Standard ECMA-269

3rd Edition - December 1998

ECMA

Standardizing Information and Communication Systems

Services for Computer Supported
Telecommunications Applications
(CSTA) Phase Il

Volume 1

Phone: +41 22 849.60.00 - Fax: +41 22 849.60.01 - URL:http://www.ecma.ch - Internet: helpdesk@ecma.ch

Standard ECMA-269

3rd Edition - December 1998

ECMA

Standardizing Information and Communication Systems

Services for Computer Supported
Telecommunications Applications
(CSTA) Phase Il

Volume 1

Phone: +41 22 849.60.00 - Fax: +41 22 849.60.01 - URL:http://www.ecma.ch - Internet: helpdesk@ecma.ch

Brief History

This Standard ECMA-269 defines Phase Il of Services for Computer Supported Telecommunications Applicatic
(CSTA) for OSI Layer 7 communication between a computing network and a telecommunications network. Th
Standard is part of a Suite of Standards and Technical Reports for Phase Il of CSTA. All of the Standards
Technical Reports in the Suite are based on practical experience of ECMA member companies and each
represents a pragmatic and widely-based consensus.

The evolution of this Suite began with CSTA Phase |, which included only the CSTA Services and Protoc
Standards (ECMA-179 and ECMA-180). In Phase Il, Technical Report ECMA TR/68 was added illustrating ho
CSTA services and events may be used in typical call scenarios. That Technical Report reflected a comn
understanding of ECMA member companies.

Phase 1l of CSTA extends the previous Phase Il Standards (ECMA-217 and ECMA-218) in major theme directic
as well as numerous details. This incorporates technology based up@rsit€TI Encyclopedia (Version 1.0),
which was contributed to ECMA bsersit Major areas of advancement include:

« New categories of services and events such as capabilities exchange, charging, media attachment services
data recording (CDR), etc.

» Additional services and events for call and device control.
« Enhancement to existing services and events.
« Organization of services and events to reflect a grouping based on function (call control, device control, etc.).

« Use of a consistent template for services and events that includes initial/final connection state, connection s
transitions, event monitoring sequences, etc.

The First Edition of Standard ECMA-269 was published in December 1997 and the Second Edition was publist
in June 1998.

This edition completes the planned Services for CSTA Phase Il by extending the Second Edition in the followil
areas: ACD and ACD Agent Modeling, Call Associated Features, Call Detail Recording services, Capabili
Exchange services, Data Collection services, I/0O Services, Logical Device Feature services, Physical De\
Feature services, Media Attachment services, Maintenance events, Vendor Specific Extensions, and Voice servic

This ECMA Standard is contributed to ISO/IEC JTC1 under the terms of the fast-track procedure, for adoption
an ISO/IEC International Standard.

Adopted as 3rd Edition of Standard ECMA-269 by the General Assembly of December 1998.

Table of Contents
Scope

Conformance
2.1 Switching Function

2.1.1 Conformant Services

2.1.2 Conformant Events

2.1.3 CSTA Profiles

2.1.4 Support of Service Requests And Manual Mode
2.2 Special Resource Function Conformance

2.2.1 Conformant Services

2.2.2 Conformant Events

2.2.3 Support of Service Requests And Manual Mode
2.3 Computing Function Conformance

References

3.1 ECMA References
3.2 ISO References
3.3 ITU-T References

Definitions and Abbreviations
Functional Architecture

CSTA Operational Model

6.1 Switching Sub-Domain Model
6.1.1 Switching Sub-Domain Name
6.1.2 Application Working Domain
6.1.3 Device
6.1.4 Call
6.1.5 Connection
6.1.6 Call State Definitions

6.1.7 Referencing Devices, Elements, Appearances and Device Configurations

6.1.8 Management of Dynamically-Assigned Identifiers
6.2 Special Resource Functions

6.2.1 Voice Unit
6.3 1/O Services

6.3.1 Data Path Definition

6.3.2 1/O Registration Services

6.3.3 Data Path States and Operational Model

6.3.4 1/O Services Example
6.4 Call Detail Record (CDR) Services

6.4.1 CDR Services Examples

27
31
35
36
38
38
38
40
40
41
41
42
42
42

6.5 Capabilities Exchange
6.5.1 Switching Function Capabilities
6.5.2 Device Capabilities
6.5.3 Dynamic Feature Availability
6.6 Switching Function Information Synchronization
6.6.1 Switching Function Level Information
6.6.2 Device Level Information
6.6.3 Call Level Information
6.7 Status Reporting Services
6.7.1 System Status
6.7.2 Monitoring
6.7.3 Snapshot Services
6.8 Additional Services, Features & Behaviour
6.8.1 Forwarding
6.8.2 Connection Failure
6.8.3 Recall
6.8.4 Call Back
6.8.5 External Calls
6.8.6 Tracking a Diverted Call
6.8.7 Media Stream Access
6.8.8 Routeing Services
6.8.9 Device Maintenance
6.8.10 Prompting
6.8.11 Telephony Tones Features
6.8.12 DTMF and Rotary Pulse Digits Features
6.8.13 Data Collection Services

7 Association Establishment
7.1 Implicit Association

7.2 Explicit Association
8 Security Service

9 Generic Service Requirements

9.1 Service Request

9.2 Service Response (Acknowledgements)
9.2.1 Positive Acknowledgement Models
9.2.2 Negative Acknowledgement

9.3 Diagnostic Error Definitions
9.3.1 Error Categories
9.3.2 Error Values

9.4 Vendor Specific Extensions
9.4.1 Private Data

9.4.2 Escape Services and Private Event

44
44
45
45
45
46
46
46
46
46
48
51
51
51
53
55
55
56
57
57
60
65
65
65
65
66

66
66
67

68

68
68
69
69
70
70
70
70
71
71
72

9.5 General Services and Event Functional Requirements

9.5.1
9.5.2

Services

Events

10 CSTA Device ldentifier Formats

10.1 Device Identifier Formats

10.1.1
10.1.2
10.1.3

Diallable Digits
Switching Function Representation
Device Number

10.2 Functional Requirements

11 Template Descriptions

11.1 Service Template

1111
11.1.2

11.1.3

11.1.4

Service Description
Service Request
Service Response

Operational Model

11.2 Event Template

1121
11.2.2
11.2.3
11.2.4

Event Description
Event Parameters
Event Causes

Functional Requirements

11.3 Parameter Type Template

11.31
11.3.2
11.3.3

Parameter Type Description
Format

Functional Requirements

12 Parameter Types
12.1 Definitions
12.2 Defined Parameter Types

1221
12.2.2
12.2.3
12.2.4
12.2.5
12.2.6
12.2.7
12.2.8
12.2.9
12.2.10
12.2.11
12.2.12
12.2.13
12.2.14

Accountinfo
AgentPassword
AuthCode
CallCharacteristics
CallQualifyingData
Charginginfo
Connectioninformation
ConnectionList
CorrelatorData
CSTAPrivateData
CSTASecurityData
ErrorValue
EventCause
LocalConnectionState

73
73
74

75

75
75
76
78

78

79

79
79
79
80
80
80
80
81
81
81
81
81
81
81

82
82

83
84
84
84
84
85
85
86
86
87
88
88
88
98
101

12.2.15
12.2.16
12.2.17
12.2.18
12.2.19
12.2.20
12.2.21
12.2.22

-iv -

MediaCallCharacteristics
MediaServiceType
MonitorFilter
ServicesPermitted
SimpleCallState
SystemStatus

Timelnfo

UserData

12.3 Identifier Parameter Types

12.3.1

12.3.2

12.3.3

12.3.4

12.3.5

12.3.6

12.3.7

12.3.8

12.3.9
12.3.10
12.3.11
12.3.12
12.3.13
12.3.14
12.3.15
12.3.16
12.3.17
12.3.18
12.3.19
12.3.20
12.3.21
12.3.22
12.3.23
12.3.24
12.3.25
12.3.26
12.3.27
12.3.28
12.3.29
12.3.30

AgentIiD
AssociatedCalledDevicelD
AssociatedCallingDevicelD
AuditoryApparatusID
ButtonID
CalledDevicelD
CallingDevicelD
CDRCrossReflID
ConnectionlD
DCollCrossReflD
DevicelD

DisplaylD
EscapeRegister|D
HookswitchID
IOCrossReflD
IORegisterReqID
LamplID
MediaServicelnstancelD
MediaStreamID
MessagelD
MonitorCrossRefID
NetworkCalledDevicelD
NetworkCallingDevicelD
RedirectionDevicelD
RingerID
RouteingCrossReflD
RouteRegisterReqID
ServiceCrossReflD
SubjectDevicelD
SysStatRegisterlD

13 Capability Exchange Services

13.1 Services

13.1.1
13.1.2
13.1.3

Get Logical Device Information
Get Physical Device Information
Get Switching Function Capabilities

101
102
103
104
104
105
106
106
107
108
108
108
109
109
109
110
110
110
112
112
112
112
112
113
113
113
113
113
114
114
114
114
115
116
116
116
116
117
117

118

118
119
128
132

13.1.4 Get Switching Function Devices 146
13.1.5 Switching Function Devices 148
14 System Services 151
14.1 Registration Services 151
14.1.1 Change System Status Filter 152
14.1.2 System Register 154
14.1.3 System Register Abort 157
14.1.4 System Register Cancel 158
14.2 Services 159
14.2.1 Request System Status 160
14.2.2 System Status 162
14.2.3 Switching Function Capabilities Changed 164
14.2.4 Switching Function Devices Changed 165
15 Monitoring Services 166
15.1 Services 166
15.1.1 Change Monitor Filter 167
15.1.2 Monitor Start 169
15.1.3 Monitor Stop 173
16 Snapshot Services 174
16.1 Services 174
16.1.1 Snapshot Call 175
16.1.2 Snapshot Device 178
16.1.3 Snapshot CallData 181
16.1.4 Snapshot DeviceData 183
17 Call Control Services & Events 185
17.1 Services 185
17.1.1 Accept Call 186
17.1.2 Alternate Call 188
17.1.3 Answer Call 191
17.1.4 Call Back Call-Related 193
17.1.5 Call Back Message Call-Related 196
17.1.6 Camp On Call 199
17.1.7 Clear Call 201
17.1.8 Clear Connection 204
17.1.9 Conference Call 208
17.1.10 Consultation Call 211
17.1.11 Deflect Call 217
17.1.12 Dial Digits 220
17.1.13 Directed Pickup Call 223
17.1.14 Group Pickup Call 226

17.1.15 Hold Call 229

17.2

17.1.16
17.1.17
17.1.18
17.1.19
17.1.20
17.1.21
17.1.22
17.1.23
17.1.24
17.1.25
Events
17.2.1
17.2.2
17.2.3
17.2.4
17.25
17.2.6
17.2.7
17.2.8
17.2.9
17.2.10
17.2.11
17.2.12
17.2.13
17.2.14
17.2.15
17.2.16
17.2.17
17.2.18

Intrude Call

Join Call

Make Call

Make Predictive Call

Park Call

Reconnect Call

Retrieve Call

Single Step Conference Call
Single Step Transfer Call
Transfer Call

Bridged

Call Cleared
Conferenced
Connection Cleared
Delivered

Digits Dialled
Diverted
Established

Failed

Held

Network Capabilities Changed
Network Reached
Offered

Originated

Queued

Retrieved

Service Initiated
Transferred

18 Call Associated Features

18.1

18.2

Services

18.1.1
18.1.2
18.1.3
18.1.4
18.1.5
Events
18.2.1
18.2.2
18.2.3
18.2.4
18.2.5

Associate Data

Cancel Telephony Tones
Generate Digits

Generate Telephony Tones
Send User Information

Call Information

Charging

Digits Generated

Telephony Tones Generated

Service Completion Failure

-Vi-

231
235
239
245
250
253
255
257
261
264
267
268
270
273
278
282
286
289
293
297
302
304
307
311
315
318
322
324
327

331

331
332
334
336
338
341
343
344
346
347
348
351

- Vii -

19 Media Attachment Services & Events

19.1 Services
19.1.1
19.1.2

19.2 Events
19.2.1
19.2.2

Attach Media Service
Detach Media Service

Media Attached
Media Detached

20 Routeing Services

20.1 Registration Services

20.1.1
20.1.2
20.1.3
20.2 Services
20.2.1
20.2.2
20.2.3
20.2.4
20.2.5
20.2.6

Route Register
Route Register Abort
Route Register Cancel

Re-Route
Route End
Route Reject
Route Request
Route Select
Route Used

21 Physical Device Features

21.1 Services
21.1.1
21.1.2
21.1.3
21.1.4
21.15
21.1.6
21.1.7
21.1.8
21.1.9

21.1.10
21.1.11
21.1.12
21.1.13
21.1.14
21.1.15
21.1.16
21.1.17
21.1.18
21.1.19
21.1.20
21.1.21
21.1.22

Button Press

Get Auditory Apparatus Information
Get Button Information

Get Display

Get Hookswitch Status

Get Lamp Information

Get Lamp Mode

Get Message Waiting Indicator
Get Microphone Gain

Get Microphone Mute

Get Ringer Status

Get Speaker Mute

Get Speaker Volume

Set Button Information

Set Display

Set Hookswitch Status

Set Lamp Mode

Set Message Waiting Indicator
Set Microphone Gain

Set Microphone Mute

Set Ringer Status

Set Speaker Mute

354

354
355
359

362
363
364

366

366
367
369
370
371
372
373
375
377
379
381

383

383
384
385
387
389
391
392
394
396
397
398
399
401
402
403
404
406
407
409
410
412
413
415

21.2

21.1.23

Events
21.2.1
21.2.2
21.2.3
21.2.4
21.2.5
21.2.6
21.2.7
21.2.8
21.2.9

21.2.10

21.2.11

- viii -

Set Speaker Volume

Button Information
Button Press
Display Updated
Hookswitch
Lamp Mode
Message Waiting
Microphone Gain
Microphone Mute
Ringer Status
Speaker Mute
Speaker Volume

22 Logical Device Features

22.1

22.2

Services

22.1.1
22.1.2
22.1.3
22.1.4
22.1.5
22.1.6
22.1.7
22.1.8
22.1.9
22.1.10
22.1.11
22.1.12
22.1.13
22.1.14
22.1.15
22.1.16
22.1.17
22.1.18
22.1.19
Events
22.2.1
22.2.2
22.2.3
22.2.4
22.2.5
22.2.6
22.2.7
22.2.8
22.2.9

Call Back Non-Call-Related
Call Back Message Non-Call-Related
Cancel Call Back

Cancel Call Back Message
Get Agent State

Get Auto Answer

Get Auto Work Mode

Get Caller ID Status

Get Do Not Disturb

Get Forwarding

Get Last Number Dialled
Get Routeing Mode

Set Agent State

Set Auto Answer

Set Auto Work Mode

Set Caller ID Status

Set Do Not Disturb

Set Forwarding

Set Routeing Mode

Agent Busy

Agent Logged Off

Agent Logged On

Agent Not Ready

Agent Ready

Agent Working After Call
Auto Answer

Auto Work Mode

Call Back

416

418
419
420
421
423
424
425
426
427
428
429
430

431

431
432
433
435
436
437
439
440
441
442
444
447
448
449
453
455
457
458
460
462
463
464
465
466
467
469
470
472
473
474

22.2.10
22.2.11
22.2.12
22.2.13
22.2.14

- X -

Call Back Message
Caller ID Status
Do Not Disturb
Forwarding
Routeing Mode

23 Device Maintenance Events

23.1 Events

23.11
23.1.2
23.1.3

Back In Service
Device Capabilities Changed
Out Of Service

24 1/0O Services

24.1 Registration Services

24.1.1
24.1.2
24.1.3

I/0 Register
1/0 Register Abort
I/0 Register Cancel

24.2 1/O Services

24.2.1
24.2.2
24.2.3
24.2.4
24.2.5
24.2.6
24.2.7
24.2.8
24.2.9
24.2.10

Data Path Resumed
Data Path Suspended
Fast Data

Resume Data Path
Send Broadcast Data
Send Data

Send Multicast Data
Start Data Path

Stop Data Path
Suspend Data Path

25 Data Collection Services

25.1 Services

25.1.1
25.1.2
25.1.3
25.1.4
25.1.5
25.1.6
25.1.7

Data Collected

Data Collection Resumed
Data Collection Suspended
Resume Data Collection
Start Data Collection

Stop Data Collection
Suspend Data Collection

26 Voice Unit Services & Events

26.1 Services

26.1.1
26.1.2
26.1.3
26.1.4

Concatenate Message
Delete Message

Play Message

Query Voice Attribute

475
476
477
478
480

481

481
482
483
484

485

485
486
488
489
490
491
492
493
495
496
498
500
502
504
505

506

506

507
510
511
512

513

515
516

517

517
518
519
520
522

26.1.5
26.1.6
26.1.7
26.1.8
26.1.9
26.1.10
26.1.11
26.1.12
26.2 Events
26.2.1
26.2.2
26.2.3
26.2.4
26.2.5
26.2.6
26.2.7

Record Message
Reposition

Resume

Review

Set Voice Attribute
Stop

Suspend

Synthesize Message

Play

Record

Review

Stop

Suspend Play

Suspend Record

Voice Attribute Changed

27 Call Detail Record (CDR) Services

27.1 Services

27.11
27.1.2
27.1.3
27.14
27.15

28 Vendor Specific Extensions Services & Events

Call Detail Records Notification

Call Detail Records Report

Send Stored Call Detail Records

Start Call Detail Records Transmission
Stop Call Detail Records Transmission

28.1 Registration Services

28.11
28.1.2
28.1.3

28.2 Services

28.2.1
28.2.2
28.3 Events
28.3.1

Escape Register
Escape Register Abort
Escape Register Cancel

Escape

Private Data Version Selection

Private Event

Annex A Device Appearances (Normative)

A.1 Standard Appearance

Al1l
Al2

Selected-Standard Appearance

Basic-Standard Appearance

A.2 Bridged Appearance

A21
A2.2
A2.3

Basic-Bridged
Exclusive-Bridged
Shared-Bridged

524
526
528
529

531
533
534

536

537
538
539
540
541

542

543

544

545
545
546
547
551
553
555

557
557
558
559
560
561
562
563
564
565

567

567
567
568

568
569
570
571

-Xi -

Annex B ISDN User-User Information Element Encoding for CSTA (Normative) 575
Annex C Compatibility Bitmap Parameters Types (Normative) 577

Annex D Connection State Transition Examples (Informative) 627

- Xii -

2.1

211

Scope
Services and Events Reports supported by Computer-Supported Telecommunications Applications, Phase
(CSTA) are defined in this Standard.

This Standard is focused on providing application service interfaces to a Switching Function, Computing Functi
and a Special Resource Function. A CSTA application interface is disassociated from the various user-netw
interfaces and network-network interfaces CSTA applications may serve, observe or manipulate. Because C!
operates with existing telecommunications interfaces indirectly, it operates generically, so that differences ama
various existing interfaces are hidden from CSTA applications. Support of user-to-network interfaces is outside
scope of CSTA.

Although most terminal equipment (TE) are suitable for use with CSTA there will be instances of TE that will nc
be suitable in certain circumstances. Examples are:

« FAX terminals and modems that are unable to adjust their transmission modes to prevent carrier conflict wt
both parties are alerted via CSTA during call establishment;

» Functional terminals that perform telecommunication functions outside the control of the Switching Function.

Services defined in this Standard allow functional integration between a computing network and
telecommunications network. Computing platforms (i.e., Application Programming Interfaces - APIs) that suppc
such functionally-integrated applications are outside the scope of this Standard.

Communication between the computing and switching (i.e., telecommunications) networks may take place
intervening networks ranging from simple point-to-point connections to local- or wide-area telecommunicatior
networks.

This Standard is part of a suite of CSTA Standards and Technical Reports that provide a comprehensive descriy
of the architectural and practical issues involved in applying, implementing, and utilizing CSTA-based CT
applications.

Conformance

This Clause specifies the conformance requirements for a Switching Function, Special Resource Function, ar
Computing Function.

Conformance requirements specify the parts of this Standard that a CSTA conformant implementation shall supp

This Standard specifies an operational model (Clause 6, “CSTA Operational Model” and Clause 9, “Gene
Service Requirements”) that defines a collection of objects (e.g. domains and sub-domains, logical and phys
elements, calls) and the relationships between these objects.

The behaviours of CSTA-conformant services, features, and event reports are determined by this model.
Switching Function

In order to conform to this Standard a switching function shall support the following as a minimum:

1. the requirements pertaining to CSTA features as specified in Clause 6, “CSTA Operational Model".
2. the requirements as specified in Clause 9, “Generic Service Requirements”.

3. the Get Switching Function Capability service.

4. atleast one of the profiles as specified in 2.1.3, “CSTA Profiles”.

Conformant Services
In order to conform to a specific CSBervicean implementation shall support the following as a minimum:
1. the requirements of the service as specified by its service description, service request parameters, sel

response parameters, and operational model including connection state transitions, monitoring evi
sequences, and functional requirements.

21.2

2.13

2131

2.1.3.2

214

2.2

2. the requirements associated with each parameter used in the service as specified by its parameter description,
format, and functional requirements in Clause 12, “Parameter Types”.

3. all of the events that are associated with its service completion criteria, as documented in its event monitoring
tables.

4. service requests that contain a device identifier parameter, an implementation shall support, at a minimum, the
Diallable Digits format as specified i0.1.1, “Diallable Digits”.

Conformant Events
In order to conform to a specific CSBventan implementation shall support the following as a minimum:

1. the requirements of the event as specified by its event description, event parameters, event causes, and
functional requirements.

2. the requirements associated with each parameter used in the event as specified by its parameter description,
format, and functional requirements in Clause 12, “Parameter Types”.

3. events that contain a device identifier parameter, an implementation shall support, at a minimum, the
Switching Function Representation format as specified in 10.1.2, “Switching Function Representation”.

CSTA Profiles
Some CSTA services and events are grouped together as profiles.
Basic Telephony Profile
This profile includes the following:
1. CSTA Services: Answer Call, Clear Connection, Make Call, Monitor Start (with the monitorType of device-
type), and Monitor Stop.
2. CSTA Events: Connection Cleared, Delivered, Established, Failed, Network Reached, Originated, and Service
Initiated.

Other CSTA services and events may be provided in any combination in addition to this set.

Routeing Profile

If the switching function supports Routeing Services as specified in Clause 20, “Routeing Services”, it shall support
a minimum set of Routeing Services that includes: Route Request, Route Select, and Route End (from the switching
function only).

Other Routeing services may be provided in any combination in addition to this set.

If a switching function supports the routeing for digital data calls, then the Route Register and CSTA Route
Register Cancel shall also be included in the minimum set.

Support of Service Requests And Manual Mode

A conformant switching function may support a given service defined in this Standard through the CSTA service
boundary but is not required to support the equivalent service in a manual mode.

A conformant switching function may support a feature associated with an equivalent CSTA service defined in this
Standard through manual mode but is not required to support the equivalent service through the service boundary.

Special Resource Function Conformance

In order to conform to this Standard a special resource function shall support the following as a minimum:
1. the requirements pertaining to CSTA features as specified in Clause 6, “CSTA Operational Model".
2. the requirements as specified in Clause 9, “Generic Service Requirements”.

3. for a supported service, the special resource function shall not reject as unsupported all of the events specified
in the monitoring event sequences associated with the service.

4. the atomic service request acknowledgment model as specified in 9.2, “Service Response
(Acknowledgements)”.

221

2.2.2

2.2.3

2.3

Conformant Services
In order to conform to a specific CS®Bervicean implementation shall support the following as a minimum:

1.

the requirements of the service as specified by its service description, service request parameters, sel
response parameters, and operational model including connection state transitions, monitoring evi
sequences, and functional requirements.

the requirements associated with each parameter used in the service as specified by its parameter descri
format, and functional requirements in Clause 12, “Parameter Types”.

all of the events that are associated with its service completion criteria, as documented in its event monito
tables.

Conformant Events
In order to conform to a specific CSBventan implementation shall support the following as a minimum:

1.

the requirements of the event as specified by its event description, event parameters, event causes,
functional requirements.

the requirements associated with each parameter used in the event as specified by its parameter descrij
format, and functional requirements in Clause 12, “Parameter Types”.

Support of Service Requests And Manual Mode

A conformant special resource function may support a given service defined in this Standard through the CS
service boundary but is not required to support the equivalent service in a manual mode.

A conformant special resource function may support a feature associated with an equivalent CSTA service defi
in this Standard through manual mode but is not required to support the equivalent service through the sen
boundary.

Computing Function Conformance

In order to conform to this Standard a computing function shall support the following as a minimum:

1.
2.
3.

10.

11.

12.

the requirements pertaining to CSTA features as specified in Clause 6, “CSTA Operational Model”.
the requirements as specified in Clause 9, “Generic Service Requirements”.

for a supported service, the computing function shall not reject as unsupported all of the events specifiec
the monitoring event sequences associated with the service.

the “Single Physical and Logical Element” and “Logical Element Only” device configurations as specified il
6.1.3.3, “Device Configurations”.

for service requests, the Diallable Digits format of Device ldentifiers as specifi@@.inl, “Diallable
Digits”.
for events, all formats of Device Identifiers as specified in 10.1, “Device Identifier Formats”.

the “No Appearance Addressability” and the “Individual Appearance Addressability” of referencing device
elements as specified in 6.1.7, “Referencing Devices, Elements, Appearances and Device Configurations”.

both types of service request acknowledgment models (e.g., Atomic and Multi-Step) as specified in 9
“Service Response (Acknowledgements)”.

all failure models as specified in 6.8.2, “Connection Failure”.

both switching function options of handling unsupported parameters in service requests as specified in
capability exchange services.

both the fixed and local view of the primaryOldCall and the secondaryOldCall parameters in the Conferenc
and the Transferred events.

all bi-directional services for which it registered, whether explicitly (i.e., via a service registration service suc
as System Status Register) or implicitly (i.e., the switching function does not support registration but do

3.1

3.2

3.3

support (as indicated through the capabilities exchange services) a particular bi-directional service and
therefore may issue a service request to the computing function).

References

The references used in this Standard are defined in the following sections.
ECMA References

ECMA-143 Private Integrated Services Network (PISN) - Circuit mode bearer services - Inter-Exchange
Signalling Procedures and Protocol (QSIG-BC), 3rd edition (June 1997)

ECMA-155 Private Integrated Services Network (PISN) - Addressing, 2nd edition (June 1997)

ECMA TR/72 Glossary of Definitions and Terminology for Computer Supported Telecommunications
Applications (CSTA) Phase lll, 2nd edition (December 1998)

ISO References

ISO 8649:1988 Information Processing Systems - Open Systems Interconnection - Service definition for the
Association Control Service Element.

ITU-T References

E.131 Subscriber Control Procedures for Supplementary Telephone Services (7) (1988)

E.160 Definitions Relating to National and International Numbering Plans (6) (1993)

E.161 Arrangement of Digits, Letters and Symbols on Telephones and Other Devices that can be used for
Gaining Access to a Telephone Network (7) (1993)

E.164 The International Public Telecommunication Numbering Plan (7) (1997)

Q.931 Digital Subscriber Signalling System No. 1 (DSS 1) - ISDN User-Network Interface layer 3

Specification for Basic Call Control (9) (1993)

Definitions and Abbreviations

The definitions and abbreviations used in this Standard are defift@dssary of Definitions and Terminology for
Computer Supported Telecommunications Applications (CSTA) PhaBEMA TR/72.

Functional Architecture

The objective of CSTA Architecture is to define the inter working mechanisms among Computing, Switching and
Special Resource Functions independently from their physical implementations.

The concepts of: distribution of Computing, Switching and Special Resource Functions, CSTA Service, client
server model, and CSTA objects as abstracted at a CSTA Service Boundary, are specified in another part of the
CSTA Phase Il Suite.

CSTA Operational Model
The operational model considered for CSTA is summarized in this clause.

The set of accessible Computing, Switching and Special Resource Functions from which an application might
receive service defines a CSTA domain. An example of a CSTA domain is shown in the next figure. The CSTA
domain contains switching, computing and special resource domains that are divided in the figure by the heavy
lines. The special resource, switching and computing domains comprise Computing Functions (C1, C2 and C3),
Switching Functions (S1, S2 and S3), and Special Resource Functions (SR1, SR2 and SR3). Each function can
provide to a CSTA application, a view of the domain in which the function resides. Each such view defines a sub-
domain. If one or more functions provides an identical view, then these functions are part of the same sub-domain.
CSTA applications encompass at least two different sub-domains, and are represented in the next figure as
application domains.

6.1

Figure 6-1 Domains and Sub-Domains

Switching

Computing Sub-domain

Sub-domain

Application
Domains

Application
Domain

Switching

Computing Sub-domain

Sub-domain

Special Resource

Sub-domain Sub-domain

Note that a function may provide a view to an application that includes not only the objects within its sub-domal
but also the objects it can view in another (presumably related) sub-domain. For example (in Figure 6-1),
computing domain {C1} may receive a view of a switching sub-domain from a switching domain {S2+S3}. Tha
switching sub-domain may receive a view of a special resource sub-domain from a special resource domain {SF
and relay that view, in addition to the view of its sub-domain, to the Computing Function. This relay may preser
two views of separate switching and special resource sub-domains, or it may provide a combined view o
switching/special-resource sub-domain. As shown in the figure, {C1} also may have its own, direct view of

special resource sub-domain {SR2+SR3}. Finally, {C2+C3} represent a computing domain that is potentially, b
not yet, involved in CSTA transactions with other sub-domains because an association has not yet been establi
between any other sub-domain and {C2+C3}.

Switching Sub-Domain Model

The tools needed to provide an abstract view of the Switching Function are defined by the switching sub-dom
model. This model allows an application to conceptualize the Switching Function’s operation. To provide th
abstract view, CSTA defines several CSTA switching sub-domain model Objects that can be observed and a
upon by the Switching Function on behalf of the Computing Function. Those objects include CSTA Devices, Cal
and Connections.

The concepts discussed in this section have also been introduced in another part of the CSTA Phase IIl Suite. F
to this reference for an introduction to these concepts.

6.1.1

6.1.2

6.1.3

Switching Sub-Domain Name

The switching function is identified by a uniqgue name within the switching domain known at association time. This
name may be used by the computing function to identify that different CSTA applications resulting from different
associations are operating in the same switching sub-domain.

Application Working Domain

The application working domain is the subset of devices (and the calls and connections associated with those
devices) inside a switching sub-domain that are controllable and/or monitorable over a CSTA Service Boundary.
This subset is known at association time. The scope of this working domain may result from considerations like the
application’s design, licensing policy, security constraints, etc., and is under administration of the switching sub-
domain. Different CSTA applications operating in the same switching sub-domain can have different working
domains or share totally or partially the same working domain.

