durations. Multiple nodes
may use the same
resource.

Palette B

A
An abstract rendering of a scene graph
with a node that has multiple parents.
Node C has two parents

C

Node C appears twice in the rendered
scene, once in relation to each of its
parents. B

C A

C

B

- 12 -

An illegal scene graph. Cyclical
relationships make evaluation of
the transforms impossible.

8.8 CLOD mesh generator
The continuous level of detail (CLOD) mesh generator is a modifier that creates one or more
CLOD triangle meshes. The CLOD meshes contain information in addition to the geometry that
describes how to add or remove geometry from the mesh. The level of detail, or resolution, of the
mesh is the amount of the total available geometry that is actually used.

The CLOD mesh generator requires as input an author mesh and author mesh resolution updates
and creates a set of renderable meshes, a set of renderable mesh updates for each mesh
created, and a CLOD controller to manage the level of detail of the renderable meshes.

More details can be found in 9.6.1 CLOD Mesh Generator.

8.8.1 Author mesh
The author mesh structure is designed to be easy to modify and compress. The author mesh
has an associated group of shading IDs, lists of attribute values that will be associated with the
vertices of the mesh’s triangles (e.g. texture coordinates, position vectors, colors, normal
vectors), and a list of faces that specify the shading ID associated with each face and the
attributes associated with that face’s vertices. The shading IDs identify which shaders are used
for a face. The shading IDs dictate which attributes must be specified for each triangle corner.
For example, if a shading ID specifies 2 texture layers, 2 sets of texture coordinates are
required for each corner of the triangle.

- 13 -

Face list Texture
Coordinates (shading ID, corner A,

corner B, corner C)
Colors

(R,G,B,A)
Positions

(x,y,z)
Normals
(x,y,z) (u,v)

Shading IDs
Each entry in the face list contains a shading
ID and indices into the lists that contain the
properties necessary for the shading ID
associated with the face.

8.8.2 Author mesh resolution updates
The author mesh resolution updates describe how to change the resolution of an author mesh.
A single update changes the number of vertex positions in the mesh by one. To increase the
resolution, the update contains the new entries for each attribute, the new faces, and updates to
existing faces. To decrease the resolution, the same information is used to remove the new
faces and undo the updates to the previously existing faces. The Author mesh resolution update
always increases the number of vertex positions by one. The Shading ID associated with a face
is constant through resolution updates. The other properties associated with a face may also
change. For example, the face’s corners may be associated with new vertex positions, normals,
colors, or texture coordinates.

- 14 -

8.8.3 Renderable mesh

Renderable meshes regroup the data in an author mesh so that it is optimized for rendering.
The CLOD mesh generator creates a group of renderable meshes and resolution updates for
those meshes from an author mesh and resolution updates for that mesh. While an author mesh
may have more than one shading ID associated with its faces, a single renderable mesh may
have only one shading ID. The CLOD mesh generator will create a renderable mesh and
updates for each shading ID used by the author mesh.

The renderable mesh consists of a list of vertices and a list of faces. Each vertex has a
complete set of per vertex attributes as specified in the author mesh. The faces contain indices
into the vertex list for each vertex.

Update the current face to
use the indices of the new
normal and position. And
add two new faces to the
face list.

An author mesh resolution
update. This is a simplified
example. Only updates to
the positions and normals
are shown.

Add a new position for the
new vertex.

For this example, each
face will use a different
normal for the new
position.

Position List

Normal list

Face List

- 15 -

Faces Vertices

The faces of the mesh index in to the
vertex list. Each entry in the vertex list
contains all of the properties necessary
for the Shading ID associated with the
renderable mesh.

8.8.4 Renderable mesh resolution updates
The renderable mesh resolution updates describe how the renderable mesh is modified to
increase or decrease the level of resolution in a render mesh. The process is similar to the
author mesh resolution updates described above. The update adds a new vertex position.
Because the vertex position is not unique for each entry in the vertex list, multiple new entries
may be created in the vertex list for the update. To increase the resolution, the update specifies
the new vertices to add to the vertex list, the new faces to add to the face list, and the updates
to existing faces. To decrease the resolution, the same information is used to remove the new
faces and undo the changes to the previously existing faces.

Render mesh resolution
update.

Vertex List Add new entries to the
vertex list to add the new
position and normals. A
new entry is needed for
each combination.

Update the existing face to
use one of the new
vertices. Add two new
faces.

Face List

8.8.5 CLOD modif ier
The CLOD mesh generator may convert an author mesh into more than one renderable mesh.
The CLOD modifier manages the renderable mesh resolution updates to maintain a visually
consistent level of detail across renderable meshes generated from a common author mesh.

The CLOD controller translates the desired level of detail of an author mesh into levels of detail
appropriate for each renderable mesh.

8.9 Rendering and Shading
Each of the nodes in the node palette is the first modifier in an instance modifier chain. The final
data packet in the modifier chain is accessible to clients of the run-time system. This section
describes some of the data elements in the final data packet and how those data elements may be
used to draw renderable elements.

These data elements can be found in the final data packet of the node modifier chain. Interfaces
supported by these data elements will be specified in a future edition of this standard.

Details of rendering systems and culling systems are outside the scope of this specification.

8.9.1 Transform Set
The transform set data element is present for all node types.

The transform set is a set of transformations from local coordinate space to global coordinate
space. These transformations include the effects of all parent-child relationships and animation
modifiers. The transform set for a child node will have one transform for each transform in the
transform sets of its parents. A node with no parents will have an empty transform set.

A node will appear once in the world for each transform in the transform set. If the transform set
is empty, the node is disconnected from the world and does not appear in the rendered view.

8.9.2 Renderable Group
The renderable group data element is present for model nodes. The renderable group may also
be present for new node types added to the system through the extensibility mechanism.

The renderable group holds a renderable element group and an associated shading group.
There are three types of renderable element groups: renderable mesh group, renderable line
group, and renderable point group.

A data packet may contain more than one renderable group. Different types of renderable
elements are not mixed in the same renderable group.

8.9.2.1 Shader
A shader contains information needed to determine the appearance of a surface during
rendering. This edition specifies one shader called the Lit Texture Shader. Future editions
may specify additional types of shaders.

The Lit Texture Shader includes references to Material Resources and Texture Resources.
The Lit Texture Shader also indicates how to combine those resources when rendering.

- 16 -

- 17 -

Shader Palette Material Palette

8.9.2.2 Shading Group
The shading group holds a set of shader lists. There is one shader list for each renderable
element in the renderable element group. The shader list is a list of shaders that should be
used to draw the renderable element. The shader list contains names of shaders in the
shader resource palette. The shader list is ordered and the shaders are used in order.

8.9.2.3 Renderable Mesh Group
The renderable mesh group contains a set of renderable meshes. Each renderable mesh is
associated with a different shader list in the shader group. The renderable mesh consists of a
vertex array and a face array. Each vertex in the vertex array contains all of the per vertex
attributes (such as position, normal, texture coordinates, etc.) for that vertex. Each face in the
face array contains three indices into the vertex array; one index for each corner of the face.
All faces in the renderable mesh are triangles. Each face in the face array is drawn according
to the parameters of the shaders in the shader list.

8.9.2.4 Renderable Line Group
The renderable line group contains a set of renderable line sets. Each renderable line set is
associated with a different shader list in the shader group. The renderable line set consists of
a vertex array and a line array. Each vertex in the vertex array contains all of the per vertex
attributes (such as position, normal, texture coordinates, etc.) for that vertex. Each line in the
line array contains two indices into the vertex array; one index for each end of the line
segment. Each line in the line array is drawn according to the parameters of the shaders in
the shader list.

8.9.2.5 Renderable Point Group
The renderable point group contains a set of renderable point sets. Each renderable point set
is associated with a different shader list in the shader group. The renderable point set
consists of a vertex array. Each vertex in the vertex array contains all of the per vertex
attributes (such as position, normal, texture coordinates, etc.) for that vertex. Each vertex in
the vertex array is drawn according to the parameters of the shaders in the shader list.

8.9.3 Renderable Bound
The renderable bound data element is present for model nodes. The renderable bound may
also be present for new node types added to the system through the extensibility mechanism.

The renderable bound may be either a bounding sphere or a bounding box. The choice of which
type of renderable bound to support is up to the implementation of the various nodes and
modifiers.

Lit Texture
Shader

Texture Palette

Material

Texture

Texture

The final data packet shall contain either one renderable bounding sphere or one renderable
bounding box or both.

The renderable bound encompasses all renderable elements of the renderable geometry group.
The bounding sphere or box does not need to be a tightest bounding sphere or box.

If the data packet contains more than one renderable group, the renderable bound shall
encompass all the renderable groups.

The renderable bound can be used by a culling system to determine which nodes may have
visual impact on a particular frame rendering.

The renderable bound is described in local coordinate space. The transforms in the transform
set must be applied to the renderable bound for use by the culling system.

To make full use of the modifier chain’s lazy evaluation feature, modifiers should avoid making
the renderable bound depend on the renderable group.

8.10 Serialization
This section describes how the objects stored in the various palettes are serialized. Clause 9
provides details on the formatting of particular objects. Clause 10 contains additional details on
compression requirements.

8.10.1 Object serial ization
Each object is serialized as a sequence of one or more blocks. The first block is called the
declaration block. Any subsequent blocks are called continuation blocks. The declaration block
contains enough information to create the object and place it in the correct palette location. For
modifiers, the declaration block also indicates placement within the modifier chain. Most types
of objects have only the declaration block. Objects which require a large amount of information
use continuation blocks to carry most of the data.

Each block is assigned a priority number. The priority number is used for sequencing the blocks
and for interleaving the blocks from multiple objects. Declaration blocks have a priority number
of zero. The priority number increases for each continuation block; the amount of increase must
be greater than zero. The maximum priority number is 0x7FFFFFFF.

8.10.2 Fi le structure
A file is structured as a sequence of blocks. Blocks with lower priority numbers precede blocks
with higher priority numbers. The first block is the File Header Block. The File Header Block is
the only required block for a U3D file. The File Header Block is followed by declaration blocks.
Continuation blocks may follow the declaration blocks. 9.1 contains more details on sequencing
of blocks.

8.10.3 Block structure
Each block contains size fields so that the loader can determine the end of a block if the data in
that block is not required or if a decoder for that block type is unavailable.

Each block has a data section and a meta data section. The format of the data section will vary
based on the type of the object. The interpretation of the data section is specified in Clause 9 of
this specification. The format of the meta data section is always a sequence of Key/Value pairs.
Although the format of the meta data is defined in 9.2.6, the interpretation of the content of the
Key/Value pairs is outside the scope of this specification.

Each block contains a block type field to identify the formatting of the data section.

8.10.4 Fi le reference
A U3D file can reference other U3D files using a File Reference block. When the referencing file
is loaded, the referenced files are also loaded. Using this mechanism, a large file can be
partitioned into several smaller files. 9.4.2 File Reference contains details.

- 18 -

- 19 -

8.10.5 Declaration block section
The declaration block section contains the information necessary to create all of the objects in
the file. When a loader has completed processing the declaration section, all of the object in the
file have been created and added to the appropriate palettes.

Before processing the declaration section can be considered complete, the processing of
declaration sections of any referenced files must also be complete.

Details on when rendering may begin are outside the scope of the spec and are left to an
implementation.

8.11 Extensibility
The U3D run-time architecture may be extended by new objects not defined in this document.
These new objects shall be in the class of modifier objects within a modifier chain. File format
requirements for the new objects are in 9.4.6 New Object Type and 9.4.7 New Object Block.

The New Object Type block describes the extension and where to get more information about the
extension. The New Object Block blocks provide the minimal syntax required for the blocks that
serialize the extension objects.

Because the new objects must be within a modifier chain, these extensions are limited to the node
palette, model resource palette, and texture resource palette. These extensions can modify
existing data elements and can also introduce new data elements.

The meta-data feature can also be used to associate additional information with any object.

9 File Format

9.1 File structure
A file is structured as a sequence of blocks. The first block is the File Header Block. The File
Header Block is followed by declaration blocks. Continuation blocks may follow the declaration
blocks. Each block contains size fields so that the loader can determine the end of a block if the
data in that block is not required or if a decoder for that block type is unavailable.

File Header Block

9.1.1 Fi le Header Block

The File Header Block contains information about the file. The loader uses the File Header
Block to determine how to read the file.

Continuation Block

Declaration Block

9.1.2 Declaration Block
Declaration Blocks contain information about the objects in the file. All objects must be defined
in a Declaration Block. The File Header Block is considered to be a Declaration Block.

9.1.3 Continuation Block
The Continuation Blocks can provide additional information for objects declared in a Declaration
Block. Each Continuation Block must be associated with a Declaration Block.

9.2 Block structure
All block types have the same basic structure. The Block Type, Data Size, and Meta Data Size
determine how the remainder of the block is interpreted by the loader. Data Padding and Meta
Data Padding fields are used to keep 32-bit alignment relative to the start of the File Header
Block. The start of the Block Type field, Data section and Meta Data section are all 32-bit aligned.

Block Type

Data Size

Meta Data Size

Data

Data Padding

Meta Data

Meta Data Padding

9.2.1 U32: Block Type

Block Type identifies the type of object associated with this block. The interpretation of the data
section of this block depends on the Block Type. This specification defines valid block type
values for the base profile. The New Object Type block may be used to define additional valid
block type values for the extensible profile. Block type values other than those defined for the
base profile or defined through a New Object Type block shall not be used.

9.2.2 U32: Data Size
Data Size is the size of the Data section in bytes. Data Size does not include the size of the
Data Padding.

- 20 -

- 21 -

9.2.3 U32: Meta Data Size
Meta Data Size is the size of the Meta Data section in bytes. Meta Data Size does not include
the size of the Meta Data Padding.

9.2.4 Data
Data Size bytes of data. The interpretation of the Data section depends on the Block Type.

9.2.5 variable: Data Padding
Data Padding is a variable size field. Zero to three bytes are inserted to maintain 32-bit
alignment for the start of the Meta Data section. The value of the padding bytes is 0x00.

9.2.6 Meta Data
Meta Data is Meta Data Size bytes of data. The Meta Data section contains a sequence of
Key/Value pairs. The interpretation of the content of the Key/Value pairs is outside the scope of
this specification.

Key/Value Pair Count

Key/Value Pair Attributes

9.2.6.1 U32: Key/Value Pair Count

Key/Value Pair Count is the number of Key/Value pairs in this Meta Data section.

9.2.6.2 U32: Key/Value Pair Attr ibutes:
The Key/Value Pair Attributes indicate formatting options for the Key/Value pair. The
following attribute values can be OR'd together:
0x00000000 - indicates the Value is formatted as a String
0x00000001 - indicates the Value is formatted as a binary sequence.
0x00000002 - indicates the Value is HIDDEN and should not be displayed by the viewer.
0x00000010 - indicates that this meta data should be used when double-clicked.
0x00000020 - indicates the Value should be displayed by the viewer in a right-click menu.
0x00000040 - indicates the Key should be displayed by the viewer in a right-click menu.
0x00000100 - indicates the Value is an ACTION and should executed by the viewer.
0x00000200 - indicates the Value is a FILE and should opened by the viewer.

Key/Value Pair Count

Value String

Key String

Binary Value Size

Binary Value

0x00000400 - indicates the Value is MIME DATA and should opened by the viewer.

 value is formatted as a string or as binary. Note that

ct to possible translation depending on the client platform. Binary

ed by including an Attribute String in

te=myValue. The

e first character after the "="

 - defines two attributes bold and italic

alic

 mm

ing attribute containing

9.2.6.3 Key String
e key used to look up a value.

9.2.6.4
value associated with a key.

9.2.6.5
sociated with a key.

9.2.6.6
ary Value Size bytes of data that is associated with a key.

9.2.7 va
ze field. Zero to three bytes are inserted to maintain 32-bit

9.3 B
claration blocks unless stated otherwise. Blocks may contain names

All other attribute values are reserved.
The attributes must indicate whether the
this indication is determined from a single bit that may be set to zero or one. All other
attributes are optional.

String values are subje
values are not subject to any form of string translation.
Additional attributes of the key/value pair may be defin
the Key String. Multiple Attribute Strings can appear in a given Key String.

An Attribute String shall have the form #myAttribute or #myAttribu
myAttribute string may not contain any whitespace, "=" or "#" characters. The attribute starts
with the first character after the initial "#" character, and ends with the last character before a
whitespace, "#", or "=" character, or the end of the Key String.

When an attribute value is specified, the value starts with th
character, and ends with the last character before a whitespace or "#" character, or the end
of the Key String. If a value contains whitespace or "#" characters, it should be enclosed in
quotes ("). When a value string contains a quote, replace the quote with two consecutive
quotes. The quotes that delimit the value are not considered part of the value definition.

Examples:

#bold#italic

#bold #italic - also defines two attributes bold and it

#height=7mm - defines a height attribute with a value of 7

#height="7 mm" - defines a height attribute with a value of 7 mm

#index="#7" - defines an index attribute with a value of #7

#warning="Never yell" "Fire!" "in a crowded theater" - defines a warn
the quoted string "Fire!". The actual value of the attribute is Never yell "Fire!" in a crowded
theater.

String:
A String representing th

String: Value String
A String representing the

U32: Binary Value Size
The size of the data that is as

Binary Value
Binary Value is Bin

r iable: Meta Data Padding
Meta Data Padding is a variable si
alignment for the start of the next block. The value of any padding bytes is 0x00.

lock definitions
All blocks are considered de
that reference objects that have not been defined. When loading a file, these names will be
accepted and it should be assumed that the needed objects will be loaded or created at some
future time. Object implementations shall use fallback values for references to undefined objects.
Definition of fallback values is implementation dependent.

- 22 -

- 23 -

9.4
9.4.1

required block in a file. It contains information about the rest of the
eclaration block. The Priority Update Block is the

file. The current version number is
ance has been validated for an encoder, all files created by that encoder
 number less than zero.

9.4.1.2
eatures used by this file. Valid values are

 no option features used

 OR operator.

icates this file may contain New Object Type blocks and other
ot support the extensible profile is not

uncompressed value is used in a file with the no compression mode bit set.

File structure blocks
File Header (blocktype: 0x00443355)
The File Header is the only
file. The File Header block is considered a d
continuation block type associated with the File Header.

Version

9.4.1.1 I32: Version

Version is the version of the file format used to write this

File Size

Declaration Size

Character Encoding

Profile Identifier

Units Scaling Factor

zero. Until compli
shall use a version

U32: Profi le Identif ier
Profile Identifier is used to identify optional f

0x00000000 – Base profile;

0x00000002 – Extensible profile; uses extensibility features

0x00000004 – No compression mode

0x00000008 – Defined units

Profile bits may be combined using the

The Extensible profile bit ind
blocks defined for extensibility. A loader that does n
required to process those blocks or any blocks in a file with the extensibility profile bit set. It
is recommended that such a loader make a best effort to load those portions of the file that it
can load.

The no compression mode bit indicates this file does not contain any compressed values.
Where the file format syntax defined in Clause 9 calls for a compressed value, the
corresponding
For example, a compressed U16 will be replaced with a U16. All readers shall support both

the default compressed mode and the no compression mode of operation. The setting of the
no compression mode bit applies to the entire U3D file but does not apply to other files
referenced by the U3D file.

The defined units bit indicates the objects in this file are defined with units. If this bit is not
set, then the objects are unitless.

9.4.1.3
the Declaration Block section of the file.

the size of the File Header block and all declaration blocks

9.4.1.4
File Size includes the size of all blocks including

lock and any padding bytes in those blocks. File Size does not include the

9.4.1.5

website at http://www.iana.org/assignments/character-sets

9.4.1.6
in this file. Multiplying Units Scaling Factor by the

in the file converts the units for those values to metres. The

Multiplying by 0.001 would convert 5 mm to 0.005 m.

9.4.2 Fi

U32: Declaration Size
Declaration Size is the number of bytes in
Declaration Size includes
including any padding bytes in those blocks.

U64: Fi le Size
File Size is the number of bytes in this file.
the File Header b
size of any external files referenced by the contents of any block.

U32: Character Encoding
rings in this file. The Internet Assigned Character Encoding is the encoding used for st

Numbers Authority (IANA)
contains the assignment of MIB enum values to various character set encodings. Character
Encoding can be used for translation of strings for a client application.

For the current version of U3D, the Character Encoding shall be UTF-8. UTF-8 corresponds
to a MIB enum value of 106.

F64: Units Scaling Factor
Units Scaling Factor defines the units used
values of positions and lengths
Units Scaling Factor can be used by an application to scale objects appropriately when
combining files that use different units.

For example, if the units in the file are millimetres, the Units Scaling Factor would be 0.001.
A value of 5 in the file would be 5 mm.

Units Scaling Factor shall be present only if the defined units bit in the Profile Identifier is set.

le Reference (blocktype: 0xFFFFFF12)
nding a single file that is associated with this A File Reference block contains information for fi

file and is loaded with it. Multiple locations for the file may be specified. The File Reference
block may also contain filters that load a portion of the file based on name or object type.

An implementation could keep track of which external file reference was used to load which
objects but is not required to do so.

- 24 -

- 25 -

Scope Name

9.4.2.1 String: Scope Name

Scope Name is used to identify the external file reference. Depending on the collision policy,
the scope name may be used to modify the names of objects in the referenced file.

9.4.2.2 U32: Fi le Reference Attr ibutes
File Reference Attributes is a bitfield indicating the presence of optional information about the
external file. The bounding information is optional. All other values are reserved.

URL Count

File Reference URL

Filter Count

Filter Type

URL Count

Object Name Filter Object Type Filter

Name Collision Policy

Filter Count

World Alias Name

File Reference Attributes

File Reference Bounding
Sphere

File Reference Axis-Aligned
Bounding Box

0x00000001 – Bounding sphere information present

0x00000002 – Axis-aligned bounding box present

9.4.2.3 Fi le Reference Bounding Sphere
The bounding sphere should contain all of the geometry expected to be produced by the
modifier chains in the external file. This bounding sphere is an initial estimate of the extent of
the geometry and may be updated by the run-time after loading. The bounding sphere
information in this block may be used to determine whether to load the external file.

Bounding Sphere Center X

Bounding Sphere Center Z

Bounding Sphere Radius

Bounding Sphere Center Y

9.4.2.3.1 F32: Bounding Sphere Center X

Bounding Sphere Center X is the X coordinate of the center of the bounding sphere.

9.4.2.3.2 F32: Bounding Sphere Center Y
Bounding Sphere Center Y is the Y coordinate of the center of the bounding sphere.

9.4.2.3.3 F32: Bounding Sphere Center Z
Bounding Sphere Center Z is the Z coordinate of the center of the bounding sphere.

9.4.2.3.4 F32: Bounding Sphere Radius
Bounding Sphere Radius is the radius of the bounding sphere.

9.4.2.4 Fi le Reference Axis-Aligned Bounding Box
The axis-aligned bounding box should contain all of the geometry expected to be produced
by the modifier chains in the external file. This axis-aligned bounding box is an initial estimate
of the extent of the geometry and may be updated by the run-time after loading. The axis-
aligned bounding box information in this block may be used to determine whether to load the
external file.

- 26 -

- 27 -

Axis-Aligned Bounding Box Min X

Axis-Aligned Bounding Box Min Y

Axis-Aligned Bounding Box Max X

Axis-Aligned Bounding Box Max Y

Axis-Aligned Bounding Box Max Z

Axis-Aligned Bounding Box Min Z

9.4.2.4.1 F32: Axis-Aligned Bounding Box Min X

X coordinate of the bounding box minimum corner

9.4.2.4.2 F32: Axis-Aligned Bounding Box Min Y
Y coordinate of the bounding box minimum corner

9.4.2.4.3 F32: Axis-Aligned Bounding Box Min Z
Z coordinate of the bounding box minimum corner

9.4.2.4.4 F32: Axis-Aligned Bounding Box Max X
X coordinate of the bounding box maximum corner

9.4.2.4.5 F32: Axis-Aligned Bounding Box Max Y
Y coordinate of the bounding box maximum corner

9.4.2.4.6 F32: Axis-Aligned Bounding Box Max Z
Z coordinate of the bounding box maximum corner

9.4.2.5 U32: URL Count
URL Count is the number of URL strings that follow.

9.4.2.6 String: Fi le Reference URL
File Reference URL is a String identifying the external file location. Multiple locations can be
specified for the external file. The loader shall load the file from one of the locations. HTTP
and FTP protocols will be recognized with absolute and relative addressing.

9.4.2.7 U32: Fi l ter Count
Filter Count is the number of filters to apply when loading the referenced file. If the filter
count is zero, then all objects from the referenced file are loaded. If the filter count is greater
than zero, then objects from the referenced file shall only be loaded if they match the
specification of at least one of the filters. A modifier object shall be loaded if and only if the
object it modifies is loaded.

9.4.2.8 U8: Fi l ter Type
Filter Type is the type of the filter.

0x00 – Object Name Filter

0x01 – Object Type Filter

9.4.2.9 String: Object Name Fil ter
Object Name Filter is a string used to filter objects by name. An object shall be loaded if its
name matches Object Name Filter.

The Object Name Filter may contain the wildcard characters question mark ‘?’ and asterisk
‘*’. The question mark wildcard matches any one character at that position. The asterisk
wildcard matches any zero or more characters at that position. The numerical value and size
of the wildcard characters is dependent on the Character Encoding defined in the File Header
block.

9.4.2.10 U32: Object Type Fi l ter
Object Type Filter is used to filter objects by type. An object shall be loaded if the block type
of its declaration block matches Object Type Filter.

9.4.2.11 U8: Name Coll ision Policy
A name collision occurs when the file being loaded contains an object with the same name as
an object that already exists either loaded previously or created programmatically. Name
Collision Policy indicates how name collisions are to be handled. Valid values are:

0x00 – Replace existing object with the new object from external file.

0x01 – Discard the new object from external file.

0x02 – Prepend scope name to object name for all objects from the external file

0x03 – Prepend scope name to new object name if there is a collision.

0x04 – Append instance number to new object name if there is a collision.

Prepending the scope name avoids collisions but does not prevent them in all cases. The
new name with prepended scope name may still collide with an existing object. In this
situation, the new object from the external file will replace that existing object.

When appending instance numbers, instance numbers shall be chosen to avoid collision with
previously loaded objects.

9.4.2.12 String: World Alias Name
The world is the default node. The name of the default node is the empty string. Any
references to the default node in the external file are replaced with a reference to the node
named by World Alias Name.

9.4.3 Modif ier Chain (blocktype: 0xFFFFFF14)
Modifier Chain blocks are used to contain the declaration blocks for an object and its modifiers.

If an object does not have any modifiers, then the declaration block for that object may be
contained in a modifier chain block but is not required to be contained in a modifier chain block.

If an object does have modifiers, then the declaration blocks for the object and its modifiers
shall be contained in a modifier chain block.

- 28 -

- 29 -

Modifier Chain Name

Modifier Chain Type

9.4.3.1 String: Modif ier Chain Name

Modifier Chain Name is the name of the modifier chain and also the name of all modifiers in
the chain.

9.4.3.2 U32: Modif ier Chain Type
Modifier Chain Type indicates the type of modifier chain.

0 – Node modifier chain (also called instance modifier chain).

1 – Model Resource modifier chain (also called resource modifier chain).

2 – Texture Resource modifier chain (also called texture modifier chain).

9.4.3.3 U32: Modif ier Chain Attr ibutes
Modifier Chain Attributes is a bitfield indicating the presence of optional information about the
modifer chain. The bounding information is optional. All other values are reserved.

0x00000001 – Bounding sphere information present

0x00000002 – Axis-aligned bounding box present

Modifier Count

Modifier Declaration
Block

Modifier Chain Padding

Modifier Chain Attributes

Modifier Chain Bounding Sphere

Modifier Chain Axis-Aligned
Bounding Box

Modifier Count

9.4.3.4 Modif ier Chain Bounding Sphere
The bounding sphere should contain all of the geometry expected to be produced by the
modifier chain. This bounding sphere is an initial estimate of the extent of the geometry and
may be updated by the run-time after loading. The bounding sphere information in this block
may be used to exclude the modifier chain from loading.

Bounding Sphere Center X

Bounding Sphere Center Z

Bounding Sphere Radius

Bounding Sphere Center Y

9.4.3.4.1 F32: Bounding Sphere Center X

X coordinate of the center of the bounding sphere

9.4.3.4.2 F32: Bounding Sphere Center Y
Y coordinate of the center of the bounding sphere

9.4.3.4.3 F32: Bounding Sphere Center Z
Z coordinate of the center of the bounding sphere

9.4.3.4.4 F32: Bounding Sphere Radius
Radius of the bounding sphere

9.4.3.5 Modif ier Chain Axis-Aligned Bounding Box
The axis-aligned bounding box should contain all of the geometry expected to be produced
by the modifier chain. This axis-aligned bounding box is an initial estimate of the extent of the
geometry and may be updated by the run-time after loading. The axis-aligned bounding box
information in this block may be used to exclude the modifier chain from loading.

- 30 -

- 31 -

Axis-Aligned Bounding Box Min X

Axis-Aligned Bounding Box Min Y

Axis-Aligned Bounding Box Max X

Axis-Aligned Bounding Box Max Y

Axis-Aligned Bounding Box Max Z

Axis-Aligned Bounding Box Min Z

9.4.3.5.1 F32: Axis-Aligned Bounding Box Min X

X coordinate of the bounding box minimum corner

9.4.3.5.2 F32: Axis-Aligned Bounding Box Min Y
Y coordinate of the bounding box minimum corner

9.4.3.5.3 F32: Axis-Aligned Bounding Box Min Z
Z coordinate of the bounding box minimum corner

9.4.3.5.4 F32: Axis-Aligned Bounding Box Max X
X coordinate of the bounding box maximum corner

9.4.3.5.5 F32: Axis-Aligned Bounding Box Max Y
Y coordinate of the bounding box maximum corner

9.4.3.5.6 F32: Axis-Aligned Bounding Box Max Z
Z coordinate of the bounding box maximum corner

9.4.3.6 variable: Modif ier Chain Padding
Modifier Chain Padding is a variable size field. Zero to three bytes shall be inserted to
maintain 32-bit alignment for the start of the Modifier Count field. This padding also provides
32-bit alignment for the start of the Modifier Declaration Blocks. The value of any padding
bytes is 0x00.

9.4.3.7 U32: Modif ier Count
Modifier Count is the number of modifiers in the modifier chain.

9.4.3.8 Modif ier Declaration Block
Modifier Declaration Block is a declaration block for a modifier in the modifier chain. All
declaration blocks for modifiers must be contained in a Modifier Chain Block. The modifier
name in the Modifier Declaration Block shall match the Modifier Chain Name. Details of the
Modifier Declaration Block can be found in the sections for those blocks.

9.4.4 Priority Update (blocktype: 0xFFFFFF15)
Priority Update blocks indicate the priority number of following continuation blocks. Priority
Update blocks are in the continuation section of the file. The Priority Update block is considered
a continuation of the File Header block. Priority Update blocks are not required.

New Priority

9.4.4.1 U32: New Priority

Blocks which follow this block have a priority number of New Priority. A lower priority number
means the block appears earlier in the file. The value of New Priority in this block shall not be
less than the value of New Priority in priority update blocks earlier in the file. New Priority
shall be greater than zero.

9.4.5 New Object Type (blocktype: 0xFFFFFF16)
The New Object Type block provides the mechanism for extending the file format.

Files that contain New Object Type blocks must indicate use of the Extensible profile in the
Profile Identifier in the File Header.

Like other objects, these new objects are serialized as a sequence of one or more blocks. The
declaration block may be followed by a sequence of continuation blocks. These new objects
shall be in the class of modifier objects within a modifier chain.

The New Object Type identifies the file format extension with a descriptive name and a unique
Extension ID. The Extension ID is a GUID chosen to avoid possibility of collision with other file
format extensions. The New Object Type also declares the values of blocktypes used by the
extension within this file. For different files using a particular extension, different blocktypes
may be used but the Extension ID shall remain the same.

New Declaration Block Type and any New Continuation Block Type shall have values in the
range from 0x00000100 to 0x00FFFFFF. These values shall not be the same as those used in
other New Object Type blocks in the same file. It may be necessary to renumber block type
values to meet this requirement (for example when merging two files). When renumbering
block type values, the order of continuation block types in the New Object Type block shall be
preserved.

Although unique extension names would be more useful, the New Object Type Name is not
required to be unique. New Obect Type blocks should not be discarded solely due to name
collision.

- 32 -

- 33 -

New Object Type Name

9.4.5.1 String: New Object Type Name

New Object Type Name is the name of the new type of object.

9.4.5.2 U32: Modif ier Type
Modifier Type indicates the type of modifier chain used for the new object.

0 – Node modifier chain (also called instance modifier chain).

1 – Model Resource modifier chain (also called resource modifier chain).

2 – Texture Resource modifier chain (also called texture modifier chain).

9.4.5.3 Extension ID
Extension ID is a GUID used to identify the file format extension for this type of new object.

9.4.5.4 U32: New Declaration Block Type
New Declaration Block Type is the Block Type for the declaration block for the new object
type.

Extension URL Count

New Declaration Block Type

Continuation Block Type
Count

New Continuation Block Type
Continuation Block Type Count

Modifier Type

Extension ID

Extension Vendor Name

Extension URL Count

Extension Information URL

Extension Information String

9.4.5.5 U32: Continuation Block Type Count

ation block for this new object type.

9.4.5.9 sion Information URL
tring containing a URI. The information at that URI should

uired for decoding

9.4.5.10

mation about the extension and a reference to the specification that
s.

9.4.6 N
Th
co Object Type block with a declaration of the

9.4.6.1
the

greater than zero. The first modifier (with a chain
 a node object defined in 9.5 Node blocks.

9.4.6.3

in the corresponding New
Object Type block may be consulted for more information on how to interpret Object Data.

Continuation Block Type Count is the number of continuation block types for this new object
type.

9.4.5.6 U32: New Continuation Block Type
New Continuation Block Type is a Block Type of a continuation block that continues the
declar

9.4.5.7 String: Extension Vendor Name
Extension Vendor Name is a string containing the name of the provider of the technology in
the extension.

9.4.5.8 U32: Extension URL Count
Extension URL Count is the number of Extension Information URL strings.

String: Exten
Extension Information URL is a s
contain information about the extension and how to obtain the decoder req
the new blocktypes.

String: Extension Information String
Extension Information String describes the purpose of this type of new objects. The string
should provide infor
describes the contents of the new object block

ew Object Block (blocktype: 0x00000100 to 0x00FFFFFF)
is section defines the syntax required for new object blocks. Both declaration blocks and
ntinuation blocks shall follow this syntax. A New

blocktypes used shall precede the New Object Block.

Object Name

Chain Index

String: Object Name
Object Name is the name of this extension modifier. Object Name is also the name of
modifier chain that contains this modifier.

