
Standard ECMA-294
December 1999

S t a n d a r d i z i n g I n f o r ma t i o n a n d C o mmu n i c a t i o n S y s t e ms

Phone : +41 22 849 .60 .00 - Fax : +41 22 849 .60 .01 - URL: h t tp : / /www.ecma.ch - I n te rne t : he lpdesk@ecma.ch

Broadband Integrated Services Digital
Network (B-ISDN) and Broadband
Private Integrated Services Network
(B-PISN) - Digital Subscriber
Signalling System No. two (DSS2),
Broadband Inter-Exchange Signalling
(B-QSIG), and Signalling System No. 7
(SS7) - Call Control in a Separated Call
and Bearer Control Environment -
Part 1: Protocol Specification

..

Standard ECMA-294
December 1999

S t a n d a r d i z i n g I n f o r ma t i o n a n d C o mmu n i c a t i o n S y s t e ms

Phone : +41 22 849 .60 .00 - Fax : +41 22 849 .60 .01 - URL: h t tp : / /www.ecma.ch - I n te rne t : he lpdesk@ecma.ch

IW ECMA-294.DOC 06-01-00 09,01

Broadband Integrated Services Digital
Network (B-ISDN) and Broadband
Private Integrated Services Network
(B-PISN) - Digital Subscriber
Signalling System No. two (DSS2),
Broadband Inter-Exchange Signalling
(B-QSIG), and Signalling System No. 7
(SS7) - Call Control in a Separated Call
and Bearer Control Environment -
Part 1: Protocol Specification

..

Brief History

This Standard is one of a series of ECMA Standards defining services and signalling protocols applicable to Broadband
Private Integrated Services Networks (B-PISNs). The series uses B-ISDN concepts as developed by ITU-T and conforms to
the framework of International Standards for Open Systems Interconnection as defined by ISO/IEC.

This Standard has been produced by ECMA TC32-TG15 in collaboration with ETSI Technical Committee Signalling
Protocols and Switching (SPS) under ETSI work item DEN/SPS-05132-1.

The Standard is part 1 of a multi-part standard covering the Digital Subscriber Signalling System No. 2 (DSS2), Broadband
Inter-Exchange Signalling (B-QSIG), and Signalling System No. 7 (SS7) protocol specification for the Broadband Integrated
Services Digital Network (B-ISDN) and Broadband Private Integrated Services Network (B-PISN) Call Control, as described
below:

Part 1: "Protocol specification";

Part 2: "Protocol Implementation Conformance Statement (PICS) proforma specification";

Part 3: "Test Suite Structure and Test Purposes (TSS&TP) specification";

Part 4: "Abstract Test Suite (ATS) and partial Protocol Implementation eXtra Information for Testing (PIXIT) proforma
specification".

Part 3 and part 4 will only be produced by ETSI as EN 302 092-3 and EN 302 092-4 respectively.

The Standard is based upon the practical experience of ECMA member companies and the results of their active and
continuous participation in the work of ISO/IEC JTC1, ITU-T, ETSI and other international and national standardization
bodies. It represents a pragmatic and widely based consensus.

This ECMA Standard is technically aligned with EN 302 092-1 published by ETSI in November 1999.

This Standard has been adopted by the ECMA General Assembly of December 1999.

..

- i -

Table of contents

1 Scope 1

2 References 1

3 Definitions 1

3.1 Adjacent call control entities (adjacent CC entities) 1

3.2 Bearer 2

3.3 Bearer control 2

3.4 Bearer control entity (BC entity) 2

3.5 Call 2

3.6 Call control 2

3.7 Call control entity (CC entity) 2

3.8 Call control signalling service provider 2

3.9 Call control signalling service user 2

3.10 Call segment 2

3.11 Called party 2

3.12 Calling party 2

3.13 Information model 2

3.14 Originating CC entity 2

3.15 Party 2

3.16 Preceding CC entity 2

3.17 Succeeding CC entity 2

3.18 Terminating CC entity 3

3.19 Transit CC entity 3

4 Abbreviations 3

5 Basic model 3

5.1 Separation of Call Control (CC) and Bearer control (BC) 3

5.2 Point-to-point and multi-party CC 3

5.3 CC architecture 4

5.4 Relationship to BC architecture 4

5.5 Screening function 5

6 Operational requirements 6

6.1 Provision and withdrawal 6

6.2 Transport mechanism 6

7 Primitive definitions and state definitions 6

7.1 Service primitives 6

7.1.1 Service primitive architecture 6

7.1.2 ESTABLISH-CALL 7

7.1.3 COMPLETE-CALL 8

7.1.4 STATUS-CALL 8

- i i -

7.1.5 RELEASE-CALL 9

7.1.6 PROCEED-CALL 9

7.1.7 ERROR 10

7.2 Parameters 10

7.2.1 Call segment ID 10

7.2.2 Call description 10

7.2.3 Call changed parameter 10

7.2.4 Await complete indicator 10

7.2.5 Bearer establishment address 10

7.2.6 Release cause 10

7.2.7 Result 11

7.2.8 Diagnostics 11

7.3 CC states 11

7.3.1 Call Idle 11

7.3.2 Call Initiated 11

7.3.3 Outgoing Call Proceeding 11

7.3.4 Call Ready 11

7.3.5 Call Present 11

7.3.6 Incoming Call Proceeding 11

7.3.7 Await Call Completion 11

7.3.8 Call Active 11

7.3.9 Call Release Request 11

7.3.10 Call Release Indication 11

8 Coding requirements 11

8.1 Abstract definition of the CC operations 11

8.2 Definition of CC Object Super Class 15

8.3 Definitions of CC Object Classes in the Information Model 15

9 Procedures 17

9.1 Call establishment request 17

9.1.1 Preceding CC entity 17

9.1.2 Succeeding CC entity 17

9.2 Call Proceeding 18

9.2.1 Preceding CC entity 18

9.2.2 Succeeding CC entity 18

9.3 Call accepted 18

9.3.1 Preceding CC entity 18

9.3.2 Succeeding CC entity 18

9.4 Completion of call establishment 19

9.4.1 Preceding CC entity 19

9.4.2 Succeeding CC entity 19

9.5 Call status change report 19

9.5.1 General 19

9.5.2 Initiating CC entity 19

- i i i -

9.5.3 Receiving CC entity 19

9.6 Call establishment failure 20

9.6.1 Preceding CC entity 20

9.6.2 Succeeding CC entity 20

9.7 Call clearing 21

9.7.1 Procedures at the CC entity that initiates call clearing 21

9.7.2 Procedures at the CC entity that responds to clearing 21

9.7.3 Call clearing collision 21

9.8 Exceptional Procedures 21

9.8.1 Timer Expiry 21

9.8.2 Receipt of APDUs with unknown Call Segment Id 22

9.8.3 Receipt of APDUs with duplicated Call Segment Id 22

9.8.4 Receipt of APDUs out of sequence 22

9.8.5 Receipt of Reject APDUs 22

9.8.6 Handling of unrecognized parameters within CC-Operations 23

10 Parameter values (Timers) 24

11 Transport mechanism 24

12 SDL Diagrams 24

12.1 Outgoing CC-ASE 27

12.2 Incoming CC-ASE 33

Annex A - Bearer co-ordination requirements for CC signalling service users 43

Annex B - Call Description handling requirements for CC signalling service users 47

Annex C - Interworking 51

Annex D - Transport mechanisms 53

Annex E - Information flow diagrams 55

Annex F - Imported ASN.1 Definitions 59

Annex G - Object identifiers defined in this Standard 61

Annex H - Bibliography 63

- iv -

.

1 Scope
This Standard specifies a signalling protocol for the purpose of call control at the QB, SB, TB, and co-incident SB/TB

reference points within, between, and at the access to Broadband Private Integrated Services Networks and within,
between, and at the access to European Broadband Integrated Services Digital Networks. The protocol operates
between two adjacent call control entities. The protocol is applicable to a terminal or network node in a separated call
and bearer (connection) control environment for the support of calls having none, a single bearer or multiple bearers.
The protocol is applicable to a two-party call. The protocol also provides forward compatibility to the extent that an
implementation can also operate within a multi-party call with other implementations that use additional capabilities,
provided the implementation is deployed where it does not need to be aware of more than two parties.

This Standard is related to other Standards in this series which will describe the architecture of a separated call and
bearer control environment and scenarios in which such an architecture can be applied.

The protocol specified in this Standard is independent of the supporting transport service.

The protocol specified in this Standard is independent of the protocol used for bearer establishment.

2 References
The following documents contain provisions which, through reference in this text, constitute provisions of this
Standard.

• References are either specific (identified by date of publication, edition number, version number, etc.) or
non-specific.

• For a specific reference, subsequent revisions do not apply.

• For a non-specific reference, the latest version applies.

• A non-specific reference to an ETS shall also be taken to refer to later versions published as an EN with the same
number.

ECMA-254 Broadband Private Integrated Services Network (B-PISN) - Inter-Exchange Signalling Protocol -
Generic Functional Protocol (B-QSIG-GF)

ETS 300 796-1 Broadband Integrated Services Digital Network (B-ISDN); Digital Subscriber Signalling System
No. two (DSS2) protocol; Generic functional protocol; Core aspects; Part 1: Protocol
specification [ITU-T Rec. Q.2932.1 (1996), modified]

ITU-T Rec. X.680 Information technology - Abstract Syntax Notation One (ASN.1): Specification of basic notation

ITU-T Rec. X.681 Information Technology - Abstract Syntax Notation One (ASN.1): Information object
specification

ITU-T Rec. X.682 Information technology - Abstract Syntax Notation One (ASN.1): Constraint specification

ITU-T Rec. X.683 Information technology - Abstract Syntax Notation One (ASN.1): Parameterization of ASN.1
specifications

ITU-T Rec. X.690 Information technology - ASN.1 encoding rules: Specification of Basic Encoding Rules (BER),
Canonical Encoding Rues (CER) and Distinguished Encoding Rules (DER)

ITU-T Rec. X.880 Information technology - Remote operations: concepts, model and notation

CCITT Rec. Z.100 CCITT specification and description language (SDL)

3 Definitions
For the purposes of this Standard the following definitions apply.

3.1 Adjacent call control entities (adjacent CC entities)
Within the context of a single call, two CC entities that signal directly to each other with no intervening CC entity.

- 2 -

3.2 Bearer
A connection for the transport of user plane information between users involved in a call.

3.3 Bearer control
Functionality and signalling in and between networks and terminals to effect the control of a bearer, that bearer
being part of a call.

3.4 Bearer control entity (BC entity)
An entity that is located in a terminal or a network and that participates in bearer control.

3.5 Call
An association between two or more users using a telecommunication service to communicate through one or more
networks.

3.6 Call control
Functionality and signalling in and between networks and terminals to effect the control of a call, excluding the
control of individual bearers.

3.7 Call control entity (CC entity)
An entity that is located in a terminal or a network and that participates in call control.

3.8 Call control signalling service provider
An entity which provides the signalling services of call control.

3.9 Call control signalling service user
An entity within the CC entity to which the signalling services of call control are provided.

NOTE

The call control signalling service user performs the Call Description handling, provides the interactions with
bearer control, and in a network node, co-ordinates the incoming and outgoing side of the CC entity (figure 6).

3.10 Call segment
A part of a call located between two adjacent call control entities.

3.11 Called party
Any party in a call other than the calling party.

3.12 Calling party
The party which initiates the call establishment.

3.13 Information model
A representation of the service and abstract communications configuration using an object oriented technique.

3.14 Originating CC entity
The CC entity that initiates call establishment and is located in a terminal or equipment that functions like a
terminal (e.g. a server in the network).

3.15 Party
An addressable signalling endpoint.

3.16 Preceding CC entity
The CC entity that initiates call establishment across a given call segment.

3.17 Succeeding CC entity
The CC entity at the opposite end of a call segment from the preceding CC entity.

- 3 -

3.18 Terminating CC entity
The CC entity to which call establishment is directed and that is located in a terminal or equipment that functions
like a terminal.

3.19 Transit CC entity
A CC entity through which a call passes, excluding the originating and terminating CC entity.

4 Abbreviations
For the purposes of this Standard, the following abbreviations apply:

APDU Application Protocol Data Unit

ASN.1 Abstract Syntax Notation One

BC Bearer Control

B-PISN Broadband Private Integrated Services Network

CC Call Control

M Mandatory

O Optional

5 Basic model
5.1 Separation of Call Control (CC) and Bearer control (BC)

The protocol specified in this Standard is applicable to an environment in which the control of a call is separate
from the control of the bearer or bearers that exist within the context of that call.

In order for two users to communicate using a telecommunication service, an association, or call, is established
between the two users. Within the context of the call, one or more bearers can be established for transporting user
plane information between the users. However, bearers are not normally established until the call has been accepted
by the called terminal, and therefore resources required by bearers are not occupied unnecessarily if the call cannot
be established, e.g., if the called terminal is unable to accept the call because resources are not available. During the
life-time of the call, bearers can be added or cleared down as required. The call is terminated by one of the two
users when there is no further need for communication. Termination of the call implies that all bearers (if any) are
cleared down.

Although for some telecommunication services a single bearer is sufficient, other telecommunication services
benefit from the use of multiple bearers, each tailored to suit the characteristics of the user plane information to be
transported. This is particularly true for multi-media applications involving audio, video and data. The call provides
a context in which the various bearers can exist and a means of binding the bearers together.