Device

CSTA enables manipulation and observation of devices that allow users to access telecommunications services.
NOTE

It is not claimed that this Standard alone supports ISDN (or any other) devices because, for example, of the
additional information required to support such devices in PISNs. CSTA only provides a facility for passing ISDN
(or other) specific information to allow, for example, a selection among ISDN devices sharing the same directory
number (bearer capability, subaddress, etc.). Another example, that applies generally to telecommunications
networks (including ISDN and OSI), is specifying the originator for a call that is established via CSTA. With the
current signalling support, each party in a call can act only as a called party because the “network” is acting to
originate the call. This situation has implications for both the network-to-terminal signalling and any application-
level signalling that is significant to the calling party (e.g., issuing A_Associate).

Devices that are visible or controllable via CSTA are know@%FA Devices

CSTA Devices can be either physical devices (such as buttons, lines, trunks, and stations) or logical devices (such
as groups of devices, pilot numbers, and automatic call distribution groups). CSTA Devices have attributes that
allow CSTA to monitor and manipulate them. The attributes of any CSTA Device shall be:

1. Device Type- differing types of CSTA Device can be used for various purposes and can be manipulated and
observed differently within CSTA. CSTA Device Types are listed and defined in 6.1.3.4, “Device Categories”.

2. Media Characteristics - CSTA devices have distinct capabilities and characteristics defined by their media
features. CSTA represents these characteristics by the following attributes.

¢ Media Class: A CSTA Device shall belong to at least one and may belong to more than one media class.
The Media Class can be used in Call Control services to help select a device for a call or it can be used in
call control events to report the media class associated with the call. The following media classes are
defined in CSTA:

¢ Audio - 3.1 KHz audio. Devices in this class are used to make audio calls excluding speech calls. It
includes G3 FAX and facsimile machines.

« Data - Devices in this class are used to make digital data calls (both circuit switched and packet
switched). This class includes digital computer interfaces and G4 facsimile machines.

« Image - Devices in this class are used to make digital data calls involving imaging, or high-speed,
circuit-switched data in general. This class includes digital video telephones and CODECs.

« \Voice - Devices in this class are used to make speech calls. This class includes standard telephones.
e Other - A class comprising devices not in the Data, Image, Audio or \oice classes.

¢ Media Stream Information: The media stream associated with a CSTA Device has attributes such as
Connection Rate Bit Rate, andDelay Tolerance This information can be used in CSTA services to
help select the media stream information for a call or to report the media stream information associated
with an existing call.

Protocol Specific Information. Many protocols provide additional information beyond what is
standardized in CSTA to help distinguish devices. CSTA provides a mechanism where protocol speci
information can be passed in CSTA messages to help select a specific device for a call or to provi
additional information about the protocol specific information associated with the call. This informatior
consists of:

« The type of call control information elements (ISDN, for example).

e A character string that contains the protocol specific information elements. For example, in ISDN
the information may include Bearer Capability, Subaddress (for both calling and called devices
High Layer compatibility, and Low Layer compatibility as defined in IS 11572; 1993.

Refer to 12.2.15, “MediaCallCharacteristics”, for a description of the Media Characteristics that are used
Call Control services to select devices for a call and in Call Control events to report the media Characterist
associated with the devices involved with the call.

3. CSTA Device Identifier - Each device that can be observed and/or manipulated shall be referenced across t
CSTA Service Boundary. To accomplish this, each device shall be identified using a Device ldentifier.

Throughout this standard, the teBavice Identifieshallalways mean CSTMBevice Identifier

Device Identifiers may be static or, only when used in the context of a connection identifier, dynamically
assigned.

A static Device ldentifier shall be stable over time. It shall remain constant and unique between call
associations and within both the switching and computing functions. An example of a static Devic
Identifier is an ITU-T E.164 Directory Number.

It may be useful for the Switching Function to convert a Device Identifier to another static form for use i
service interactions. An example, it might be useful to transform a Public Directory Number into a Privat
Directory Number. This transformation allows service interactions to be independent of the identificatio
mechanism and allows reduction in the amount of data exchanged. This shortened form of Devi
Identifier is known as a CSTA Short Form Device ldentifier.

A static Device Identifier may be used in conjunction with “MediaCallCharacteristics”, as specified in
12.2.15, “MediaCallCharacteristics”, on page 101, in order to distinguish among CSTA Devices the
share a Device Identifier.

A dynamically-assigned Device ldentifier is temporary (lasting for the duration of a call) and may be
created at any appropriate time. Once a CSTA Device has been included in a call, it may be desirable
continue to refer to the particular instance of the CSTA Device associated with this call for manipulatio
or tracking. A static Device Identifier may not always be sufficient because it may not be available c
because it is too long and cumbersome for efficient use. In these cases the Switching Function ¢
dynamically assign a Device Identifier as a device reference or handle for the duration of the ca
Management of the dynamically-assigned Device Identifier is discussed in 6.1.8.

The Device Identifier Statusindicates if an actual Device Identifier is being provided in a parameter or
the reason why it is not being provided. The set of possible values for the Device Identifier Status is:

« Provided- A Device Identifier is present.

* Not Known- Indicates that the switching function cannot provide the Device Identifier but knows
that the device exists.

* Not Required Indicates that the device is not relevant in this case.
* Not Specified Indicates that the device cannot be specified.

The parameter type associated with a particular Device ldentifier determines how it is interprete
restrictions on its use, and the Device Identifier Statuses that are applicable. These parameter ty
(AssociatedCalledDevicelD, AssociatedCallingDevicelD, CallingDevicelD, CalledDevicelD, DevicelD,

RedirectionDevicelD, and SubjectDevicelD) are specified in 12.3, “Identifier Parameter Types”, on page
107.

« The format of a Device Identifier is specified in Clause 10, “CSTA Device Identifier Formats”.

4. Device State- A CSTA Device itself does not have a state or status directly associated with it. The elements,
components and calls associated with the CSTA Device do have states and statuses associated with them. The
following is the list of these states and statuses associated with a CSTA Device:

« A connection state is the state of a CSTA Device’s logical element’s connection into a call. This state is
associated with Call Control features/services. For more information on connection states, refer to Clause
6.1.5, “Connection”, beginning on page 31.

e The status of the physical components associated with a physical element of a CSTA Device. (e.g., the
hookswitch status). For more information, refer to Clause 21, “Physical Device Features”, beginning on
page 383.

e The status of the logical device features/services associated with a logical element of a CSTA Device.
(e.g., the forwarding and do not disturb status). For more information, refer to Clause 22, “Logical Device
Features”, beginning on page 431.

5. Device Elements- A CSTA Device represents various types of telephony endpoints in a switching sub-
domain and allows access to telephony services. A CSTA Device can range from a single endpoint (e.g.,
station) to a set of associated endpoints that form a group. Each CSTA Device is represented by its attributes
(e.g., identifier, state(s), type) as well as its features/services. These attributes/features/services are grouped
into two categories which are referred todevice elementA device element encompasses the control and
observation of a specific set of CSTA Device attributes/features/services. The device elemeingsana:
elementandlogical element

The logical element of a CSTA Device encompasses the set of attributes/features/services (e.g., Make Call, Set
Forward) that have any association with the control and observation of a call at a CSTA Device (i.e.,
connection). The physical element of a CSTA Device encompasses the set of attributes/feature/services that
have any association with physical components of the CSTA Device that would potentially make up the user
interface of the device.

All addressable (i.e., has a single identifier) CSTA Devices consist of one of the following device element
combinations.

Figure 6-2 Logical Element Only

] @ c—GaD——{ o |
(A)]

6.1.3.1

Figure 6-3 Physical Element Only

/(Buttons ’ /
A Speaker o
P

Microphone | <&~~~

%uditory Apparatus

o

\

UONMSHOOH

/

Figure 6-4 A Logical and Physical Element

Buttons ’
A Display Speaker -
v Microphone i
Auditory Apparatus

represents another device

v
o
)¢
Bla

represents the identifiers for the physical elements

represents the identifiers for the logical elements

> r T O

represents an appearance of a logical element

<>

indicates that there is an interaction and/or association between the elements or components of an element.

For example, a “plain old telephone set” (POTS) consists of a logical and physical element. A computir
function learns about the devices, their elements, and their associated attributes\features\services in a switc
sub-domain by using the capabilities exchange services (refer to 13.1 beginning on page 118). The follow
sections describes the device elements and the device attributes/features/services that are associated wit

elements in detail.

Physical Element

The physical element represents the attributes of the physical components and their associated features/service
make up the user interface of a device (e.g., the components of a telephone set). A physical component at a C
Device can be a piece of hardware or a virtual (e.g., software) representation of a piece of hardware. For examp
set of buttons on a device (i.e., physical components of the device) could be comprised of a piece of hardware \
12 buttons and a switching function software representation of 12 more buttons. As a result, the device has a st
24 buttons associated with its physical element.

The combinations of physical components associated with the physical element are switching function specific.
following features/services are controlled and observed through the physical element:

« The Physical Device features/services, such as Button Press, Get/Set Hookswitch Status, and Get/Set Sp
Volume.

e The I/O Services such as Start Data Path and Send Data (when applied to the physical element of a device).

Note that these features/services also include the associated events and monitoring of these events.

6.1.3.1.1

-10 -

The physical element of a device is observed and/or controlled within the switching function through an assigned
Device ldentifier.

Note that if the device is a combination of logical and physical elements, the assigned Device Identifier is the same
for both elements.

In order for the physical components to interact or be associated with calls at the device, the device shall have a
logical device element (for more details, see 6.1.3.2, “Logical Element”) and/or some association(s) with a logical
element(s) from another device(s) (for more details, see 6.1.3.3, “Device Configurations”). The physical
components interact with calls through these logical device element(s) but it is device and switching function
specific as to how these components actually interact and are associated with the calls.

The following sections describe the physical components that can be associated with the physical element of the
device. All physical components shall be controlled and observed in conjunction with the physical element (i.e.,
associated with the physical element’s Device ldentifier).

Auditory Apparatus

An auditory apparatus is a component which is used to convert electronic signals into voice/speech (i.e., a speaker)
and/or convert voice/speech into electronic signals (i.e., a microphone) but at a minimum shall have either a
speaker or a microphone. A physical element can have several auditory apparatuses associated with it. Each
auditory apparatus can be used independent of each other. An auditory apparatus has several attributes which can be
controlled and observed by a computing function. The following are those attributes:

1. Auditory Apparatus type There are several types of auditory apparatuses. Each type representing a different
physical configuration and/or function. The following is the list of auditory apparatus types:

a. Handset An auditory apparatus that is held in a person’s hand and contains a microphone and speaker.
b. Headset An auditory apparatus that is worn on a person’s head and contains a microphone and speaker.

c. SpeakerphoneAn auditory apparatus that does not require a person’s body to come into contact with the
apparatus and contains a microphone and speaker.

d. Speaker-only phoneA Speakerphone without a microphone.
e. Microphone-only A type that provides only a microphone.
f. Other- An auditory apparatus that is unique to the given switching function.

2. Auditory Apparatus Identifier Each auditory apparatus that can be observed and/or controlled within the
switching function is referenced using an assigned identifier. The auditory apparatus identifiers associated
with a given physical element’s Device Identifier are unique.This identifier is used to control and observe all
auditory apparatus attributes except the hookswitch which is associated with the apparatus.

3. Microphone- The auditory apparatus may or may not have a microphone. If a microphone is present at the
auditory apparatus, then there are two features of the microphone that may or may not be controlled (i.e.,
settable) and observed (i.e., readable).

a. Gain- This is the level at which the microphone is generating the electronic signal. For more details, refer
to the definition of the microphoneGainValue parameter in associated services and events.

b. Mute- This is the capability to temporarily disable the microphone. For more details, refer to the definition
of the microphoneMute parameter in associated services and events.

Both of these features are controlled and observed using the auditory apparatus identifier.

4. Speaker- The auditory apparatus may or may not have a speaker. If a speaker is present at the auditory
apparatus, then there are two features of the speaker that may or may not be controlled (i.e., settable) and
observed (i.e., readable).

a. Volume- This is the level at which the speaker is boosting the electronic signal when generating the
associated voice sound waves. For more details, refer to the definition of the speakerVolumeValue
parameter in associated services and events.

6.1.3.1.2

6.1.3.1.3

6.1.3.14

-11 -

b. Mute- This is the capability to temporarily disable the speaker. For more details, refer to the definition c
the speakerMute parameter in associated services and events.

Both of these features are control and observed using the auditory apparatus identifier.

5. Hookswitch association This identifies the particular hookswitch that is used to activate (i.e., put into use)
and deactivate (i.e., remove from use) the auditory apparatus. It also indicates, if the particular hookswitch ¢
be controlled (i.e., settable) and observed. For more details on hookswitches, refer to associated services
events.

Hookswitch

A hookswitch is a component which is used to activate (i.e., put into use or off-hook) or deactivate (i.e., remo
from use or on-hook) an auditory apparatus(es). When a hookswitch is off-hook, it enables the auditc
apparatus(es) to transmit and receive the electronic signals associated with sound, and when it is on-hook,
capability is disabled. A physical element can have several hookswitches associated with it. Each hookswitch
be used independently of each other. A hookswitch has one attribute which can be controlled and observed |
computing function. This attribute is the hookswitch identifier. This identifier is assigned by the switching functior
The hookswitch identifiers associated with a given physical element’s Device Identifier are unique. This identifi
is used to control and observe the status of the particular hookswitch (i.e., on-hook, off-hook).

Button

A button is a component which executes a specific feature/service that is assigned to it. The most comn
implementation of this component, is a piece of hardware that is pressed and released, thereby executing the fee
service assigned to it (e.g., each of the number buttons on a station). However, an implementation can use
component that can produce a similar behaviour. A button can also have the capability of toggling between t
settings of a feature/service (e.g., enabling and disabling Do Not Disturb, that is you press the button once
enables the Do Not Disturb feature/service, and press again, it disables the feature/service). The button can
have the capability of looping through a series of features/services. Almost any feature/service or set of featul
services can be assigned to a button, but generally a switching function makes visible buttons only with featu
services that are not available through the components/attributes/features/services defined in this Standarc
button can also be used to represent another physical component (e.g., a hookswitch). A physical element can
many buttons associated with it. Each button can be used independently of each other. A button has the follow
attributes which can be controlled and observed by the computing function:

1. Button Identifier- Each button that can be observed and/or controlled within the switching function is
referenced using an assigned identifier. The button identifiers associated with a given physical elemer
Device Identifier are unique. This identifier is used to control and observe all other button attributes.

2. Button Label- This is a label by which people interacting with the physical device refer to a given button.
This label is a character string which is retained by the switching function. This attribute can also be chang
(if supported) by the computing function. The meaning of a Button Label is specific to the users of a particul
device and changing it does not change the function of the button.

3. Button Function This is a feature which can be assigned by the switching function to describe the functio
associated with a given button. The switching function may reassign the functionality of a button and chan
this attribute as required (in response to other button presses, for example) but it may not be changed dire
by the computing function.

4. Button Associated NumberThis is a diallable digits format Device Identifier which is associated with the
feature/service assigned to the button. This Device Identifier is used by the feature/service when it is exect
by the button being pressed. This attribute is optional and only applies to buttons that have some form
associated number. This Device Identifier is initially assigned by the switching function and can be chang
(if supported) at any time by either the switching or computing function.

5. Button Press Indicator This indicates if the button can be pressed via the Button Press service.

Lamp
A lamp is a component that represents (i.e., indicates), for example, the status of, for example, a feature/sen
physical component, logical device element or other CSTA device. The most common implementation of th

-12 -

component is a piece of hardware that emits light. However, an implementation can use any component that can

produce a similar behaviour (e.g,. an icon presented on a display). A physical element can have many lamps

associated with it. Each lamp can be used independently of each other. A lamp has several attributes which can be
controlled and observed by the computing function. The following are those attributes:

1. Lamp Identifier- Each lamp that can be observed and/or controlled within the switching function is referenced
using an assigned identifier. The lamp identifiers associated with a given physical element’s Device Identifier
are unique.This identifier is used to control and observe all other lamp attributes.

2. Lamp Label- This is a character string which is assigned by the switching function to describe the feature or
service's status associated with this lamp. This attribute cannot be changed by the computing function.The
meaning of the Lamp Label attribute is switching function specific.

3. Lamp Mode- This is the output of the lamp which is used to indicate the status of the (feature/service) or
physical component. The output values are represented by the various ways light can be produced from a
lamp. This output can be changed at any time by either the switching or computing function. For more details,
refer to definition of the lampMode parameter.

4. Lamp Brightness This attribute indicates the visible brightness of the lamp when it is on. This attribute can
be changed by the switching function or by the computing function. For more details, refer to the definition of
the lampBrightness parameter.

5. Lamp Color- This attribute is an additional characteristic of the lamp which helps distinguish it from other
lamps. This attribute can only be changed by the switching function. For more details, refer to the definition of
the lampColor parameter.

6. Button Association This identifies a button that is associated with the lamp. The lamp can be used to
represent either the status of the feature/service associated with the button or to represent the status of the
toggle sequence.

6.1.3.1.5 Ringer
A ringer is a component associated with the physical element that provides indication that a device is being rung.
There may be one or more ringers associated with a device.

A ringer has attributes that can be controlled and observed by a computing function. The following is a list of those
attributes:

1. Ringer Identifier- Each ringer that can be observed and/or controlled within the switching function is
referenced using an assigned identifier. The ringer identifiers associated with a given physical element’s
Device Identifier are unique. This identifier is used to control and observe all ringer attributes associated with
the device.

2. Ring Mode- This attribute describes if the ringer is engaged in a ringing cycle. It will reninging for the
entire ringing cycle (e.g. across consecutive instances of a ringing pattern). Typically only one ringer on a
physical element can be rung at one time.

3. Ring Count This attribute describes the number of ring cycles (instances of ring pattern) that the ringer has
completed. This attribute is set to 0 immediately before the first ring cycle starts. Note that this is used to
guery the most recent ring count even after ringing has ceased.

4. Ring Pattern- This attribute describes the type of Ring Pattern associated with a ringer. Each individual Ring
Pattern cycle may consist of zero or more periods of audible ringing followed by a silent phase. The Ring
pattern may be used to help audibly distinguish the types of calls at a device or to uniquely identify a ringer.
The meaning of the Ring Pattern is switching function specific.

5. Ring Volume This is the level at which the ringer is set to ring. This information is associated with the ringer
until it is reset by the switching function or until it is changed via the Set Ringer Status service.

6.1.3.1.6 Display
A display is a component which presents a two dimensional array of characters associated with the physical
element. A physical element can have several displays. A display may be real or virtual; that is it may or may not

-13 -

actually be present on the physical device itself. Displays have eight attributes as visualized in Figure 6-5, “Disp

Attributes™

1. Display Identifier -To identify a specific display on a physical device.

2. Logical Rows The number of rows on the logical display.

3. Logical Columns The number of columns on the logical display.

4. Physical Rows The number of rows on the physical display. This number is always smaller or equal t
Logical Rows

5. Physical Columns FThe number of columns on the physical display. This number is always smaller or equal t
Logical Columns

6. Physical Base - The location of the first character of the physical display expressed as
(LogicalRowNbr,LogicalColumnNbr) and identified in Figure 6-5 pbrpbc). Note that the top-left most
position in the logical display is defined &0).

7. Character Set Normally ASCII, but may be also be Unicode or a proprietary character set used by th
switching function. This attribute is fixed for a given display.

8. Contents A character string which represents the contents of the logical display. Spaces are always presen

the size of this string is always the product of the number of logical rows and logical colummanidtgs
can be observed and/or set (if supported) by the computing function. When setting the valu@ootehis
an offset (starting point in logical display) and a length field (humber of characters to be set) shall be given).

The following figure visualizes these attributes further:

Figure 6-5 Display Attributes

Logical . , . .
Columns Physical Display Logical Display
» .
0 phe P‘h)-'swal
Columns
0 ¥
LLogical
Rows pb
Physical
Rows - I
E B
- o m - . -_-__-_.-*
-‘- - - -] - L - - - - - - - - - - - -] - L} - - !__-.;—--—*
-] [T]
- - - - -] - L - - - - - - - - - - - -] - Ll - - - - - *
=== == = Order in which characters from

Contents are located on the logical

PB = Physical Base
Located on logical display at locationgbr,phe)

6.1.3.2

6.1.3.2.1

-14 -

Logical Element

A logical element is the part of a device that is used to manage and interact with calls at a device. This element
represents the isochronous media stream channels (e.g., ISDN bearer channels) and associated call handling
facilities that are used by the device when involved in a call (i.e.,via a connection). If a device also has a physical
element, the logical element may interact with the physical element’s components in order to convey call
information (e.g., via lamps) to the user of the device, to provide/manage the media stream data of the call (e.g., via
an auditory apparatus) for the user of the device, and to allow the user of the device to manage the calls (e.g., via
buttons). The implementation of this interaction is device and switching function specific. The following are the
call and call-related features/services that are controlled and observed through the logical element itself:

e Logical Device features/services which are used to indirectly control calls at the device such as Get/Set
Forwarding, Get/Set Do Not Disturb and Get/Set Auto Answer.

Note that these features/services also include the associated events and monitoring of these events.

The logical element of a device is observed and/or controlled within the switching function through an assigned
Device Identifier.

Note that if the device is a combination of logical and physical elements, the assigned Device Identifier is the same
for both elements.

The following sections describe the attributes and components of the logical element. These attributes/component
shall be controlled and observed in conjunction with the logical element (i.e., associated with the logical element’s
Device ldentifier).

Appearance

An appearance is a receptor which is used to connect with at most a single call at the device. A logical element
consists of one or more appearances. Appearances are also sometimesattafipgearancesThe number of
appearances that a logical element can have is switching function and device specific. Changes in the number of
addressable appearances for a logical element are reflected by the capabilities exchange services (13.1 beginning or
page 118). Each appearance can be used independently. The following are the call and call-related features/services
that are controlled and observed through an appearance for a particular call:

« Call Control features/services such as Make Call, Deflect Call, Answer Call.

e Call Associated features/services such as Associate Data, Generate DTMF, Generate Telephony Tones.
« Routeing Services such as Route Request, Route Select and Route End.

¢ Media Stream Access such as Attach Media Service, and Detach Media Service.

¢ 1/O Services such as Start Data Path and Send Data (when applied to logical elements of a device.)
Note that these features/services also include the associated events and monitoring of these events.

An appearance has several attributes. The following are those attributes:

1. Addressability- The addressability of an appearance refers to whether or not the switching function is
explicitly representing the appearance to the computing function.

a. Addressable An appearance is addressable if it can be explicitly referenced by the computing function at
any time with or without the involvement in a call, through a CSTA static device identifier. Refer to Clause
10, “CSTA Device Identifier Formats” for a description of how addressable appearances are referenced.

b. Non-addressable An appearance is non-addressabile if it can only be referenced, when it is involved with
a call, through a CSTA connection identifier. In this case, the logical element dynamically creates and
destroys appearances based on the call activity, call capabilities, and features/services of the device. Once
the appearance is created (i.e., associated with a call), the corresponding Connection Identifier shall be used
to control and observe the appearance. For example, when a call is presented to the device, the logical
element creates an appearance to handle the call.

6.1.3.3

6.1.3.3.1

-15-

2. Appearance Type The type of appearance is based on its relationship with other devices. The type
appearance determines the functionality and behaviour associated with the logical element of the devi
There are two types of appearances: Standard and Bridged Appearances.

Refer to Annex A for a complete description of the types of appearances and their associated behaviour.
Device Configurations

A device configuratiordescribes the arrangement of the various elements and appearances that can be dire
associated with a given device. Multiple device configurations may be formed from the possible combinations
physical elements, logical elements, and different appearance types.

Device configurations are described in terms of a specific device configuration for a particular device:

1. Device's element combination This indicates whether the device has a physical element only, a logical
element only or both a logical and physical element.

2. Other devices using the physical elemeithis indicates the list of devices (i.e., their logical elements) that
are using the physical element of the base device.

3. Other devices using the logical elemerthis indicates the list of devices (i.e., their physical elements) that
are using the logical element of the base device.

4. The logical element’s appearance addressabilithis is an attribute of the appearances of the logical element
of the base device (if the logical element is present).

5. The logical element’s appearance typ&his is an attribute of the appearances of the logical element of the
base device (if the logical element is present).

6. The number of appearances associated with the logical elenTéng is an attribute of the logical element of
the base device (if the logical element is present).

As a set, these attributes describe the device configuration for a specific device. The following sections illustr
typical examples of device configurations that can exist in a switching sub-domain.

Note that in the following examples, where physical and logical elements form part of the same device, t
application of a suffix number to the identifying letter identifies that they are parts of the same device (e.g. L1, |
are a single device; L1, P2 are elements from different devices).

Logical Element Only

This device configuration has only one logical element (e.g., some Park devices). The following identify tr
attributes of this device configuration:

« Device's element combinatierogical element only (L1)

« Other devices using the physical elemeNbne

« Other devices using the logical elemehtone

« The logical element’s appearance addressabili§on-addressable

« The logical element’s appearance typselected-standard

« The number of appearances associated with the logical elematfitmited (switching function based limits)
Figure 6-6 is a diagram of a logical element only device configuration.

Figure 6-6 Logical Element Only Device Configuration

L1

©

-16 -

6.1.3.3.2 Single Physical and Logical Element
A Single Physical and Logical Elemedévice configuration consists of a single physical element of the device
associated with a single logical element of the device that contains non-addressable standard appearances. This
device configuration could be used to model a basic telephone station device (e.g., a Plain Old Telephone Service
(POTS) telephone or a featured telephone). The following identify the attributes of this device configuration:

« Device’s element combinatierboth a logical and physical element (L1/P1)

e Other devices using the physical elemeNbne

e Other devices using the logical elemehtone

e The logical element’s appearance addressabilion-addressable

e The logical element’s appearance typselected-standard

e The number of appearances associated with the logical eleraaliited (switching function based limits)
Figure 6-7 is a diagram of this device configuration.

Figure 6-7 Single Physical and Logical Element Device Configuration (One Device)

Y
P1

NI

SN
©

N

In this figure, the labels “L” and “P” represent the logical and physical elements of the device respectively.

Another variation of the single logical and physical element device configuration involves two different devices -
one with a logical element only and one with a physical element only - that are associated with each other. From the
perspective of the physical device element P1, the device configuration in this example can be represented as
follows:

« Device’s element combinatierphysical element only (P1)

¢ Other devices using the physical elemeonie device (L2)

¢ Other devices using the logical elemehtone

¢ The logical element’s appearance addressabiliy/A

¢ The logical element’s appearance tys/A

« The number of appearances associated with the logical elemiAt

Figure 6-8 is a diagram of this device configuration.

-17 -

Figure 6-8 Single Physical and Logical Device Configuration (two devices)

7
P1

L2

©

6.1.3.3.3 Multiple Logical Elements

A multiple logical elementslevice configuration consists of a single physical element associated with multiple
logical elements containing standard appearances. A multi-line telephone station could be modeled using !
device configuration. The following identify the attributes of this device configuration:

« Device'’s element combinatierphysical and logical element combination (L1/P1)

« Other devices using the physical elememto devices (L2,L3)

« Other devices using the logical elemeione

e The logical element’s appearance addressabilitpn-addressable

e The logical element’s appearance typgelected-standard

« The number of appearances associated with the logical elemafitmited (switching function based limits)

None of the logical elements in this device configuration need to be part of the same device as the physical elem

Multiple logical elements device configuration represents a single physical element (a telephone set) in a teleph
system that supports only one appearance per logical element but has access to multiple calls simultaneously.

Figure 6-9 is a diagram of a multiple logical elements device configuration.

Figure 6-9 Multiple Logical Elements Device Configuration

P1

L1 L2 L3

6.1.3.3.4 Multiple Appearance

A multiple appearancedevice configuration consists of single physical element and a single logical elemen
containing two or more addressable appearances. Multiple appearance device configurations are another wa
represent a single telephone set that has access to multiple calls simultaneously. This approach could be usec

-18 -

telephone system that supports addressable standard appearances. This device configuration is sometimes called
call appearance statiorThe following identify the attributes of this device configuration:

« Device’s element combinatierphysical and logical element combination (L1/P1)
¢ Other devices using the physical elemeNbne

¢ Other devices using the logical elemehtone

¢ The logical element’s appearance addressabildégldressable

« The logical element’s appearance typgelected-standard

¢ The number of appearances associated with the logical elerBg@tl, A2, A3)
Figure 6-10 is a diagram of a Multiple Appearance Device Configuration

Figure 6-10 Multiple Appearance Device Configuration

P1

L1

6.1.3.3.5 Bridged
A bridgeddevice configuration involves bridged appearances. The characteristics of a bridged device configuration
depends upon whether the device configuration is for a physical or logical element.

In the example presented in Figure 6-11, the device configuration shown is for logical element L3 which has
bridged appearances. The following identify the attributes of this device configuration:

« Device’s element combinatierogical element only (L3)

¢ Other devices using the physical elemeNbne

¢ Other devices using the logical elemehwo devices (P1,P2)

* The logical element’s appearance addressabildégldressable

e The logical element’s appearance typadependent-shared-bridged

« The number of appearances associated with the logical eler2g@tl for P1 and A2 for P2)

Figure 6-11 is a diagram of a Bridged Device Configuration

-19 -

Figure 6-11 Bridged Device Configuration

P2

The device configuration for the physical element P1 in this example, is shown in Figure 6-12. In P1’s devi
configuration there are only two device elements rather than three; one is the physical element (P1) and one is
logical element which has two addressable bridged appearances. The following identify the attributes of this dey
configuration:

Ok i

» Device's element combinatierphysical element only (P1)

« Other devices using the physical elememe device (L3 using appearance Al)
« Other devices using the logical elemehtone

« The logical element’s appearance addressabiliy/A

« The logical element’s appearance tyd/A

« The number of appearances associated with the logical eleriAt

Figure 6-12 is a diagram of a Bridged Device Configuration.

Figure 6-12 Bridged Device Configuration

!

Bt =
=

6.1.3.3.6 Hybrid
A physical element associated with multiple logical elements that each have different types of appearances h
hybrid device configuration.

An arbitrary example of a hybrid device configuration is shown in Figure 6-13. This example consists of or
physical element and three logical elements.

