
Standard ECMA-270
December 1997

S t a n d a r d i z i n g I n f o r ma t i o n a n d C o mmu n i c a t i o n S ys t e ms

Phone: +41 22 849.60.00 - Fax: +41 22 849.60.01 - URL: h t tp : / /www.ecma.ch - In ternet : he lpdesk@ecma.ch

Portable Common Tool Environment
(PCTE) - Mapping from CASE Data
Interchange Format (CDIF) to PCTE

.

Standard ECMA-270
December 1997

S t a n d a r d i z i n g I n f o r ma t i o n a n d C o mmu n i c a t i o n S ys t e ms

Phone: +41 22 849.60.00 - Fax: +41 22 849.60.01 - URL: h t tp : / /www.ecma.ch - In ternet : he lpdesk@ecma.ch

IW Ecma-270.doc 07-01-98 15,45

Portable Common Tool Environment
(PCTE) - Mapping from CASE Data
Interchange Format (CDIF) to PCTE

.

Brief History

PCTE, Portable Common Tool Environment, is an interface standard. The interface is designed to support program portability
by providing machine-independent access to a set of facilities. These facilities, which are described in the PCTE Abstract
Specification (Standard ECMA-149), are designed particularly to provide an infrastructure for programs which may be part of
environments supporting systems engineering projects. Such programs, which are used as aids to systems development, are
often referred to as tools.

CDIF, CASE Data Interchange Format, is a standard of the Electronic Industries Association. CDIF was defined primarily as a
standard for exchanging models between CASE tools. Since it is necessary for parties that exchange models to have a common
understanding of them, CDIF is not just a standard for a transfer format, but also for an integrated meta-model (schema) of the
data and process models that can be exchanged. This harmonises the concepts of different methods and viewpoints, making
CDIF independent of particular methods and tools.

This ECMA Standard for a mapping from CDIF to PCTE allows PCTE schemas (SDSs) to be derived from the CDIF
integrated meta-model. Models defined with such SDSs can be freely exchanged using CDIF. Derived SDSs are included in
this ECMA Standard; they provide a substantial information model for any PCTE-based software engineering environment or
repository.

From the first meeting of ECMA/TC33 for standardizing PCTE, it was recognized that additional standards would be required
to achieve the final aim of integrating independently produced tools in a software engineering environment. A task group (Task
Group for the Reference Model, TGRM) was formed to study the requirements. Two of the areas in which further standards
were required were data interchange between PCTE-based repositories and SDSs for software engineering tools.

After ECMA/TC33 received a presentation of CDIF in 1991, there was enough interest in the possibility of basing a PCTE
standard for data exchange on the use of CDIF for TC33 to extend the scope of TGRM for such work. TGRM was later
renamed Task Group for Data Interchange, TGDI. The work on data exchange progressed with the attendance of CDIF
representatives. This close co-operation was formalised by the agreement of a Memorandum of Understanding between
ECMA/TC33 and the EIA CDIF Division.

Meanwhile an international initiative had started in 1991 for co-ordinating the activities of several bodies concerned with
standards for describing or interchanging software engineering models. This resulted in the approval of an ISO/IEC JTC1
project 7.28 Software Engineering Data Description and Interchange (SEDDI) which was assigned to SC7/WG11 in 1992.
JTC1/SC7 accepted EIA CDIF as a Category C liaison. New versions of CDIF, taking account of WG11 comments on
internationalization, were published as EIA Interim Standards from 1994 onwards. WG11 agreed to use these versions for its
SEDDI standard.

The scope of SEDDI included PCTE SDSs corresponding to the SEDDI meta-model. The PCTE SDSs were to be produced in
conjunction with ECMA/TC33 through ECMA's Category A liaison with JTC1. The work progressed slowly in ECMA/TC33
owing to its limited resources being focused on the extensions of PCTE for fine-grain objects and object-orientation. It was
given a fresh impetus in 1996 with a joint project between Fujitsu and ICL for prototyping CDIF with a PCTE repository. The
work was completed by ECMA/TC33 in close liaison with JTC1/SC7/WG11 and JTC1/SC22/WG22 (PCTE).

This ECMA Standard has been adopted by the General Assembly of December 1997.

.

- i -

Table of contents

1 Scope 1

2 Conformance 1

2.1 Conformance of an SDS 1

2.2 Conformance of a PCTE tool 1

3 Normative references 1

4 Terms and definitions 2

4.1 CDIF and PCTE terms 2

4.2 Other terms 2

4.2.1 CASE tool 2

4.2.2 derived SDS 2

4.2.3 model 2

4.2.4 PCTE model 2

4.2.5 PCTE tool 2

4.2.6 SDS for a (given) CDIF subject area 2

5 Symbols (and abbreviated terms) 3

5.1 Notations 3

5.2 Abbreviations 3

5.2.1 CDIF 3

5.2.2 DDL 3

5.2.3 PCTE 3

5.2.4 SDS 3

6 Outline of the Standard 3

7 Mapping principles 3

8 Issues for the mapping 4

8.1 Mapping of names 4

8.1.1 Uniqueness of Names 4

8.1.2 Syntax of Names 4

8.1.3 Basic mapping of names 4

8.1.4 Duplication of names 4

8.2 Subtyping of meta-entities 5

8.3 Subtyping of meta-relationships 5

8.4 Modularity and sharing 5

8.5 Subject area Foundation 6

9 Mapping a CDIF subject area to a PCTE SDS 7

9.1 Format of mapping 7

9.2 Common meta-object properties 7

- i i -

9.3 Subject area 8

9.4 Meta-entities 8

9.5 Meta-relationships 9

9.6 Meta-attributes 10

9.7 Data types 11

9.8 Subject area Foundation 13

10 Introduction to derived SDSs defined in annexes 13

10.1 Aims 13

10.2 PCTE modelling language standard 13

10.3 Ordering of subject area definitions 13

10.4 Ordering of SDS definitions 13

10.5 Structure of SDS definitions 14

Annex A - SDS CDIF_Foundation 15

Annex B - SDS CDIF_Common 17

Annex C - SDS CDIF_DataDefinition 21

Annex D - SDS CDIF_DataModelling 35

1 Scope
This ECMA Standard specifies a mapping of CDIF to PCTE or, more specifically, of a CDIF subject area to a PCTE
Schema Definition Set (SDS).

The mapping may be applied to standard CDIF subject areas and to CDIF subject areas defined as user extensions,
provided they follow the restrictions used in the CDIF subject area standards.

PCTE (ECMA-149) is an interface to a set of facilities that forms the basis for constructing environments supporting
systems engineering projects. These facilities are designed particularly to provide an infrastructure for programs which
may be part of such environments. Such programs, which are used as aids to systems development, are often referred to
as tools or CASE tools.

CDIF (EIA/IS-107) is an architecture and facilities for transferring information, often referred to as models, between
CASE tools, including repositories. The CDIF architecture includes a modelling language, the CDIF meta-meta-model,
for defining an integrated meta-model that in turn defines the information models for subject areas of systems
engineering. The CDIF architecture also includes a transfer format for transferring models between tools.

Application of this mapping to a CDIF subject area generates a derived PCTE SDS that is semantically equivalent to
the CDIF subject area. Such derived SDSs provide

• a means of exchanging models between CASE tools and a PCTE implementation;

• a means of realising models defined according to the corresponding CDIF subject areas in a PCTE installation;

• hence a basis for standard SDSs for systems engineering subject areas.

 The derived SDSs are not sufficient

• to define all the properties needed for efficient use of the models within a PCTE installation;

• for the faithful transfer of the models between different PCTE installations.

2 Conformance
2.1 Conformance of an SDS

 A PCTE SDS conforms to this ECMA Standard with respect to a given CDIF subject area if, and only if, it contains
type definitions that are derived from the specification for the given CDIF subject area (as defined in the relevant
EIA/IS subject area specifications) according to the mapping in clause 9. Such an SDS is referred to as an SDS for
the (given) CDIF subject area.

2.2 Conformance of a PCTE tool
 A PCTE model (of a given CDIF subject area) is a collection of objects which are instances of types defined in an
SDS, which conforms to this ECMA Standard, for the given subject area. This ECMA Standard does not define how
a PCTE model is represented in a PCTE installation.

 NOTE

 A PCTE model could, for example, be represented by a composite object whose components are instances of the
types defined in a conforming SDS or by a directory object with existence links to instances of the types defined in a
conforming SDS.

 A PCTE tool conforms to this ECMA Standard if and only if

• it uses an SDS for a given CDIF subject area to manage a PCTE model of that subject area, and

• it uses no alternative SDS to model properties of that subject area

3 Normative references
The following normative documents contain provisions which, through reference in this text, constitute provisions of
this ECMA Standard. For dated references, subsequent amendments to, or revisions of, any of these publications do
not apply. However, parties to agreements based on this ECMA Standard are encouraged to investigate the possibility

- 2 -

of applying the most recent editions of the normative documents indicated below. For undated references, the latest
edition of the normative document referred to applies.