5.2 Point-to-point and multi-party CC
In a point-to-point configuration the protocol specified in this Standard operates between any two adjacent CC
entities between the calling party and the called party.

In a multi-party configuration the protocol specified in this Standard operates between any two adjacent CC entities
on the point-to-point leg between a co-ordination point in the network and a called party. In this case a network
node in the calling party's network takes responsibility for co-ordinating the responses from multiple point-to-point
signalling associations to the called parties into one signalling association to the calling party. Enhancements to be
made to the CC protocol in order to make it suitable also for this signalling association to the calling party in case
of a multi-party call are outside the scope of this Standard.

Figure 1 shows an example configuration for a multi-party call with two called parties involved.

- 4 -

Calling party

Called party

Called party

Called party's
network

Called party's
network

Calling party's
network

Coordination
point

Call

 Figure 1 - Multi-party call with two called parties

5.3 CC architecture
CC provides the means of establishing, maintaining and clearing down a call, including the operation of any
supplementary services that relate to the call rather than to individual bearers. Control of a call is effected by means
of a number of call control entities (CC entities) located in the users' terminals and in various network nodes.
Whereas BC involves a bearer control entity (BC entity) at each network node through which a bearer passes, CC
requires a CC entity only at those network nodes that provide call-related functionality, e.g., the nodes serving the
terminals concerned or nodes that, in the context of the call, provide interworking between networks. In particular,
CC entities are not required at nodes that would only provide transit functionality. The precise criteria for
determining whether a network node needs to provide CC functionality for a given call are outside the scope of this
Standard.

The various CC entities involved in a given call are linked in series by signalling associations. These CC entities
and signalling associations are created during call establishment and cleared down when the call is cleared down.
The protocol specified in this Standard provides such an association between adjacent CC entities and conveys call-
related signalling information between those CC entities. That part of a call between two CC entities that
communicate directly via a single signalling association is known as a call segment. This is illustrated in figure 2
for a call that involves four CC entities (e.g., one at each terminal and one at each node serving those terminals)
and consequently three call segments.

CC CC CC CCCall

segment

Call

segment

Call

segment

 Figure 2 - CC involving four CC entities (three call segments)

5.4 Relationship to BC architecture
BC requires functionality, and hence a BC entity, at each terminal and at every network node through which the
bearer is routed. This is in contrast to CC, which involves a CC entity only at the terminals and selected network
nodes. Each bearer can be routed independently of other bearers and independently of the routeing of CC signalling
associations. However, each bearer is required to be routed through each network node at which there is a CC
entity, and hence have a BC entity at each of these nodes, so that the CC entity can manage the bearer if required.
This is illustrated in figure 3 for the same call as in figure 2 and a single bearer that has a BC entity collocated with
each CC entity and an additional BC entity (e.g. at a transit node) located between the second and third CC entities.

- 5 -

CC BC CC BC BC CC BCCC BC

Call segment Call segment Call segment

Terminal TerminalEdge Switch Edge SwitchTransit Switch

 Figure 3 - Relationship of CC and BC architecture

NOTE

Signalling between BC entities is outside the scope of this Standard.

5.5 Screening function
The model for call and BC functional entities (figure 3) shows all CC entities existing at the same location as BC
entities. While BC can exist independently of CC, the opposite does not apply. Each CC entity includes bearer co-
ordination capabilities.

Although at network boundaries, CC entities will normally be present, network boundaries can also be crossed
without provision of a CC entity and the connections associated with those calls can be routed differently from
each other and from the call, thereby crossing network boundaries at different locations or even being routed
through different networks.

Where a call crosses a network boundary, a number of functions will need to be performed within CC that do not
require the presence of a connection. These include:

a) service control. Control of the provision of basic and supplementary services, and subscription arrangements.
Identification of correct service profile;

b) translation of numbering plans where the two networks use different numbering plans (e.g. public to private).
Even where the same numbering plan is used, the addition of the country code may be necessary;

c) provision of some supplementary services that provide security control on a network basis, e.g. closed user
group;

d) support of supplementary services related to numbering (e.g., DDI, MSN) and restriction of numbers (CLIR,
COLR).

The functions listed above are outside the scope of this Standard.

CC

TE

CC CC CC

TE

Physical link

Physical linkon path of call

Call segment

Allocation of CC to physical TE or network node

Network 1 Network 2

A B C D

Calling user Called user

 Figure 4 - Call originating and terminating in different networks

Figure 4 shows an example of a call originating and terminating in different networks. If calling line identification
restriction (CLIR) applies to the call, this information will be known at the CC at node A, which can add a

- 6 -

presentation restricted indicator to the calling party number forwarded on across the next call segment. Normally,
on exit from one network to another, a calling party number with an associated presentation restricted indicator is
not forwarded, but instead just the presentation restricted indicator is forwarded. The absence of a CC at node B
(point of egress to network 2) means that there will be no opportunity to filter out the calling party number until the
CC at node D is reached. This is clearly insecure.

Possible alternatives are:

1) Ensure that there is a CC at node B (and similarly at node C to handle this type of situation in the reverse
direction). However, CCs are points of bearer coordination, and the presence of CCs at nodes B and C would
force all bearers to go via nodes B and C. This would deny the possibility of using other routes between the
two networks. For some bearers, the route via nodes B and C might not be the cheapest, or may be congested,
or may not provide the desired quality of service. It is desirable to minimize the number of CCs in order to
provide maximum flexibility for routeing bearers.

2) Ensure that the CC at node A performs the filtering. However, this requires node A to have knowledge that the
call segment leads to another network. This knowledge may not always be available.

To solve the problem without introducing the disadvantages of alternatives 1 and 2, filtering (screening)
functionality may be provided at node B (and node C). A functional entity (screening function) may optionally
appear between CC entities, and is located as necessary at incoming and outgoing gateways between networks.
Figure 5 shows an example.

The screening functional entity has no impact on the information flows, except that this functional entity may
impose itself as a transit point on an existing flow.

CC

BC BC BC BC BC BC BC BC

CC CCScreening
function

Network 1 Network 2

BC

Screening
function

CC

User 1 User 2

 Figure 5 - Screening functional entities at network boundaries

6 Operational requirements
6.1 Provision and withdrawal

The provision of this capability within a network is a network provider option.

The provision of this capability between networks or between a network and a user is by bilateral agreement.

6.2 Transport mechanism
The choice of the underlying transport mechanism within a network is a network provider option.

The choice of the transport mechanism between networks or between a network and a user is by bilateral
agreement.

7 Primitive definitions and state definitions
7.1 Service primitives

7.1.1 Service primitive architecture

The following services for call establishment and release are defined:

ESTABLISH-CALL confirmed

RELEASE-CALL confirmed

- 7 -

COMPLETE-CALL unconfirmed

STATUS-CALL unconfirmed

PROCEED-CALL unconfirmed

ERROR indication

Figure 6 shows the architecture which is assumed for two concatenated call segments.

CC signalling
service user

CC signalling service provider CC signalling service provider

CC CC CC

CC signalling
service user

CC signalling
service user

 Figure 6 - Architecture

7.1.2 ESTABLISH-CALL

This service is used by the CC signalling service user to establish a call and its information model. It is a
confirmed service. Table 1 shows the parameters of the ESTABLISH-CALL primitive.

CC signalling service user CC signalling service provider CC signalling service user

ESTABLISH-CALL response

ESTABLISH-CALL indication
ESTABLISH-CALL request

ESTABLISH-CALL confirm

 Figure 7 - ESTABLISH-CALL service

 Table 1 - ESTABLISH-CALL parameters

 Parameter name request indication response confirmation

 Call segment ID M M M M

 Bearer establishment address M M O O

 Await complete indicator M M - -

 Call description M M O (see note) O (see note)

 Result - - M M

 Diagnostics - - M M

 NOTE: Mandatory if Result is positive, else optional.

- 8 -

7.1.3 COMPLETE-CALL

This service is used by the CC signalling service user to complete establishment of a call and its information
model. It is an unconfirmed service. Table 2 shows the parameters of the COMPLETE-CALL primitive.

CC signalling service user CC signalling service provider CC signalling service user

COMPLETE-CALL indication
COMPLETE-CALL request

 Figure 8 - COMPLETE-CALL service

 Table 2 - COMPLETE-CALL parameters

 Parameter name request indication

 Call segment ID M M

7.1.4 STATUS-CALL

This service is used by the CC signalling service user to report a change to the information model. It is an
unconfirmed service. Table 3 shows the parameters of the STATUS-CALL primitive.

CC signalling service user CC signalling service provider CC signalling service user

STATUS-CALL indication
STATUS-CALL request

 Figure 9 - STATUS-CALL service

 Table 3 - STATUS-CALL parameters

 Parameter name request indication

 Call segment ID M M

 Call changed parameter M M

- 9 -

7.1.5 RELEASE-CALL

This service is used by the CC signalling service user to release a call and its information model. It is a
confirmed service. Table 4 shows the parameters of the RELEASE-CALL primitive.

RELEASE-CALL response

RELEASE-CALL indication
RELEASE-CALL request

RELEASE-CALL confirm

CC signalling service user CC signalling service provider CC signalling service user

 Figure 10 - RELEASE-CALL service

 Table 4 - RELEASE-CALL parameters

 Parameter name request indication response confirmation

 Call segment ID M M M M

 Release cause M M - -

7.1.6 PROCEED-CALL

This service is used by the CC signalling service user to indicate receipt of a call at the succeeding side of a call
segment. It is an unconfirmed service. Table 5 shows the parameters of the PROCEED-CALL primitive.

CC signalling service user CC signalling service provider CC signalling service user

PROCEED-CALL indication
PROCEED-CALL request

 Figure 11 - PROCEED-CALL service

 Table 5 - PROCEED-CALL parameters

 Parameter name request indication

 Call segment ID M M

 Bearer establishment address M M

- 10 -

7.1.7 ERROR

This indication primitive is used by the CC signalling service provider to indicate the occurrence of an
exceptional condition to the CC signalling service user. Table 6 shows the parameters of the ERROR indication
primitive.

 Table 6 - ERROR parameters

 Parameter name indication

 Call segment ID M

 Diagnostics M

7.2 Parameters
7.2.1 Call segment ID

A pair of values which together uniquely identify the call at the two adjacent CC entities bounding a call
segment.

7.2.2 Call description

The type CallDescription, as used in the operation callEstablish, contains an information model which describes
the properties of a call. The information model comprises sequences of network relevant and end-to-end relevant
object descriptions. An object description consists of:

- an object reference, used to refer to particular instances of objects, which should therefore be unique within
a particular call description;

- an object status, which is used for example to indicate whether the object is Optional (O) or Mandatory (M);

- an identifier that identifies the class of object to which the instance belongs; and

- an argument of type specific to the class of object to which the instance belongs.

A CC object class is a class of object that inherits the properties of the super class CALLCONTROLOBJECT.
Each object class in this super class comprises an identifier and an O argument. The type of the argument
depends on the particular object class in the super class, as identified by the identifier. The argument defines the
type of attributes of an object of this class.

The OpenCall parameter indicates to the non-call owners in a communications configuration their rights to
modify the configuration. The OpenCall parameter is an attribute of the call that is set by the user (CC signalling
service user); it is stored in the information model and is transferred in the call description. The CC protocol
provides the procedures for exchanging information in an orderly manner. The call status change report provides
the mechanism for informing all CC signalling service users involved in the call of one or more changes in the
call permissions.

7.2.3 Call changed parameter

The type CallChangedParameter, as used in the operation callStatus, contains a list of those objects of the
information model which have been modified and the modification of which has to be reported to the other CC
signalling service users involved in the call.

7.2.4 Await complete indicator

Has the value TRUE if call and information model establishment uses a three message sequence or FALSE if
call and information model establishment uses an two message sequence.

7.2.5 Bearer establishment address

The address of a network node / terminal to which bearer (connection) establishment shall be routed.

7.2.6 Release cause

Reason for a call release request.

- 11 -

7.2.7 Result

Positive / negative result for an ESTABLISH-CALL request or indication.

7.2.8 Diagnostics

Further explanation of the result (e.g. error values) in an ESTABLISH-CALL response / confirm or the
explanation of the exceptional condition that caused an ERROR indication.

7.3 CC states
This chapter describes the states which exist for a CC signalling service provider within a CC entity.

7.3.1 Call Idle

No call exists.

7.3.2 Call Initiated

This state exists at a preceding CC entity when a request for call establishment has been sent to the succeeding
CC entity but no response has been received.

7.3.3 Outgoing Call Proceeding

This state exists at a preceding CC entity when acknowledgement that the call is accepted for this call segment
has been received from the succeeding CC entity.

7.3.4 Call Ready

This state exists at a preceding CC entity when an indication has been received from the succeeding CC entity
that it is ready to complete the establishment of the call and its information model.

7.3.5 Call Present

This state exists at a succeeding CC entity that has not yet responded to the request for call establishment.

7.3.6 Incoming Call Proceeding

This state exists at a succeeding CC entity that has sent to the preceding CC entity acknowledgement that the
call is accepted for this call segment.

7.3.7 Await Call Completion

This state exists at a succeeding CC entity that is awaiting an indication from the preceding CC entity that
establishment of the call and its information model is to be completed.

7.3.8 Call Active

This state exists at a preceding CC entity that has received an indication that the called user has answered from
the succeeding CC entity. This state exists at a succeeding CC entity that has sent an indication that the called
user has answered to the preceding CC entity.