« device 1 has both a physical element (P1) and a logical element (L1) containing two addressable stanc
appearances

» device 2 has only a logical element (L2) with non-addressable standard appearances

« device 3 has only a logical element (L3) with three addressable bridged appearances

6.1.3.4

6.1.3.4.1

6.1.3.4.2

-20 -

The following identify the attributes of this device configuration:

« Device’s element combinatierogical and physical element (L1/P1)

¢ Other devices using the physical elemetto devices (L2, L3 using appearances Al andA2)
« Other devices using the logical elemehtone

e The logical element’s appearance addressabildgdressable

e The logical element’s appearance typselected-standard

¢ The number of appearances associated with the logical elerBetl, A2, A3)

Figure 6-13 is a diagram of a Hybrid Device Configuration.

Figure 6-13 Hybrid Device Configuration

e
P1

\

4 L2

= @ |°
N

Device Categories
The device category of a particular device provides a generic indication of the device’'s behaviour and
configuration. The computing function should use the device category along with other information provided by the
capabilities exchange services to model a given device.

Station Device Category
This category of device can range from a basic “Plain Old Telephone Set” (POTS) device to a very complex feature
telephone device. Station devices can be represented by any single device configuration type, or more commonly,
as a hybrid of two or more different device configuration types. The physical component, if present, may have any
combination of components. The logical element(s) may have any number of appearances appropriate for the type
of device configuration.

Network Interface Device Category
A Network Interface Devices a category of device which is within the switching sub-domain and is connected to
another telephone network.

A given switching sub-domain is connected to another telephone network(s) (which may or may not be thought of
as other switching sub-domains) through one or more Network Interface Devices.

To indicate when a given call involves a Network Interface Device and an external device, the switching function
provides a Network Reached event to the computing function specifying what Network Interface device is being
used (if known), and what subsequent call-related information is subject to the capabilities of the network being
used.

The following are examples which illustrate the use of Network Interface Devices.

In Figure 6-14, the switching sub-domain is centered on a PBX. The Network Interface Devices are distinct devices
and are commonly referred to as “trunks.”

-21 -

Figure 6-14 Trunks As Network Interface Devices

7 o Y
K Y Y
Noa==p
i = ™
eI AT
-"_ - SWITCHING _.|I'"-

e suB r I

i, -2 M _== Heteek Inbesfacs Devices

after devices T oo LRI

In Figure 6-15, the switching sub-domain is an individual telephone station connected directly to the publ
telephone network. In this example, the two Network Interface Devices represent two Central Office lines

Figure 6-15 Central Office Lines As Network Interface Devices

— _‘_ —
N
] i - *
'.___ - -L_ —-.__ ____l L)
S EWITCHING 5
-""'——_Sﬁ DO RLAL __——"r
pther demices

Heturork Interface Demices
6.1.3.4.3 ACD Device Category

An ACD (Automatic Call Distributor) is a device that distributes calls. An ACD device only consists of the
distribution mechanism and may be associated with the devices to which the mechanism distributes calls

A dynamic processigent Log Orallows an association between an ACD device and a distributed-to device to be

created, removed and changed at anytime. Refer to 6.1.3.7, “Agent”, on page 24 for a description of Agent and
Agent Log On Process.

An ACD device is represented as a logical element only device configuration. When a call is presented to an A
device, a connection in the entering distribution mode of the alerting state is created. Calls that are presented t
ACD device may be queued before they are distributed. The conditions under which the call is queued

switching function specific. Many calls can be simultaneously enqueued, pending their distribution. The AC
device can, for example:

distribute a call to an agent that had logged on to the ACD device
distribute a call to an agent that had logged on to an ACD Group

 distribute a call to another ACD device (as well as any other type of internal or external device)

queue a call to an ACD Group, or to resources that provide message playing, message prompting, vc
response interaction, etc.

There are two ACD device models - visible ACD-related devices and non-visible ACD-related devices (note that
ACD device can support one or both models):

Visible ACD-Related DevicesIn this model, the ACD device, and the devices (e.g., voice announcement
units, devices the call may queue to, other ACD devices, ACD groups, etc.) that can interact with the AC

device while the call is being handled by the ACD device, can be monitored/ controlled and are represent
uniguely by the switching function with their own connection when associated with a call

6.1.3.4.4

6.1.3.4.5

6.1.3.5

6.1.3.5.1

-22 -

« Non-Visible ACD-Related Devicesn this model, the ACD device, and the devices (e.g., voice announcement
units, devices the call may queue to, other ACD devices, ACD groups) that can interact with the ACD device
while the call is being handled by the ACD device, are represented by the switching function using a single
connection at the ACD device. Neither these devices, which interact with the ACD device, nor their
connections to calls queued at the ACD device can be monitored or controlled. Note that when a single
connection is used in this manner, all relationships between the call and the ACD device are terminated when
the call is no longer part of the ACD device (diverted from the device, for example).

Park Device Category

A park device category is a device that is exclusively used by the switching function to park calls on behalf of other
devices in the switching sub-domain. These calls, once parked, may be retrieved by a device in the switching sub-
domain. The number of calls that can be parked at one of these devices is switching function specific. These
devices can be represented by either a single physical and logical elements device configuration or a logical
element only device configuration. The visibility of these devices within the switching sub-domain is switching
function specific.

Note that calls may be parked at devices other than a Park device.

Other Device Category

A device in this category has characteristics (i.e., device configuration, capabilities, type of elements, element

components) which are switching function specific.

Group Device Category

A group device models a relationship between CSTA devices that is characterized by the fact that these devices
share a common device identifier. This relationship can be permanent or temporary. The group model differs from

the bridged appearances model in that the relationship is between devices’ logical elements while for bridged
appearances the relationship is between a logical element and a physical element.

The group device has a logical element that has relationships with the logical elements of the devices that are
members of this group. The group device is referenced by the group device identifier.

A group device may have a distribution mechanism. The distribution mechanism may support queuing. When a
group device has a distribution mechanism, the group device identifier represents both the distribution mechanism
and the member devices.

Group Device Attributes

The attributes of a group device are (a group device may have more than one of these attributes (e.g., a hunt and
pick group device):

e Hunt - The hunt attribute characterizes a group device (also called hunt group) that has the capability to
distribute calls to the member devices according to different selection modes (e.qg., cyclical, sequential, longest
idle time). The association between the group device and the member devices is always fixed by the switching
function. A hunt group may have the capability to queue these calls before they are distributed.

e Pick - The pick attribute characterizes a group device (also called pick group) that represents a collection of
devices that can be used with the Group Pickup Call service. When a call is delivered to a device in the pick
group, other devices in the group can be used to answer the particular call (i.e., picking the call). When the call
is picked, it is diverted from the originally delivered device and connected to the device which picked the call.
The details associated with the pick group feature are documented in the Group Pickup Call service. Only
devices associated with the pick group device can pick a call from the given group unless the pick group device
is addressable within the switching sub-domain and the pick group device is configured to allow devices
outside the group to pick calls. The addressability of the pick device within the switching sub-domain is
switching function specific. If the pick group device is addressable, its Device Identifier can only be used in
conjunction with the Group Pickup Call service (i.e. the computing function has limited control and can not
observe the pick group device). The number of devices that are associated with the pick group device is
switching function and device specific. The association between the pick group device and the other devices is
not visible within the switching sub-domain (i.e., does not have an explicit representation). The association
between the pick group device and the other devices is fixed by the switching function. Changes in the number
of devices associated with the pick group device are reflected by the capabilities exchange services.

6.1.3.5.2

6.1.3.6

-23 -

e ACD - The ACD attribute characterizes a group device (also called an ACD group) that has a distributic
mechanism similar to a hunt group. In addition, this group device represents an explicit association between
distribution mechanism (the ACD) and the distributed-to-devices. A dynamic prégess, Log Orallows an
association between an ACD group and the distributed-to devices to be created, removed and change
anytime. Refer to 6.1.3.7, “Agent”, on page 24 for a description of Agent and the Agent Log On Process.

e Other - The Other attribute characterizes a group device whose characteristics are switching functic
dependent.

Group Device and Monitoring

Monitoring of a group device in which the group device includes a distribution mechanism may follow either th
group inclusiveor thegroup exclusivamodel. The switching function may support either model, or both models
simultaneously (with individual group devices supporting either the inclusive or exclusive model). The model(
supported by a switching function is indicated by the Get Switching Function Capabilities service.

In the group inclusive model, the scope of a monitor on the group device includes the distribution mechanism :
all member devices. In the group exclusive model, the scope of the monitor on the group device includes only
distribution mechanism.

The events reported to the monitor of a group device are the same as those reported to monitors of the indivi
member devices, with the following exceptions:

« A single Monitor Start service request is set on the group device identifier.

e The events for the member devices, if they are in the scope of the monitor, are reported with the cross refere
identifier of the monitor set on the group device.

* When an incoming call is received, the called device represents the group device and the subject device (
alerting device) represents the member device.

In addition, if the group device supports a distribution mechanism, all events reported for the call when it is pres
at the distribution mechanism (e.g., queued), are reported with a connection identifier consisting of the c
identifier and the group device identifier. When the call leaves the distribution mechanism to be delivered tc
member device, a Diverted event is generated.

Some services applied to the group device are applied to all member devices of the group device (e.g., Set A
State). This capability is indicated by the capabilities exchange services.
Named Device Types

Switching Function implementations may indicate that a device is of a particular device type. The following devi
types may be used for this purpose but the interpretation of a given device type is implementation specific.

« ACD

« ACD Group

* Button

e Button Group

« Conference Bridge
* Line

e Line Group

¢ Operator

¢ Operator Group
« Parking Device
+ Station

e Station Group

6.1.3.7

6.1.3.7.1

-24 -

e Trunk
e Trunk Group
e Other
e Other Group

Agent
An agent represents a device’s association and activities with one or more ACD devices or ACD groups.

An agent becomes associated with a specific ACD device or ACD group by the process of logging on. There are
two Agent Log On Models that may be supported by a switching function (as indicated by the capability exchange
services). Note that multiple models may be supported by a switching function and by a single agent.

¢ Log On to an ACD deviceln this model an agent logs on to ACD device and becomes associated with the
activities of the ACD device. There is no association with any ACD group. This may be achieved by using the
Set Agent State service (loggedOn) without providing the ACD group parameter. Note that this capability
cannot be simultaneously supported with the Log On to an ACD Group (implicit/one step) described below.

¢ Log On to an ACD Group In this model an agent becomes associated with the activities of an ACD group.
This may be accomplished by the following:

« explicit/one step - by using the Set Agent State (loggedOn) service and supplying the ACD group
parameter

« explicit/two step - by first logging on to an ACD device using the Set Agent State (loggedOn) service and
omitting the ACD group parameter (described above). Once logged on to an ACD device, a log on to a
specific group is achieved by using another Set Agent State (loggedOn) service with the ACD group
parameter provided.

< implicit/one step - by logging on to an ACD Group using the Set Agent State (loggedOn) service and
omitting the ACD group parameter. If supported by the switching function, the agent is automatically
logged on to an ACD group. Note that this capability cannot be simultaneously supported with the Log
On to an ACD device.

An agent has several attributes that can be controlled and observed by the computing function, as described below.
Agent Identifier

Each agent that can be observed and/or controlled within the switching function is referenced using an assigned
identifier. This identifier is associated with the logical element’s Device Identifier of the device. Certain switching
functions may not assign an agent identifier to the agent. In these cases, the logical element’'s Device Identifier is
used to represent the agent associated with the device. The format of the agent identifier is switching function
specific.

There are two ways that an agent identifier may be provided:
e as a parameter in an event (via the agentlD parameter in the Agent Logged Off event, for example) or

e as a sub-string in the Switching Function Representation format of a logical element’s Device Identifier,
thereby making a unique identifier for the logical element and the associated agent.

When an agent is associated with more than one ACD group and the switching function assigns a different agent
identifier for each ACD group that the agent is associated with, then the following applies:

e The agent identifier shall be supplied (via the agentlD parameter) on the agent state events associated with this
agent (e.g., Agent Ready, Agent Not Ready).

e This agent identifier may or may not be part of the Device ldentifier parameters (i.e., the agent identifier sub-
string in the Switching Function Representation format) in the call control events that are associated with the
agent in an ACD call. Non-ACD calls are unaffected.

e This agent identifier shall be part of the Device Identifier parameter (i.e., the agent identifier sub-string in the
Switching Function Representation format) on services when the computing function want to focus the service

6.1.3.7.2

6.1.3.7.3

6.1.3.7.4

-25 -

at a particular ACD call or group, otherwise if not supplied, the switching function will choose which ACD call
or group the service is focused.

When an agent is associated with one ACD group, the switching function may or may not assign an agent identi
to the agent. If the agent identifier is not assigned, the logical element’s Device Identifier of the agent device
used to represent the agent in the ACD group. If the agent identifier is assigned, then either the logical eleme
Device Ildentifier of the agent device or the agent identifier may be used to represent the agent in the ACD gro
This also applies to the case where the switching function has only one agent identifier (either assigned or not)
an agent that is associated with multiple ACD groups. When only one agent identifier is assigned to an agent
following applies:

« The agent identifier may be supplied (via the agentID parameter) on the agent status events associated with
agent (e.g., Agent Ready, Agent Not Ready).

« This agent identifier may be part of the Device Identifier parameters (i.e., the agent identifier sub-string in tl
Switching Function Representation format) in call control events that are associated with the agent in an A(
call. Non-ACD calls are unaffected.

e This agent identifier may be supplied as part of the Device Identifier parameter (i.e., the agent identifier st
string in the Switching Function Representation format) on services.

Note that when the agent identifier is supplied as part of the Device Identifier and the agent identifier is n
associated with the device, the service request shall be rejected with a negative acknowledgement.

Agent Password

The agent password authenticates the agent’s association with a given device and ACD device or ACD group in
switching sub-domain. The agent password is used when the agent is associated with the device and made ava
to the ACD device or ACD group (i.e., log on) and when the agent is made unavailable to the ACD device or AC
group (i.e., log off). An agent password may be assigned to each agent. For more details, refer to the definitior
the agentPassword parameter in associated services.

Agent Group Association

This identifies the ACD group that is associated with the agent. There can be zero or more ACD groups associ
with the same agent. This is represented via the ACD group’s logical element’s Device Identifier.

Agent State

A state that an agent may take in relation to an ACD device or ACD group and the calls associated with the A
device or ACD group.

The computing function is informed of agent state changes through agent state event reporting. These event re
are sent to the computing function when a monitor is started on either the ACD device or ACD group (if support
by the switching function) or the device associated with the agent or agents. The following are the agent states \
respect to an agent and a particular ACD device or ACD group:

e Agent Null- The state where an agent is not logged-on to (i.e., logged off from) the ACD device or ACD grou
at a particular device. Logging-on and logging-off from an ACD device or ACD group shall cause the
transitions from and to this state. The event report that represents the entry to this state is the Agent Logged
event. Note that the presence/absence of the ACD Group parameter in this event determines if the agent
logged off of an ACD device or an ACD group

« Agent Logged On The state where an agent is logged-on at a particular device to an ACD device or ACI
group and is ready to contribute to the activities of the ACD device or ACD group. This state does not indice
that the agent is ready to accept ACD calls (refer to the Agent Ready event section). The event report t
represents the entry to this state is the Agent Logged On event. Note that the presence/absence of the ;
Group parameter in this event determines if the agent has logged on to an ACD device or an ACD group.

« Agent Not Ready The state where an agent is logged-on at a particular device to an ACD device or ACI
group but is not prepared to handle calls that the ACD distributes. While in this state an agent may receive ¢
that are not ACD calls. The event report that represents the entry to this state is the Agent Not Ready event.

-26 -

« Agent Ready The state where an agent is logged-on at a particular device to an ACD device or ACD group
and is prepared to handle ACD calls even though it may be involved with non-ACD calls. The event report that
represents the entry to this state is the Agent Ready event.

« Agent Busy The state where an agent is involved with an existing ACD call at the device, even if that call is
on hold at that device. Calls between agents, calls between supervisors and agents and private calls may or may
not cause this transition. The event report that represents the entry to this state is the Agent Busy event.

« Agent Working After Cal The state where an agent is no longer connected to an ACD call but is still occupied
with work related to a previous ACD call. In this state, an agent cannot receive ACD calls but may be able to
receive non-ACD calls. The agent may be performing administrative duties (e.g., updating a business order
form) for a previous call, or may be involved with a non-ACD call. The event report that represents the entry to
this state is the Agent Working After Call event.

Note that this Standard does not impose or restrict the transition of an agent state to another agent state. Any
implementation restrictions shall be reflected by a negative acknowledgement to the Set Agent State service request.
Agent State Models

It is possible that an agent may have several agent states with respect to the different associated ACD devices or
ACD groups. Alternatively, an agent may have a single state to describe its relationship to all associated ACD
devices or ACD groups (if the state is, in fact, the same for all of them).

6.1.3.7.5

The following Multi-State Agent models that indicate how the switching function maintains the agent states for
each ACD or ACD group that is associated with an agent. (The capability exchange services indicate which models
are supported by a switching function.) The models are:

e Agent Multi-State Model (Independent Group Workinghn this model, as illustrated in Table 6-1, the
switching function maintains an independent agent state model for each ACD device or ACD group associated
with an agent. All agent state transitions are totally independent. The cause code of Forced does not appear
since no state is forced. (Note that the numbers between parenthesis in the following figures represent the ACD
group number).

Table 6-1 Agent Multi-State Model (Independent Group Working) lllustration

Step 1 Step 2 Step 3 Step 4 Step 5
ACD Group 1 State Not Ready (1) Not Ready (1) Not Ready (1) Not Ready (1) Ready (1)
ACD Group 2 State Not Ready (2) Ready (2) Busy (2) Working After Ready (2)
Call (2)
ACD Group 3 State Not Ready (3) Ready (3) Ready (3) Ready (3) Busy (3)
ACD Device State Ready Busy Busy Busy Ready

Agent Multi-State Model (Semi-Independent Linket) this model, as illustrated in Table 6-2, the switching
function maintains an agent state model for each ACD device or ACD group associated with an agent.
However the agent state models for each ACD device or ACD group are linked together. For example, if an
agent is associated with two ACD groups (both states are Ready), and the agent connects to an ACD call for
the first ACD group, the agent state for the first group transitions to Busy while the agent state for the second
group goes to Not Ready (with a cause code of Forced to indicate that the state transition was the result of
another ACD device or ACD group activity).

Table 6-2 Agent Multi-State Model (Semi-Independent Linked) lllustration

Step 1 Step 2 Step 3 Step 4 Step 5

ACD Group 1 State

Not Ready (1) Not Ready (1) Not Ready (1) -

Forced cause

Not Ready (1) -
Forced cause

Not Ready (1)

ACD Group 2 State

Not Ready (2) Ready (2) Busy (2) Working After

call (2)

Ready (2)

6.1.4

6.1.4.1

-27 -

Table 6-2 Agent Multi-State Model (Semi-Independent Linked) Illustration (continued)

Step 1 Step 2 Step 3 Step 4 Step 5
ACD Group 3 State Not Ready (3) Ready (3) Not Ready (3) - | Not Ready (3) - Busy (3)
Forced cause Forced cause
ACD Device State Ready Ready Not Ready - Not Ready - Ready
Forced cause Forced cause

« Agent Orientated Model In this model, as illustrated in Table 6-3, the switching function maintains one state
for the agent, no matter how many ACD devices or ACD groups the agent is associated with. When the A(
Group parameter is included in an agent event, it indicates the ACD group that has caused the agent ¢
transition. When the ACD Group parameter is not included in an agent event, it indicates that non-ACD gro
activity has occurred.

Table 6-3 Agent Orientated Model Illustration

Step 1 Step 2 Step 3 Step 4 Step 5
ACD Group 1 State Not Ready Ready Busy Working After Cal Ready
ACD Group2 State Not Ready Ready Busy Working After Call Ready
ACD Group 3 State Not Ready Ready Busy Working After Cal Ready
ACD Device State Not Ready Ready Busy Working After Call Ready
Single Event Not Ready (2) Ready (2) Busy(2) Working After Ready (2)
Call (2)

Call

Calls are communication relationships between one or more CSTA Devices. A call's behaviour can be obsen
and manipulated across the CSTA service boundary (also called service boundary in this Standard). During s
call phases (e.g., establishment and release) the call is not completely formed and there may be only a single C
Device involved (for example, the CSTA Device on whose behalf the call was initiated). In some call contr
operations, such as a conference and transfer, one CSTA Device in a call is replaced with another CSTA Device
two calls are merged into a single call.

The CSTA Call attributes, which are described in detail in the following sub-clauses, shall be:
« Call Identifier

» Correlator Data

* User Data

* Media Call Characteristics

* Account Information

* Authorisation Code

e Charging Information

Call Identifier

A CSTA Call Identifier (also calledCall Identifier in this Standard) is a reference associated with a call whereby
the call is known to the switching, computing and special resource functions through the call’s life. A Call Identifie
shall be allocated to each call by the Switching Function, at the latest, when the call first becomes visible acros
CSTA Service Boundary. It shall be unique within a switching sub-domain and shall be the same for all CST
Devices in the call. A Call Identifier can be assigned to a call before the call is fully established. For example,
incoming call may be assigned a Call Identifier when the called CSTA Device is alerting and before the call h
been answered. A Call Identifier shall not only reference the entire call within the sub-domain but shall also infel
reference to that part of the call that is outside the sub-domain.

6.1.4.2

6.1.4.3

-28 -

A call can pass through various stages involving many different CSTA Devices before it finally terminates. Some of
these stages cause a call to change identifiers. Examples of services that cause this are Transfer and Conference
During the operation of these services, or as a result of manual intervention, the Call Identifier may change as a
result of two calls being merged by the switching function but the call shall continue as a CSTA object. This merger
results in the Call Identifiers for both old calls changing to a new identifier for the resulting calls in which the
CSTA Devices are involved. The respective Conferenced or Transferred event specifies the transition from the old
Call Identifiers to the new Call Identifiers indicating the old invalid Call Identifiers. Management of Call Identifiers

is covered in section 6.1.8, “Management of Dynamically-Assigned Identifiers”.

Call State

The termCall Statemeans the collective set of Connection states for all the Connections comprising a call. Call
state is returned only by the Snapshot Device Service for CSTA Devices that have calls. Connection states are
further described in 6.1.5, “Connection”, on page 31. Call states are described in more detail in 6.1.6, “Call State
Definitions”, on page 35.

Correlator Data

Correlator Data is computing function specific data which has been attached to a call that a computing function is
controlling or observing. This information, for example, might be a key to a database entry, an application
command sequence, file name, etc. Once Correlator Data is associated with a call, it remains with the call for its
entire duration (at least one CSTA Device is actively involved in the call), or until the computing function
overwrites the data with new data. In order to remove data, the computing function shall overwrite the existing data
with null data. Correlator Data enters the switching sub-domain in two ways:

1. A computing function provides Correlator Data on a service request (e.g. Call Control and Call Associated
services).

2. Correlator Data arrives from an external network connection with a call (for example, Correlator Data may be
used as a key to pop a screen for the call). Correlator Data is delivered through an external network via the
format described in Annex B.

Permitting a computing function to associate its own information with a call allows multiple computing functions to
share data on calls which they are all controlling or observing. This feature is useful when calls are moving from
one computing function to another in a distributed computer network or from one switching sub-domain to another.
For more information on Correlator Data, refer to 12.2.9, “CorrelatorData”, on page 87.

Correlator Data is provided by the Computing Function and associated with the call for its entire duration or until
overwritten with new data. This data survives Conference and Transfer and can be provided on various events. An
application may remove the Correlator Data by overwriting existing data with null data.

When Correlator Data is associated with a call, call events that indicate that a CSTA Device has become part of a
call (such as Delivered, Established and Queued events, for example) shall include the Correlator Data (if this
parameter is supported in the event being reported). Subsequent call events also may contain the Correlator Data.

Note that “null Correlator Data” means Correlator Data information with zero length.

When a consultation call is transferred or conferenced and null or non-null Correlator Data is associated with either
(or both) the primary or secondary call, the Correlator Data in the resulting call shall always be the same Correlator
Data that was associated with the secondary call (even if only the primary call had non-null Correlator Data). In
that case the Correlator Data (if any) associated with the primary call is discarded. If the secondary call contains no
Correlator Data, the Correlator Data associated with the resulting call is that which was associated with the primary
call.

Table 6-4 Inheritance rules for Correlator Data in Conference and Transfer

Primary Call
Secondary Call
No Correlator Data Null Correlator Data Correlator Data 1
No Correlator Data No Correlator Data Null Correlator Data Correlator Data 1
Null Correlator Data Null Correlator Data Null Correlator Data Null Correlator Data

6.1.4.4

6.1.4.5

6.1.4.6

-29-

Table 6-4 Inheritance rules for Correlator Data in Conference and Transfer (continued)

Primary Call
Secondary Call
No Correlator Data Null Correlator Data Correlator Data 1
Correlator Data 2 Correlator Data 2 Correlator Data 2 Correlator Data 2

When Correlator Data is associated with a call via the Associate Data service, the Call Information event
provided by the switching function. If the data is changed by any other service, the switching function does r
provide the Call Information event.

User Data

User Data is call-related computing function-to-computing function information that, unlike Correlator Data, is nc
associated with a call for the life of the call. The switching function receives User Data in two ways:

« A computing function sends User Data in a service request.

» User Data arrives from an external network connection with a call (for example, User Data may be used a
key to pop a screen for the call).

Both a computing function and the network may send User Data in two ways:

1. With Call Control Activity- Call control service requests (and network signalling for call control) permit User
Data as an optional parameter. The switching function reflects the delivery of User Data in the first cc
control event that results from the switching function or network carrying out the call control activity. Wher
the computing function provides User Data in a Call Control service request, the User Data is delivered
other parties if and only if the call control service successfully completes. If the switching function does n
generate the call control event that corresponds to the call control activity because the computing function |
set an event filter that filters out the relevant event, then the User Data is not propagated to subsequent ev
and the User Data information will be lost. Refer to the description of the individual Call Control services fo
more details on the events that will contain User Data for those services.

2. Independent of Call Control ActivityThe computing function may use the Send User Information service to
pass User Data at any time. Some networks provide an independent signalling mechanism for sending L
Data. The switching function generates a Call Information event with the userData parameter containing |
received User Data to reflect the delivery of the User Data. Independent of call control activity, this event
generated for all computing functions monitoring the call and all computing functions monitoring any CST/
Devices that have a connection to that call.

This standard defines a mechanism for delivering both User Data and Correlator Data through an exter
network at the same time. This mechanism is described in Annex B.

When a computing function uses a service to send User Data, the switching function sends that User Data only
the switching function sends a positive acknowledgement to the service request.

User Data is described further in 12.2.22, “UserData”, on page 106.
Other Call Related Information
There is additional information associated with calls such as:

« Account Information A computing function or business-specific piece of information that is assigned to a cal
for accounting purposes. For more information, see 12.2.1, “Accountinfo”, on page 84.

« Authorisation Code A code provided to the switching function that is used to check if a computing function
user is authorised to perform a given service. For more information see 12.2.3, “AuthCode”, on page 84.

« Charging Informatiorn An amount charged to a device for a call in which the device was involved. For more
information, see 12.2.6, “Charginginfo”, on page 85.
Media Call Characteristics

This Standard covers the control and observation of calls within either a voice or digital data switching sub-dom:
(e.g., network) or a switching sub-domain that is a combination of both (voice and digital data). Within the set

-30 -

possible digital data switching sub-domains, this Standard is limited to a sub-set of these switching sub-domains
with the following characteristics:

connection-oriented

circuit or cell-based packet switching

point-to-point, and multi-point topology

A connection in a call may represent either one or many data channels within the switching sub-domain.

A CSTA Device can have multiple calls but the calls are totally unrelated to one another (i.e., they can not be
conferenced, transferred, join, etc.).

Examples of these digital data switching sub-domains that support these characteristics are;

T1

ISO-Ethernet (TDM part of the protocol)
ISDN

Switched 56

RSVP

ATM (B-ISDN)

As a result, another attribute of a call is the Media Class (i.e., Voice or Data). Voice calls and the sub-set of digital
data calls as described above use the same model for control and observation but with some additional unique
characteristics for digital data. The following is the list of characteristics:

1. Media Class Describes the type of call. It may consist of one or more of the following classes.

« Data - These types of calls involve digital data calls (both circuit switched and packet switched). Devices
that may be involved with these types of calls are digital computer interfaces and G4 facsimile machines.

« Image - Digital data calls involving imaging, or high-speed, circuit-switched data in general. Devices that
may be involved with these types of calls include digital video telephones and CODECSs.

¢ Voice - Devices in this class are used to make speech calls. This class includes standard telephones.

e Audio - 3.1 KHz audio. Devices in this class are used to make audio calls excluding speech calls. It
includes G3 fax and facsimile machines.

e Other - A class comprising devices not in the Data, Image, Audio or \oice classes.

Connection Rate This characteristic reflects the amount of bandwidth which is needed or allocated for a
digital data call. This characteristic is specified in kilobits per second. This characteristic also represents the
amount of bandwidth for both directions of data flow. The computing function can learn about a switching
function’s supported rates through the capability exchange services.

Bit Rate- This characteristic specifies if the bit rate is or needs to be a constant rate (i.e., dedicated bandwidth
and constant rate of media stream delivery) or variable rate. A constant rate is used for media streams like
audio or video. A variable rate is used for media stream like computer-generated data transfer.

Delay Tolerance This characteristic specifies the maximum amount of media stream delivery delay that will
be toleranced for the call. If the bit rate is constant, then this value will indicate the actual amount of media
stream delivery delay for the life of the call. Where as if the bit rate is variable, it will be the maximum delay
allowed during the life of the call.

Switching Function Call Control Information ElementsThis characteristic provides a mechanism which
enables the use of the switching function private call control information elements to be used during the life of
a digital data call (e.g., elements used during call setup). The format, meaning and behaviour of these
information elements are specific to the given switching function. This standard allows the following types of
switching function private call control information elements:

-31-

» ISDN- All information elements associated with call control from the ITU Q.931 standard
» ATM - All information elements associated with call control from the ITU B-ISDN Q.2931 standard

« RSVP- All information elements associated with the call control from the IETF RSVP functional
specification

« |ISO-Ethernet (TDM part of the protocclAll information elements associated with call control from the
802.9 standard (a modified version of Q.933).

« Private ISDN - All information elements associated with call control and supplementary service contrc
from ISO/IEC 11572 and ISO/IEC 11582.

e Other - All information elements associated with call control from the particular switching function
specification

For details on the specific information elements of these types, see the appropriate standards or switck
function specific documentation. If a given information element overlaps with an attributes or characterist
that is defined by this Standard, the information element should not be used and the attribute or characteri
in this Standard should be used. If both are supplied, then they shall contain the same value. In addition,
information element that deals with device addressing shall not be used (e.g., calling party number, calli
party subaddress). The CSTA Device addressing in this Standard shall be used.