ECMA-149 Portable Common Tool Environment (PCTE) - Abstract Specification, 4th edition (1997)

EIA/IS-107 CDIF / Framework for Modeling and Extensibility, January 1994

EIA/IS-111 CDIF - Integrated Meta-model / Foundation Subject Area, January 1994

EIA/IS-112 CDIF - Integrated Meta-model / Common Subject Area, December 1995

EIA/IS-113 CDIF - Integrated Meta-model / Data Definition Subject Area, May 1996 (draft)

EIA/IS-114 CDIF - Integrated Meta-model / Data Modeling Subject Area, December 1996

4 Terms and definitions
4.1 CDIF and PCTE terms

Most of the technical terms used in this ECMA Standard are CDIF and PCTE terms defined in EIA/IS-107 and
ECMA-149, respectively. Such terms are qualified by "CDIF" and "PCTE", respectively, as necessary to make the
intended meaning clear.

There are two areas of difficulty with terminology that are inherent in the subject matter. The first is that terms such
as "subject area" and "meta-object" in CDIF, "SDS" and "object type" in PCTE, are used either in a general,
inclusive sense that captures the informal notion, e.g. a subject area with all its contents, the type of an object
including its attributes and links, or in a restricted, exclusive sense that is required for technical specification, where
for example a subject area is separate from the meta-entities etc. that are used in it, an object type is separate from
the attribute types etc. that may be applied to it. In EIA/IS-107, such terms are used in the restricted sense, except
occasionally in the more general discussion (clauses 7 and 8) where the distinction is clear from the context.

The second area of difficulty is groups of closely related concepts with conventionally related ways of referring to
them. For example, in CDIF there are (a) meta-entity, (b) the meta-meta-entity "MetaEntity", and (c) metaentity (an
instance of "MetaEntity"); in PCTE there are (a) object type in DDL, (b) object type (and type in SDS) in the PCTE
Foundation, and (c) object type (and type in SDS) in the SDS "metasds". For EIA/IS-107, the simplest and most
readable form has been chosen, viz terms used in the textual specification of subject areas (e.g. meta-entity) and
SDSs (e.g. object type).

4.2 Other terms
For the purposes of this ECMA Standard, the terms and definitions given in ECMA-149, EIA/IS-107, EIA/IS-111,
EIA/IS-112, EIA/IS-113, EIA/IS-114 and the following apply.

4.2.1 CASE tool

A program that is used as an aid to systems development.

4.2.2 derived SDS

A PCTE SDS generated by application of the mapping defined in this ECMA Standard to a CDIF subject area.

4.2.3 model

(When used generally) a description of an information system used in system development.

4.2.4 PCTE model

See 2.2.

4.2.5 PCTE tool

A CASE tool that uses the facilities of a PCTE implementation.

4.2.6 SDS for a (given) CDIF subject area

See 2.1.

- 3 -

5 Symbols (and abbreviated terms)
5.1 Notations

PCTE SDSs are defined using PCTE DDL as defined in annex B of ECMA-149.

5.2 Abbreviations
The following abbreviations are used in this ECMA Standard.

5.2.1 CDIF

CASE Data Interchange Format.

5.2.2 DDL

Data Definition Language.

5.2.3 PCTE

Portable Common Tool Environment.

5.2.4 SDS

Schema Definition Set (a PCTE term).

6 Outline of the Standard
Clause 7 states the general principles that are applied to define the mapping. Clause 8 discusses the main differences
between CDIF and PCTE and how these are resolved in the mapping. The mapping is defined in clause 9. Clause 10
introduces some examples of derived SDSs which follow in informative annexes.

7 Mapping principles
This clause defines general principles for deriving PCTE SDSs corresponding to subject areas of the CDIF integrated
meta-model.

The following general principles were applied when defining the mapping of CDIF to PCTE.

a) The purpose of the mapping is to derive PCTE SDSs corresponding to CDIF subject areas that enable the
realisation in a PCTE installation of models defined according to those subject areas.

b) The derived SDSs are not intended to be sufficient for other purposes such as the definition of all the properties
needed for efficient use of the models within a PCTE installation nor for the faithful transfer of the models between
different PCTE installations. Thus, for example, the derived SDSs make no use of object contents or most link
categories.

c) The mapping should be capable of deriving valid SDSs for subject areas defined as user extensions, provided they
follow the restrictions used in the CDIF subject area standards. The mapping cannot resolve any clashes in user
extensions that are defined independently and then used together.

d) The mapping should be fully determined by rules that can be applied automatically, either by human or by
computer.

e) The mapping should be a total function from CDIF to PCTE, i.e. a mapping of all CDIF concepts to a subset of
PCTE concepts. With the mapping represented as a two-column table, the CDIF column should contain all CDIF
concepts but the PCTE column may omit PCTE concepts that are not used to represent CDIF concepts.

f) The mapping should not preclude the addition of PCTE-implementation-dependent DDL to derived SDSs that may
be required by a conforming PCTE implementation. For example, the mapping might allow additional importations
that are not defined by EIA/IS-107.

g) The mapping should derive a single, unique PCTE SDS from each CDIF subject area, so that a PCTE tool using
information defined in a set of CDIF subject areas should only need the corresponding PCTE SDSs in its working
schema. (A possible exception might be for one SDS that is needed for use with any subject area, but this has not
proved necessary.)

h) The semantics of a derived SDS should, whenever possible, be the same as the semantics of the corresponding
subject area, and should be determined by reference to the standard for that subject area.

- 4 -

i) The derived PCTE SDSs should have names that distinguish them from SDSs for similar "subject areas" that are
not derived from CDIF subject areas.

j) The names of the derived SDSs should allow the management of different versions within a PCTE installation. For
example the mapping might allow the SDS name to have a suffix not defined in this Standard.

k) Names should be retained from the CDIF subject area standard as far as possible. Any additional names should be
chosen appropriately for their meanings.

8 Issues for the mapping
8.1 Mapping of names

8.1.1 Uniqueness of Names

In CDIF, uniqueness of names is defined within the scope of a working meta-model (a set of subject areas):
subject area names, meta-entity names, full meta-relationship names and full meta-attribute names must be
unique, where the full meta-relationship name includes the concatenated names of the source and destination
meta-entities and the full meta-attribute name includes the concatenated name of the containing meta-entity or
meta-relationship. In PCTE, uniqueness of names is defined within the scope of an SDS and resolution of name
clashes is defined for a working schema (an ordered set of SDSs).

CDIF does not allow the definition of local names that are limited to the scope of a subject area. PCTE allows the
definition of local names that are limited to the scope of an SDS.

The CDIF rules for uniqueness of full names are more restrictive than the PCTE rules, but the CDIF rules allow
duplication of (simple) names of meta-attributes and meta-relationships within a subject area.

8.1.2 Syntax of Names

In CDIF, the maximum length of a meta-object name is 32 (within CDIF standards) (see EIA/IS-107). In PCTE,
the maximum length of an SDS name or a local name for a type within an SDS is an implementation limit
MAX_NAME_SIZE which must be at least 31; this limit of 31 is used within ECMA-149.

Otherwise, CDIF and PCTE follow identical rules for the syntax of names, including case insensitivity, except
that CDIF allows hyphen "-" to be included and names to start with a digit. Hyphen is used in PCTE to construct
a type name that is unique across an installation from an SDS name and a type name within the SDS.

The conventions for constructing meaningful names in the standards differ: in CDIF names are concatenated
from words starting with capital letters, in PCTE names are concatenated from words, without initial capitals,
separated by underscore "_".

PCTE names are derived from CDIF names with minimum change as defined in 9.2.

8.1.3 Basic mapping of names

CDIF meta-relationships or meta-attributes with the same simple name are intended to have the same semantics
(in both denotation and connotation). If each meta-relationship (or meta-attribute) were mapped to a separate
object type (attribute type) this similarity would be lost, so the PCTE names are derived from the simple CDIF
names. The consequent problems of duplication are discussed below (see 8.1.4).

8.1.4 Duplication of names

The simple names of meta-attributes may be duplicated in different meta-entities and meta-relationships. Such
duplication can be considered as reuse or implicit specialisation: for example, in the subject area Common there
are three meta-attributes called Name, each being specialised to be the name of the containing meta-entity. This
specialisation mainly affects the semantics, the only exception in this example being that two of the Name meta-
attributes have data type String, while one, contained by AbstractionLevel, has data type Enumerated (which may
be treated as a specialisation of String). Any exception is a CDIF modelling error.