Object Data

9.4.6.2 U32: Chain Index
Chain Index indicates the position of this modifier in the modifier chain. The Chain Index for
new objects in the node palette shall be
index of zero) shall be

Object Data
The interpretation of the Object Data is outside the scope of this standard. The Extension
Information URL and Extension Information String contained

- 34 -

- 35 -

The modifier chain can be used to avoid including within Object Data information already

9.5 Nod
Nod
num
posi rent. Nodes (except for the group node,

have an associated resource that is specified by name. To allow data
s may use the same resource. Nodes may also contain additional fields that

9.5.1

rm Set.

ther nodes rendered relative to
named “car.” This allows any of the children

9.5.1.1
e is the name of the group node.

9.5.1.2 Parent Node Data
Recursive parent child relationships (e.g. Node_1 is a child of Node_2 is a child of Node_1)

valuating transforms (because Node_2’s transform depends
pends on Node_2’s transform). Recursion

archy is illegal and will generate an error. These relationships must be

defined for other basic block types. The modifier chain could contain both a basic block and
a new object block. For viewers unable to interpret the Object Data in the new object block,
the information in the basic block can still be used.

e blocks
es are the entities that populate the scene graph. Each node type contains a name, the
ber of parents it has, the name of each parent, and a transform for each parent specifying the
tion and orientation of the node relative to that pa

covered below) also
sharing, multiple node
are used during rendering for each instance of a resource.

Group Node (blocktype: 0xFFFFFF21)
The Group Node contains: a name, the number of parents, the parents’ names, and a transform
relative to each parent. Group nodes are used to collect other nodes to build up larger objects.

The Group Node produces the following outputs: Transfo

The Group Node’s outputs have no dependencies.

Example: A car may be composed of many model nodes to make up the body, several light
nodes for lights on the car, and a few view nodes to simulate the car’s mirrors. Instead of
choosing one of the nodes to be the parent node and having all o
that node, they can all be children of a group node
nodes to be modified or deleted without affecting the other nodes.

Group Node Name

Parent Node Data

String: Group Node Name
Group Node Nam

will cause infinite loops when e
on Node_1’s transform, and Node_1’s transform de
in the parent child hier
checked at load time.

A parent’s name may be an empty string. In this case, the parent node is the default entry in
the node palette. The default node palette entry is a group node.

Parent Node Name

- 36 -

9.5.1.2.1 U32: Parent Node Count

Parent Node Count is the number of parent nodes for this node. A node may have zero
parents.

9.5.1.2.2 String: Parent Node Name
Each parent node is identified by the object’s name.

9.5.1.2.3 F32: Parent Node Transform Matrix Element
This node holds a transform matrix indicating the position and orientation of the node
relative to each parent node. There is a separate transformation matrix for each parent.
The matrix is written in the alphabetic order described below:

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

PLHD
OKGC
NJFB
MIEA

9.5.2 Model Node (blocktype: 0xFFFFFF22)
The Model Node contains: a name, the number of parents, the parents’ names, and a transform
relative to each parent. The Model Node also contains the name of a model resource chain. A
model node is the first modifier in a node modifier chain. The node modifier chain takes input
from the model resource modifier chain that is specified by the model resource name field in the
model node.

The Model Node produces the following outputs: Transform Set, View Frustum, View Size.

The Model Node’s outputs depend on: Transform.

Parent Node Count

Parent Node Transform
Matrix Element 16

Parent Node Count

- 37 -

Model Node Name

9.5.2.1 String: Model Node Name

The Model Node is identified by the Model Node Name.

9.5.2.2 Parent Node Data
Described in 9.5.1.2 Parent Node Data for the group node block.

9.5.2.3 String: Model Resource Name
Model Resource Name is the name of the model resource chain used as input to the model
node’s modifier chain.

9.5.2.4 U32: Model Visibi l i ty
Model Visibility is used to indicate whether the front facing or back facing surface should be
drawn. All other values are reserved.

0 – Not visible

1 – Front visible

2 – Back visible

3 – Front and back visible

9.5.3 Light Node (blocktype: 0xFFFFFF23)
The Light Node contains: a name, the number of parents, the parents’ names, and a transform
relative to each parent. The Light Node also contains the name of a light resource. All other
information needed for a light is contained in the light resource; so, the Light Node does not
have any additional fields.

The Light Node produces the following outputs: Transform Set.

The Light Node’s outputs have no dependencies.

Model Resource Name

Model Visibility

Parent Node Data

Light Node Name

- 38 -

9.5.3.1 String: Light Node Name

The Light Node is identified by Light Node Name.

9.5.3.2 Parent Node Data
Described in 9.5.1.2 Parent Node Data for the group node block.

9.5.3.3 String: Light Resource Name
Light Resource Name identifies the light resource used by this Light Node.

9.5.4 View Node (blocktype: 0xFFFFFF24)
The View Node contains: a name, the number of parents, the parents’ names, and a transform
relative to each parent. The View Node also contains the name of a view resource, clipping,
projection, and view port fields that are specific to this instance and define how the view is
rendered on the screen. The clipping information specifies what part of the world is available to
the view. The view may be rendered with one, two, or three point perspective projection or
orthogonal projection. The view port fields determine where on the screen the view will be
rendered.

The Group Node produces the following outputs: Transform Set.

The Group Node’s outputs have no dependencies.

Light Resource Name

Parent Node Data

- 39 -

View Node Name

9.5.4.1 String: View Node Name

View Node Name identifies the View Node.

9.5.4.2 Parent Node Data
Described in 9.5.1.2 Parent Node Data for the group node block.

9.5.4.3 String: View Resource Name
View Resource Name identifies the view resource used by this View Node.

9.5.4.4 U32: View Node Attr ibutes
View Node Attributes is a bitfield used to indicate different modes of operation of the view
node. View Node Attributes are defined for projection mode and for screen position units

View Resource Name

View Clipping

View Projection

Parent Node Data

View Port

Backdrop Count

Backdrop Properties
Backdrop Count

Overlay Count

Overlay Properties

View Node Attributes

Overlay Count

mode. Attributes can be combined by OR operation. Only one projection mode can be
selected. All other values are reserved.

0x00000000 – default attributes: three-point perspective projection and screen position units
expressed in screen pixels.

0x00000001 – screen position units: expressed as percentage of screen dimension.

0x00000002 – projection mode: orthographic projection is used by the view

0x00000004 – projection mode: two-point perspective projection is used by the view

0x00000006 – projection mode: one-point perspective projection is used by the view

9.5.4.5 View Clipping

View Near Clip

View Far Clip

9.5.4.5.1 F32: View Near Clip

View Near Clip is the near clipping distance. Elements closer to the View Node than the
near clipping distance are not drawn.

9.5.4.5.2 F32: View Far Clip
View Far Clip is the far clipping distance. Elements farther from the View Node than the far
clipping distance are not drawn.

9.5.4.6 View Projection

- 40 -

9.5.4.6.1 F32: View Projection

View Projection is the field of view of the virtual camera in degrees. This value is only
present for three-point perspective projection mode. Projection mode is defined in View
Node Attributes. Details of rendering are outside the scope of this specification. A renderer
would be allowed to adjust the volume of space rendered by a particular view for various
purposes such as to reduce perspective distortion.

9.5.4.6.2 F32: View Orthographic Height
View Orthographic Height is the height of the orthographic view. This value is only present
for orthographic projection mode. Projection mode is defined in View Node Attributes.

9.5.4.6.3 View Projection Vector
View Projection Vector is only present for one-point and two-point perspective projection
mode. For one-point perspective projection, View Projection Vector is a vector normal to
the view plane. For two-point perspective projection, View Projection Vector is a vector in
the “up” direction for this view node.

9.5.4.7 View Port
The View Port describes the window in screen space in which the view will render. The units
used by the View Port are defined in View Node Attributes. The View Port values are

View Orthographic Height View Projection View Projection Vector

- 41 -

expressed either in screen pixels or as a fraction of the screen dimensions. When using
screen fraction units, the View Port will occupy the entire screen if the width and height are
set to 1.0 and the horizontal and vertical position are set to 0.0.

View Port Width

View Port Height

View Port Horizontal Position

View Port Vertical Position

9.5.4.7.1 F32: View Port Width

View Port Width is the width of the window in which the view will render.

9.5.4.7.2 F32: View Port Height
View Port Height is the height of the window in which the view will render.

9.5.4.7.3 F32: View Port Horizontal Posit ion
View Port Horizontal Position is the horizontal position on the screen of the window in
which the view will render. Position is measured from the upper left corner of the screen.

9.5.4.7.4 F32: View Port Vert ical Posit ion
View Port Vertical Position is the vertical position on the screen of the window in which the
view will render. Position is measured from the upper left corner of the screen.

9.5.4.8 U32: Backdrop Count
The Backdrop Count is the number of backdrops the view has. A backdrop is a texture
displayed in this view behind all objects rendered. Backdrops are displayed in order with the
first backdrop displayed behind the next backdrop.

9.5.4.9 Backdrop Properties

- 42 -

9.5.4.9.1 String: Backdrop Texture Name

Backdrop Texture Name is the name of the texture resource to use for this backdrop.

9.5.4.9.2 F32: Texture Blend
Texture Blend is the blend factor used with the backdrop’s texture.

9.5.4.9.3 F32: Rotation
The Rotation is how the texture used with the backdrop is rotated. Rotation is measured in
radians, counter clockwise.

9.5.4.9.4 F32: Location X
The Location X is the backdrop’s horizontal location. The position of the backdrop is
measured from the upper left corner of the display to the registration point. The units used
are defined in View Node Attributes.

Texture Blend

Rotation

Location X

Location Y

Registration Point X

Registration Point Y

Scale X

Scale Y

Backdrop Texture Name

- 43 -

9.5.4.9.5 F32: Location Y
The Location Y is the backdrop’s vertical location. The position of the backdrop is
measured from the upper left corner of the display to the registration point. The units used
are defined in View Node Attributes.

9.5.4.9.6 I32: Registration Point X
Registration Point X is the horizontal registration point. The registration point of the
backdrop texture is measured in texture pixels from the upper left corner of the texture.

9.5.4.9.7 I32: Registration Point Y
Registration Point Y is the vertical registration point. The registration point of the backdrop
texture is measured in texture pixels from the upper left corner of the texture.

9.5.4.9.8 F32: Scale X
Scale X is a scale factor applied to the backdrop horizontally.

9.5.4.9.9 F32: Scale Y
Scale Y is a scale factor applied to the backdrop vertically.

9.5.4.10 U32: Overlay Count
The Overlay Count is the number of overlays used with this view. An overlay is a texture
displayed in this view in front of all objects rendered. Overlays are displayed in order with the
first overlay displayed behind the next overlay.

9.5.4.11 Overlay Properties

- 44 -

9.5.4.11.1 String: Overlay Texture Name

Overlay Texture Name is the name of the texture resource to use for this overlay.

9.5.4.11.2 F32: Texture Blend
Texture Blend is the blend factor applied to the texture used for this overlay.

9.5.4.11.3 F32: Rotation
Rotation is how much the texture is rotated. Rotation is measured in radians, counter
clockwise.

9.5.4.11.4 F32: Location X
Location X is the horizontal position of the overlay. The position of the overlay is measured
from the upper left corner of the display to the registration point. The units used are
defined in View Node Attributes.

Texture Blend

Rotation

Location X

Location Y

Registration Point X

Registration Point Y

Scale X

Scale Y

Overlay Texture Name

- 45 -

9.5.4.11.5 F32: Location Y
Location Y is the vertical position of the overlay. The position of the overlay is measured
from the upper left corner of the display to the registration point. The units used are
defined in View Node Attributes.

9.5.4.11.6 I32: Registration Point X
Registration Point X is the horizontal registration point. The registration point of the overlay
texture is measured in texture pixels from the upper left corner of the texture.

9.5.4.11.7 I32: Registration Point Y
Registration Point Y is the vertical registration point. The registration point of the overlay
texture is measured in texture pixels from the upper left corner of the texture.

9.5.4.11.8 F32: Scale X
Scale X is the scale factor applied to the overlay horizontally.

9.5.4.11.9 F32: Scale Y
Scale Y is the scale factor applied to the overlay vertically.

9.6 Geometry generator blocks
Geometry generator blocks contain the declarative information for creating model resource
modifier chains. The model resource modifier chains serve as input to the node modifier chains.

9.6.1 CLOD Mesh Generator (blocktypes: 0xFFFFFF31; 0xFFFFFF3B; 0xFFFFFF3C)
The CLOD Mesh Generator contains the data needed to create a continuous level of detail
mesh. This data includes vertices, normal vectors, faces, shader lists, and level of detail
information for the base mesh and updates. The information in the CLOD Mesh Generator
blocks describes the author mesh. The CLOD Mesh Genarator converts the author mesh into a
render mesh for display. Description of differences between the author mesh and render mesh
can be found in 8.8 CLOD mesh generator.

The CLOD Mesh Generator produces the following outputs: Renderable Group, Renderable
Group Bounds, Transform Set.

The CLOD Mesh Generator’s outputs have no dependencies.

9.6.1.1 CLOD Mesh Declaration (blocktype: 0xFFFFFF31)
The CLOD Mesh Declaration contains the declaration information for a continuous level of
detail mesh generator. The declaration information is sufficient to allocate space for the mesh
data and create the mesh generator object. The mesh data is contained in following
continuation blocks.

Mesh Name

- 46 -

9.6.1.1.1 String: Mesh Name

Mesh Name is the name of the CLOD mesh generator. This name is also the name of the
model resource modifier chain that contains the CLOD mesh generator.

9.6.1.1.2 U32: Chain Index
Chain Index is the position of the CLOD mesh generator in the model resource modifier
chain. The value of Chain Index shall zero for this blocktype.

9.6.1.1.3 Max Mesh Description
Max Mesh Description describes the size of the mesh at full resolution. Max Mesh
Description can be used to allocate space for the mesh.

CLOD Description

Max Mesh Description

Resource Description

Chain Index

Skeleton Description

- 47 -

9.6.1.1.3.1 U32: Mesh Attributes

Mesh Attributes contains information that applies to the entire mesh. Mesh Attributes is a
collection of flags. The only flag currently defined indicates the usage of per vertex normals.
The flags are combined using a bitwise OR operation. All other values are reserved.

0x00000000 – Default: The faces in the mesh have a normal index at each corner.

0x00000001 – Exclude Normals: The faces in the mesh do not have a normal index at each
corner.

An implementation that requires normals may generate normals for a mesh which does not
have normals.

9.6.1.1.3.2 U32: Face Count

Face Count is the number of faces in the mesh.

9.6.1.1.3.3 U32: Position Count

Position Count is the number of positions in the position array.

Mesh Attributes

Face Count

Position Count

Normal Count

Diffuse Color Count

Specular Color Count

Texture Coord Count

Shading Count

Shading Description
Shading Count

9.6.1.1.3.4 U32: Normal Count

Normal Count is the number of normals in the normal array.

9.6.1.1.3.5 U32: Diffuse Color Count

Diffuse Color Count is the number of colors in the diffuse color array.

9.6.1.1.3.6 U32: Specular Color Count

Specular Color Count is the number of colors in the specular color array.

9.6.1.1.3.7 U32: Texture Coord Count

Texture Coord Count is the number of texture coordinates in the texture coordinate array.

9.6.1.1.3.8 U32: Shading Count

Shading Count is the number of shading descriptions used in the mesh. Each shading
description corresponds to one shader list in the shading group.

9.6.1.1.3.9 Shading Description

Shading Description indicates which per vertex attributes, in addition to position and normal,
are used by each shader list.

Shading Attributes

Texture Layer Count

Texture Coord Dimensions

- 48 -

9.6.1.1.3.9.1 U32: Shading Attributes

Shading Attributes is a collection of flags combined using the binary OR operator. These
flags are used to indicate the usage of per vertex colors. The flags are combined using a
bitwise OR operation. All other values are reserved.

0x00000000 – The shader list uses neither diffuse colors nor specular colors.

0x00000001 – The shader list uses per vertex diffuse colors.

0x00000002 – The shader list uses per vertex specular colors.

0x00000003 – The shader list uses both diffuse and specular colors, per vertex.

9.6.1.1.3.9.2 U32: Texture Layer Count

Texture layer Count is the number of texture layers used by this shader list.

9.6.1.1.3.9.3 U32: Texture Coord Dimensions

Texture Coord Dimensions is the number of dimensions in the texture coordinate vector.
The texture coordinate vector can have 1, 2, 3, or 4 dimensions.

Original Shading ID

Texture Layer Count

- 49 -

9.6.1.1.3.9.4 U32: Original Shading ID

Original Shading ID is the original shading index for this shader list. Shader lists may be re-
ordered during the encode process. Unused shader lists may be removed by the encode
process.

9.6.1.1.4 CLOD Description
CLOD Description describes the range of resolutions available for the continuous level of
detail mesh.

Two special cases are worth noting. If the Minimum Resolution is zero, then there is no
base mesh. If the Minimum Resolution is equal to the Final Maximum Resolution, then the
base mesh is the entire mesh and the CLOD mechanism cannot change the resolution of
the mesh.

Minimum Resolution

Final Maximum Resolution

9.6.1.1.4.1 U32: Minimum Resolution

Minimum Resolution shall be the number of positions in the base mesh.

9.6.1.1.4.2 U32: Final Maximum Resolution

Final Maximum Resolution shall be the number of positions in the Max Mesh Description.

9.6.1.1.5 Resource Description

Quality Factors

Inverse Quantization

Resource Parameters

9.6.1.1.5.1 Quality Factors

The quality factors are for information only and are not used. The quality factors enable the
user interface to provide the user with information on some of the parameters used to encode
the mesh.

Position Quality Factor

Texture Coord Quality Factor

Normal Quality Factor

9.6.1.1.5.1.1 U32: Position Quality Factor

Position Quality Factor is the quality factor associated with quantization of positions.

9.6.1.1.5.1.2 U32: Normal Quality Factor

Normal Quality Factor is the quality factor associated with quantization of normal vectors.

9.6.1.1.5.1.3 U32: Texture Coord Quality Factor

Texture Coord Quality Factor is the quality factor associated with quantization of texture
coordinates.

9.6.1.1.5.2 Inverse Quantization

Inverse Quantization contains the inverse quantization factors used to reconstruct floating
point values that had been quantized.

Position Inverse Quant

Normal Inverse Quant

Texture Coord Inverse Quant

Diffuse Color Inverse Quant

Specular Color Inverse Quant

9.6.1.1.5.2.1 F32: Position Inverse Quant

Position Inverse Quant is the inverse quantization factor used in the reconstruction of
position vectors.

9.6.1.1.5.2.2 F32: Normal Inverse Quant

Normal Inverse Quant is the inverse quantization factor used in the reconstruction of normal
vectors.

- 50 -

- 51 -

9.6.1.1.5.2.3 F32: Texture Coord Inverse Quant

Texture Coord Inverse Quant is the inverse quantization factor used in the reconstruction of
texture coordinates.

9.6.1.1.5.2.4 F32: Diffuse Color Inverse Quant

Diffuse Color Inverse Quant is the inverse quantization factor used in the reconstruction of
diffuse colors.

9.6.1.1.5.2.5 F32: Specular Color Inverse Quant

Specular Color Inverse Quant is the inverse quantization factor used in the reconstruction of
specular colors.

9.6.1.1.5.3 Resource Parameters

Resource Parameters control the operation of the CLOD mesh generator. The parameters
defined in this section control the conversion of the mesh from Author Mesh format to Render
Mesh format.

Normal Crease Parameter

Normal Tolerance Parameter

Normal Update Parameter

9.6.1.1.5.3.1 F32: Normal Crease Parameter

In the conversion from Author Mesh to Render Mesh, normals that are sufficiently close
together are merged. The closeness of normals is measured by calculating the dot product
between them. The resulting closeness measure is in the range –1.0 to +1.0. – 1.0 is
farthest apart and + 1.0 is closest together.

Normals at the same position which are closer than Normal Crease Parameter are merged.
In other words, if the dot product between two normals is larger than Normal Crease
Parameter, then the two normals shall be merged.

Normal Crease Parameter can be used to trade off smoothing over edges against
preservation of sharp edges.

9.6.1.1.5.3.2 F32: Normal Update Parameter

In decoding the Author Mesh normals, a correction is made to a predicted normal. If the
corrected normal is closer to the predicted normal than Normal Update Parameter, then the
normal correction can be dropped.

9.6.1.1.5.3.3 F32: Normal Tolerance Parameter

Normals which are closer together than Normal Tolerance Parameter are considered
equivalent in the conversion of the Author Mesh to Render Mesh. A more compact Render
Mesh can be created if more normals are allowed to be replaced by similar normals. The
compactness of the Render Mesh is traded off against the accuracy or the Render Mesh
normals.

9.6.1.1.6 Skeleton Description
Skeleton Description provides bone structure information. If there is no bone structure
associated with the generator, then the Bone Count is zero. Bones are structured in a tree
hierarchy. The position and orientation of each bone is described relative to a parent bone.

The Skeleton Description is used in bones-based animation. The Animation Modifier uses
the bone structure to deform geometry based on the position and orientation of the bones.
The Animation Modifier also modifies the bone structure based on information in a Motion
Resource.

In a future editions of this specification, it may be possible to use the Skeleton Description
for additional features such as inverse kinematics and automatic bone weight generation.

Bone links are small bones that are inserted between the start of a bone and the end of its
parent bone. The placement of bone links is done automatically based on the position and
orientation of the bone and its parent.

Bone links and bone joint information may be useful for inverse kinematics extensions and
automatic bone weight generation extensions.

- 52 -

- 53 -

Bone Count

Bone Name

Parent Bone Name

Bone Attributes

Bone Length

Bone Displacement

Bone Orientation

Bone Link Count

Bone Link Length

Bone Start Joint

Bone End Joint

9.6.1.1.6.1 U32: Bone Count

Bone Count is the number of bones associated with the mesh.

9.6.1.1.6.2 String: Bone Name

Bone Name is the name of this bone.

Bone Rotation Constraints

Bone Count

9.6.1.1.6.3 String: Parent Bone Name

Parent Bone Name is the name of the parent of this bone.

For the first bone, the Parent Bone Name shall be the empty string. The first bone is called the
root bone. For bones after the first bone, the Parent Bone Name shall be the Bone Name of a
previous bone.

9.6.1.1.6.4 U32: Bone Attributes

Bone Attributes is a collection of flags. The flags are combined using the binary OR operator.
These flags are used to indicate the presence of optional link and joint sections and whether
the rotational constraints are enabled. All other values are reserved.

0x00000001 – The Bone Link Count and Bone Link Length are present.

0x00000002 – The Bone Start Joint and Bone End Joint sections are present.

0x00000004 – The X Rotation Constraint is active.

0x00000008 – The X Rotation Constraint is limited.

0x00000010 – The Y Rotation Constraint is active.

0x00000020 – The Y Rotation Constraint is limited.

0x00000040 – The Z Rotation Constraint is active.

0x00000080 – The Z Rotation Constraint is limited.

9.6.1.1.6.5 F32: Bone Length

Bone Length is the length of this bone. The length of the bone is not modified by the Animation
Modifier in 9.7.3.

9.6.1.1.6.6 Bone Displacement

Bone Displacement is the displacement of the start of this bone from the end of its parent
bone.

Bone Displacement X

Bone Displacement Z

Bone Displacement Y

9.6.1.1.6.6.1 F32: Bone Displacement X

Bone Displacement X is the X-coordinate of the bone displacement vector.

9.6.1.1.6.6.2 F32: Bone Displacement Y

Bone Displacement Y is the Y-coordinate of the bone displacement vector.

9.6.1.1.6.6.3 F32: Bone Displacement Z

Bone Displacement Z is the Z-coordinate of the bone displacement vector.

9.6.1.1.6.7 Bone Orientation

- 54 -

- 55 -

Bone Orientation is the change in orientation of this bone relative to the orientation of its parent
bone. The change in orientation is expressed as a quaternion.

9.6.1.1.6.7.1 F32: Bone Orientation W

Bone Orienation W is the W-component of the bone orientation quaternion. The W-
component is the real part of the quaternion.

9.6.1.1.6.7.2 F32: Bone Orientation X

Bone Orientation X is the X-coordinate of the bone orientation quaternion.

9.6.1.1.6.7.3 F32: Bone Orientation Y

Bone Orientation Y is the Y-coordinate of the bone orientation quaternion.

9.6.1.1.6.7.4 F32: Bone Orientation Z

Bone Orientation Z is the Z-coordinate of the bone orientation quaternion.

9.6.1.1.6.8 U32: Bone Link Count

Bone Link Count is the number of bone links between the end of the parent bone and the start
of this bone.

9.6.1.1.6.9 F32: Bone Link Length

Bone Link Length is the length of the bone links.

9.6.1.1.6.10 Bone Start Joint

Bone Start Joint describes an ellipse that approximates the cross-section of the geometry
surrounding the bone at the start of the bone. The ellipse is oriented in the local coordinate
space of the bone. Start Joint Center is a displacement of the center for the ellipse from the
axis of the bone. Start Joint Scale provides major and minor axis of the ellipse.

Bone Orientation X

Bone Orientation Z

Bone Orientation Y

Bone Orientation W

- 56 -

9.6.1.1.6.10.1 F32: Start Joint Center U

Start Joint Center U is the first coordinate of the displacement of the center of the start joint.
The displacement is in the local coordinate space of the bone.

9.6.1.1.6.10.2 F32: Start Joint Center V

Start Joint Center V is the second coordinate of the displacement of the center of the start
joint. The displacement is in the local coordinate space of the bone.

9.6.1.1.6.10.3 F32: Start Joint Scale U

Start Joint Scale U is the size of the axis of the start joint ellipse in the first coordinate.

9.6.1.1.6.10.4 F32: Start Joint Scale V

Start Joint Scale V is the size of the axis of the start joint ellipse in the second coordinate.

9.6.1.1.6.11 Bone End Joint

Bone End Joint describes an ellipse that approximates the cross-section of the geometry
surrounding the bone at the end of the bone. The ellipse is oriented in the local coordinate
space of the bone. End Joint Center is a displacement of the center for the ellipse from the
axis of the bone. End Joint Scale provides major and minor axis of the ellipse.

End Joint Center V

End Joint Scale V

End Joint Scale U

End Joint Center U

Start Joint Center V

Start Joint Scale V

Start Joint Scale U

Start Joint Center U

- 57 -

9.6.1.1.6.11.1 F32: End Joint Center U

End Joint Center U is the first coordinate of the displacement of the center of the end joint.
The displacement is in the local coordinate space of the bone.

9.6.1.1.6.11.2 F32: End Joint Center V

End Joint Center V is the second coordinate of the displacement of the center of the end
joint. The displacement is in the local coordinate space of the bone.

9.6.1.1.6.11.3 F32: End Joint Scale U

End Joint Scale U is the size of the axis of the end joint ellipse in the first coordinate.

9.6.1.1.6.11.4 F32: End Joint Scale V

End Joint Scale V is the size of the axis of the end joint ellipse in the second coordinate.

9.6.1.1.6.12 Bone Rotation Constraints

An inverse kinematics extension could use these bone rotation constraints when updating the
bone positions and orientations. The Animation Modifier does not use these Bone Rotation
Constraints.

Rotation Constraint X Max

Rotation Constraint X Min

Rotation Constraint Y Max

Rotation Constraint Y Min

Rotation Constraint Z Max

Rotation Constraint Z Min

1) F32: Rotation Constraint X Max

2) F32: Rotation Constraint X Min

3) F32: Rotation Constraint Y Max

4) F32: Rotation Constraint Y Min

5) F32: Rotation Constraint Z Max

6) F32: Rotation Constraint Z Min

9.6.1.2 CLOD Base Mesh Continuation (blocktype: 0xFFFFFF3B)
The CLOD Base Mesh Continuation block contains base mesh information for a continuous
level of detail mesh generator. The base mesh is the minimum LOD mesh. The base mesh

does not contain resolution updates. As a result, a CLOD resolution controller cannot reduce
the mesh resolution to less than the size of the base mesh (other than reducing the mesh to
zero resolution). The base mesh is not quantized.

The CLOD Base Mesh Continuation block is a continuation type block. The CLOD Base Mesh
Continuation block is only present if Minimum Resolution is greater than zero.

Mesh Name

- 58 -

9.6.1.2.1 String: Mesh Name

Mesh Name is the name of the CLOD mesh generator. This name is also the name of the
model resource modifier chain that contains the CLOD mesh generator.

9.6.1.2.2 U32: Chain Index
Chain Index is the position of the CLOD mesh generator in the model resource modifier
chain. The value of Chain Index shall be zero for this blocktype.

9.6.1.2.3 Base Mesh Description
Base Mesh Description describes the size of the mesh at minimum resolution. Base Mesh
Description indicates the portion of space allocated for the mesh that is used by the base
mesh. The elements of the base mesh occupy the first part (lowest index) of each of the
various mesh arrays.

Base Mesh Data

Base Mesh Description

Chain Index

- 59 -

Base Face Count

Base Position Count

Base Normal Count

Base Diffuse Color Count

Base Specular Color Count

Base Texture Coord Count

9.6.1.2.3.1 U32: Base Face Count

Base Face Count is the number of faces in the base mesh.

9.6.1.2.3.2 U32: Base Position Count

Base Position Count is the number of positions used by the base mesh in the position array.

9.6.1.2.3.3 U32: Base Normal Count

Base Normal Count is the number of normals used by the base mesh in the normal array.

9.6.1.2.3.4 U32: Base Diffuse Color Count

Base Diffuse Color Count is the number of colors used by the base mesh in the diffuse color
array.

9.6.1.2.3.5 U32: Base Specular Color Count

Base Specular Color Count is the number of colors used by the base mesh in the specular
color array.

9.6.1.2.3.6 U32: Base Texture Coord Count

Base Texture Coord Count is the number of texture coordinates used by the base mesh in the
texture coordinate array.

9.6.1.2.4 Base Mesh Data

Base Position
Base Position Count

Base Normal
Base Normal Count

Base Diffuse Color
Base Diffuse Color Count

Base Specular Color
Base Specular Color Count

Base Texture Coord
Base Texture Coord Count

Base Face
Base Face Count

- 60 -

- 61 -

9.6.1.2.4.1 Base Position

Base Position is a 3D position in the position array.

Base Position X

Base Position Y

Base Position Z

9.6.1.2.4.1.1 F32: Base Position X

Base Position X is the X-coordinate of the base position vector.

9.6.1.2.4.1.2 F32: Base Position Y

Base Position Y is the Y-coordinate of the base position vector.

9.6.1.2.4.1.3 F32: Base Position Z

Base Position Z is the Z-coordinate of the base position vector.

9.6.1.2.4.2 Base Normal

Base Normal is a 3D normal in the normal array.

Base Normal X

Base Normal Y

Base Normal Z

9.6.1.2.4.2.1 F32: Base Normal X

Base Normal X is the X-coordinate of the base normal vector.

9.6.1.2.4.2.2 F32: Base Normal Y

Base Normal Y is the Y-coordinate of the base normal vector.

9.6.1.2.4.2.3 F32: Base Normal Z

Base Normal Z is the Z-coordinate of the base normal vector.

9.6.1.2.4.3 Base Diffuse Color

Base Diffuse Color is an RGBA color in the diffuse color array.

The ordinary range for the color components is 0.0 to +1.0. The value 0.0 corresponds to black
and the value +1.0 corresponds to full intensity. Values outside the ordinary range are allowed.

The ordinary range for the alpha component is 0.0 to +1.0. The value 0.0 corresponds to fully
transparent and the value +1.0 corresponds to fully opaque. Values outside the ordinary range
are allowed.

Base Diffuse Color Red

Base Diffuse Color Green

Base Diffuse Color Blue

Base Diffuse Color Alpha

9.6.1.2.4.3.1 F32: Base Diffuse Color Red

Base Diffuse Color Red is the red component of the base diffuse color.

9.6.1.2.4.3.2 F32: Base Diffuse Color Green

Base Diffuse Color Green is the green component of the base diffuse color.

9.6.1.2.4.3.3 F32: Base Diffuse Color Blue

Base Diffuse Color Blue is the blue component of the base diffuse color.

9.6.1.2.4.3.4 F32: Base Diffuse Color Alpha

Base Diffuse Color Alpha is the alpha component of the base diffuse color.

9.6.1.2.4.4 Base Specular Color

Base Specular Color is an RGBA color in the specular color array.

The ordinary range for the color components is 0.0 to +1.0. The value 0.0 corresponds to black
and the value +1.0 corresponds to full intensity. Values outside the ordinary range are allowed.

The ordinary range for the alpha component is 0.0 to +1.0. The value 0.0 corresponds to fully
transparent and the value +1.0 corresponds to fully opaque. Values outside the ordinary range
are allowed.

- 62 -

- 63 -

Base Specular Color Red

Base Specular Color Green

Base Specular Color Blue

Base Specular Color Alpha

9.6.1.2.4.4.1 F32: Base Specular Color Red

Base Specular Color Red is the red component of the base specular color.

9.6.1.2.4.4.2 F32: Base Specular Color Green

Base Specular Color Green is the green component of the base specular color.

9.6.1.2.4.4.3 F32: Base Specular Color Blue

Base Specular Color Blue is the blue component of the base specular color.

9.6.1.2.4.4.4 F32: Base Specular Color Alpha

Base Specular Color Alpha is the alpha component of the base specular color.

9.6.1.2.4.5 Base Texture Coord

Base Texture Coord is a 4D texture coordinate in the texture coordinate array.

The shader list description may define a texture coordinate layer to have 1, 2, 3 or 4 dimension
texture coordinates. For 1D texture coordinate layers, only the U coordinate value is used. For
2D texture coordinate layers, the U and V coordinate values are used. For 3D texture
coordinate layers, the U, V ,and S coordinates are used. For 4D texture coordinate layers, the
U, V, S and T coordinates are used.

Base Tex Coord U

Base Tex Coord V

Base Tex Coord S

Base Tex Coord T

9.6.1.2.4.5.1 F32: Base Tex Coord U

Base Tex Coord U is the first coordinate of the texture coordinate vector.

9.6.1.2.4.5.2 F32: Base Tex Coord V

Base Tex Coord V is the second coordinate of the texture coordinate vector.

9.6.1.2.4.5.3 F32: Base Tex Coord S

Base Tex Coord S is the third coordinate of the texture coordinate vector.

9.6.1.2.4.5.4 F32: Base Tex Coord T

Base Tex Coord T is the fourth coordinate of the texture coordinate vector.

9.6.1.2.4.6 Base Face

Base Face is a face in the base mesh. The face contains an index into the shader list
description array and indices into the various mesh arrays for each corner.

Shading ID

Base Corner Info
3

9.6.1.2.4.6.1 U32 [cShading]: Shading ID

Shading ID is the index of the shader list descriptions used for this face. The Shading List
Description array is defined in the CLOD Mesh Declaration block.

9.6.1.2.4.6.2 Base Corner Info

Base Corner Info contains the indices into the various mesh arrays for a corner of a face in
the base mesh. The indices are limited to the sizes in Base Mesh Description.