Once these characteristics are established for a digital data call, they can not be changed for the life of the call
they are static). These characteristics apply to all connections of the call.

The combination of these characteristics representguality of serviceassociated with a given digital data call.

The meaning of the quality of service which respect to characteristic combination is switching function specific.
6.1.5 Connection

A connectionis a relationship in a switching sub-domain between a CSTA Device, and a call in which that CST.

Device is involved. This connection relationship can be both observed and manipulated. Figure 6-16 illustrates

relationship between calls, devices, and connections.

Figure 6-16 Relationship between Calls, Devices, and Connections

Device Device

Connection Connection

Observation and manipulation of these connections are the basis for call control services (such as Clear Connec
Answer Call, etc.). Connections are CSTA Objects that have the following attributes:

1. Connection Identifier Each connection that can be observed and/or controlled shall be referenced across t
service boundary. To accomplish this, each connection is assigned a unique identifier by the switchi
function. This identifier is comprised of a Device ldentifier and a Call Identifier. For a call, there are as mar
Connection Identifiers as there are associated devices, and for a device there are as many Connec
Identifiers as there are associated calls. The Connection Identifier is unique within a sub-domain and ove
single service boundary. It is provided by the switching function when either a new call is created or a ne
device becomes involved in a a call. A Connection Identifier can change as a result of some operations (e.(
transfer or conference) and in these cases the switching function presents the computing function with
appropriate information to transit from the old identifiers to the new. The Device Identifier used in the
Connection Identifier may be either static or dynamically-assigned by the switching function.

As provided by the switching function to the computing function, a Connection Identifier will always include
both a Device Identifier and a Call Identifier (unless otherwise noted in the specification of a particular CST
event’s parameters). Computing functions wanting to correlate event reports which associate devices conne:
together in a call can use the Call Identifier to do this correlation. The definitions of a Connection Identifie
and those identifiers that it comprises (Call and Device Identifiers) restrict computing functions fron
fabricating Connection Identifiers.

-32-

As provided by the computing function to the switching function, a Connection Identifier shall be one which
was originally provided by the switching function. An exception to this rule is where either a devicelD only or
a calllD only Connection Identifier is used in a specific service (as indicated by the capability exchange
services). If a Connection Identifier, provided by the computing function, includes only a Device Identifier,
then that Device Identifier shall be a static Device Identifier. These conditions ensure that it is possible to use
only a Device Identifier (without a Call Identifier) or a Call Identifier (without a Device Identifier) to provide a
Connection Identifier in certain specified circumstances.

For additional details regarding Connection Identifiers, including Connection Identifier formats and specific
functional requirements, see 12.3.9, “ConnectionID”, on page 110 of this Standard.

2. Media Stream Flow Direction This attribute is the direction or directions in which the media stream can be
transmitted on the given connection. The following are the types of directions that can be associated with a
connection:

« Transmit- Media stream data can only be transmitted on the connection by the associated device.
* Receive Media stream data can only be received on the connection by the associated device.

e Transmit and ReceiveMedia stream data can be transmitted and received on the connection by the
associated device.

3. Media Stream ChannelsA channel is a path of communications between devices within a network. Channels
are created to transmit/receive the media stream when the associated connection is created for the device in
the call. The correlation of a channel to an actual media stream communications path/channel within the
switching function is switching function specific. The switching function may represent a channel as a group
of actual media stream communication paths. A device’s connection represents a channel or set of channels on
which the media stream associated with the call is to be transmitted and received. The number of channels per
connection is switching function and device specific (the capability exchange services may be used to
determine the value). A digital data connection can use one or more channels. In addition, there can be
multiple media stream types associated with a given connection as well as the associated channels. The
attachment of media services is to a connection and its associated channels as a whole. The switching function
is then responsible for attaching the Media services to the appropriate channels.

4. Connection State A connection state involves a single call/device relationship. When a call is present at a
device, the connection representing that call at that device will transit through various stages. State transitions
are observed by the computing function through event reports. The transition from one state to the next is
caused by either a manual user stimulus or a CSTA service initiated across the service boundary. Connection
states may also be reported by Snapshots on either calls or devices.

-33-

Figure 6-17 Connection State Model

Initiated

The following are the connection state definitions:

« Alerting - A state in which an attempt is being made to connect a call to a device. There are three distir
modes where a connection may be in the alerting state:

Offered- In this mode, the call is in a pre-delivery state at the target device. The opportunity exists for
computing function to issue one of a set of supported services (e.g., Accept Call, Clear Connectit
(“reject”), Deflect Call) or an ISDN device to accept or reject the call. From the calling side perspective
the call is not delivered at the called device. As a consequence, delivery information such as Ringba
indication and/or Network signalling is not provided. For example, the device makes no ringing sounc
while in the Offered mode of the Alerting state. The Offered mode is indicated by an Offered event.

Ringing- In this mode, the call is being presented for the purpose of having the device connect to the ¢
and the user is made aware that the call is being delivered at the device. The Ringing mode is indicatec
a Delivered event with a cause code other than “Entering Distribution”. The actual device activity t
notify the user (e.g., ringing) is reported through the physical device feature events.

Entering Distribution- In this mode, a call is being delivered to a distribution device. The Entering
Distribution mode is indicated by a Delivered event with a cause code of “Entering Distribution”.

« Connected A state in which a device is actively participating in a call. This state includes logical participatior
in a call as well as physical participation.

« Failed - A state in which call progression has been aborted. This state generally results when a device tries
become Connected to a call or a call tries to become Connected to a device and the attempt fails. The Fe
state can result from failure to connect the calling device and call, failure to connect the called device and c
failure to create the call, failure when the call ends and other reasons. Refer to 6.8.2, “Connection Failure”,
page 53 for more information.

* Hold - A state in which a device is inactively participating in a call. This state includes logical participation ir
a call while physical participation is suspended.

-34 -

e Initiated - A state in which a device is requesting a service or in the process of dialling the necessary digit
sequence to initiate a call to another device. The connection enters this state when the device goes off-hook
(e.g., receiving dialtone) or the device is being prompted to go off-hook as a result of some service being
initiated for the device.

¢ Null - A state in which there is no relationship between a call and device.

¢ Queued A state in which call progression is suspended or made inactive while awaiting some form of action.
Examples of situations in which a connection might transit to the Queued state include (among others) the
following:

e Acallis parked at a device.

e Acallis queued at a distribution mechanism, waiting for an agent to become available.

e Acallis camped on to a device.

« An appearance of a shared bridged device configuration is inactive with respect to the call.

Table D-1 on page 628 provides an example to illustrate each transition which is illustrated in Figure 6-17,
“Connection State Model” .

6.1.5.1 Call Event Reports

The Connection state model provides an abstract view of actual states and events that are communicated via
underlying signalling systems. This abstract view is introduced to provide a language for describing CSTA Event
Reports, states and Functional descriptions. Because of the topology of the Switching Function, the signals that
report events and state changes have definite sources. Providing a telecommunications object (the Connection) that
can be associated with the source of these signals helps when explaining the meaning of events and the operation of
CSTA (and other) telecommunications services.

Note that on a typical ISDN access to a network there exists a distributed state machine. One part of this distributed
state machine resides in the ISDN device. Another part resides on the other side of the ISDN access. There is
another similar distributed-state access machine that resides across the ISDN network at a similar device. Using this
concept, a call can be modeled as a collection of Connection state machines communicating with one another using
signalling. When this communication occurs, a CSTA Event Report can be generated. In the following figure, this
concept of communication between two state machines is illustrated for the case of establishing a simple call.
Additionally, on each side of the figure the ISDN call states are indicated.

1. For an explanation of the Initial and Final State diagrams’ nomenclature used the Table D-1, refer to Clause 11, “Template
Descriptions”, beginning on page 79.

6.1.6

-35-

Figure 6-18 Relationship of CSTA Call Event Reports

Time Device D1 CallC1 Device D2

T1 Null Null No Event Report Null Null

T2 Setup| Initiated |——>» Service Initiated Null | Nul

T3 Proceeding] Connected|€——— Originated Null Null

T4 Delivered | Connected Delivered |———>» Alerting | Receive

T5 Connected| Connected Established [«€———{ Connected| Connected
ISDNCall CSTA CSTA Event CSTA ISDNCall

State connection Reports Connection Staté
States States

Notice in Figure 6-18 that the CSTA Event Reports are based on signalling interactions of the Switchir
Function. Many Connection events are of interest to CSTA applications. Typically, however, a CST/
application is interested in atomic telecommunications activities and these often involve many simultaneo
Connection events. Generally, telecommunications operations embody changes to many Connections. Tt
events can be summarized in a single Event Report. For instance, the Transfer, Conference and Clear
Services all make changes to multiple Connections but are each represented by single Event Reports.
Connection state changes associated with each CSTA Event Report are defined in this Standard.

Call State Definitions

The state of a CSTA Call can be precisely expressed as the list of Connection states of all the devices involve
the call. This list is called the Compound Call State. The technique of listing the Connection states to describe
Call state can describe any call state that is possible in CSTA. However, most calls involve a small number
widely recognized states. CSTA defines those states in terms of their set of Connection states, but communic
them as atomic Call states - not as a list. These widely recognized states are called the Simple Call States.

For calls with one known Connection state, the single Connection state shall be provided as a Call state.

Note that since Null can be a known Connection state, for a nascent call it is possible to have a CSTA Call s
with only one non-Null Connection (see Table 6-5).

For calls with more than two non-Null Connection states, the list of Connection states is provided as the call’s sta

CSTA simplifies Call states by relating them (at times) to particular devices. These relationships are described
differentiating the call’s Connection states. The Connection state associated with a particular device is called
local Connection state (for that device). Other Connection states are not differentiated from one another. Tk
CSTA Call state is defined for a device by the combination of Connection states as well as the order in which
Connection states are combined. For example, the Alerting-Connected Call state is not the same as Conne
Alerting. The first is defined as Received and the second is defined as Delivered. For calls with exactly tv
Connections, the CSTA Call state assigned to the combinations of Connection states are summarized in
following table. If there is no Simple Call state for a particular combination of Connection states, then a Compou

6.1.7

-36 -

state shall be provided as the Call state. For Compound Call states, the first Connection state in the list shall be the
local Connection state.

Table 6-5 Definition of CSTA Simple Call States

Local Connection State Other Connection State CSTA Simple Call State

Alerting Connected Received
Alerting Hold Received-On Hold
Connected Alerting Delivered
Connected Connected Established
Connected Failed Failed
Connected Hold Established-On Hold
Connected Null Originated/Terminated
Connected Queued Queued
Failed Null Blocked
Hold Alerting Delivered-Held
Hold Connected Established-Held
Hold Failed Failed-Held
Hold Queued Queued-Held
Initiated Null Pending
Null Null Null

NOTE

The Originated / Terminated state may occur both during call set-up and when the call ends. When a far-end party
drops from a two-party call and the near-end end-point is not returned immediately to idle, then the Originated /
Terminated state is entered for call tear-down. It is also possible to enter a blocked state when a call ends.
Referencing Devices, Elements, Appearances and Device Configurations

In services and events, devices, elements, appearances and device configurations are referenced using Device
Identifiers or Connection Identifiers when a call is present at the device, element, or appearance. Table 6-6
indicates how these Device Identifier references are interpreted. The Connection Identifier references are described
in 6.1.5, “Connection”, and when a Connection Identifier is used it refers to the specific device, element or
appearance associated with the given call. The following symbols are used in the table:

Logical This indicates that the Device Identifier passed will be interpreted as reference to a specific logical
element

Physical This indicates that the Device Identifier passed will be interpreted as reference to a specific
physical element

Device This indicates that the Device Identifier passed will be interpreted as reference to the entire device
configuration.

Appearance This indicates that the Device Identifier passed will be interpreted as reference to a specific
addressable appearance of a logical element. In order for computing function to determine what
type of referencing is supported for a given logical element, it shall use the capability exchange
services (13.1 beginning on page 118).

-37 -

Refer to 10.1, “Device ldentifier Formats”, for the format of Device Identifiers.

Table 6-6 Device Identifier Interpretation

Service/ Event Identifier Additional Information
Categories Represents

Call Control, Device The device (configuration) itself selects which appearance is to be used.

Call _ASSOC"?IEd’ Appearance The Device Identifier selects the specific appearance which is to be targeted by the service

Media Service

and Routeing

Services

Call Control, Device The Device Identifiers that are associated with an appearance identify only the associated device

Call Associated configuration rather than a specific appearance.

and Medla Note that this information relates to the content of the event parameters, not what is supplied|on

Service Events, the Monitor Start service.

as well as

switching Appearance The Device Identifier selects the specific appearances which are being reported in the event.

function to Note that this information relates to the content of the event parameters, not what is supplied|on

computing the Monitor Start service

function

Logical Device Logical The Device Identifier refers to the particular logical element.

Services

Logical Device Logical The content of the event parameters indicates the given logical element being used.

EVEnIS Not that this information relates to the content of the event parameters, not what is supplied on the
Monitor Start service.

Physical Device Physical The Device ldentifier shall refer to the particular physical element.

Services

Physical Device Physical The content of the event parameters indicates the given physical element being used.

Events Note that this information relates to the content of the event parameters, not what is supplied on
the Monitor Start service.

Device Device The event parameter contains the Device Identifier of the device configuration.

Maintenance

Events

Monitor Start Device or The Device Identifier of the device configuration (Device) results in the observation of the enfire

Service (Call Logical configuration. The Device Identifier of the particular logical element (Logical) results in the

Control/ observation of the entire logical element.

Asso.mated,. and Note that the event filter determines the types (logical or device) of the events required. The

Media Service Switching Function interprets the Device Identifier to meet the requirements of the filter. This [may

events) result in the same Device Identifier being interpreted as both Device and Logical for different
event categories.

Appearance The use of the Device Identifier results in the observation of the specific appearance.

Monitor Start Logical The use of the Device Identifier results in the observation of the particular logical element.

Service (Logical

Device events)

Monitor Start Physical The use of the Device Identifier results in the observation of the particular physical element.

Service

(Physical

Device events)

Logical = logical element’s Device Identifier

Physical = physical element’s Device Identifier
Appearance = addressable appearance (can be recognised from other forms of Device Identifiers by the suffix)

Device=a Device Configuration formed by multiple devices, which is referenced by the Device Identifier

6.1.8

6.2

6.2.1

-38 -

Table 6-6 Device Identifier Interpretation (continued)

Service/ Event Identifier . .
: Additional Information
Categories Represents
Monitor Start Device The use of the Device Identifier results in the observation of the device configuration.

Service (Device
Maintenance
events)

Snapshot Logical The Device Identifier refers to the particular logical element.
Services

Logical = logical element’s Device Identifier

Physical = physical element’s Device Identifier
Appearance = addressable appearance (can be recognised from other forms of Device Identifiers by the suffix)

Device=a Device Configuration formed by multiple devices, which is referenced by the Device Identifier

Management of Dynamically-Assigned ldentifiers

Management of dynamically-assigned Device Identifiers and Call Identifiers is provided through management of
Connection Identifiers. This ensures that an identifier whose meaning is dependent on another identifier is always
provided in the proper context (i.e., with the other identifier needed to resolve its meaning). For example if a Call
Identifier is given relative to a device, then giving the Connection Identifier ensures that the Call Identifier is
provided with its reference - the Device Identifier. Management of Connection Identifiers shall be provided as
follows.

Connection Identifiers shall be provided when either a new Call is created or a new device becomes involved in a
call. When a call is made a Connection Identifier shall be provided. A Connection Identifier shall be provided in
Event Reports that pertain to a call. When a device becomes involved in a call, the Connection Identifier shall be
provided in the Event Reports that occur at that device.

If a call changes its Call Identifier when a Conference or Transfer occurs, Connection Identifiers shall be provided
to link the old Call Identifier to the new Call Identifier. Similarly, if a Device Identifier is changed, new Connection
Identifiers shall be provided for the devices in the call.

Management of identifiers shall be provided via parameters included in Service acknowledgements and Event
Reports.

Identifiers shall cease to be valid when their context vanishes. If a call ends, its Call Identifier is no longer valid to
refer to that call. Similarly, if a device is removed from service or from a call, its dynamically-assigned Device
Identifier shall become invalid.

Identifiers can be reused. Once an identifier has lost its context it may be re-used to identify another object. It is
recommended that implementations not re-use identifiers immediately.

Individual Call and Device Identifiers are not guaranteed to be globally unique. CSTA requires that the combination
of Call and Device Identifier be unique within a CSTA switching sub-domain. To accomplish this, either the Call

Identifier, or the Device ldentifier (or both) shall be unique. In many cases the Connection Identifier requires both
the Call and Device Identifiers to uniquely refer to Connections in a call.

Special Resource Functions

Special Resource Functions (SRFs) are functions that are typically “added-on” to a Switching or Computing
Function. They can be modeled as part of either one of the two other Functions or as something totally independent.

A Special Resource Function may provide various functions, such as voice unit services, conference bridge, fax,
video, or speech recognition, to the Switching and/or Computing Functions. Functionality concerning Voice Unit
Services is defined in this Standard.

Voice Unit

A Voice Unit is a CSTA SRF that allows messages consisting of voice stream data to be created, manipulated,
played to a Connection, or recorded from a Connection. A Voice Unit can be observed and controlled using the

-390 -

CSTA Voice Unit services (Clause 26, “Voice Unit Services & Events”, on page 517) and a state model as showr
Figure 6-19, “Voice Unit Operational Model”. A voice unit device could be used to implement a voice mail system.

A Connection Identifier is used to indicate the call that the Voice Unit relates to a message. Typically the Voice U
will record some portion of the call or play a message as some portion of a call. There are some Voice Unit Servi
(e.g., Delete Message and Concatenate Message) that deal with the control of messages and do not requi
interaction with a call.

A Message Identifier is used to allow manipulation of messages, many of which survive the life of multiple calls.

A Voice Unit state is a state that a Voice Unit may take in relating a call with a message. It relates a call to
message in terms of playing, recording, pausing, suspending, changing playback speed, etc. Voice Units may |
several states concurrently with respect to different calls and messages. Voice Unit states shall be reported by \
Unit Event Reports. A typical transition model for Voice Unit states is shown in the following figure.

Figure 6-19 Voice Unit Operational Model
Speed
Volume . Level

\Ifolurine
eve
Volume
next Spg ?d Level
) " Speed

message

Record

Set Speed

Suspend
Record

Set Speed Position Position
Speed” -
Level
Volume
A depicts an Set Speed Position

event representin ‘ ,
a characteristic Speed - g

change Level
Volume

In Figure 6-19, “Voice Unit Operational Model”, the states (circles) presented comprise the CSTA Voice Unit sta
set. Arrows represent transitions between states and show the typical states that may be entered from a given
These transitions form the basis for providing Voice Unit Event Reports when they occur. The circular transitio
show the effects of the Reposition and Set Speed Services. The following states are defined:

Stop the state where a call and a message are not currently interacting.

Play the state where a message delivers its voice stream data to a call.

6.3

6.3.1

- 40 -

Suspend Playthe state where a message that was in the Play state is temporarily suspended in its delivery. This
state (rather than Stop) is entered when it the message is intended to be continued from its current

position.
Record the state where a message is created from the voice stream data in a call.

Suspend Record

the state where a message that was in the record state is temporarily suspended from recording.
This state (rather than Stop) is entered when recording is intended to be continued from its current
position.

Review the state where a message that was in the Suspend Record state delivers recorded voice stream data
back to the call. This allows the party who is creating the message to examine the voice stream data
recorded so far.

I/O Services

I/O-Services support the exchange of data between a computer application (a computing function component) and a
telephony device (to send Data from the computer application to the display of a telephony device, or to send Data
from the keypad of a telephony device to the computer application, etc.).

NOTE

Both the I/O Services and the Physical Device Features provide the capability to write to the display of a device
and to detect keypad activity at a device. The primary difference between these two approaches is that the 1/O
services operate within the context of a data path, which is described below.

The 1/O-Services are defined as a distributed application between the switching function and the computing
function. The special resource function is not involved.

Figure 6-20 1/0O Services Functional Architecture

Telephony Device switch Computer
’] ' Switching Computing
Function Function
Component Component

4 Switch-Specific Protocol —pms—— CSTA-Protocol ——w=
< DATAPATH el '

- JO-DataExchange —————————pm

Figure 6-20 shows that the exchange of data between a telephony device and a computer application consists of two

parts:

1. the exchange between the switching function component and the computing function component, provided by
the CSTA-Protocol.

2. the exchange between the telephony device and the switching function component, provided by a switch-
specific protocol.

Data Path Definition

To allow computer applications to cooperate with a switch-specific protocol (see Figure 6-20), a common view (the

data path) is defined:

¢ The data path is an abstract model of a switch-specific protocol/mechanism.

6.3.2

6.3.3

-41 -

e The data path is a logical object in the switching function that allows the exchange of data between a teleph
device and a switching function component for a given application association.

« The computing function component is able to control the data path via the I/O-Services.

e The computing function component is also informed via the I/O-Services when an entity in the switchin
function controls the data path.

« The data path ends in the switching function component, it is not part of the CSTA-link between the switchir
function component and the computing function component.

» The switching function component is a gateway between the data path and the CSTA link:

» It receives CSTA service requests from the computing function component to control the data path (v
the Start Data Path, Suspend Data Path, Resume Data Path, and the Stop Data Path services) and act
the equivalent switch-specific protocol-mechanisms (and vice versa, including the Data Path Suspend
Resumed services).

e It receives data (via the Send Data, Send Multicast-Data, Send Broadcast-Data, and the Fast O
services) from the computing function component and sends this data through the data path (via a swit
specific protocol) to the target device (and vice versa, but only via the Send Data and Fast Data services

I/0 Registration Services

The 1/O registration services registers the computing function as an /O server for a specific device or for
devices within the switching sub-domain.

If the switching function supports the I/O Registration services, then the computing function shall use the I
Register service to register for 1/O services before it can receive any 1/O service requests over switching funct
requested data paths.

I/O Registration services are not used for data paths that are requested by the computing function.
Data Path States and Operational Model

The following data path states are defined in the I/O Services Operational Model:

Null No relation between a data path and a telephony device. No I/O Cross Reference Identifier
defined.
Open The data path is able to transfer data (direction is defined in the Start Data Path service). An |/

Cross Reference Identifier is defined.

Suspended The data path is not able to transfer Data. The relation to a telephony device still exists, the I/
Cross Reference Identifier is still valid.

Figure 6-21 Data Path State Model

Start Data Path
Stop Data Path

top Data Path

Susp ta Path

nd Da

Suspended

Resume Data Path
Data Path Resumed

6.3.4

6.4

6.4.1

-42 -

I/O Services Example

The following figure illustrates a possible CSTA configuration involving a data path from/to a CSTA object
through the switching function.

The data path is established via the Start Data Path service issued, in this example, by the computing function.

If the switching function temporarily stops (suspends) the data flow (without destroying the data path), it informs
the computing function via the Data Path Suspended service.

The switching function might have suspended the data path because it had received a Suspend Data Path service
from the computing function or it may have suspended the data path without such a request from the computing
function (because of an incoming call at the device, for example).

Figure 6-22 1/0 Services Example

data path text data

Swritch
| Send data
data path voice data ‘—‘
Suspend Data path
or suspended

Resume or

data path resurmned
Computer

Call Detail Record (CDR) Services

Call Detail Record (CDR) Services allow access to information regarding call charges that has been collected,
processed and/or stored by the switching function. This information may include detailed call charges, destination,
bill-to-account, authorization codes, etc. This information may be provided in real-time (i.e., immediately after the
conclusion of a call) or in batch mode.

CDR Services Examples

Figure 6-23 illustrates the flow of CDR services when they are used to collect call detail information after every
call. In this example, the computing function issues a Start Call Detail Report Transmission service and specifies
that the switching function should send call detail information after every call by specifying the transferMode
parameter as transferAtEndOfCall (line 1). The switching function responds with a positive acknowledgement (line
2) that includes a CDR cross reference identifier (with a value of 5) which will be present in subsequent CDR
services.

Line 3 shows a call, called c1, that was cleared. Since the switching function is sending call detail information after
every call, the switching function sends the call detail information for call c1 using the Call Detail Record Report

service (line 4), which is acknowledged by the computing function (line 5). Lines 6 through 8 show the same
sequence for another call, called c2.

When the computing function is no longer interested in CDR information, it stops the reporting by using the Stop
Call Detail Report Transmission service, specifying the CDR cross reference identifier with a value of 5 (line9).

-43 -

Figure 6-23 CDR Services Example: Call Details “After Every Call”

Switching Function Computing Function

1. . . E _ E Call .
2. (positive acknowledgement with cdrCrossReflD=5) -
3. (call c1 is cleared)

4, Call Detail Record Report (call detail parameters for call c1, cdrCrossRefID=5) service gy,
5. - (positive acknowledgement)

6. (call c2 is cleared)

7. —Call Detail Record Report (call detail parameters for call c2) , cdrCrossReflD=5) service gy,
8. ¢ (nositive acknowledgement)

9. - Stop Call Detail Report Transmission (cdrCrossReflD=5) service

10. (positive acknowledgement) -

Another example as shown in Figure 6-24 illustrates the flow of CDR services when they are used to collect c
detail information and retrieved at the request of the computing function.

In this example, the computing function issues a Start Call Detail Report Transmission service and specifies that
switching function should store call detail information (until explicitly requested by the computing function) by
specifying the transferMode parameter as transferOnRequest (line 1).

Lines 3 and 4 show two calls in the switching function that were cleared. Since the switching function is n
sending call detail information after every call, the switching function stores the CDR information instead
sending it at this time. When the computing function wants the CDR information, it sends the Send Stored C
Detail Records service (line 5) that requests the switching function to start sending its stored CDR records. -
switching function sends its two stored reports for calls c1 and c2 via a Call Detail Record Report service (line 7).

Line 9 shows that the switching function has stored CDR information for a number of calls. Since the computi
function has not requested CDR information to be sent during this period, the switching function has used the (
Detail Records Notification service to indicate that a threshold reached condition has occurred in the switchi
function (line 10). The computing function uses the Send Stored Call Detail Records service to start t
transmission of CDR information from the switching function (line 12). The switching function sends a series ¢
Call Data Record Report services that provides the stored CDR information (lines 14 & 16).

6.5

6.5.1

-44 -

Figure 6-24 CDR Services Example: Call Details “On Request”

Switching Function Computing Function

1. - Start Call Detail Report Transmission (transferMode=transferOnRequest) service

2. (positive acknowledgement with cdrCrossReflD=6) -
3. (call c1 is cleared)
4, (call c2 is cleared)

5. <@ Send Stored Call Detail Records (cdrCrossReflD=6)

6. (positive acknowledgement) >

7. callDetail Record Report (cdrCrossRefID=6, callscl,c2) g

8. - (positive acknowledgement)

9. (calls c3.....c9999 are cleared, CDR records stored)
10. . I _ _

11, (positive acknowledgement)

12. q—Send Stored Call Detail Records (cdrCrossRefiD=6)

13. (positive acknowledgement) -

14. ________ Call Detail Record Report (cdrCrossRefID=6, calls c3 through ¢10) g
15 ~ <& — Apositive ackmowledgementy~- — — — — — — — — — — — — — — — — -

16. ____ Call Detail Record Report (cdrCrossRefID=6, calls cxx throughc999) gy

17. <& — Apositive acknowledgementy- — — — — — — — — — — — — — — — — -

Capabilities Exchange

The concept of capability exchange is one in which the switching function informs the computing function, through
the service boundary, about the characteristics of its sub-domain in relationship to the operational model and feature
definitions. This enables the computing function to use the services of the switching function based on its
characteristics.

This exchange shall be performed before the computing function can control and/or observe any device in the
switching sub-domain but not before the switching function has reported its system status (i.e., the System Status
service).

There are two levels of capability exchange available to the computing furetidohing functionand device
specific capabilities

Switching Function Capabilities

The first level is the capabilities for the switching function. These capabilities represent the set of all capabilities
within the switching function and are obtained using the Get Switching Function Capabilities service.

6.5.2

6.5.2.1

6.5.2.2

6.5.3

6.6

- 45 -

The list of devices that can be controlled and/or observed within the switching sub-domain can be obtained
using the Get Switching Function Devices service. This service causes the switching function to send one or
Switching Function Devices service(s) that contain the list of devices and optionally the device type, device nar
and other information associated with each device.

Device Capabilities

Even though the Get Switching Function service gives the computing sub-domain most of the information
properly use the capabilities of the switching function, this information is sometimes not enough to totall
understand the unique capabilities of a given device in relationship to the operational model or feature. Th
another level of capability exchange exists which allows the computing function to obtain the specific capabiliti
associated with a given device or device configuration. This level of information is needed to better understa
capabilities for an individual device. These specific device capabilities are obtained by using the following servic
(in any order):

« Get Physical Device Information service
» Get Logical Device Information service

The ability to use these services depends on whether or not the switching function actually supports these serv
The computing function obtains this information from the Get Switching Function Capabilities service.
Physical Device Capabilities

This Get Physical Device Information service is used to obtain most of the capabilities and configuratic
information associated with the physical element of a device. To obtain the rest of the physical eleme
characteristics, the computing function shall use the Get Button Information, Get Lamp Information, Ge
HookSwitch Status, Get Ringer Status, and Get Auditory Apparatus Information services to obtain all of ti
information associated with the device’s lamps and buttons. This information is used when controlling or observi
the physical element of the device.

If the service indicates that the device has logical characteristics, the Get Logical Device Information service
be used for all associated logical elements.

If the service is used on a device that does not have any physical characteristics the service shall be rejected.
Logical Device Capabilities

The Get Logical Device Information service is used to obtain the capabilities and configuration informatio
associated with the logical element of a device. This information is used when controlling or observing the logic
element of the device.

If the service indicates that the device has physical characteristics, the Get Physical Device Information service 1
be used for all associated physical elements.

If the service is used on a device that does not have any logical characteristics the service shall be rejected.
Dynamic Feature Availability

A computing function can determine all possible CSTA services that can be applied to a connection given its s
by using static information obtained through the Capability Exchange services. However, in certai
implementations, there are situations where the set of services that can be applied to a connection varies depel
upon how the connection got to a certain connection state and/or certain features active at a given device. In tl
cases, the static information provided in the Capability Exchange services may not reflect the actual set of serv
that are allowed.