7.3.9 Call Release Request

This state exists when a CC entity has sent out a request for call release but a response has not yet been received.

7.3.10 Call Release Indication

This state exists when a CC entity has received a call release indication but the user has not yet answered.

8 Coding requirements
8.1 Abstract definition of the CC operations

Table 7 shows the definition of the operations, errors and types required for the CC protocol using Abstract Syntax
Notation One (ASN.1) as defined in ITU-T Recommendations X.680, X.681, X.682, X.683 and using the
OPERATION and ERROR object classes as defined in ITU-T Rec. X.880.

Application Protocol Data Units (APDUs) based on these operations shall be of types invoke, returnResult,
returnError and reject as defined in table B.1 of ETS 300 796-1. The Basic Encoding Rules (BER) as defined in
ITU-T Rec. X.690 shall be applied to the encoding of APDUs based on these operations and errors.

- 12 -

 Table 7 - Definition of operations for the CC protocol

 CC-Operations { itu-t recommendation q 2981 cc-operations (1) }
 DEFINITIONS
 AUTOMATIC TAGS ::=
 BEGIN
 EXPORTS CcOperations, CallSegmentId;
 IMPORTS OPERATION, ERROR FROM Remote-Operations-Information-Objects

 { joint-iso-itu-t (2) remote-operations (4) informationObjects (5) version1 (0) }
PartyNumber FROM Addressing-Data-Elements
 { itu-t recommendation q 932 addressing-data-elements (7) }
-- The definition of PartyNumber is reproduced in Annex F
CALLCONTROLOBJECTCLASS FROM Call-Control-Object-Super-Class
 { itu-t recommendation q 2981 call-control-object-super-class (4) }
-- The definition of CALLCONTROLOBJECTCLASS is given in subclause 8.2
call, localPartyEP, remotePartyEP, directCallAssociation, remoteCallAssociation, serviceComponent
FROM Call-Object-Class-Definitions
 { itu-t recommendation q 2981 call-object-class-definitions (5) } ;
-- The definition of call, localPartyEP, remotePartyEP, directCallAssociation,

remoteCallAssociation,
-- serviceComponent is given in subclause 8.3

 CcOperations OPERATION ::= { callEstablish | callProceeding | callComplete | callRelease |
callStatus }

 ccOperationsDefinitions OBJECT IDENTIFIER ::= { itu-t recommendation q 2981 cc-operations-definitions
(2) }

 -- The callEstablish operation is used to establish a call and its information model. It is a confirmed
operation.
callEstablish OPERATION ::= {

ARGUMENT SEQUENCE
 { callSegmentId CallSegmentId,

callDescription CallDescription,
bearerEstablAddress BearerEstablishmentAddress,
awaitCompleteIndicator BOOLEAN,
parameterActionIndicator ParameterActionIndicator,
... }

RESULT SEQUENCE
 { callSegmentId CallSegmentId,

callDescription CallDescription,
parameterActionIndicator ParameterActionIndicator,
bearerEstablAddress BearerEstablishmentAddress OPTIONAL,
... }

ERRORS { callDescriptionNotAccepted | unallocatedNumber | noUserResponding |
 noAnswerFromUser | callRejected | destinationOutOfOrder |
 addressIncomplete | networkOutOfOrder | temporaryFailure |
 userBusy | userNotReachable | unspecified }

CODE global : { ccOperationsDefinitions 1 } }

 -- The callProceeding operation is used by the succeeding call control entity to inform the preceding call
control entity
-- that the call is in progress and connection establishment may start for this segment. It is an
unconfirmed operation.
callProceeding OPERATION ::= {

ARGUMENT SEQUENCE
 { callSegmentId CallSegmentId,

bearerEstablAddress BearerEstablishmentAddress,
parameterActionIndicator ParameterActionIndicator,
... }

RETURN RESULT FALSE
ALWAYS RESPONDS FALSE
CODE global : { ccOperationsDefinitions 2 } }

 -- The callRelease operation is used to release an existing call and its information model. It is a
confirmed operation.
callRelease OPERATION ::= {

ARGUMENT SEQUENCE
 { callSegmentId CallSegmentId,

releaseCause ReleaseCause,
parameterActionIndicator ParameterActionIndicator,
... }

RESULT SEQUENCE
 { callSegmentId CallSegmentId ,

parameterActionIndicator ParameterActionIndicator,
... }

CODE global : { ccOperationsDefinitions 3 } }

- 13 -

 -- The callComplete operation is used to indicate completion of establishment of a call and its
information model.
-- It is an unconfirmed operation.
callComplete OPERATION ::= {

ARGUMENT SEQUENCE
 { callSegmentId CallSegmentId,

parameterActionIndicator ParameterActionIndicator,
... }

RETURN RESULT FALSE
ALWAYS RESPONDS FALSE
CODE global : { ccOperationsDefinitions 4 } }

 -- The callStatus operation is used to report a change to the information model. It is an unconfirmed
operation.
callStatus OPERATION ::= {

ARGUMENT SEQUENCE
 { callSegmentId CallSegmentId,

callChangedParameter SEQUENCE OF CallChangedParameter,
parameterActionIndicator ParameterActionIndicator,
... }

RETURN RESULT FALSE
ALWAYS RESPONDS FALSE
CODE global : { ccOperationsDefinitions 5 } }

 ParameterActionIndicator ::= ENUMERATED { clearCallAndItsInformationModel (0),
 discardApduAndReject (1),
 discardApduNoReject (2),
 discardParameterAndPassApduToApplication (3),
 ignoreParameterAndPassApduToApplication (4) }

-- Used to indicate action to be taken if a parameter in an operation is not recognised

 BearerEstablishmentAddress ::= PartyNumber

 NetworkRelevantObjectClassSet CALLCONTROLOBJECTCLASS ::= { call | localPartyEP | remotePartyEP |

directCallAssociation | remoteCallAssociation , ... }
 EndToEndRelevantObjectClassSet CALLCONTROLOBJECTCLASS ::= { serviceComponent , ... }

 CallDescription ::= SEQUENCE {

networkRelevantPart SEQUENCE OF
NetworkRelevantObjectDescription{{NetworkRelevantObjectClassSet}},

endToEndRelevantPart SEQUENCE OF
EndToEndRelevantObjectDescription{{EndToEndRelevantObjectClassSet}} OPTIONAL }

 NetworkRelevantObjectDescription {CALLCONTROLOBJECTCLASS: NetworkRelevantObjectClassSet} ::=
SEQUENCE {

objectReference INTEGER,
 objectActionInd ObjectActionIndicator,

objectStatus ObjectStatus,
objectClassId CALLCONTROLOBJECTCLASS.&objectClassIdentifier ({NetworkRelevantObjectClassSet}),
objectArgument CALLCONTROLOBJECTCLASS.&ArgumentType ({NetworkRelevantObjectClassSet}

{@objectClassId}) OPTIONAL,
... }

 EndToEndRelevantObjectDescription {CALLCONTROLOBJECTCLASS: EndToEndRelevantObjectClassSet} ::=
SEQUENCE {

objectReference INTEGER,
objectActionInd ObjectActionIndicator,
objectStatus ObjectStatus,
objectClassId CALLCONTROLOBJECTCLASS.&objectClassIdentifier ({EndToEndRelevantObjectClassSet}),
objectArgument CALLCONTROLOBJECTCLASS.&ArgumentType ({EndToEndRelevantObjectClassSet}

{@objectClassId}) OPTIONAL,
... }

 CallChangedParameter ::= SEQUENCE {

modifiedNetworkRelevantPart SEQUENCE OF
ModifiedNetworkRelevantObjectDescription{{NetworkRelevantObjectClassSet}},

modifiedEndToEndRelevantPart SEQUENCE OF
ModifiedEndToEndRelevantObjectDescription{{EndToEndRelevantObjectClassSet}} OPTIONAL }

 ModifiedNetworkRelevantObjectDescription {CALLCONTROLOBJECTCLASS: NetworkRelevantObjectClassSet} ::=
SEQUENCE {

operation ENUMERATED {deleteObject (0), modifyAttributes (1), ... },
objectReference INTEGER,
objectActionInd ObjectActionIndicator,
modifiedArgument CALLCONTROLOBJECTCLASS.&ArgumentType({NetworkRelevantObjectClassSet}) OPTIONAL }

- 14 -

 ModifiedEndToEndRelevantObjectDescription {CALLCONTROLOBJECTCLASS: EndToEndRelevantObjectClassSet} ::=
SEQUENCE {

operation ENUMERATED {deleteObject (0), modifyAttributes (1), ... },
objectReference INTEGER,
objectActionInd ObjectActionIndicator,
modifiedArgument CALLCONTROLOBJECTCLASS.&ArgumentType({EndToEndRelevantObjectClassSet}) OPTIONAL }

 ObjectActionIndicator ::= ENUMERATED { clearCall (0),
 discardNotify (1),
 discardUnknown (2),
 progressTransit (3), ... }

-- Used to indicate action to be taken if an object or object attribute is not recognised

 ObjectStatus ::= ENUMERATED {

mandatory(0),
optional(1),
conditional(2),
... }

 CallSegmentId ::= SEQUENCE { precedingSideCallSegId CallSegmentIdComponent,

 succeedingSideCallSegId CallSegmentIdComponent }

 CallSegmentIdComponent ::= INTEGER (-2147483648 .. 2147483647) -- 4 octets

-- The value 0 is to be used as a null value for the succeeding side call segment identifier
-- in the callEstablish invoke APDU.

 ReleaseCause ::= SEQUENCE { causeValue CauseValue,

 location Location,
 ... }

 CauseValue ::= ENUMERATED { callDescriptionNotAccepted (0),

 normalCallClearing (3),
 temporaryFailure (11),
 recoveryOnTimerExpiry (12),
 unspecified (4),
 ... }

 Location ::= ENUMERATED { unspecified (0),

 user (1),
 networkLocalCallSegment (2),
 networkNonLocalCallSegment (3),
 ... }

 ccOperationsErrors OBJECT IDENTIFIER ::= { itu-t recommendation q 2981 cc-operations-errors (3) }

 callDescriptionNotAccepted ERROR ::= { PARAMETER SEQUENCE { callSegmentId CallSegmentId, location
Location,

 callDescription CallDescription OPTIONAL,
 ... }

CODE global : { ccOperationsErrors 1 } }
 userBusy ERROR ::= { PARAMETER SEQUENCE { callSegmentId CallSegmentId, location Location,

 callDescription CallDescription OPTIONAL,
 ... }

CODE global : { ccOperationsErrors 2 } }
 unallocatedNumber ERROR ::= { PARAMETER SEQUENCE { callSegmentId CallSegmentId, location Location,
... }

CODE global : { ccOperationsErrors 3 } }
 noUserResponding ERROR ::= { PARAMETER SEQUENCE { callSegmentId CallSegmentId, location Location ,
... }

CODE global : { ccOperationsErrors 4 } }
 noAnswerFromUser ERROR ::= { PARAMETER SEQUENCE { callSegmentId CallSegmentId, location Location ,
... }

CODE global : { ccOperationsErrors 5 } }
 callRejected ERROR ::= { PARAMETER SEQUENCE { callSegmentId CallSegmentId, location Location ,
... }

CODE global : { ccOperationsErrors 6 } }
 destinationOutOfOrder ERROR ::= { PARAMETER SEQUENCE { callSegmentId CallSegmentId, location
Location , ... }

CODE global : { ccOperationsErrors 7 } }
 addressIncomplete ERROR ::= { PARAMETER SEQUENCE { callSegmentId CallSegmentId, location Location ,
... }

CODE global : { ccOperationsErrors 8 } }
 networkOutOfOrder ERROR ::= { PARAMETER SEQUENCE { callSegmentId CallSegmentId, location Location ,
... }

CODE global : { ccOperationsErrors 9 } }
 temporaryFailure ERROR ::= { PARAMETER SEQUENCE { callSegmentId CallSegmentId, location
Location , ... }

CODE global : { ccOperationsErrors 10 } }

- 15 -

 userNotReachable ERROR ::= { PARAMETER SEQUENCE { callSegmentId CallSegmentId, location Location ,
... }

CODE global : { ccOperationsErrors 11 } }
 unspecified ERROR ::= { PARAMETER SEQUENCE { callSegmentId CallSegmentId, location Location , ...
}

CODE global : { ccOperationsErrors 12 } }

 END

8.2 Definition of CC Object Super Class
Table 8 shows the definition of the CC Object Super Class using ASN.1 as defined in ITU-T Recommendations
X.680, X.681, X.682, X.683.

 Table 8 - Definition of CC Object Super Class

 Call-Control-Object-Super-Class
{ itu-t recommendation q 2981 call-control-object-super-class (4) }

 DEFINITIONS
AUTOMATIC TAGS ::=
BEGIN
EXPORTS CALLCONTROLOBJECTCLASS;

 CALLCONTROLOBJECTCLASS ::= CLASS
{ &ArgumentType OPTIONAL,

&argumentTypeOptional BOOLEAN OPTIONAL,
&objectClassIdentifier OBJECT IDENTIFIER UNIQUE }

 WITH SYNTAX
{ [ARGUMENT &ArgumentType [OPTIONAL &argumentTypeOptional]]

IDENTIFIER &objectClassIdentifier }

 END -- Call-Control-Object-Super-Class

8.3 Definitions of CC Object Classes in the Information Model
CC object classes are inherited from the super class CALLCONTROLOBJECTCLASS, used for the purpose of
object descriptions within the call description. For each object class, the ARGUMENT type and unique
IDENTIFIER are defined.