The names of meta-relationships may be duplicated in meta-relationships whose full names have different source
or destination meta-entities. A particular case of this occurs with inheritance of meta-relationships, where the
subtype usually has the same (simple) name as a supertype. Duplication of meta-relationship names can be
treated analogously to duplication of meta-attribute names. Such duplication can be considered as reuse or
implicit specialisation: for example, the subject area DataModelling has several meta-relationships Incorporates,

- 5 -

each specialising the notion of the source meta-entity incorporating the destination meta-entity. Any exception is
a CDIF modelling error.

8.2 Subtyping of meta-entities
CDIF and PCTE support subtyping of meta-entities and object types, respectively, from one or more supertypes,
with the same static rules but for the following exception. As a consequence of CDIF's approach to the uniqueness
of names, a meta-entity may inherit meta-attributes of the same name from different direct supertypes. If these
supertypes have inherited these meta-attributes, directly or indirectly, from a common supertype, the meta-attribute
is inherited (once); otherwise, it is a CDIF modelling error. This modelling error cannot occur in PCTE: attribute
type names are unique within an SDS, so two object types cannot have different attribute types of the same name
applied to them.

The CDIF meta-entity hierarchy maps to the PCTE object hierarchy indirectly through the direct mapping of each
CDIF supertype reference to a PCTE parent type reference to the object type derived from the supertype.

8.3 Subtyping of meta-relationships
CDIF supports subtyping of meta-relationships. Although PCTE does not support subtyping of link types, the ability
to define a link type separately from any object type, to apply it to more than one source object and to extend it to
more than one destination object type provides similar semantics.

CDIF inheritance is little used for properties which could be mapped to PCTE concepts that are represented
syntactically in PCTE DDL. The only meta-attributes that are inherited are

a) those (inherited from the root of the meta-relationship hierarchy RootEntity.IsRelatedTo.RootEntity) that
provide common meta-attributes (CDIFIdentifier, DateCreated, DateUpdated, TimeCreated, TimeUpdated) for
all meta-relationships; these properties are not relevant to the usage of PCTE link types;

b) SequenceNumber that provides a key for some meta-relationships whose maximum destination cardinality is N;
this property is provided, in all cases, for PCTE usage by the key that is required for any link type of cardinality
many.

These CDIF properties need not be mapped directly to PCTE concepts.

In most cases of inheritance the simple meta-relationship name, i.e. the name without the source and destination
meta-entities, is not changed and inheritance is treated as a case of duplication of names.

8.4 Modularity and sharing
CDIF and PCTE both support the concept of a dynamically changing schema which can be defined in modules
(subject areas and SDSs, respectively) that may contain shared and extended definitions.

In CDIF, a collectable meta-object is used in one or more subject areas with the following rules (see EIA/IS-107)

a) A meta-entity may have different local meta-attributes and meta-relationships in different subject areas.

b) A meta-relationship may have different local meta-attributes in different subject areas.

c) A meta-entity or meta-relationship may be used in a subject area without a supertype being used explicitly, but
its inherited meta-entities and meta-relationships are also used implicitly in that subject area.

d) A meta-relationship may only be used in a subject area if the source and destination meta-entities are also used
in that subject area.

e) A meta-attribute may only be used in a subject area if the meta-entity or meta-relationship that it describes is
also used in that subject area.

In PCTE, a type is declared in one SDS and may be imported into one or more other SDSs with the following rules
(see ECMA-149)

a) An object type may be defined or imported in an SDS without having any attribute type or link type applied
explicitly in that SDS.

b) When an object type is imported to an SDS, its ancestor types are imported implicitly to that SDS.

- 6 -

c) When an object type is imported to an SDS, any applied attribute types and link types are not imported
implicitly to that SDS, nor is their application to the object type imported implicitly for applied attribute types
and link types that are imported explicitly to that SDS.

d) A link type may be defined or imported to an SDS without having any attribute type applied explicitly in that
SDS.

e) When a link type is imported to an SDS, any key attribute types and its reverse link type with any key attribute
types are imported implicitly to that SDS and key attribute types are applied.

f) When a link type is imported to an SDS, any applied non-key attribute types and link types are not imported
implicitly to that SDS, nor is their application to the link type imported implicitly for applied attribute types that
are imported explicitly to that SDS.

g) An attribute type may be defined or imported to an SDS without being applied explicitly to any object type or
link type in that SDS.

h) When an attribute type is imported to an SDS, it is not applied implicitly to any object type or link type in that
SDS.

i) When an enumeration attribute type is imported to an SDS, its enumeration types are imported implicitly to that
SDS.

These two approaches are quite close but a problem arises from differences in the scoping of names (see 8.1.1).

a) In CDIF, collectable meta-objects of the same type (meta-entity, meta-relationship, meta-attribute) with the same
name in the same or different subject areas are the same meta-object.

b) In PCTE, types (object, link or attribute) with the same name in different SDSs are different types. A type may
only occur in more than one SDS by importing the definition. (Types in the same SDS must have different
names.)

The differences in scoping of names could be handled in two ways as follows.

a) The semantics, that meta-objects of the same name in different subject areas are the same meta-objects, can be
captured by importing the derived type from one SDS into the SDSs of the other given subject areas and
importing and applying any applied link types and attribute types derived from those subject areas. It would still
be necessary, theoretically, to import and apply any inherited link types and attribute types, but failure to do this
would lose little information in practice.

b) Meta-objects of the same name in different subject areas are treated as different and are mapped independently
to types which are different. This loses the intention that such meta-objects are views of the same meta-object,
but matches the way that CDIF allows the meta-objects to have different meta-relationships and meta-attributes
in different subject areas.

The second way is used in this mapping. This approach conforms more closely to the principle that the mapping
should derive a single, unique PCTE SDS from each CDIF subject area, so that a PCTE tool using information
defined in a set of CDIF subject areas should only need the corresponding PCTE SDSs in its working schema. It
also allows the use of a working schema including all the derived SDSs provided none of the derived types differs in
different SDSs (although the application of types may vary).

8.5 Subject area Foundation
The subject area Foundation specifies those basic concepts that are required for any CDIF transfer. Hence it is
required in any transfer. It is also a CDIF requirement that it can be used without any other subject area, to transfer
entities, relationships and attributes as "raw data" without any additional attached meaning. Thus the subject area
Foundation supplies no meaning for the integrated meta-model other than for the mechanics of transferring data.

- 7 -

9 Mapping a CDIF subject area to a PCTE SDS
9.1 Format of mapping

The fundamental concepts of CDIF and PCTE are defined in the CDIF meta-meta-model and the PCTE Foundation
respectively. For the purpose of the mapping — deriving a PCTE SDS from a CDIF subject area — it is not
necessary to define a mapping for all elements of the CDIF meta-meta-model, but only for those needed for the
textual definition of a CDIF subject area. For example, MetaEntity in the meta-meta-model is needed but
CollectableMetaObject is not.

The mapping is defined pragmatically and structured according to the format of a subject area definition. The
mappings of major concepts — subject area, meta-entity, meta-relationship, meta-attribute, all of which are meta-
objects — are defined in terms of the mappings of their properties (i.e. their meta-meta-attributes or meta-meta-
relationships in the meta-meta-model) and these properties are ordered as in the definitions of instances of that
meta-object in subject area definitions.

The format of each clause is as follows:

a) a heading with the name of a CDIF meta-object

b) a brief general statement of the mapping of the CDIF meta-object to a PCTE type

c) a two-column table defining the detailed mapping of the CDIF meta-object to the PCTE type.

The first row of the table gives the name of the CDIF meta-object and of the derived PCTE type. Each other row of
the table gives the mapping of a property of the CDIF meta-object to PCTE concepts. The table includes
conventional entries whose meaning is as follows.

– Nothing of the property definition is mapped to PCTE concepts that can be represented
syntactically in PCTE DDL; a specific comment or one of the following generic comments
may be given in parentheses.

– (semantics) The property may define semantics textually; the same semantics apply to the PCTE type
derived from the meta-object.

– (documentary) The property does not define any semantics; it does not affect the definition of the PCTE
type derived from the meta-object.

NOTE

The value of a documentary property may nevertheless be represented for PCTE use, for example as a comment in
a DDL definition of the derived SDS, as the value of a specially defined attribute of the object type CDIF-
_Foundation-RootEntity, or as the value of a specially defined attribute of the "type_in_sds" object type.

Mappings of properties which are the same for all the types of meta-object are extracted into a preceding clause.
The mappings for the meta-objects are followed by the mappings of data types and the subject area Foundation.

9.2 Common meta-object properties
All types of meta-object have a Name, which is mapped to a PCTE type name based on a converted CDIF name as
indicated in the mapping for each type of meta-object. A converted CDIF name is a CDIF name, except that any
hyphen "-" in the CDIF name is replaced by underscore "_".