If the Dynamic Feature Availability option is supported (as indicated through the Capability Exchange services), t
actual set of CSTA services that can be applied to a connection at a given point is provided through 1
servicesPermitted parameter in every appropriate event.

Refer to 12.2.18, “ServicesPermitted”, on page 104 for a description on the use and restrictions of this parameter
Switching Function Information Synchronization

Since the information obtained through the capability exchange services and call events may change after
information has been obtained, this Standard defines mechanisms that may be used to notify and provide

6.6.1

6.6.2

6.6.3

6.7

6.7.1

- 46 -

computing function with the updated information. This allows synchronization to be maintained with switching
function information.

Switching Function Level Information

The following list describes how the computing function is notified when switching function level information has
been changed.

e switching function capabilities The Switching Function Capabilities Changed service is used to notify the
computing function when information contained within the positive acknowledgement of the Get Switching
Function Capabilities service has changed. The computing function shall issue the Get Switching Function
Capabilities service to get the current information.

« switching function devicesThe Switching Function Devices Changed service is used to notify the computing
function when information contained within the Switching Function Devices service has changed. The
computing function shall issue the Get Switching Function Devices service to get the current information.

Device Level Information
The following list describes how the computing function is notified when device level information has been
changed.

« device capabilities The Device Capabilities Changed event is used to notify the computing function when
information contained within the positive acknowledgement of the Get Physical Device Information and/or Get
Logical Device Information services has changed. The computing function shall then issue the appropriate Get
Physical Device Information and/or Get Logical Device information services to get the current information.

Call Level Information
The following list describes how the computing function is notified when call level information has been changed.

e account information and authorisation codeThe accountinfo and the authorisationCode parameters in the
Call Control events represents the current account information and authorization code. In the situation where
this information has changed independently of call activity (manual entry or via the Associate Data service, for
example), the Call Information event is used to notify the computing function of the updated value.

« calling device- The callingDevice parameter in the Call Control events represents the calling device associated
with the call. In the situation where this information was originally unknown and has now become available,
the Call Information event is used to notify the computing function of the updated value.

« dynamic feature availability The servicesPermitted parameter in the Call Control events represents the set of
services that can be applied to a connection. In the situation where the servicesPermitted parameter changes
due to another call’s connection changing state, the Call Information event is used to notify the computing
function of the updated capabilities for the connection that did not change state.

e User Data and Correlator Data The userData and the correlatorData parameters in the Call Control events
represents the current values of User Data and Correlator Data. In the situation where this information has
changed independently of call activity (Send User Information or Associate Data services, for example), the
Call Information event is used to notify the computing function of the updated values.

Status Reporting Services

Note that this section describes the Status Reporting services between the Switching Function and the Computing
Function.

System Status

System Status services provide a way for the computing function and switching function to exchange information
about the overall status of the system within each function. For each service boundary in a CSTA environment, the
computing function and switching function on each side maintain a status attribute. System status services are bi-
directional, enabling the computing function to report its status to the switching function, or to request the status of
the switching function, and vice-versa.

6.7.1.1

6.7.1.2

- 47 -

System Status Registration

Before the computing function can receive any system status service requests, it may be required to register
the switching function for system status services using the System Status Register service. The posil
acknowledgement to this service contains the system status register identifier (sysStatRegisterID) that
computing function uses to identify service requests that arrive for this registration.

If the switching function supports the System Status Registration services, then the computing function shall use
System Status Register service to register for system status services before it can receive any system status s
requests. The first (mandatory) System Status service request from the switching function issued during
initialization sequence is an exception to this rule, however. If the switching function does not support the Syst:
Status Registration services, then the computing function may receive system status service requests at any
The capabilities exchange services can be used to determine if the switching function supports the System St
Registration services.

The type of system status service requests that apply to the registration can be chosen by the computing fun
when it issues the System Status Register service request. A status filter can also be specified such that onl
status’s of interest to the computing function will be reported by the switching function (i.e., if the bit for a status
set in the status filter, then that status is not reported). This filter can be changed using the Change System S
Filter at any time while the registration is active.

A system status registration can be cancelled using the System Status Register Cancel service. Once the swit
function sends a positive acknowledgement to this service, it will no longer send system status service reques
the computing function. Additionally, the switching function can cancel a system status registration at any time
sending the computing function a System Status Register Abort service request.

While the system status services themselves are bi-directional, the System Status Registration services are
These services are only issued by the computing function. The switching function does not register with t
computing function for system status services. The switching function is considered to be (implicitly) registered
receive system status service requests from the computing function at any time.

System Status Services

There are two System Status Services: System Status and Request System Status. The first service is used |
requesting function to report its status to the function receiving the service request. The second service is usel
the requesting function to request (i.e., query) the status of the responding function.

The computing function can determine if the switching function uses the System Status service for periodic sta
reporting (i.e., heartbeats) using the capabilities exchange services. The Get Switching Function Capabilit
service positive acknowledgement defines a parameter (systemStatusTimer) that is used to indicate whe
periodic status reporting is used and if so, how often the computing function should expect the reports. T
recovery action to be taken by the computing function in the event of a loss of heartbeats is implementation speci

All System Status services use the following values to indicate system status:

« Initializing - The system is re-initializing or restarting. This status indicates that the system is temporaril
unable to respond to any service requests. If provided, this status message shall be followed by an Enable s
message that indicates that the initialization process is completed.

« Enabled- Request and responses are enabled, usually after a disruption or restart. This status indication s
be sent after an Initializing status indicator has been sent and may be sent under other conditions. This st
indicates that there are no outstanding monitor requests.

« Normal - This value can be sent at any time to indicate that the status is normal. This status has no effect
other services.

» Messages LostThis status indicates that a service request, response, or event report may have been lost.

« Disabled- This cause value indicates that active Monitor Start monitor requests have been disabled. Ott
requests and responses may also be disabled, but, unlike monitors, reject responses are provided for those.

-48 -

e Partially Disabled- Some of the objects in the system can not be reached. Existing monitors on these objects
will not provide events and computer requests targeting these objects will be rejected. This cause indicates to
the receiving function that a degradation of service level may occur but not complete system disability.
Automatic or manual actions may be taken to remedy the parts disabled.

¢ Overload Imminent The system is about to reach an overload condition. The client should shed load to
remedy the situation.

e Overload Reached The system has reached an overload condition and may take action to shed load. The
server may then take action to decrease message traffic. This may include stopping existing monitors or
rejecting any new requests sent by the client.

¢ Overload Relieved The system has determined that the overload condition has passed and normal application
operation may resume.

Each system status service request may contain a system status registration identifier (sysStatRegisterID) to identify
the associated system status registration (when system status registration is supported by the switching function). A
system status service request from the computing function should never contain a system status registration
identifier.

6.7.2 Monitoring

To track call control and other activity, and to receive notification of all changes in the switching Function, the
computing function uses a feature called monitoring. By starting a monitor, the computing function indicates that it
wants to be notified of specific changes that occur in the objects (call and device) and device attributes of a
switching function. Examples include:

* Notification that a call has arrived at a device.
* Notification that a call has been answered.
« Notification that a feature such as “Forwarding” or “Do Not Disturb” has changed at a device.

Once a monitor is established, the switching function notifies the computing function of relevant activity by
sending messages calledent reportspr simplyevents

For example, in the area of Call Control, events report the state transitions through which connections pass. In this
way a computing function is able to determine what services are applicable to a given connection. For example, the
Delivered event indicates when a connection state transits to the Alerting state.

The event categories are as follows:

« Call Control- These events report changes to information related to calls.

« Call Associated These events report changes to information related to calls.

* Media Stream These events report changes associated with attachment of a call to a media device.

« Physical Device These events report changes to the components of a device's physical element.

« Logical Device- These events report changes to feature settings associated with a device's logical element(s).
« Voice Unit- These events report changes to Voice Unit messages.

* Maintenance These events report changes regarding maintenance.

« Private- These events are switching function specific.

6.7.2.1 Starting and Stopping a Monitor

The Monitor Start service is used to establish a monitor. The computing function indicates the monitor object that it
is interested in observing, the type of monitoring, the type of calls to monitor, and the list of events that it is
interested in.

Once the Monitor Start service request has been validated by the switching function, the switching function
provides a positive acknowledgement that includes a Monitor Cross Reference Identifier that uniquely identifies the
monitor. The switching function also provides this identifier as a parameter in all events associated with this

6.7.2.2

6.7.2.3

=49 -

monitor. The computing function can use this identifier to correlate events to the particular Monitor Start servi
that established the monitor. (This identifier is also used in the Monitor Stop and Change Monitor Filter services.)

The Monitor Stop service is used to stop an established monitor. When a Monitor Stop service has been sent by
computing function, the switching function stops the monitor, releases the Monitor Cross Reference Identifier, a
no longer provides events to the computing function.

The Monitor Stop service may also be sent from the switching function to the computing function when tt
switching function stops an existing monitor. This occurs when the monitor object is a call-object (Table 6-7),
when the switching function shall terminate a monitor due to load conditions, for example.

Refer to 15.1 beginning on page 166 for a complete description of the Monitor Start and Monitor Stop services.
Monitor Objects

The computing function indicates what it wants to monitor by specifying a monitor object parameter in the Monit
Start service request. There are two possible monitor objattsibjectanddevice-object

The following table describes the monitor objects.

Table 6-7 Monitor Objects

Monitor Object Description

call-object Place a monitor on an existing call/connection. Only the specific call is monitored.

A Monitor Stop service is sent by the switching function to indicate when the existing call is no longer
monitored.

device-object Place a monitor at the specified device.

Monitor Types

The computing function also indicates a monitor type when starting a monitor. There are two types of monitorir
call-typeanddevice-type

The following table describes the possible monitor types and their meanings.

Table 6-8 Monitor Types

Monitor Type Description

call-type The call continues to be monitored as long as it remains in the switching sub-domain.

For example, if a call that is being call-type monitored is transferred to another device in the switching
sub-domain, the call will continue to be monitored. The computing function receives events for all
devices in the call until the call ceases to exist or until it leaves the switching sub-domain. The Diverted
event is an exception. The switching function (as indicated through the capabilities exchange serv|ces)
may or may not be providing Diverted events to all devices in a call.

For call-type monitors:

* When a device ceases to participate in a call, and the call is transferred or forwarded to another
device, subsequent events at the new device are reported. The Monitor Cross Reference Identifier
used in events at the new device will be the same one used before the call was forwarded or
transferred.

» Ifacall is being monitored using a call-type monitor and one of the devices consults to another
device (i.e. a new call is created), then the computing function will not see events for the
secondary call (new consultation call) until either the primary call is transferred to the condulted
device, or until the two calls are conferenced together.

» Acall that is being monitored may have a new Call Identifier assigned to it after a confererjce or
transfer. The switching function reports the new Call Identifier in a Conferenced or Transferred
event.

device-type The call doe®t continue to be monitored after the call leaves the device.

6.7.2.4

6.7.2.5

6.7.2.6

6.7.2.7

-850 -

Relationship of Monitor Objects and Monitor Types

Monitor objects and monitor types are independentmawitor objectdescribes what the monitor is being placed
on, while themonitor typedescribes if a call continues to be monitored after it leaves a device.

The following table describes the possible combinations of monitor objects and monitor types and what the
resulting combinations represent.

Table 6-9 Monitor Object/Monitor Type Combination

Monitor Object Monitor Type Usage

call-object call-type This combination is used to track an existing call, for as long as that call remains in the
switching sub-domain.

Monitor Stop service is sent by the switching function when the call ceases to exist in the
switching sub-domain to indicate that the monitor is stopped and the associated Monitor|
Cross Reference Identifier is no longer valid.

o

call-object device-type This combination is used to track an existing call, while that call remains at the specifie
device.

Monitor Stop service is sent by the switching function when the call leaves the device to
indicate that the monitor is stopped and the associated Monitor Cross Reference Identifier is
no longer valid.

device-object call-type This combination is used to track all calls that arrive (or are present) at the device, for as long
as the calls remain in the switching sub-domain.

The specified device object can be thought of as a trigger device where all calls that beqome
involved with this device become monitored as long as the call remains in the switching [sub-
domain.

Monitor Stop service inot sent by the switching function when a call ceases to exist or
moves away from the monitored device, since the monitor is still in place at the device.

device-object device-type This combination is used to track all calls that arrive (or are present) at the device, for|as long
as the calls remains at the device.

Monitor Stop service inot sent by the switching function when a call ceases to exist or
moves away from the monitored device, since the monitor is still in place at the device.

Monitoring in Relationship with Media Class

The computing function can also indicate the media class (voice, digital data, etc.) of calls to be monitored when
starting a monitor.

Refer to the media class component of 12.2.15, “MediaCallCharacteristics”, on page 101 for the complete set of
possible values. The media class is independent of the monitor object and monitor type.

Reporting Connection State Changes

Once a call is monitored (irrespective of monitor type or monitor object), all connection state changes that are
known by the switching function for that call are reported to the computing function (subject to the Monitor Filter—
referto 6.7.2.7).

For example, if device A is being monitored (with a device-type monitor) and a call is placed to device B (no
monitor on B), then any connection state changes for either device A or B (such as when B answers the call) will be
reported through device A's monitor.

Monitoring is only guaranteed for devices in the switching sub-domain. Activity related to devices outside the
switching sub-domain may be only partially available or completely unreported.
Monitor Filtering

The computing function can request that a set of events be filtered out (not sent) by the switching function. This
information is specified in the monitorFilter parameter in the Monitor Start service request.

The monitorFilter parameter contains a list of filters that are grouped together into the following categories:

« Call Control events

6.7.3

6.8

6.8.1

-51 -

» Call Associated events

* Media Stream events

« Physical Device Feature events
» Logical Device Feature events
* Maintenance events

* \oice Unit events

» Private events

The switching function indicates the actual list of events that will be sent by returning the monitorFilter paramet
in the positive acknowledgement to the Monitor Start and Change Monitor Filter services.

The computing function can request that the filtered list of events for an existing monitor be changed by issuing
Change Monitor Filter service.

Some categories of events are not provided for call-type monitors. The capability exchange services indicate
categories of events that are supported by the switching function for call-type monitors.
Snapshot Services

Snapshot services are used by the computing function to determine information about a call or a device. Th
services may be used at any time, independently of, or in combination with existing monitors. For example,
computing function may snapshot a device prior to starting a monitor on the device, in order to obtain informati
on existing calls at the device.

Additional Services, Features & Behaviour

This section specifies standardized switching function features affecting calls at a given device that do not have
explicit service request associated with the invocation of the feature. These features are usually configured wif
the switching function or have a service request which sets up certain conditions at a device that causes a parti
behaviour with respect to calls at the device. As a result, these features are only reflected through an event seq
from the switching function. The following sections explain these features and the event sequences associated
them.

Forwarding

The forwarding feature is a trigger at a device that will redirect incoming calls to another device based on a spec
condition. The following are the types of conditions that would trigger the redirection, or forwarding of the
incoming call:

1. Immediate- This condition indicates that if a call arrives at a device, it is immediately redirected to anothe
device.

2. Busy- This condition indicates that if a call arrives at a device, and the device is busy with another call, the
the incoming call will be redirected to another device.

3. No Answer- This condition indicates that if a call arrives at a device, and the call is not answered within
certain number of rings or within a specific amount of time, then the incoming call will be redirected tc
another device.

4. Do Not Disturb (DND)- This condition indicates that if a call arrives at a device, and the device has the Dq
Not Disturb feature active at the device, then the incoming call will be redirected to another device. Note tf
the Do Not Disturb feature does not necessarily imply that incoming calls are forwarded.

5. Type of Call Originatior+ This condition indicates that if a call arrives at a device, and the originating device
is a specific class (i.e., external, such as a device that is outside the switching sub-domain, or internal, suc
a device that is within the switching sub-domain), then the incoming call will be redirected to another devic
This condition can be used in combination with the others to create a compound condition. For example,
busy with another call and the calling device is outside the switching sub-domain, then redirect the call
another device.

Switching functions may support one or both of the following levels of forwarding settings:

-52 -

e switching function default settings
e User specified settings

Switching function default settingse a single set of forwarding-type/forward-destination combinations that can be
activated and deactivated as a set. The set includes all of the CSTA forwarding-types defined and the forward-
destinations for each type. Activation, deactivation, or changes to the forward-destinations are not normally
possible by users.

User specified settingare individual forwarding-type/forward-destination combinations that can be activated or
deactivated one at a time. User specified settings supersede switching function default settings during activation,
deactivation, and when forwarding occurs.

A switching function that supports switching function default settings may also support user specified settings.
Switching function default settings are used for forwarding to a standard destination such as voice mail or an
attendant. User specified settings may be used to override the default settings to forward calls temporarily to
another office, for example.

A user specified forwarding type supersedes the same switching function default forwarding type when forwarding
occurs. For example, a user specified type of “No Answer” and its corresponding forward destination supersede a
switching function default type of “No Answer”. Note that this rule may not apply to types that are not alike. For
example, a user specified type of “No Answer” (a delayed type of forwarding) does not supersede a switching
function default type of “Immediate”, although a user specified type of “Immediate” does supersede a switching
function default type of “No Answer” (since “No Answer” is a delayed type of forwarding).

The forwarding feature has service requests and events to control and observe the activation and deactivation of the
forwarding triggers at the device (i.e., Get Forward, Set Forward, Forwarding). These service requests and events
are documented in Clause 22, “Logical Device Features”, beginning on page 431, and do not actually forward the
incoming call when it arrives at the device, but instead sets up the trigger to cause the switching function to perform
the redirecting of the call. The computing function should use the capabilities exchange services to determine which
of these services and events the switching function supports.

The computing function should use the capabilities exchange services to determine which of the following levels of
forwarding settings are supported by the switching function:

e Switching function default settings (set of forwarding types and forward destinations).
e User specified settings.

« Default forwarding type.

» Default forward destination.

Switching function default settings may be activated or deactivated manually at the device, or by providing neither
the forwarding type nor forward destination (forward DN) in Set Forward service requests.

User specified settings may be activated or deactivated manually at the device or by providing the forwarding type
and/or the forward destination (forward DN) in the Set Forward service request. If the forwarding type is not

specified and the forward destination is specified, the switching function uses a default forwarding type. Likewise,
if the forwarding type is specified and the forward destination is not specified, the switching function uses a default
forward destination.

The computing function is informed that default settings are being activated in the Get Forward positive
acknowledgement and the Forwarding event.

When the call is redirected as a result of the (Immediate) forwarding feature, there are two basic event sequence
models to indicate that the call has been forwarded. The following are the event sequence model definitions (Note
that the computing function should use the capabilities exchange services to determine which of model or models
that the switching function supports.):

1. Forwarding Is Triggered before the Call Is Delivered to the Devidénere is basically no event sequence
associated with this condition. The only characteristic associated with this event sequence is:

6.8.2

-53-

e The first event associated with the delivery of the call to the new device will have an appropriat
forwarding event cause. If the RedirectionDevicelD parameter is available in this event, it will be
provided based upon the definition of the Call Control event and 12.3.24, “RedirectionDevicelD”, or
page 115. Refer to 6.8.6, “Tracking a Diverted Call”, on page 57 for additional information on even
sequences for forwarded calls.

If the call is forwarded multiple times under the same condition (e.g., forwarded from device 1 to device
which is forwarded to device 3), then the information indicating that the call was forwarded will only be the
information from the last device the call was forwarded from (e.g., device 2). As a result, the computin
function will only see that the call has been forwarded one time.

Forwarding Is Triggered after the Call Is Delivered to the DeviCehe event sequence is a Diverted event
followed by the first event associated with the delivery of the call to the new device. The characteristi
associated with this event sequence are:

« Depending on the capabilities of the switching function, a Delivered event may or may not flow as
result of presenting the to-be-forwarded call to the device from which it will be diverted.

« The Diverted event will have an appropriate forwarding event cause. (Note that he reporting of this eve
is dependent on the capabilities of the switching function.)

e The first event associated with the delivery of the call to the new device will have an appropriat
forwarding event cause. If the RedirectionDevicelD parameter is available in this event, it will be
provided based upon the definition of the Call Control event and 12.3.24, “RedirectionDevicelD”, or
page 115. Refer to 6.8.6, “Tracking a Diverted Call”, on page 57 for additional information on even
sequences for forwarded calls.

If the call is forwarded multiple times under the same condition (e.g., forwarded from device 1 to device
which is forwarded to device 3), then the information indicating that the call was forwarded will be availabl
each time the call is forward (e.g., device 1,

device 2). This is possible because the call is actually delivered to the device before it is forward to another.

If the call is forward multiple times with a mixture of forwarding conditions (i.e., event sequence types), then tt
information indicating that the call was forwarded will be a mixture of the event sequences depending on the ori
of the forwarding conditions.

Connection Failure

The information indicating connection failure can be reported through several different event sequences. T
computing function should use the capabilities exchange services to determine which of these services and ey
the switching function supports. The following are the possible event sequences associated with connection failul

1.

Negative AcknowledgemeniVhen the switching function supports service requests that perform connectior
creation process and the switching function detects a failure, the negative acknowledgement can be use
indicate the failure to complete the connection. The following are the service requests associated w
connection creation process:

* Consultation Call

+ Deflect Call
« Dial Digits
+ Join Call

* Make Call

» Make Predictive Call
e Pickup Call
« Single Step Conference Call

« Single Step Transfer Call

-54 -

If the switching function uses the negative acknowledgement to indicate the connection failure, then the
appropriate error code will be used to indicate the particular failure.

Support of the Failed Event with an Associated Failed Conneetihen the switching function detects a
connection failure, it places that connection into the failed state. This indicates that the call control services
which can be performed with respect to the connection are limited. The following is the list of call control
services that are applicable:

Clear Call

Clear Connection

Call Back Call-Related

Call Back Message Call-Related
Camp On Call

Deflect Call

Intrude Call

When a connection enters the Failed state, the event sequence provided is a Failed event. The characteristics
associated with this event sequence are:

The Failed event will have an appropriate failure event cause.

The failedConnection parameter in the Failed event will contain a “complete” Connection Identifier (i.e.,
a Connection Identifier that has both a Device Identifier and Call Identifier)

The Failed event will be reported to all active device-type monitors associated with the call, as well as all
call monitors associated with the call.

Support of the Failed Event without an Associated Failed Conneclibis case is similar to the “Support of

the Failed Event with an Associated Failed Connection” state (case 2). The difference is that when the
switching function detects a connection failure, it does not create a connection for the failed device but instead
indicates to the computing function that call control services, with respect to the connection, are limited. The
following is the list of call control services that are applicable to the connection in the call under these
conditions:

Clear Call

Clear Connection

Call Back Call-Related

Call Back Message Call-Related
Camp On Call

Deflect Call

Intrude Call

When the failure is detected, the event sequence provided is a Failed event. The characteristics associated with
this event sequence are:

The Failed event will have an appropriate failure event cause.

The failedConnection parameter in the Failed event will contain a “Call ID only” Connection Identifier.
This indicates that there is not a valid connection for the failed device in the call but that the appropriate
call control service can be performed (i.e., Call Back Call-Related, Intrude Call, etc.) on the call.

The Failed event will only be reported to the active device and call monitors associated with the devices
that where in the call prior to the failure (i.e., if a device-type monitor was on the failed device, then the
event sequence is not reported).

6.8.3

6.8.4

-B55 -

If the Camp On Call or Intrude Call service request is performed on the call, then the connection associa
with the failed device will be created (i.e., a valid connection).

4. Support of the Failed Event with an Associated Failed Connection, not reported via monitors on the failin
device- This case is similar to the “Support of the Failed Event with an Associated Failed Connection” stat
(case 2). The difference is for which monitors the Failed event is being sent: The Failed event will only t
reported to the active device and call monitors associated with the devices that were in the call prior to |
failure (i.e. if a device-type monitor was on the failed device, then the event sequence is not reported). Ap
from this, all aspects from case 2 apply also to this case.

Recall

The Recall feature is a trigger that is associated with a call after a specific call control feature has been exect
When this feature is executed, it redirects or presents the call either back to the device on who’s behalf the
control feature was executed or to a switching function administrated destination associated with the specific «
control feature. There are several types of call control services which can have this feature associated with th
For example:

* Hold Call

* Transfer Call

« Single Step Transfer Call
» Deflect Call

* Park Call

The event sequence associated with this feature is the Diverted event (only if the device to whom the call is be
redirected is not already in the call) and the first event associated with the delivery of the call to the new device
the device that performed the call control feature. The characteristics for this event sequence are:

« The Diverted event will have an appropriate recall event cause. This event is only reported when the device
whom the call is being redirected is not already in the call (i.e., a recall to a connection that is already in t
call). (Note that the reporting of this event is dependent on the capabilities of the switching function.)

e The first event associated with the delivery of the call to the new device (i.e. Delivered), or the device th
performed the call control feature will have an appropriate recall event cause (in either the Delivered, Hel
Queued, etc.). If the lastRedirectionDevice parameter is available in this event, and the call was actue
redirected to another device outside the current call, then it will be provided based upon the definition for tf
parameter. (Refer to the definition of the Call Control events and lastRedirectionDevice parameter for mc
details.) If the callingDevice parameter is available in this event, it may contain the same callingDevic
information prior to the recall. This means that if the calling device is the Subject Device of the event, then tl
information in the callingDevice and corresponding SubjectDevicelD (e.g., Delivered event SubjectDevicelD
alertingDevice) parameters may be the same. If the switching function does not retain this information with t
call, then the callingDevice parameter will contain a value of “Not Known”.

Call Back

The Call Back feature is a trigger which is set up within the switching function. The trigger is used to initiate a c:
between a particular pair of devices. The pair of devices is comprised of a calling device (i.e., the device on wh
behalf the trigger is setup) and the called device (i.e., the device whom the calling device wants to initiate a cal
when certain conditions associated with the called device are met). The type of conditions associated with
trigger is switching function specific. A common type of condition is the called device is no longer actively
involved in a call(s). The trigger is activated for the calling device by either the Call Back Call-Related or Ca
Back Non-Call-Related services. The trigger is deactivated by one of the following: successful execution of t
trigger, the Cancel Call Back service, or a switching function specific timeout period. Once the trigger is activate
the switching function waits for the particular condition associated with the Call Back feature to be met. Once m
the switching function initiates a call on behalf of the calling device to the called device. This is done by fir:
prompting the calling device (if supported by the device) and then initiating the call to the called device.

6.8.5

-56 -

The event sequence associated with execution of the Call Back trigger is the Service Initiated event (only if the
calling device is prompted), Originated event and the events associated with the called device’s involvement in the
call. The characteristic for this event sequence is that both the Service Initiated (if supported) and Originated events
will have an event cause of Call Back.

External Calls

A call is considered to be external when there is at least one device in the call that is outside the switching sub-
domain. For more details on how the switching function represents these devices within the switching sub-domain,
refer to 6.1.3.4.2, “Network Interface Device Category”, on page 20. The activities associated with external calls

are broken down into two categories:

« Incoming Calls- A call is being initiated from a device outside the switching sub-domain.

¢ Outgoing Calls- A device inside the switching sub-domain is adding or initiating a call to a device outside the
switching sub-domain.

These categories are represented by different event sequences. The characteristics associated with these ever
sequences are:

¢ Incoming Calls

« A Service Initiated event is generated for the network interface device when the network interface device
is allocated (e.g., seized) for the external incoming call. The initiatingDevice parameter will contain the
information on which network interface device is being used for the call. Note that this event is only
generated if the network interface device is monitored.

e The Digits Dialled event is generated for the network interface device when a portion of the dialling
sequence has been received over the network interface device. Note that this event is only generated if the
network interface device is monitored.

e The Originated event is generated for the network interface device when the external incoming call has
originated from the network interface device. The NIDDevice parameter will contain the information on
which network interface device is being used for the call. Note that this event is only generated if the
network interface device is monitored.

¢ In all subsequent events (independent of whether or not the network interface device is observable), this
incoming call is distinguished from an internal incoming call by the presences of the
associatedCallingDevice (i.e., containing either a Device Identifier or a value of “Not Known”). The
information in the associatedCallingDevice parameter is first associated with the call when it enters the
switching sub-domain (i.e., Service Initiated or Originated events) and will be present until the calling
device leaves the call.

¢ Outgoing Calls

¢ When initiating a connection to a device outside the switching sub-domain and the switching function is
associating the Network Interface Device with the outside device, a Network Reached event is reported.
In addition, the Network Reached event is the first event that indicates the call is an external outgoing
call. Subsequent events (if available) will contain the associatedCalledDevice parameter (i.e., the value
from the networkinterfaceUsed parameter of the Network Reached event) and will be present until the
call is cleared. In addition, until the Network Reached event is generated, the call is consider to be an
internal call.

e« The event sequence after the Network Reached event that is associated with the device outside the
switching sub-domain may be limited but the events that are reported will contain one of the event causes
documented in the event definition. If the Network Reached event contained the networkCapability
parameter, future Network Capabilities Changed events may be provided indicating a change in the
signalling capability of the network and ultimately the types of events that can be provided.

6.8.6

6.8.7

6.8.7.1

6.8.7.2

-57 -

Tracking a Diverted Call

When observing a call or a device in a call, and the call diverts from a device in the call, the computing functi
shall use the Diverted event to track the progress of the call as a result of the redirection.

If the switching function does not provide the Diverted event for all devices in a call or for call-type monitors (a
indicated through the capabilities exchange services), the computing function shall use parameters in the first e
after the call has been diverted to properly track the progress of the call as a result of the redirection. The de
identifiers are used to observe the movement of the call and the event cause is provided to indicate what cause
movement of the call. (Note that the call may have been diverted several times between the previous event (if
was generated) and the first event after the diversion. As a result, the computing function can only ascertain
either one or two redirections have occurred.)

Media Stream Access

The capability to control the information content within a call is called media stream access, or simply, mec
access. Media access is provided to a computing function through a media service. Common media ser
capabilities are play/record of voice and audio, automatic speech recognition, text to speech, fax, and data servic
Media Attachment Services

A computing function making use of both call control services and media services needs to establish sessions
both services, attach calls to the media service, and needs a way of associating the identifiers (e.g., Conne
Identifiers, Media Stream Identifiers) used by the two services. This Standard defines a set of services, called m
attachment services, that make these tasks significantly easier for the computing function.

Media Service Type

A particular media service, which is defined by its set of services and possibly its access methods (APIs, protoc
etc.) is identified for the purpose of the media attachment services by a unique media service type identifier. -
mediaServiceType parameter is used to indicate which media service is to be (or has been) attached to or dete
from a particular call or connection that the computing function is controlling and/or monitoring. In some instance
the media service version may also be provided, such that different versions of the media service can be ident
by unique media service types.