Table 9 shows the definition of the CC Object Classes in the Information Model described in DEG/SPS-05134
using ASN.1 as defined in ITU-T Recommendations X.680, X.681, X.682, X.683.

 Table 9 - Definition of CC Object Classes in the Information Model

 Call-Object-Class-Definitions
{ itu-t recommendation q 2981 call-object-class-definitions (5) }

 DEFINITIONS
 AUTOMATIC TAGS ::=
 BEGIN

 EXPORTS
 call, localPartyEP, remotePartyEP, directCallAssociation, remoteCallAssociation,
serviceComponent,BearerId;

 IMPORTS
 CALLCONTROLOBJECTCLASS FROM Call-Control-Object-Super-Class

{ itu-t recommendation q 2981 call-control-object-super-class (4) }
PresentedAddressScreened, PartyNumber, PartySubaddress FROM Addressing-Data-Elements

{ itu-t recommendation q 932 addressing-data-elements (7) } ;

 ccObjectClasses OBJECT IDENTIFIER ::= { itu-t recommendation q 2981 cc-object-classes (6) }

- 16 -

 call CALLCONTROLOBJECTCLASS ::= {
ARGUMENT SEQUENCE {

localPEPId ObjectReferenceId,
remotePEPId ObjectReferenceId,
serviceReference ObjectReferenceId OPTIONAL,
directCallAssociationIds ObjectReferenceIdList,
remoteCallAssociationIds ObjectReferenceIdList OPTIONAL,
bearerIdList BearerIdList OPTIONAL,
telecomsServiceType TelecomsServiceType,
callPermissions OpenCall

 }
IDENTIFIER { ccObjectClasses 1 }

 }

 ObjectReferenceId ::= INTEGER (-2147483648 .. 2147483647) -- 4 octets

-- refers to an object reference, unique to each object within a call

 ObjectReferenceIdList ::= SEQUENCE OF ObjectReferenceId

 BearerIdList ::= SEQUENCE OF BearerId
 BearerId ::= OCTET STRING (SIZE (1..3))

 OpenCall ::= BIT STRING {

reserved(7), externalPartyAddAllowed(6), existingPartyAddAllowed(5), notifyAllPartiesFlag(4),
notifyOwnerFlag(3), permissionRequiredFlag(2), addConnectionAllowed(1),
addServiceComponentAllowed(0) }

 TelecomsServiceType ::= ENUMERATED {

realtimeMultiMedia(0),
nonRealtimeMultiMedia(1),
undefined(2),

 ... }

 localPartyEP CALLCONTROLOBJECTCLASS ::= {

ARGUMENT PartyObjectArgument
IDENTIFIER { ccObjectClasses 2 }

 }

 remotePartyEP CALLCONTROLOBJECTCLASS ::= {

ARGUMENT PartyObjectArgument
IDENTIFIER { ccObjectClasses 3 }

 }

 PartyObjectArgument ::= SEQUENCE {

partyAddress SEQUENCE {
presentedAddressScreened PresentedAddressScreened,
defaultAddress DefaultAddress OPTIONAL,
networkInternalAddress NetworkInternalAddress OPTIONAL

},
partyOwnerPEPId ObjectReferenceId,

 associatedResourcePEPIds ObjectReferenceIdList OPTIONAL,
 associatedPEPIds ObjectReferenceIdList OPTIONAL,

partyType ENUMERATED {initiator(0), receiver(1), callOwner(2), …},
partyStatus ENUMERATED {confirmed (0), virtual(1), alerting(2), ...}

}
 DefaultAddress ::= OCTET STRING (SIZE (1..21))
 NetworkInternalAddress ::= OCTET STRING (SIZE (1..21))

 directCallAssociation CALLCONTROLOBJECTCLASS ::= {

ARGUMENT SEQUENCE { remotePEPId ObjectReferenceId }
IDENTIFIER { ccObjectClasses 4 }

 }

 remoteCallAssociation CALLCONTROLOBJECTCLASS ::= {

ARGUMENT SEQUENCE {
 localPEPId ObjectReferenceId,

remotePEPId ObjectReferenceId
}

IDENTIFIER { ccObjectClasses 5 }
 }

- 17 -

 serviceComponent CALLCONTROLOBJECTCLASS ::= {
ARGUMENT
 SEQUENCE {

callPEPId ObjectReferenceId,
serviceComponentCharacteristics ServiceComponentCharacteristics OPTIONAL,
communicationConfiguration CommunicationConfiguration OPTIONAL,
serviceTrafficDescriptorRequirements ServiceTrafficDescriptorRequirements OPTIONAL,
serviceComponentQoSRequirements ServiceQoSRequirements OPTIONAL,
associatedServiceModuleId ObjectReferenceId OPTIONAL,
associatedResourceComponentId ObjectReferenceId OPTIONAL

}
IDENTIFIER { ccObjectClasses 6 }

 }

 ServiceComponentCharacteristics ::= OCTET STRING
 CommunicationConfiguration ::= ENUMERATED {source(0), sink(1), biDirectional(2), …}
 ServiceTrafficDescriptorRequirements ::= OCTET STRING
 ServiceQoSRequirements ::= OCTET STRING

 END

9 Procedures
9.1 Call establishment request

9.1.1 Preceding CC entity

On receipt of an ESTABLISH-CALL request primitive from the CC signalling service user, the preceding CC
entity shall initiate call establishment by sending a callEstablish invoke APDU towards the succeeding CC entity
and start timer T703. Following the transmission of the APDU, the preceding CC entity shall enter the Call
Initiated state.

The preceding CC entity shall include element awaitCompleteIndicator in the callEstablish invoke APDU
reflecting the value (TRUE or FALSE) of the Await Complete Indicator parameter within the ESTABLISH-
CALL request primitive and store this value locally as "Await Complete Indicator".

The callEstablish invoke APDU shall contain the CallSegmentId with the precedingSideCallSegId set to the
value provided by the CC signalling service user and the succeedingSideCallSegId set to the null value. Within
the argument of the callEstablish invoke APDU, element bearerEstablishmentAddress shall contain an address
which, when used as a destination address for bearer establishment in the backward direction from the
subsequent CC entity, causes the bearer to be routed to the preceding CC entity's terminal or network node, i.e.,
to the terminal or network node at the start of the call segment.

The preceding CC entity shall include element callDescription in the callEstablish invoke APDU, as provided by
the CC signalling service user.

Prior to sending the callEstablish invoke APDU towards the succeeding CC entity, the preceding CC entity shall
initiate establishment of a transport mechanism connection to the succeeding CC entity or use an existing
transport mechanism (e.g. an already existing connection or a permanently available transport mechanism).

NOTE

The CC protocol is independent of the underlying transport mechanism. It is therefore out of scope of this
Standard which transport mechanism is used.

9.1.2 Succeeding CC entity

On receipt of a callEstablish invoke APDU, the succeeding CC entity shall enter the Call Present state.

The succeeding CC entity shall store the contents of element awaitCompleteIndicator as "Await Complete
Indicator".

The receipt of the callEstablish invoke APDU is indicated to the CC signalling service user with an
ESTABLISH-CALL indication primitive.

- 18 -

9.2 Call Proceeding
9.2.1 Preceding CC entity

On receipt of a callProceeding invoke APDU while in state Call Initiated, the preceding CC entity shall stop
timer T703, start timer T710, and enter the Outgoing Call Proceeding state.

The receipt of the callProceeding invoke APDU is indicated to the CC signalling service user with a PROCEED-
CALL indication primitive.

NOTE

This is the earliest time at which the CC signalling service user can establish bearer connections across this
segment.

9.2.2 Succeeding CC entity

On request of the CC signalling service user (PROCEED-CALL request primitive) and while in state Call
Present, the succeeding CC entity shall send a callProceeding invoke APDU to the preceding CC entity and
enter the Incoming Call Proceeding state.

The callProceeding invoke APDU shall contain the element callSegmentId with the precedingSideCallSegId set
to the value as received in the callEstablish invoke APDU and the succeedingSideCallSegId set to the value
provided by the CC signalling service user.

Within the argument of the callProceeding invoke APDU, element bearerEstablishmentAddress shall contain an
address which, when used as a destination address for bearer establishment in the forward direction from the
preceding CC entity, causes the bearer to be routed to the succeeding CC entity's terminal or network node, i.e.,
to the terminal or network node at the end of the call segment.

NOTE 1

This is the earliest time at which the CC signalling service user can establish bearer connections across this
segment.

NOTE 2

A bearer establishment can be initiated from either the call originating user or from the call destination user.

9.3 Call accepted
9.3.1 Preceding CC entity

On receipt of the callEstablish return result APDU while in state Call Initiated or Outgoing Call Proceeding, the
preceding CC entity shall stop timer T703 or T710 and:

- if the value of stored item "Await Complete Indicator" is TRUE, then enter state Call Ready;

- if the value of stored item "Await Complete Indicator" is FALSE, then enter state Call Active.

The receipt of the callEstablish return result APDU is indicated to the CC signalling service user with an
ESTABLISH-CALL confirm primitive.

NOTE

If the callEstablish return result APDU was the first response received to a callEstablish invoke, this is the
earliest time at which the CC signalling service user can establish bearer connections across this segment.

9.3.2 Succeeding CC entity

On request of the CC signalling service user (ESTABLISH-CALL response primitive), the succeeding CC entity
shall send a callEstablish return result APDU to the preceding CC entity and:

- if the value of stored item "Await Complete Indicator" is TRUE, then enter state Await Call Completion and
start timer T701;

- if the value of stored item "Await Complete Indicator" is FALSE, then enter state Call Active.

The callEstablish return result APDU shall contain the element callSegmentId. If the succeeding CC entity has
not previously sent a callProceeding invoke APDU, the argument of the callEstablish return result APDU shall
contain element CallSegmentId with the precedingSideCallSegId set to the value as received in the callEstablish

- 19 -

invoke APDU and the succeedingSideCallSegId set to the value provided by the CC signalling service user. If it
has previously sent a callProceeding invoke APDU, the argument of the callEstablish return result APDU shall
contain element CallSegmentId as indicated by the CC signalling service user.

The callEstablish return result APDU shall contain the element CallDescription, as provided by the CC
signalling service user in the ESTABLISH-CALL response primitive.

If the succeeding CC entity has not previously sent a callProceeding invoke APDU, the argument of the
callEstablish return result APDU shall contain element bearerEstablishmentAddress. This element shall contain
an address which, when used as a destination address for bearer establishment in the forward direction from the
preceding CC entity, causes the bearer to be routed to the succeeding CC entity's terminal or network node, i.e.,
to the terminal or network node at the end of the call segment.

NOTE

This is the earliest time at which the CC signalling service user can establish bearer connections across this
segment.

9.4 Completion of call establishment
9.4.1 Preceding CC entity

On receipt of a Complete-Call request primitive while in state Call Ready, the preceding CC entity shall send a
callComplete invoke APDU to the succeeding CC entity and enter state Call Active.

The preceding CC entity shall include element callSegmentId in the callComplete invoke APDU.

9.4.2 Succeeding CC entity

On receipt of a callComplete invoke APDU in state Await Call Completion, the succeeding CC entity shall enter
state Call Active, stop timer T701 and give a Complete-Call indication primitive to the CC signalling service
user.

9.5 Call status change report
9.5.1 General

A change of the information model of a call is reflected in the Call Description belonging to that call. In order to
report such a change to the peer CC entity, the callStatus operation, which contains the element
callChangedParameter, shall be used. This element indicates changes to the original call description:

- addition and deletion of a service component object;

- changes to the attributes of a party object (i.e. modification of the status of a party);

- changes to the OpenCall attribute of the call object (i.e. modification of the call permissions).

A call status change report indicates one or more changes, but any deleted object shall not be referenced in a
modified attribute.

9.5.2 Initiating CC entity

On receipt of a Status-Call request primitive while in state Await Call Completion or Call Active, the initiating
CC entity shall send a callStatus invoke APDU and remain in the same state.

The initiating CC entity shall include elements callSegmentId and callChangedParameter in the callStatus
invoke APDU as indicated by the CC signalling service user.

The element callChangedParameter contains a list of the changed objects such that:

- where an object specified in the original Call Description is deleted, the value "deleteObject" shall be used,
the objectReference shall be included, and modifiedArgument shall not be included;

- where an object specified in the original Call Description is modified, the value "modifyAttributes" shall be
used.

9.5.3 Receiving CC entity

On receipt of a callStatus invoke APDU in state Call Ready or Call Active, the receiving CC entity shall give a
Status-Call indication primitive to the CC signalling service user and remain in the same state.

- 20 -

9.6 Call establishment failure
9.6.1 Preceding CC entity

On receipt of a callEstablish return error APDU while in state Call Initiated or Outgoing Call Proceeding, the
preceding CC entity shall stop all timers (if timers are running) and enter the Call Idle state.

Call establishment failure is indicated to the CC signalling service user by an ESTABLISH-CALL confirm
primitive with negative Result parameter.

NOTE

The CC signalling service user gives an indication to BC that the bearer connections for this call shall be
cleared.

Call establishment failure can also be indicated from the preceding CC entity while in state Call Ready to the
succeeding CC entity by the use of the procedures for call clearing as defined in 9.7.