NOTE

If the converted CDIF name is not a valid PCTE name, i.e. is more than 31 characters or starts with a digit, it is
further converted, as an exception, e.g. by abbreviation or omission of parts of the name, or by reordering the
name.

The following properties are common to all types of meta-object and are mapped in the same way for each type of
meta-object.

- 8 -

Table 1 - Common meta-object properties

Property Mapping

CDIFMetaIdentifier – (documentary)

Description – (semantics)

Usage – (semantics)

Aliases – (documentary)

Constraints – (semantics)

9.3 Subject area
The CDIF subject area meta-object is mapped to a PCTE SDS with the same name preceded by "CDIF_" and
optionally succeeded by a version identification. Only the name is mapped to PCTE concepts.

NOTE

A version identification might identify the version of any of the following — CDIF subject area, mapping or derived
SDS.

Table 2 - Subject area to SDS

Subject area Schema Definition Set (SDS)

Name Name of the SDS: the converted CDIF name
preceded by "CDIF_", optionally succeeded by
"_" and additional characters that identify the
version of the SDS. Thus "CDIF_" becomes a
reserved prefix for PCTE SDSs.

VersionNumber – (documentary)

9.4 Meta-entities
Each CDIF meta-entity in the CDIF subject area is mapped to a PCTE object type. Only the name, supertypes (i.e.
SubtypeOf), local meta-attributes and local meta-relationships are mapped to PCTE concepts.

The CDIF common root RootObject is mapped to a PCTE object type which is used as the root of the hierarchy of
derived object types. This object type is derived by importing "system-object", the root of the PCTE object
hierarchy as RootObject.

- 9 -

Table 3 - Meta-entity to Object type

Meta-entity Object type

Name Name of the object type: the converted CDIF
name

SubtypeOf Each object type corresponding to a CDIF
supertype is a parent type of this object type.
"system-object" is imported as RootEntity for
the root of the object type hierarchy

SupertypeOf – (redundant: implied by SubtypeOf in the CDIF
supertype)

Type – (semantics)

Inherited meta-attribute – (implicit in PCTE inheritance from supertype)

Local meta-attribute. See 9.6 for the full
mapping of each meta-attribute

An attribute type which is applied to the object
type.

Inherited meta-relationship – (implicit in PCTE inheritance from supertype)

Local meta-relationship. See 9.5 for the full
mapping of each meta-relationship

A link type which is applied to the object type.

NOTE

The derivation of RootObject and RootEntity, for which special rules apply, is described in 9.8.

9.5 Meta-relationships
Each CDIF meta-relationship in the CDIF subject area is mapped to a PCTE reference link type with an implicit
reverse link type. The source and destination of the link type are the object types derived from the source and
destination, respectively, of the meta-relationship. If the CDIF MaxDestCard is N, the link type has cardinality
many and its key is "system-number". Only the name, destination cardinalities and local meta-attributes are mapped
to PCTE concepts.

Meta-relationships with the same simple name (see 8.1.3) are mapped to a link type, referred to as a common link
type, with properties that correspond to the most general properties of the CDIF meta-attributes, e.g. having the least
constrained cardinalities. The link type has all attributes applied that are derived from meta-attributes of the meta-
relationships with the same name. The link type is applied to all source object types derived from source meta-
entities of each meta-relationship with the same name; the link type is extended to all destination object types
derived from destination meta-entities of each meta-relationship with the same name. An application of the derived
link type may have some semantics, e.g. applied attribute types, which is not valid for the corresponding meta-
relationship.

- 10 -

Table 4 - Meta-relationship to Link type

Meta-relationship Link type

Name Name of the link type: the converted CDIF
simple name of the meta-relationship.

SubtypeOf – (information lost theoretically – see 8.3)

SupertypeOf – (redundant: implied by SubtypeOf in the CDIF
supertype)

MinSourceCard – (semantics)

MaxSourceCard – (semantics)

MinDestCard The lower bound of the link type's cardinality

MaxDestCard The upper bound of the link type's cardinality

Inherited meta-attribute – (information lost theoretically – see 8.3)

Local meta-attribute. See 9.6 for the full
mapping of each meta-attribute

An attribute type which is applied to the object
type.

9.6 Meta-attributes
Each CDIF meta-attribute of a meta-entity or meta-relationship in the CDIF subject area is mapped to a PCTE
attribute type. Only the name, supertypes (i.e. SubtypeOf), local meta-attributes and local meta-relationships are
mapped.

Meta-attributes with the same simple name (see 8.1.3) are mapped to an attribute type, referred to as a common
attribute type, with the PCTE value type that corresponds to the most general data type of those CDIF meta-
attributes. An application of the derived attribute type may have some semantics, e.g. extra enumeration images,
which is not valid for the corresponding meta-relationship.

Table 5 - Meta-attribute to Attribute type

Meta-attribute Attribute type

Name Name of the attribute type: the converted CDIF
simple name of the meta-attribute.

DataType. See 9.7 for the full mapping of the
data type

A value type for the attribute type.

Domain – (semantics), except if the CDIF data type is
Enumerated or Integer (see table 6)

Length – (semantics)

IsOptional – (semantics, with some information loss since
each instance of a visible PCTE attribute type
always has a value, possibly the default value)

- 11 -

9.7 Data types
Each CDIF data type defined in EIA/IS-107 is mapped to a PCTE value type, with the exception of the following
CDIF data types which have no close PCTE equivalent and are not used in the CDIF integrated meta-model –
Bitmap, IntegerList, Point, PointList, Date (for relative dates), Time (for relative times).

NOTE

The unrepresented data types, and unrepresented ranges of values, could be represented by a PCTE string which is
coded to represent both the data type and its value.

The permitted ranges of values are not defined precisely for some CDIF data types or for all PCTE values types.
The range of values for some CDIF data types are only defined in the transfer format syntax and might differ in
different transfer formats. The ranges of values for other CDIF data types are specified in EIA/IS-107. The range of
values for PCTE value types is implementation-defined under certain constraints on maximum and minimum values
specified as implementation limits in ECMA-149. It is a general requirement of standards and implementations for
both CDIF and PCTE that there should be no practical limitations on values: consequently the limits are likely to be
extended over time to remove any limitations. Differences in permitted ranges of values for CDIF and PCTE have
no practical consequences for the purpose of the mapping — deriving a PCTE SDS from a CDIF subject area.

- 12 -

Table 6 - Data type to Value type

Data type Value type

Bitmap – (a coded string could be used)

Boolean boolean

Date (absolute) time, with the "time" set to "T00:00:00Z"

Date (relative) – (a coded string could be used)

Enumerated enumeration, where the sequence of
enumeration images is derived from the
sequence of values of the CDIF Domain of the
meta-attribute (see table 5) or, if the
enumeration is the value type of a common
attribute type (see 9.6), the union of the
sequences of CDIF Domain values of the
meta-attributes with the same name

Float float

Identifier string

Integer (Domain is Positive integer) natural

Integer (Domain is not Positive integer) integer

IntegerList – (a coded string could be used)

Point – (a coded string could be used)

PointList – (a coded string could be used)

String string

Text string

Time (absolute) time, with the "date" set to "1980-01-01"

Time (relative) – (a coded string could be used)

- 13 -

9.8 Subject area Foundation
The mapping of Foundation has special cases which are shown in the following table.

Table 7 - Subject area Foundation

Concept Reason

RootObject — the common root of the CDIF
meta-entity and meta-relationship hierarchies

Since PCTE has no inheritance for link types,
there is no need to map the common root

RootEntity — the root of the CDIF meta-entity
hierarchy

"system-object" is imported as RootEntity for
the root of the object type hierarchy

RootEntity.IsRelatedTo.RootEntity — the root of
the CDIF meta-relationship hierarchy

Since PCTE has no inheritance for link types,
there is no need to map the root of the CDIF
meta-relationship hierarchy

CDIFIdentifier, DateCreated, DateUpdated,
TimeCreated, TimeUpdated — meta-attributes
of RootObject and hence all meta-entities and
meta-relationships

PCTE object type "system-object" has
attributes — exact_identifier, last_access_time,
last_modification_time, and last_change_time
— with similar functions. A link is part of an
object and hence has little need for separate
values.

If required, attributes derived by the rules in
9.6, can be applied to the object type
RootEntity

10 Introduction to derived SDSs defined in annexes
10.1 Aims

Annexes A to D contain SDSs derived using the mapping of clause 9. This clause describes how the SDS definitions
are structured in order to meet the conditions that

a) they will be compiled correctly by any compiler that conforms to ECMA-149, and

b) the mapping is shown as transparently as possible.

10.2 PCTE modelling language standard
SDSs derived from the mapping conform to the PCTE Data Definition Language (DDL) defined in ECMA-149.