Table 6-10 identifies and describes the set of media service types defined by this Standard:

Table 6-10 Media Service Types

Media Service Type Media Stream ID Representation
CSTA Voice Unit Refers to the connection identifier in the special resource sub-domain.
Data Modem Refers to the address that is to be used to access the modem control and data stream.
Digital Data— Isochronous/IEEE Refers to the IEEE 1394 channel that is being used.
1394
Digital Data—Isochronous/GeoPort Refers to the GeoPort stream that is being used.
Digital Data— Isochronous/ATM Refers to the ATM virtual channel/path identifier that is being used.
Digital Data— Isochronous/ISDN Refers to the ISDN bearer channel that is being used.
Digital Data—API Refers to the particular API's digital data stream reference ID (e.g., Microsoft’s Winsock is

socket identifier) to indicate which digital data stream is to be used.

ECTF S.100 Media Services Default Refers to the ECTF S.100 Media Services CCR Resource ID (CCR ECTF ResourcelD) to
indicate which media stream channel to be used.

ECTF S.100 Media Services Refers to the ECTF S.100 Media Services Application Service.
Application Service

IVRScriptl through IVRScript10 Not defined; the attachment of the media stream channel to the vendor media server instance is
vendor-specific.

Live Sound Capture—Analog Refers to the analog jack that is being used.

Live Sound Transmit—Analog Refers to the analog jack that is being used.

Live Sound Capture—IEEE 1394 Refers to the IEEE 1394 channel that is being used.

6.8.7.3

6.8.7.4

6.8.7.5

6.8.7.6

- 58 -

Table 6-10 Media Service Types (continued)

Media Service Type Media Stream ID Representation

Live Sound Transmit—IEEE 1394 Refers to the IEEE 1394 channel that is being used.

Live Sound Capture and Transmit— | Refers to the GeoPort stream that is being used.

GeoPort:

Live Sound Capture and Transmit— | Refers to the ATM virtual channel that is being used.

ATM

Live Sound Capture and Transmit— | Refers to the ISDN bearer channel that is being used.

ISDN

Sound Capture and Transmit—API Refers to the particular API's sound stream reference ID (e.g., Microsoft's MClI's is MCI Device
handle) to indicate which sound stream is to be used.

Sound Capture and Transmit— Refers to the address that is to be used to access the asynchronous stream.

Rockwell ADPCM Packet

Universal Serial Bus (USB) Refers to the USB endpoint.

sfSpecificl through sfSpecific10 Not defined; the attachment of the media stream channel to the vendor media server insfance is
vendor-specific.

Media Service Instance

A specific set of resources and/or functions that provide a particular media service (as identified by the media
service type) are referred to as a media service instance. For example, a media service instance may be a specific
media server, subsystem, or software that provides the given service. When the computing function attaches a call
to a media service, it may request a particular instance of the service through the media service instance identifier.
A media service instance may have associated with it zero or more media access devices that provide a means of
physical connection between switching sub-domain resources and media service resources.

Media Access Device

A media access device is a device within the switching sub-domain used in establishing and modeling the physical
connection of the media stream between switching sub-domain resources (i.e., devices in a call) and media service
resources (i.e., media processing resources such as tone generators/detectors, speech recognition devices, text-tc
speech converters, modems, etc.). During media service instance attachment, a media access device may be
conferenced into a call, or the call may be transferred to the media access device from another device. During
media detachment, the media access device is cleared from the call.

Media Stream ID

The media services that can be the target of the media attachment services are unlimited. That is, very little is
assumed about the operational model of the media services themselves. The only requirement is that the media
service defines some identifier, referred to here as the media stream identifier (i.e., mediaStreamID), that can be
used by the computing function to reference the media stream associated with a connection.

The mediaStreamID is returned, if supported, as a parameter in the Media Attached event. The capability exchange
services are used to determine if the switching function supports returning the mediaStreamID.

The format and meaning of the mediaStreamID is media service and implementation dependent, and is not defined
here. The switching function only guarantees the mediaStreamID to be valid while the media service instance

remains bound to the call. Once the media service instance is detached from the call, the validity of the

mediaStreamID is media service dependent.

Service Operation

The media attachment services defined in this Standard consist of two services: Attach Media Service and Detach
Media Service, and two events: Media Service Attached and Media Service Detached. A description of these

services and events and their usage follows. For more information see Clause 19, “Media Attachment Services &
Events”, beginning on page 354.

A typical media enabled computing function will establish or accept a call, perform some media access functions
associated with the call, and then clear the call. The first and third steps clearly require the call control services

-59 -

only, while the second involves coordination of both call control and media services. This second step can
further sub-divided into the following tasks:

1.

A particular instance of the media service (e.g., specific media server or media subsystem providing
desired services) shall be chosen, either by the computing function or by the switching function on behalf
the computing function.

The computing function shall establish a session with the selected media service instance. The method of
session establishment is media service dependent (e.g., initialize with the media service API, send a mes:
to the media service, establish a CSTA association with a SRF).

If the switching function supports returning a mediaStreamID to the computing function, an associatic
between the switching function and the media service instance must be established. The way this associzs
is realized is implementation dependent. The switching function and the media service instance require
means to attach the media stream channel of a connection to a media stream channel of the media se
instance. This is referred to as a connection mode. Connection modes are enumerated in the specificatio
Media Attachment services. They fall into two categories:

a. Explicit representation by adding a media access device into the call via a call control service (e
Conference Call, Transfer Call, Deflect Call, Divert Call, Directed Pickup Call). The media service instanc
is bound to the new connection. In general, the media access device behaves the same as any othel
control device, although the services that can be applied to the device or a connection associated with
device may be restricted by some implementations. Connection modes in this category best suit, but are
limited to, configurations where call control resources and media resources consist of distinct, nol
integrated hardware components. An example of such a configuration is one in which the switchin
resources reside in a PBX and the media service resources reside in a VRU.

b. Implicit representation by an existing connection in the call (referred to as the direct connectionMode).
media access device is not added to the call. Instead, the media access device is already attached |
existing connection in the call. Connection modes in this category best suit, but are not limited t
configurations where call control resources and media resources consist of common or tightly integrat
hardware components. An example of such a configuration is one in which the switching and media servi
resources are provided by an integrated telephony and media processing board in a PC. Another exan
of such a configuration is one in which an external voice response unit makes an outbound call to a me
access device in a switching sub-domain, thus attaching its media services to the device's connection.

The associated mediaStreamID assigned by the media service instance may be returned by the switc
function to the computing function.

The computing function can access the media service instance using the supplied mediaStreamID. At
point, the computing function may mix the use of call control services and services provided by the med
service instance as needed.

When the computing function has finished its use of the media services, it shall unbind the media serv
instance from the call. The unbinding of the media service instance consists of releasing the attachm
established in step 3, and, if applicable, removing the associated media access device from the call. As fa
the switching function is concerned, the returned mediaStreamID is also invalidated once the media serv
instance is detached from the call.

The computing function may or may not close its session with the media service instance. The switchi
function may or may not release its association with the media service instance.

Several of these tasks are handled on behalf of the computing function through the use of the Media Attachrr
Services. Steps 1, 3, and 4 are provided by the Attach Media Service, and step 6 is provided by the Detach M
service.

The Attach Media Service attaches an existing call to a media service instance. The Attach Media Service ser
request provides a mediaServicelnstancelD parameter that selects a particular media service instance assot

6.8.7.7

6.8.8

- 60 -

with the switching function when multiple choices exist. If the switching function has multiple choices and the
parameter is not supplied, then the switching function shall select which media service instance is to be used.

The Attach Media Service, depending upon the connectionMode parameter supplied in the service request, initiates
a connection to an available media access device associated with the service instance (for the explicit connection
category). At the completion of a successful service invocation a Media Attached event is reported on monitors
associated with the specified call or device in addition to any other events that flow as a result of making the media
access device connection. The Media Attached event may contain the associated mediaStreamID for accessing the
media service instance. The Attach Media Service service positive acknowledgement and Media Attached event
may be correlated using the CSTA Connection and Device Identifiers associated with the chosen media access
device or existing connection that was bound in the call.

A Media Attached event may flow any time a connection is bound to a media service instance, even if the binding
was not the result of an Attach Media Service service request. This provides for automatic attachment and media
service type determination by the switching function (e.g., situation where calls are automatically directed to a
media access device by the switching function or automatically bound to an existing connection when a call
arrives). When the computing function receives this event, it may open a session with the associated media service
instance and immediately begin accessing the media service instance using the mediaStreamID provided in the
event. The session establishment with the media service and mediaStreamID usage are media service dependen
and outside the scope of this Standard.

The Detach Media Service service request undoes the actions of Attach Media Service service. It unbinds the media
service instance from the specified call or connection and breaks the physical connection of the media stream
between the switching sub-domain and media service instance. Any associated media access device involvement in
the call is also cleared. The connection to the device is cleared and reported through normal call control events (i.e.,
Connection Cleared events). A Media Detached event report is used to indicate that media service instances have
been detached from a call or connection. The switching function itself may initiate a media detachment. In this
case, the detachment is reported using the same events as if the computing function had initiated the Detach Media
Service service request (e.g., Media Detached and possibly Connection Cleared events).

Related Services

A number of other call control services return information related to the media access capability. The Snapshot Call
service returns a list of media service types, media service versions, media service instance IDs, and media stream
IDs associated with each connection in a call.

The Get Switching Function Capabilities service returns, for the entire switching function, a list of supported media
service types, media service versions, media service instance IDs, and whether or not the media stream ID is
supported for this combination of media attributes, as well as the supported connection modes for each combination.

Finally, the Get Logical Device Information service returns, for a selected device, a list of supported media service
types, media service versions, media service instance IDs, and whether or not the media stream ID is supported for
this combination of media attributes, as well as the supported connection modes for each combination.

Routeing Services

A switching function uses Routeing services when it needs the computing function to supply call destinations. This
may be on a call-by-call basis or it may be non-call related. The computing function can use internal databases
together with call information to determine a destination, or route, for each call. For example, the computing
function might use the caller's number and information in a database to route incoming calls.

A switching function may support Routeing services for any type of call (e.g., external outgoing, external incoming,
intra-switching sub-domain). Routeing services may require that the switching function be configured to direct calls
to a device known as @uteing deviceThis device shall be addressable (i.e., visible within the switching sub-
domain) with respect to Routeing services but may or may not be addressable with respect to other services (e.g.,
Call Control, Monitoring).

The routeing device may be a virtual device used only for routeing and thus may not be monitorable. The way a
particular virtual routeing type device is used by a switching sub-domain is specific to each implementation.
Examples include:

6.8.8.1

-61 -

e a routeing device could be used to route all outgoing external calls from all devices within a given switchir
sub-domain

e arouteing device could be used to route all incoming external calls independent of the network interface dev
being used

« a routeing device could be used to route all calls that are considered to be priority calls independent of tt
origin.

A switching function implementation will implement as many routeing devices as it requires in order to reflect th

different routeing processes it supports.

Figure 6-25 Overview of a Routeing Dialogue

Route control Switch Computer
requested for ;
specific device ' Route Registration/Set Route Enable - Optional
Computer Let network
S st Route Reﬁucqt Service I / access route
more routes the call
available |‘-x__ Optional
F
Linked pair
. : Re-Route Service | May be
Huule]ng I |] []] ' 1'C|.'IL‘2’.1|E.'L|
Dialogue 1 Route Select Service !
!. _ ' _______________________ "l Optional
: . Route Used Service ! |
Computer e === Requested

requests info - Raute Ind Service by the
computer

on route used

Routeing services are used within a sequential “routeing dialogue” such as that represented in Figure 6-25. (N
that none of the routeing services return positive acknowledgements. Negative acknowledgements, though provi
by routeing services when applicable, are not shown in the figure.)

A routeing dialogue is typically initiated by the switching function when a call is directed to a device and particul:
conditions are met for that call at that device. The conditions at a device under which the switching function m
initiate a routeing dialogue are determined by its Route Mode and the Route Registration Service. Through th
mechanisms the computing function may specify to the switching function that when calls encounter a particu
device, the computing function should be consulted for a proposed route.

Routeing services are linked within a routeing dialogue by the routeing cross reference identifie
(routeingCrossRefID). A routeing cross reference identifier is provided by the Switching function as part of tt
Route Request Service used to initiate a routeing dialogue. This routeing cross reference identifier is quoted
each subsequent invocation of a routeing service in the routeing dialogue.

Route Requests generated by the switching function may be call-related or non-call related.

Route Registration and Route Mode

Table 6-11 below specifies the conditions that must be satisfied before a given switching function initiates
routeing dialogue for a given routeing device by generating a Route Request. The switching function’s behaviou
governed by its support for the routeing registration services and support for the Route Mode attribute. Registral
has no affect on routeMode, and enabling/disabling routeMode has no affect on registration. In order to t

6.8.8.2

-62 -

routeing services for a given routeing device, a computing function must satisfy the conditions specified in Table 6-
11 by invoking the appropriate services.

Table 6-11 Routeing Behaviour

Registration Not Supported Registration Supported
Route Mode Supported * Registration not required * Registration required
* RouteMode must be enabled * RouteMode must be enabled
» Switching Function must initiate routeing » Switching Function must initiate routeing
dialogue if a call of any media class arrives dialogue if a call of any media class arrives that
matches the media class requested
Route Mode Not * RouteMode implicitly enabled * RouteMode implicitly enabled
Supported « Registration not required « Registration required (specific or all)
« Switching Function may initiate routeing « Switching Function must initiate routeing
dialogue at its discretion dialogue if a call arrives that matches the media

class requested

The positive acknowledgement to the Route Register service contains the route register request identifier
(routeRegisterReqID) that the computing function uses to identify service requests that arrive for this registration.

If the switching function supports the Route Registration services, then the computing function shall use these
services to register as a routeing server before it can route calls. If the switching function does not support the
Route Registration services, then the computing function may receive route service requests for any routeing device
at any time.

The computing function may either register as the routeing server for a specific routeing device or, if supported by
the switching function, as a routeing server for all routeing devices within the switching sub-domain.

A route registration can be cancelled using the Route Register Cancel service. Once this service is positively
acknowledged, the switching function will no longer send route service requests to the computing function.
Additionally, the switching function can cancel a route registration at any time by sending the computing function a
Route Register Abort service request.

Routeing services for a particular device may be suspended without cancelling route registration by disabling its
Route Mode. This does not effect route registration and route requests for the given device will resume when its
Route Mode is enabled.

The capabilities exchange services can be used to determine if the switching function supports the Route
Registration services and if so, if the capability to register for all routeing devices is supported. The capabilities
exchange services can also be used to determine if the switching function supports the Route Mode attribute.

Call Routeing

An example of a routeing process may involve the following sequence of steps:

1. The switching function receives a call at the routeing device. The routeing device may be any device within
the switching sub-domain.

2. When the call arrives at the routeing device, the switching function creates a routeing dialogue for the call.
The switching function allocates a routeing cross reference identifier (routeingCrossRefID) that references
this routeing dialogue.

3. The switching function sends the Route Request service to the computing function (that registered as the
routeing server) for the routeing device or as the routeing server for all routeing devices within the switching
sub-domain. This service request contains the routeing cross reference identifier, the route registration request
identifier (if supported), and call information such as the Connection Identifier for the call, and calling and
called numbers.

4. The computing function decides whether to reject the Routeing service request for this call, provide a route for
the call, or end the routeing dialogue. If the computing function decides to reject the call, it sends the

-63 -

switching function a Route Reject service request. If the computing function decides to provide a route for t
call, it sends the switching function a Route Select service request containing the destination for the call. T
computing function may include an optional flag in the Route Select service request (i.e., routeUse
instructing the switching function to inform it of the call's final destination. The final destination may be
different than the computing function-provided destination when switching function features such as ce
forwarding redirect the call. If the computing function decides to end the routeing dialogue, it sends tt
switching function a Route End service request. In this case, the computing function does not provide
destination for the call and the switching function uses an alternate mechanism (not defined) to route the cal

5. If the switching function receives a Route Reject service request, then it returns the call to the network
alternate routeing, and sends the computing function a Route End service request to indicate that the rout:
dialogue is ended. If the switching function receives a Route Select service request, it attempts to route
call to the computing function-provided destination. If the destination is valid, the switching function route:
the call to that destination and sends the computing function a Route End service request to terminate
routeing dialogue. If the computing function-provided destination is not valid (e.g., invalid directory number
destination busy), then the switching function may send a Re-Route service request to the computing funct
to request a route to an alternate destination. If the switching function receives a Route End service reques
terminates the routeing dialogue.

6. If the computing function receives a Re-Route service request it can select a different destination for the «
and send the switching function another Route Select service request. Depending on the switching funct
implementation, the re-routeing service request exchange can repeat until the computing function provides
acceptable route. The computing function will find out about a successful route when the switching functic
sends a Route End service request or if the computing function included the routeUsed flag in its last Ro
Select service request.

Either the switching function or the computing function may send a Route End service request at any time to ¢
the routeing process and terminate the routeing dialogue. This releases the routeing cross reference identifier fo
in the future. This service request indicates, for example, that the computing function does not want to route
call, or the switching function (usually in the absence of a Route Select service request) routed the call using s
default mechanism within the switching function.

Note that a conflict may arise in this dialogue if the computing function invokes the Route End Service, fi
example to indicate that no more alternative routes are available, but still wants to receive a route used report
the Route Used Service invoked by the switching function. Avoidance or resolution of this conflict is th
responsibility of the computing and/or switching function implementation(s).

A call that is not successfully routed does not necessarily mean that the call is cleared or not answered. M
switching function implementations will have a default mechanism for handling a call at a routeing device when t
computing function has failed to provide an acceptable destination for the call. The switching function shall senc
Route End service request to the computing function when it terminates the routeing dialogue, unless the route
dialogue was terminated by a Route End service request from the computing function first.

The minimum set of services a switching function shall provide if it supports routeing are: Route Request, Rol
Select, and Route End (from the switching function). Other routeing services may be provided in any combinati
in addition to this minimum set.

Figure 6-26 illustrates the typical Routeing procedure.

6.8.8.3

ichi - ,

(1) A call arrives at the routing device
(routingCrossRefID is created) and a
Route Request service request is
issued.

(3a) If (2a) then the switching domain
ends the routing dialogue and issues a
Route End request.

(3b) If (2b) and the destination is valid,
then a Route End service request is
issued.

(3c) If (2b) the destination is invalid,
then a Re-Route request is issued.
(3d) If (2¢), the routing dialogue is
ended and no more requests are sent for
this routing dialogue.

(5) The switching domain again
attempts to route the call to the (newly)
specified destination.

(5a) If the destination is valid, then a
Route Used service request and a
Route End service request are issued.
(5b) If the destination is invalid, then a
Re-Route service request is issued.

-64 -

Figure 6-26 Routeing Procedure

Call related information is passed

|

(2a

or

or (2c

\

3a)
or
3b)
or
3c)
%
(5a)
or
5b)

Route Register Request ID and the Routeing Cross Reference 1D

The routeing services use two identifiers to refer to different software objects in the switching sub-domain. The
route register request identifier (routeRegisterReqlD) identifies a routeing registration for which the computing
function (acting as a routeing server) will receive Routeing service requests. This identifier may be associated with
a particular routeing device within the switching sub-domain or it may indicate that the computing function is the
routeing server for all routeing devices within the switching sub-domain. When the computing function uses the
Route Register service to register for routeing services, it receives a routeRegisterReqID in the positive
acknowledgement from the switching function. The routeRegisterReqID is only valid until the routeing session is
ended by the computing function or switching function.

: b- :

(Routing Server)

(2) The computing domain chooses to
reject the call, route the call, or end the
routing dialogue:

(2a) If the computing domain decides to
reject the call, it issues a Reject Call
service request.

(2b) If the computing domain decides to
route the call, it selects a destination for
the call (based on the call and other
information), and issues a Route Select
service request.

(2c) If the computing domain decides to
end the routing dialogue, it issues a Route
End service request.

(4a) If (3a) or (3b) then the
routingCrossRefID is released and call is
rejected or route is completed using the
destination provided in (2b).

(4b) If (3c) then a second Route Select
request with a different destination is
issued (routeUsed = TRUE).

(6a) If (5a) then routingCrossRefID is
released and route is completed as
specified in (4b).

(6b) If (5b) then a third Route Select with
a different destination is issued.

Within a routeing registration (routeRegisterReqlD) the switching function may initiate many routeing dialogues
(shown in Figure 6-26) to route multiple calls. A switching function uses a routeing cross reference identifier
(routeingCrossRefID) to refer to each routeing dialogue. The computing function receives a routeingCrossRefID in

each Route Request service

request.

The Route Request service

initiates a

routeing dialogue. The

routeingCrossRefID is only valid for the duration of the routeing dialogue pertaining to a specific call.

The routeing cross reference identifier (routeingCrossReflD) is unique within the routeing

registration

(routeRegisterReqID). Some switching functions may provide the additional benefit of a unique routeing cross
reference identifier across the entire switching sub-domain. This is also the case if routeing registration is not

6.8.8.4

6.8.8.5

6.8.9

6.8.10

6.8.11

6.8.12

- 65 -

supported by the switching function. Routeing registration identifiers (routeRegisterReqlDs) are unique acros:
given CSTA service boundary.
Monitoring of Routeing Device

Some switching function implementations may support monitoring of routeing devices. For those computir
functions that have an active monitor on the routeing device, any activity at the device (for instance call cont
activity) shall generate the relevant event sequence as specified throughout this specification.

Routeing Services with respect to Media Class

A routeing device can support the routeing of calls of any combination of media class (i.e., voice or digital data
both). Refer to the media class component of 12.2.15, “MediaCallCharacteristics”, on page 101 for the complete
of possible values.

Once the routeing session is visible to the computing function through the Route Request service, the me
characteristics of the call will be identified and associated with the routeing cross reference identifier.
Device Maintenance

Device Maintenance events indicate changes in the maintenance state of a device. These events indicate if a d
has been taken out of service (can no longer accept calls or be manipulated by the computing function), or |
device has been placed back in service.

Prompting

Some CSTA services (Make Call, Call Back, Pickup, Join Call, for example) may require to prompt the user of t
targeted device in order to take that device off-hook. The implementation of a prompting mechanism is switchi
function specific (display flashing, ring pattern, lamp blinking, etc.).

For CSTA services that specify prompting (except the Make Call service), the switching function shall support (
indicated by the capability exchange services) one of the two possible prompting modes:

e prompting is a pre-condition to a service - in this mode prompting occurs before the execution of the CST
service. The Service Initiated event that indicates prompting shall flow before any other service specific evel
and shall contain connection identifier that is not associated with the CSTA service. After the device go
offhook, a Connection Cleared event associated with the prompt is generated and the CSTA service t
initiated the prompt is executed.

e prompting is part of a service - in this mode, prompting is part of the execution of the service. The Servi
Initiated event that indicates prompting is part of the completion criteria for the service and the connecti
identifier used in the Service Initiated event is associated with the CSTA service.

For information on event sequences with respect to prompting in the context of specific services, refer to |
Monitoring Event Sequences associated with a CSTA service.
Telephony Tones Features

There are several features that support the generation and detection of telephony tones.

The Generate Telephony Tones service (18.1.4, “Generate Telephony Tones”, on page 338) generates a spe
tone for a connection in a call. While a telephony tone is being generated, it may be canceled via the Car
Telephony Tones service (18.1.2, “Cancel Telephony Tones”, on page 334).

The Telephony Tones Generated event (18.2.4, “Telephony Tones Generated”, on page 348) is used to monito
telephony tones that are generated by a device (e.g., via the Generate Telephony Tones service).

The Data Collection services (Clause 25, “Data Collection Services”) are used to report telephony tones that
received over a connection at a device.
DTMF and Rotary Pulse Digits Features

Several services such as Make Call and Consultation Call provide a parameter for addressing a device while a
is being created. Also, for calls that are already created, the Dial Digits service provides address information
select a destination device or to complete a multi-stage dialling sequence. Depending upon the switching func
implementation and the type of network, these parameters may be translated into DTMF or rotary pulse di
information used by the network to select a destination device. This addressing information shall not be used
end-to-end purposes.

6.8.13

7.1

- 66 -

Other services, as defined below, are used for generating and detecting end-to-end information that is to be sent to a
device (i.e., not to address/select a device).

The Generate Digits service (18.1.3, “Generate Digits”, on page 336) is used to generate DTMF or rotary pulse
digit information for a connection in a call.

The Digits Generated event (18.2.3, “Digits Generated”, on page 347) is used to monitor for DTMF or rotary pulse
digits that are generated by a device, either manually or via the Generate Digits service.

The Data Collection services (Clause 25, “Data Collection Services”) are be used to report DTMF or rotary pulse
digits that are received over a connection at a device.

Data Collection Services

The Data Collection services are used to collect information such as DTMF/rotary pulse digits and Telephony
Tones that is received by a device over a connection.

The Start Data Collection service is used by the computing function to initiate the data collection. The service
specifies if data should be collected for a specific connection or for the next connection at a device.

The Stop Data Collection service is used to stop the data collection. Data collection is also stopped if the
connection over which data is being collected is cleared.

Information that is collected as part of the data collection is reported to the computing function via the Data
Collected service.

The data collection may be suspended and resumed via the Suspend Data Collection and the Resume Data
Collection services. The Data Collection Suspended and the Data Collection Resumed services notify the
computing function if the data collection has been suspended or resumed.

The Data Collection services are specified in Clause 25, “Data Collection Services”.

Association Establishment

This Standard is based upon the assumption that the services defined here, and a protocol that supports these
services, operate within an application association (otherwise known as a CSTA association or association) as
provided by IS 8649 (ACSE). This association can be either:

« an implicit association achieved via off-line agreement or
« an explicit association realized through the use of ACSE.

The initialization sequence of CSTA messages for the implicit and explicit associations is described in the
following sections.

Once an association has been established, the switching function shall be prepared to receive CSTA services.
Implicit Association

In the initialization sequence for an implicit association, as shown in Figure 7-1, the switching function begins the
sequence by sending a System Status service with a system status cause of either Enabled or Normal. The
computing function shall respond with a positive acknowledgement. An implicit association is established once the
positive acknowledgement is received by the switching function.

In this figure, the computing function uses the Get Switching Function Capabilities service to obtain the capabilities
of the switching function after the association has been created.

7.2

- 67 -

Figure 7-1 Implicit Association - Initialization Sequence

Switching Function Computing Function

-{ System Status service (cause=Enabled or Norﬁaﬁ—»
4—{ System Status pos. ack. i

Association Created

Mandatory messages
Optional messages - - - ------------

Explicit Assaociation

In an explicit association, CSTA shall make use of a single application context name for all versions and variatic
of implementation of CSTA Services and Protocol. To facilitate the exchange of version and implementatic
information, CSTA specifies that the following information shall be exchanged in the A&SEciation
Informationfield.

1. CSTA Association Information shall provide the following parameter:

e CSTA Version - shall indicate the versions of the CSTA protocol that the implementation can support.
two interacting systems support more than one version, then the highest CSTA Version they both supp
shall be used for the association. A CSTA protocol version refers to the implementation of a specif
phase of the ECMA Standa&krvices for Computer Supported Telecommunications Applicatimhés
fully described in the corresponding ECMA Standaffotocol for Computer Supported
Telecommunications Applications

2. CSTA Association Information also may provide the following parameters:

« Functionality Required - shall indicate the CSTA Services and Event Reports that are required by tl
function providing this information.

« Functionality Offered - shall indicate the CSTA Services and Event Reports that are offered by th
function providing this information for its highest-supported CSTA Version.

« Private Data Version - shall indicate the Private Data versions that are offered by the function providir
this information.

The initialization sequence for an explicit association is shown in Figure 7-2. The computing function begins tl
sequence by sending an ACSE request with the appropriate CSTA Association Information as described ab
The switching function responds with an ACSE response that also includes the appropriate CSTA Associat
Information.

After the ACSE exchange, the switching function sends a System Status service with a system status cause of ¢
Enabled or Normal. The computing function shall respond with a positive acknowledgement. The mandatory p
of the initialization sequence is completed once the positive acknowledgement is received by the switching functic

- 68 -

In this figure, the computing function uses the Get Switching Function Capabilities service to obtain the capabilities
of the switching function after the association has been established.

Figure 7-2 Explicit Association - Initialization Sequence

Switching Function Computing Function

ACSE Request (CSTA Assaociation Info.) i

ACSE Response (CSTA Association Info.) ’——y
System Status service (cause=Enabled or Norn*al’;—»

System Status pos. ack. i

Association Created

Mandatory messages
Optional messages - - - - -----------

Security Service
All CSTA messages provide:
e Timestamp information. This can be used to determine the “freshness” of a message.

< A Message Sequence Number. This provides a capability to number messages in a sequence so that the
message receiver can detect that a message has been received out of sequence.

e Security Information. Support the implementation of a security process. This can be used to provide security
such as access control and authentication. The format of this information is implementation specific.

For more information, refer to 12.2.11, “CSTASecurityData”, on page 88.

Generic Service Requirements
Service Request

This standard defines a set of CSTA operations that can be used to control and observe objects within a switching
and/or special resource function. The CSTA operations are defined as “Services” in which one function requests,
across the service boundary, that the other function perform a given CSTA operation. Services are defined for the
CSTA service boundaries between the computing function, switching function, and special resource function.
Services are defined in terms of what they accomplish (i.e. functionality), not how they should be implemented.

When one function sends a service request to the other function to perform a service with a given set of parameter
values, it is called aervice requestEach service defined in this Standard falls into one of following categories
based upon the direction of the service request:

e Switching Function Service Switching function services are services where the computing function is the
client (i.e., service requestor) and the switching function is the server. An example of a switching function
service is the Make Call service.

9.2

9.2.1

9.211

9.2.1.2

- 69 -

- Computing Function Service Computing function services are services where the switching function is the
client (i.e., service requestor) and the computing function is the server. An example of a computing functic
service is the Route Request service.

» Special Resource Function Serviee&Special Resource function services are services where the computing
function is the client (i.e., service requestor) and the special resource function is the server. An example c
special resource function service is the Play Message service.

- Bi-directional Service Bi-directional services are services where either the switching/special resource functio
or the computing function can be the client (i.e., service requestor). An example of a bi-directional service
the System Status service.

Some switching/special resource functions implementations support registration mechanisms that allow |
computing function to indicate that it would like to receive service requests in a certain category (e.g., routeir
system status, escape) from the switching/special resource functions. (If the switching/special resource func
indicates that it supports the computing function services in a particular category but does not support |
registration mechanism, the computing function shall be prepared to handle the requests without previc
registration.)