- 64 -

- 65 -

Base Position Index

Base Normal Index

Base Diffuse Color Index

Base Specular Color Index

Base Texture Coord Index
Texture Layers Count

9.6.1.2.4.6.2.1 U32 [rBasePositionCount]: Base Position Index

Base Position Index must be less than Base Position Count in the Base Mesh
Description.

9.6.1.2.4.6.2.2 U32 [rBaseNormalCount]: Base Normal Index

Base Normal Index must be less than Base Normal Count in the Base Mesh
Description. Base Normal Index is not present if 9.6.1.1.3.1 Mesh Attributes in the Max
Mesh Description indicates Exclude Normals.

9.6.1.2.4.6.2.3 U32 [rBaseDiffColorCnt]: Base Diffuse Color Index

Base Diffuse Color Index must be less than Base Diffuse Color Count in Base Mesh
Description. Base Diffuse Color Index is present only if shader list description indicated
by Shading ID indicates diffuse colors are used.

9.6.1.2.4.6.2.4 U32 [rBaseSpecColorCnt]: Base Specular Color Index

Base Specular Color Index must be less than Base Specular Color Count in Base Mesh
Description. Base Specular Color Index is present only if shading description indicated
by Shading ID indicates specular colors are used.

9.6.1.2.4.6.2.5 U32 [rBaseTexCoordCnt]: Base Texture Coord Index

Base Texture Coord Index must be less than Base Texture Coord Count in Base Mesh
Description. Texture Layer Count in the shading description indicated by Shading ID
determines the number of times Base Texture Coord Index in repeated at this corner.

9.6.1.3 CLOD Progressive Mesh Continuation (blocktype: 0xFFFFFF3C)
The CLOD Mesh Progressive Continuation block contains progressive mesh information for a
continuous level of detail mesh generator.

The CLOD Mesh Progressive Continuation block is a continuation type block. The CLOD
Mesh Progressive Continuation block is present only if Final Maximum Resolution is greater
than Minimum Resolution.

Mesh Name

- 66 -

9.6.1.3.1 String: Mesh Name

Mesh Name is the name of the CLOD mesh generator. This name is also the name of the
model resource modifier chain that contains the CLOD mesh generator.

9.6.1.3.2 U32: Chain Index
Chain Index is the position of the CLOD mesh generator in the model resource modifier
chain. The value of Chain Index shall be zero for this blocktype.

9.6.1.3.3 Resolution Update Range
Resolution Update Range specifies the range of progressive mesh vertex updates provided
in this continuation block.

This continuation block contains CLOD mesh information for positions from (Start
Resolution) to (End Resolution – 1). The total number of positions added by this block is
Resolution Update Count = End Resolution – Start Resolution.

9.6.1.3.3.1 U32: Start Resolution

Start Resolution is the index of the first position added by this block.

9.6.1.3.3.2 U32: End Resolution

End Resolution is one more than the index of the last position added by this block.

Resolution Update

Resolution Update Range

Chain Index

Resolution Update Count

Start Resolution

End Resolution

- 67 -

9.6.1.3.4 Resolution Update

9.6.1.3.4.1 U32 [rCurrentPositionCount]: Split Position Index

Split Position Index is the index of the position to be split by this Resolution Update. Each
Resolution Update adds one new position to the position array. Split Position Index will be less
than the current position count. Each new face added by a Resolution Update will use the split
position and the new position. Each face updated by a Resolution Update will change the split
position to the new position. The new position is predicted based on the split position. The
method for selecting the split position index is implementation dependent.

Neighborhood Position Count

Move Face Count

New Face Position Info

Split Position Index

New Diffuse Color Info

New Specular Color Info

New Face Count

New Face Count

Stay Or Move
Faces Using Split Position Count

New Position Info

New Normal Info

New Texture Coord Info

Move Face Info

New Face Info
New Face Count

9.6.1.3.4.2 New Diffuse Color Info

New Diffuse Color Info describes new color values added to the diffuse color array of the mesh
in this resolution update. The prediction for the new diffuse color value is calculated as the
average of all diffuse color values used at the split position.

Diffuse Color Difference Signs

- 68 -

9.6.1.3.4.2.1 U32[cDiffuseCount]: NewDiffuse Color Count

New Diffuse Color Count is the number of new color values added in this resolution update.

9.6.1.3.4.2.2 U8 [cDiffuseColorSign]: Diffuse Color Difference Signs

Diffuse Color Difference Signs is a collection of sign bits for the prediction differences.

0x01 – Sign bit for Diffuse Color Difference Red

0x02 – Sign bit for Diffuse Color Difference Green

0x04 – Sign bit for Diffuse Color Difference Blue

0x08 – Sign bit for Diffuse Color Difference Alpha

9.6.1.3.4.2.3 U32[cColorDiffR]: Diffuse Color Difference Red

Reconstructed Color red component is calculated as

Reconstructed Red = InverseQuant(predicted red,(Diffuse Color Difference Signs &
0x01),

Diffuse Color Difference Red, Diffuse Color Inverse Quant).

9.6.1.3.4.2.4 U32 [cColorDiffG]: Diffuse Color Difference Green

Reconstructed Color green component is calculated as

Reconstructed Green = InverseQuant(predicted green, ((Diffuse Color Difference Signs
& 0x02) >> 1),

Diffuse Color Difference Green, Diffuse Color Inverse Quant).

New Diffuse Color Count

Diffuse Color Difference Red

Diffuse Color Difference Green

Diffuse Color Difference Blue

Diffuse Color Difference Alpha

New Diffuse Color Count

- 69 -

9.6.1.3.4.2.5 U32 [cColorDiffB]: Diffuse Color Difference Blue

Reconstructed Color blue component is calculated as

Reconstructed Blue = InverseQuant(predicted blue, ((Diffuse Color Difference Signs &
0x04) >> 2),

Diffuse Color Difference Blue, Diffuse Color Inverse Quant).

9.6.1.3.4.2.6 U32 [cColorDiffA]: Diffuse Color Difference Alpha

Reconstructed Color alpha component is calculated as

Reconstructed Alpha = InverseQuant(predicted alpha, ((Diffuse Color Difference Signs
& 0x08) >> 3)

Diffuse Color Difference Alpha, Diffuse Color Inverse Quant).

9.6.1.3.4.3 New Specular Color Info

New Specular Color Info describes new color values added to the specular color array of the
mesh in this resolution update. The prediction for the new specular color value is calculated as
the average of all specular color values used at the split position.

Specular Color Difference Signs

9.6.1.3.4.3.1 U32[cSpecularCount]: New Specular Color Count

New Specular Color Count is the number of new color values added in this resolution
update.

9.6.1.3.4.3.2 U8 [cSpecularColorSign]: Specular Color Difference Signs

Specular Color Difference Signs is a collection of sign bits for the prediction differences.

0x01 – Sign bit for Specular Color Difference Red

0x02 – Sign bit for Specular Color Difference Green

0x04 – Sign bit for Specular Color Difference Blue

New Specular Color Count

Specular Color Difference Red

Specular Color Difference Green

Specular Color Difference Blue

Specular Color Difference Alpha

New Specular Color Count

0x08 – Sign bit for Specular Color Difference Alpha

9.6.1.3.4.3.3 U32[cColorDiffR]: Specular Color Difference Red

Reconstructed Color red component is calculated as

Reconstructed Red = InverseQuant(predicted red, (Specular Color Difference Signs &
0x01),

Specular Color Difference Red, Specular Color Inverse Quant).

9.6.1.3.4.3.4 U32 [cColorDiffG]: Specular Color Difference Green

Reconstructed Color green component is calculated as

Reconstructed Green = InverseQuant(predicted green, ((Specular Color Difference
Signs & 0x02) >> 1)),

Specular Color Difference Green, Specular Color Inverse Quant).

9.6.1.3.4.3.5 U32 [cColorDiffB]: Specular Color Difference Blue

Reconstructed Color blue component is calculated as

Reconstructed Blue = InverseQuant(predicted blue, ((Specular Color Difference Signs &
0x04) >> 2)),

Specular Color Difference Blue, Specular Color Inverse Quant).

9.6.1.3.4.3.6 U32 [cColorDiffA]: Specular Color Difference Alpha

Reconstructed Color alpha component is calculated as

Reconstructed Alpha = InverseQuant(predicted alpha, ((Specular Color Difference
Signs & 0x08) >> 3)),

Specular Color Difference Alpha, Specular Color Inverse Quant).

9.6.1.3.4.4 New Texture Coord Info

New Texture Coord Info describes new texture coordinate values added to the texture
coordinate array of the mesh in this resolution update. The prediction for the new texture
coordinate value is calculated as the average of all texture coordinates used at the split
position in the first layer.

- 70 -

- 71 -

Tex Coord Difference Signs

9.6.1.3.4.4.1 U32[cTexCoordCount]: New Tex Coord Count

New Tex Coord Count is the number of new texture coordinate values added in this
resolution update.

9.6.1.3.4.4.2 U8 [cTexCoordSign]: Tex Coord Difference Signs

Tex Coord Difference Signs is a collection of sign bits for the prediction differences.

0x01 – Sign bit for Texture Coord Difference U

0x02 – Sign bit for Texture Coord Difference V

0x04 – Sign bit for Texture Coord Difference S

0x08 – Sign bit for Texture Coord Difference T

9.6.1.3.4.4.3 U32 [cTexCDiffU]: Texture Coord Difference U

The reconstructed texture coordinate U is calculated as

Reconstructed TexCoord U = InverseQuant(predicted Tex Coord U, (Tex Coord Signs
& 0x01),

Texture Coord Difference U, Texture Coord Inverse Quant).

9.6.1.3.4.4.4 U32 [cTexCDiffV]: Texture Coord Difference V

The reconstructed texture coordinate V is calculated as

Reconstructed TexCoord V = InverseQuant(predicted Tex Coord V, ((Tex Coord Signs
& 0x02) >> 1),

Texture Coord Difference V, Texture Coord Inverse Quant).

New Tex Coord Count

Tex Coord Difference U

Tex Coord Difference V

Tex Coord Difference S

Tex Coord Difference T

New Tex Coord Count

9.6.1.3.4.4.5 U32 [cTexCDiffS]: Texture Coord Difference S

The reconstructed texture coordinate S is calculated as

Reconstructed TexCoord S = InverseQuant(predicted Tex Coord S, ((Tex Coord Signs
& 0x04) >> 2),

Texture Coord Difference S, Texture Coord Inverse Quant).

9.6.1.3.4.4.6 U32 [cTexCDiffT]: Texture Coord Difference T

The reconstructed texture coordinate T is calculated as

Reconstructed TexCoord T = InverseQuant(predicted Tex Coord, ((Tex Coord Signs &
0x08) >> 3),

Texture Coord Difference T, Texture Coord Inverse Quant).

9.6.1.3.4.5 U32 [cFaceCnt]: New Face Count

New Face Count is the number of new faces added to the mesh by this Resolution Update.

9.6.1.3.4.6 New Face Position Info

New Face Position Info describes a new face to be added to the mesh. One of the corners of
the new face will use the Split Position and another of the corners will use the New Position.

Shading ID

Face Orientation

Third Position Type

Local Third Position Index Global Third Position Index

9.6.1.3.4.6.1 U32 [cShading]: Shading ID

Shading ID is the index of the shader list used for this face. The Shading Description array
is defined in the CLOD Mesh Declaration block.

9.6.1.3.4.6.2 U8 [cFaceOrnt]: Face Orientation

Face Orientation refers to the winding order of the face.

0x00 – Left Orientation: Split Position; New Position; Third Position

0x01 – Right Orientation: New Position; Split Position; Third Position

9.6.1.3.4.6.3 U8 [cThrdPosType]: Third Position Type

Third Position Type indicates whether the Third Position Index that follows is an index into
the full position array or a smaller local position array.

0x00 – Local Third Position Index

0x01 – Global Third Position Index
- 72 -

- 73 -

9.6.1.3.4.6.4 U32 [cLocal3rdPos]: Local Third Position Index

The local position array is generated by adding all positions used by faces that also use the
Split Position. Each position is added only once to the local position array. The local position
array contains indices into the full position array. The local position array is sorted with the
smaller values first.

9.6.1.3.4.6.5 U32 [rCurrentPositionCount]: Global Third Position Index

Global Third Position Index is an index into the full position array. Current Position Count is
the number of positions in the full position array.

9.6.1.3.4.7 U8 [cStayMove+StayMovePrediction]: Stay Or Move

For each face that was using the Split Position, Stay Or Move specifies if that face should
continue to use the Split Position or be updated to use the New Position.

0x00 – Stay; Continue to use the Split Position

0x01 – Move; Update face to use the New Position

The compression context depends on whether the face is predicted to stay or move. Valid
values for StayMovePrediction are:

0 – No prediction

1 – Predict stay from use of third position by face

2 – Predict move from use of third position by face

3 – Predict stay from prediction used for neighboring face

4 – Predict move from prediction used for neighboring face

For faces that use the split position and one third position from a new face: if the corner
winding order puts the split position before the third position, then predict stay if the new face
orientation was right or predict move if the new face orientation was left; if the corner winding
order puts the split position after the third position, then predict stay if the new face orientation
was left or predict move if the new face orientation was right.

For faces that use the split position and do not use a third position from a new face: if a
neighboring face has been predicted stay or move, then use that prediction for this face.

If there is a conflict where one neighboring face is predicted stay and another neighboring face
is predicted move, then make no prediction.

For faces where the preceding prediction rules do not apply, make no prediction.

9.6.1.3.4.8 Move Face Info

The move faces are the faces for which one of the corners changes from using the split
position to using the new position. For each face of the move faces, the other properties at that
corner may also change. Move Face Info describes how those corners of move faces should
be updated for vertex color and texture coordinate properties.

Diffuse Color Face Update

Specular Color Face Update

- 74 -

9.6.1.3.4.8.1 Diffuse Color Face Update

Diffuse Color Face Update is present only if the shading description for this face indicates
that the face has diffuse colors at the corners of the face.

9.6.1.3.4.8.1.1 U8 [cDiffuseKeepChange]: Diffuse Keep Change

For each face with diffuse colors and a split position that is moving to the New Position,
Diffuse Keep Change indicates whether the diffuse color at the same corner as the split
position should also change.

0x00 – Keep; The diffuse color should not change.

0x01 – Change; The diffuse color should change. The new value for the diffuse color
index can be found in the following change index.

Texture Coordinate Face
Update Texture Layer Count

Diffuse Keep Change

Diffuse Change Type

Diffuse Change Index New

Diffuse Change Index Local

Diffuse Change Index Global

- 75 -

9.6.1.3.4.8.1.2 U8 [cDiffuseChangeType]: Diffuse Change Type

Diffuse Change Type indicates the type of change index that follows.

0x01 – New;

0x02 – Local;

0x03 – Global.

9.6.1.3.4.8.1.3 U32 [cDiffuseChangeIndexNew]: Diffuse Change Index New

Diffuse Change Index New is an index into the list of new diffuse colors for this
resolution update as described in 9.6.1.3.4.2 New Diffuse Color Info.

9.6.1.3.4.8.1.4 U32 [cDiffuseChangeIndexLocal]: Diffuse Change Index Local

Diffuse Change Index Local is an index into the list of diffuse color indices used at the
split position. Larger indices appear first in the that list.

9.6.1.3.4.8.1.5 U32 [cDiffuseChangeIndexGlobal]: Diffuse Change Index Global

Diffuse Change Index Global is an index into the full diffuse color pool.

9.6.1.3.4.8.2 Specular Color Face Update

Specular Color Face Update is present only if the shading description for this face indicates
that the face has specular colors at the corners of the face.

9.6.1.3.4.8.2.1 U8 [cSpecularKeepChange]: Specular Keep Change

For each face with specular colors and a split position that is moving to the New
Position, Specular Keep Change indicates whether the specular color at the same
corner as the split position should also change.

0x00 – Keep; The specular color should not change.

0x01 – Change; The specular color should change. The new value for the specular
color index can be found in the following change index.

Specular Keep Change

Specular Change Type

Specular Change Index New

Specular Change Index Global

Specular Change Index Local

9.6.1.3.4.8.2.2 U8 [cSpecularChangeType]: Specular Change Type

Specular Change Type indicates the type of change index that follows.

0x01 – New;

0x02 – Local;

0x03 – Global.

9.6.1.3.4.8.2.3 U32 [cSpecularChangeIndexNew]: Specular Change Index New

Specular Change Index New is an index into the list of new specular colors for this
resolution update as described in 9.6.1.3.4.3 New Specular Color Info.

9.6.1.3.4.8.2.4 U32 [cSpecularChangeIndexLocal]: Specular Change Index Local

Specular Change Index Local is an index into the list of specular color indices used at
the split position. Larger indices appear first in the that list.

9.6.1.3.4.8.2.5 U32 [cSpecularChangeIndexGlobal]: Specular Change Index Global

Specular Change Index Global is an index into the full specular color pool.

9.6.1.3.4.8.3 Texture Coordinate Face Update

Texture Coordinate Face Update is repeated once for each texture layer for the move face.
If there are no texture layers, then Texture Coordinate Face Update is not present.

9.6.1.3.4.8.3.1 U8 [cTCKeepChange]: Tex Coord Keep Change

For each face with texture coordinates and a split position that is moving to the New
Position, Tex Coord Keep Change indicates whether the texture coordinate at the same
corner as the split position should also change.

0x00 – Keep; The texture coordinate should not change.

0x01 – Change; The texture coordinate should change. The new value for the texture
coordinate can be found in the following change index.

Tex Coord Keep Change

Tex Coord Change Type

Tex Coord Change Index New

Tex Coord Change Index Global

Tex Coord Change Index Local

- 76 -

- 77 -

9.6.1.3.4.8.3.2 U8 [cTCChangeType]: Tex Coord Change Type

Tex Coord Change Type indicates the type of change index that follows.

0x01 – New;

0x02 – Local;

0x03 – Global.

9.6.1.3.4.8.3.3 U32 [cTCChangeIndexNew]: Tex Coord Change Index New

Tex Coord Change Index New is an index into the list of new texture coordinates for this
resolution update as described in 9.6.1.3.4.4 New Texture Coord Info.

9.6.1.3.4.8.3.4 U32 [cTCChangeIndexLocal]: Tex Coord Change Index Local

Tex Coord Change Index Local is an index into the list of texture coordinate indices
used at the split position at this texture layer. Larger indices appear first in the that list.

9.6.1.3.4.8.3.5 U32 [cTCChangeIndexGlobal]: Tex Coord Change Index Global

Tex Coord Change Index Global is an index into the full texture coordinate pool.

9.6.1.3.4.9 New Face Info

New Face Info completes the description of the new faces to be added to the mesh. The
description was started in 9.6.1.3.4.6 New Face Position Info. The presence of the diffuse,
specular or texture coordinate face info is determined by the Shading Description indicated by
the Shading ID for this new face.

New Face Diffuse Color Info

New Face Texture Coord Info

New Face Specular Color Info

9.6.1.3.4.9.1 New Face Diffuse Color Info

New Face Diffuse Color Info indicates which colors from the diffuse color pool are used at
each corner of this face. New Face Diffuse Color Info is only present if the shader list
identified by Shading ID uses diffuse color coordinates. One of the Shading Attributes flags
indicates the presence of diffuse color coordinates.

Diffuse Duplicate Flag

Split Vertex Diffuse Color

New Vertex Diffuse Color

Third Vertex Diffuse Color

9.6.1.3.4.9.1.1 U8 [cColorDup]: Diffuse Duplicate Flag

Diffuse Duplicate Flag is a set of flags that indicates if the index for the color at a
particular corner is the same as the corresponding index from the previous diffuse face.
If the flag is set (one), then the most recently used color is used again. If the flag is not
set (zero), then a color index is used to indicate the color to be used from the diffuse
color pool. All other values are reserved.

0x00 – Split Vertex uses color indicated by the color index.

0x01 – Split Vertex uses color used at previous diffuse split vertex.

0x02 – New Vertex uses color used at previous diffuse new vertex.

0x04 – Third Vertex uses color used at previous diffuse third vertex.

9.6.1.3.4.9.1.2 Split Vertex Diffuse Color

Split Vertex Diffuse Color is present only if Diffuse Duplicate Flag indicates the Split
Vertex does not use a duplicate color. This color index uses the list of diffuse color
indices used at the split position for the local index list. This color index uses the diffuse
color pool.

Color Index

9.6.1.3.4.9.1.2.1 Color Index

Color Index Type

Color Index Local Color Index Global

- 78 -

- 79 -

9.6.1.3.4.9.1.2.1.1 U8[cColorIndexType]: Color Index Type

Color Index Type indicates whether the following index is an index into the
complete color pool or an index into a smaller local list of color indices.

0x02 – Local;

0x03 – Global.

9.6.1.3.4.9.1.2.1.2 U32[cColorIndexLocal]: Color Index Local

Color Index Local is an index into a local list of colors. The indices in the list are
sorted with the larger indices first.

9.6.1.3.4.9.1.2.1.3 U32[cColorIndexGlobal]: Color Index Global

Color Index Global is an index into the complete color pool.

9.6.1.3.4.9.1.3 New Vertex Diffuse Color

New Vertex Diffuse Color is present only if Diffuse Duplicate Flag indicates the New
Vertex does not use a duplicate color. This color index uses the list of diffuse color
indices used at the split position for the local index list. This color index uses the diffuse
color pool for the complete color pool.

Color Index

Details on the color index format are in 9.6.1.3.4.9.1.2.1 Color Index.

9.6.1.3.4.9.1.4 Third Vertex Diffuse Color

Third Vertex Diffuse Color is present only if Diffuse Duplicate Flag indicates the Third
Vertex does not use a duplicate color. This color index uses the list of diffuse color
indices used at the third position for the local index list. This color index uses the diffuse
color pool for the complete color pool.

Color Index

Details on the color index format are in 9.6.1.3.4.9.1.2.1 Color Index.

9.6.1.3.4.9.2 New Face Specular Color Info

New Face Specular Color Info indicates which colors from the specular color pool are used
at each corner of this face. New Face Specular Color Info is only present if the shader list
identified by Shading ID uses specular color coordinates. One of the Shading Attributes
flags indicates the presence of specular color coordinates.

Specular Duplicate Flag

Split Vertex Specular Color

New Vertex Specular Color

Third Vertex Specular Color

9.6.1.3.4.9.2.1 U8 [cColorDup]: Specular Duplicate Flag

Specular Duplicate Flag is a set of flags that indicates if the index for the color at a
particular corner is the same as the corresponding index from the previous specular
face. If the flag is set (one), then the most recently used color is used again. If the flag is
not set (zero), then a color index is used to indicate the color to be used from the
specular color pool. All other values are reserved.

0x01 – Split Vertex uses color used at previous specular split vertex.

0x02 – New Vertex uses color used at previous specular new vertex.

0x04 – Third Vertex uses color used at previous specular third vertex.

9.6.1.3.4.9.2.2 Split Vertex Specular Color

Split Vertex Specular Color is present only if Specular Duplicate Flag indicates the Split
Vertex does not use a duplicate color. This color index uses the list of specular color
indices used at the split position for the local index list. This color index uses the
specular color pool for the complete color pool.

Details on the color index format are in 9.6.1.3.4.9.1.2.1 Color Index.

Color Index

9.6.1.3.4.9.2.3 New Vertex Specular Color

New Vertex Specular Color is present only if Specular Duplicate Flag indicates the New
Vertex does not use a duplicate color. This color index uses the list of specular color
indices used at the split position for the local index list. This color index uses the
specular color pool for the complete color pool.

Color Index

Details on the color index format are in 9.6.1.3.4.9.1.2.1 Color Index.

- 80 -

- 81 -

9.6.1.3.4.9.2.4 Third Vertex Specular Color

Third Vertex Specular Color is present only if Specular Duplicate Flag indicates the
Third Vertex does not use a duplicate color. This color index uses the list of specular
color indices used at the third position for the local index list. This color index uses the
specular color pool for the complete color pool.

Color Index

Details on the color index format are in 9.6.1.3.4.9.1.2.1 Color Index.

9.6.1.3.4.9.3 New Face Texture Coord Info

New Face Texture Coord Info indicates which texture coordinates from the texture
coordinate pool are used at each corner of this face for each texgture coordinate layer. New
Face Texture Coord Info is only present if the shader list identified by Shading ID uses
texture coordinates. A texture layer count greater than zero indicates the presence of
texture coordinates.

Texture Coord Duplicate Flag

9.6.1.3.4.9.3.1 U8 [cTexCDup]: Texture Coord Duplicate Flag

Texture Coord Duplicate Flag is a set of flags that indicates if the index for the texture
coordinagte at a particular corner is the same as the corresponding index from the
previous corner. If the flag is set (one), then the most recently used texture coordinate is
used again. If the flag is not set (zero), then a texture coordinate index is used to
indicate the texture coordinate to be used from the texture coordinate pool. All other
values are reserved.

0x01 – Split Vertex uses previous texture coordinate used at a split vertex in this mesh.

0x02 – New Vertex uses previous texture coordinate used at a new vertex in this mesh.

0x04 – Third Vertex uses previous texture coordinate used at a third vertex in this mesh.

Split Vertex Texture Coord

New Vertex Texture Coord

Third Vertex Texture Coord

Texture Layer Count

9.6.1.3.4.9.3.2 Split Vertex Texture Coordinate

Split Vertex Texture Coordinate is present only if Texture Coord Duplicate Flag
indicates the Split Vertex does not use a duplicate texture coordinate. This texture
coordinate index uses the list of texture coordinate indices used at the split position for
the local index list.

Texture Coordinate Index

9.6.1.3.4.9.3.2.1 Texture Coordinate Index

Texture Coord Index Type

Texture Coord Index Local Texture Coord Index Global

9.6.1.3.4.9.3.2.1.1 U8[cTexCIndexType]: Texture Coord Index Type

Texture Coord Index Type indicates whether the following index is an index into
the complete texture coordinate pool or an index into a smaller local list of
texture coordinate indices.

0x02 – Local;

0x03 – Global.

9.6.1.3.4.9.3.2.1.2 U32[cColorIndexLocal]: Texture Coord Index Local

Texture Coord Index Local is an index into a local list of texture coordinates.
The indices in the list are sorted with the larger indices first.

9.6.1.3.4.9.3.2.1.3 U32[cColorIndexGlobal]: Texture Coord Index Global

Texture Coord Index Global is an index into the complete texture coordinate
pool.

9.6.1.3.4.9.3.3 New Vertex Texture Coord

New Vertex Texture Coord is present only if Texture Coord Duplicate Flag indicates the
New Vertex does not use a duplicate texture coordinate. This texture coordinate index
uses the list of texture coordinates indices used at the split position for the current
texture layer for the local index list.

Texture Coord Index

Details on the texture coordinate index format are in 9.6.1.3.4.9.3.2.1 Texture Coord
Index.

- 82 -

- 83 -

9.6.1.3.4.9.3.4 Third Vertex Texture Coord

Third Vertex Texture Coord is present only if Texture Coord Duplicate Flag indicates the
Third Vertex does not use a duplicate texture coordinate. This texture coordinate index
uses the list of texture coordinate indices used at the third position for the current
texture layer for the local index list. This color index uses the diffuse color pool for the
complete color pool.

Texture Coord Index

Details on the texture coordinate index format are in 9.6.1.3.4.9.3.2.1 Texture Coord
Index.

9.6.1.3.4.10 New Position Info

New Position Info describes the position added to the mesh during this resolution upate. The
new position value is predicted as the split position value.

Position Difference Signs

Position Difference X

Position Difference Y

Position Difference Z

9.6.1.3.4.10.1 U8 [cPosDiffSign]: Position Difference Signs

Position Difference Signs is a collection of sign bits for the prediction differences.

0x01 – Sign bit for Position Difference X

0x02 – Sign bit for Position Difference Y

0x04 – Sign bit for Position Difference Z

9.6.1.3.4.10.2 U32 [cPosDiffX]: Position Difference X

Reconstructed Position X coordinate is calculated as

Reconstructed Position X = InverseQuant(split position X,(Position Difference
Signs & 0x01),

Position Difference X, Position Inverse Quant).

9.6.1.3.4.10.3 U32 [cPosDiffY]: Position Difference Y

Reconstructed Position Y coordinate is calculated as

Reconstructed Position Y = InverseQuant(split position Y,((Position Difference
Signs & 0x02)>>1),

Position Difference Y, Position Inverse Quant).

9.6.1.3.4.10.4 U32 [cPosDiffZ]: Position Difference Z

Reconstructed Position Z coordinate is calculated as

Reconstructed Position Z = InverseQuant(split position Z,((Position Difference
Signs & 0x04)>>2),

Position Difference Z, Position Inverse Quant).

9.6.1.3.4.11 New Normal Info

New Normal Info is repeated once for each position in the neighbourhood of the new position.
Positions with higher index values are handled first. This neighbourhood includes the new
position. New Normal Info describes new normals added to the normal pool. New Normal Info
also specifies which normal should be used by each corner that uses that position. New
Normal Info is not present if 9.6.1.1.3.1 Mesh Attributes in the Max Mesh Description indicates
Exclude Normals.

New Normal Count

- 84 -

Count of faces using position

New Normal Count

Normal Local Index

Normal Difference Signs

Normal Difference X

Normal Difference Y

Normal Difference Z

- 85 -

9.6.1.3.4.11.1 U32 [cNormlCnt]: New Normal Count

New Normal Count is the number of normals added to the normal array. An array of
predicted normals is generated and the difference from the predictions is quantized and
encoded in the following sections. To generate the array of predicted normals, start by
putting the face normal for each face that uses this position into an array. While the size of
this array is larger than New Normal Count, merge the two normals that are closest.
Merging normals is done using a weighted spherical-linear average where each normal is
weighted by the number of original face normals that it includes.

9.6.1.3.4.11.2 U8 [cDiffNormalSign]: Normal Difference Signs

Normal Difference Signs is a collection of sign bits for the prediction differences.

0x01 – Sign bit for Normal Difference X

0x02 – Sign bit for Normal Difference Y

0x04 – Sign bit for Normal Difference Z

9.6.1.3.4.11.3 U32 [cDiffNormalX]: Normal Difference X

Reconstructed Normal X coordinate is calculated as

Reconstructed Normal X = InverseQuant(predicted normal X,(Normal Difference
Signs & 0x01),

Normal Difference X, Normal Inverse Quant).

9.6.1.3.4.11.4 U32 [cDiffNormalY]: Normal Difference Y

Reconstructed Normal Y coordinate is calculated as

Reconstructed Normal Y = InverseQuant(predicted normal Y,((Normal Difference
Signs & 0x02)>>1),

Normal Difference Y, Normal Inverse Quant).

9.6.1.3.4.11.5 U32 [cDiffNormalZ]: Normal Difference Z

Reconstructed Normal Z coordinate is calculated as

Reconstructed Normal Z = InverseQuant(predicted normal Z,((Normal Difference
Signs & 0x04)>>2),

Normal Difference Z, Normal Inverse Quant).

9.6.1.3.4.11.6 U32 [cNormlIdx]: Normal Local Index

For each face using the position, the face shall use a New Normal from the new normal
array at the corner that is using the position. Normal Local Index specifies which of the new
normals should be used. The face may be a new face added during this resolution update
or may be a face that already existed in the mesh.

9.6.2 Point Set (blocktypes: 0xFFFFFF36; 0xFFFFFF3E)
The Point Set generator contains the data needed to represent a set of points.

The Point Set produces the following outputs: Renderable Group, Renderable Group Bounds,
Transform Set.

The Point Set’s outputs have no dependencies.

9.6.2.1 Point Set Declaration (blocktype: 0xFFFFFF36)
The Point Set Declaration contains the declaration information for a point set generator. The
declaration information is sufficient to allocate space for the point set data and create the
point set generator object. The point set data is contained in following continuation blocks.

Point Set Name

- 86 -

9.6.2.1.1 String: Point Set Name

Point Set Name is the name of the point set generator. This name is also the name of the
model resource modifier chain that contains the point set generator.

9.6.2.1.2 U32: Chain Index
Chain Index is the position of the point set generator in the model resource modifier
chain.The value of Chain Index shall zero for this blocktype.

9.6.2.1.3 Point Set Description
Point Set Description describes the size of the point set. Point Set Description can be used
to allocate space for the point set.

Point Set Description

Resource Description

Chain Index

Skeleton Description

- 87 -

9.6.2.1.3.1 U32: Point Set Reserved

Point Set Reserved is a reserved field and shall have the value 0.

9.6.2.1.3.2 U32: Point Count

Point Count is the number of points in the point set.

9.6.2.1.3.3 U32: Position Count

Position Count is the number of positions in the position array.

9.6.2.1.3.4 U32: Normal Count

Normal Count is the number of normals in the normal array.

9.6.2.1.3.5 U32: Diffuse Color Count

Diffuse Color Count is the number of colors in the diffuse color array.

9.6.2.1.3.6 U32: Specular Color Count

Specular Color Count is the number of colors in the specular color array.

Point Count

Position Count

Normal Count

Diffuse Color Count

Specular Color Count

Texture Coord Count

Shading Count

Shading Description

Point Set Reserved

Shading Count

9.6.2.1.3.7 U32: Texture Coord Count

Texture Coord Count is the number of texture coordinates in the texture coordinate array.

9.6.2.1.3.8 U32: Shading List Count

Shading List Count Count is the number of materials used in the point set.

9.6.2.1.3.9 Shading Description

Shading Description indicates which per vertex attributes, in addition to position and normal,
are used by each shader list. Details are covered in 9.6.1.1.3.9 Shading Description.

9.6.2.1.4 Resource Description

Quality Factors

Inverse Quantization

Resource Parameters

9.6.2.1.4.1 Quality Factors

The quality factors are defined in 9.6.1.1.5.1 Quality Factors.

9.6.2.1.4.2 Inverse Quantization

Inverse quantization is defined in 9.6.1.1.5.2 Inverse Quantization.

9.6.2.1.4.3 Resource Parameters

Resource Parameters control the operation of the point set generator. The parameters defined
in this section control the creation of the renderable point set. These parameters are reserved
for future definition.

Reserved Point Set Parameter 1

Reserved Point Set Parameter 2

Reserved Point Set Parameter 3

9.6.2.1.4.3.1 U32: Reserved Point Set Parameter 1

Reserved Point Set Parameter 1 shall have the value 0.

9.6.2.1.4.3.2 U32: Reserved Point Set Parameter 2

Reserved Point Set Parameter 2 shall have the value 0.

- 88 -

- 89 -

9.6.2.1.4.3.3 U32: Reserved Point Set Parameter 3

Reserved Point Set Parameter 3 shall have the value 0.

9.6.2.1.5 Skeleton Description
Skeleton Description provides bone structure information. Definition of Skeleton
Description is in 9.6.1.1.6 Skeleton Description.