10.3 Ordering of subject area definitions
Subject area definitions in CDIF standards follow an alphabetical ordering within a broad logical framework,
described in EIA/IS-107. Slightly simplified the sequence is as follows.

a) The hierarchies of meta-entities and meta-relationships, as a list of names, with inheritance shown by relative
indentation. This part of the definition is redundant since it is implied by information in the subsequent parts, but
it provides a useful summary of the broad structure of the subject area.

b) Definitions of meta-entities, including the names of their meta-attributes and meta-relationships, inherited and
local (i.e. defined specifically for the meta-entity), and definitions of the local meta-attributes.

c) Definitions of meta-relationships, including the names of their meta-attributes, inherited and local, and
definitions of the local meta-attributes.

10.4 Ordering of SDS definitions
SDS definitions in ECMA-149 follow an ordering constrained by PCTE DDL syntax. In PCTE DDL, type names
must be declared before use, except for destination object types and reverse link types in link type declarations. The

- 14 -

alphabetical ordering used in CDIF subject area definitions is maintained by first defining each object type without
any applied attribute types or link types; the object type definitions are later extended in alphabetical order.

10.5 Structure of SDS definitions
The SDS definitions in annexes A to D are ordered as follows.

a) The derived SDS name in its simplest form, i.e. with no version identification.

b) A comment defining the version of the subject area from which the SDS is derived.

c) Import statements for attributes, defined in the predefined PCTE SDSs in ECMA-149, that are required in most
or all user-defined SDSs (perhaps only for particular PCTE implementations). These imported attributes are not
derived from the subject area.

d) The hierarchy of object types, derived from the CDIF meta-entity hierarchy, as a list of either simple object type
declarations without any applied link or attribute types or, for object types derived from meta-entities defined in
another subject area, import statements. The hierarchy is indicated by the names of the parent types in the child
type of construction. It may additionally be shown by relative indentation as in CDIF, but this is less satisfactory
with a deep hierarchy; the annexes vary in their approach.

e) Declarations of common attribute types, i.e. attribute types derived from CDIF meta-attributes with names
duplicated in the current or a preceding subject area. In attribute type declarations and applications (in this and
following clauses) the original CDIF data type is given in a comment where

1) the CDIF data type is not String but maps to PCTE string,

2) the application of a common attribute type has a PCTE value type which is an exception to the mapping rules
for CDIF data types (see 9.7), and

3) the CDIF data type is Enumerated and the derived type of the meta-attribute is the application of a common
attribute type whose enumeration type has a larger range of enumeration images.

f) Declarations of link types derived from the definitions of meta-relationships, including declarations (or, for
common attribute types, applications) of attribute types derived from the definitions of any local meta-attributes.
Where the same link type is derived from more than one meta-relationship, the declaration becomes an extension
to a further destination object for each such meta-relationship after the first. Applications of the link type with
semantics which are not valid for the corresponding meta-relationship (see 9.5) are not indicated by DDL
comments.

g) Extensions of object type definitions derived from the definitions of meta-entities, including declarations (or, for
common attribute types, applications) of link types and attribute types derived from the definitions of any local
meta-relationships and local meta-attributes respectively. Where there is no need for an extension, this is
indicated by a comment "-- No extension".

h) The end construction for the SDS.

The SDS definitions contain comments starting "-- CDIF: " to indicate the CDIF concept from which the following
DDL is derived.

- 15 -

Annex A

(informative)

SDS CDIF_Foundation

sds CDIF_ Foundation:

-- This annex defines the PCTE SDS CDIF_ Foundation that corresponds to

-- the CDIF subject area Foundation version 01.00 defined in

-- EIA/IS-111, CDIF - Integrated Meta-model / Foundation Subject Area, January 1994

import object type system-object as RootEntity; -- root of hierarchy for CDIF object types

end CDIF_Foundation;

- 16 -

- 17 -

Annex B

(informative)

SDS CDIF_Common

B.1 Introductory elements
sds CDIF_Common:

-- This annex defines the PCTE SDS CDIF_Common that corresponds to

-- the CDIF subject area Common version 01.00 defined in

-- EIA/IS-112, CDIF - Integrated Meta-model / Common Subject Area, December 1995

import attribute type system-number; -- required for link keys

import attribute type system-system_key; -- may be required for creating implicit reverse links

B.2 PCTE object type hierarchy
-- CDIF: AttributableMetaObject Hierarchy: meta-entities

import object type system-object as RootEntity; -- root of hierarchy for CDIF object types

AbstractionLevel : child type of RootEntity;

AlternateName : child type of RootEntity;

PresentationInformationObject : child type of RootEntity;

SemanticInformationObject : child type of RootEntity;

DataObject : child type of SemanticInformationObject;

Derivation : child type of SemanticInformationObject;

ProcessObject : child type of SemanticInformationObject;

TextualConstraint : child type of RootEntity;

ToolUser : child type of RootEntity;

B.3 PCTE common attribute types
Name : string;

BriefDescription : string;

FullDescription : string; -- Text

B.4 PCTE link types
-- CDIF: RootEntity.CreatedBy.ToolUser

CreatedBy : reference link to ToolUser;

- 18 -

-- CDIF: RootEntity.Has.AlternateName

 Has : reference link to AlternateName;

-- CDIF: RootEntity_LastUpdatedBy_ToolUser

LastUpdatedBy : reference link to ToolUser;

-- CDIF: RootEntity_Uses_AlternateName

Uses : reference link to AlternateName;

-- CDIF: SemanticInformationObject.IsCategorizedIn.AbstractionLevel

IsCategorizedIn : reference link to AbstractionLevel;

-- CDIF: SemanticInformationObject.ProducedBy.Derivation

ProducedBy : reference link to Derivation;

-- CDIF: SemanticInformationObject.UsedIn.Derivation

UsedIn : reference link to Derivation;

-- CDIF: TextualConstraint.IsConstraintOn.SemanticInformationObject

IsConstraintOn : reference link to SemanticInformationObject;

B.5 PCTE object type extensions
-- CDIF: AbstractionLevel

extend object type AbstractionLevel with

attribute

Name; -- Enumerated (Conceptual, Logical, Physical)

end AbstractionLevel;

-- CDIF: AlternateName

extend object type AlternateName with

attribute

OtherLongName : string;

OtherName : string;

end AlternateName;

-- CDIF: DataObject

extend object type DataObject with

- 19 -

attribute

Name;

end DataObject;

-- CDIF: Derivation

extend object type Derivation with

attribute

DerivationLanguage : enumeration (Ada, C, COBOL, FORTRAN, MUMPS, PASCAL, PL1, SQL, Other);

DerivationText : string; -- Text

IsRealizationOf : boolean;

end Derivation;

-- CDIF: PresentationInformationObject

-- CDIF: ProcessObject

extend object type ProcessObject with

attribute

ExecutionTimeInterval : float;

ExecutionTimeUnit : enumeration (Picosecond, Nanosecond, Microsecond, Millisecond, Second,
Minute, Hour, Day, Week, Month, Year);

Name;

SpecificationLanguage : enumeration (Ada, C, COBOL, FORTRAN, MUMPS, PASCAL, PL1, SQL,
Other);

SpecificationText : string; -- Text

end ProcessObject;

-- CDIF: RootEntity

extend object type RootEntity with

link

CreatedBy;

Has;

LastUpdatedBy;

Uses;

end RootEntity;

--- CDIF: SemanticInformationObject

extend object type SemanticInformationObject with

attribute

BriefDescription;

- 20 -

FullDescription;

link

IsCategorizedIn;

ProducedBy;

UsedIn;

end SemanticInformationObject;

-- CDIF: TextualConstraint

extend object type TextualConstraint with

attribute

BriefDescription;

ConstraintExpression : string; -- Text

ConstraintLanguage : enumeration (Ada, C, COBOL, FORTRAN, MUMPS, PASCAL, PL1, SQL, Other);

FullDescription;

link

IsConstraintOn;

end TextualConstraint;

-- CDIF: ToolUser

extend object type ToolUser with

attribute

FullName : string;

SystemName : string;

end ToolUser;

end CDIF_Common;

- 21 -

Annex C

(informative)

SDS CDIF_DataDefinition

C.1 Introductory elements
sds CDIF_ DataDefinition:

-- This annex defines the PCTE SDS CDIF_ DataDefinition that corresponds to

-- the CDIF subject area DataDefinition version 01.00 defined in

-- EIA/IS-113, CDIF - Integrated Meta-model / Data Definition Subject Area, May 1996 (draft)

import attribute type system-number; -- required for link keys

import attribute type system-system_key; -- may be required for creating implicit reverse links

C.2 PCTE object type hierarchy
-- CDIF: AttributableMetaObject Hierarchy: meta-entities

import object type system-object as RootEntity; -- root of hierarchy for CDIF object types

SemanticInformationObject; : child type of RootEntity

ComponentObject; : child type of SemanticInformationObject

Attribute; : child type of ComponentObject

ProjectedAttribute; : child type of Attribute

EquivalenceSet : child type of ComponentObject;