9.6.2 Succeeding CC entity

On CC signalling service user request (ESTABLISH-CALL response primitive with negative Result parameter)
and while in state Call Present or Incoming Call Proceeding, the succeeding CC entity shall send a callEstablish
return error APDU with a suitable error value and enter the Call Idle state.

Suitable error values are:

- callDescriptionNotAccepted, if the received call description was not accepted by the CC signalling service
user. In this case an alternative call description may be returned together with the error value;

- userBusy, if the called user is busy. In this case, if the received call description was not acceptable by the
CC signalling service user, an alternative call description may be returned as additional information together
with the error value;

- unallocatedNumber, if the received call description contained an unallocated number;

- noUserResponding, if the called user did not respond to the callEstablish invoke APDU;

- noAnswerFromUser, if no answer from the called user to the callEstablish invoke APDU was received;

- callRejected, if the called user rejected the call;

- destinationOutOfOrder, if the called user's equipment is out of order;

- addressIncomplete, if an address contained in the received call description was incomplete;

- networkOutOfOrder, if equipment in the network is out of order;

- temporaryFailure, if a temporary failure has occurred;

- userNotReachable, if the called user is not reachable;

- unspecified in any other case.

When sending the callEstablish return error APDU, the Location parameter shall indicate the location at which
the failure occurred. When an Error is first generated in a user's terminal, the location value 'user' shall be used.
When an Error is first generated in a network node, the location value 'networkLocalCallSegment' shall be used.
If that Error is passed on by a CC entity to another call segment the value shall be changed to
'networkNonLocalCallSegment'.

The callEstablish return error APDU may contain a Call Description element if provided by the CC signalling
service user.

NOTE

The CC signalling service user gives an indication to BC that the bearer connections for this call shall be
cleared.

Call establishment failure can also be indicated from the preceding CC entity to the succeeding CC entity while
in state Await Call Completion by the use of the procedures for call clearing as defined in 9.7.

- 21 -

9.7 Call clearing
9.7.1 Procedures at the CC entity that initiates call clearing

On receipt of a RELEASE-CALL request primitive from the CC signalling service user, the CC entity initiating
call clearing shall send a callRelease invoke APDU, stop all timers, start timer T708, and enter the Call Release
Request state.

The argument of the callRelease invoke APDU shall contain a causeValue and the appropriate location
parameter in element releaseCause. Valid cause values are 'normalCallClearing', 'callDescriptionNotAccepted',
or 'temporaryFailure', depending on the reason why the CC signalling service user initiates call clearing.

Cause values shall be used as follows:

- normalCallClearing, if call release was initiated by one of the involved users;

- callDescriptionNotAccepted, if the received call description was not accepted by the CC signalling service
user;

- temporaryFailure, if a temporary failure has occurred.

The location parameter shall indicate the location at which the failure occurred. When a releaseCause is first
generated in a user's terminal, the location value 'user' shall be used. When a releaseCause is first generated in a
network node, the location value 'networkLocalCallSegment' shall be used. If that releaseCause is passed on by
a CC entity to another call segment the value shall be changed to 'networkNonLocalCallSegment'.

The callRelease invoke APDU shall only be sent with a complete callSegmentId. Therefore, a CC entity which
has initiated a call establishment, i.e. has sent a callEstablish invoke APDU, shall not initiate call clearing before
either a callEstablish return result or callProceeding invoke APDU has been received.

On receipt of the callRelease return result APDU while in state Call Release Request, the CC entity initiating
clearing shall stop timer T708 and enter the Call Idle state.

The receipt of the callRelease return result APDU is indicated to the CC signalling service user with a
RELEASE-CALL confirm primitive.

NOTE

When sending the RELEASE-CALL request primitive to the CC signalling service provider, the CC signalling
service user also requests BC that the bearer connections for this call shall be cleared.

9.7.2 Procedures at the CC entity that responds to clearing

In any state except Call Idle, Call Release Request, and Call Release Indication the CC entity receiving a
callRelease invoke APDU shall stop any timers that are running and enter the Call Release Indication state. The
receipt of the callRelease invoke APDU is indicated to the CC signalling service user with a RELEASE-CALL
indication primitive.

On CC signalling service user request (RELEASE-CALL response primitive) the receiving CC entity shall send
a callRelease return result APDU and return to the Call Idle state.

NOTE

When receiving the RELEASE-CALL indication primitive, the CC signalling service user requests BC that the
bearer connections for this call shall be cleared.

9.7.3 Call clearing collision

In case of call clearing collision, i.e. on receipt of a callRelease invoke APDU while in state Call Release
Request, the CC entity shall stop timer T708 and enter the Call Idle state.

9.8 Exceptional Procedures
9.8.1 Timer Expiry

9.8.1.1 Procedures at the preceding CC entity

If timer T703 expires, i.e. if no response to the callEstablish invoke APDU is received, the preceding CC
entity shall clear the call internally, release the CallSegmentId, and enter the Call Idle state.

- 22 -

Call clearing is indicated to the CC signalling service user by an ESTABLISH-CALL confirm primitive with
negative Result parameter.

If timer T710 expires, i.e. if a callProceeding invoke APDU has been received as a response to the
callEstablish invoke APDU, but no callEstablish return result or return error APDU is received, the preceding
CC entity shall clear the call by sending a callRelease invoke APDU, stop all timers, start timer T708, and
enter the Call Release Request state. The callRelease invoke APDU sent to initiate call clearing shall contain
causeValue 'recovery on timer expiry' and an appropriate location value in element releaseCause.

Call clearing is indicated to the CC signalling service user by an ESTABLISH-CALL confirm primitive with
negative Result parameter.

9.8.1.2 Procedures at the succeeding CC entity

If timer T701 expires, i.e. if no callComplete invoke APDU is received in the Await Call Completion state,
the succeeding CC entity shall clear the call internally, release the CallSegmentId, and enter the Call Idle
state.

This exceptional condition is indicated to the CC signalling service user by an ERROR indication primitive
with an appropriate Diagnostics parameter.

9.8.1.3 Procedures at the CC entity that initiates call clearing

If timer T708 expires, i.e. if no response to the callRelease invoke APDU is received, the CC entity shall
release the call segment ID and enter the Call Idle state.

A RELEASE-CALL confirm primitive is given to the CC signalling service user if call clearing has been
initiated on user request.

9.8.2 Receipt of APDUs with unknown Call Segment Id

If an APDU other than a callEstablish invoke is received containing an unknown CallSegmentId, this APDU
shall be ignored.

9.8.3 Receipt of APDUs with duplicated Call Segment Id

If a callEstablish invoke APDU is received containing a CallSegmentId which is already in use, this APDU shall
be ignored.

9.8.4 Receipt of APDUs out of sequence

If an APDU out of sequence is received, i.e. a callProceeding invoke after a callEstablish return result, with the
same CallSegmentId, this APDU shall be ignored.

9.8.5 Receipt of Reject APDUs

9.8.5.1 Receipt of a reject APDU that is correlated to a callEstablish invoke

On receipt of a reject APDU that is correlated to a callEstablish invoke APDU while in state Call Initiated,
the preceding CC entity shall stop timer T703, clear the call internally, release the CallSegmentId, and enter
the Call Idle state.

Call establishment failure is indicated to the CC signalling service user by an ESTABLISH-CALL confirm
primitive with negative Result parameter.

9.8.5.2 Receipt of a reject APDU that is correlated to a callProceeding invoke

On receipt of a reject APDU that is correlated to a callProceeding invoke APDU while in state Incoming Call
Proceeding, the succeeding CC entity shall remain in this state.

This exceptional condition is indicated to the CC signalling service user by an ERROR indication primitive
with an appropriate Diagnostics parameter.

9.8.5.3 Receipt of a reject APDU that is correlated to a callComplete invoke

On receipt of a reject APDU that is correlated to a callComplete invoke APDU while in state Call Active, the
preceding CC entity shall clear the call by sending a callRelease invoke APDU, start timer T708, and enter
the Call Release Request state. The callRelease invoke APDU sent to initiate call clearing shall contain
causeValue 'temporary failure' and an appropriate location value in element releaseCause.

- 23 -

This exceptional condition is indicated to the CC signalling service user by an ERROR indication primitive
with an appropriate Diagnostics parameter.

9.8.5.4 Receipt of a reject APDU that is correlated to a callStatus invoke

On receipt of a reject APDU that is correlated to a callStatus invoke APDU while in state Await Call
Completion or Call Active, the CC entity shall remain in the same state.

This exceptional condition is indicated to the CC signalling service user by an ERROR indication primitive
with an appropriate Diagnostics parameter.

9.8.5.5 Receipt of a reject APDU that is correlated to a callRelease invoke

On receipt of a reject APDU that is correlated to a callRelease invoke APDU while in state Call Release
Request, the CC entity shall stop timer T708, release the call segment ID, and enter the Call Idle state.

A RELEASE-CALL confirm primitive is given to the CC signalling service user if call clearing has been
initiated on user request.

9.8.5.6 Receipt of a reject APDU that is correlated to a callEstablish return result

On receipt of a reject APDU that is correlated to a callEstablish return result APDU while in state Call
Active, or Await Call Completion, the succeeding CC entity shall clear the call internally, release the
CallSegmentId, and enter the Call Idle state.

This exceptional condition is indicated to the CC signalling service user by an ERROR indication primitive
with an appropriate Diagnostics parameter.

9.8.5.7 Receipt of a reject APDU that is correlated to a callEstablish return error

On receipt of a reject APDU that is correlated to a callEstablish return error APDU, no action shall be taken.

9.8.5.8 Receipt of a reject APDU that is correlated to a callRelease return result

On receipt of a reject APDU that is correlated to a callRelease return result APDU, no action shall be taken.

9.8.6 Handling of unrecognized parameters within CC-Operations

On receipt of an APDU containing a CC-Operation with one or more unrecognized parameters, the receiving CC
entity shall examine the parameterActionIndicator contained in this operation and follow the procedures
described below as appropriate.

- if the parameterActionIndicator is set to 'clearCallAndItsInformationModel', the receiving CC entity shall
clear the call and its information model in accordance with the procedures specified in subclause 9.7;

- if the parameterActionIndicator is set to 'discardApduAndReject', the receiving CC entity shall discard the
entire APDU and initiate sending of a reject APDU back to the peer CC entity;

- if the parameterActionIndicator is set to 'discardApduNoReject', the CC entity shall discard the entire
APDU and not initiate sending of a reject APDU;

- if the parameterActionIndicator is set to 'discardParameterAndPassApduToApplication', the receiving CC
entity shall discard the unrecognized parameter and pass the APDU without the unrecognized parameter on
to the CC signalling service user;

- if the parameterActionIndicator is set to 'ignoreParameterAndPassApduToApplication', the receiving CC
entity shall ignore the unrecognized parameter and pass the APDU including the unrecognized parameter on
to the CC signalling service user.

- 24 -

10 Parameter values (Timers)

 Timer
number

 Timer
value

 Call state Cause for start Normally terminated Action to be taken
when timer expires

 Succeeding
CC

 Preceding
CC

 T703 3s-15s

 note

 Call Initiated On sending of a
callEstablish
invoke APDU

 On receipt of a
callEstablish return
result/return error, or
callProceeding invoke
APDU

 Clear call internally,
release CallSegmentId,
enter Call Idle state

 - M

 T708 30 s Call Release
Request

 On sending of a
callRelease invoke
APDU

 On receiving a
callRelease return result
APDU

 Release call segment
ID and enter Call Idle
state

 M M

 T710 30 s Outgoing
Call
Proceeding

 callProceeding
invoke APDU
received

 On receiving a
callEstablish return
result/return error APDU

 Clear call - M

 T701 180 s Await Call
Completion

 On sending of a
callEstablish
return result
APDU

 On receipt of a
callComplete invoke
APDU

 Clear call internally,
release CallSegmentId,
enter Call Idle state

 M -

 NOTE: The value of T703 shall be chosen based on the underlying transport mechanism to be used.

For timer value T703 the tolerance shall be -300ms/+3s.

For the other timer values specified in this clause the tolerance shall be +/- 10%.

11 Transport mechanism
The design of this protocol does not demand for a special transport mechanism. However, a reliable transport
mechanism is required.

Transport mechanisms which can be used are listed in annex D. Subclauses in this annex D for the various transport
mechanisms specify how a particular mechanism shall be used if it has been chosen.

NOTE

Annex D is normative but not exclusive, i.e. other reliable transport mechanisms which are not mentioned there can
be used as well.

12 SDL Diagrams
The diagrams in this Standard use the Specification and Description Language defined in CCITT Rec. Z.100 (1993).

The diagrams represent the behaviour of the CC signalling service provider, which is split into outgoing CC-ASE and
incoming CC-ASE (Application Service Element).

Input signals from the left and output signals to the left represent primitives to and from the CC signalling service
user. Also protocol timer expiry is indicated by an input signal from the left.

Input signals from the right and output signals to the right represent APDUs sent to and received from the peer CC
entity.