If the server detects that a service request is invalid, a negative acknowledgement shall be generated.

Every service request and service response defined in this Standard allows the inclusion of non-standardi:
private data, that shall be informational in nature. Refer to 9.4, “Vendor Specific Extensions”, on page 71, for mc
information.

Service Response (Acknowledgements)

The other part of a service is the acknowledgement to the service request. This acknowledgement is used by
requesting function to verify that the other function has received the service request and that some level
processing has been performed with respect to the service. There are two types of acknowledpesitergs:
acknowledgements&nd negative acknowledgementfor a given service, as well as two types of positive
acknowledgement models which a given service can adhere to. These definitions are documented in the follow
sections.

Note that there are some services defined in this Standard that do not provide a positive acknowledgement.
these services, if the service request is invalid, a negative acknowledgement shall be generated.
Positive Acknowledgement Models

All acknowledgements to each service request defined in this Standard shall follow the principles outlined by ¢
of two models defined below. The computing function learns which model a switching function supports for ea
service through the capability exchange services described in Clause 13, “Capability Exchange Service
beginning on page 118.

Atomic Model

Switching functions that indicate support of the atomic acknowledgement model designate that the particu
service request can be accomplished in a single logical step. This acknowledgement model reflects whether or
the service request has meet the completion conditions as documented by each individual service.

An atomic positive acknowledgement indicates that not only were the parameters on the service request valid,
the switching function has successfully completed the service requested as defined in that service’s “Sen
Completion Conditions” section. The condition of the call(s) and/or connection states of the device(s) associa
with the service request have transitioned to that service’s Operational Model After state.

Multi-Step Model

Switching functions that indicate support of the multi-step acknowledgement model designate that the particu
service request is accomplished as its name implies, in multiple logical steps. This acknowledgement model refls
whether or not the parameters passed on the service were valid but does not guarantee anything as far a
completion conditions is concerned for the service.

A multi-step positive acknowledgement guarantees only that the parameters passed on the service request
accepted by the switching function to be valid. This positive acknowledgement does not determine if the serv

9.2.2

9.3

9.3.1

9.3.2

-70 -

request’s completion criteria are met. (However, depending on the switching function, the positive
acknowledgement may indicate, in certain situations, the service request’s completion conditions.) Therefore the
computing function shall monitor for events associated with the particular service request, affected call(s) or
device(s) to verify completion. A computing function shall also be prepared to handle the Service Completion
Failure event and/or the Failed or Connection Cleared events after receiving the positive acknowledgement. The
Service Completion Failure event will only be reported to the computing function which issues the service request
and has a device-type monitor on the device which has or had connection(s) that were used in the particular request.
Each of these events are provided by the switching function to indicate that the completion conditions for the
service was not met.

If, through the event flow, a failure is detected, it is up to the computing function to apply the appropriate recovery

to return the call(s) and/or device(s) back to the original conditions (if needed). Finally, a computing function
should not issue subsequent service requests for a device until a previous multi-step service request’s completion
conditions has been satisfied. Doing so may result in unpredictable results generated by the switching function.
Negative Acknowledgement

A negative acknowledgement indicates that the service request has failed and the condition of the call(s) and/or
connection states of the device(s) associated with the service request have not changed as a result of the failure (i.e.,
they remain as they were in the service’s Operational Model Before state).

Diagnostic Error Definitions

CSTA provides diagnostic error information in the negative acknowledgement to service requests. The diagnostic
error information consists of an error category and a category specific error value.

The definitions associated with the error categories and the error codes apply equally to services requested by a
computing function and to those requested by a switching function. An error value indicates the server’s best
evaluation of the condition that caused the server to send a negative acknowledgement to the service request.

Error Categories

The error categories consist of the following:
e Operation Errors - Error values in this category shall indicate an error in the service request.
e Security Errors - Error values in this category shall indicate a security error.

e State Incompatibility Errors - Error values in this category shall indicate that the service request was not
compatible with the condition of a related CSTA object.

« System Resource Availability Errors - Error values in this category shall indicate that the service request could
not be fulfilled because of a lack of system resources within the serving sub-domain.

e Subscribed Resource Availability Errors - Error values in this category shall indicate that the service request
could not be fulfilled because a required resource must be purchased or contracted by the client system.

« Performance Management Errors - Error values in this category shall indicate that an error has been returned as
a performance management mechanism.

e Private Data Information Errors - Error values in this category shall indicate an error in the CSTA Private Data
of the service request. The reason(s) why the private data is incorrect is not relevant to this CSTA Standard.

« Unspecified Errors - Error values in this category shall indicate that the error did not belong to any of the other
error value categories.

Error Values

The following definitions are used in all services to ensure a uniform meaning for error codes.

e Error codes reflect why the server could not carry out the service request on the specified call, device, or
connection and do not reflect the status of any other call, device or connection.

e Error codes reflect why the server could not perform the request at the time that it attempted to execute the
request. Thus a switching function will return the same error code in the same circumstance regardless of the
past history of any object involved in the request.

9.4

94.1

-71 -

e This Standard does not require that service parameters are validated in any order. Thus, when there
multiple errors in parameters (or when multiple errors apply to a single parameter), the computing functic
may receive any of the applicable errors.

e There is a hierarchy of error return values. The errors range from one high level error that spans all err
(Generic Unspecified) to specific detailed errors. The diagram below shows the hierarchy. The errors beco
more detailed toward the bottom of the diagram.

Figure 9-1 ErrorValue Hierarchy

Generic
Unspecified
Error
Syst Generic s Subscribed Generic Private
ystem State eneric ubscribe Performance Data
Resource - Operation Resource)
N Incompatibility o Management Information
Availability Error Availability

Error Error Error
Error

PZN PAANS AT\

Error

AN AN

Request
Incompatible
with Object

AN AN NN AN

Value Out
of Range

Object
Not Known

The specific error values are defined in 12.2.12, “ErrorValue”, on page 88.
Vendor Specific Extensions

This Standard allows the provision of value added services and events that are beyond what is defined in
Standard. It is possible both to extend the existing services and events defined in this Standard as well as to ¢
completely new services and events. A vendor may choose to support a vendor specific extension with
understanding that it may not interoperate with other CSTA (Phase lIll)-compliant products.

Private Data

Every service in this Standard allows for the inclusion of implementation-sppdifeite data This may be any
supplemental information (not defined by this Standard) which provides access to vendor-specific extensions.

The computing function and the switching function, by mutual agreement (e.g., using the private data negotiat
mechanism described below), assume full responsibility for the structure, representation (including byte order) ¢
interpretation of this data. It is recommended that vendors adopt a platform independent encoding scheme (.
ASN.1/BER) for their private data.

If an implementation receives private data in a CSTA service or event that it does not recognize, it shall ignore
private data and process the rest of the CSTA service or event.

The size of private data is not limited by this Standard and is switching function and/or computing functic
specific. The capabilities exchange services can be used by the computing function to determine the maximum
used by the switching function implementation.

94.1.1

9.4.1.2

9.4.2

94.2.1

9.4.2.2

-72 -

Private Data Version Negotiation
Private data version negotiation may be performed using the following process:

1. The switching function provides the computing function with its manufacturer name in the positive
acknowledgement of the Get Switching Function Capabilities service. By associating the manufacturer name
with information in the computing function, the computing function can determine if it supports the switching
function’s private data and its associated private data version negotiation mechanism. The switching function
may also provide its supported private data versions in the Get Switching Function Capabilities
acknowledgement.

2. The computing function will send the version to be used in the Private Data Version service request. The
computing function may change the negotiated version by sending Private Data Version service requests at
any time.

Private Data on CSTA Services and Events

For the services defined in this Standard, the use of private data allows vendor specific parameters to be added to
each service. Private data should only be used to extend the existing definition of a service, and never to redefine
the meaning of a service or any of its specified parameters. If a completely new vendor specific service is to be
defined, the Escape service shall be used.

Private data can also be used to provide vendor specific parameters on events. As with services, private data should
only be used to extend the existing definition of an event, and never to redefine the meaning of an event or any of
its specified parameters. If a completely new event is to be defined, the Private event shall be used.

Escape Services and Private Event

The Escape service and the Private event are unique in that they include only private data and no other service
specific parameters. Furthermore, they do not have any defined intent or meaning other than to allow for vendor
specific extensions. The Escape service and the Private event may be used to define completely new services and
events (i.e., ones not defined in this Standard), respectively.

Escape Registration

Before the computing function can receive any Escape service requests, it may be required to register with the
switching function for escape services using the Escape Register service. The positive acknowledgement to this
service contains the escape register identifier (escapeRegisterID) that the computing function uses to identify
service requests that arrive for this registration.

If the switching function supports the Escape Registration services, then the computing function shall use the
Escape Register services to register for escape services before it can receive any Escape service requests. If the
switching function does not support the Escape Registration services, then the computing function may receive
Escape service requests at any time. The capabilities exchange services can be used to determine if the switching
function supports the Escape Registration services.

An escape registration can be cancelled using the Escape Register Cancel service. Once the switching function
sends a positive acknowledgement to this, it will no longer send Escape service requests to the computing function.
Additionally, the switching function can cancel an escape registration at any time by sending the computing
function an Escape Register Abort service request.

While the Escape service itself is bi-directional, the Escape Registration services are not. These services are only
issued by the computing function. The switching function does not register with the computing function for escape
services. The switching function is considered to be (implicitly) registered to receive Escape service requests from
the computing function at any time. The computing function never needs an escape registration to issue an Escape
service request.

Private Data Version Service

The Private Data Version service is used by the computing function to negotiate a private data version (or to
negotiate no private data). The Private Data Version service can be used as needed to re-negotiate (i.e., change) the
private data version being used by the computing and switching functions.

9.4.2.3

9.4.2.4

9.5

9.5.1

-73 -

Escape Service

The Escape service is used to request completely new, vendor-specific services not defined by this Standard.
service is bi-directional (i.e., can be issued by either the switching function or computing function). The vend
specific parameters to the Escape service request are transported by the private data (privateData) parameter
service request. It is the responsibility of the vendor to define any extended services and the contents of the pri
data for these services.

The Escape service request may contain an escape registration identifier (escapeRegisterID) to identify
associated escape registration (when escape registration is supported by the switching function). An Escape se
request from the computing function should never contain an escape registration identifier.

Escape service requests are always acknowledged by a positive or negative acknowledgement from the sel
function (i.e., computing function or switching function processing the service request).
Private Event

The Private event is used to report completely new, vendor-specific events not defined by this Standard. As v
other events, the computing function shall use the monitoring mechanism (i.e., Status Reporting services) in ot
to receive Private events. The type of monitors (i.e., call-type or device-type) on which a Private event is reporte
switching function implementation specific. The monitor cross reference identifier (monitorCrossReflD) paramet
associates the event with the monitor. There is no mechanism defined to allow the computing function to s
Private events to the switching function.

The vendor specific parameters associated with the Private event are transported by a private data (privatel
parameter. It is the responsibility of the vendor to define any extended events and the contents of the private |
for these events.

General Services and Event Functional Requirements

The following sections discuss functional requirements that are applicable to the services and events specifie
this Standard.
Services

1. If a service is performed manually from a device, computing functions that have device-type or call-type (f
device or call) monitors on this device receive the same event sequence as reported when performing
service through the service boundary (i.e., computing function-initiated). Refer to the appropriate service
“Monitoring Event Sequence” sections for details.

Depending on the particular switching function, additional events may also be reported as part of mant
invocation services. For examp?e:

« A Held event, if the device already has an active call.

« A Service Initiated (event cause of NewCall) event for the device because a new call is needed to exec
the service manually. This is followed by a Connection Cleared (event cause of Normal Clearing) eve
for the device when the service has been executed.

« Logical and Physical device events that are associated with the execution of the service. These eve
may appear any time during the execution of the service.

2. If a service request is invoked after a device has manually gone off-hook (Service Initiated event),
implementation may either accept the service or it may reject the service. If it accepts the service, (unle
otherwise specified for a particular service or event), the connection that has gone off-hook will be cleared a
the computing function will receive a Connection Cleared event, followed by service specific events.

3. Other than for calls in the Initiated state, a service only affects connections that are specified by its serv
description. If, prior to its completion, the execution of the requested service would cause the switchir
function to affect any other connections, then the service shall be rejected with a negative acknowledgemen

2. These events are only reported if the computing function has the appropriate monitors started for the device (i.éteardtype
of monitor) and those monitors are supported by the switching function.

9.5.2

4.

-74 -

If the switching function permits the passing of Connection Identifiers without Call Identifiers, then the
Device ldentifiers they contain shall be within the switching sub-domain. In addition, if DevicelDs only are
passed in the Connection Identifiers, then:

< If only one call exists at the specified device and the service request supports a single ConnectionID, its
connection shall be in one of the initial states specified by the service or the service will be rejected.

¢ If more than one call is in an initial state defined by the service, the service request will be rejected.

e If two calls exist at the specified device and the service request supports two ConnectionlIDs in the service
request, the DevicelDs within the ConnectionlIDs shall be identical or the service will be rejected.

e If two calls exist at the specified device and the service request supports two ConnectionIDs in the service
request, both calls shall be a valid combination of initial states specified for that service or the service will
be rejected.

< If more than two calls exist at the specified device, the service will be rejected unless full and valid
ConnectionIDs are specified.

If the device that is the subject of a service request is not capable of performing the service, a negative
acknowledgement with an appropriate error code will be provided.

For optional parameters in service requests the following requirements apply:

a. If an optional parameter is supported by the switching function but is not supplied in a service request, the
switching function uses the specified default value associated with that parameter unless otherwise

specified.

b. If an optional parameter is not supported by the switching function, the switching function uses its
administered value unless otherwise specified. (In addition, if the non-supported parameter is passed in the
service request, see Services Requirement #7).

The switching function may either reject service requests that contain optional parameters that it does not

support, or, it may accept the service request and ignore the unsupported optional parameters. However, the
switching function shall handle unsupported optional parameters the same way for all service requests. The
switching function indicates how it handles unsupported optional parameters via the capabilities exchange

services.

When setting a value for a Physical or Logical Device Feature (specifically the “Set” features described in
Clause 21, “Physical Device Features”, on page 383 and Clause 22, “Logical Device Features”, on page 431),
the switching function shall return a positive acknowledgement when the feature is already set to the
requested value specified in the service request. (Since the service request, in this case, did not result in a
change of feature status, a feature event will not be generated.)

It is the switching function’s responsibility to verify that connections in a call are in their proper initial states
prior to accepting a service request. Acceptable states are documented in each service request’s description.

Events

1.

For the same telephony situation, the event generated for a call-type monitor will be the same as the event
generated for a device-type monitor, except that the localConnectioninfo and the servicesPermitted parameters
described in the Call Control event descriptions are not provided for events generated for call-type monitors.

If the computing function has call-type monitoring in effect, the event seen for that monitor will be the same
event as the one seen for the subject device from a device-type monitor.

If the Device Identifier portion of a Connection Identifier is a static Device Identifier, then that portion of the
Connection Identifier and the Device Identifier parameters in an event will not necessarily be the same. For
example, the switching function may have a static internal representation of a device which will be used in the
Connection ldentifier, but the actual diallable representation for the same device may be different and may be
used in one of the Device Identifier parameters in the same event. This requirement is in addition to and does

10

10.1

10.1.1

-75 -

not supersede the definition for the Connection Identifier or Device Identifier parameters described in 12.3
“ConnectionID”, on page 110 and 12.3.11, “DevicelD”, on page 112.

4. The set of state transitions (refer to Figure 6-17, "Connection State Model" on page 33) supports the servi

and features documented in this Standard.

CSTA Device ldentifier Formats

This clause describes the formats that may be used for Device ldentifiers, their usage, and examples.
Device Identifier Formats

The possible types of Device ldentifiers formats are:

- Diallable Digits - this format is a sequence of characters to be dialled to reach a device. The sequence
characters may contain diallable digits and/or special characters that specify to the switching function he
digits should be dialled (“,” indicates that a pause should be inserted into the dialling sequence, for examp|
This format must be used when special dialling characters are required or when it is necessary to prov
partial or incomplete dialling sequences.

« Switching Function Representatierthis format is a sequence of characters that is used to reference device
within a switching sub-domain. In addition to specifying the directory number of the device, it also provide
the ability to specify call appearance, agent identifier, subaddress, name, etc.

« Device Number this format is an non-diallable, integer representation of a Device Identifier. This format of
Device Ildentifier can be used to reference switching sub-domain devices that may not be typically associa
with a diallable number such as trunks, line cards, etc.

In this section, the following example will be reflected. The called number is a subscriber in the US (country co
1) in San Jose (area code 408). The local number is 996 1010. The extension is 321. The name of the subscrit

“John Smith”.

Diallable Digits

Generic Format: DD

A first character of the Device Identifier string which is not “N”, “\" or “O” indicates that the Device Identifier uses
the Diallable Digits format. This format may contain from (@ formattedDevice Identifier) to 64 characters.

DD is a string of dialling commands/digits. The following is the list of the complete set of permitted dialling
commands/digits and their definitions:

0-9

These characters represents the number digits on a telephone keypad.

This represents the “*” character, typically found on a telephone keypad.

This represents the “#” character, typically found on a telephone keypad.

These characters represent DTMF digits.

The exclamation mark indicates that a hookflash is to be inserted into the dial string.

The character P followed by a string of digits indicates that the string of digits is to be pulse dialled
The character T followed by a string of digits indicates that the string of digits is to be tone dialled.

The comma character indicates that dialling is to be paused. The length of the pause is provided
the switching function through the capabilities exchange services. Multiple commas can be used
create a long pause.

The character W followed by a string of digits indicates that the string of digits is to be dialled only
after dial tone has been detected by the switching function.

The “at” symbol indicates that the switching function shall wait for “Quiet Answer” before dialling
the rest of the string. This means that the switching function shall wait for remote ringing
indication, followed by 5 seconds of silence.

-76 -

$ This dollar sign indicates that the switching function shall wait for the billing signal (i.e., credit
card prompt tone) before continuing.

; The semi-colon character indicates that the digit string is incomplete and more digits will be dialled
using the Dial Digits service. This character may only be used in a Diallable String Device
Identifier.

Examples:

e If the number is called from France (country prefi>§)0¢he string is “00,14089961010W321".

e If the number is called from a switch in New York (dial 9 to get outside line), the string is
“9,14089961010W321".

¢ If the number is called from San Jose, the string is “9961010W321".

e If the number is called from inside the subscriber’s PBX, the string is “321".

Functional Requirements:

1. The switching function shall accept, as a minimum, digits 0-9 of this format when the computing function
wants to make a call.

2. The diallable digits format shall be used to represent a device’s dialling sequence. A device’s dialling
sequence is a string of outband digits used to initiate a call with another device. When placing a call from a
device to another device, there are basically two ways a device’s dialling sequence can be used:

a. The entire sequence of digits is dialled to reach the destination. This is the most common way to place a call.

b. The dialling sequence is broken up into a number of stages in order to execute and complete the call. This
is called “multi-stage” dialling in this Standard. This type of dialling is needed in cases where the switching
function prompts the device for more digits (by sending dialtone again or some other tone).

Note that switching functions support different combinations of dialling sequences.

10.1.2 Switching Function Representation
Generic Format: N<DN!SA&CA/EXT%AID>NM (in this orde)

The syntax of the generic format is broken down as follows:

N The “N” character at the beginning of the Device Identifier string (which is 2 to 64 characters in
length) indicates that the Device Identifier uses the Switching Function Representation format. At
least one of the following components needs to be present in this format:

<> The angled brackets characters encompass the string when a name (NM) string representing the
person associated with the device is provided after the “>” character. If the character “<” is not the
first character in the string after the N then the string will not have a name string associated with it.

DN The first string of characters represents the Directory Number (DN) associated with the given
device. The Directory Number shall contain characters selected from the following set: “0” through
“gn, g DTMF digits “A” through “D”. The Directory Number may use any of the following
notations:

3. The country prefix is the sequence of digits that needs to be dialled to make an international call (011 when callieadJBynit tis
always followed by the called country code.

-77 -

Implicit TON (Type Of Number)
example“0014089961010*
(refer to ECMA-155)

PublicTON - unknown
(refer to ECMA-155)

PublicTON - international number
example“14089961010”
(refer to ITU-T E.160)

PublicTON - national
example“4089961010”
(refer to ITU-T E.160)

PublicTON - subscriber
example“9961010”
(refer to ITU-T E.160)

PublicTON - abbreviated
example“17”
(refer to ITU-T E.131)

PrivateTON - unknown
(refer to ECMA-155)

PrivateTON - level 3 regional
example“41396557321"
(refer to ECMA-155)

PrivateTON - level 2 regional
example“96557321"
(refer to ECMA-155)

PrivateTON - level 1 regional
example“557321"
(refer to ECMA-155)

PrivateTON - local
example“321”
(refer to ECMA-155)

PrivateTON - abbreviated
example*“2”
(refer to ECMA-155)

Other (other numbering plans)

Generic (the notation is unknown)

This exclamation mark character represents the start of a Sub-Address (SA) string. If the “!
character is not present, then there will be no sub-address associated with this Device Identifi
string. The termination character for the sub-address string will be the next key character found
the string or null.

The ampersand symbol represents the start of a Call Appearance (CA) string. It is added to t
logical element’s device identifier to uniquely identify an addressable standard appearance. Tl
value of the string is switching function specific. The valid characters for the call appearance strin

4. This example is a caller in France dialling the country prefix (00), the USA country code (1), the trunk code (408)ufnsdribers

number.

-78 -

are 0-9. The termination character for the call appearance string will be the next key character
found in the string or null. Refer to 6.1.3.2.1, “Appearance”.

/ The slash symbol represents the start of a physical element extension (EXT) string. It is added to
the logical element’s device identifier to uniquely identify a bridged appearance. Its value is the
physical element’s device identifier that is associated with the appearance. The termination
character for the physical element extension string will be the next key character found in the string
or null. Referto 6.1.3.2.1, “Appearance”.

% The percent sign represents the start of an Agent ID (AID) string. This string represents an ACD
agent identifier associated with a device. This string may be present when the computing function
wants to focus a service at a specific agent identifier that is associated with a device or when the
switching function generates an event that is associated with a particular device and agent. The
valid characters for the agent identifier string are A-Z and 0-9. If the “%” character is not present
then there will be no agent identifier associated with this Device Identifier string. The termination
character for the agent identifier string will be the next key character found in the string or null.

NM The name string (NM) represents the person associated with the device. This string can be used for
selecting a Device Identifier associated with a user or for logging and informational purposes. The
name string may contain any character.

Example:

¢ If the Device Identifier is PublicTON International, then the string can be “N14089961010".
¢ If the Device Identifier is PublicTON Subscriber, then the string can be “N<9961010>John Smith”.

Functional Requirements:

1. This format shall always contain at least a directory number string or an agent ID string.

2. The interpretation of additional digits beyond those that are required to reach a destination are switching
function specific.

3. When there is more than one bridged appearance associated with a single physical element (see 6.1.3.3.6,
“Hybrid”, on page 19 for an example) there are two methods for representing these appearances: One is to
have a unique call appearance (CA) and physical element extension (EXT) combination for each appearance
where EXT is used to represent the given physical element and CA is used to represent multiple appearances
associated with the same physical element. The other is to have a single EXT for each appearance,
independently of their association with the physical element. In either case, the resulting Device Identifier is
unique for the given appearance.

10.1.3 Device Number
Generic Format:

The Device Number format represents a Device Identifier using an integer. The integer shall be maximum size of
four octets.
10.2 Functional Requirements

1. If the switching function detects a problem with a Device ldentifier, the service will be rejected with a
negative acknowledgement.

2. The switching function may use any format in service acknowledgements and events.

3. For Device Identifiers in service requests, the computing function should check the devicelDFormat parameter
in a capabilities exchange service to determine:

¢ Which formats are supported.

¢ For the Switching Function Representation format, which notations are supported.

11

11.1

1111

11.1.2

-79 -

« For the Diallable Digits format, which special characters are supported.

4. When providing a null Device Identifier, the Diallable Digits Format is used.

Template Descriptions

This Clause explains the template formats used to describe the CSTA services, events, and parameter types de
in this Standard.

Service Template

The following sections describe the Services template components.

Service Description

This is textual description of the service that may be followed by a figure. The figure is included when a servi
affects a connections state(s). The figure defines the role of devices and connections from a before/after ser
execution perspective. Note that this figure indicates the successful completion of the service but does not indi
the service completion criteria (see the Monitoring Event Sequences for the service completion criteria).

In order to describe the nomenclature used in the figures in the templates, the figure from the CSTA Answer C
service follows:

Figure 11-1 Example of a Figure in a CSTA Service (Answer Call)

BEFORE SERVICE AFTER SERVICE

D1 D2
(alerting) —a,q—@— 7] (calling) D1 _C_@_ 7] D2

DEVICES AFFECTED CONNECTIONS
D1 : alerting device D1C1 : callToBeAnsweredonnection
D2 : calling device
CONNECTION STATES
: alerting state
: connected state
: queued state
: (unspecified/unaffected)

CALLS
C1 : call that has been delivered to D1

*O 0o W

In the figures, small boxes (labeled Dx) are used to represent devices, lines represent connections, ovals (lak
Cx) represent calls, and dotted lines represent connections with partial connection identifiers (see 6.8.2). The lec
(large box) associates names with devices and calls. Names in italics refer to parameter names used in the servit

The connections are labeled with the set of possible connection states. In some cases the following symbols
used in place of a specific connection state:

“*” indicates that the connection state is not specified and it is not affected by the service
“I” indicates that the connection state is unspecified but may be affected by the service

“#" indicates that the connection state is not specified but the connection state is inherited from a connection t
used to exist (for example, when a connection at a device changes its call identifier).

“@” indicates any non-Null connection state.

Service Request

This section contains a table with the possible parameters in the service request. Associated with each paramete
« Parameter Name (“Parameter Name”) - This is used to reference the parameter from other parts of the temy

and to distinguish the parameter from other parameters with the same parameter type. An example ¢
parameter name is connectionToBeCleared.

« Parameter Type (“Type”)- This is the parameter type as defined in Clause 12, “Parameter Types”, on page
In most cases a parameter type references a parameter type defined in either 12.2, “Defined Parameter Ty,

- 80 -

on page 83 (CorrelatorData, for example) or 12.3, “Identifier Parameter Types”, on page 107 (ConnectionID,
for example). In other cases the parameter type may be a Boolean, Value, Enumerated, etc. Refer to 12.1,
“Definitions”, on page 82 for more information.

e Parameter Optionality (“M/O/C") - Indicates whether the parameter must be included (M for mandatory), if the
parameter is optional (O), or if the parameter is conditional (C). If a parameter is conditional, then there are
specific requirements when the parameter must be supported. These requirements are described in the
parameter description column.

e Parameter Description (“Description”) - This is a brief description of the parameter in the context of the
service. A description of the parameter in the context of its parameter type can be found with its parameter type
description in Clause 12, “Parameter Types”, on page 82.
11.1.3 Service Response
This section includes:

e a description of the type of acknowledgement model that can be used with the service (see 9.2.1, “Positive
Acknowledgement Models”, on page 69).

« atable that contains all of the parameters in the positive acknowledgement. The format of the table is the same
as in the service request (see 11.1.2).

e areference to the negative acknowledgement error codes.

11.1.4 Operational Model
The operational model consists of:

Connection State Transitions - This is a table with all possible connections affected by the service. Associated with
each connection is the:

¢ Connection Name (“Connection”) - This is used to reference the connection from other parts of the template
including the figure in the service description.

e Initial State (“Initial State (Required)”) - This is the set of allowed initial states (connection states before the
service is executed). An implementation shall support one or more of the specified initial states associated with
a service (as indicated in the capability exchange services).

« Final State (“Final State”) - This is the set of allowed final states (connection states after the service is
executed). An implementation shall support one or more of these states. In many cases there are statements
following the connection state transition table that further describe or clarify the information in the table.

Monitoring Event Sequences - For services that affect connections, this section includes tables that describes the
event sequence generated for device-type and call-type monitors. Unless otherwise specified, the events (and
associated causes) in this table are required as part of the service completion criteria. Each table contains:

¢ Monitored Device or Monitored Call (“Monitored Device” or “Monitored Call”) - For the device-type
monitoring table, this indicates the monitored device. For the call-type monitoring table, this indicates the
monitored call. The names can be used to reference back to the figure in the service description.

« Connection Name (“Connection”) - This column indicates the connection that is the subject of the event.
« Event (“Event”) - This is the name of the event generated as the result of the service.

« Event Cause (“Event Cause”) - This is the set of possible cause codes associated with the event. In many cases
there are statements following the connection state transition table that further describes or clarifies the
information in the table

Functional Requirements - The functional requirements contain additional requirements associated with the service.
11.2 Event Template

The following sections describe the Event Template components.
1121 Event Description

11.2.2

11.2.3

11.2.4

11.3

1131

11.3.2

11.3.3

-81 -

This is textual description of the event followed by an optional figure. The figure is included when an evel
indicates a change in one or more connections. The figure defines the role of devices and connections from a be
after perspective. The nomenclature used in the figures is described in 11.1.2, “Service Request”.

Event Parameters

This section consists of a table that contains all of the parameters in the event. The format of the table is the san
in the service request table described in 11.1.2, “Service Request”.

Event Causes

This section consists of a table that contains all of the possible cause codes that can be included with the e
Associated with each cause code are:

« Event Cause (“Event Cause”) - This is the event cause name.
« Event Description (“Description”) - This is a description of the event cause in the context of the event.

« Associated Features (“Associated Features”) - This is the complete set of possible features associated witt
cause code. A feature may either correspond to a CSTA service or it may be associated with switch featt
specified in 6.8, “Additional Services, Features & Behaviour”, on page 51.

Functional Requirements

Functional requirements contain additional requirements associated with the event.
Parameter Type Template

The following sections describe the Parameter Template components:

Parameter Type Description

This contains a description of the parameter type.
Format

This section specifies the format of the parameter type. For example, it could list the possible values associ:
with a parameter type (enumerated list).

For parameter types that are a type of device identifier, the format contains the allowed statuses associated witl
parameter type (e.g. “Not Known”).
Functional Requirements

Functional requirements contain additional requirements associated with the parameter type.

-82 -

12 Parameter Types
12.1 Definitions

This clause describes the parameter types for the parameters described in this Standard. There are five sets of
parameter types:

1. Basic parameter typeare simple types that are not necessarily specific to these specifications. The basic
parameter types used in this Standard are:

* Boolean- Either TRUE or FALSE.
« Value- Integer value with a length of 4 bytes always.
« Characters Character string of varying lengths, as specified in specific services or events.