ReferencedElement : child type of ComponentObject;

DefinitionObject; : child type of SemanticInformationObject

DataType : child type of DefinitionObject;

AggregateDataType : child type of DataType;

BasicDataType : child type of DataType;

BinaryType : child type of BasicDataType;

FixedLengthBinaryType : child type of BinaryType;

VariableLengthBinaryType : child type of BinaryType;

BooleanType : child type of BasicDataType;

EnumerationType : child type of BasicDataType;

MagnitudeType : child type of BasicDataType;

MoneyType : child type of MagnitudeType;

NumericType : child type of MagnitudeType;

- 22 -

ApproximateNumericType : child type of NumericType;

ComplexType : child type of NumericType;

CartesianComplexType : child type of ComplexType;

PolarComplexType : child type of ComplexType;

ExactNumericType : child type of NumericType;

IntegerType : child type of ExactNumericType;

FixedDecimalType : child type of IntegerType;

BinaryCodedDecimalType : child type of FixedDecimalType;

PackedDecimalType : child type of FixedDecimalType;

SerialType : child type of IntegerType;

TemporalType : child type of MagnitudeType;

DateType : child type of TemporalType;

TimeIntervalType : child type of TemporalType;

DayTimeIntervalType : child type of TimeIntervalType;

YearMonthIntervalType : child type of TimeIntervalType;

TimeStampType : child type of TemporalType;

TimeType : child type of TemporalType;

StringType : child type of BasicDataType;

FixedLengthStringType : child type of StringType;

NLFixedLengthStringType : child type of FixedLengthStringType;

VariableLengthStringType : child type of StringType;

NLVariableLengthStringType : child type of VariableLengthStringType;

VoidType : child type of BasicDataType;

QualifiedDataType : child type of DataType;

RefinedDataType : child type of DataType;

Qualifier : child type of SemanticInformationObject;

ArrayQualifier : child type of Qualifier;

BoundedArrayQualifier : child type of ArrayQualifier;

UnboundedArrayQualifier : child type of ArrayQualifier;

PointerQualifier : child type of Qualifier;

Unit : child type of SemanticInformationObject;

ValueDomain : child type of SemanticInformationObject;

ValueDomainEnumeration : child type of ValueDomain;

ValueDomainProcedure : child type of ValueDomain;

ValueDomainRange : child type of ValueDomain;

ValueDomainRule : child type of ValueDomain;

ValueDomainGroup : child type of ValueDomain;

- 23 -

C.3 PCTE common attribute types
BitsPerCharacter : integer;

IsLocal : boolean;

Length : natural; -- Integer

LengthMultiplier : enumeration (Bit, Byte, Kilobyte, Megabyte, Gigabyte);

MaxLength : natural; -- Integer

Name : string;

Operator : enumeration (AND, OR, XOR, NOT);

Precision : integer;

Scale : integer;

SpecificationLanguage : enumeration (Ada, C, COBOL, FORTRAN, MUMPS, PASCAL, PL1, SQL, Other);

SpecificationText : string; -- Text

TimeZoneHours : integer;

TimeZoneMinutes : integer;

C.4 PCTE link types
-- CDIF: ArrayQualifier.HasType.DataType

HasType : reference link [0..1] to DataType;

-- CDIF: ComponentObject.References.DefinitionObject

References : reference link [0..1] to DefinitionObject;

-- CDIF: DataType.TakesValueFrom.ValueDomainGroup

TakesValueFrom : reference link [0..1] to ValueDomainGroup;

-- CDIF: DefinitionObject.Contains.ComponentObject

import link type CDIF_DataModeling-Contains;

extend link type Contains to ComponentObject;

-- CDIF: EquivalenceSet.HasMember.ComponentObject

HasMember : reference link [2..] (number) to ComponentObject;

-- CDIF: NumericType.IsMeasuredIn.Unit

IsMeasuredIn : reference link [0..1] to Unit;

-- CDIF: ProjectedAttribute.IsProjectionOf.Attribute

IsProjectionOf : reference link [0..] (number) to Attribute;

- 24 -

-- CDIF: QualifiedDataType.IsQualificationOf.DataType

IsQualificationOf : reference link [0..1] to DataType;

-- CDIF: QualifiedDataType.IsQualifiedBy.Qualifier

IsQualifiedBy : reference link [0..] (number) to Qualifier;

-- CDIF: ReferencedElement.DefinesPath.ComponentObject

DefinesPath : reference link [1..] (number) to ComponentObject;

-- CDIF: RefinedDataType.IsRefinementOf.DataType

IsRefinementOf : reference link [0..1] to DataType;

-- CDIF: ValueDomainGroup.Contains.ValueDomain

extend link type Contains to ValueDomain;

C.5 PCTE object type extensions
-- CDIF: AggregateDataType

-- No extension

-- CDIF: ApproximateNumericType

extend object type ApproximateNumericType with

attribute

 Precision;

 Scale;

end ApproximateNumericType;

-- CDIF: ArrayQualifier

extend object type ArrayQualifier with

link

 HasType;

end ArrayQualifier;

-- CDIF: Attribute

extend object type Attribute with

attribute

DefaultValue : string;

IsOptional : boolean;

- 25 -

Name;

end Attribute;

-- CDIF: BasicDataType

-- No extension

-- CDIF: BinaryCodedDecimalType

-- No extension

-- CDIF: BinaryType

-- No extension

-- CDIF: BooleanType

-- No extension

-- CDIF: BoundedArrayQualifier

extend object type BoundedArrayQualifier with

attribute

MaxSubscript : integer;

MinSubscript : integer;

end BoundedArrayQualifier;

-- CDIF: CartesianComplexType

extend object type CartesianComplexType with

attribute

Precision;

Scale;

end CartesianComplexType;

-- CDIF: ComplexType

-- No extension

-- CDIF: ComponentObject

extend object type ComponentObject with

link

References;

end ComponentObject;

- 26 -

-- CDIF: DataType

extend object type DataType with

attribute

FormatStringLanguage : enumeration (Ada, C, COBOL, FORTRAN, MUMPS, PASCAL, PL1, SQL, Other);

FormatStringValue : string;

Usage : string; -- Text

link

TakesValueFrom;

end DataType;

-- CDIF: DateType

-- No extension

-- CDIF: DayTimeIntervalType

-- No extension

-- CDIF: DefinitionObject

extend object type DefinitionObject with

attribute

Name;

Operator; -- Enumerated (AND, XOR)

SpecificationLanguage;

SpecificationText; -- Text

link

Contains;

IsConstructedWith;

end DefinitionObject;

-- CDIF: EnumerationType

-- No extension

-- CDIF: EquivalenceSet

extend object type EquivalenceSet with

link

HasMember;

end EquivalenceSet;

- 27 -

-- CDIF: ExactNumericType

-- No extension

-- CDIF: FixedDecimalType

extend object type FixedDecimalType with

attribute

Precision;

Scale;

end FixedDecimalType;

-- CDIF: FixedLengthBinaryType

extend object type FixedLengthBinaryType with

attribute

Length;

LengthMultiplier;

end FixedLengthBinaryType;

-- CDIF: FixedLengthStringType

extend object type FixedLengthStringType with

attribute

Length;

LengthMultiplier;

end FixedLengthStringType;

-- CDIF: IntegerType

extend object type IntegerType with

attribute

 SignedFlag : boolean;

end IntegerType;

-- CDIF: MagnitudeType

-- No extension

-- CDIF: MoneyType

extend object type MoneyType with

attribute

Currency : string;

Precision;

- 28 -

Scale;

end MoneyType;

-- CDIF: NLFixedLengthStringType

extend object type NLFixedLengthStringType with

attribute

BitsPerCharacter;

end NLFixedLengthStringType;

-- CDIF: NLVariableLengthStringType

extend object type NLVariableLengthStringType with

attribute

BitsPerCharacter;

end NLVariableLengthStringType;

-- CDIF: NumericType

extend object type NumericType with

link

IsMeasuredIn;

end NumericType;

-- CDIF: PackedDecimalType

-- No extension

-- CDIF: PointerQualifier

-- No extension

-- CDIF: PolarComplexType

extend object type PolarComplexType with

attribute

DistancePrecision : integer;

DistanceScale : integer;

GradientPrecision : integer;

GradientScale : integer;

end PolarComplexType;

-- CDIF: ProjectedAttribute

extend object type ProjectedAttribute with

- 29 -

attribute

SpecificationLanguage;

SpecificationText; -- Text

link

IsProjectionOf;

end ProjectedAttribute;

-- CDIF: QualifiedDataType

extend object type QualifiedDataType with

link

IsQualificationOf;

IsQualifiedBy;

end QualifiedDataType;