The following abbreviations are used:

inv. invoke APDU EST ESTABLISH req. request primitive

res. return result APDU REL RELEASE ind. indication primitive

err. return error APDU PROC PROCEED resp. response primitive

rej. reject APDU conf. confirm primitive

(+) positive result

(-) negative result

- 25 -

CC signalling
service user

Outgoing
CC ASE

Incoming
CC ASE

ROSE
CO-ORD

 Figure 12 - Block diagram

- 26 -

 Table 10 - Signal Routes

 CO-ORD_to_Outgoing-CC-ASE Incoming-CC-ASE_to_CO-ORD
 Primitives:
 ESTABLISH_CALL_request
 COMPLETE_CALL_request
 STATUS_CALL_request
 RELEASE_CALL_request
 RELEASE_CALL_response

 Primitives:
 ESTABLISH_CALL_indication
 COMPLETE_CALL_indication
 STATUS_CALL_indication
 RELEASE_CALL_indication
 RELEASE_CALL_confirm
 ERROR_indication

 APDUs:
 callProceeding_invoke
 callEstablish_return_result
 callEstablish_return_error
 callEstablish_reject
 callStatus_invoke
 callRelease_invoke
 callRelease_return_result
 callRelease_reject

 APDUs:
 callProceeding_invoke
 callEstablish_return_result
 callEstablish_return_error
 callStatus_invoke
 callRelease_invoke
 callRelease_return_result

 Outgoing-CC-ASE_to_CO-ORD CO-ORD_to_Incoming-CC-ASE
 Primitives:
 ESTABLISH_CALL_confirm
 PROCEED_CALL_indication
 STATUS_CALL_indication
 RELEASE_CALL_indication
 RELEASE_CALL_confirm
 ERROR_indication

 Primitives:
 ESTABLISH_CALL_response
 PROCEED_CALL_request
 STATUS_CALL_request
 RELEASE_CALL_request
 RELEASE_CALL_response

 APDUs:
 callEstablish_invoke
 callComplete_invoke
 callStatus_invoke
 callRelease_invoke
 callRelease_result

 APDUs:
 callEstablish_invoke
 callComplete_invoke
 callStatus_invoke
 callRelease_invoke
 callRelease_return_result
 callRelease_reject
 callEstablish_reject

- 27 -

12.1 Outgoing CC-ASE

Call_Idle

EST-CALL
req.

start timer
T703

callEstablish
inv.

Call_Initiated

store await
complete
indicator

Process Outgoing CC-ASE

 Figure 13 - SDL for CC, outgoing call

- 28 -

Call_Initiated

PROC-CALL
ind.

timer T703
expiry

clear call
internally

callProceed.
inv.

EST-CALL
conf. (-)

Outg_Call_
Proceeding

Call_Idle

await
compl.ind.

TRUE

Call_Ready

n

EST-CALL
conf. (+)

callEstablish
res.

Call_Active

EST-CALL
conf. (-)

callEstablish
err.

Call_Idle

stop timer T703

y

stop timer T703 stop timer T703

start timer T710

Process Outgoing CC-ASE

callEstablish
rej.

stop timer T703

 Figure 14 - SDL for CC, outgoing call

- 29 -

Outg_Call_
Proceeding

timer T710
expiry

clear call

EST-CALL
conf. (-)

await
compl.ind.

TRUE

Call_Ready

n

EST-CALL
conf. (+)

callEstablish
res.

Call_Active

EST-CALL
conf. (-)

callEstablish
err.

Call_Idle

y

stop timer T710 stop timer T710

callRelease
inv.

Call_Release_
 Request

start timer
T708

Process Outgoing CC-ASE

 Figure 15 - SDL for CC, outgoing call

- 30 -

 Call_Ready

Call_Active

COMPLETE-
CALL req.

callComplete
inv.

Process Outgoing CC-ASE

Call_Ready

STATUS-
CALL ind.

callStatus
inv.

 Figure 16 - SDL for CC, outgoing call

 Call_Active

Call_Active

STATUS-
CALL req.

callStatus
inv.

Process Outgoing CC-ASE

Call_Active

STATUS-
CALL ind.

callStatus
inv.

callStatus
rej.

callComplete
rej.

Call_Active

ERROR ind. clear call

ERROR ind.

callRelease
inv.

Call_Release_
 Request

start timer
T708

 Figure 17 - SDL for CC, outgoing call

- 31 -

any state

REL-CALL
req.

callRelease
inv.

Call_Release_
 Request

start timer
T708

REL-CALL
ind.

callRelease
inv.

Call_Release_
Indication

stop timers,
 if running

stop timers,
 if running

Process Outgoing CC-ASE

except Call_Idle,
Call_Rel_Req/Ind.

 Figure 18 - SDL for CC, outgoing call, call release

- 32 -

Call_Release_
Request

timer T708
expiry

REL-CALL
conf.

Call_Idle

release call
REL-CALL

conf.

callRelease
res.

Call_Idle

stop timer
T708

REL-CALL
conf.

callRelease
inv.

stop timer
T708

Call_Idle
only if clearing
initiated by CC
sign. serv. user

only if clearing
initiated by CC
sign. serv. user

Process Outgoing CC-ASE

callRelease
rej.

stop timer
T708

 Figure 19 - SDL for CC, outgoing call, call release

- 33 -

Call_Release_
Indication

REL-CALL
resp.

callRelease
res.

Call_Idle

Process Outgoing CC-ASE

 Figure 20 - SDL for CC, outgoing call, call release

12.2 Incoming CC-ASE

EST-CALL
ind.

callEstablish
inv.

Call_Present

store await
complete
indicator

Call_Idle

Process Incoming CC-ASE

 Figure 21 - SDL for CC, incoming call

- 34 -

Call_Present

await
compl.ind.

TRUE

PROC-CALL
req.

callProceed.
inv.

Await_Call_
Completion

n

EST-CALL
resp. (+)

Incom_Call_
Proceeding

callEstablish
res.

Call_Active

EST-CALL
resp. (-)

callEstablish
err.

Call_Idle

y

start timer
T701

Process Incoming CC-ASE

 Figure 22 - SDL for CC, incoming call

- 35 -

Incom_Call_
Proceeding

await
compl.ind.

TRUE

Await_Call_
Completion

n

EST-CALL
resp. (+)

callEstablish
res.

Call_Active

EST-CALL
resp. (-)

callEstablish
err.

Call_Idle

y

start timer
T701

Process Incoming CC-ASE

callProceed.
rej.

Incom_Call_
Proceeding

ERROR ind.

 Figure 23 - SDL for CC, incoming call

- 36 -

Await_Call_
Completion

COMPLETE-
CALL ind.

clear call
internally

callComplete
inv.

Call_Active

timer T701
expiry

Call_Idle

stop timer
T701

ERROR ind.

Process Incoming CC-ASE

Await_Call_
Completion

STATUS-
CALL req.

callStatus
inv.

callStatus
rej.

Await_Call_
Comletion

ERROR ind.

 Figure 24 - SDL for CC, incoming call

- 37 -

 Call_Active

Call_Active

STATUS-
CALL req.

callStatus
inv.

Process Incoming CC-ASE

Call_Active

STATUS-
CALL ind.

callStatus
inv.

callStatus
rej.

Call_Active

ERROR ind.
clear call
internally

 callEstablish
rej.

Call_Idle

ERROR ind.

 Figure 25 - SDL for CC, incoming call

- 38 -

any state

REL-CALL
req.

callRelease
inv.

Call_Release_
 Request

start timer
T708

REL-CALL
ind.

callRelease
inv.

Call_Release_
Indication

stop timers,
 if running

stop timers,
 if running

Process Incoming CC-ASE

except Call_Idle,
Call_Rel_Req/Ind.

 Figure 26 - SDL for CC, incoming call, call release

- 39 -

Call_Release_
Request

timer T708
expiry

REL-CALL
conf.

Call_Idle

release call
REL-CALL

conf.

callRelease
res.

Call_Idle

stop timer
T708

REL-CALL
conf.

callRelease
inv.

stop timer
T708

Call_Idle
only if clearing
initiated by CC
sign. serv. user

only if clearing
initiated by CC
sign. serv. user

Process Incoming CC-ASE

callRelease
rej.

stop timer
T708

 Figure 27 - SDL for CC, incoming call, call release

- 40 -

Call_Release_
Indication

REL-CALL
resp.

callRelease
res.

Call_Idle

Process Incoming CC-ASE

 Figure 28 - SDL for CC, incoming call, call release

- 41 -

any state

any APDU

callRelease
inv.

Call_Release_
 Request

start timer
T708

stop timers,
 if running

unrecogised
parameter ?

evaluate
parameterAction

Indicator

proceed
as usual

clear call
discard entire

APDU
discard entire

APDU

discard
parameter

pass on APDU

ignore
parameter

pass on APDU

0

n

any state

y

1 2 3 4

ERROR ind.

rej. APDU
APDU
without

parameter

APDU
including
parameter

any state

 Figure 29 - SDL for the handling of unrecognised parameters within CC operations

- 42 -

- 43 -

Annex A

(normative)

Bearer co-ordination requirements for CC signalling service users

Signalling for BC is outside the scope of this Standard. The way in which a CC entity co-ordinates the call's bearers is also
outside the scope of this Standard, except that the following requirements shall be met.

A.1 Requirements at a CC entity that establishes a bearer towards an adjacent CC entity
The requirements in this subclause apply to an end CC entity that initiates bearer establishment towards the adjacent
CC entity on request of the application. An end CC entity can be an originating CC entity that initiates bearer
establishment in the forward direction (with respect to the direction of call establishment) or a terminating CC entity
that initiates bearer establishment in the backward direction (with respect to the direction of call establishment).

The requirements in this subclause also apply to a transit CC entity that continues bearer establishment towards the
subsequent CC entity following receipt of an incoming bearer from the preceding CC entity (such a bearer being in
the forward direction with respect to the direction of call establishment), or that continues bearer establishment
towards the preceding CC entity following receipt of an incoming bearer from the subsequent CC entity (such a bearer
being in the backward direction with respect to the direction of call establishment).

Bearer establishment in the forward direction shall not commence before one of the following APDUs has been
received from the subsequent CC entity:

- callProceeding invoke APDU; or

- callEstablish return result APDU.

The contents of elements bearerEstablishmentAddress and callSegmentId in the first of the above APDUs to be
received shall be used as the destination address and the call segment identifier respectively for bearer establishment.

NOTE

Omission of either of these elements from the first of these APDUs constitutes a protocol error.

Bearer establishment in the backward direction shall not commence before one of the following APDUs has been sent
to the preceding CC entity:

- callProceeding invoke APDU; or

- callEstablish return result APDU.

The contents of element callSegmentId in the first of the above APDUs to be transmitted and element
bearerEstablishmentAddress in the received callEstablish invoke APDU shall be used as the call segment identifier
and the destination address respectively for bearer establishment.

NOTE 1

For bearer establishment in either direction, the value used for the bearer destination address will cause the bearer to
be routed to the terminal or network node where the CC entity at the opposite end of the call segment is located.

NOTE 2

For bearer establishment in either direction, the call segment identifier is conveyed transparently by BC signalling to
the terminal or network node where the CC entity at the opposite end of the call segment is located, thereby allowing
that terminal or network node to link the bearer to the call.

NOTE 3

CC signalling service users should ensure that bearer connection elements established by associated BC prior to call
acceptance are consistent with all variants of selectable options within the call description included in the call

- 44 -

establishment request. After call establishment CC entities should ensure that bearer connection elements are
consistent with the final call description. Bearer connection elements and bearer connection establishment requests
failing these criteria should be rejected or released as appropriate.

 For bearer establishment in either direction, an address representing the local CC entity (i.e., the CC entity at the start
of the segment) shall be used as the calling address of the bearer.

 For bearer establishment in either direction, a bearer identifier value by which the bearer is to be known by the two
CC entities at either end of the call segment may be provided as part of the bearer establishment request. The bearer
identifier value shall have significance across the call segment concerned.

NOTE 4

For bearer establishment in either direction, the bearer identifier value, if provided in the bearer establishment
request, is conveyed transparently by BC signalling to the terminal or network node where the CC entity at the
opposite end of the call segment is located. Its purpose is to allow that CC entity to associate the bearer establishment
with a bearer reference conveyed within CC signalling (e.g., as an attribute of an Attachment object). If CC signalling
has already made reference to this bearer, prior to its establishment, the bearer identifier value used in the bearer
establishment request should be the same as the bearer reference already used by CC signalling. Any further CC
signalling that needs to refer to this bearer should use the bearer identifier value used in the bearer establishment
request.

Bearer establishment shall not commence after a callRelease invoke APDU has been sent or received across the
segment concerned.

A.2 Requirements at a CC entity that receives a bearer establishment from an adjacent
CC entity
The requirements in this subclause apply to a CC entity that receives an incoming bearer establishment from an
adjacent CC entity. This can be from the preceding CC entity (in the case of a bearer established in the forward
direction with respect to the direction of call establishment) or from the subsequent CC entity (in the case of a bearer
established in the backward direction with respect to the direction of call establishment).

A terminal or network node that receives an incoming bearer establishment signal containing a destination address
that indicates that that terminal or network node is the destination of the bearer shall attempt to match the received call
segment identifier with a call segment identifier assigned to a call segment that is associated with a CC entity on that
terminal or network node. If a match is found, the CC entity concerned shall proceed with establishment of the bearer.

NOTE 1

In the case of a transit CC, the time at which bearer establishment is continued across the next call segment is outside
the scope of this Standard, apart from being subject to the restrictions in A.1.

NOTE 2

In the case of an end CC, the bearer should be presented to the application.