9.6.2.2 Point Set Continuation (blocktype: 0xFFFFFF3E)
The Point Set Continuation contains point data for a point set generator.

The Point Set Continuation block is a continuation type block.

Point Set Name

9.6.2.2.1 String: Point Set Name
Point Set Name is the name of the point set generator. This name is also the name of the
model resource modifier chain that contains the point set generator.

9.6.2.2.2 U32: Chain Index
Chain Index is the position of the point set generator in the model resource modifier chain.
The value of Chain Index shall zero for this blocktype.

9.6.2.2.3 Point Resolution Range
Point Resolution Range specifies the range of point description data provided in this
continuation block.

This continuation block contains point description data for positions from (Start Resolution)
to (End Resolution – 1). The total number of positions added by this block is Point
Resolution Count = End Resolution – Start Resolution.

Point Description

Point Resolution Range

Chain Index

Point Resolution Count

Start Resolution

End Resolution

9.6.2.2.3.1 U32: Start Resolution

Start Resolution is the index of the first position added by this block.

9.6.2.2.3.2 U32: End Resolution

End Resolution is one more than the index of the last position added by this block.

9.6.2.2.4 Point Description

- 90 -

9.6.2.2.4.1 U32 [rCurrentPositionCount]: Split Position Index

Each Point Description adds one new position to the position array. Split Position Index is the
index of the position of the points used as a prediction reference by this Point Description. Split
Position Index will be less than the current position count.

9.6.2.2.4.2 New Position Info

The new position is predicted as the split position. New Position Info is defined above in
9.6.1.3.4.10 New Position Info.

9.6.2.2.4.3 U32 [cNormlCnt]: New Normal Count

New Normal Count is the number of normals added to the normal array for use by points at
this position.

9.6.2.2.4.4 New Normal Info

The normals are predicted as the spherical-linear average of the normals used by points at the
split position.

New Point Info

Split Position Index

New Position Info

New Normal Count

New Normal Info

New Point Count

New Point Count

New Normal Count

- 91 -

Normal Difference Signs

Normal Difference X

Normal Difference Y

Normal Difference Z

9.6.2.2.4.4.1 U8 [cDiffNormalSign]: Normal Difference Signs

Normal Difference Signs is a collection of sign bits for the prediction differences.

0x01 – Sign bit for Normal Difference X

0x02 – Sign bit for Normal Difference Y

0x04 – Sign bit for Normal Difference Z

9.6.2.2.4.4.2 U32 [cDiffNormal]: Normal Difference X

Reconstructed Normal X coordinate is calculated as

Reconstructed Normal X = InverseQuant(predicted normal X,(Normal Difference
Signs & 0x01),

Normal Difference X, Normal Inverse Quant).

9.6.2.2.4.4.3 U32 [cDiffNormal]: Normal Difference Y

Reconstructed Normal Y coordinate is calculated as

Reconstructed Normal Y = InverseQuant(predicted normal Y,((Normal Difference
Signs & 0x02)>>1),

Normal Difference Y, Normal Inverse Quant).

9.6.2.2.4.4.4 U32 [cDiffNormal]: Normal Difference Z

Reconstructed Normal Z coordinate is calculated as

Reconstructed Normal Z = InverseQuant(predicted normal Z,((Normal Difference
Signs & 0x04)>>2),

Normal Difference Z, Normal Inverse Quant).

9.6.2.2.4.5 U32 [cPointCnt]: New Point Count

New Point Count is the number of new points added to the point set by this Point Description.

9.6.2.2.4.6 New Point Info

New Point Info describes a new point to be added to the point set. The position index of the
point is the current position count.

Shading ID

- 92 -

9.6.2.2.4.6.1 U32 [cShading]: Shading ID

Shading ID is the index of the shading description used for this point. The Shading
Description array is defined in the Point Set Declaration block.

9.6.2.2.4.6.2 U32 [cNormlIdx]: Normal Local Index

The new point shall use a normal the New Normal Info array for this point. Normal Local
Index specifies which of the new normals should be used.

9.6.2.2.4.6.3 New Point Diffuse Color Coords

New Point Diffuse Color Coords is only present if the shading list identified by Shading ID
uses diffuse color coordinates. One of the Shading Attributes flags indicates the presence of
diffuse color coordinates.

9.6.2.2.4.6.3.1 U8 [cDiffDup]: Diffuse Duplicate Flag

Diffuse Duplicate Flag is a set of flags that indicates if a new color is added to the color
pool or if the most recently added color is used again. If the flag is set (one), then the
most recently added color is used again. If the flag is not set (zero), then a new color is
added to the diffuse color pool. All other values are reserved.

0x02 – New point uses duplicate color

9.6.2.2.4.6.3.2 New Point Diffuse Color

New Point Diffuse Color is present only if Diffuse Duplicate Flag indicates the new point
does not use a duplicate color.

New Point Diffuse Color Coords

New Point Specular Color Coords

New Point Texture Coords

Normal Local Index

Diffuse Duplicate Flag

New Point Diffuse Color

- 93 -

The New Point Diffuse Color is predicted as the average of the diffuse colors used by all
points that use the Split Position.

9.6.2.2.4.6.3.2.1 U8

it for Diffuse Color Difference Green

9.6.2.2.4.6.3.2.2 d

s

d,(Diffuse Color Difference

9.6.2.2.4.6.3.2.3 U32 Diffuse Color Difference Green

Recons

een, ((Diffuse Color

9.6.2.2.4.6.3.2.4 U32 ifference Blue

Recons

e, ((Diffuse Color Difference

[cDiffuseColorSign]: Diffuse Color Difference Signs

Diffuse Color Difference Signs is a collection of sign bits for the prediction

Diffuse Color Difference Signs

Diffuse Color Difference Blue

Diffuse Color Difference Red

Diffuse Color Difference Green

Diffuse Color Difference Alpha

differences.

0x01 – Sign bit for Diffuse Color Difference Red

0x02 – Sign b

0x04 – Sign bit for Diffuse Color Difference Blue

0x08 – Sign bit for Diffuse Color Difference Alpha

U32[cColorDiffR]: Diffuse Color Difference Re

Reconstructed Color red component is calculated a

Reconstructed Red = InverseQuant(predicted re
Signs & 0x01),

Diffuse Color Difference Red, Diffuse Color Inverse Quant).

 [cColorDiffG]:

tructed Color green component is calculated as

Reconstructed Green = InverseQuant(predicted gr
Difference Signs & 0x02) >> 1),

Diffuse Color Difference Green, Diffuse Color Inverse Quant).

 [cColorDiffB]: Diffuse Color D

tructed Color blue component is calculated as

Reconstructed Blue = InverseQuant(predicted blu
Signs & 0x04) >> 2),

Diffuse Color Difference Blue, Diffuse Color Inverse Quant).

- 94 -

- 94 -

9.6.2.2.4.6.3.2.5 U32 [cC

Reconstructed Color alpha component is calculated as

Reconstructed Alpha = InverseQuant(predicted alpha, ((Diffuse Color
Difference Signs & 0x08) >> 3)

Diffuse Color Difference Alpha, Diffuse Color Inverse Quant).

9.6.2.2.4.6.4 New Point Specular Color Coords

New Point Specular Color Coords is only present if the shading list identified by Shading ID
uses specular color coordinates. One of the Shading Attributes flags indicates the presence
of specular color coordinates.

9.6.2.2.4.6.4.1 U8 [cSpecDup]: Specular Duplicate Flag

Specular Duplicate Flag is a set of flags that indicates if a new color is added to the
color pool or if the most recently added color is used again. If the flag is set (one), then
the most recently added color is used again. If the flag is not set (zero), then a new
color is added to the specular color pool. All other values are reserved.

0x02 – New point uses duplicate color

9.6.2.2.4.6.4.2 New Point Specular Color

New Point Specular Color is present only if Specular Duplicate Flag indicates the new
point does not use a duplicate color.

The New Point Specular Color is predicted as the average of the specular colors used
at all points that use the Split Position.

olorDiffA]: Diffuse Color Difference Alpha

Specular Color Difference Signs

Specular Color Difference Blue

Specular Color Difference Red

Specular Color Difference Green

Specular Color Difference Alpha

Specular Duplicate Flag

New Point Specular Color

- 95 -

9.6.2.2.4.6.4.2.1 U8 [cSpecularColorSign]: Specular Color Difference Signs

ign bits for the prediction
diffe

0x01 – Sign bit for Specular Color Difference Red

0x02 –

olor Difference Blue

9.6.2.2.4

Reconstructed Color red component is calculated as

Reconstructed Red = InverseQuant(predicted red,(Specular Color Difference

Specular Color Difference Red, Specular Color Inverse Quant).

9.6.2.2.4.6.4.2.3 U r Color Difference Green

Reconstructed Color green component is calculated as

Reconstructed Green = InverseQuant(predicted green, ((Specular Color
Difference Signs & 0x02) >> 1),

n, Specular Color Inverse Quant).

9.6.2.2.4.6.4.

Difference Blue, Specular Color Inverse Quant).

9.6.2.2.4.6.4.

Specular Color Difference Alpha, Specular Color Inverse Quant)

9.6.2.2.4.6.5 New Point Texture Coords

Specular Color Difference Signs is a collection of s
rences.

Sign bit for Specular Color Difference Green

0x04 – Sign bit for Specular C

0x08 – Sign bit for Specular Color Difference Alpha

.6.4.2.2 U32[cColorDiffR]: Specular Color Difference Red

Signs & 0x01),

32 [cColorDiffG]: Specula

Specular Color Difference Gree

2.4 U32 [cColorDiffB]: Specular Color Difference Blue

Reconstructed Color blue component is calculated as

Reconstructed Blue = InverseQuant(predicted blue, ((Specular Color Difference
Signs & 0x04) >> 2),

Specular Color

2.5 U32 [cColorDiffA]: Specular Color Difference Alpha

Reconstructed Color alpha component is calculated as

Reconstructed Alpha = InverseQuant(predicted alpha, ((Specular Color
Difference Signs & 0x08) >> 3)

Tex Coord Duplicate Flag

New Tex Coord

Texture Layer Count

9.6.2.2.4.6.5.1 U8 [cTexCDup]: Tex Coord Duplicate Flag

Tex Coord Duplicate Flag is a set of flags that indicates if a new texture coordinate is
added if the most recently added texture coordinate is
used again. If the flag is set (one), then the most recently added texture coordinate is
used again. If the flag is not set (zero), then a new texture coordinate is added to the
texture coordinate pool. All other values are reserved.

0x02 – New point uses duplicate texture coordinate

9.6.2.2.4.6.5.2 New Tex Coord

The N average of the texture coordinates at the same
layer used by all points using the split position.

9.6.2.2.4.6.5.2.1 U8

Tex Coord Difference Signs is a collection of sign bits for the prediction differences.

0x01 – S

0x0

9.6.2.2.4.6.5.2.2 U32 [cTexCDiffU]: Texture Coord Difference U

The reco

ed Tex Coord U, (Tex Coord

9.6.2.2.4.6.5.2.3 U32 [cTexCDiffV]: Texture Coord Difference V

The reco

d Tex Coord V, ((Tex

Texture Coord Difference V, Texture Coord Inverse Quant).

 to the texture coordinate pool or

ew Tex Coord is predicted as the

Tex Coord Difference Signs

Te

Tex Coord Difference U

Tex Coord Difference V

x Coord Difference S

Tex Coord Difference T

[cTexCoordSign]: Tex Coord Difference Signs

ign bit for Texture Coord Difference U

0x02 – Sign bit for Texture Coord Difference V

0x04 – Sign bit for Texture Coord Difference S

8 – Sign bit for Texture Coord Difference T

nstructed texture coordinate U is calculated as

Reconstructed TexCoord U = InverseQuant(predict
Signs & 0x01),

Texture Coord Difference U, Texture Coord Inverse Quant).

nstructed texture coordinate V is calculated as

Reconstructed TexCoord V = InverseQuant(predicte
Coord Signs & 0x02) >> 1)),

- 96 -

- 97 -

9.6.2.2.4.6.5.2.4 U32

The S is calculated as

Reco ex
04) >> 2),

Texture Coord Difference S, Texture Coord Inverse Quant).

9.6.2.2.4.6.5. ture Coord Difference T

The reconstructed texture coordinate T

xCoord T = InverseQuant(predicted Tex Coord, ((Tex Coord
 3),

Texture Coord Difference T, Texture Coord Inverse Quant).

9.6.3 Line Set (blocktypes: 0xFFFFFF37; 0xFFFFFF3F)
The Line Set generator contains the data needed to represent a set of lines.

The Line Set produces the following outputs: Renderable Group, Renderable Group Bounds,
Transform Set.

The Line Set’s outputs have no dependencies.

9.6.3.1 Line Set Declaration (blocktype: 0xFFFFFF37)
The Line Set Declaration contains the declaration information for a line set generator. The
declaration information is sufficient to allocate space for the line set data and create the line
set generator object. The line set data is contained in following continuation blocks.

9.6.3.1.1 String: Line Set Name

Line Set Name is the name of the line set generator. This name is also the name of the
model resource modifier chain that contains the line set generator.

9.6.3.1.2 U32: Chain Index
Chain Index is the position of the line set generator in the model resource modifier chain.
The value of Chain Index shall zero for this blocktype.

 [cTexCDiffS]: Texture Coord Difference S

 reconstructed texture coordinate

nstructed TexCoord S = InverseQuant(predicted Tex Coord S, ((T
Coord Signs & 0x

2.5 U32 [cTexCDiffT]: Tex

is calculated as

Reconstructed Te
Signs & 0x08) >>

Line Set Name

Line Set Description

Resource Description

Chain Index

Skeleton Description

9.6.3
Line Set
allocate

9.6.3.1.3.1 U32: Line Set Reserv

Line Set Reserved is a reserved field and shall have the value 0.

9.6.3.1.3.2

Line Count is the number of line segments in the line set.

9.6.3.1.3.3 U32: Position

Position Count is the

9.6.3.1

Normal Co

9.6.3.1.3.5 U32: Diffuse C

Diffuse Color Count is the number of colors in the diffuse color array.

.1.3 Line Set Description
 Description describes the size of the line set. Line Set Description can be used to
space for the line set.

- 98 -

ed

U32: Line Count

 Count

 number of positions in the position array.

.3.4 U32: Normal Count

unt is the number of normals in the normal array.

olor Count

Line Count

Position Count

Normal Count

Diffuse Color Count

Specular Color Count

Texture Coord Count

Shading Count

Shading Description

Line Set Reserved

Shading Count

- 99 -

9.6.3.1

Specular C rray.

9.6.3.1.3.7 U32: Texture

Texture Coord Count is the number of texture coordinates in the texture coordinate array.

9.6.3.1.3.8 U32: Shading Cou

 the line set.

9.6.3.1.3.9 Shading D

Shading Desc l,
are used by ea are provided above in 9.6.1.1.3.9 Shading Description

.3.6 U32: Specular Color Count

olor Count is the number of colors in the specular color a

Coord Count

nt

Shading Count is the number of shading descriptions used in

escription

ription indicates which per vertex attributes, in addition to position and norma
ch shading list. Details .

9.6.3.1.4 Resource Descrip

9.6.3.1.4.1 ors

The quality factors are defined in 9.6.1.1.5.1 Quality Factors

t ion

 Quality Fact

.

9.6.3.1.4.2 uantization

Inverse quantization is defined in 9.6.1.1.5.2 Inverse Quantization

 Inverse Q

.

9.6.3.1.4.3 Resource Parameters

ters control the operation of the line set generator. The parameters defined
in this section control the creation of the renderable line group. These parameters are reserved
for future definition.

9.6.3.1.4.

Reserved Line Set Parameter 1 shall have the value 0.

Resource Parame

3.1 U32: Reserved Line Set Parameter 1

Reserved Line Set Parameter 1

Reserved Line Set Parameter 3

Reserved Line Set Parameter 2

Quality Factors

Inverse Quantization

Resource Parameters

9.6.3.1.4.3.2 U32: Reserved Line Set Parameter 2

9.6.3.1.4.3.3 U32: Reserved Line Set Parameter 3

Reserved Line Set Parameter 3 shall have the value 0.

9.6.3.1.5 Sk on
Skeleton Description provides bone structure information. Details are provided in 9.6.1.1.6

Reserved Line Set Parameter 2 shall have the value 0.

eleton Descripti

Skeleton Description.

9.6.3.2 Line Set Continuation (blocktype: 0xFFFFFF3F)
The Line Set Continuation contains data for a line set generator.

The Line Set Continuation block is a continuation type block.

9.6.3.2.1 String: Line Set Name
Line Set Name is the name of the line set generator. This name is also the name of the
model resource modifier chain that contains the line set generator.

9.6.3.2.2 U3
Chain Index is the position of the line set generator in the model resource modifier chain.
The value of Chain Index shall zero for this blocktype.

9
Li ion data provided in this
continuation block.

description data for positions from (Start Resolution)
to (End Resolution – 1). The total number of positions added by this block is Point

Line Set Name

Line Description

Line Resolution Range

Chain Index

Line Resolution Count

2: Chain Index

.6.3.2.3 Line Resolution Range
ne Resolution Range specifies the range of line descript

This continuation block contains line

Resolution Count = End Resolution – Start Resolution.

- 100 -

- 101 -

Start Resolution

End Resolution

End Resolution is one more than the index of the last position added by this block.

9.6.3.2.4 L n

9.6.3.2.4.1 U32 [rCurrentPositionCount]: Split Position Index

Each Line Description adds one new position to the position array. Split Position Index is the
index of the position used
Index will be less than the current position count.

9.6.3.2.4.2 N

The new position is predicted as the split position. New Position Info is defined above in
9.6.1.3.4.10 New Position Info

9.6.3.2.3.1 U32: Start Resolution

Start Resolution is the index of the first position added by this block.

9.6.3.2.3.2 U32: End Resolution

ine Descriptio

New Line Info
New Line Count

Split Position Index

New Position Info

New Normal Info

New Line Count

New Normal Count

New Normal Count

as a prediction reference by this Line Description. Split Position

ew Position Info

.

9.6.3.2.4.3 U32

using
th

[cNormlCnt]: New Normal Count

New Normal Count is the number of normals added to the normal array for use by lines
e new position.

9

Th als used at the split position. New
ormal Info

.6.3.2.4.4 New Normal Info

e normals are predicted as the average of the norm
Normal Info is defined in 9.6.2.2.4.4 New N .

9.6.3.2.4.5 U3

ber of new lines added to the line set by this Line Description.

9.6.3.2.4.6

es a new line segment to be added to the line set. The normal, color and
 of the line segment and then for the

9.6.3.2.4.

f the shading description used for this line segment. The Shading

9.6.3.2.4.6.2 U32

9.6.3.2.4.6.3 U32 [cNormlIdx]: Normal Local Index

The new line segment shall use a normal in the New Normal Info array for this line. Normal
Local Index specifies which of the new normals should be used.

2 [cLineCnt]: New Line Count

New Line Count is the num

New Line Info

New Line Info describ
texture coordinate information is given first for the first end
second end of the line segment.

First Position Index

New Line Diffuse Color Coords

New Line Specular Color Coords

New Line Texture Coords

6.1 U32 [cShading]:Shading ID

Normal Local Index

Shading ID

2

Shading ID is the index o
Description array is defined in the Line Set Declaration block.

[rCurrentPositionCount]: First Position Index

First Position Index is the index of the first end of the line segment. The index of the second
end of the line segment is the current position count.

- 102 -

- 103 -

9.6.3.2.4.6.4 New Line Diffuse Color Coords

use Color Coords is only present if the shading list identified by Shading List
se color coordinates. One of the Shading Attributes flags indicates the

presence of diffuse color coordinates.

9.6.3.2.4

te Flag is a set of flags that indicates if a new color is added to the color
pool or if the most recently added color is used again. If the flag is set (one), then the
most recently added color is used again. If the flag is not set (zero), then a new color is

ffuse color pool. All other values are reserved.

0x02 – New line segment end uses duplicate color

9.6.3.2.4.6.4.2 New

Diffuse Duplicate Flag indicates the new line
does not use a duplicate color.

iffuse Color is predicted as the average of the diffuse colors used by all
ds that use the Split Position.

The formatting for New Line Diffuse Color is the same as for 9.6.2.2.4.6.3.2 New Point

New Line Diff
ID uses diffu

.6.4.1 U8 [cDiffDup]: Diffuse Duplicate Flag

Diffuse Duplica

added to the di

 Line Diffuse Color

New Line Diffuse Color is present only if

The New Line D
line segment en

Diffuse Color.

9.6.3.2.4.6.5 lar Color Coords

New Line Specular Color Coords is only present if the shading list identified by Shading ID
uses specular color coordinates. One of the Shading Attributes flags indicates the presence

r coordinates.

9.6.3.2.4

hat indicates if a new color is added to the
if the most recently added color is used again. If the flag is set (one), then

s duplicate color

New Line Specu

of specular colo

.6.5.1 U8 [cSpecDup]: Specular Duplicate Flag

Specular Duplicate Flag is a set of flags t
color pool or
the most recently added color is used again. If the flag is not set (zero), then a new
color is added to the specular color pool. All other values are reserved.

0x02 – New line segment end use

Specular Duplicate Flag

New Line Specular Color

Diffuse Duplicate Flag

New Line Diffuse Color

9.6.3.2.4.6.5.2 New Line Specular Color

r is predicted as the average of the specular colors used at

atting for New Line Specular Color is the same as for 9.6.2.2.4.6.4.2 New Point

New Line Specular Color is present only if Specular Duplicate Flag indicates the new
line segment end does not use a duplicate color.

The New Line Specular Colo
all line segment ends that use the Split Position.

The form
Specular Color.

9.6.3.2.4.6.6

9.6.3.2.4.6.6.1 x Coord Duplicate Flag

Tex Coord Duplicate Flag is a set of flags that indicates if a new texture coordinate is
added to the texture coordinate pool or if the most recently added texture coordinate is
used again. If the flag is set (one), then the most recently added texture coordinate is

t (zero), then a new texture coordinate is added to the
texture coordinate pool. All other values are reserved.

0x02 – New line segment end uses duplicate texture coordinate

9.6.3.2.4.6.6.2

The New Tex Coord is predicted as the average of the texture coordinates at the same
layer used by all line segment ends using the split position. The formatting for New Tex
Coord is the same as for 9.6.2.2.4.6.5.2 New Tex Coord

 New Line Texture Coords

Tex Coord Duplicate Flag

New Tex Coord

Texture Layer Count

U8 [cTexCDup]: Te

used again. If the flag is not se

New Tex Coord

.

9.7 Modifier bl
Modifier blocks contain the information necessary to create certain modifiers that can be added to
a modifier chain. Note that the declaration blocks for modifiers must be contained within a modifier
chain block.

9.7.1 xFFFFFF41)
The 2D G
a numbe nect the points. The shape

glyph in the glyph string

The 2D
Group Bo

nsfrom Set and View Transform.

ocks

 2D Glyph Modif ier (blocktype: 0
lyph Modifier contains information used to create a 2D shape. The shape is defined by

r of control points and parameters that define how to con
consists of a sequence of individual glyphs called a glyph string. Each
is defined by a sequence of drawing commands.

Glyph Modifier produces the following outputs: Renderable Group, and Renderable
unds.

The 2D Glyph Modifier’s outputs depend on: Tra

- 104 -

- 105 -

9.7.1.1 String: 2

2D Glyph M is 2D Glyph Modifier.

9.7.1.2 U32: Cha
Chain Index is the position of this modifier in the modifier chain.

9.7
Glyph
using a

0x0000 ould be oriented to the view.

0x00000002: Single Shader: a single shader list is used for all glyphs in the glyph string.

If Single Shader bit is not set, then each glyph in the glyph string uses a different shader list
from the associated shading group.

9.7.1.4 U32: Glyph Co
Glyph Command Count is the number of commands used to create this glyph.

9.7.1.5 Glyph Command

D Glyph Modif ier Name
odifier Name is the string used to identify th

in Index

.1.3 U32: Glyph Attr ibutes
Attributes is a bit field containing information about the Glyph. The bit field is combined
 bitwise OR. Other values are reserved. Valid values are:

0001: Billboard: the glyph sh

mmand Count

Command Type

Glyph Move To Glyph Line To Glyph Curve To Glyph End Glyph

2D Glyph Modifier Name

Chain Index

Glyph Command Count

Glyph Transform Element

Glyph Attributes

Glyph Command Count

16

Glyph Command

9.7.1
Valid Gl

0: STAR ph symbols. The glyphs symbols

1: ENDG

2: STAR Start a glyph. The glyph will be defined by the subsequent
mands until the next ENDGLYPH command.

3: ENDGLYPH End the current glyph definition.

4: STARTPATH be drawn. The path is defined by the
equent comman PATH command.

5: ENDPATH End the current path.

8: MOVETO e the current drawing position.

9: LINETO Draw a line from the current drawing position to the new
position.

10: CURVETO Draw a curve from the current drawing position to the new
pe is determined by two control points.

ENDGLY
below. T

9.7.1.5.2 Glyph E
Glyph E
glyph by

9.7 : End Glyph Offset X

en the starting point for this glyph and the

9.7.1.

.5.1 U32: Command Type
yph Commands are:

TGLYPHSTRING Start a sequence of gly
included in this sequence are defined in the subsequent
commands until the next ENDGLYPHSTRING command.

LYPHSTRING End a sequence of glyph symbols.

TGLYPH
com

 Start a new path to
subs ds until the next END

Mov

position. The curve sha

PH, MOVETO, LINETO, and CURVETO require addition information described
he other commands do not require any additional parameters.

nd Glyph
nd Glyph completes the current glyph and moves the starting point for the next
 the offset vector.

End Glyph Offset X

.1.5.2.1 F32

End Glyph Offset Y

End Glyph Offset X is the horizontal offset betwe
starting point for next glyph.

5.2.2 F32: End Glyph Offset Y

End Glyph Offset Y is the vertical offset between the starting point for this glyph and the
starting point for the next glyph.

- 106 -

- 107 -

9.7.1.5.3 Glyph Move To

9.7.1.5.3.1 F32: Move To X

 position of the active point.

9.7.1.5.3.2 F32: Move To Y

e new vertical position of the active point.

9.7.1.5.4 Glyph Line To

t.

9.7.1.5.4

The Glyph Move To command moves the active point without drawing.

Move To X is the new horizontal

Move To Y is th

Move To X

Move To Y

Line To X

Line To Y

The Glyph Line To command draws a line to the specified poin

9.7.1.5.4.1 F32: Line To X

Line To X is the horizontal position of the end point of the line.

.2 F32: Line To Y

Line To Y is the vertical position of the end point of the line.

9.7.1.5.5 Glyph Curve To

Control 1 X

Control 1 Y

Control 2 X

Control 2 Y

End Point X

The Glyph Curve To command draws a curve to the specified point. The control points are
used to determine the curve

End Point Y

.

9.7.1.5.5.1

rizontal position of the first control point.

9.7.1.5.5.2 F32: Control 1 Y

ion of the first control point.

9.7.1.5.5.3 F32: Control 2 X

Control 2 X is the horizontal position of the second control point.

9.7.1.5.5.5

l position of the end point of the curve.

9.7.1.5.5.6

End Point Y is the vertical position of the end point of the curve.

F32: Control 1 X

Control 1 X is the ho

Control 1 Y is the vertical posit

9.7.1.5.5.4 F32: Control 2 Y

Control 2 Y is the vertical position of the second control point.

F32: End Point X

End Point X is the horizonta

F32: End Point Y

- 108 -

- 109 -

9 orm Element
Th the glyph modifier
after drawing to place it in the 3D world. The matrix is written in the alphabetic order
described below:

C
NJFB
MA

9.7.2 pe: 0xFFFFFF42)
u r increases the resolution of a shape by dividing polygons into smaller

polygo at control the performance and
r t of the subdivision algorithm.

The Su derable Group Bounds.

ifier’s outputs depend on: Renderable Group, Transform Set, View
rustum.

9.7.2.1 String: Modif ier Name

Modifier Name is the name of this Subdivision Modifier. Modifier Name is also the name of
the object being modified and the name of the modifier chain that contains this modifier.

9.7.2.2 U32: Chain Index
Chain Index indicates the position of this modifier in the modifier chain.

9.7.2.3 U32: Subdivision Attr ibutes
Subdivision Attributes is a collection of flags. The flags are combined using the binary OR
operator. All other values are reserved.

.7.1.6 F32: Glyph Transf
e Glyph Transform Elements make up the Transform that is applied to

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

PLHD
O

IE

KG

Subdivision Modif ier (blockty
The S bdivision Modifie

ns. The Subdivision Modifier block contains parameters th
appea ance of the outpu

bdivision Modifier produces the following outputs: Ren

The Subdivision Mod
Transform, and View F

Chain Index

Subdivision Attributes

Subdivision Error

Subdivision Tension

Subdivision Depth

Modifier Name

0x00000001 – Enabled: The subdivision modifier is enabled.

0x00000002 – Adaptive: The subdivision modifier should use adaptive subdivision.

Uniform subdivision is used unless the adaptive subdivision flag is set. Uniform division
divides all of the polygons the same number of times. Adaptive subdivision divides the
polygons based on the model and if the polygons are visible.

9.7.2.4 U32: on Depth
Subdivision Depth is the maximum number of levels of subdivision.

9.7.2.5 F32: Subdivision Tension
Subdivision Tension is the tension value used for adaptive subdivision.

9.7.2.6 F32: Subdivision Error
Subdivision Error is the value of the screen space error metric. This value is used for
adaptive subdivision.

9.7.3 Animation Modif ier (blocktype: 0xFFFFFF43)
The Animation Modifier block describes parameters for animating a node or a renderable group.
These parameters indicate which motion resources should be used and how they should be
applied. on modifer modifies the transforms for nodes and the transformations of
bones relative to their parent bones. The hierarchy of bones is called a skeleton and is defined
in the Skeleton Description of the geometry generator. The animation modifier uses the
skeleton and bone weights defined by a bone weight modifier to change the positions and
normals in the renderable group.

The animation modifier block is limited to modifying transformations of nodes and bones and
modifying positions and normals based on the changes in the transformations. There are many
othe

The Animation Modifier produces the following outputs: Transform Set, Renderable Group, and

The An mulation Time, Skeleton, Bone

 Subdivisi

 The animati

r types of information that the animation modifier does not animate.

Skeleton.

imation Modifier’s outputs depend on: Transform Set, Si
Weights, and Renderable Group.

- 110 -

- 111 -

9.7.3.1 String: Animation Modif ier Name

Animation Modifier Name is the string that is used to identify this animation modifier. This is
also the name of the modifier chain that contains this modifier.

9.7.3.2 U32: Chain Index
Chain Index is the position of this modifier in a modifier chain.

9.7.3.3 U32:Animation Modif ier Attr ibutes
Animation Modifier Attributes is a bit field that holds state information for this animation
modifier. The values are combined using a bitwise OR operation. All other values are
reserved.

0x00000001: Animation should start when possible.

0x00000002: The root bone is locked. The node’s root bone’s transform does not change as
a result of the animation.

0x00000004: Playing a single track.

0x00000008: The bones’ transtorms should transition smoothly from one motion to the next
during the animation.

9.7.3.4 F32: Time Scale
Time Scale is a scaling value for the times of the motions.

9.7.3.5 U32: Motion Count
Motion Count is the number of motion resources referenced by this modifier. If the Motion
Count is zero, the Animation Modifier will use the default motion.

Chain Index

Animation Modifier Attributes

Time Scale

Motion Count

Blend Time

Motion Information Motion Count

Animation Modifier Name

9.7.3.6

9.7.3.

9.7.3.
eld of flags about the animation modifier. The values are

ng concurrently should

9.7.3. Time Offset

9.7.3.6.4
Time Scale is a scaling factor for the time of this motion resource for this animation
modifier.

9.7.3.7 F32: Blend Time
The Blend Time specifies the amount of time in milliseconds used when blending between
motions.

9.7.4 Bone Weight Modif ier (blocktype: 0xFFFFFF44)
The Bone Weight Modifier block describes a set of bone weights that can be added to a
modifier chain. The animation modifier uses the bone weights in combination with the skeleton
to animate the positions in a renderable group (mesh, point set, or line set). The normals are
also changed by the animation modifier.

The Bone Weight Modifier produces the following outputs: Bone Weights.

The Bone Weight Modifier’s outputs have no dependencies.

Motion Information

Motion Name

Motion Attributes

Time Offset

6.1 String: Motion Name

Motion Name is a string that identifies a motion resource.

6.2 U32: Motion Attr ibutes
Motion Attributes is a bit fi

Time Scale

combined with a bitwise or. Other values are reserved.

0x00000001: Loop: determines whether this motion repeats.

0x00000002: Sync: determines if all of the motion resources playi
end at the same time.

6.3 F32:
Time Offset is the number of milliseconds to offset the start time of the motion.

F32: Time Scale

- 112 -

- 113 -

9.7.4.1 String: Bone Weight Modif ier Name

Bone Weight Modifier Name is the name of the modifier chain to which these bone weight
should be added.

9.7.4.3
y be applied to the type of geometry specified by the Bone Weight

 mesh

9.7.4.4

9.7.4.5
ositions for which bone weights are provided by this

9.7.4.6
ght List indicates which bones have a non-zero influence at this
tructed bone weights at this position should sum to +1.0. The bone

9.7.4.2 U32: Chain Index
Chain Index is the position of this modifier in a modifier chain.

U32: Bone Weight Attr ibutes
The bone weights ma
Attributes. All other values are reserved.

0x00000001 – these bone weights are for a

0x00000002 – these bone weights are for a line set

0x00000004 – these bone weights are for a point set

F32: Bone Weight Inverse Quant
The bone weight inverse quant is the inverse quantization factor for the bone weights below.

U32: Posit ion Count
Position Count is the number of p
modifier.

Posit ion Bone Weight List
Position Bone Wei
position.The recons
weights cannot be negative.

Chain Index

Position Count

Position Count
Position Bone Weight List

Bone Weight Attributes

Bone Weight Inverse Quant

Bone Weight Modifier Name

Bone Weight Count

Bone Index

Quantize

9.7.4.6.1 neWeightCnt]: Bone Weight Count

Bone Weight Count is the number of bones which have influence at this position.

9.7.4.6.2 U32 [cBoneIdx]: Bone Index
 the bone in the skeleton that has influence at this position. Bone

zero.

Quantized Bone Weight

ucted bone weight value is

ight) = (Quantized Bone Weight) * (Bone Weight Inverse Quant)

t value is reconstructed by subtracting the sum of all the other
hts at this

9.7.5 Sha
The Shading Modifier block describes the shading group that is used in the drawing of a

aces the shading group associated with a

Th

oup.

d Bone Weight
Bone Weight Count - 1

Bone Weight Count

U32 [cBo

Bone Index is the index of
Index is present only if Bone Weight Count is greater than

9.7.4.6.3 U32 [cQntBoneWeight]:
Quantized Bone Weight is the quantized bone weight value. Quantized Bone Weight is
present only if Bone Weight Count is greater than one.