-- CDIF: Qualifier

extend object type Qualifier with

attribute

PrecedenceNumber : integer;

end Qualifier;

-- CDIF: ReferencedElement

extend object type ReferencedElement with

link

DefinesPath;

end ReferencedElement;

-- CDIF: RefinedDataType

extend object type RefinedDataType with

link

IsRefinementOf;

end RefinedDataType;

-- CDIF: SemanticInformationObject

extend object type SemanticInformationObject with

attribute

BriefDescription;

FullDescription;

end SemanticInformationObject;

- 30 -

-- CDIF: SerialType

extend object type SerialType with

attribute

Cycle : boolean;

Interval : integer;

StartingValue : integer;

end SerialType;

-- CDIF: StringType

extend object type StringType with

attribute

CharacterSet : integer;

StringEncoding : enumeration ("ISO-2022", "ISO-4873", "ISO-8825", "CCITT-T61")

end StringType;

-- CDIF: TemporalType

-- No extension

-- CDIF: TimeIntervalType

-- No extension

-- CDIF: TimeStampType

extend object type TimeStampType with

attribute

IsLocal;

TimeZoneHours;

TimeZoneMinutes;

end TimeStampType;

-- CDIF: TimeType

extend object type TimeType with

attribute

IsLocal;

TimeZoneHours;

TimeZoneMinutes;

end TimeType;

- 31 -

-- CDIF: UnboundedArrayQualifier

-- No extension

-- CDIF: Unit

extend object type Unit with

attribute

ExponentForAmpere : integer;

ExponentForCandela : integer;

ExponentForKelvin : integer;

ExponentForKilogram : integer;

ExponentForMeter : integer;

ExponentForMole : integer;

ExponentForSecond : integer;

IsSI : boolean;

Name;

end Unit;

-- CDIF: ValueDomain

extend object type ValueDomain with

attribute

Name;

end ValueDomain;

-- CDIF: ValueDomainEnumeration

extend object type ValueDomainEnumeration with

attribute

Value : string;

end ValueDomainEnumeration;

-- CDIF: ValueDomainGroup

extend object type ValueDomainGroup with

attribute

Name;

Operator;

link

Contains;

end ValueDomainGroup;

- 32 -

-- CDIF: ValueDomainProcedure

extend object type ValueDomainProcedure with

attribute

ProcedureName : string;

SpecificationLanguage;

SpecificationText;

end ValueDomainProcedure;

-- CDIF: ValueDomainRange

extend object type ValueDomainRange with

attribute

HighValue : string;

HighValueIncluded : boolean;

LowValue : string;

LowValueIncluded : boolean;

end ValueDomainRange;

-- CDIF: ValueDomainRule

extend object type ValueDomainRule with

attribute

SpecificationLanguage;

SpecificationString : string;

end ValueDomainRule;

-- CDIF: VariableLengthBinaryType

extend object type VariableLengthBinaryType with

attribute

LengthMultiplier;

MaxLength;

end VariableLengthBinaryType;

-- CDIF: VariableLengthStringType

extend object type VariableLengthStringType with

attribute

LengthMultiplier;

MaxLength;

end VariableLengthStringType;

- 33 -

-- CDIF: VoidType

-- No extension

-- CDIF: YearMonthIntervalType

-- No extension

end CDIF_DataDefinition;

- 34 -

- 35 -

Annex D

(informative)

SDS CDIF_DataModelling

D.1 Introductory elements
sds CDIF_ DataModeling:

-- This annex defines the PCTE SDS CDIF_ DataModeling that corresponds to

-- the CDIF subject area DataModeling version 01.00 defined in

-- EIA/IS-114, CDIF - Integrated Meta-model / Data Modeling Subject Area, December 1996

import attribute type system-number; -- required for link keys

import attribute type system-system_key; -- may be required for creating implicit reverse links

D.2 PCTE object type hierarchy
-- CDIF: AttributableMetaObject Hierarchy: meta-entities

import object type system-object as RootEntity; -- root of hierarchy for CDIF object types

import object type CDIF_Common-SemanticInformationObject; -- child type of RootEntity

AccessPath : child type of SemanticInformationObject;

ComponentObject : child type of SemanticInformationObject;

Attribute : child type of ComponentObject;

ProjectedAttribute : child type of Attribute;

DataModel : child type of SemanticInformationObject;

DataModelObject : child type of SemanticInformationObject;

-- Cluster : child type of DataModelObject;

InheritableDataModelObject : child type of DataModelObject;

-- Entity : child type of InheritableDataModelObject;

-- Relationship : child type of InheritableDataModelObject;

DataModelSubset : child type of SemanticInformationObject;

DefinitionObject : child type of SemanticInformationObject;

Cluster : child type of DefinitionObject,

 DataModelObject;

Entity : child type of DefinitionObject,

InheritableDataModelObject;

- 36 -

Relationship : child type of DefinitionObject,

InheritableDataModelObject;

Role : child type of DefinitionObject;

RolePlayer : child type of DefinitionObject;

Key : child type of SemanticInformationObject;

CandidateKey : child type of Key;

ForeignKey : child type of Key;

ProjectionComponent : child type of SemanticInformationObject;

RoleConstraint : child type of SemanticInformationObject;

SubtypeSet : child type of SemanticInformationObject;

SubtypeSetMembershipCriterion : child type of SemanticInformationObject;

D.3 PCTE common attribute types
AvgNumberOfOccurrences : float;

DeletionTimePeriod : enumeration (Millisecond, Second, Minute, Hour, Day, Week, Month, Year);

InsertionTimePeriod : enumeration (Millisecond, Second, Minute, Hour, Day, Week, Month, Year);

MaxNumberOfOccurrences : natural; -- integer

MinNumberOfOccurrences : natural; -- integer

Name : string;

NumberOfDeletions : float;

NumberOfInsertions : float;

NumberOfReads : float;

NumberOfUpdates : float;

Operator : enumeration (AND, OR, XOR, NOT);

ReadTimePeriod : enumeration (Millisecond, Second, Minute, Hour, Day, Week, Month, Year);

SpecificationLanguage : enumeration (Ada, C, COBOL, FORTRAN, MUMPS, PASCAL, PL1, SQL, Other);

SpecificationText : string; -- Text

UpdateTimePeriod : enumeration (Millisecond, Second, Minute, Hour, Day, Week, Month, Year);

D.4 PCTE link types
-- CDIF: AccessPath.Incorporates.Attribute

Incorporates : reference link [0..] (number) with

attribute

IsAscending : boolean;

SequenceNumber : natural; -- Integer

end Incorporates;

extend link type Incorporates to Attribute;

- 37 -

-- CDIF: AccessPath.Instantiates.Key

Instantiates : reference link [0..1] to Key;

-- CDIF: Attribute.IsDiscriminatorFor.SubtypeSetMembershipCriterion

IsDiscriminatorFor : reference link [0..] (number) to SubtypeSetMembershipCriterion;

-- CDIF: Attribute.IsInheritedFrom.Attribute

IsInheritedFrom : reference link to Attribute;

-- CDIF: CandidateKey.Incorporates.ForeignKey

extend link type Incorporates to ForeignKey;

-- CDIF: Cluster.Collects.DataModelObject

Collects : reference link [0..] (number);

extend link type Collects to DataModelObject;

-- CDIF: DataModel.Collects.DataModelObject

-- extend link type Collects to DataModelObject;

-- CDIF: DataModelObject.ActsAs.RolePlayer

ActsAs : reference link [0..] (number) to RolePlayer;

-- CDIF: DataModelObject.IsMemberOf.DataModelSubset

IsMemberOf : reference link [0..] (number) to DataModelSubset;

-- CDIF: DataModelSubset.Excludes.Attribute

Excludes : reference link [0..] (number) to Attribute;

-- CDIF: DataModelSubset.IsSubsetOf.DataModel

IsSubsetOf : reference link [1..1] to DataModel;

-- CDIF: DefinitionObject.Contains.ComponentObject

Contains : reference link [0..] (number) to ComponentObject with

attribute

SequenceNumber;

end Contains;

- 38 -

-- CDIF: DefinitionObject.IsConstructedWith.ProjectionComponent

IsConstructedWith : reference link [0..] (number) to ProjectionComponent with

attribute

 SequenceNumber;

end IsConstructedWith;

-- CDIF: Entity.IsIdentifiedBy.Key

IsIdentifiedBy : reference link [0..] (number) to Key;

-- CDIF: Entity.IsAccessedUsing.AccessPath

IsAccessedUsing : reference link [0..] (number) to AccessPath;

-- CDIF: ForeignKey.Incorporates.RolePlayer

extend link type Incorporates to RolePlayer;

-- CDIF: ForeignKey.References.CandidateKey

References : reference link [1..1] to CandidateKey;