NOTE 3

CC signalling service users should ensure that bearer connection elements established by associated BC prior to call
acceptance are consistent with all variants of selectable options within the call description included in the call
establishment request. After call establishment CC entities should ensure that bearer connection elements are
consistent with the final call description. Bearer connection elements and bearer connection establishment requests
failing these criteria should be rejected or released as appropriate.

If the terminal or network node is the destination of the bearer but is unable to match the received call segment
identifier with a call segment identifier assigned to a call segment that is associated with a CC entity on that terminal
or network node, the terminal or network node shall reject the bearer establishment request.

Even though a succeeding CC entity is required to send a callProceeding invoke APDU or callEstablish return result
APDU before commencing bearer establishment in the backward direction, it is possible for a bearer establishment
request to arrive at a preceding CC entity before any of the above APDUs arrives. In this case, the preceding CC shall
await the arrival of one of the above APDUs before continuing to process the bearer establishment request. If timer
T703 expires, the bearer establishment request shall be released.

- 45 -

NOTE 4

If the received bearer establishment request contains a bearer identifier value, this value should be used by the CC
entity in any future CC signalling relating to this bearer. If CC signalling has already made reference to this bearer,
prior to its establishment, using this value, the incoming bearer establishment request should be associated with that
bearer reference.

A.3 Additional requirements at a transit CC
A transit CC shall relay an alerting or answer indication from the outgoing bearer on to the incoming bearer.

A transit CC shall relay a release indication from either bearer on to the other bearer, except that a release indication
from an outgoing bearer that is in the bearer establishment phase may instead, depending on the cause of release,
result in re-routeing of the outgoing bearer.

A transit CC shall pass on any subaddress information from one bearer unchanged to the other bearer.

A transit CC shall pass on any low layer or high layer compatibility information (e.g., Q.2931 B-HLI, B-LLI, N-HLC,
N-LLC or N-BC information elements) from one bearer unchanged to the other bearer.

A transit CC shall pass on any bearer-related supplementary service information from one bearer, unless acted upon at
the network node concerned, unchanged to the other bearer.

A.4 Requirement on call clearing
On sending or receiving a callRelease invoke APDU across a call segment, the CC entity shall immediately initiate the
release of any bearers across that call segment that are not already in the process of being released.

- 46 -

- 47 -

Annex B

(normative)

Call Description handling requirements for CC signalling service users

B.1 Call description handling at a CC signalling service user within an originating CC
entity
When requesting the CC signalling service provider to send a callEstablish invoke APDU, a CC signalling service
user within an originating CC shall include a call description containing the following objects:

Network relevant objects:

- one Call object, with status M;

- two Call Party End Point objects, one indicated in the Call object as local and identifying the local user, the other
indicated in the Call object as remote, and both with status M;

- one Call Party End Point Association object referencing the two Call Party End Point objects, with status
conditional;

- optionally one or more Service Component objects, each with status either M or O.

End-to-end relevant objects:

- for each Service Component object, two Participation objects (one per Call Party End Point object), each with
status conditional.

B.2 Call description handling at a CC signalling service user within a transit CC entity
A CC signalling service user within a transit CC may modify the network relevant objects contained in a call
description received in a callEstablish invoke APDU prior to requesting the CC signalling service provider to pass it
on in a callEstablish invoke APDU towards the next CC. Modification shall be limited to the following:

- the removal of one or more objects with status O; and

- the removal of any objects with status conditional that depend on other objects removed.

NOTE 1

This means, for example, that objects cannot be added, objects with status M cannot be deleted, and object attributes
cannot be modified.

If a CC signalling service user within a transit CC is unable to accept the network relevant objects contained in the
call description as received and is unable to achieve an acceptable call description by means of modification in
accordance with the rules above, it shall reject the call with an appropriate error value, e.g.,
callDescriptionNotAccepted.

NOTE 2

A return error APDU with error value callDescriptionNotAccepted can contain an alternative call description that
would be acceptable to the CC signalling service user.

A CC signalling service user within a transit CC shall not modify a call description passed on in any other APDU (i.e.,
callEstablish return result or callEstablish return error), nor the callChangedParameter in a callStatus invoke APDU.

A CC signalling service user within a transit CC shall pass on transparently the end-to-end relevant objects contained
in a call description received in a callEstablish invoke APDU.

- 48 -

B.3 Call description handling at a CC signalling service user within a terminating CC
entity
A CC signalling service user within a terminating CC may modify a the end-to-end and network relevant objects
contained in call description received in a callEstablish invoke APDU prior to requesting the CC signalling service
provider to send back a callEstablish return result APDU. Modification shall be limited to the following:

- the removal of one or more objects with status O; and

- the removal of any objects with status conditional that depend on other objects removed.

NOTE 1

This means, for example, that objects cannot be added, objects with status M cannot be deleted, and object attributes
cannot be modified.

If a CC signalling service user within a terminating CC is unable to accept the call description as received and is
unable to achieve an acceptable call description by means of modification in accordance with the rules above, it shall
reject the call with an appropriate error value, e.g., callDescriptionNotAccepted, userBusy, callRejected.

NOTE 2

A return error APDU with error value callDescriptionNotAccepted or userBusy can contain an alternative call
description that would be acceptable to the CC signalling service user.

NOTE 3

One reason for a received call description being unacceptable is that it has been sent by equipment that supports
enhanced capabilities beyond the scope of this Standard and therefore contains additional objects (e.g., more than
two Party End Point objects).

B.4 Call description errors
When a call description parameter is received which has one or more unexpected object identifiers or object
identifiers with unrecognized attributes (arguments), the receiving entity shall examine the object action indicator, and
follow the procedures described in a), b), c), d) or e) below as appropriate.

If more than one object identifiers and/or object attributes are received in error, only one response shall be given. The
response shall be according to the handling of the object action indicator attribute according to the following order of
priority: 'clearCall' (highest priority), 'discardNotify', 'discardUnknown', 'progressTransit'.

a) Object action indicator attribute = clearCall.
If the object action indicator attribute is equal to "clear call object model", the call shall be cleared according to
the procedures defined in 9.7 except that the Cause information element shall contain the cause "call
DescriptionNotAccepted".

b) If the object action indicator attribute = discardNotify.
The call description shall be ignored and a returnError APDU with error value "callDescriptionNotAccepted"
shall be returned.

c) Object action indicator attribute = discardUnknown.
If the object action indicator attribute is equal to "discard unknown item and proceed", the unknown item (either
the entire object or only the unknown attribute) shall be ignored and the call description shall be processed as if
the unknown information was not received. No returnError APDU shall be sent.

d) Object action indicator attribute = progressTransit.
The unknown object or unknown attribute shall be progressed as an octet string parameter to succeeding CC (if
the operation requires so), but shall not be retained by the CC service user once the operation is complete.

e) Object action indicator attribute = unknown value.
If an unknown object or unknown attribute has and associated object action indicator that contains an unknown
value, then the receiver shall handle the call description as if the object action indicator attribute had been set to
"progressTransit".

- 49 -

B.5 End-to-end relevant object handling at a CC signalling service user within a transit
CC entity
End-to-end relevant objects (service components) shall always be handled by a CC signalling service user within a
transit CC entity as unknown objects with an object action indicator attribute set to "progressTransit", regardless of
the value that the object action indicator attribute is actually set to. The operation shall always be progressed when
this type of object is the only unknown error.

B.6 Changes to the Information Model
The CC protocol provides a single mechanism to indicate changes to the information model, the Status Call
procedure. This procedure provides for a single unconfirmed flow and therefore represents only non-negotiable
changes that reflect events that have already happened. The changes to the information model that the CC signalling
service user shall indicate using this procedure are:

- addition and deletion of a service component object;

- changes to the attributes of a party object (i.e. modification of the status of a party);

- changes to the OpenCall attribute of the call object (i.e. modification of the call permissions).

B.6.1 Deletion of a Service Component Object
The deletion of a service component reflects the ability of any user application to discontinue using some portion of
an implementation's functionality. Any CC signalling service user at an originating or terminating CC entity can
delete a service component in the information model. An attempt to delete a service component that does not exist
shall not cause an error, but shall be ignored by the CC signalling service user at the peer originating or terminating
CC entity.

B.6.2 Addition of a Service Component Object
The addition of a service component using the Status Call procedure reflects the ability of an originating or
terminating CC entity to begin using some portion of an implementation's functionality. The Status Call procedure
does not support either confirmation or negotiation of this functionality and so it is assumed that this does not place
any additional requirements on the bearer. The CC signalling service user at the peer originating or terminating CC
entity, receiving an indication of an added service component may choose to ignore the indication.

B.6.3 Changes to the attributes of the Party Object
The changes to the attributes of a party object that the CC signalling service user shall indicate are:

- changes to the status of a party (e.g. alerting);

- changes to the type of a party.

The procedures associated with the status call require that the complete party object shall be provided.

B.6.4 Changes to the Open Call attribute of the Call Object
The OpenCall attribute of the call object defines the rights of parties to modify the call by the addition of parties,
connections or service components. The permissions provide the requirements for notification and requesting call
owner permission.

The OpenCall parameter contains the following Boolean indications which shall take the values shown:

- externalPartyAddAllowed

Value: False.

Usage: indicates that another party, not currently part of the call, shall not join the call configuration.

- existingPartyAddAllowed

Value: False

Usage: indicates that a non-call owner party shall not introduce another party, not currently part of the
configuration, into the call.

- 50 -

- notifyAllPartiesFlag

Value: True

Usage: indicates whether a party successfully joining the call is required to be notified to all the existing
members of the call. This indication is provided for future capability and is not currently used. It shall be set to
true as this is more restrictive

- notifyOwnerFlag

Value: True.

Usage: indicates whether a party successfully joining the call is required to be notified to the call owner. This
indication is provided for future capability and is not currently used. It shall be set to true as this is more
restrictive

- permissionRequiredFlag

Value: True

Usage: indicates whether a party may join the call only after the call owners permission has been sought. This
indication is provided for future capability and is not currently used. It is shall be set to true as this is more
restrictive

- addConnectionAllowed

Value: True or False

Usage: indicates whether the non-call owner is permitted to add a connection to an existing call. If the value is
set to true then any party may add a connection and also the CC signalling service provider shall refuse any
request to change this value from true to false. A change from false to true is permitted.

- addServiceComponentAllowed

Value: True or False

Usage: indicates whether the non-call owner is permitted to add a service component to an existing call. If the
value is set to true then any party may add a service component to a connection. The CC signalling service
provider shall refuse any request to change this value from true to false. A change from false to true is
permitted.

The call permissions are indicated to the non-call owner as part of the call description during call establishment.
The call permissions are not a subject for negotiation and shall not be changed by any CC signalling service user
except the call owner CC signalling service user.

Changes to the call permissions that reduce or restrict the modification rights of non call owners can result in
conflicts. To prevent protocol clashes, any CC protocol service provider shall refuse to accept a request by a CC
signalling service user to alter the OpenCall parameter if such an alteration removes a capability already granted. A
refusal shall result in the changes to the OpenCall attribute of the call object being ignored and not being passed on
to any succeeding CC signalling service user.

A CC signalling service user that receives a STATUS-CALL indication primitive that alters the call modification
permission shall store the new permissions and pass on unchanged the OpenCall parameter towards the next CC
using the STATUS-CALL request.

The CC signalling service user that initiated the call may allow another party to add either connections or service
components at call establishment by initiating a call with either the addConnectionAllowed flag set to TRUE or the
addServiceComponentAllowed flag to TRUE or both. The CC signalling service user that initiated the call may
change the permissions to allow another party to add either connections or service components after call
establishment using the call status procedure to change either of the above flags from false to true. The call status
procedure shall not be used to change either of the flags from TRUE to FALSE. The call status procedure shall not
be used to change any of the other flags in the OpenCall parameter.

- 51 -

Annex C

(normative)

Interworking

Interworking occurs with other networks, which do not support the separation of CC and BC or which send simultaneous call
and bearer establishment requests.

Interworking with such networks requires both CC and BC functions in the gateway node at the boundary to these networks.

The interworking is performed by the CC signalling service user of the CC entity in the gateway node.

C.1 Interworking with networks not supporting separation of CC and BC
C.1.1 Outgoing call establishment

In case of an outgoing call establishment to a network which does not support the separation of CC and BC, the CC
entity in the gateway node shall act as the terminating CC entity for that call. When the call establishment has been
accepted by the terminating CC entity in the gateway node, subsequent bearer establishment requests which match
with that call, shall be forwarded to the other network.

C.1.2 Incoming bearer establishment
In case of an incoming bearer establishment from a network which does not support the separation of CC and BC,
the establishment can optionally be progressed in accordance with this Standard. In this case the CC entity in the
gateway node shall act as the originating CC entity and initiate establishment of a call, that matches with the
required bearer. When the call establishment has been accepted, i.e. after receipt of a callProceeding invoke APDU
or callEstablish return result APDU, the bearer establishment shall be progressed.

C.1.3 Addition of bearers to an existing call
When a call exists between an originating CC entity and the CC entity in a gateway node to a network which does
not support the separation of CC and BC, and a bearer has to be added to that call, the decision as to whether or not
the additional bearer is supported is not taken in the gateway, but another bearer establishment shall be made across
the other network to the same addressed terminal.

C.2 Interworking with simultaneous call and bearer establishment
In this case of interworking the other network supports the separation of CC and BC but only the capability of
simultaneous establishment of a call with one bearer is supported.