For other than the last bone weight value, the reconstr
calculated as:

(reconstructed bone we

The last bone weigh
reconstructed bone weight values from +1.0. The sum of all the bone weig
position will be +1.0.

ding Modif ier (blocktype: 0xFFFFFF45)

renderable group. The shading modifier repl
renderable group.

e Shading Modifier produces the following outputs: Renderable Group.

The Shading Modifier’s outputs depend on: Renderable Gr

- 114 -

- 115 -

nt

eds the number of renderable elements, the excess shader
ber of shader lists is less than the number of renderable

9.7.5.5
Shader Count is the number of shaders in the shader list.

9.7.5.1 String: Shading Modif ier Name
The Shading Modifier Name identifies this shading modifier. Shading Modifier Name is also
the name of the modifier chain that contains this modifier.

9.7.5.2 U32: Chain Index
Chain Index indicates the position of this modifier in the modifier chain.

9.7.5.3 U32: Shading Attr ibutes
Shading Attributes is a collection of flags. The flags are combined using the binary OR
operator. Other attributes are reserved.

0x00000001 – Mesh: the shading group is applied to the renderable mesh group.

0x00000002 – Line: the shading group is applied to the renderable line group.

0x00000004 – Point : the shading group is applied to the renderable point group.

0x00000008 – Glyph : the shading group is applied to the glyph string.

9.7.5.4 U32: Shader List Cou
Shader List Count is the number of shader lists in the shading group. Each shader list is
associated with a renderable element in the associated renderable group.

If the number of shader lists exce
lists have no effect. If the num
elements, the excess renderable elements shall be associated with a shader list containing
one shader and that one shader shall be the default shader.

U32: Shader Count

Shader List Count

Shader Name

Shader Count

Sha

Shader List Count

der Count

Chain Index

Shading Attributes

Shading Modifier Name

9.7.5.6 String: Shader Name
Each shader in the shader list is identified by Shader Name. Shader Name refers to a shader
in the shader resource palette.

9.7.6 CLOD Modif ier (blocktype: 0xFFFFFF46)
The CLOD Modifier adjusts the level of detail in the renderable meshes in the data packet. The
CLOD Modifier block contains parameters fo etail should be adjusted.

The CLOD Modifier produces the following outputs: Renderable Group.

The CLOD Modifier’s outputs depend on: Renderable Group, Renderable Group Bounds,
Transfo View Frustum, View Size.

9.7.6.2 ex

9.7.6.3
0x00000000 – Default attributes (automatic LOD control is disabled)

0x00000001 – automatic level of detail control.

If the automatic level of detail control bit is set, the level of detail of the model should be
determined automatically at runtime. The calculation of the level of detail is implementation
specific, but may be adjusted based on a target rendering frame rate or the size of the model
on screen. All other values are reserved.

9.7.6.4 F32: CLOD Automatic Level of Detai l Bias
The CLOD Modifier Automatic Level of Detail Bias is used when the level of detail of
geometry is to be determined at runtime. The range of bias is 0.0 to 1.0. When calculating the
level of detail used, the runtime should set a higher level of detail for larger values of this
bias.

9.7.6.5 F32: CLOD Modif ier Level
The range for CLOD Modifier Level is 0.0 to 1.0.

r how the level of d

rm Set, View Transform,

Chain Index

CLOD Modifier Level

CLOD Modifier Attributes

C

CLOD Modifier Name

LOD Automatic LOD Bias

9.7.6.1 String: CLOD Modif ier Name
CLOD Modifier Name is the name of the modifier chain to which the CLOD Modifier should be
added.

 U32: Chain Ind
Chain Index is the position of this modifier in a modifier chain.

 U32: CLOD Modif ier Attr ibutes

- 116 -

- 117 -

The CLOD Modifier adjusts the resolution of the renderable meshes.

The rmined by multiplying the CLOD Modifier Level by the maximum
resolution of the author mesh. If the target resolution is less than the minimum resolution,
then the resolution will be adjusted to the minimum resolution.

If the automatic LOD control is enabled, then the automatic LOD control overrides the CLOD
Modifier Level specified in this block.

9.8 Resource blocks
Resource blocks contain the declarative information for resources. The resources can then be
referenced by nodes to create specific instances during rendering.

9.8.1 Light Resource (blocktype: 0xFFFFFF51)
The Light Resource contains information regarding the type of light, color, attenuation, and
intensity. Some of the fields are not used for all light types. Unused fields will not affect the
appearance of the scene. For example, ambient lights do not use attenuation.

9.8.1.1

9.8.1.2

d.

0x00000002 – Specular; the light provides specular highlights.

0x00000004 – Spot Decay; the spot light has a smooth edge and not a hard edge cutoff.

target resolution is dete

Light Attributes

Light Type

String: Light Resource Name
Light Resource Name is the name used to identify this Light Resource.

U32: Light Attr ibutes
Light Attributes is a collection of flags. The flags are combined using the binary OR operator.

Other values are reserve

0x00000001 – Light Enabled; the light is used.

Light Spot Angle

Light Resource Name

Light Color

Light Intensity

Light Attenuation

9.8.1.3 U8: Light Type
Light Type is the type of this Light Resource.

0x00 – Ambient; Light provides uniform non-directional light to the scene.

9.8.1.4

9.8.1.4.1 Red

Light Color Red is the red component of the Light Color. The normal range of color
component values is 0.0 (darkest) to 1.0 (brightest). Values outside this range are allowed.

onent values is 0.0 (darkest) to 1.0 (brightest). Values outside this range are allowed.

 Blue
r. The normal range of color

ghtest). Values outside this range are allowed.

9.8.1.4.4
ed field and shall have the value 1.0. This

9.8.1.5

0x01 – Directional; Light provides uniform directional light to the scene.

0x02 – Point; Light is emitted from a specific point in the scene.

0x03 – Spot; Like point light, but constrained to specific directions.

 Light Color
Light Color is the color of the Light Resource.

Light Color Red

Light Color Green

Light Color Blue

Light Reserved Parameter

F32: Light Color

9.8.1.4.2 F32: Light Color Green
Light Color Green is the green component of the Light Color. The normal range of color
comp

9.8.1.4.3 F32: Light Color
Light Color Blue is the blue component of the Light Colo
component values is 0.0 (darkest) to 1.0 (bri

 F32: Light Reserved Parameter
Light Color Reserved Parameter is a reserv
value shall not be used by a loader.

Light Attenuation
Light Attenuation is a vector of attenuation factors. Lights that are of type Point or Spot will
light objects based on the distance from the object’s vertices to the light’s position. The
formula for this attenuation is

1 / (C + L*D + Q*D*D)

D: distance from vertex position to light position

C: attenuation constant factor

L: attenuation linear factor

Q: attenuation quadratic factor

- 118 -

- 119 -

Light Attenuation Constant Factor

Light Attenuation Linear Factor

5.1 F32: Light Attenuation Constant Factor

Light Attenuation Constant Factor is used to calculate attenuation for spot

Light Attenuation Quadratic Factor

9.8.1.
 and point lights.

9.8.1.5.2 F32: Light Attenuation Linear Factor
inear Factor is used to calculate attenuation for spot and point lights.

9.8.1.5.3 F32: Light Attenuation Quadratic Factor
Light Attenuation Quadratic Factor is used to calculate attenuation for spot and point lights.

9.8.1.6 pot Angle
Light Spot Angle is the angle of the cone that emanates from the light position and defines
what portions of the scene are affected by this light. The Light Spot Angle is only used if the
light is of Spot type.

9.8.1.7
Light Intensity is multiplied into the affect that this light has on a scene. It is similar in practice
to 1 / (Light Attenuation Constant Factor), but works on Directional lights in addition to Point

ghts (this does not affect lights with type Ambient). Keep in mind that this value
can have any value (including negative and 0), resulting in the ability to produce some
strange effects.

9.8.2 V (blocktype: 0xFFFFFF52)
The View Resource contains information regarding the rendered view that is not specific to a
particular view instance. Fields include: fog and frame buffer properties. More fields, such as
view port, backdrops and overlays are stored at the node level and are specific to each
in

Light Attenuation L

F32: Light S

F32: Light Intensity

and Spot li

iew Resource

stance.

View Resource Name

- 120 -

9.8.2.1 String: View Resource Name

The View Resource Name is the name used to identify this view resource.

9.8.2.2 U32: Pass Count
The Pass Count is the number of passes that are used when rendering this view. Note that
the rendering system may change the order to correctly render transparent objects.

9
Th
no

9
Re
de

served.

0x

Fog Properties

Pass Count

Render Attributes

Pass Count

Root Node Name

.8.2.3 String: Root Node Name
e Root Node Name is the name of a node. The view will render this node and all of the
de’s children.

.8.2.4 U32: Render Attr ibutes
nder Attributes is a bit field that determines properties of the view. The only property
fined for this edition is Fog Enabled. The properties are combined with a bitwise or

operation. Other values are re

00000001: Fog Enabled

- 121 -

9.8.2.5 Fog Properties

9.8.2.5.

distance from the view. Fog is enabled or disabled by the flag in the render

1 U32: Fog Mode

The fog mode determines the method used for rendering fog. In the following equations, d
represents the
attributes field above.

0x00000000: Linear

startend
dendf −

=
−

0x00000001: Exponential

)(densitydef ⋅−= ,
fogfar

density)100ln(
=

0x00000002: Exponential 2

2)(densitydef ⋅−= ,
fogfar

density
)100ln(

=

Fog far is the fog far value specified below (9.8.2.5.7).

9.8.2.5.2 F32: Fog Color Red
Fog Color Red is the red component of the fog’s color.

9.8.2.5.3 F32: Fog Color Green
Fog Color Green is the green component of the fog’s color.

Fog Mode

Fog Color Red

Fog Color Green

Fog Color Blue

Fog Color Alpha

For Near Value

Fog Far Value

9.8.2.5.4 F32: Fog Color Blue
Fog Color Blue is the blue component of the fog’s color.

9.8.2.5.5 F32: Fog Color Alpha
Fog Color Alpha is the alpha component of the fog’s color.

9.8.2.5.6 F32: Fog Near Value
For linear fog mode, the Fog Near Value is the distance from the view where fog begins.

9.8.2.5.7 F32: Fog Far Value
For linear fog mode, the Fog Far Value is the distance from the view where the fog reaches
its maximum density. The fog far value is also used to calculate the fog density scale factor
used with exp and exp2 fog modes (details are in 9.8.2.5.1 Fog Mode).

9.8.3 Lit Texture Shader (blocktype: 0xFFFFFF53)
The Lit Texture Shader contains information needed to determine the appearance of a surface
during rendering. The Lit Texture Shader includes references to Material Resources and
Texture Resources and how to combine those resources when rendering.

- 122 -

- 123 -

Lit Texture Shader Name

Lit Texture Shader Attributes

Alpha Test Reference

Alpha Test Function

Color Blend Function

Render Pass Flags

Alpha Texture Channels

Texture Information

Material Name

9.8.3.1 String: Lit Texture Shader Name

Lit Texture Shader Name is the string used to identify this shader.

9.8.3.2 U32: Lit Texture Shader Attr ibutes
Lit Texture Shader Attibutes is a bit field that stores information about the shader. The
attributes are combined by a bitwise OR operation. All other values are reserved.

0x00000001: Lighting Enabled

0x

olor

9.8.3.3 F3
alue used in comparisons when alpha test is enabled.

Shader Channels

Active Texture Count

00000002: Alpha Test Enabled

0x00000004: Use Vertex C

2: Alpha Test Reference
Alpha Test Reference is the v

9 on
0x drawn.

ered alpha value must be less than the reference value.

0x reater than the ref. value.

ndered alpha value must be equal to the reference value.

0x

va

0x
reference value.

9.8.3.5
d the existing frame

buffer.

0x00000604: FB_ADD: Add the RGB components into the framebuffer

0x00000605: FB_MULTIPLY: Multiply the RGB components into the framebuffer

0x00000606: FB_ALPHA_BLEND: Linear blend the RGB components into the framebuffer
based on the rendered alpha value.

0x00000607: FB_INV_ALPHA_BLEND: Linear blend the RGB components into framebuffer
based on the inverse (1.0 - a) of the rendered alpha.

9.8.3.6 U32: Render Pass Enabled Flags
The Render Pass Enable Flags determines which passes this shader uses. Each bit (1<<n) in
the flags determines if the shader is used in pass n. The flags are combined with the bitwise
OR operation.

9.8.3.7 U32: Shader Channels
Shader Channels is a bit field that determines which of the model’s texture coordinate layers
are used for this shader. The least significant 8 bits are used to store this information. A layer
is active if the corresponding bit is set. The Active Texture Count is the number of active
shader channels. The active bits are combined with a bitwise OR operation. The remaining
24 bits are reserved.

Example: A Shader Channel Value of (binary 00001001) would mean the first and fourth
texture coordinate layers are used. Another shader using the same model could have a
Shader Channel value of (binary 00000111) meaning the first, second, and third texture
coordinate layers are used by that shader.

9.8.3.8 U32: Alpha Texture Channels
Alpha Texture Channels is a bit field that determines which texture layers should use the
alpha component if an alpha component exists. The Alpha Texture Channels bits correspond
to the Shader Channels bits. The Alpha Texture Channel bit shall not be set if the
corresponding Shader Channel bit is not set. The least significant 8 bits are used to store this
information. A layer is active if the corresponding bit is set. The active bits are combined with
a bitwise OR operation. The remaining 24 bits are reserved.

Example: A shader has a Shader Channel value of (binary 00000011) and an Alpha Texture
Channels value of (binary 00000010) would mean that the shader should use the alpha
component for the second texture layer and should ignore the alpha component for the first
texture layer. Ignoring the alpha component is equivalent to assuming the alpha value is 1.0.

.8.3.4 U32: Alpha Test Functi
00000610: NEVER: The test never passes. No pixels are

0x00000611: LESS: The rend

00000612: GREATER: The rendered alpha value must be g

0x00000613: EQUAL: The re

00000614: NOT_EQUAL: The rendered alpha value must not be equal to the ref. value.

0x00000615: LEQUAL: The rendered alpha value must be less than or equal to the reference
lue.

00000616: GEQUAL: The rendered alpha value must be greater than or equal to the

0x00000617: ALWAYS: The test always passes. No pixels are rejected.

 U32: Color Blend Function
Color Blend Function is the function used to blend rendered pixels an

- 124 -

- 125 -

9.8.3.9 String: Material Name
The Material Name is the name of the material associated with this shader that determines
how the shader appears when lit.

9.8.3.10 Texture Information
Texture Information identifies the texture used by a particular shader channel. Texture
Information also describes how the textures are blended and which texture coordinates to
use for that shader channel. Texture Information is repeated once for each active shader
channel. Active Texture Count is the number of active shader channels as described in
9.8.3.7 Shader Channels.

9.8.3.10.1

e of the texture resource that is used for this texture layer.

Texture Name

Blend Function

Blend Source

Blend Constant

Texture Mode

Texture Transform Matrix

String: Texture Name
The Texture Name is the nam

9.8.3.10.2 F32: Texture Intensity
Texture Intensity is a scale factor applied to the color components of the texture.

Element

Texture Wrap Transform
Matrix Element

Texture Repeat

Texture Intensity

16

16

9.8.3.10.3 U8: Blend Function
The Blend Function determines how the current texture layer is combined with the result

9.8.3.10 Blend Source

9.8.3.10
lending constant is used when combining the results of texture layers.

9.8.3.10
 the texture

 the model by the inverse of the texture
sform and then performs a planar x, y mapping of

texture onto the model. The Z-axis of the transformed model
is the cylinder axis.

9.8.3.10 ment
operates on the texture coordinates in this texture

from previous layers.

0 – Multiply: blended = current * previous

1 – Add: blended = current + previous

2 – Replace: blended = current

3 – Blend: blended = current * currentAlpha + previous * (1 – currentAlpha).

.4 U8:
Blend Source indicates whether the blending operation combines the current layer with the
result from previous layers using a blending constant or the alpha value of each pixel.

0 – Alpha value of each pixel

1 – Blending constant.

.5 F32: Blend Constant
The B

.6 U8: Texture Mode
The Texture Mode indicates the source of the texture coordinates used to map
onto the model. TM_NONE indicates the shader should use the texture coordinates of the
model. All other coordinates are generated by the shader as needed.

0x00: TM_NONE The shader does not generate texture coordinates.

0x01: TM_PLANAR The shader transforms
wrap tran
the texture onto the model.

0x02: TM_CYLINDRICAL The shader transforms the model by the inverse of the texture
wrap transform and then performs a cylindrical mapping of the

0x03: TM_SPHERICAL The shader transforms the model by the inverse of the texture
wrap transform and then performs a spherical mapping of the
texture onto the model. The Z-axis of the transformed model
is the sphere’s vertical axis.

0x04: TM_REFLECTION: The shader performs a spherical reflection mapping. This is
used to generate texture coordinates for reflection mapping
when using a specially designed spherical reflection texture.

.7 F32: Texture Transform Matrix Ele
The Texture Transform Matrix
coordinate layer of the model. This transform is used for all texture modes.

The matrix is written in the alphabetic order described below:

⎥
⎥
⎥
⎤

⎢
⎢
⎢
⎡

NJFB
MIEA

.

⎥
⎦

⎢
⎣ PLHD

OKGC

- 126 -

- 127 -

9.8.3.10.8 F32: Texture Wrap Transform Matrix Element

ICAL. In these texture modes, texture coordinates are
ased on the position values of vertices in the model.

NJFB
MIEA

.

N
In an equivalent implementation, the inverse of the Texture Wrap Transform could operate on the
position value in the model to look up the texture coordinate values in the reference shape.

The Texture Wrap Transform is also discussed in 9.8.3.10.6 Texture Mode

The Texture Wrap Transform is used for the following texture modes: TM_PLANAR;
TM_CYLINDRICAL; TM_SPHER
procedurely generated b

The texture coordinates from a reference shape are projected onto the model. The Texture
Wrap Transform operates on the procedurely generated texture coordinates before they
are applied to the model.

The matrix is written in the alphabetic order described below:

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

PLHD
OKGC

OTE

.

9.8.3.10.9 U8: Texture Repeat
Texture Repeat indicates whether or not the texure in the specified texture layer should be
tiled is a bitfield and the values below are
combined using a bitwise OR operator. All other values are reserved.

0x01 – Repeat in the direction of the first texture coordinate dimension

0x02 – Repeat in the direction of the second texture coordinate dimension

Repeating the texture shall be accomplished in the manner of tiling the texture image.
NOTE
T e specification does not support 3 and 4-dimensional texture resources. Future
editions may support additional repeat modes and may support 3 and 4-dimensional textures.

9.8.4 Material Resource (blocktype: 0xFFFFFF54)
The Material Resource contains information defining how a material interacts with light in a
scene. A shader references a Material Resource to determine how surfaces will appear when
rende

beyond the coordinate range. Texture Repeat

his edition of th

red.

- 128 -

9.8.4.1 St rce

Material Resource Name is the

9.8.4.2 U32: Material Attr ibutes
Material Attributes is a collectio f the material attributes specified
be a
reserved.

0x00000001 – Ambient

0x

0x

0x00000010 – Reflectivity

0x00000020 – Opacity

The material attributes are described below.

9.8.4.3 Ambient Color
The Ambient Color defines the material’s appearance in ambient light. The normal range of
color component values is 0.0 (darkest) to 1.0 (brightest). Values outside this range are
allowed.

r ing: Material Resou Name
 string used to identify this material.

n of flags that define which o
low are enabled. The flags re combined using the binary OR operator. Other values are

0x00000002 – Diffuse

00000004 – Specular

00000008 – Emissive

Material Attributes

Opacity

Re

Material Resource Name

Ambient Color

Diffuse Color

Specular Color

Em

flectivity

issive Color

- 129 -

9.8.4.3.1 F32: Red

Red is the red component of the color.

9.8.4.3.2 reen

9.8.4.3.3
nt of the color.

9.8.4.4 D
Th
co tside this range are
al

9.8.4.4.1 F32: Red

Red is the red component of the color.

9.8.4.4.2 F32: Green
Green is the green component of the color.

9.8.4.4.3 F32: Blue
Blue is the blue component of the color.

9.8.4.5 Specular Color
The Specular Color defines the material’s appearance in specular light. The normal range of
color component values is 0.0 (darkest) to 1.0 (brightest). Values outside this range are
allowed.

F32: G
Green is the green component of the color.

F32: Blue
Blue is the blue compone

i f fuse Color
e Diffuse Color defines the material’s appearance in diffuse light. The normal range of
lor component values is 0.0 (darkest) to 1.0 (brightest). Values ou

lowed.

Red

Blue

Green

Red

Blue

Green

- 130 -

9.8.4.5.

Red is the red component of the color.

9.8.4.5.2 F32: Green
 green component of the color.

9.8.4.5.3 F32: Blue
Blue is the blue component of the color.

9.8.4.6 Emissiv
The Emissive Color defines the light that the material appears to give off. The normal range
of color component values is 0.0 (darkest) to 1.0 (brightest). Values outside this range are

9.8.4.6.1

nent of the color.

9.8.4.6.2
ponent of the color.

9.8.4.6.3

9.8.4.7 F32:
pears to be. Specular reflections are calculated

sition, surface normal, and camera position. The result is then raised to

1 F32: Red

Green is the

e Color

allowed.

 F32: Red
Red is the red compo

 F32: Green
Green is the green com

 F32: Blue
Blue is the blue component of the color.

Reflectivity
Reflectivity measures how shiny a material ap
based on the light po
an exponent to control specular light falloff. The exponent is determined from the reflectivity
value. The normal range of reflectivity is 0.0 (exponent of zero disables specular lighting) to
1.0 (exponent of 128). Values outside this range are allowed but are clamped before use.

Red

Blue

Green

Red

Blue

Green

- 131 -

9.8.4.8 F32: Opacity
Opacity is a measure of on object’s transparency. The value is used when alpha blending.
Higher Opacity means the object is less transparent and objects behind it will be less visible.
The normal range of opacity is 0.0 (invisible) to 1.0 (completely opaque). Values outside this
range are allowed.

9.8.5 Texture Resource (blocktypes: 0xFFFFFF55; 0xFFFFFF5C)
The Texture Resource contains information for creating a texture image to be applied to
geometry. The usage of the texture resource is controlled by a shader. The texture resource is
divided two parts: the declaration and the continuation. The texture declaration contains
information for creating the texture resource object and allocating memory. The texture
continuation contains image data for the texture.

The texture image may be created by composing more than one continuation image. For
A texture image may be created by composing an RGB continuation image

 continuation blocks in the same U3D file
ock.

As an alternative, the continuation image may be contained in an external referenced image file.

9
The Texture Declaration describes the

ture Name

identify the texture.

e Format

re image to a different size (height and width) for
stem may filter and re-size the image because it

ensions are not a power of two. Such rendering details are outside the

into

example, an RGB
with an Alpha continuation image.

A continuation image may be contained in one or more
as the declaration bl

.8.5.1 Texture Declaration (blocktype: 0xFFFFFF55)
texture image and the continuation images.

Texture Name

9.8.5.1.1 String: Tex
The Texture Name is the name used to

9.8.5.1.2 Texture Imag
Texture Image Format describes the size (height and width) of the texture image and the
format of the texture data.

A rendering system may convert the textu
rendering. For example, the rendering sy
is too big or the dim
scope of this specification.

Continuation Image Count

Continuation Image Count

Texture Image Format

Continuation Image Format

Texture Height

Texture Width

re Height

e in pixels. Texture Height shall be greater than zero.

Width

xels. Texture Width shall be greater than zero.

present in the texture image. The valid

 – color RGB (red, green, and blue)

0x0F – color RGBA (red, green, blue, and alpha)

10 – luminance (greyscale)

0x11 – luminance and alpha (greyscale and alpha)

All other values are reserved.

9.8.5.1.3 Continuation Image Count
Continuation Image Count is the number of continuation images used to compose the
texture image. This count is not the number of texture continuation blocks because each

nuation image is contained in one or more blocks. The index into the sequence of
nuation image formats that follows is used by the continuation blocks to indicate which

continuation image their image data is for.

9.8.5.1.4 Continuation Image Format
Image Format provides some information about the continuation image in the

Texture Image Type

9.8.5.1.2.1 U32: Textu

Texture Height is the height of the textur

9.8.5.1.2.2 U32: Texture

Texture Width is the width of the texture in pi

9.8.5.1.2.3 U8: Texture Image Type

Texture Image Type identifies the color channels
values are:

0x01 – alpha component

0x0E

0x

U32:

conti
conti

Continuation
texture declaration.

- 132 -

- 133 -

Compression Type

Texture Image Channels

9.8.5.1.4.1 U8: Compression Type

Type defines the scheme used to compress the Image Data in the texture
continuation blocks. The types are:

0x01 – JPEG-24 (color, baseline profile)

0x03 – JPEG-8 (greyscale, baseline profile)

0x04 – TIFF

9.8.5.1.4.2

Texture Image Channels indicates which color channels of the texture image are composed
age channel bits can be combined using the OR

re ima ed from only one continuation
image. The values for the texture im

0x01: alpha channel

9.8.5.1.4.3 Attributes

0x0001: external continuation image file reference

By default, the continuation image data is contained in texture continuation blocks in the same
U3D file as the texture declaration block. If the external continuation image file reference bit is
set, then the continuation image data is contained in an external file.

Compression

0x02 – PNG

U8: Texture Image Channels

using this continuation image. The texture im
operator. A particular textu ge channel can be compos

age channel bits are:

0x02: blue channel

0x04: green channel

0x08: red channel

0x10: luminance (red, blue and green channels)

 U16: Continuation Image

Continuation Image Attributes contains additional information about the continuation image. All
other values are reserved.

0x0000: default attributes

Image URL Count

Image Data Byte Count

Continuation Image Attributes

Image URL Count

Image URL

9.8.5.1.4.4

e Count is the sum of the number of bytes of Image Data in all the continuation
ontinuation image. This value can be useful for setting up an image decoder

and for determining when all of the image data is available for decoding. Image Data Byte
Count is not present if the external continuation image file reference bit is set.

9.8.5.1.4.5 L Count

Image URL Count is the number of URL strings that follow. Image URL Count is only present if
the external continuation image file reference bit is set.

9.8.5.1.4.6

Image URL is a String identifying the external image file location. Multiple locations can be
specified for the external file. A loader shall load the image file from one of the locations. HTTP

 be recognized with absolute and relative addressing. Image URL is only
zero and the external continuation image file

9. x (blocktype: 0xFFFFFF5C)
The ed

9.8.5.2.1

9.8.5.2.2
ed to decode the continuation image indicated by

9.8.5.2.3 Image Data
The Image Data is the data for the continuation image used for a texture. The format of the
image data is indicated by Compression Type in the texture declaration. The size of the
compressed image data can be determined by subtracting the size of Texture Name and
Continuation Image Index from the size of the data section. The image data can be
contained in multiple texture continuation blocks with the same Texture Name and
Continuation Image Index. Spreading the image data across several blocks is particularly
useful when used with a progressive compressed image format.

The setting of the no compression mode bit in 9.4.1.2 Profile Identifier

U32: Image Data Byte Count

Image Data Byt
blocks for this c

U32: Image UR

String: Image URL

and FTP protocols will
present if the Image URL Count is greater than
reference bit is set.

8.5.2 Te ture Continuation
Texture Continuation contains image data for a continuation image previously describ

in the texture declaration.

- 134 -

String: Texture Name
Texture Name is the name of the texture resource with which this continuation block is
associated.

U32: Continuation Image Index
This block’s image data is us
Continuation Image Index. This value is an index into the sequence of continuation image
formats in the texture declaration.

 does not affect the
encoding of Image Data.

Texture Name

Im

Continuation Image Index

age Data

- 135 -

9.8.6
The mot ains animation data. The data is stored in a number of tracks. Each
track is composed of key frames with rotation, displacement and time information. A motion
track can be used to animate a bone in a bone hierarchy. A motion track can also be used to
animate a node in the scene graph.

9.8.6.1 Stri

Motion Name is the name of this motion resource.

9.8.6.2 U32
Track Count is the number of motion tracks in this motion resource.

9.
Time

9.8.6.4 F32
Rota

Motion Resource (blocktype: 0xFFFFFF56)
ion resource cont

Motion Name

Track Count

Time Inverse Quant

Rotation Inverse Quant

Motion Track
Track Count

ng: Motion Name

: Track Count

8.6.3 F32: Time Inverse Quant
 Inverse Quant is the inverse quantization factor for time values.

: Rotation Inverse Quant
tion Inverse Quant is the inverse quantization factor for rotation values.

9. t

9.8.6.5.1 k Name

Track Name is the name of this motion track.

9.8.6.5.2 U32: Time Count
r of time samples for this motion track.

9.8.6.5.3 F32: Displacement Inverse Quant
Displacement Inverse Quant is the inverse quantization factor for displacement values for

track.

9.8.6.5.4 F32: Scale Inverse Quant
Scale Inverse Quant is the inverse quantization factor for scale values for this motion track.

ized values and all other key frames used quantized differential values.

8.6.5 Mo ion Track

Track Name

Time Count

Displacement Inverse Quant

Scale Inverse Quant

Key Frame
Time Count

String: Trac

Time Count is the numbe

this motion

9.8.6.5.5 Key Frame
The motion track has one Key Frame for each time sample. The first and last Key Frames
use unquant

- 136 -

- 137 -

9.8.6.5.5.1

Time is the time value for this Key Frame.

9.8.6.5.5.2 Displacement

Displacement is the translation of e bone from the end of its parent bone. For a
root bone or for a node, Displacement is the translation from the origin of the local coordinate
space.

9.8.6.5.5.2.1 F32: Displacement X

Displacement X is the X coordinate of the Displacement.

9.8.6.5.5.2.2 F32: Displacement Y

Displacement Y is the Y coordinate of the Displacement.

9.8.6.5.5.2.3 F32: Displacement Z

Displacement Z is the Z coordinate of the Displacement.

9.8.6.5.5.3 Rotation

Rotation is the change in orientation of the bone relative to the parent bone. Rotation is
expressed as a quaternion with the real part first.

F32: Time

the start of th

Time Differential

Rotation Differential

Displacement Differential

Scale Differential

Rotation

Displacement

Scale

Time

Displacement X

Displacement Z

Displacement Y

9.8.6.5.5.3.1 F32: Rotation 0

0 is the real part of the Ro nion.

9.8.6.5.5.3.2 F32: Rotation 1

9.8.6.5.5.

oefficient for j in the Rotation quaternion.

9.8.6.5.5.

otation quaternion.

9.8.6.5.5.4

on of the bone relative to its parent bone.

9.8.6.5.5.4.1 F32: Scale X

Scale X is the scaling factor in the X dimension.

9.8.6.5.5.4.2 F32: Scale Y

Scale Y is the scaling factor in the Y dimension.

9.8.6.5.5.4.3 F32: Scale Z

Scale X is the scaling factor in the Z dimension.

Rotation

- 138 -

tation quater

Rotation 1 is the coefficient for i in the Rotation quaternion.

3.3 F32: Rotation 2

Rotation 2 is the c

3.4 F32: Rotation 3

Rotation 3 is the coefficient for k in the R

 Scale

Scale is the scaling component of the transformati

Scale X

Scale Z

Scale Y

Rotation 0

Rotation 2

Rotation 1

Rotation 3

- 139 -

9.8.6.5.5.5 Time Differential

Time Differential is the quantized difference between the actual time value and the predicted
time value. The reconstructed time value from the previous Key Frame is used as a prediction

s Key Frame.

The reconstructed time is calculated as

reconstructed time = InverseQuant(predicted time,Time Sign,Time Difference,Time Inverse

9.8.6.5.5.5.1 U8 [cTimeSign]: Time Sign

 contains the sign bits for the time prediction difference.

e or zero

iction difference is negative

9.8.6.5.5.5.

 Difference is the quantized absolute prediction difference for the time value.

9.8.6.5.5.6 Displacement Differential

Displacement Differential is the quantized difference between the actual displacement value
and the predicted displacement value. The reconstructed displacement value from the
previous Key Frame is used as a prediction for this Key Frame.

Sign]: Displacement Difference Signs

0x02 – Sign bit for Displacement Difference Y

for thi

Quant).

Time Sign

Time

Time Sign

0x00 – the prediction difference is positiv

0x01 – the pred

2 U32 [cTimeDiff]: Time Difference

Time

 Difference

Displacement Difference Signs

Displacement Difference X

Displacement Difference Z

Displacement Difference Y

9.8.6.5.5.6.1 U8 [cDisp

Displacement Difference Signs is a collection of sign bits for the prediction differences.

0x01 – Sign bit for Displacement Difference X

0x04 – Sign bit for Displacement Difference Z

2 9.8.6.5.5.6. Diff]: Displacement Difference X

reconstructed X = InverseQuant(predicted X, (DisplacementDifferenceSigns & 0x01),

Displacement Difference X, Displacement Inverse Quant).

9.8.6.5.5.6.3 Diff]: Displacement Difference Y

reconstructed Y = InverseQuant(predicted Y, ((DisplacementDifferenceSigns & 0x02)>>1),

Displacement Difference Y, Displacement Inverse Quant).

9.8.6.5.5.6.4 U32 [cDispDiff]: Displacement Difference Z

reconstructed Z = InverseQuant(predicted Z, ((DisplacementDifferenceSigns & 0x04)>>2),

Displacement Difference Z, Displacement Inverse Quant).

9.8.6.5.5.7 Rotation Differential

The reconstructed Rotation quaternion from the previous Key Frame is used as the prediction
The reconstructed Rotation quaternion for this Key Frame is obtained by

mu quaternion difference.

9.8.6.5.5.7.1 U8 [cRotSign]: Rotation Difference Signs

sign bits for the prediction differences.

0x01 – Sign bit for Rotation Difference 0

ign bit for Rotation Difference 1

0x04 – Sign bit for Rotation Difference 2

0x08 – Sign bit for Rotation Difference 3

]: Rotation Difference 1

n difference is calculated as

 InverseQuant(0,((RotationDifferenceSigns&0x02)>>1),Rotation Difference

U32 [cDisp

U32 [cDisp

for this Key Frame.
ltiplying the prediction quaternion by the reconstructed

Rotation Difference Signs

Rotation Difference 1

Rotation Difference 3

Rotation Difference 2

Rotation Difference Signs is a collection of

0x02 – S

9.8.6.5.5.7.2 U32 [cRotDiff

The coefficient for i in the reconstructed quaternio

RQD1 =
1,Rotation Inverse Quant)

- 140 -

- 141 -

9.8.6.5.5.7.3 U32 [cRotDiff]: Rotation Difference 2

Inverse Quant)

9.8.6.5.5.7. 3

RQD3 = InverseQuant(0,((RotationDifferenceSigns&0x08)>>3),Rotation Difference
3,Rotation Inverse Quant)

The real part of the reconstructed quaternion difference is calculated as

The coefficient for j in the reconstructed quaternion difference is calculated as

RQD2 = InverseQuant(0,((RotationDifferenceSigns&0x04)>>2),Rotation Difference
2,Rotation

4 U32 [cRotDiff]: Rotation Difference

The coefficient for k in the reconstructed quaternion difference is calculated as

)321(0.1))010&(21(0RQD −= 222 RQDRQDRQDxgnsfferenceSiRotationDi ++−⋅⋅

9.8.6.5.5.8 Scale Differential

d difference between the actual scale value and the predicted
sc ey Frame is used as a
pr

9.8.6.5.5.8.1 U8

fference X

0x02 – Sign bit for Scale Difference Y

fference Z

9.8.6.5.5.8.2 U32 [cScalDiff]: Scale Difference X

reconstructed X = InverseQuant(predicted X, (ScaleDifferenceSigns & 0x01),

nt).