-- CDIF: InheritableDataObject.IsSubtypeIn.SubtypeSet

IsSubtypeIn : reference link [0..] (number) to SubtypeSet with

attribute

SpecificationLanguage;

 SpecificationText;

 StoreWithSupertype : boolean;

end IsSubtypeIn;

-- CDIF: InheritableDataObject.IsSupertypeFor.SubtypeSet

IsSupertypeFor : reference link [0..] (number) to SubtypeSet;

-- CDIF: Key.Incorporates.Attribute

-- extend link type Incorporates to Attribute;

-- CDIF: Key.Incorporates.SemanticInformationObject

extend link type Incorporates to SemanticInformationObject;

-- CDIF: ProjectedAttribute.IsProjectionOf.Attribute

IsProjectionOf : reference link [0..] (number) with

- 39 -

attribute

 SequenceNumber;

end IsProjectionOf;

extend link type IsProjectionOf to Attribute;

-- CDIF: ProjectionComponent.IsFullProjectionOf.DefinitionObject

IsFullProjectionOf : reference link [1..1] to DefinitionObject;

-- CDIF: ProjectionComponent.IsProjectionOf.Attribute

-- extend link type IsProjectionOf to Attribute;

-- CDIF: Role.BelongsTo.Relationship

BelongsTo : reference link [1..1] to Relationship;

-- CDIF: RoleConstraint.Incorporates.RoleConstraint

extend link type Incorporates to RoleConstraint;

-- CDIF: RoleConstraint.Incorporates.RolePlayer

-- extend link type Incorporates to RolePlayer;

-- CDIF: RoleConstraint.Incorporates.SemanticInformationObject

-- extend link type Incorporates to SemanticInformationObject;

-- CDIF: RolePlayer.IsSupportedBy.Key

IsSupportedBy : reference link [0..1] to Key;

-- CDIF: RolePlayer.Plays.Role

Plays : reference link [0..1] to Role;

-- CDIF: RolePlayer.Refines.RolePlayer

Refines : reference link [0..1] to RolePlayer;

-- CDIF: RolePlayer.RefinesForSubtype.DataModelObject

RefinesForSubtype : reference link [0..] (number) to DataModelObject;

-- CDIF: SubtypeSet.Specifies.SubtypeSetMembershipCriterion

Specifies : reference link [0..] (number) to SubtypeSetMembershipCriterion;

- 40 -

-- CDIF: SubtypeSetMembershipCriterion.Selects.InheritableDataModelObject

Selects : reference link [1..1] to InheritableDataModelObject;

D.5 PCTE object type extensions
-- CDIF: AccessPath

extend object type AccessPath with

attribute

Name;

SpecificationLanguage;

SpecificationText; -- Text

link

Incorporates;

Instantiates;

end AccessPath;

-- CDIF: Attribute

extend object type Attribute with

attribute

DefaultValue : string;

IsOptional : boolean;

Name;

link

IsDiscriminatorFor;

IsInheritedFrom;

end Attribute;

-- CDIF: CandidateKey

extend object type CandidateKey with

attribute

IsPrimary : boolean;

link

Incorporates;

end CandidateKey;

-- CDIF: Cluster

extend object type Cluster with

attribute

Name;

- 41 -

-- not defined in C 5.3.4

link

Collects;

end Cluster;

-- CDIF: ComponentObject

extend object type ComponentObject with

-- ComponentObject.References.DefinitionObject in meta-object hierarchy, but

-- defined in Data Definition.

end ComponentObject;

-- CDIF: DataModel

extend object type DataModel with

attribute

ModelType : string;

Name;

link

Collects;

end DataModel;

-- CDIF: DataModelObject

extend object type DataModelObject with

link

ActsAs;

IsMemberOf;

end DataModelObject;

-- CDIF: DataModelSubset

extend object type DataModelSubset with

attribute

Name;

link

Excludes;

IsSubsetOf;

end DataModelSubset;

- 42 -

-- CDIF: DefinitionObject

extend object type DefinitionObject with

attribute

Name;

Operator; -- Enumerated (AND, XOR)

SpecificationLanguage;

SpecificationText; -- Text

link

Contains;

IsConstructedWith;

end DefinitionObject;

-- CDIF: Entity

extend object type Entity with

attribute

AvgNumberOfOccurrences;

DeletionTimePeriod;

EntityType : enumeration (Kernel, Characteristic, Associative);

InsertionTimePeriod;

MaxNumberOfOccurrences;

MinNumberOfOccurrences;

NormalizationState : enumeration (UNF, "1NF", "2NF", "3NF", BCNF, "4NF", "5NF")

NumberOfDeletions;

NumberOfInsertions;

NumberOfReads;

NumberOfUpdates;

ReadTimePeriod;

UpdateTimePeriod;

Usage : string; -- Text

link

IsIdentifiedBy;

IsAccessedUsing;

end Entity;

-- CDIF: ForeignKey

extend object type ForeignKey with

link

Incorporates;

- 43 -

References;

end ForeignKey;

-- CDIF: InheritableDataModelObject

extend object type InheritableDataModelObject with

attribute

IsAbstract : boolean;

link

IsSubtypeIn;

IsSupertypeFor;

end InheritableDataModelObject;

-- CDIF: Key

extend object type Key with

attribute

Name;

SpecificationLanguage;

SpecificationText; -- Text

link

Incorporates;

end Key;

-- CDIF: ProjectedAttribute

extend object type ProjectedAttribute with

attribute

SpecificationLanguage;

SpecificationText; -- Text

link

IsProjectionOf;

end ProjectedAttribute;

-- CDIF: ProjectionComponent

extend object type ProjectionComponent with

attribute

Name;

SpecificationLanguage;

SpecificationText; -- Text

- 44 -

link

IsFullProjectionOf;

IsProjectionOf;

end ProjectionComponent;

-- CDIF: Relationship

extend object type Relationship with

attribute

InverseName : string;

end Relationship;

-- CDIF: Role

extend object type Role with

attribute

IsMaster : boolean;

IsSource : boolean;

link

BelongsTo;

end Role;

-- CDIF: RoleConstraint

extend object type RoleConstraint with

attribute

Name;

Operator; -- Enumerated (AND, OR, XOR)

link

Incorporates;

end RoleConstraint;

-- CDIF: RolePlayer

extend object type RolePlayer with

attribute

AvgNumberOfOccurrences;

DeleteEffect : enumeration (RESTRICTS, CASCADES, SETNULL, SETDEFAULT);

DeletionTimePeriod;

InsertEffect : enumeration (RESTRICTS, CASCADES, SETNULL, SETDEFAULT);

InsertionTimePeriod;

IsDeleteDeferrable : boolean;

- 45 -

IsInsertDeferrable : boolean;

IsUpdateDeferrable : boolean;

MaxInnerCardinality : string;

MaxNumberOfOccurrences;

MaxOuterCardinality : string;

MinInnerCardinality : string;

MinNumberOfOccurrences;

MinOuterCardinality : string;

NumberOfDeletions;

NumberOfInsertions;

NumberOfReads;

NumberOfUpdates;

ReadTimePeriod;

UpdateEffect : enumeration (RESTRICTS, CASCADES, SETNULL, SETDEFAULT);

 UpdateTimePeriod;

link

IsSupportedBy;

Plays;

Refines;

RefinesForSubtype;

end RolePlayer;

-- CDIF: SemanticInformationObject

extend object type SemanticInformationObject with

attribute

BriefDescription;

FullDescription;

end SemanticInformationObject;

-- CDIF: SubtypeSet

extend object type SubtypeSet with

attribute

IsExclusive : boolean;

Name;

SubtypeListIsClosed : boolean;

link

Specifies;

end SubtypeSet;

- 46 -

-- CDIF: SubtypeSetMembershipCriterion

extend object type SubtypeSetMembershipCriterion with

attribute

DiscriminatorValue : string;

SpecificationLanguage;

SpecificationText; -- Text

link

Selects;

end SubtypeSetMembershipCriterion;

end CDIF_DataModeling;

.

.

Printed copies can be ordered from:

ECMA
114 Rue du Rhône
CH-1204 Geneva
Switzerland

Fax: +41 22 849.60.01
Internet: documents@ecma.ch

Files can be downloaded from our FTP site, ftp.ecma.ch, logging in as anonymous and giving your E-mail address as
password. This Standard is available from library ECMA-ST as a compacted, self-expanding file in MSWord 6.0 format (file
E270-DOC.EXE) and as an Acrobat PDF file (file E270-PDF.PDF). File E270-EXP.TXT gives a short presentation of the
Standard.

Our web site, http://www.ecma.ch, gives full information on ECMA, ECMA activities, ECMA Standards and Technical
Reports.

ECMA

114 Rue du Rhône
CH-1204 Geneva
Switzerland

This Standard ECMA-270 is available free of charge in printed form and as a file.

See inside cover page for instructions