C.2.1 Outgoing call establishment
In case of an outgoing call establishment to a network which only supports simultaneous call and bearer
establishment, the CC entity in the gateway node shall act as the terminating CC entity for that call. When the call
establishment has been accepted by the terminating CC entity in the gateway node and when a subsequent bearer
establishment request belonging to that call is received, a simultaneous call and bearer establishment shall be
initiated towards the other network.

C.2.2 Incoming call and bearer establishment
In case of an incoming call and bearer establishment, the CC entity in the gateway node shall act as the originating
CC entity and initiate separate establishment of a corresponding call. When the call establishment has been
accepted, i.e. after receipt of a callProceeding invoke APDU or callEstablish return result APDU, the bearer
establishment shall be progressed.

C.2.3 Addition of bearers to an existing call
When a call exists between a CC entity and the CC entity in a gateway node to a network which only supports
simultaneous call and bearer establishment, and a bearer in outgoing direction has to be added to that call, the

- 52 -

decision as to whether or not the additional bearer is supported is not taken in the gateway, but another bearer
establishment shall be made across the other network to the same addressed terminal. If a bearer in incoming
direction has to be added to that call, i.e. if an incoming bearer establishment is received, the gateway shall forward
it to the corresponding destination.

- 53 -

Annex D

(normative)

Transport mechanisms

This annex lists transport mechanisms which can be used with the CC protocol and specifies how to use them.

NOTE

This annex is normative but not exclusive, i.e. other reliable transport mechanisms which are not mentioned here can be used
as well.

D.1 Connection oriented - Bearer independent
The connection oriented - bearer independent (CO-BI) transport mechanism is specified in ETS 300 796-1 for the SB

and coincident SB/TB reference point and in ECMA-254 for the QB reference point. If the CO-BI transport mechanism
is chosen, the following shall apply:

- the operations defined in 8.1 shall be coded in the Facility information element in accordance with
ETS 300 796-1 or ECMA-254 respectively;

- the instruction indicator in the Facility information element shall be coded in accordance with ETS 300 796-1 or
ECMA-254 respectively;

- the Facility information element shall be conveyed in the messages for the CO-BI transport mechanism as
specified in ETS 300 796-1 or ECMA-254 respectively;

- the instruction indicator in the messages for the CO-BI transport mechanism shall be coded in accordance with
ETS 300 796-1 or ECMA-254 respectively.

Additionally for the QB reference point:

- when conveying the invoke APDU of operations defined in 8.1, the NFE (Network Facility Extension) shall
either be omitted or be included in accordance with ECMA-254;

- when conveying the invoke APDU of operations defined in 8.1, the Interpretation APDU shall either be omitted
or be included in accordance with ECMA-254.

D.2 Connectionless - Bearer independent
The connectionless - bearer independent (CL-BI) transport mechanism is specified in ETS 300 796-1 for the SB and
coincident SB/TB reference point and in ECMA-254 for the QB reference point. If the CL-BI transport mechanism is
chosen, the following shall apply:

- the operations defined in 8.1 shall be coded in the Facility information element in accordance with
ETS 300 796-1 or ECMA-254 respectively;

- the instruction indicator in the Facility information element shall be coded in accordance with ETS 300 796-1 or
ECMA-254 respectively;

- the Facility information element shall be conveyed in the FACILITY message for the CL-BI transport mechanism
as specified in ETS 300 796-1 or ECMA-254 respectively;

- the instruction indicator in the FACILITY message for the CL-BI transport mechanism shall be coded in
accordance with ETS 300 796-1 or ECMA-254 respectively.

Additionally for the QB reference point:

- when conveying the invoke APDU of operations defined in 8.1, the NFE (Network Facility Extension) shall
either be omitted or be included in accordance with ECMA-254;

- 54 -

- when conveying the invoke APDU of operations defined in 8.1, the Interpretation APDU shall either be omitted
or be included in accordance with ECMA-254.

- 55 -

Annex E

(informative)

Information flow diagrams

This annex describes some typical information flows for CC. The following conventions are used in the figures of this annex:

- the figures show APDUs exchanged between CC entities involved in CC. Only APDUs relevant to CC are shown;

- the figures show protocol states related to the incoming and outgoing side of the CC signalling service provider within a
CC entity;

- the figures show the primitives to and from the CC signalling service user within the user CC which correspond to the
exchanged APDUs.

- 56 -

E.1 Call Establishment using a two message sequence

Call Idle

Call Initiated

Outg. Call

Proceeding

Call Active

Call Idle

Call Present /

Call Active

Call Idle

Call Present /

Call Idle

Call Present

Incom. Call

Proceeding

callEstablish inv.

Call Active Call Active

callEstablish inv.
callEstablish inv.

 callProceeding inv.

 callProceeding inv.

callEstablish res.
callEstablish res.

callEstablish res.

Inc.Call Proc./

(awaitComleteInd.=FALSE)

(awaitComleteInd.=FALSE)

EST-CALL req

EST-CALL ind

EST-CALL resp

EST-CALL conf

PROC-CALL ind

PROC-CALL req

Inc.Call Proc./

Inc.Call Proc./

Outg.Call Proc.

 Call Initiated
 Call Initiated

 Call Initiated

Outg.Call Proc.
 Call Initiated

Inc.Call Proc./

callProceeding inv.

Originating CC Transit CC Transit CC Terminating CC

Figure E.1 - Example information flow for a successful call establishment
using a two message sequence

- 57 -

E.2 Call Establishment using a three message sequence

Call Idle

Call Inititated

Outg. Call

Proceeding

Call Ready

Call Idle Call Idle Call Idle

Call Present

callEstablish inv.

Await Call

Completion

callEstablish inv.
callEstablish inv.

 callProceeding inv.

callProceeding inv.

 callProceeding inv.

callEstablish res.
callEstablish res.

callEstablish res.

(awaitComleteInd.=TRUE)

(awaitComleteInd.=TRUE)

EST-CALL req

EST-CALL ind

EST-CALL resp

EST-CALL conf

Call Active Call Active Call Active

callComplete inv.
callComplete inv.

callComplete inv.

COMP-CALL req

COMP-CALL ind

Call Active

PROC-CALL req

PROC-CALL ind

Call Present /

Outg.Call Proc.

/ Call Ready

Call Present /

Incom. Call

Proceeding

Aw.Call.Compl.

Inc.Call Proc./

Aw.Call.Compl.

Call Inititated
Call Inititated

Call Inititated

Call Inititated

Outg.Call Proc.

Inc.Call Proc./

Inc.Call Proc./

/ Call Ready

Inc.Call Proc./

Originating CC Transit CC Transit CC Terminating CC

Figure E.2 - Example information flow for a successful call establishment
using a three message sequence

- 58 -

E.3 Call Release

Call Active

Call Release

callRelease inv.

Call Idle

Call Active Call Active Call Active

Call Idle Call Idle Call Idle

Call Release

callRelease inv.
callRelease inv.

callRelease res.
callRelease res.

callRelease res.

REL-CALL ind

REL-CALL resp

REL-CALL req

REL-CALL conf

Request Indication

Call Rel.Ind./

Call Rel.Req.Call Rel.Req.

Call Rel.Ind./

Originating CC Transit CC Transit CC Terminating CC

Figure E.3 - Example information flow for call release

- 59 -

Annex F

(informative)

Imported ASN.1 Definitions

Table F.1 is an extract from module Addressing-Data-Elements in ITU-T Rec. Q.932.

Table F.1 - Imported ASN.1 Definitions Addressing-Data-Elements

Addressing-Data-Elements
{ itu-t recommendation q 932 addressing-data-elements (7) }

DEFINITIONS ::=
BEGIN
EXPORTS PresentedAddressScreened,

PartyNumber,
PartySubaddress,
ScreeningIndicator ;

PresentedAddressScreened ::= CHOICE {
presentationAllowedAddress [0] IMPLICIT AddressScreened,
presentationRestricted [1] IMPLICIT NULL,
numberNotAvailableDueToInterworking [2] IMPLICIT NULL,
presentationRestrictedAddress [3] IMPLICIT AddressScreened }

AddressScreened ::= SEQUENCE {
partyNumber PartyNumber,
screeningIndicator ScreeningIndicator,
partySubaddress PartySubaddress OPTIONAL }

PartyNumber ::= CHOICE {
unknownPartyNumber [0] IMPLICIT NumberDigits,

-- the numbering plan is the default numbering plan of
-- the network.
-- it is recommended that this values is used.

publicPartyNumber [1] IMPLICIT PublicPartyNumber,
-- the numbering plan is according to Rec. E.163 and
-- E.164

nsapEncodedNumber [2] IMPLICIT NsapEncodedNumber,
-- ATM endsystem address encoded as an NSAP address

dataPartyNumber [3] IMPLICIT NumberDigits,
-- not used, value reserved

telexPartyNumber [4] IMPLICIT NumberDigits,
-- not used, value reserved

privatePartyNumber [5] IMPLICIT PrivatePartyNumber,
nationalStandardPartyNumber [8] IMPLICIT NumberDigits }

-- not used, values reserved

PublicPartyNumber ::= SEQUENCE {
publicTypeOfNumber PublicTypeOfNumber,
publicNumberDigits NumberDigits }

PrivatePartyNumber ::= SEQUENCE {
privateTypeOfNumber PrivateTypeOfNumber,
privateNumberDigits NumberDigits }

NumberDigits ::= NumericString (SIZE (1..20))

PublicTypeOfNumber ::= ENUMERATED {
unknown (0),

-- if used number digits carry prefix indicating type of
-- number according to national recommendations.

internationalNumber (1),
nationalNumber (2),
networkSpecificNumber (3),

-- not used, value reserved
subscriberNumber (4),
abbreviatedNumber (6) }

-- valid only for called party number at the outgoing access,
-- network substitutes appropriate number.

- 60 -

PrivateTypeOfNumber ::= ENUMERATED {
unknown (0),
level2RegionalNumber (1),
level1RegionalNumber (2),
pISNSpecificNumber (3),
localNumber (4),
abbreviatedNumber (6) }

NsapEncodedNumber ::= OCTET STRING (SIZE (1..20))

PartySubaddress ::= CHOICE {
userSpecifiedSubaddress UserSpecifiedSubaddress,

-- not recommended
nSAPSubaddress NSAPSubaddress }

-- according to Rec. X.213.

UserSpecifiedSubaddress ::= SEQUENCE {
subaddressInformation SubaddressInformation,
oddCountIndicator BOOLEAN OPTIONAL }

-- used when the coding of subaddress is BCD
NSAPSubaddress ::= OCTET STRING (SIZE(1..20))

-- specified according to X.213. some networks may limit
-- the subaddress value to some other length, e.g. 4 octets.

SubaddressInformation ::= OCTET STRING (SIZE(1..20))
-- coded according to user requirements. some networks
-- may limit the subaddress value to some other length,
-- e.g. 4 octets.

ScreeningIndicator ::= ENUMERATED {
userProvidedNotScreened (0),

-- number was provided by a remote user terminal
-- equipment, and has been screened by a network that
-- is not the local public or the local private network.

userProvidedVerifiedAndPassed (1),
-- number was provided by a remote user terminal
-- equipment (or by a remote private network), and has
-- been screened by the local public or the local private
-- network.

userProvidedVerifiedAndFailed (2),
-- not used, value reserved.

networkProvided (3) }
-- number was provided by local public or local private
-- network.

END -- of Addressing-Data-Elements

- 61 -

Annex G

(informative)

Object identifiers defined in this Standard

This annex lists the object identifier values assigned in this Standard and data types, values and macros that are exported from
any modules identified by those values. All the object identifiers in this Standard are defined using the ITU-T object identifier
tree. This means that each object identifier value is assigned in the tree:

ccObjectIdTree ::= itu-t recommendation q 2981

Table G.1 lists the module number values and the data types, values and Macros which are exported from these modules.

Table G.1 - ASN.1 Module Object identifiers used in this Standard

Object Identifier Reference Notes
{ ccObjectIdTree cc-operations (1) } Table 7 Exports: CcOperations, callSegmentId
{ ccObjectIdTree cc-operations-definitions (2) } Table 7
{ ccObjectIdTree cc-operations-errors (3) } Table 7
{ ccObjectIdTree call-control-object-super-class (4) } Table 8 Exports:

CALLCONTROLOBJECTCLASS
{ ccObjectIdTree call-object-class-definitions (5) } Table 9 Exports: call, localPartyEP,

remotePartyEP, directCallAssociation,
remoteCallAssociation,
serviceComponent, BearerId

{ ccObjectIdTree cc-object-classes (6) } Table 9

- 62 -

- 63 -

Annex H

(informative)

Bibliography

The following material, though not specifically referenced in the body of this Standard (or not publicly available), gives
supporting information.

DEG/SPS-05134 Broadband Integrated Services Digital Network (B-ISDN); Digital Subscriber Signalling System No. two
(DSS2) and Broadband QSIG (B-QSIG) protocols; Generic concepts for the support of multiconnection
calls in a separated environment; Part 1: Protocol specification

.

.

Free printed copies can be ordered from:
ECMA
114 Rue du Rhône
CH-1204 Geneva
Switzerland

Fax: +41 22 849.60.01
Email: documents@ecma.ch

Files of this Standard can be freely downloaded from the ECMA web site (www.ecma.ch). This site gives full information on
ECMA, ECMA activities, ECMA Standards and Technical Reports.

ECMA
114 Rue du Rhône
CH-1204 Geneva
Switzerland

See inside cover page for obtaining further soft or hard copies.