9.8.6.5.5.8.3

ScaleDifferenceSigns & 0x02)>>1),

 Quant).

Scale Differential is the quantize
ale value. The reconstructed scale value from the previous K
ediction for this Key Frame.

Scale Difference Signs

Scale Difference X

Scale Difference Z

[cScalSign]: Scale Difference Signs

Scale Difference Signs is a collection of sign bits for the prediction differences.

Scale Difference Y

0x01 – Sign bit for Scale Di

0x04 – Sign bit for Scale Di

Scale Difference X, Scale Inverse Qua

U32 [cScalDiff]: Scale Difference Y

reconstructed Y = InverseQuant(predicted Y, ((

Scale Difference Y, Scale Inverse

9.8.6.5.5.8.4

caleDifferenceSigns & 0x04)>>2),

10

U32 [cScalDiff]: Scale Difference Z

reconstructed Z = InverseQuant(predicted Z, ((S

Scale Difference Z, Scale Inverse Quant).

Bit Encoding Algorithm

10.1 Definitio
The following definitions are

ns
 applicable to the U3D bit encoding algorithm.

Term Definition

Clear Set the bits to 0.

Context Captures th symbol of a e estimated probability distribution of the current
particular type.

Cumula
frequen
of a sym

tive
cy
bol

Sum of the occurrences of all of the symbols less than current symbol stored in
the histogram for a given context.

Dynamic
context

Estimated probability is based on previous occurrences of symbols.

Dynamic
Histogram

bols written by the encoding algorithm
in a dynamic context. The values written have a corresponding symbol equal to
the value + 1. The symbol 0 is the escape symbol and has an initial frequency of

bols have an initial frequency of 0. A dynamic histogram is

Used to store the frequency counts of sym

1. All other sym
updated as values are written by the bit encoding algorithm.

Frequency
of the
symbol

Number of occurrences of a symbol stored in the histogram for a given context.

High High probability limit.

Low imit. Low probability l

Set Assign the bits to the specified value (if no value specified, value is 1)

Static Estimated probability is not based on previous occurrences of symbols, i.e. all
context valid symbols have equal probability.

Static
Histogram

ogram is
ange of valid values from 0 to R - 1.

ymbol equal to the value + 1. Each symbol has
is the escape symbol used by the encoding

atic histograms. Static Histograms are

 defined by a number R that represents a r
Each value has a corresponding s

Used by the encoding algorithm to encode symbols. The static hist

a frequency of 1. The symbol 0
algorithm and has a frequency of 0 for all st
constant.

Total including the escape symbol stored in the
cumulative
frequency

histogram for a given context.
Total occurrences of all symbols

Underflow
bits

A
pr a
mismatch is found (due to the fixed storage size for Low and High).

count of the series of bits that are the same between the high and low
obabilities starting with the QBits of high and low and comparing until

Write-bit Write a bit in order with least significant bit of the byte written first to the output
stream.

- 142 -

- 143 -

10.2
The following hm.
Acronyms and Abbreviations

 acronyms and abbreviations are applicable to the U3D bit encoding algorit

Acronym Description

HBit ‘half’ bit representing 0.5 in the fixed-point 16.16 format (in a 32-bit word this is the
17th most significant bit)

LBit Least significant bit

MBit Most significant bit

QBit ‘quarter’ bit representing 0.25 in the fixed-point 16.16 format (in a 32-bit word this is
the 18th most significant bit)

10.3 Overview
This section provides an overview of the U3D bit encoding algorithm. The bit encoding algorithm

D files. The bit encoding algorithm defines a platform independent
ta that is a U3D file.

The bit
arithmeti
The encoding performed is lossless, i.e. data is not discarded during the encoding process and
the original data is obtained after the decoding process. All data blocks as defined in Clause 9 of
the specification are processed through the encoder. Only encoding is specified as normative.

The compression algorithm supports compression of unsigned integers. When a value is to be
compressed and encoded, a compression context must be specified. The compression context
determines which histogram is used to encode the value. The algorithm may use multiple
histograms to encode a series of values. Clause 9 identifies the values that are compressed and
the contexts for the compression. Compression is performed for parts of the file that are expected
to contain large amounts of compressible data, e.g. geometry and animation.

The algorithm namic histograms for the encoding. The static histograms represent
a uniform d ams build the distribution from
the values written using a context. The dynamic contexts are used for values that are expected to
have a narrow distribution.

10.3.1 Prerequisites and Inputs
The algorithm accepts as input U8, U16, U32, U64, I32, F32 and F64 values. All uncompressed
values are cast to unsigned integers and written as a sequence of compressed U8 using a
static context with range 0-255. The algorithm transforms compressed U8, U16, and U32 values

10.3.2 Descrip
When en sociated histogram is specified. Static histograms
are used
random a xts should be used to encode data that tends to
cluster around a few values and is easy to predict.

 the input value into a sequence of one or more
en are cast to unsigned integer values with the

same nu signed 8-bit
values. The 8-bit valu tatic context with a range from 0
to 255.

esented as a floating point number. Each value in
the histo range
allocated to each valu lue will appear. Each value in a
static context has the size. For dynamic contexts, the

shall be used to write all U3
representation of the binary da

encoding algorithm is a single pass statistical data compression method using an
c algorithm that transforms the input into a single floating point number between 0 and 1.

uses static or dy
istribution over a range of numbers. The dynamic histogr

into symbols based on the context given.

t ion
coding a value, a context with an as
when the distribution of the encoding numbers is expected to be roughly even or very
nd difficult to predict. Dynamic conte

The bit encoding algorithm transforms all of
symbols. All of the uncompressed values writt

mber of bytes as the original type, and then broken into a series of un
es are then written as symbols using a s

The symbols written by the algorithm are repr
gram is given a portion of the numbers between 0 and 1. The size of the

e corresponds to the probability the va
 same probability and the same range

probability is based on the number of times that the symbol has been written to that context.
When wr to that
value. En written
with in the range o coding algorithm is very order
dependent, all of the steps must be performed in the order described in the algorithm below.

tive requirements for the bit encoding algorithm.
the encoding algorithm is specified in this clause since either one of the

ively. Refer to Annex A

Note that the algorithm follows standard rules for operator precedence in arithmetic expressions.

Static contexts are specified the range from: 0 to (R-1), maximum value for R is: 0x3FFE
(is

10.4.1 General Re
 s

 shall be processed through the bit encoding algorithm.

ing lause 9 File
at).

10.4.2 ons
ion

iting a symbol, the encoding algorithm encodes the range that corresponds
coding a sequence of values involves encoding the range of the value to be

f the previous value. Because the en

10.4 Encoding Algorithm
This section describes the details and the norma
Specifically, only
encoding algorithm or the decoding algorithm needs to be specified normat
for an example implementation of the bit encoding algorithm.

by
16382). If R larger than this value an uncompressed U16 or U32 is written, as appropriate.

quirements
This section

1. All blocks

pecifies general requirements for the bit encoding algorithm.

2. Encod
Form

 procedure shall depend on the type of the block (as defined in C

Operati
The operat

s of the algorithm shall be performed as in the following table:

Type of value to be
written to output

stream

How value is written

Compressed U32 Refer to algorithm in section 10.4.5 below

Compressed U16 Refer to algorithm in section 10.4.6 below

Compressed U gorithm in section 10.4.78 Refer to al below

U8 Refer to algorithm in section 10.4.8 below

U16 Low order U8 followed by high order U8

U32 Low order U16 followed by high order U16

U64 Low order U32 followed by high order U32

I32 Memory pattern of 2’s complement signed integer interpreted as U32

F32 Memory pattern of IEEE 32-bit format interpreted as U32

F64 Memory pattern of IEEE 64-bit format interpreted as U64

String U16 count of U8s in string followed by the U8s in the string

10.4.3 ion
od

 probabil
repeating num

bilit

underflow count = 0

Init ial izat
The bit enc

high

ing algorithm shall perform the following initializations:

ity limit = 0x0000FFFF (represents 1.0 as the fixed point equivalent of the binary
ber 0.111…)

low proba y limit = 0

- 144 -

- 145 -

initial histogram for a dynamic context: escape symbol frequency = 1 and all other frequencies

ntext: escape symbol frequency = 0, all symbols <= R the frequency = 1
e er symbols = 0

10.4.4 r i th
The procedure for how symbols shall be written by the bit encoding algorithm are detailed in the

wing s

s: val context

10.4.4 tain
set sym

Obtain total cumulative frequency of all symbols for this context

 cumulative frequency of this symbol for this context

10.4.

10.4. ssion Context
text with this symbol. Note that this symbol may be the escape

10.4.4.

 Hbit

HILE

= 0 (the histogram is modified as symbols are written to the context)

histogram
and frequ

 for a static co
ncy for all oth

Algo m for Writ ing a Compressed Symbol

follo ubsections.

Input ue to be written and

.1 Ob Frequency Values
bol = value + 1

Obtain total

Obtain frequency of this symbol for this context

If frequency of this symbol for this context is 0 then prepare to write the escape symbol as
follows:

Set symbol = 0

Obtain total cumulative frequency of this symbol for this context.
NOTE
Total cumulative frequency of the escape symbol for all contexts is 0.

Obtain frequency of this symbol for this context

4.2 Update the Probabil i ty Limits
probability range = High - Low + 0x00000001

Update the high probability limit: High = Low + probability range * (cumulative frequency of
symbol + frequency of the symbol) / (total cumulative frequency of all symbols) – 0x00000001

Update the low probability limit: Low = Low + (probability range * cumulative frequency of
symbol / total cumulative frequency of all symbols)

4.3 Update the Compre
Update the compression con
symbol

4 Write to Output Stream Based on Current Probabil i ty Range
WHILE Hbit of High and Low are same

set output bit =

write-bit output bit

clear HBit for High, left shift High, and set LBit of High

clear Hbit for Low, left shift Low, and clear LBit of Low

WHILE underflow count > 0

write-bit NOT(output bit)

decrement underflow count

END W

END WHILE

10.4.4.

10.4.
was written

10.4.5

u r this context with value +

10.4.6 Algorithm for Writ ing a Compressed U16 Value
if conte with (R > maximum R)

sed U16

ult = write value as co

ult is a warning that a

 value as an uncom

ate the histogram for t

10.4.7 orithm for Writ ing
lt = write value as co

lt is a warning that a

then

 uncompressed U8

10.4.8 g an Uncompressed U8 Value
reverse order of bits (most significant bit

 significant bit and so on…)

5 Determine Underflow Count
WHILE QBit Low is same as QBit High

clear Hbit for High, left shift High, set LBit High and set Hbit High

clear Hbit for Low, left shift Low, clear LBit Low and clear Hbit Low

increment underflow count

END WHILE

4.6 Return
Return either success or a warning that an escape value

 Algorithm for Writ ing a Compressed U32 Value
if context is static with (R > maximum R)

then

write uncompressed U32

else

result = write value as compressed symbol

if result is a warning that an escape was written

then

write value as an uncompressed U32

pdate the histogram fo

xt is static

 1

then

write uncompres

else

res mpressed symbol

if res n escape was written

then

write pressed U16

upd his context with value + 1

Alg a Compressed U8 Value
resu mpressed symbol

if resu n escape was written

write value as an

update the histogram for this context with value + 1
NOTE
For static contexts, the maximum value of R = 256.

Algorithm for Writ in
set symbol = value with bit order swapped, i.e.
exchanged with least

- 146 -

- 147 -

write symbol as compressed symbol with static context R=256

Algorithm for Updating the Compression Context 10.4.9

uencies in the histogram shall be divided by 2 rounding
n incremented by 1.

currences stored allows the histogram to adapt to changing distributions within a
histogram for a given context. The

y. Larger values for this number allow for more efficient
istributions, whereas, smaller values enable faster adaptation to
ditionally, values larger than 0x1FFF may cause numeric overflow

iss re.

10.4.10 A
If compressed U32 value of 0
shall
st

A histogram stores a limited number of symbol occurrences. When the total number of symbol
occurrences = 0x1FFF all of symbol freq
down. The frequency count of the escape symbol is the
NOTE
Limiting the number of oc
given context. More recent values will have a greater influence on the
value 0x1FFF was determined empiricall
compression for stable probability d
changing probability distributions. Ad

ues on some 32-bit hardwa

lgorithm for Flushing the Compression State
one or more compressed values have been written then an un

be written in order to ensure that all the bits required for decoding are written to the output
ream.

Annex A
ative)

ation

A.1 Introduction

(inform

Bit Encoding Algorithm – An Implement

This Annex provides an example implementation of the compression algorithm used to encode the
fields d ession algorithm is also

CMA-334). It is highly recommended
ted with the same input sequence of

values and compression contexts produce the same output sequence of bytes. Refer to Clause 10
for the normative requirements of the bit encoding algorithm.

The classes defined in A.3 define the compression and decompression algorithms. The interfaces
supported by these classe

The of values. Compressed write
methods accept a compression context parameter in addition to the value to be written. The
com bility distribution of values. These probability
estimates are provided by the ContextManager BitStreamWrite to attempt to
reduce the number of bits required to store the value.

The ate the sequence of values from the encoded bits. The
Bit class to re-create the same probability

The ility estimates that are based on the range of possible
value or based on an adapting history

The class is used as a container to hold the encoded bits. The DataBlock class is
also used to hold the other fields defined in 9.2 for the block structure.

The tants class provides names for certain constant values used in the other classes.

A.1.1 U
T lls to the write methods on the interface of the
BitStreamWrite class. After all writing is done, the DataBlock would be retrieved from the
B Write class provides the encoding for the Data field
(9.2.4) in the block format. Additional fields such as block type and meta data would be modified
a rding to the format in 9.2.

le into a DataBlock class. To interpret
th would be provided to a BitStreamRead class
after which several calls to the read methods on BitStreamRead would provide the encoded
v

For correct results, the sequence of context parameters used by the reading operation must be
th iting operation.

A.2 Interfaces

efined in Clause 9. An implementation of the corresponding decompr
provided. The algorithms are described in the C# Language (E
that all implementations of the compression algorithm presen

s are provided in A.2.

BitStreamWrite class is used to encode the bits for a sequence

pression context is used to estimate the proba
 class and used by

BitStreamRead class is used to recre
StreamRead class uses the ContextManager

estimates as used by the BitStreamWrite class.

ContextManager class supports probab
of previous values encountered.

DataBlock

Cons

sage
he usual writing operation would make several ca

itStreamWrite class. The BitStream

nd then the DataBlock would be stored in a file acco

The usual reading operation would read a block from the fi
e Data field of the block, the DataBlock class

alues.

e same as the sequence used by the wr

A
using Sys

namespace U3D

.2.1 Bit Stream Write
tem;

- 148 -

- 149 -

{

 ///

 ///

 /// uncompressed data to a datablock.

 ///

 ///

 ///

 ///

 rder.

 ///

 ///

 public interface IBitStreamWrite

 {

 /// <summary>Write a U8 to the datablock.

 /// </summary>

 /// uValue <param name = "uValue">

 /// the value to write to the datablock

 /// </param>

 /// reuturn <returns>

 /// void</returns>

 void WriteU8(Byte uValue);

 /// <summary>Write a U16 to the datablock.

 /// </summary>

 /// uValue <param name = "uValue">

 /// the value to write to the datablock

 /// </param>

 /// returns <returns>

 /// void</returns>

 void WriteU16(UInt16 uValue);

 /// <summary>Write a U32 to the datablock.

 /// </summary>

 /// uValue <param name = "uValue">

 /// the value to write to the datablock

 /// </param>

 /// returns <returns>

 /// void</returns>

/// <summary> IBitStreamWrite.cs

 This file defines the IBitStreamWrite interface and the associated

 identifier. IBitStreamWrite is used to write compressed and

 </summary>

 <remarks>

 <para> The IBitStreamWrite is supported by the BitStreamWrite class.

 </para>

/// <para> Bytes are written in little-endian o

 </para>

 </remarks>

 void WriteU32(UInt32 uVa

 /// <summary>Write a U64 to the datablock.

 //

 /// uValue <param name = "uValue">

ue to write to the datablock

 e datablock.

 the value to write to the datablock

 /// </summary>

 c encoder.

 /// </param>

ue <param name = "uValue">

 o compress and write to the datablock

 returns <returns>

 void</returns>

lue);

/ </summary>

 /// the val

 /// </param>

 /// return <returns>

 /// void</returns>

 void WriteU64(UInt64 uValue);

 /// <summary>Write an I32 to th

 /// </summary>

 /// iValue <param name = "iValue">

 /// the value to write to the datablock

 /// </param>

 /// returns <returns>

 /// void</returns>

 void WriteI32(Int32 iValue);

 /// <summary>Write a F32 datablock.

 /// </summary>

 /// fValue <param name = "fValue">

 ///

/// </param>

/// returns <returns>

/// void</returns>

void WriteF32(Single fValue);

/// <summary>Write a compressed U32 to the datablock.

/// context <param name = "context">

/// the context to use for the arithmeti

 /// uVal

 /// the value t

 </param> ///

 ///

 ///

- 150 -

- 151 -

 void WriteCompressedU32(UInt32 context, UInt32 uValue);

t">

 to use for the arithmetic encoder.

e to compress and write to the datablock

essedU16(UInt32 context, UInt16 uValue);

/ <summary>Write a compressed U8 to the datablock.

me = "context">

metic encoder.

name = "uValue">

d write to the datablock

 /// void</returns>

uValue);

 by the bit stream writer

 "rDataBlock">

tten by the BitStreamWriter in a datablock

turn <returns>

 IDataBlock rDataBlock);

the next byte boundary

 /// <summary>Write a compressed U16 to the datablock.

 /// </summary>

 /// context <param name = "contex

 /// the context

 /// </param>

 /// uValue <param name = "uValue">

 /// the valu

 /// </param>

 /// return <returns>void</returns>

 void WriteCompr

 //

 /// </summary>

 /// context <param na

 /// the context to use for the arith

 /// </param>

 /// uValue <param

 /// the value to compress an

 /// </param>

 /// return <returns>

 void WriteCompressedU8(UInt32 context, Byte

 /// <summary>Stores the data written

 /// in a datablock.

 /// </summary>

 /// rDataBlock <param name =

 /// returns the data wri

 /// </param>

 /// re

 /// void</returns>

 void GetDataBlock(out

 /// <summary>Set the current position to

 /// </summary>

 /// return <returns>

 /// void</returns>

 void AlignToByte();

 /// <summary>Set the current position to the next 4 byte boundary

);

 Read

<s

e IBitStreamRead interface and the associated

 used to read compressed and uncompressed

>

/ <p by the BitStreamRead class.

/ <p order.

</

ablock associated with this

 /// bitstream.

me = "rValue"><description>

ue.</description>

s>

m the datablock.

 /// </summary>

 /// return <returns>

 /// void</returns>

 void AlignTo4Byte(

 }
}

A.2.2 Bit Stream
using System;

namespace U3D

{

 /// ummary>IBitStreamRead.cs

 /// This file defines th

 /// identifier. IBitStreamRead is

 /// data to a data block.

 /// </summary>

 /// <remarks

 // ara>The IBitStreamRead is supported

 /// </para>

 // ara>Bytes are read in little-endian

 /// para>

 /// </remarks>

 public interface IBitStreamRead

 {

 /// <summary>Read a U8 from the dat

 /// </summary>

 /// rValue <param na

 /// the value read is returned in rVal

 /// </param>

 /// return <return

 /// void</returns>

 void ReadU8(out Byte rValue);

 /// <summary>Read a U16 fro

 /// </summary>

- 152 -

- 153 -

 /// rValue <param name = "rValue"><description>

 /// the value read is returned in rValue</description>

ablock.

name = "rValue"><description>

/description>

// return <returns>

32 rValue);

escription>

e = "rValue"><description>

scription>

s>

Value);

 /// <summary>Read a F32 from the datablock.

e = "rValue"><description>

rned in rValue</description>

 /// </param>

 /// return <returns>

 /// void</returns>

 void ReadU16(out UInt16 rValue);

 /// <summary>Read a U32 from the dat

 /// </summary>

 /// rValue <param

 /// the value read is returned in rValue<

 /// </param>

 /

 /// void</returns>

 void ReadU32(out UInt

 /// <summary>Read a U64 from the datablock.

 /// </summary>

 /// rValue <param name = "rValue"><d

 /// the value read is returned in rValue</description>

 /// </param>

 /// return <returns>

 /// void</returns>

 void ReadU64(out UInt64 rValue);

 /// <summary>Read a I32 from the datablock.

 /// </summary>

 /// rValue <param nam

 /// the value read is returned in rValue</de

 /// </param>

 /// return <return

 /// void</returns>

 void ReadI32(out Int32 r

 /// </summary>

 /// rValue <param nam

 /// the value read is retu

 /// </param>

 /// return <returns>

 /// void</returns>

sed U32 from the datablock.

ntext">

/ the context used to interpret the compressed value

 /// </param>

 /// rValue <param name = "rValue"><description>

 read is returned in rValue</description>

 </param>

 return <returns>

 /// void</returns>

ontext, out UInt32 rValue);

ram name="context">

t used to interpret the compressed value

param name = "rValue"><description>

scription>

rn <returns>

id ReadCompressedU16(UInt32 context, out UInt16 rValue);

ompressed U8 from the datablock.

Value"><description>

turned in rValue</description>

urn <returns>

8(UInt32 context, out Byte rValue);

 void ReadF32(out Single rValue);

 /// <summary>Read a compres

 /// </summary>

 /// context <param name="co

 //

 /// the value

 ///

 ///

 void ReadCompressedU32(UInt32 c

 /// <summary>Read a compressed U16 from the datablock.

 /// </summary>

 /// context <pa

 /// the contex

 /// </param>

 /// rValue <

 /// the value read is returned in rValue</de

 /// </param>

 /// retu

 /// void</returns>

 vo

 /// <summary>Read a c

 /// </summary>

 /// context <param name="context">

 /// the context used to interpret the compressed value

 /// </param>

 /// rValue <param name = "r

 /// the value read is re

 /// </param>

 /// ret

 /// void</returns>

 void ReadCompressedU

- 154 -

- 155 -

 /// <summary>Set the data that is read by the BitStreamReader.

ck">the data that is to be read

IDataBlock dataBlock);

ager.cs

IContextManager interface.

/ IC ynamic contexts used

namic contexts are specified as 0x0001

/ th eep a histogram that stores

ences of symbols that are added through the

/ <p ed as 0x4000

/ th re each

(context - 0x4000) are equally likely. Static

changed by the AddSymbol method.

/ <p ext 0 is a shortcut to context

hich corresponds to values from 0 through 255.

</

m for a dynamic context is initialized,

/ th alized to 1.

</

r than 0xFFFF are treated as static.

 /// </summary>

 /// <param name = "dataBlo

 /// </param>

 /// <returns>void</returns>

 void SetDataBlock(

 }
}

A.2.3 Context Manager
using System;

namespace U3D

 {

 /// <summary>IContextMan

 ///

 /// This file defines the

 // ontextManager is used to access the static and d

 /// for the reading and writing of compressed data.

 /// </summary>

 /// <remarks>

 /// <para> Dynamic Context: dy

 // rough 0x3FFF. Dynamic contexts k

 /// the number of occurr

 /// AddSymbol method.

 /// </para>

 // ara> Static Context: static contexts are specifi

 // rough 0x7FFF. Static contexts represent histograms whe

 /// value between 0 and

 /// contexts histograms are not

 /// </para>

 // ara> Context 0 or Context8: cont

 /// 0x40FF w

 /// para>

 /// <para> When a histogra

 // e symbol frequency of the escape symbol is initi

 /// para>

 /// <para> Symbols large

 /// </para>

 /// <para> The IContextManager interface is supported by the

/// </para>

</

anager

 name="context">

ram>

 this symbol to the histogram</param>

xt, UInt32 symbol);

ol

.

umber of occurences of the specified symbol in the

l of the

given symbol in the context.

ol

 /// ContextManager class.

 /// remarks>

 public interface IContextM

 {

 /// <summary>Add an occurance of the symbol to the specified

 /// context.</summary>

 /// context <param

 /// add the occurrence to this context's histogram</pa

 /// symbol <param name="symbol">

 /// add an occurrence of

 void AddSymbol(UInt32 conte

 /// <summary>Get the number of occurrences of the given symb

 /// in the context

 /// </summary>

 /// context <param name="context">

 /// get the frequency from this context's histogram

 /// </param>

 /// symbol <param name="symbol">

 /// get the frequency of this symbol the symbol

 /// </param>

 /// <returns>the n

 /// specified context

 /// </returns>

 UInt32 GetSymbolFrequency(UInt32 context, UInt32 symbol);

 /// <summary>Get the total number of occurrences for al

 /// symbols that are less than the

 /// </summary>

 /// context <param name="context">

 /// use this context's histogram

 /// </param>

 /// symbol <param name="symbol">

 /// use this symb

 /// </param>

 /// return <returns>

- 156 -

- 157 -

 /// sum of all symbol freqs for symbols less than the

symbol);

the symbols in this

/ </summary>

 /// context<param name="context">use this context's
 /// histogram</param>

 tal occurances of all symbols for the given context

 </returns>

t32 GetTotalSymbolFrequency(UInt32 context);

/ <summary>Find the symbol in a histogram that has

cified.

</summary>

ency<param name="symbolFrequency">

 frequency

ency

returns>

mbolFromFrequency(UInt32 context, UInt32

.2.4

 /// given symbol in the given context

 /// </returns>

 UInt32 GetCumulativeSymbolFrequency(UInt32 context, UInt32

 /// <summary>Get the total occurrences of all

 /// context.

 //

 /// <returns>to

 ///

 UIn

 //

 /// the cumulative frequency spe

 ///

 /// context<param name="context">

 /// use this context's histogram

 /// </param>

 /// symbolFrequ

 /// use this

 /// </param>

 /// return<returns>

 /// the symbol that corresponds to the given cumulative frequ

 /// and context</

 UInt32 GetSy
 symbolFrequency);

 }

}

A Data Block
using System;

namespace U3D

{

 /// <summary>

 /// The IDataBlock interface defines the properties associated with

 /// a block of data. IDataBlock is used by the bitstream objects.

 /// </summary>

 public interface IDataBlock

 {

 /// <summary>

 /// DataSize is the size of the data in bytes.

a n

not all of the array

l contain valid data. See the DataSize property for the

 get;

e s the information. The

he DataBlock is in byte increments; so, not all

d data. See the MetaDataSize

 of valid data.

 /// </summary>

 UInt32 DataSize

 {

 get;

 set;

 }

 /// <summary>

 /// D ta is an array that stores the information. The informatio

 /// in the DataBlock is in byte increments; so,

 /// wil

 /// amount of valid data.

 /// </summary>

 UInt32[] Data

 {

 get;

 set;

 }

 /// <summary>

 /// MetaDataSize is the size of the MetaData in bytes.

 /// </summary>

 UInt32 MetaDataSize

 {

 set;

 }

 /// <summary>

 /// M taData is an array that store

 /// information in t

 /// of the array will contain vali

 /// property for the amount

 /// </summary>

 UInt32[] MetaData

- 158 -

- 159 -

 {

 get;

 set;

 }

 /// <summary>

 /// BlockType identifies the type of data stored in the data block

 /// so that it can be interpreted correctly.

s where the block should be placed in relation

ordered in increasing

3 Classes

 /// </summary>

 UInt32 BlockType

 {

 get;

 set;

 }

 /// <summary>

 /// Priority indicate

 /// to other blocks. Blocks should be
 /// priority.

 /// < summary> /

 UInt32 Priority

 {

 get;

 set;

 }

 }

}

A.

A.3.1 Bit Stream Write

mWrite.cs

plementation of IBitStreamWrite.

using System;

namespace U3D

{

 /// <summary>BitStrea

 /// BitStreamWrite is the im

 /// </summary>

>

d writes are converted to unsigned integers and

/ b e written with the

mbol in the static context Context8.

l compressed writes are for unsigned integers and are passed

vate method WriteSymbol with the associated context.

>

 BitStreamWrite : IBitStreamWrite

F;

 UInt32[DataSizeIncrement];

d = false;

)

 }

uValue)

bol = (UInt32) uValue;

ref symbol);

ol escape = false;

 WriteSymbol(Constants.Context8, symbol, out escape);

0x00FF & (uValue >> 8)));

 /// <remarks

 /// <para>All uncompresse

 // roken down into a sequence of U8 values that ar

 /// private method WriteSy

 /// </para>

 /// <para> Al

 /// through to the pri

 /// </para>

 /// </remarks

 public class

 {

 public BitStreamWrite()

 {

 this.contextManager = new ContextManager();

 this.high = 0x0000FFF

 this.data = new

 this.compresse

 }

 ~BitStreamWrite(

 {

 #region IBitStreamWrite implementation

 public void WriteU8(Byte

 {

 UInt32 sym

 SwapBits8(

 bo

 }

 public void WriteU16(UInt16 uValue)

 {

 WriteU8((Byte)(0x00FF & uValue));

 WriteU8((Byte)(

 }

- 160 -

- 161 -

 public void WriteU32(UInt32 uValue)

iteU16((UInt16)(0x0000FFFF & uValue));

 WriteU16((UInt16)(0x0000FFFF & (uValue >> 16)));

(0x00000000FFFFFFFF & uValue));

iteU32((UInt32)(0x00000000FFFFFFFF & (uValue >> 32)));

oid WriteI32(Int32 iValue)

32)iValue);

(Single fValue)

onverter.ToUInt32(BitConverter.GetBytes(fValue), 0);

Int32) uValue);

blic void WriteCompressedU32(UInt32 context, UInt32 uValue)

 {

 compressed = true;

 bool escape = false;

if((context != 0) && (context < Constants.MaxRange))

 {

 WriteSymbol(context, uValue, out escape);

 if(escape == true)

 {

 WriteU32(uValue);

 this.contextManager.AddSymbol(context, symbol + 1U);

 }

 {

 Wr

 }

 public void WriteU64(UInt64 uValue)

 {

 WriteU32((UInt32)

 Wr

 }

 public v

 {

 WriteU32((UInt

 }

 public void WriteF32

 {

 UInt32 uValue =

 BitC

 WriteU32((U

 }

 pu

 }

 else

 {

 WriteU32(uValue);

ssed = true;

pe = false;

stants.MaxRange))

t, uValue, out escape);

, symbol + 1U);

lse

lue);

32 context, Byte uValue)

t < Constants.MaxRange))

if(escape == true)

l(context, symbol + 1U);

 }

 }

 public void WriteCompressedU16(UInt32 context, UInt16 uValue)

 {

 compre

 bool esca

 if((context != 0) && (context < Con

{

 WriteSymbol(contex

if(escape == true)

 {

 WriteU16(uValue);

 this.contextManager.AddSymbol(context

 }

 }

 e

 {

WriteU16(uVa

 }

 }

 public void WriteCompressedU8(UInt

 {

 compressed = true;

 bool escape = false;

x if((context != 0) && (conte

 {

WriteSymbol(context, uValue, out escape);

 {

 WriteU8(uValue);

 this.contextManager.AddSymbo

 }

 }

 else

- 162 -

- 163 -

 {

oid GetDataBlock(out IDataBlock rDataBlock)

Flush the arithmetic coder

ignToByte();

t32)this.dataBitOffset >> 3);

ataBlock = new DataBlock();

ataBlock.DataSize = numBytes;

Int32[] tempData = rDataBlock.Data;

 tempData.Length);

ataBlock.Data = tempData;

/ Check input(s)

tBitCount(ref uBitCount);

t & 7)) & 7;

aBitOffset -= 32;

nTo4Byte()

 WriteU8(uValue);

 }

 }

 public v

 {

 if(compressed) //

 {

 this.WriteU32(0);

 }

 Al

 UInt32 numBytes = ((UInt32)this.dataPosition << 2)

 + ((UIn

 rD

 PutLocal();

 rD

 U

 Array.Copy(this.data, tempData,

 rD

 }

 public void AlignToByte()

 {

 /

 Int32 uBitCount = 0;

 Ge

 uBitCount = (8 - (uBitCoun

 this.dataBitOffset += uBitCount;

 if(this.dataBitOffset >= 32)

 {

 this.dat

 IncrementPosition();

 }

 }

 public void Alig

 {

 if(this.dataBitOffset > 0)

 {

 this.dataBitOffset = 0;

IncrementPosition();

ods

ablock in the specified context.

l was written successfully.

ram. In this case, the escape symbol, 0, is

text, UInt32 symbol, out bool

mbol++;

Escape = false;

Int32 totalCumFreq = 0;

nt32 symbolFreq = 0;

=

anager

bol);

ntextManager.GetSymbolFrequency(context, symbol);

ymbol has not occurred yet.

Write out the escape symbol, 0.

l = 0;

 }

 }

 #endregion IBitStreamWriter meth

 #region private helper methods

 /*

 * WriteSymbol

 * Write the given symbol to the dat

 * rEscape returns as false if the symbo

 * rEscape will return true when writing in dynamically compressed

 * contexts when the symbol to write has not appeared yet in the

 * context's histog

 * written.

 */

 private void WriteSymbol(UInt32 con
 rEscape)

 {

 sy

 r

 U

 UInt32 symbolCumFreq = 0;

 UI

 totalCumFreq
this.contextManager.GetTotalSymbolFrequency(context);

 symbolCumFreq = this.contextM

 .GetCumulativeSymbolFrequency(context, sym

 symbolFreq =

 this.co

 if(0 == symbolFreq)

 { //the s

 //

 symbo

- 164 -

- 165 -

 symbolCumFreq = this.contextManager

mulativeSymbolFrequency(context,
 symbol);

ymbolFreq =

 this.contextManager.GetSymbolFrequency(context,
 symbol);

 (0 == symbol)

scape = true;

ange = this.high + 1 - this.low;

 symbolFreq) / totalCumFreq;

w + range * symbolCumFreq / totalCumFreq;

bol);

nt32 bit = this.low >> 15;

h & Constants.HalfMask;

nt32 lowmask = this.low & Constants.HalfMask;

nts.HalfMask)

ts.HalfMask))

 WriteBit(bit);

ile(this.underflow > 0)

WriteBit((~bit) & 1);

}

s.HalfMask;

 GetCu

s

 }

 if

 { //the symbol is the escape symbol.

 rE

 }

 UInt32 r

 this.high = this.low -1 + range

 * (symbolCumFreq +

 this.low = this.lo

 this.contextManager.AddSymbol(context, sym

 //write bits

 UI

 UInt32 highmask = this.hig

 UI

 while ((this.high & Consta

 == (this.low & Constan

 {

 this.high &= ~Constants.HalfMask;

 this.high += this.high + 1;

 wh

 {

 this.underflow--;

 this.low &= ~Constant

 this.low += this.low;

rflow occurs when the values stored in this.high and

 this.low differ only in the most significant bit.

precision of the variables is not large enough to

Constants.QuarterMask))

 && (Constants.QuarterMask

 == (this.low & Constants.QuarterMask)))

ow &= ~Constants.HalfMask;

this.underflow++;

alue so that the first

the last 4 bits become

efghabcd

 */

ants.Swap8[(rValue) >> 4]);

 Wri Bit

 bit = this.low >> 15;

 }

 //check for underflow

 // Unde

 //

 // The

 // predict the next symbol.

 while ((0 == (this.high &

 {

 this.high &= ~Constants.HalfMask;

 this.high <<= 1;

 this.low <<= 1;

 this.high |= Constants.HalfMask;

 this.high |= 1;

 this.l

 }

 }

 /*

 * SwapBits8

 * changes the ordering of an 8 bit v

 * 4 bits become the last 4 bits and

 * the first 4. E.g. abcdefgh ->

 private void SwapBits8(ref UInt32 rValue)

 {

 rValue = (Constants.Swap8[(rValue) & 0xf] << 4)

 | (Const

 }

 /*

 * te

 * Write the given bit to the datablock.

 */

- 166 -

- 167 -

 private void WriteBit(UInt32 bit)

 {

NOTE
Shift operations on U32s are only valid for shifts of 0 to 31 bits.

 << this.dataBitOffset);

s.d set);

aBitOffset += 1;

 {

 /*

ock stored in dataLocal and

xt values in the datablock.

/

 {

a[this.dataPosition-1] = this.dataLocal;

aPosition+1];

lock in dataLocal and

 private void GetLocal()

 UInt32 mask = 1;

 bit &= mask;

 this.dataLocal &= ~(mask

 thi ataLocal |= (bit << this.dataBitOff

 this.dat

 if(this.dataBitOffset >= 32)

 this.dataBitOffset -= 32;

 IncrementPosition();

 }

 }

 * IncrementPosition

 Upd * ates the values of the databl
 dataLocalNext

 * to the ne

 *

 private void IncrementPosition()

 this.dataPosition++;

 CheckPosition();

 this.dat

 this.dataLocal = this.dataLocalNext;

 this.dataLocalNext = this.data[this.dat

 }

 /*

 * GetLocal

 * store the initial 64 bits of the datab

 * dataLocalNext

 */

 {

 CheckPosition();

 this.dataLocal = this.data[this.dataPosition];

taLocalNext = this.data[this.dataPosition+1];

 }

 Put

/

ta[this.dataPosition] = dataLocal;

t;

t the array allocated for writing is large

gh. Reallocates if necessary.

void CheckPosition()

tion + 2 +

s of the old array to the new arry.

)

Store an old buffer if it exists

 this.da

 /*

 * Local

 * stores the local values of the data to the data array

 *

 *

 private void PutLocal()

 {

 this.da

 this.data[this.dataPosition+1] = dataLocalNex

 }

 /*

 * CheckPosition

 * checks tha

 * enou

 */

 private

 {

 if(this.dataPosition + 2 > this.data.Length)

 {

 AllocateDataBuffer(this.dataPosi
DataSizeIncrement);

 }

 }

 /*

cateDataBuffer * Allo

 * Creates and new array for storing the data written. Copies

 * value

 */

 private void AllocateDataBuffer(Int32 size

 {

 //

- 168 -

- 169 -

 if(null != this.data)

 {

UInt32[size];

 UInt32[] oldData = this.data;

; i < oldData.Length; i++)

its written in rCount

nt = (this.dataPosition << 5) + this.dataBitOffset;

s

ndles

pdates to the histograms for the compression contexts.

Int32 high; //high and low are the upper and

 //caused by the limited range of high

 //low

 this.data = new

 for(int i = 0

 {

 this.data[i] = oldData[i];

 }

 }

 else

 {

 this.data = new UInt32[size];

 }

 }

 /*

 * GetBitCount

 * returns the number of b

 */

 void GetBitCount(ref Int32 rCount)

 {

 rCou

 }

 #endregion private helper method

 #region member variables

 private IContextManager contextManager; //the context manager ha

 // the u

 private U
 lower

 private UInt32 low; //limits on the probability

 private UInt32 underflow; //stores the number of bits of
 underflow

 and

 private bool compressed; //this is true if a compressed value was

ed,

 //a 32 bit 0 is written to reset the values of

 //high, low, and underflow.

data; //the data section of the datablock to

Int32 dataPosition; //the position currently to write in the

 //datablock specified in 32 bit increments.

 //to dataposition

in data after

vate Int32 dataBitOffset; //the offset into dataLocal that the
t

 //write will occur

 member variables

= 0x000023F8;

 sequence of U8s

 Context8 and then built

 //written. when the datablock is retriev

 private UInt32[]
 write.

 private

 private UInt32 dataLocal; //the local value of the data
 corresponding

 private UInt32 dataLocalNext; //the 32 bits
 dataLocal

 pri
 nex

 #endregion

 #region constants

nst Int32 DataSizeIncrement private co

ion constants #endreg

 }

}

A.3.2 Bit Stream Read

using System;

namespace U3D

{

 /// <summary> BitStreamRead.cs

 /// BitStreamRead is the implementation of IBitStreamRead.</summary>

 ///

 /// <remarks>

 // ara> All uncompressed reads are read in as a/ <p

 /// with the private method ReadSymbol in context

- 170 -

- 171 -

 /// up to the appropriate size and cast to the appropriate type for

are converted to unsigned integers and broken down

 the private method

/

 reads are for unsigned integers and are passed

ssociated context.

eamRead : IBitStreamRead

eamRead()

 this.contextManager = new ContextManager();

.high = 0x0000FFFF;

 IBitStreamRead interface implementation

 {

 SwapBits8(ref uValue);

uValue;

 /// the read call.

 /// into a sequence of U8 values that are writen with

 /// WriteSymbol in the static context Context8.

 /// </para>

 //

 /// <para> All compressed

 /// through to the private method ReadSymbol with the a

 /// </para>

 /// </remarks>

 public class BitStr

 {

 public BitStr

 {

 this

 }

 ~BitStreamRead()

 {

 }

 #region

 public void ReadU8(out Byte rValue)

 UInt32 uValue = 0;

 ReadSymbol(Constants.Context8, out uValue);

 uValue--;

 rValue = (Byte)

 }

 public void ReadU16(out UInt16 rValue)

 {

 Byte low = 0;

 Byte high = 0;

adU8 out gh);

6(out high);

 rValue = ((UInt32) low) | ((UInt32) (high << 16));

UInt64 rValue)

 {

 UInt32 high = 0;

ReadU32(out low);

 ReadU32(out high);

 ((UInt64) low) | (((UInt64) high) << 32);

 }

lic void ReadI32(out Int32 rValue)

 ReadU8(out low);

 Re (hi

 rValue = (UInt16) (((UInt16) low) | (((UInt16) high) << 8));

 }

 public void ReadU32(out UInt32 rValue)

 {

 UInt16 low = 0;

 UInt16 high = 0;

 ReadU16(out low);

 ReadU1

 }

 public void ReadU64(out

 UInt32 low = 0;

 rValue =

 pub

 {

 UInt32 uValue = 0;

ReadU32(out uValue);

 rValue = (Int32)(uValue);

 }

- 172 -

- 173 -

 public void ReadF32(out Single rValue)

 {

 UInt32 uValue = 0;

 ReadU32(out uValue);

 rValue = BitConverter.ToSingle(BitConverter.GetBytes(uValue), 0);

mbol = 0;

 && context < Constants.MaxRange)

{ //the context is a compressed context

t, out symbol);

if (symbol != 0)

1;

 }

else

 { //escape character, the symbol was not compressed

32(out rValue);

 this.contextManager.AddSymbol(context, rValue + 1U);

}

s uncompressed.

ReadU32(out rValue);

essedU16(UInt32 context, out UInt16 rValue)

 symbol = 0;

 (context != 0 && context < Constants.MaxRange)

 { //the context is a compressed context

ol);

if (symbol != 0)

ol is compressed

 }

 public void ReadCompressedU32(UInt32 context, out UInt32 rValue)

 {

 UInt32 sy

 if (context != Constants.Context8

 ReadSymbol(contex

 { //the symbol is compressed

 rValue = symbol -

 ReadU

 }

 else

 { //The context specified i

 }

 }

 public void ReadCompr

 {

 UInt32

 if

 ReadSymbol(context, out symb

 { //the symb

 rValue = (UInt16) (symbol - 1);

 }

 is uncompressed

 ReadU16(out rValue);

);

}

 }

//the context specified is not compressed

ue);

 }

Int32 context, out Byte rValue)

 UInt32 symbol = 0;

 (context != 0 && context < Constants.MaxRange)

ol);

 is compressed

yte)(symbol - 1);

 }

is not compressed

Value +
 (UInt32)1);

 }

se

fied is not compressed

 ReadU8(out rValue);

 public void SetDataBlock(IDataBlock dataBlock)

 else

 { //the symbol

 this.contextManager.AddSymbol(context, rValue + 1U

 else

 {

 ReadU16(out rVal

 }

 public void ReadCompressedU8(U

 {

 if

 { //the context is a compressed context

 ReadSymbol(context, out symb

 if (symbol != 0)

 { //the symbol

 rValue = (B

 else

 { //the symbol

 ReadU8(out rValue);

 this.contextManager.AddSymbol(context, r

 }

 el

 { //the context speci

 }

 }

- 174 -

- 175 -

 { //set the data to be read to data
ta

and get the first part of the

ock.Data;

his.dataPosition = 0;

ect stores 64 bits from the

 dat sec ext.

t 4 bits become

SwapBits8(ref UInt32 rValue)

lue

Value) >> 4]);

 /* ReadSymbol

ymbol 0 represents the escape value and signifies that the

compressed.

 */

ivat)

 da

 //into local variables

 UInt32[] tempData = dataBl

 this.data = new UInt32[tempData.Length];

ray.Copy(tempData, this.data, tempData.Length); Ar

 t

 this.dataBitOffset = 0;

tLocal(); Ge

 }

#endregion IBitStreamRead implementation

#region private helper methods

 /* internally the BitStreamRead obj
 DataBlock's

 * a tion in dataLocal and dataLocalN

 */

 /* SwapBits8

 * changes the ordering of an 8 bit value so that the first

 * 4 bits become the last 4 bits and the las

 * the first 4. E.g. abcdefgh -> efghabcd

 */

 private void

 {

 rVa = (Constants.Swap8[(rValue) & 0xf] << 4)

 | (Constants.Swap8[(r

 }

 * Read a symbol from the datablock using the specified context.

 * The s

 * next symbol read will be un

 pr e void ReadSymbol(UInt32 context, out UInt32 rSymbol

 {

 UInt32 uValue = 0;

 // Fill in the code word

 UInt32 position = 0;

 GetBitCount(out position);

.code);

is.dataBitOffset -= 32;

mentPosition();

temp = 0;

ad15Bits(out temp);

 this.code <<= 15;

ekToBit(position);

 // Get total count to calculate probabilites

quency(context);

cy of the current symbol

nt32 ow;

onship:

= (totalCumFreq * (this.code - this.low)) / range

e frequency of the current

codeCumFreq =

alCumFreq) * (1 + this.code - this.low) - 1) / (range);

 .GetSymbolFromFrequency(context, codeCumFreq);

nt32 valueCumFreq =

this.contextManager

ontext, uValue);

 ReadBit(out this

 this.dataBitOffset += (Int32)this.underflow;

 while (this.dataBitOffset >= 32)

 {

 th

 Incre

 }

 UInt32

 Re

 this.code |= temp;

 Se

 UInt32 totalCumFreq =

 this.contextManager.GetTotalSymbolFre

 // Get the cumulative frequen

 UI range = this.high + 1 - this.l

 // The relati

 // codeCumFreq <

 // is used to calculate the cumulativ

 // symbol. The +1 and -1 in the line below are used to counteract

 // finite word length problems resulting from the division by
 range.

 UInt32

 ((tot

 // Get the current symbol

 uValue = this.contextManager

 // Update state and context

 UI

 .GetCumulativeSymbolFrequency(c

- 176 -

- 177 -

 UInt32 valueFreq =

 this.contextManager.Ge

tSymbolFrequency(context, uValue);

ueCumFreq + valueFreq) /

 * (valueCumFreq) / totalCumFreq;

is.contextManager.AddSymbol(context, uValue);

 Int32 bitCount;

w;

 to read

ast count the first 4 bits

x0000000F];

gh |= (UInt32) ((1 << bitCount) -1);

e (((maskedLow | maskedHigh) == 0)

== Constants.HalfMask))

 low = (Constants.NotHalfMask & low) << 1;

otHalfMask & high) << 1) | 1;

 UInt32 low = this.low;

 UInt32 high = this.high;

 high = low - 1 + range * (val
 totalCumFreq;

 low = low + range

 th

 UInt32 maskedLo

 UInt32 maskedHigh;

 // Count bits

 // F

 //compare most significant 4 bits of low and high

 bitCount =

 (Int32)ReadCount[((low >> 12) ^ (high >> 12)) & 0

 low &= FastNotMask[bitCount];

 high &= FastNotMask[bitCount];

 high <<= bitCount;

 low <<= bitCount;

 hi

 // Regular count the rest

 maskedLow = Constants.HalfMask & low;

 maskedHigh = Constants.HalfMask & high;

 whil

 || ((maskedLow == Constants.HalfMask)

 && maskedHigh

 {

 high = ((Constants.N

 maskedLow = Constants.HalfMask & low;

Mask & high;

savedBitsHigh = maskedHigh;

 bitCount += (Int32)this.underflow;

0;

erMask & low;

maskedHigh = Constants.QuarterMask & high;

 while ((maskedLow == 0x4000) && (maskedHigh == 0))

;

 high &= Constants.NotThreeQuarterMask;

.QuarterMask & high;

 maskedHigh = Constants.Half

 bitCount++;

 }

 UInt32 savedBitsLow = maskedLow;

 UInt32

 if(bitCount > 0)

 {

 this.underflow =

 }

 // Count underflow bits

 maskedLow = Constants.Quart

 UInt32 underflow = 0;

 {

 low &= Constants.NotThreeQuarterMask

 low += low;

 high += high;

 high |= 1;

 maskedLow = Constants.QuarterMask & low;

 maskedHigh = Constants

 underflow++;

 }

 // Store the state

 this.underflow += underflow;

 low |= savedBitsLow;

 high |= savedBitsHigh;

 this.low = low;

- 178 -

- 179 -

 this.high = high;

 // Update bit read position

nt;

 while(this.dataBitOffset >= 32)

fset -= 32;

return value

l = uValue;

 Get

 rCount

/

ffset;

 uValue &= 1;

is.dataBitOffset -= 32;

 this.dataBitOffset += bitCou

 {

 this.dataBitOf

 IncrementPosition();

 }

 // Set

 rSymbo

 }

 /*

 * BitCount

 * returns the number of bits read in

 *

 private void GetBitCount(out UInt32 rCount)

 {

 rCount = (UInt32)((this.dataPosition << 5) + this.dataBitOffset);

 }

 /* ReadBit

 * Read the next bit in the datablock. The value is returned in

 * rValue.

 */

 private void ReadBit(out UInt32 rValue)

 {

 UInt32 uValue = 0;

 uValue = this.dataLocal >> this.dataBitO

 this.dataBitOffset ++;

 if(this.dataBitOffset >= 32)

 {

 th

 IncrementPosition();

 }

 rValue = uValue;

 }

 /* Read15Bits

 the value is returned

 */

UInt32 rValue)

Offset;

.dataBitOffset > 17)

 {

lNext << (32 - this.dataBitOffset));

 uValue += uValue;

 uValue = (Constants.Swap8[(uValue >> 12) & 0xf])

4)

((Constants.Swap8[(uValue >> 4) & 0xf]) << 8)

 if(this.dataBitOffset >= 32)

ablock stored in dataLocal and

lock.

 */

 * Read the next 15 bits from the datablock.

 * in rValue.

 private void Read15Bits(out

 {

 UInt32 uValue = this.dataLocal >> this.dataBit

 if(this

 uValue |= (this.dataLoca

 }

 | ((Constants.Swap8[(uValue >> 8) & 0xf]) <<

 |

 | ((Constants.Swap8[uValue & 0xf]) << 12);

 rValue = uValue;

 this.dataBitOffset += 15;

 {

 this.dataBitOffset -= 32;

 IncrementPosition();

 }

 }

 /*

 * IncrementPosition

 * Updates the values of the dat
 dataLocalNext

e datab * to the next values in th

- 180 -

- 181 -

 private void IncrementPosition()

 {

 this.dataLocal = this.data[dataPosition];

n+1)

this.dataPosition+1];

 = 0;

 }

fSet values so that

xt read will occur at position in the datablock.

void SeekToBit(UInt32 position)

is.dataPosition = position >> 5;

 this.dataBitOffset = (Int32)(position & 0x0000001F);

 the initial 64 bits of the datablock in dataLocal and

 */

his.dataPosition];

ataPosition + 1)

 this.dataPosition++;

 if(this.data.Length > this.dataPositio

 {

 this.dataLocalNext = this.data[

 }

 else

 {

 this.dataLocalNext

 }

 /* SeekToBit

 * Sets the dataLocal, dataLocalNext and bitOf

 * the ne

 */

 private

 {

 th

 GetLocal();

 }

 /*

 * GetLocal

 * store

 * dataLocalNext

 private void GetLocal()

 {

 this.dataLocal = this.data[t

 if(this.data.Length > this.d

 {

 this.dataLocalNext = this.data[this.dataPosition+1];

 }

 }

 #endregion private helper methods

 member variables

ger contextManager; //the context manager handles

 //for the compression contexts.

gh and low are the upper and

 UInt32 low; //lower limits on the

32 underflow; //stores the number of bits of

erflow caused by the

 //limited range of high and low

 //the datablock

//the data section of the

 //datablock to read from.

currently read in

 32

 private UInt32 dataLocal; //the local value of the data

 //corresponding to dataposition.

; //the 32 bits in data after

ataLocal

offset into dataLocal that

next read will occur

k

00FFFF, 0x00007FFF, 0x00003FFF, 0x00001FFF, 0x00000FFF};

c readonly UInt32[] ReadCount

 #region

 private IContextMana

 //the updates to the histograms

 private UInt32 high; //hi

 private

 //probability

 private UInt

 //und

 private UInt32 code; //the value as represented in

 private UInt32[] data;

 private UInt32 dataPosition; //the position

 //the datablock specified in

 //bit increments.

 private UInt32 dataLocalNext

 //d

 private Int32 dataBitOffset; //the

 // the

otMas private static readonly UInt32[] FastN

 = {0x00

 stati private

 = {4, 3, 2, 2, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0};

 #endregion member variables

 }

}

- 182 -

- 183 -

A.3.3 Context Manager
using System;

namespace U3D

{

 public class ContextManager : IContextManager

bolCount = new UInt16[Constants.StaticFull][];

onstants.StaticFull][];

Members

bol(UInt32 context, UInt32 symbol)

&& symbol < MaximumSymbolInHistogram)

to do if static or if the

//symbol is larger than the maximum symbol allowed in the

ulativeCount = this.cumulativeCount[context];

UInt16[] symbolCount = this.symbolCount[context];

if (cumulativeCount == null || cumulativeCount.Length <=

r if they

 too small.

 cumulativeCount = new UInt16[symbol + ArraySizeIncr];

= new UInt16[symbol + ArraySizeIncr];

 != null)

ated successfully

 if (this.cumulativeCount[context] == null)

m

 this.cumulativeCount[context] =
 cumulativeCount;

= 1;

 {

tManager() public Contex

 {

 this.sym

 this.cumulativeCount = new UInt16[C

 }

IContextManager #region

 public void AddSym

 {

 if (context < Constants.StaticFull && context !=
 Constants.Context8

 { //check if dynamic. nothing

 //histogram

 UInt16[] cum

 symbol)

 { //allocate new arrays if they do not exist yet o

 //are

 symbolCount

 if(cumulativeCount != null && symbolCount

 {//check that the arrays were alloc

 {//if this is a new context set up the histogra

 this.cumulativeCount[context][0]

 this.symbolCount[context] = symbolCount;

 this.symbolCount[context][0] = 1;

 else

s in

 .CopyTo(cumulativeCount, 0);

>

nt,

m + symb

m;

mbol

 //count and cumulative count

 symbolCount[symbol]++;

mbol; i++)

 {

 cumulativeCount[i]++;

 }

 }

 }

 {//if this is an old context, copy over the value

 //the histogram to the new arrays

 this.cumulativeCount[context]

 this.symbolCount[context].CopyTo(symbolCount, 0);

 }

 }

 this.cumulativeCount[context] = cumulativeCount;

 this.symbolCount[context] = symbolCount;

 }

 if(cumulativeCount[0] = Elephant)

 {//if total number of occurances is larger than Elepha

 //scale down the values to avoid overflow

 int len = cumulativeCount.Length;

 UInt16 tempAccum = 0;

 for(int i = len - 1; i >= 0; i--)

 {

 symbolCount[i] >>= 1;

 tempAccu = olCount[i];

 cumulativeCount[i] = tempAccu

 }

 //preserve the initial escape value of 1 for the sy

 symbolCount[0]++;

 cumulativeCount[0]++;

 }

 for(int i = 0; i <= sy

- 184 -

- 185 -

 public UInt32 GetSymbolFrequency(UInt32 context, UInt32 symbol)

 {

//the static case is 1.

&& context !=
Constants.Context8)

//the default for the dynamic case is 0

 && (symbol < this.symbolCount[context].Length))

 rValue = (UInt32) his.symbolCount[context][symbol];

else if (symbol == 0)

y , th

n 1

blic Int ol)

Value

(th

][0]

 }

 UInt32 rValue = 1;

 if (context < Constants.StaticFull

 {

 rValue = 0;

 if ((this.symbolCount[context] != null)

 {

 }

 { //if the histogram hasn't been created et e
 symbol 0 is

 //the escape value and should retur

 rValue = 1;

 }

 }

 return rValue;

 }

 pu U 32 GetCumulativeSymbolFrequency(UInt32 context, UInt32 symb

 {

 //the static case is just the value of the symbol.

 UInt32 rValue = symbol - 1;

 if (context < Constants.StaticFull && context != Constants.Context8)

 {

 r = 0;

 if is.cumulativeCount[context] != null)

 {

 if(symbol < this.cumulativeCount[context].Length)

 {

 rValue = (UInt32)(this.cumulativeCount[context

 - this.cumulativeCount[context][symbol]);

 }

 else

 rValue = (UInt32)(this.cumulativeCount[context][0]);

ext)

taticFull && context != Constants.Context8)

rValue;

 }

ll;

&& context !=

= 0;

text] != null

>= symbolFrequency)

UInt32 i = 0;

 }

 }

 return rValue;

 }

 public UInt32 GetTotalSymbolFrequency(UInt32 cont

 {

 if (context < Constants.S

 {

 UInt32 rValue = 1;

 if(this.cumulativeCount[context] != null)

 rValue = this.cumulativeCount[context][0];

 return

 else

 {

 if (context == Constants.Context8)

 return 256;

 else

 return context - Constants.StaticFu

 }

 }

 public UInt32 GetSymbolFromFrequency(UInt32 context, UInt32
 symbolFrequency)

 {

 UInt32 rValue = 0;

 if (context < Constants.StaticFull
 Constants.Context8)

 {

 rValue

 if (this.cumulativeCount[con

 && symbolFrequency != 0

 this.cumulativeCount[context][0] &&

 {

- 186 -

- 187 -

 for(i = 0; i < this.cumulativeCount[context].Length;

.GetCumulativeSymbolFrequency(context, i)

<= symbolFrequency)

 break;

ables

t; //an array of arrays that store th

 i++)

 {

 if (this

 rValue = i;

 else

 }

 }

 }

 else

 {

 rValue = symbolFrequency + 1;

 }

 return rValue;

 }

 #e gindre on

 #region Member vari

e private UInt16[][] symbolCoun

 //number of occurrences of each

 // symbol for each dynamic context.

e UInt16[][] cumulativeCount; //an array of arrays that store th

e privat

 //cumulative frequency of each

 //symbol in each context.

 //is the number of occu

 the value

rences of a

//symbol and every symbol with a

 //larger value.

 #endregion Member variables

 #region constants

 // The Elephant is a value that determines the number of

 // symbol occurences that are stored in each dynamic histogram.

 // Limiting the number of occurences avoids overflow of the U16 array

 // elements and allows the histogram to adapt to changing symbol

 that is stored in a histogram

 UInt32 MaximumSymbolInHistogram = 0x0000FFFF;

the size of an array when reallocating

ray.

 private const UInt32 ArraySizeIncr = 32;

ock : IDataBlock

ock()

;

taData = null;

is.blockType = 0;

 this.priority = 0;

UInt32 DataSize

ize;

ate data buffer for block.

ligned to byte values

 // distributions in files.

 private const UInt32 Elephant = 0x00001fff;

 //the maximum value

 private const

 //the ammount to increase

 //an ar

 #endregion constants

 }

}

A.3.4 Data Block
using System;

namespace U3D

{

 public class DataBl

 {

 public DataBl

 {

 this.dataSize = 0;

 this.data = null

 this.metaDataSize = 0;

 this.me

 th

 }

 public

 {

 get

 {

 return this.dataS

 }

 set

 {

taSize = value; this.da

 //alloc

 //the data is generally a

 //but array is 4 bytes values . . .

- 188 -

- 189 -

 if ((this.dataSize & 0x3) == 0)

a = new UInt32[(value >> 2) + 1];

turn this.data;

is.data = value;

taDataSize

 {

new UInt32[value >> 2];

 this.metaData = new UInt32[(value >> 2) + 1];

 this.data = new UInt32[value >> 2];

 else

 this.dat

 }

 }

 public UInt32[] Data

 {

 get

 {

 re

 }

 set

 {

 th

 }

 }

 public UInt32 Me

 {

 get

 return this.metaDataSize;

 }

 set

 {

 this.metaDataSize = value;

 //allocate data buffer for block.

 //the data is generally aligned to byte values

 //but array is 4 bytes values . . .

 if ((this.metaDataSize & 0x3) == 0)

 this.metaData =

 else

 }

 }

 public UInt32[] MetaData

 {

 get

 {

 return this.metaData;

 }

 set

 {

 if(value.Length == this.metaData.Length)

 Array.Copy(value, this.metaData, value.Length);

 }

 }

lic UInt32 BlockType

 {

{

lockType;

UInt32 Priority

rn this.priority;

.priority = value;

UIn

 {

 }

 pub

 get

 return this.b

 }

 set

 {

 this.blockType = value;

 }

 }

 public

 {

 get

 {

 retu

 }

 set

 {

 this

 }

 }

 private t32[] data;

- 190 -

- 191 -

 private t32 dataSize; UIn

aSize;

UIn 2 pr

2 blockType;

olds constants that are needed by

ects in the U3D namespace.</summary>

Constants

{

arithmetic compression constants

ges

xt for uncompressed U8

UInt32 Context8 = 0;

/ </ mma

/The largest allowable static context. values written to contexts
e

en as uncompressed.

 ///</summary>

StaticFull + 0x00003FFF;

 private UInt32[] metaData;

 private UInt32 metaDat

 private t3 iority;

 private UInt3

 }

}

A.3.5 Constants
using System;

namespace U3D

{

 /// <summary>Constants is a class that h
 more than

 /// one of the obj

 public class

 #region

 //context ran

 /// <summary>

 /// the conte

 /// </summary>

 public const

 /// <summary>

 /// contexts >= StaticFull are static contexts.

 // su ry>

 public const UInt32 StaticFull = 0x00000400;

 ///<summary>

 //
 > MaxRange ar

 ///writt

 public const UInt32 MaxRange =

 /// <summary>

uffer size for U3D

>

UInt32 SizeBuff = 1024;

al size allocated for buffers

 DataSizeInitial = 0x00000010;

ding and writing symbols.

ks all but the most significan bit

ummary>

 0x00008000;

mmary>

ost significant bit

>

7FFF;

ut the 2nd most significan bit

>

000;

mmary>

ks the 2 most significant bits

const UInt32 NotThreeQuarterMask = 0x00003FFF;

>

eadonly UInt32[] Swap8

 = {0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3,

 /// a defualt b

 /// </summary

 public const

 /// <summary>

 /// the initi

 /// </summary>

 public const UInt32

 //Bit masks for rea

 /// <summary>

 /// mas

 /// </s

 public const UInt32 HalfMask =

 /// <su

 /// masks the m

 /// </summary

 public const UInt32 NotHalfMask = 0x0000

 /// <summary>

 /// masks all b

 /// </summary

 public const UInt32 QuarterMask = 0x00004

 /// <su

 /// mas

 /// </summary>

 public

 /// <summary>

 /// used to swap 8 bits in place

 /// </summary

 public static r

 11, 7, 15};

 #endregion

 }

}

- 192 -

- 193 -

	1 Scope
	2 Conformance
	3 References
	4 Definitions
	5 Notational Conventions
	5.1 Diagrams and field descriptions
	1.1.1.1.1 U8: A
	1.1.1.1.2 B
	1.1.1.1.3 U32 [cCcontext]: C
	1.1.1.1.4 U8 [r7]: D

	5.2 Data types
	5.3 Functional notations

	6 Acronyms and Abbreviations
	7 General Description
	8 Architecture
	8.1 Execution architecture
	8.2 Palettes
	8.3 Node resources
	8.4 Shading resources
	8.5 Motion resource
	8.6 Modifier chains
	8.7 Scene graph
	8.8 CLOD mesh generator
	8.9 Rendering and Shading
	8.9.2.1 Shader
	8.9.2.2 Shading Group
	8.9.2.3 Renderable Mesh Group
	8.9.2.4 Renderable Line Group
	8.9.2.5 Renderable Point Group

	8.10 Serialization
	8.11 Extensibility

	9 File Format
	9.1 File structure
	9.2 Block structure
	9.2.6.1 U32: Key/Value Pair Count
	9.2.6.2 U32: Key/Value Pair Attributes:
	9.2.6.3 String: Key String
	9.2.6.4 String: Value String
	9.2.6.5 U32: Binary Value Size
	9.2.6.6 Binary Value

	9.3 Block definitions
	9.4 File structure blocks
	9.4.1.1 I32: Version
	9.4.1.2 U32: Profile Identifier
	9.4.1.3 U32: Declaration Size
	9.4.1.4 U64: File Size
	9.4.1.5 U32: Character Encoding
	9.4.1.6 F64: Units Scaling Factor
	9.4.2.1 String: Scope Name
	9.4.2.2 U32: File Reference Attributes
	9.4.2.3 File Reference Bounding Sphere
	9.4.2.3.1 F32: Bounding Sphere Center X
	9.4.2.3.2 F32: Bounding Sphere Center Y
	9.4.2.3.3 F32: Bounding Sphere Center Z
	9.4.2.3.4 F32: Bounding Sphere Radius

	9.4.2.4 File Reference Axis-Aligned Bounding Box
	9.4.2.4.1 F32: Axis-Aligned Bounding Box Min X
	9.4.2.4.2 F32: Axis-Aligned Bounding Box Min Y
	9.4.2.4.3 F32: Axis-Aligned Bounding Box Min Z
	9.4.2.4.4 F32: Axis-Aligned Bounding Box Max X
	9.4.2.4.5 F32: Axis-Aligned Bounding Box Max Y
	9.4.2.4.6 F32: Axis-Aligned Bounding Box Max Z

	9.4.2.5 U32: URL Count
	9.4.2.6 String: File Reference URL
	9.4.2.7 U32: Filter Count
	9.4.2.8 U8: Filter Type
	9.4.2.9 String: Object Name Filter
	9.4.2.10 U32: Object Type Filter
	9.4.2.11 U8: Name Collision Policy
	9.4.2.12 String: World Alias Name
	9.4.3.1 String: Modifier Chain Name
	9.4.3.2 U32: Modifier Chain Type
	9.4.3.3 U32: Modifier Chain Attributes
	9.4.3.4 Modifier Chain Bounding Sphere
	9.4.3.4.1 F32: Bounding Sphere Center X
	9.4.3.4.2 F32: Bounding Sphere Center Y
	9.4.3.4.3 F32: Bounding Sphere Center Z
	9.4.3.4.4 F32: Bounding Sphere Radius

	9.4.3.5 Modifier Chain Axis-Aligned Bounding Box
	9.4.3.5.1 F32: Axis-Aligned Bounding Box Min X
	9.4.3.5.2 F32: Axis-Aligned Bounding Box Min Y
	9.4.3.5.3 F32: Axis-Aligned Bounding Box Min Z
	9.4.3.5.4 F32: Axis-Aligned Bounding Box Max X
	9.4.3.5.5 F32: Axis-Aligned Bounding Box Max Y
	9.4.3.5.6 F32: Axis-Aligned Bounding Box Max Z

	9.4.3.6 variable: Modifier Chain Padding
	9.4.3.7 U32: Modifier Count
	9.4.3.8 Modifier Declaration Block
	9.4.4.1 U32: New Priority
	9.4.5.1 String: New Object Type Name
	9.4.5.2 U32: Modifier Type
	9.4.5.3 Extension ID
	9.4.5.4 U32: New Declaration Block Type
	9.4.5.5 U32: Continuation Block Type Count
	9.4.5.6 U32: New Continuation Block Type
	9.4.5.7 String: Extension Vendor Name
	9.4.5.8 U32: Extension URL Count
	9.4.5.9 String: Extension Information URL
	9.4.5.10 String: Extension Information String
	9.4.6.1 String: Object Name
	9.4.6.2 U32: Chain Index
	9.4.6.3 Object Data

	9.5 Node blocks
	9.5.1.1 String: Group Node Name
	9.5.1.2 Parent Node Data
	9.5.1.2.1 U32: Parent Node Count
	9.5.1.2.2 String: Parent Node Name
	9.5.1.2.3 F32: Parent Node Transform Matrix Element

	9.5.2.1 String: Model Node Name
	9.5.2.2 Parent Node Data
	9.5.2.3 String: Model Resource Name
	9.5.2.4 U32: Model Visibility
	9.5.3.1 String: Light Node Name
	9.5.3.2 Parent Node Data
	9.5.3.3 String: Light Resource Name
	9.5.4.1 String: View Node Name
	9.5.4.2 Parent Node Data
	9.5.4.3 String: View Resource Name
	9.5.4.4 U32: View Node Attributes
	9.5.4.5 View Clipping
	9.5.4.5.1 F32: View Near Clip
	9.5.4.5.2 F32: View Far Clip

	9.5.4.6 View Projection
	9.5.4.6.1 F32: View Projection
	9.5.4.6.2 F32: View Orthographic Height
	9.5.4.6.3 View Projection Vector

	9.5.4.7 View Port
	9.5.4.7.1 F32: View Port Width
	9.5.4.7.2 F32: View Port Height
	9.5.4.7.3 F32: View Port Horizontal Position
	9.5.4.7.4 F32: View Port Vertical Position

	9.5.4.8 U32: Backdrop Count
	9.5.4.9 Backdrop Properties
	9.5.4.9.1 String: Backdrop Texture Name
	9.5.4.9.2 F32: Texture Blend
	9.5.4.9.3 F32: Rotation
	9.5.4.9.4 F32: Location X
	9.5.4.9.5 F32: Location Y
	9.5.4.9.6 I32: Registration Point X
	9.5.4.9.7 I32: Registration Point Y
	9.5.4.9.8 F32: Scale X
	9.5.4.9.9 F32: Scale Y

	9.5.4.10 U32: Overlay Count
	9.5.4.11 Overlay Properties
	9.5.4.11.1 String: Overlay Texture Name
	9.5.4.11.2 F32: Texture Blend
	9.5.4.11.3 F32: Rotation
	9.5.4.11.4 F32: Location X
	9.5.4.11.5 F32: Location Y
	9.5.4.11.6 I32: Registration Point X
	9.5.4.11.7 I32: Registration Point Y
	9.5.4.11.8 F32: Scale X
	9.5.4.11.9 F32: Scale Y

	9.6 Geometry generator blocks
	9.6.1.1 CLOD Mesh Declaration (blocktype: 0xFFFFFF31)
	9.6.1.1.1 String: Mesh Name
	9.6.1.1.2 U32: Chain Index
	9.6.1.1.3 Max Mesh Description
	9.6.1.1.3.1 U32: Mesh Attributes
	9.6.1.1.3.2 U32: Face Count
	9.6.1.1.3.3 U32: Position Count
	9.6.1.1.3.4 U32: Normal Count
	9.6.1.1.3.5 U32: Diffuse Color Count
	9.6.1.1.3.6 U32: Specular Color Count
	9.6.1.1.3.7 U32: Texture Coord Count
	9.6.1.1.3.8 U32: Shading Count
	9.6.1.1.3.9 Shading Description
	9.6.1.1.3.9.1 U32: Shading Attributes
	9.6.1.1.3.9.2 U32: Texture Layer Count
	9.6.1.1.3.9.3 U32: Texture Coord Dimensions
	9.6.1.1.3.9.4 U32: Original Shading ID

	9.6.1.1.4 CLOD Description
	9.6.1.1.4.1 U32: Minimum Resolution
	9.6.1.1.4.2 U32: Final Maximum Resolution

	9.6.1.1.5 Resource Description
	9.6.1.1.5.1 Quality Factors
	9.6.1.1.5.1.1 U32: Position Quality Factor
	9.6.1.1.5.1.2 U32: Normal Quality Factor
	9.6.1.1.5.1.3 U32: Texture Coord Quality Factor

	9.6.1.1.5.2 Inverse Quantization
	9.6.1.1.5.2.1 F32: Position Inverse Quant
	9.6.1.1.5.2.2 F32: Normal Inverse Quant
	9.6.1.1.5.2.3 F32: Texture Coord Inverse Quant
	9.6.1.1.5.2.4 F32: Diffuse Color Inverse Quant
	9.6.1.1.5.2.5 F32: Specular Color Inverse Quant

	9.6.1.1.5.3 Resource Parameters
	9.6.1.1.5.3.1 F32: Normal Crease Parameter
	9.6.1.1.5.3.2 F32: Normal Update Parameter
	9.6.1.1.5.3.3 F32: Normal Tolerance Parameter

	9.6.1.1.6 Skeleton Description
	9.6.1.1.6.1 U32: Bone Count
	9.6.1.1.6.2 String: Bone Name
	9.6.1.1.6.3 String: Parent Bone Name
	9.6.1.1.6.4 U32: Bone Attributes
	9.6.1.1.6.5 F32: Bone Length
	9.6.1.1.6.6 Bone Displacement
	9.6.1.1.6.6.1 F32: Bone Displacement X
	9.6.1.1.6.6.2 F32: Bone Displacement Y
	9.6.1.1.6.6.3 F32: Bone Displacement Z

	9.6.1.1.6.7 Bone Orientation
	9.6.1.1.6.7.1 F32: Bone Orientation W
	9.6.1.1.6.7.2 F32: Bone Orientation X
	9.6.1.1.6.7.3 F32: Bone Orientation Y
	9.6.1.1.6.7.4 F32: Bone Orientation Z

	9.6.1.1.6.8 U32: Bone Link Count
	9.6.1.1.6.9 F32: Bone Link Length
	9.6.1.1.6.10 Bone Start Joint
	9.6.1.1.6.10.1 F32: Start Joint Center U
	9.6.1.1.6.10.2 F32: Start Joint Center V
	9.6.1.1.6.10.3 F32: Start Joint Scale U
	9.6.1.1.6.10.4 F32: Start Joint Scale V

	9.6.1.1.6.11 Bone End Joint
	9.6.1.1.6.11.1 F32: End Joint Center U
	9.6.1.1.6.11.2 F32: End Joint Center V
	9.6.1.1.6.11.3 F32: End Joint Scale U
	9.6.1.1.6.11.4 F32: End Joint Scale V

	9.6.1.1.6.12 Bone Rotation Constraints

	9.6.1.2 CLOD Base Mesh Continuation (blocktype: 0xFFFFFF3B)
	9.6.1.2.1 String: Mesh Name
	9.6.1.2.2 U32: Chain Index
	9.6.1.2.3 Base Mesh Description
	9.6.1.2.3.1 U32: Base Face Count
	9.6.1.2.3.2 U32: Base Position Count
	9.6.1.2.3.3 U32: Base Normal Count
	9.6.1.2.3.4 U32: Base Diffuse Color Count
	9.6.1.2.3.5 U32: Base Specular Color Count
	9.6.1.2.3.6 U32: Base Texture Coord Count

	9.6.1.2.4 Base Mesh Data
	9.6.1.2.4.1 Base Position
	9.6.1.2.4.1.1 F32: Base Position X
	9.6.1.2.4.1.2 F32: Base Position Y
	9.6.1.2.4.1.3 F32: Base Position Z

	9.6.1.2.4.2 Base Normal
	9.6.1.2.4.2.1 F32: Base Normal X
	9.6.1.2.4.2.2 F32: Base Normal Y
	9.6.1.2.4.2.3 F32: Base Normal Z

	9.6.1.2.4.3 Base Diffuse Color
	9.6.1.2.4.3.1 F32: Base Diffuse Color Red
	9.6.1.2.4.3.2 F32: Base Diffuse Color Green
	9.6.1.2.4.3.3 F32: Base Diffuse Color Blue
	9.6.1.2.4.3.4 F32: Base Diffuse Color Alpha

	9.6.1.2.4.4 Base Specular Color
	9.6.1.2.4.4.1 F32: Base Specular Color Red
	9.6.1.2.4.4.2 F32: Base Specular Color Green
	9.6.1.2.4.4.3 F32: Base Specular Color Blue
	9.6.1.2.4.4.4 F32: Base Specular Color Alpha

	9.6.1.2.4.5 Base Texture Coord
	9.6.1.2.4.5.1 F32: Base Tex Coord U
	9.6.1.2.4.5.2 F32: Base Tex Coord V
	9.6.1.2.4.5.3 F32: Base Tex Coord S
	9.6.1.2.4.5.4 F32: Base Tex Coord T

	9.6.1.2.4.6 Base Face
	9.6.1.2.4.6.1 U32 [cShading]: Shading ID
	9.6.1.2.4.6.2 Base Corner Info
	9.6.1.2.4.6.2.1 U32 [rBasePositionCount]: Base Position Inde
	9.6.1.2.4.6.2.2 U32 [rBaseNormalCount]: Base Normal Index
	9.6.1.2.4.6.2.3 U32 [rBaseDiffColorCnt]: Base Diffuse Color
	9.6.1.2.4.6.2.4 U32 [rBaseSpecColorCnt]: Base Specular Color
	9.6.1.2.4.6.2.5 U32 [rBaseTexCoordCnt]: Base Texture Coord I

	9.6.1.3 CLOD Progressive Mesh Continuation (blocktype: 0xFFF
	9.6.1.3.1 String: Mesh Name
	9.6.1.3.2 U32: Chain Index
	9.6.1.3.3 Resolution Update Range
	9.6.1.3.3.1 U32: Start Resolution
	9.6.1.3.3.2 U32: End Resolution

	9.6.1.3.4 Resolution Update
	9.6.1.3.4.1 U32 [rCurrentPositionCount]: Split Position Inde
	9.6.1.3.4.2 New Diffuse Color Info
	9.6.1.3.4.2.1 U32[cDiffuseCount]: NewDiffuse Color Count
	9.6.1.3.4.2.2 U8 [cDiffuseColorSign]: Diffuse Color Differen
	9.6.1.3.4.2.3 U32[cColorDiffR]: Diffuse Color Difference Red
	9.6.1.3.4.2.4 U32 [cColorDiffG]: Diffuse Color Difference Gr
	9.6.1.3.4.2.5 U32 [cColorDiffB]: Diffuse Color Difference Bl
	9.6.1.3.4.2.6 U32 [cColorDiffA]: Diffuse Color Difference Al

	9.6.1.3.4.3 New Specular Color Info
	9.6.1.3.4.3.1 U32[cSpecularCount]: New Specular Color Count
	9.6.1.3.4.3.2 U8 [cSpecularColorSign]: Specular Color Differ
	9.6.1.3.4.3.3 U32[cColorDiffR]: Specular Color Difference Re
	9.6.1.3.4.3.4 U32 [cColorDiffG]: Specular Color Difference G
	9.6.1.3.4.3.5 U32 [cColorDiffB]: Specular Color Difference B
	9.6.1.3.4.3.6 U32 [cColorDiffA]: Specular Color Difference A

	9.6.1.3.4.4 New Texture Coord Info
	9.6.1.3.4.4.1 U32[cTexCoordCount]: New Tex Coord Count
	9.6.1.3.4.4.2 U8 [cTexCoordSign]: Tex Coord Difference Signs
	9.6.1.3.4.4.3 U32 [cTexCDiffU]: Texture Coord Difference U
	9.6.1.3.4.4.4 U32 [cTexCDiffV]: Texture Coord Difference V
	9.6.1.3.4.4.5 U32 [cTexCDiffS]: Texture Coord Difference S
	9.6.1.3.4.4.6 U32 [cTexCDiffT]: Texture Coord Difference T

	9.6.1.3.4.5 U32 [cFaceCnt]: New Face Count
	9.6.1.3.4.6 New Face Position Info
	9.6.1.3.4.6.1 U32 [cShading]: Shading ID
	9.6.1.3.4.6.2 U8 [cFaceOrnt]: Face Orientation
	9.6.1.3.4.6.3 U8 [cThrdPosType]: Third Position Type
	9.6.1.3.4.6.4 U32 [cLocal3rdPos]: Local Third Position Index
	9.6.1.3.4.6.5 U32 [rCurrentPositionCount]: Global Third Posi

	9.6.1.3.4.7 U8 [cStayMove+StayMovePrediction]: Stay Or Move
	Move Face Info
	9.6.1.3.4.8.1 Diffuse Color Face Update
	9.6.1.3.4.8.1.1 U8 [cDiffuseKeepChange]: Diffuse Keep Change
	9.6.1.3.4.8.1.2 U8 [cDiffuseChangeType]: Diffuse Change Type
	9.6.1.3.4.8.1.3 U32 [cDiffuseChangeIndexNew]: Diffuse Change
	9.6.1.3.4.8.1.4 U32 [cDiffuseChangeIndexLocal]: Diffuse Chan
	9.6.1.3.4.8.1.5 U32 [cDiffuseChangeIndexGlobal]: Diffuse Cha
	9.6.1.3.4.8.2 Specular Color Face Update
	9.6.1.3.4.8.2.1 U8 [cSpecularKeepChange]: Specular Keep Chan
	9.6.1.3.4.8.2.2 U8 [cSpecularChangeType]: Specular Change Ty
	9.6.1.3.4.8.2.3 U32 [cSpecularChangeIndexNew]: Specular Chan
	9.6.1.3.4.8.2.4 U32 [cSpecularChangeIndexLocal]: Specular Ch
	9.6.1.3.4.8.2.5 U32 [cSpecularChangeIndexGlobal]: Specular C
	Texture Coordinate Face Update
	9.6.1.3.4.8.3.1 U8 [cTCKeepChange]: Tex Coord Keep Change
	9.6.1.3.4.8.3.2 U8 [cTCChangeType]: Tex Coord Change Type
	9.6.1.3.4.8.3.3 U32 [cTCChangeIndexNew]: Tex Coord Change In
	9.6.1.3.4.8.3.4 U32 [cTCChangeIndexLocal]: Tex Coord Change
	U32 [cTCChangeIndexGlobal]: Tex Coord Change Index Global

	9.6.1.3.4.9 New Face Info
	9.6.1.3.4.9.1 New Face Diffuse Color Info
	9.6.1.3.4.9.1.1 U8 [cColorDup]: Diffuse Duplicate Flag
	9.6.1.3.4.9.1.2 Split Vertex Diffuse Color
	9.6.1.3.4.9.1.2.1 Color Index
	9.6.1.3.4.9.1.2.1.1 U8[cColorIndexType]: Color Index Type
	9.6.1.3.4.9.1.2.1.2 U32[cColorIndexLocal]: Color Index Local
	9.6.1.3.4.9.1.2.1.3 U32[cColorIndexGlobal]: Color Index Glob

	9.6.1.3.4.9.1.3 New Vertex Diffuse Color
	9.6.1.3.4.9.1.4 Third Vertex Diffuse Color
	9.6.1.3.4.9.2 New Face Specular Color Info
	9.6.1.3.4.9.2.1 U8 [cColorDup]: Specular Duplicate Flag
	Split Vertex Specular Color
	9.6.1.3.4.9.2.3 New Vertex Specular Color
	9.6.1.3.4.9.2.4 Third Vertex Specular Color
	9.6.1.3.4.9.3 New Face Texture Coord Info
	9.6.1.3.4.9.3.1 U8 [cTexCDup]: Texture Coord Duplicate Flag
	9.6.1.3.4.9.3.2 Split Vertex Texture Coordinate
	9.6.1.3.4.9.3.2.1 Texture Coordinate Index
	9.6.1.3.4.9.3.2.1.1 U8[cTexCIndexType]: Texture Coord Index
	9.6.1.3.4.9.3.2.1.2 U32[cColorIndexLocal]: Texture Coord Ind
	9.6.1.3.4.9.3.2.1.3 U32[cColorIndexGlobal]: Texture Coord In

	9.6.1.3.4.9.3.3 New Vertex Texture Coord
	9.6.1.3.4.9.3.4 Third Vertex Texture Coord

	9.6.1.3.4.10 New Position Info
	9.6.1.3.4.10.1 U8 [cPosDiffSign]: Position Difference Signs
	9.6.1.3.4.10.2 U32 [cPosDiffX]: Position Difference X
	9.6.1.3.4.10.3 U32 [cPosDiffY]: Position Difference Y
	9.6.1.3.4.10.4 U32 [cPosDiffZ]: Position Difference Z

	9.6.1.3.4.11 New Normal Info
	9.6.1.3.4.11.1 U32 [cNormlCnt]: New Normal Count
	9.6.1.3.4.11.2 U8 [cDiffNormalSign]: Normal Difference Signs
	9.6.1.3.4.11.3 U32 [cDiffNormalX]: Normal Difference X
	9.6.1.3.4.11.4 U32 [cDiffNormalY]: Normal Difference Y
	9.6.1.3.4.11.5 U32 [cDiffNormalZ]: Normal Difference Z
	9.6.1.3.4.11.6 U32 [cNormlIdx]: Normal Local Index

	9.6.2.1 Point Set Declaration (blocktype: 0xFFFFFF36)
	9.6.2.1.1 String: Point Set Name
	9.6.2.1.2 U32: Chain Index
	9.6.2.1.3 Point Set Description
	U32: Point Set Reserved
	9.6.2.1.3.2 U32: Point Count
	9.6.2.1.3.3 U32: Position Count
	9.6.2.1.3.4 U32: Normal Count
	9.6.2.1.3.5 U32: Diffuse Color Count
	9.6.2.1.3.6 U32: Specular Color Count
	9.6.2.1.3.7 U32: Texture Coord Count
	9.6.2.1.3.8 U32: Shading List Count
	9.6.2.1.3.9 Shading Description

	9.6.2.1.4 Resource Description
	9.6.2.1.4.1 Quality Factors
	9.6.2.1.4.2 Inverse Quantization
	9.6.2.1.4.3 Resource Parameters
	9.6.2.1.4.3.1 U32: Reserved Point Set Parameter 1
	9.6.2.1.4.3.2 U32: Reserved Point Set Parameter 2
	9.6.2.1.4.3.3 U32: Reserved Point Set Parameter 3

	9.6.2.1.5 Skeleton Description

	9.6.2.2 Point Set Continuation (blocktype: 0xFFFFFF3E)
	9.6.2.2.1 String: Point Set Name
	9.6.2.2.2 U32: Chain Index
	9.6.2.2.3 Point Resolution Range
	9.6.2.2.3.1 U32: Start Resolution
	9.6.2.2.3.2 U32: End Resolution

	9.6.2.2.4 Point Description
	9.6.2.2.4.1 U32 [rCurrentPositionCount]: Split Position Inde
	9.6.2.2.4.2 New Position Info
	9.6.2.2.4.3 U32 [cNormlCnt]: New Normal Count
	9.6.2.2.4.4 New Normal Info
	9.6.2.2.4.4.1 U8 [cDiffNormalSign]: Normal Difference Signs
	9.6.2.2.4.4.2 U32 [cDiffNormal]: Normal Difference X
	9.6.2.2.4.4.3 U32 [cDiffNormal]: Normal Difference Y
	9.6.2.2.4.4.4 U32 [cDiffNormal]: Normal Difference Z

	9.6.2.2.4.5 U32 [cPointCnt]: New Point Count
	9.6.2.2.4.6 New Point Info
	9.6.2.2.4.6.1 U32 [cShading]: Shading ID
	9.6.2.2.4.6.2 U32 [cNormlIdx]: Normal Local Index
	9.6.2.2.4.6.3 New Point Diffuse Color Coords
	9.6.2.2.4.6.3.1 U8 [cDiffDup]: Diffuse Duplicate Flag
	9.6.2.2.4.6.3.2 New Point Diffuse Color
	9.6.2.2.4.6.3.2.1 U8 [cDiffuseColorSign]: Diffuse Color Diff
	9.6.2.2.4.6.3.2.2 U32[cColorDiffR]: Diffuse Color Difference
	9.6.2.2.4.6.3.2.3 U32 [cColorDiffG]: Diffuse Color Differenc
	9.6.2.2.4.6.3.2.4 U32 [cColorDiffB]: Diffuse Color Differenc
	9.6.2.2.4.6.3.2.5 U32 [cColorDiffA]: Diffuse Color Differenc

	9.6.2.2.4.6.4 New Point Specular Color Coords
	9.6.2.2.4.6.4.1 U8 [cSpecDup]: Specular Duplicate Flag
	9.6.2.2.4.6.4.2 New Point Specular Color
	9.6.2.2.4.6.4.2.1 U8 [cSpecularColorSign]: Specular Color Di
	9.6.2.2.4.6.4.2.2 U32[cColorDiffR]: Specular Color Differenc
	9.6.2.2.4.6.4.2.3 U32 [cColorDiffG]: Specular Color Differen
	9.6.2.2.4.6.4.2.4 U32 [cColorDiffB]: Specular Color Differen
	9.6.2.2.4.6.4.2.5 U32 [cColorDiffA]: Specular Color Differen

	9.6.2.2.4.6.5 New Point Texture Coords
	9.6.2.2.4.6.5.1 U8 [cTexCDup]: Tex Coord Duplicate Flag
	9.6.2.2.4.6.5.2 New Tex Coord
	9.6.2.2.4.6.5.2.1 U8 [cTexCoordSign]: Tex Coord Difference S
	9.6.2.2.4.6.5.2.2 U32 [cTexCDiffU]: Texture Coord Difference
	9.6.2.2.4.6.5.2.3 U32 [cTexCDiffV]: Texture Coord Difference
	9.6.2.2.4.6.5.2.4 U32 [cTexCDiffS]: Texture Coord Difference
	9.6.2.2.4.6.5.2.5 U32 [cTexCDiffT]: Texture Coord Difference

	9.6.3.1 Line Set Declaration (blocktype: 0xFFFFFF37)
	9.6.3.1.1 String: Line Set Name
	9.6.3.1.2 U32: Chain Index
	9.6.3.1.3 Line Set Description
	9.6.3.1.3.1 U32: Line Set Reserved
	9.6.3.1.3.2 U32: Line Count
	9.6.3.1.3.3 U32: Position Count
	9.6.3.1.3.4 U32: Normal Count
	9.6.3.1.3.5 U32: Diffuse Color Count
	9.6.3.1.3.6 U32: Specular Color Count
	9.6.3.1.3.7 U32: Texture Coord Count
	9.6.3.1.3.8 U32: Shading Count
	9.6.3.1.3.9 Shading Description

	9.6.3.1.4 Resource Description
	9.6.3.1.4.1 Quality Factors
	9.6.3.1.4.2 Inverse Quantization
	9.6.3.1.4.3 Resource Parameters
	9.6.3.1.4.3.1 U32: Reserved Line Set Parameter 1
	9.6.3.1.4.3.2 U32: Reserved Line Set Parameter 2
	9.6.3.1.4.3.3 U32: Reserved Line Set Parameter 3

	9.6.3.1.5 Skeleton Description

	9.6.3.2 Line Set Continuation (blocktype: 0xFFFFFF3F)
	9.6.3.2.1 String: Line Set Name
	9.6.3.2.2 U32: Chain Index
	9.6.3.2.3 Line Resolution Range
	9.6.3.2.3.1 U32: Start Resolution
	9.6.3.2.3.2 U32: End Resolution

	9.6.3.2.4 Line Description
	9.6.3.2.4.1 U32 [rCurrentPositionCount]: Split Position Inde
	9.6.3.2.4.2 New Position Info
	9.6.3.2.4.3 U32 [cNormlCnt]: New Normal Count
	9.6.3.2.4.4 New Normal Info
	9.6.3.2.4.5 U32 [cLineCnt]: New Line Count
	9.6.3.2.4.6 New Line Info
	9.6.3.2.4.6.1 U32 [cShading]:Shading ID
	9.6.3.2.4.6.2 U32 [rCurrentPositionCount]: First Position In
	9.6.3.2.4.6.3 U32 [cNormlIdx]: Normal Local Index
	9.6.3.2.4.6.4 New Line Diffuse Color Coords
	9.6.3.2.4.6.4.1 U8 [cDiffDup]: Diffuse Duplicate Flag
	9.6.3.2.4.6.4.2 New Line Diffuse Color

	9.6.3.2.4.6.5 New Line Specular Color Coords
	9.6.3.2.4.6.5.1 U8 [cSpecDup]: Specular Duplicate Flag
	9.6.3.2.4.6.5.2 New Line Specular Color

	9.6.3.2.4.6.6 New Line Texture Coords
	9.6.3.2.4.6.6.1 U8 [cTexCDup]: Tex Coord Duplicate Flag
	9.6.3.2.4.6.6.2 New Tex Coord

	9.7 Modifier blocks
	9.7.1.1 String: 2D Glyph Modifier Name
	9.7.1.2 U32: Chain Index
	9.7.1.3 U32: Glyph Attributes
	9.7.1.4 U32: Glyph Command Count
	9.7.1.5 Glyph Command
	9.7.1.5.1 U32: Command Type
	9.7.1.5.2 Glyph End Glyph
	9.7.1.5.2.1 F32: End Glyph Offset X
	9.7.1.5.2.2 F32: End Glyph Offset Y

	9.7.1.5.3 Glyph Move To
	9.7.1.5.3.1 F32: Move To X
	9.7.1.5.3.2 F32: Move To Y

	9.7.1.5.4 Glyph Line To
	9.7.1.5.4.1 F32: Line To X
	9.7.1.5.4.2 F32: Line To Y

	9.7.1.5.5 Glyph Curve To
	9.7.1.5.5.1 F32: Control 1 X
	9.7.1.5.5.2 F32: Control 1 Y
	9.7.1.5.5.3 F32: Control 2 X
	9.7.1.5.5.4 F32: Control 2 Y
	9.7.1.5.5.5 F32: End Point X
	9.7.1.5.5.6 F32: End Point Y

	9.7.1.6 F32: Glyph Transform Element
	9.7.2.1 String: Modifier Name
	9.7.2.2 U32: Chain Index
	9.7.2.3 U32: Subdivision Attributes
	9.7.2.4 U32: Subdivision Depth
	9.7.2.5 F32: Subdivision Tension
	9.7.2.6 F32: Subdivision Error
	9.7.3.1 String: Animation Modifier Name
	9.7.3.2 U32: Chain Index
	9.7.3.3 U32:Animation Modifier Attributes
	9.7.3.4 F32: Time Scale
	9.7.3.5 U32: Motion Count
	9.7.3.6 Motion Information
	9.7.3.6.1 String: Motion Name
	9.7.3.6.2 U32: Motion Attributes
	9.7.3.6.3 F32: Time Offset
	9.7.3.6.4 F32: Time Scale

	9.7.3.7 F32: Blend Time
	9.7.4.1 String: Bone Weight Modifier Name
	9.7.4.2 U32: Chain Index
	9.7.4.3 U32: Bone Weight Attributes
	9.7.4.4 F32: Bone Weight Inverse Quant
	9.7.4.5 U32: Position Count
	9.7.4.6 Position Bone Weight List
	9.7.4.6.1 U32 [cBoneWeightCnt]: Bone Weight Count
	9.7.4.6.2 U32 [cBoneIdx]: Bone Index
	9.7.4.6.3 U32 [cQntBoneWeight]: Quantized Bone Weight

	9.7.5.1 String: Shading Modifier Name
	9.7.5.2 U32: Chain Index
	9.7.5.3 U32: Shading Attributes
	9.7.5.4 U32: Shader List Count
	9.7.5.5 U32: Shader Count
	9.7.5.6 String: Shader Name
	9.7.6.1 String: CLOD Modifier Name
	9.7.6.2 U32: Chain Index
	9.7.6.3 U32: CLOD Modifier Attributes
	9.7.6.4 F32: CLOD Automatic Level of Detail Bias
	9.7.6.5 F32: CLOD Modifier Level

	9.8 Resource blocks
	9.8.1.1 String: Light Resource Name
	9.8.1.2 U32: Light Attributes
	9.8.1.3 U8: Light Type
	9.8.1.4 Light Color
	9.8.1.4.1 F32: Light Color Red
	9.8.1.4.2 F32: Light Color Green
	9.8.1.4.3 F32: Light Color Blue
	F32: Light Reserved Parameter

	9.8.1.5 Light Attenuation
	9.8.1.5.1 F32: Light Attenuation Constant Factor
	9.8.1.5.2 F32: Light Attenuation Linear Factor
	9.8.1.5.3 F32: Light Attenuation Quadratic Factor

	9.8.1.6 F32: Light Spot Angle
	9.8.1.7 F32: Light Intensity
	9.8.2.1 String: View Resource Name
	9.8.2.2 U32: Pass Count
	9.8.2.3 String: Root Node Name
	9.8.2.4 U32: Render Attributes
	9.8.2.5 Fog Properties
	9.8.2.5.1 U32: Fog Mode
	9.8.2.5.2 F32: Fog Color Red
	9.8.2.5.3 F32: Fog Color Green
	9.8.2.5.4 F32: Fog Color Blue
	9.8.2.5.5 F32: Fog Color Alpha
	9.8.2.5.6 F32: Fog Near Value
	9.8.2.5.7 F32: Fog Far Value

	9.8.3.1 String: Lit Texture Shader Name
	9.8.3.2 U32: Lit Texture Shader Attributes
	9.8.3.3 F32: Alpha Test Reference
	9.8.3.4 U32: Alpha Test Function
	9.8.3.5 U32: Color Blend Function
	9.8.3.6 U32: Render Pass Enabled Flags
	9.8.3.7 U32: Shader Channels
	9.8.3.8 U32: Alpha Texture Channels
	9.8.3.9 String: Material Name
	9.8.3.10 Texture Information
	9.8.3.10.1 String: Texture Name
	9.8.3.10.2 F32: Texture Intensity
	9.8.3.10.3 U8: Blend Function
	9.8.3.10.4 U8: Blend Source
	9.8.3.10.5 F32: Blend Constant
	9.8.3.10.6 U8: Texture Mode
	9.8.3.10.7 F32: Texture Transform Matrix Element
	9.8.3.10.8 F32: Texture Wrap Transform Matrix Element
	9.8.3.10.9 U8: Texture Repeat

	9.8.4.1 String: Material Resource Name
	9.8.4.2 U32: Material Attributes
	9.8.4.3 Ambient Color
	9.8.4.3.1 F32: Red
	9.8.4.3.2 F32: Green
	9.8.4.3.3 F32: Blue

	9.8.4.4 Diffuse Color
	9.8.4.4.1 F32: Red
	9.8.4.4.2 F32: Green
	9.8.4.4.3 F32: Blue

	9.8.4.5 Specular Color
	9.8.4.5.1 F32: Red
	9.8.4.5.2 F32: Green
	9.8.4.5.3 F32: Blue

	9.8.4.6 Emissive Color
	9.8.4.6.1 F32: Red
	9.8.4.6.2 F32: Green
	9.8.4.6.3 F32: Blue

	9.8.4.7 F32: Reflectivity
	9.8.4.8 F32: Opacity
	9.8.5.1 Texture Declaration (blocktype: 0xFFFFFF55)
	9.8.5.1.1 String: Texture Name
	9.8.5.1.2 Texture Image Format
	9.8.5.1.2.1 U32: Texture Height
	9.8.5.1.2.2 U32: Texture Width
	9.8.5.1.2.3 U8: Texture Image Type

	9.8.5.1.3 U32: Continuation Image Count
	Continuation Image Format
	9.8.5.1.4.1 U8: Compression Type
	9.8.5.1.4.2 U8: Texture Image Channels
	9.8.5.1.4.3 U16: Continuation Image Attributes
	9.8.5.1.4.4 U32: Image Data Byte Count
	9.8.5.1.4.5 U32: Image URL Count
	9.8.5.1.4.6 String: Image URL

	9.8.5.2 Texture Continuation (blocktype: 0xFFFFFF5C)
	9.8.5.2.1 String: Texture Name
	9.8.5.2.2 U32: Continuation Image Index
	9.8.5.2.3 Image Data

	9.8.6.1 String: Motion Name
	9.8.6.2 U32: Track Count
	9.8.6.3 F32: Time Inverse Quant
	9.8.6.4 F32: Rotation Inverse Quant
	9.8.6.5 Motion Track
	9.8.6.5.1 String: Track Name
	9.8.6.5.2 U32: Time Count
	9.8.6.5.3 F32: Displacement Inverse Quant
	9.8.6.5.4 F32: Scale Inverse Quant
	9.8.6.5.5 Key Frame
	9.8.6.5.5.1 F32: Time
	9.8.6.5.5.2 Displacement
	9.8.6.5.5.2.1 F32: Displacement X
	9.8.6.5.5.2.2 F32: Displacement Y
	9.8.6.5.5.2.3 F32: Displacement Z

	9.8.6.5.5.3 Rotation
	9.8.6.5.5.3.1 F32: Rotation 0
	9.8.6.5.5.3.2 F32: Rotation 1
	9.8.6.5.5.3.3 F32: Rotation 2
	9.8.6.5.5.3.4 F32: Rotation 3

	9.8.6.5.5.4 Scale
	9.8.6.5.5.4.1 F32: Scale X
	9.8.6.5.5.4.2 F32: Scale Y
	9.8.6.5.5.4.3 F32: Scale Z

	9.8.6.5.5.5 Time Differential
	9.8.6.5.5.5.1 U8 [cTimeSign]: Time Sign
	9.8.6.5.5.5.2 U32 [cTimeDiff]: Time Difference

	9.8.6.5.5.6 Displacement Differential
	9.8.6.5.5.6.1 U8 [cDispSign]: Displacement Difference Signs
	9.8.6.5.5.6.2 U32 [cDispDiff]: Displacement Difference X
	9.8.6.5.5.6.3 U32 [cDispDiff]: Displacement Difference Y
	9.8.6.5.5.6.4 U32 [cDispDiff]: Displacement Difference Z

	9.8.6.5.5.7 Rotation Differential
	9.8.6.5.5.7.1 U8 [cRotSign]: Rotation Difference Signs
	9.8.6.5.5.7.2 U32 [cRotDiff]: Rotation Difference 1
	9.8.6.5.5.7.3 U32 [cRotDiff]: Rotation Difference 2
	9.8.6.5.5.7.4 U32 [cRotDiff]: Rotation Difference 3

	9.8.6.5.5.8 Scale Differential
	9.8.6.5.5.8.1 U8 [cScalSign]: Scale Difference Signs
	9.8.6.5.5.8.2 U32 [cScalDiff]: Scale Difference X
	9.8.6.5.5.8.3 U32 [cScalDiff]: Scale Difference Y
	9.8.6.5.5.8.4 U32 [cScalDiff]: Scale Difference Z

	10 Bit Encoding Algorithm
	10.1 Definitions
	10.2 Acronyms and Abbreviations
	10.3 Overview
	10.4 Encoding Algorithm
	10.4.4.1 Obtain Frequency Values
	10.4.4.2 Update the Probability Limits
	10.4.4.3 Update the Compression Context
	10.4.4.4 Write to Output Stream Based on Current Probability
	10.4.4.5 Determine Underflow Count
	10.4.4.6 Return

	A.1 Introduction
	A.1.1 Usage

	A.2 Interfaces
	A.2.1 Bit Stream Write
	A.2.2 Bit Stream Read
	A.2.3 Context Manager
	A.2.4 Data Block

	A.3 Classes
	A.3.1 Bit Stream Write
	A.3.2 Bit Stream Read
	A.3.3 Context Manager
	A.3.4 Data Block
	A.3.5 Constants

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts false
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 400
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f0072002000720065006c006900610062006c0065002000760069006500770069006e006700200061006e00640020007000720069006e00740069006e00670020006f006600200062007500730069006e00650073007300200064006f00630075006d0065006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