2. Meta parameter typesefer to constructions that combine one or more parameter types. The meta parameter
types used in this Standard are:

« Bitmap- Multiple values may be set in a specified set.
« Enumerated One value only may be set in a specified set.

e Structure- A combination of different types combined into one parameter type, as defined in a specific
service or event. Multiple components may be present in the structure (each component in the structure is
defined as mandatory, optional, or conditional).

e ChoiceStructure- Like Structure but one and only one component in the structure is present.
e List- List of a single specified parameter type or structure

3. Defined parameter typesre specific to this Standard. They are briefly defined in Table 12-1 on page 83, and
further defined in the pages indicated.

4. ldentifier parameter typeare specific to this Standard. They are briefly defined in Table 12-2 on page 107,
and further defined in the pages indicated.

5. Capability bitmap parameter typese bitmaps included in the Get Physical Device Information, Get Logical
Device Information and Get Switching Function Capabilities services. They are defined in Annex C.

12.2

Defined Parameter Types

-83-

Defined parameter types specific to these specifications are summarized in the following table.

Table 12-1 Defined Parameter Types Summary

Defined Parameter Type Description Pg.

12.2.1 Accountinfo Contains computing sub-domain/business specific code that is to be applied or has b¢en 84
applied to a call for accounting purposes.

12.2.2 AgentPassword Specifies the agent password. 84

12.2.3 AuthCode Contains an authorization code that the switching function understands and will use tp 84
check to see if the user of the computing sub-domain is authorized to perform the given
service.

12.2.4 CallCharacteristics Specifies the high level characteristics of the call. 84

12.2.5 CallQualifyingData Specifies information such as wrap codes, walk away codes, hold reasons, transfer reasor8
etc. that describes or helps qualify how a call is being (or has been) handled by a user|

12.2.6 Charginginfo Specifies information that represents a cumulative value of charging or currency units 85
charged to a device for a call in which the device was involved.

12.2.7 ConnectionInformation Specifies the connection information associated with the subject connection. 86

12.2.8 ConnectionList Specifies the list of devices/connections that are known to the switching function, and 86
which remain in the call after a conference or transfer.

12.2.9 CorrelatorData Contains computing sub-domain-specific data that has been or will be attached to a ¢all §at
the computing sub-domain is controlling or monitoring.

12.2.10 CSTAPrivateData Provides a mechanism for providing non-standard parameters in events. 88

12.2.11 CSTASecurityData Specifies the security attributes associated with the message. 88

12.2.12 ErrorValue Contains hierarchical error codes. 88

12.2.13 EventCause Provides additional information on why the event was generated. 98

12.2.14 LocalConnectionState Describes the connection state of the device associated with the Monitor Cross Refererigi
ID.

12.2.15 Specifies the media class (Voice, Digital Data, etc.) and media characteristics of the call. 101

MediaCallCharacteristics

12.2.16 MediaServiceType Specifies which media service is to be (or has been) attached to or detached from a| 102
particular call or connection.

12.2.17 MonitorFilter Specifies the events are filtered for a Monitor Start service. 103

12.2.18 ServicesPermitted Specifies the set of services that the switching function permits to be applied to a 104
connection.

12.2.19 SimpleCallState Provides the simple call state. 104

12.2.20 SystemStatus Indicates the reason for the System Status service request. 105

12.2.21 Timelnfo Specifies the date and time. 106

12.2.22 UserData Contains device-to-device or computing sub-domain-to-computing sub-domain data.| 106

1221

12.2.2

12.2.3

12.2.4

-84 -

Accountinfo

The Accountinfo parameter type contains a computing sub-domain/business specific code that is to be applied or
has been applied to a call for accounting purposes.

Format

This parameter type is a character string with a maximum length of 32.

Functional Requirements

1. The management of the account code data is done by the switching function. To understand how the switching
function maintains this information with the call, you need to consult the switching function specific
documentation.

2. The computing sub-domain will only be naotified that the account code data has been added or changed
through the Call Information event. This event will be generated when the user enters the account code data
manually or after a service has added or changed the data.

3. The way to clear the data on the call is to pass a null string of data on one of the above mentioned services.
(The actual parameter is passed, but the content is a null string.)

4. The switching function may choose to filter this information by not providing it in events for security reasons.

When this information is being attached to a call through a service request, its association shall be completed
prior to any state transitions resulting from the request. Thus any state transition events which contain this
parameter shall contain the information passed on the request.

AgentPassword
The AgentPassword parameter type specifies the password for an ACD agent.

Format:

This parameter is a character string with a maximum length of 32.
AuthCode

The AuthCode parameter type contains an authorization code that the switching function understands and will use
to check if the computing function is authorized to perform a given service.

Format

This parameter type is a character string with a maximum length of 32.

Functional Requirements

1. If the switching function requires this parameter, and either the authorization code supplied is not valid or the
parameter type is not supplied, then the service will be rejected with a negative acknowledgement.

2. The switching function may choose to filter this information by not providing it in events for security reasons.

3. When this information is being attached to a call through a service request, its association shall be completed
prior to any state transitions resulting from the request. Thus any state transition events which contain this
parameter shall contain the information passed on the request.

CallCharacteristics
The CallCharacteristics parameter type describes, when included on an event, the high level characteristics
associated with a call.

When this parameter is included on a switching function service request, it indicates the requested set of high level
characteristics that should be associated with the call.

12.2.5

12.2.6

-85 -

Format

This parameter type is a bitmap. Multiple bits may be set. The complete set of possible values in the bitmap is:

e acdCall. This bit is set to indicate an ACD call. Once the call is no longer associated with the ACD, this bit
no longer set. See Functional Requirement #1.

 priorityCall - This bit is set to indicate a priority call.

* maintenanceCall - This bit is set to indicate a maintenance call.

« directAgent - This bit is set to indicate a call placed directly to a particular agent.

« assistCall - This bit is set to indicate a call whose purpose is to request assistance.

« voiceUnitCall - This bit is set to indicate a call involving a Voice Unit (e.g., voice mail system). Once the
Voice Unit is no longer involved with the call, this bit is no longer set.

Functional Requirements
1. There are many conditions when a switching function may classify a call as an ACD call and when an AC
call becomes a non-ACD call. The specific conditions are switching function dependent.

CallQualifyingData
The CallQualifyingData parameter type specifies information such as wrap codes, walk away codes, hold reas
transfer reasons, etc. that describes or helps qualify how a call is being (or has been) handled by a user.

Format

This parameter type is a character string with a maximum length of 32.

Functional Requirements

1. The computing function will be notified that the call qualifying data has been added or changed through t
Call Information event. This event will be generated when the user enters the call qualifying data manually
after a service (Associate Data) has added or changed the data.

Charginginfo

The Charginginfo parameter type represents a cumulative value of charging or currency units charged to a de'
for a call in which the device was involved. This information can represent an intermediate (during the call) or fin
total (when the device leaves the call).

Format

This parameter consists of the following components:
* numberUnits (M) Choice Structure - This component consists of one of the following choices:

* numberOfChargingUnits (List Structure) - indicates a cumulative number of charging units. This
component consists of a sequence that may be repeated to report different types of charging units. -
sequence consists of:

e chargingUnits (M) Value - the number of charging units.

« typeOfUnits (O) Octet String - the type of units. This may be included to differentiate among thes
types. Its definition is network-dependent.

« numberOfCurrencyUnits (List Structure) - indicates a cumulative value of currency units. This sequenc
consists of:

« currencyType (M) Octet String - indicates the type of currency. A null string (size of 0) indicates the
default currency. Its definition is network-dependent.

12.2.7

12.2.8

- 86 -

e currencyAmount (M) Value - indicates the cumulative value of currency units.

e currencyMultiplier (M) Enumerated - indicates the currency unit multiplier. The complete set of
possible values is: .001, .01, .1, 1, 10, 100, 1000.

typeOfCharginglnformation (M) Enumerated - This can have one of the following values:
¢ Sub-total - indicates that the information is an intermediate value.

e Total - indicates that the charging information is complete.

Connectioninformation

The Connectioninformation parameter type specifies the connection information associated with the subject
connection (i.e., the connection that is the focus of the event or positive acknowledgement being reported).

Format

This parameter type is a comprised of the following parameters:

1.

flowDirection (O) Enumerated - Specifics the direction of flow that is associated with the subject connection.
If this parameter is not present, the connection’s flow direction is unknown. The complete set of possible
values is:

e Transmit - Media stream data is only capable of being transmitted on the connection by the associated
device.

¢ Receive - Media stream data is only capable of being received on the connection by the associated device.

e Transmit and Receive - Media stream data is capable of being transmitted and received on the connection
by the associated device.

numberOfChannels (O) Value - Specifies the number of media stream channels that are associated with the
subject connection. If this parameter is not present, the number of channels associated with the connection is
one.

ConnectionList

The ConnectionList parameter type provides the linkage mechanism between a device’s old connection ID and new
connection ID resulting from the conference or transfer.

Format

This parameter includes the following components for every device or connection being reported:

new ConnectionID (C) ConnectionID - The CalllD portion of this ConnectionID refers to the resulting call.
This component is optional for the transferringDevice in the Transferred event, otherwise it is mandatory.

old ConnectionID (C) ConnectionID - The CalllD portion of this ConnectionID refers to the original call. This
component is mandatory if the switching function previously reported the CalllD, otherwise it is optional.

endPoint DevicelD (O) DevicelD - For internal calls, this is the representation of the device inside the
switching sub-domain. For external calls (incoming or outgoing), this is the representation of the externally
located device (if known by the switching function). This component is a character string. The maximum
length supported by the switching function is provided via the capabilities exchange services. It may be:

« of any device identifier format
« of the following statuses: “Provided” or “Not Known”

associatedNID (C) DevicelD - For external calls (incoming and/or outgoing), this component specifies the
Network Interface Device (e.g., trunk, CO line) within the switching sub-domain that is associated with the
externally located device. In that case the component endPoint DevicelD (if provided) shall represent the
externally located device. The associatedNID component is mandatory in case of external calls and shall be
omitted when the device is located inside the switching sub-domain. This component may be:

12.2.9

- 87 -

« of any device identifier format
« of the following statuses: “Provided” or “Not Known”

« resultingConnectioninformation (O) Connectioninformation - This component contains the flow direction an
channel characteristics associated with the resulting connection.

Functional Requirements

1. This list should be used by the computing function to associate devices which remain in a call, as a result
Conference or Transfer, with the connection IDs that are used to manipulate them.

CorrelatorData

The CorrelatorData parameter type contains computing sub-domain specific data that has been or will be attac
to a call that the computing function is controlling or monitoring. This allows the computing function to associat
its own information with a call and, as a result, share it with other computing functions. For example, th
information might be a key to a database entry, a computing function command sequence, file nhame, etc. T
feature is useful when calls are moving from one computing function to another in a distributed computer netwc
or from one switching sub-domain to another.

See 6.1.4.3, “Correlator Data”, on page 28 for specific rules on the use of Correlator Data.

This specification defines a mechanism for delivering both user data and correlator data through an external IS
network at the same time. This mechanism is described in Annex B.

Format

This parameter type is an octet string. The maximum length supported by the switching function is provided via
capabilities exchange services, but is limited to 32.

Functional Requirements

1. The correlator data will stay with the call as long as the call exists. This means that the correlator data will
presented to the computing function on events that have this parameter and that the switching sub-don
supports.

2. The correlator data can be changed during the life of the call by any of the services that has the paramet
by using the Associate Data service.

3. The way to clear the data on the call is to pass a null string of data on one of the above mentioned servi
(The actual parameter is passed but the content is a null string.) If correlator data is cleared, then the switct
function notifies the computing function by sending a null string.

4. See 6.1.4.3, “Correlator Data”, on page 28 for a description of how Correlator Data is inherited by calls duri
a conference or transfer.

5. If the computing function issues the Consultation Call service without correlator data, initially the seconda
call will not have correlator data associated with it, as it does not inherit any correlator data that may |
associated with the primary call. If the computing function issues the Consultation Call service with correlat
data, this data is for the secondary call only and does not affect any correlator data that may be currel
associated with the primary call.

6. When correlator data is associated with a call, for all Call Control events listed in 17.2 on pageepdor
the Bridged, Call Cleared, Connection Cleared, Held, and the Retrieved events (i.e. call events that n
indicate that a device becomes part of a call) shall include the correlator data (if supported). Correlator d
can optionally be included with the four event exceptions listed above.

7. When this data is being attached to a call through a service request, its association shall be completed prit
any state transitions resulting from the request. Thus any state transition events which contain this param
shall contain the information passed on the request.

12.2.10

12.2.11

12.2.12

- 88 -

8. If a computing function issues a Snapshot Call service after a service request has been issued with this
information, but prior to the switching function making any state transitions, it is switching function specific
as to what will be returned in the positive acknowledgement with regards to this parameter.

CSTAPrivateData
The PrivateData parameter type provides a mechanism for providing non-standard parameters in messages.

Format

This parameter type is a choice of one of the following:

e octet string of any length. The maximum length supported by the switching function is provided via the
capabilities exchange services.

¢ ASN.1 NULL type. If this choice is used, an implementation shall replace the ASN.1 NULL type with another
valid ASN.1 type.

CSTASecurityData

The CSTASecurityData parameter type provides information that can be used to determine if a message in a
sequence has been lost, the time that a message was sent, and security information that can be used to provide
security such as access control and authentication.

Format

The CSTASecurityData parameter type consists of the following components:

¢ messageSequenceNumber (Value) Optional. Shall be a sequential number that can be used to detect missing
messages in a sequence and verify that their order has not been altered.

e timestamp (Timeinfo) Optional. Shall be a generalized time value that can provide an indication of the
“freshness” of a message. It can indicate that the received message is not a replay of another message from a
previous association or from the current association after the sequence numbers have recycled.

« securitylnfo (Choice Structure) Optional - Shall indicate the security data that may be used to make appropriate
access control decisions or to carry out the current security policy. This contents of this information is not
defined by this Standard. This component is a choice of one of the following:

e octet string of any length. The maximum length supported by the switching function is provided via the
capabilities exchange services.

e ASN.1 NULL type. If this choice is used, an implementation shall replace the ASN.1 NULL type with
another valid ASN.1 type.

ErrorValue
The ErrorValue parameter type defines error codes.

Format

This parameter contains the following:

e Error Category - Operation, Security, State Incompatibility, System Resource Availability, Subscribed
Resource Availability, Performance Management, Private Data, and Unspecified.

e Error Value - A value describing the error. The following text describes the various categories and values
within each category.

Note that the error code hierarchy described in Figure 9-1, “ErrorValue Hierarchy,” on page 71 is represented by
indented bullet lists in the following sections, each indent representing an additional error code level.

12.2.12.1 Operation Errors

Error values in this category shall indicate an error in the Service Request. This category shall include one of the
following specific error values:

-89 -

e generic - The server has detected an operational error in the service request and the error is either n
specified Operation Class error or the switching function cannot be more specific.

atLeastOneConditionalParameterNotProvided - The service definition specifies a set of condition
parameters, at least one of which shall be provided. No parameter from this set was present.

featureAlreadySet - The feature cannot be set because it is already set.

invalidMessageldentifier - There is ho message with the specified Message Identifier.

invalidParameterValue - A value for a parameter is invalid. A value is in the specified range but invalid i
the circumstance where it is used.

invalidAccountCode - The account code parameter is invalid.
invalidAgentGroup - An agent group is invalid.
invalidAgentldentifer - An agent identifier is invalid.
invalidAgentPassward - An agent password is invalid.
invalidAgentState - An agent state setting is invalid.
invalidAlertTime - The alertTime parameter is invalid.

invalidAllocationState - The service request (MakePredictiveCall) specified an allocation state the
is invalid in the present circumstance.

invalidAuthorizationCode - The authorization code is invalid.
invalidAutoAnswer - The autoanswer parameter is invalid.
invalidBitRate - The bitRate parameter is invalid.
invalidButtonldentifier - A button identifier is invalid.
invalidButtonLabel - A button label is invalid.

invalidCallType - The callType parameter is invalid.
invalidConnectionRate - The connectionRate parameter is invalid.
invalidConsultPurpose - The consultPurpose parameter is not valid.
invalidCorrelatorData - The Correlator Data parameter is not valid.

invalidCrossReferenceldentifier - The service request specified a Cross Reference Identifier that
not in use.

invalidDelayTolerance - The delayTolerance parameter is invalid.

invalidDestination - The service request contains a destination that is invalid. Note that for .
forwarding destination, the switching function returns the invalidForwardingDestination error. This
occurs when the calledDirectoryNumber, newDestination, or routeSelected parameter is invalid.

invalidDestinationDetect - the destinationDetect parameter is invalid.
invalidDoNotDisturb - The do not disturb setting is invalid.
invalidEscapeCrossReferenceldentifier - The escape registration request identifier is invalid.

invalidFeature - The service request specified a feature that is invalid. Often, this is because t
switching or computing function does not support the requested feature.

invalidFile - The specified file is not accessible.
invalidFlowDirection - The flowDirection parameter is invalid.
invalidForwardingDestination - The forwarding destination device is not valid.

invalidForwardingFlag - The forwarding flag is invalid.

-90 -

¢ invalidForwardingType - The forwarding type is invalid.

e invalidHookswitchType - A hookswitch type is invalid.

¢ invalidHookswitchComponent - A hookswitch component is invalid.
e invalidLampldentifier - A lamp identifier is invalid.

¢ invalidLampMode - A lamp mode is invalid.

¢ invalidMessageWaitingSetting - A message waiting setting is invalid. The switching function
returns this error for the messageWaitingOn parameter.

¢ invalidMicrophoneGain - A microphone gain setting is invalid.
¢ invalidMicrophoneMute - A microphone mute setting is invalid.

¢ invalidMonitorCrossReferenceldentifier - The service request specified a monitor cross reference
identifier that is not in use.

« invalidMonitorFilter - The monitor filter is invalid.

¢ invalidMonitorObject - The monitor object is invalid.

e invalidMonitorType - The monitor type is invalid.

¢ invalidNumberOfChannels - The numberOfChannels parameter is invalid.

e invalidParticipationType - The participationType parameter is invalid.

¢ invalidRemainRetry - The value of the remainRetry parameter is invalid.

¢ invalidRingCount - The ring count setting is invalid.

¢ invalidRingPattern - A ring pattern setting is invalid.

¢ invalidRingVolume - A ring volume setting is invalid.

< invalidRouteingAlgorithm - The computing function does not support the routeing algorithm.

¢ invalidRouteingCrossReferenceldentifier - The service request specified a routeing cross reference
identifier that is not in use.

¢ invalidRouteRegistrationCrossReferenceldentifier - The route registration request identifier is
invalid.

¢ invalidSpeakerVolume - A speaker volume is invalid.
¢ invalidSpeakerMute - A speaker mute setting is invalid.
¢ invalidSwitchingSubdomainCharsType - The switchingSubDomainCCIEType parameter is invalid.

¢ invalidObjectType - A parameter in the service request contains an object type that is not the defined
object type for that parameter.

< invalidActiveCallObject - The value supplied for activeCall or one of its components is not of the
proper type.

¢ invalidCalledDeviceObjectType - The value supplied for calledDevice is not of the proper type.

« invalidCallingDeviceObjectType - The value supplied for callingDevice is not of the proper type.

< invalidCallToBePickedUpObjectType - The value supplied for callToBePickedUp or one of its
components is not of the proper type.

e invalidCallToDivertObjectType - The value supplied for callToBeDiverted is not of the proper type.

« invalidCallToParkObjectType - The value supplied for callToPark or one of its components is not of
the proper type.

-01 -

« invalidDestinationDeviceObject - The value supplied for newDestination in a or one of its
components is not of the proper type.

« invalidHeldCallObject - The value supplied for heldCall or one of its components is not of the
proper type.
« invalidMonitorObjectType - The monitorObject type is invalid.
« invalidParkToObjectType - The value supplied for r parkTo is not of the proper type.
* messageldentifierRequired - The request requires a Message ldentifier.

» notDifferentDevices - Multiple parameters in the service request that shall specify different devices ©
not specify different devices.

* notSameDevice - Multiple parameters in the service request that shall specify the same device do
specify the same device.

« objectNotKnown - An object parameter (connection, device, or call) has a value that is not known.

< invalidCallldentifier - A call identifier parameter or a call identifier component of a connection
identifier parameter is invalid or is not known to the switching function.

« invalidActiveCallldentifier - The call identifier in the activeCall connection does not specify a
valid call.

« invalidHeldCallldentifier - The call identifier in the heldCall connection does not specify a
valid call.

e invalidConnectionldentifier - A connection identifier or some component of the connection
identifier is invalid.

« invalidActiveConnectionldentifier - The activeCall connection does not specify a valid call.
« invalidHeldConnectionldentifier - The heldCall connection does not specify a valid call.

« invalidDeviceldentifier - A device identifier parameter or a device identifier component of a
connection identifier parameter is invalid or is not known to the switching function.

* invalidActiveDeviceldentifier - The device identifier in the activeCall connection does not
specify a valid device.

« invalidCalledDeviceldentifier - The called device parameter is invalid.
« invalidCallingDeviceldentifier - The calling device parameter is invalid.

« invalidCallToParkDeviceldentifier - The device identifier in the callToPark connection does
not specify a valid device.

« invalidDestinationDeviceldentifier - The device identifier in the newDestination does not
specify a valid device.

« invalidDivertingDeviceldentifier - The diverting device identifier is invalid.

* invalidHeldDeviceldentifier - The device identifier in the heldCall connection does not
specify a valid device.

« invalidParkToDeviceldentifier - parkTo does not specify a valid device.

« invalidPickUpDeviceldentifier - The device identifier in the callToBePickedUp does not
specify a valid device.

« parameterNotSupported - The switching function does not support a parameter.
» accountCodeNotSupported - The accountCode parameter is not supported.
« agentGroupNotSupported - The agent group parameter is not supported.

« agentPasswordNotSupported - The agent password parameter is not supported.

-92 -

e agentStateNotSupported - The agent state is not supported.

e alertTimeNotSupported - The alertTime parameter is not supported.

e allocationNotSupported - The allocation parameter is not supported.

e authorisationCodeNotSupported - The authorization code is not supported.

« autoAnswerNotSupported - The autoAnswer parameter is not supported.

« bitRateNotSupported - The bitRate parameter is not supported.

¢ buttonNotSupported - The button parameter is not supported.

e callTypeNotSupported - The callType parameter is not supported.

e charactersToSendNotSupported - The charactersToSend parameter is not supported.
e connectionRateNotSupported - The connectionRate parameter is not supported.

¢ connectionReservationNotSupported. The connectionReservation parameter is not supported.
¢ consultPurposeNotSupported - The consultPurpose parameter is not supported.

e correlatorDataNotSupported - The correlator data parameter is not supported.

¢ delayToleranceNotSupported - The delayTolerance parameter is not supported.

¢ destinationDetectNotSupported - The destinationDetect parameter is not supported.

« digitModeNotSupported - The digitMode parameter is not supported.

e errorValueNotSupported - The errorValue parameter is not supported.

« flowDirectionNotSupported - The flowDirection parameter is not supported.

« forwardingDestinationNotSupported - The forwarding destination parameter is not supported.
¢ lampNotSupported - The lamp parameter is not supported.

« monitorTypeNotSupported - The monitor type is not supported.

¢ numberOfChannelsNotSupported - The numberOfChannels parameter is not supported.
e parameterTypeNotSupported - The participationType parameter is not supported.

e priorityNotSupported - The priority parameter is not supported.

e privateDataNotSupported - The privateData parameter is not supported.

¢ pulseDurationNotSupported - The pulseDuration parameter is not supported.

¢ pulseRateNotSupported - The pulseRate parameter is not supported.

« remainRetryNotSupported - The remainRetry parameter is not supported.

« ringCountNotSupported - The ringCount parameter is not supported.

« routeUsedNotSupported - The routeUsed parameter is not supported.

« securityNotSupported - The security parameter is not supported.

¢ switchingSubDomainCCIETypeNotSupported - The switchingSubDomainCCIEType parameter is
not supported.

« toneDurationNotSupported - The toneDuration parameter is not supported.

« securityNotSupported - The security parameter is not supported.

« sysStatRegIDNotSupported - The sysStatReglD parameter is not supported.
« userDataNotSupported - The userData parameter is not supported.

e privilegeViolationSpecifiedDevice - Performing the service request would result in a privilege violation.

-03 -

privilegeViolationActiveDevice - The request would violate a switching function restriction on the
device activeCall that limits the device in some way.

privilegeViolationCalledDevice - Performing the service request would violate a switching function
restriction that limits the called device in some way.

privilegeViolationCallingDevice - Performing the service request would violate a switching function
restriction that limits the calling device in some way.

privilegeViolationCallToParkDevice - The service request would violate a switching function
restriction on the device in callToPark connection that limits the device in some way.

privilegeViolationDestinationDevice - The request would violate a switching function restriction on
the device newDestination that limits the device in some way.

privilegeViolationOnDivertingDevice - The service request would violate a switching function
restriction on the diverting device in some way.

privilegeViolationHeldDevice - The request would violate a switching function restriction on the
device in heldCall that limits the device in some way.

privilegeViolationOnParkToDevice - The service request would violate a switching function
restriction on the device parkTo that limits the device in some way.

privilegeViolationPickupDevice - The request would violate a switching function restriction on the
device in callToBePickedUp that limits the device in some way.

« routeingTimerExpired - The routeing timer or delayed ringback timer expired for a routeing request.

* requestincompatibleWithObject - The service request is not compatible with the corresponding obje
specified in the service request. This error shall not reflect state incompatibility errors of an object.

requestincompatibleWithConnection - The service request is not compatible with a connectio
specified in the service definition.

« requestincompatibleWithActiveConnection - The request is incompatible with the activeCall
connection.

« requestincompatibleWithHeldConnection - The request is incompatible with the heldCall
connection.

requestincompatibleWithDevice - The service request is not compatible with a device specified |
the service request.

* requestincompatibleWithCalledDevice - The service request is not compatible with the called
device.

« requestincompatibleWithCallingDevice - The service request is not compatible with the
calling device.

» requestincompatibleWithSubjectDevice - The service request is not compatible with the
subject device (not a called or calling device).

« requestincompatibleWithActiveDevice - The service request is incompatible with the
device in the activeCall connection.

* requestincompatibleWithCallToParkDevice - The service request is not compatible
with the device in callToPark connection.

» requestincompatibleWithDestinationDevice - The service request is incompatible with
the device in the newDestination connection.

* requestincompatibleWithDivertingDevice - The service request is incompatible with
the device in the callToBeDiverted connection.

-94 -

« requestincompatibleWithHeldDevice - The service request is incompatible with the
device in the heldCall connection.

* requestincompatibleWithMedia - The media type associated with the message is
incompatible with the associated device.

« requestincompatibleWithParkToDevice - The service request is not compatible with
parkTo.

* requestincompatibleWithPickupDevice - The service request is incompatible with the
device in the callToBePickedUp connection.

serviceNotSupported - The service is not supported.

securityViolation - The service request violates security.

valueOutOfRange - A parameter (other than a CSTA object) has a value that is not in the enumeration or
range specified for that parameter.

agentStateOutOfRange - An agent state is not one of the defined values.
alertTimeOutOfRange - The alertTime parameter has a value that is out of its permitted range.
allocationOutOfRange - The allocation parameter has a value that is out of its permitted range.
autoAnswerOutOfRange - The autoAnswer parameter has a value that is out of range.
bitRateOutOfRange - The bitRate parameter value is out of the defined range.
callTypeOutOfRange - The callType parameter value is out of the defined range.
connectionRateOutOfRange - The connectionRate parameter value is out of the defined range.

connectionReservationOutOfRange - The connectionReservation parameter has a value that is out of
range.

consultPurposeOutOfRange - The consultPurpose parameter has a value that is out of its permitted
range.

correlatorDataOutOfRange - The length of the correlator data exceeds the maximum length that the
switching function supports.

delayToleranceOutOfRange - The delayTolerance parameter is out of the defined range.

destinationDetectOutOfRange - The destinationDetect parameter has a value that is out of its
permitted range.

digitModeOutOfRange - The digitMode parameter value is out of the defined range.
doNotDisturbOutOfRange- The do not disturb setting in the doNotDisturb parameter is out of range.
flowDirectionOutOfRange - The flowDirection parameter is out of the defined range.
forwardingFlagOutOfRange - The forwarding flag is out of range.

forwardingTypeOutOfRange - The forwardingType parameter is not one of the defined values.

hookswitchComponentOutOfRange - A hookswitch component is not one of the defined
components.

hookSwithTypeOutOfRange - A hookswitch type is out of range.
lampModeOutOfRange - A lamp mode setting is out of range.

messageWaitingSettingOutOfRange - A message waiting setting is out of range. The switching
function returns this error for the messageWaitingOn parameter.

micGainOutOfRange - A microphone gain setting is out of range.

micMuteOutOfRange - A microphone mute setting is out of range.

-05 -

« monitorTypeOutOfRange - The monitor type is not a defined value.

e numberOfChannelsOutOfRange - The numberOfChannels parameter is out of the defined range.
« participationTypeOutOfRange - the participationType parameter has a value that is out of range.
« pulseDurationOutOfRange- The pulseDuration parameter value is out of range.

« pulseRateOutOfRange - The pulseRate parameter value is out of range.

« ringCountOutOfRange - The ring count is out of range.

« ringPatternOutOfRange - A ring patterns setting is out of range.

« ringVolumnOutOfRange - A ring volume is out of range.

« routingAlgorithmOutOfRange - The routeSelAlgorithm is not one of the defined values.

« speakerMuteOutOfRange - A speaker mute setting is out of range.

« speakerVolumeOutOfRange - A speaker volume is out of range.

» switchingCcittType - The switchingSubDomainCCIEType parameter is out of the defined range.
« systemStatusOutOfRange - The system status is not one of the defined values.

« toneCharacterOutOfRange - One of more characters in the charctersToSend parameter is not in
permitted set.

« toneDurationOutOfRange - The toneDuration parameter value is out of range.

12.2.12.2 Security Errors

Error values in this category shall indicate a security error. This category shall include one of the following speci
error values:

e generic - This is a general purpose value that can be used when the server is unable to be any more spe
about the cause of the error.

« sequenceNumberViolated - Indicates that the server has detected an error in the operation’s mess
sequence number.

« timeStampViolated - Indicates that the server has detected an error in the operation’s time stamp.
« securitylnfoViolated - Indicates that the server has detected an error in the operation’s security data.

12.2.12.3 State Incompatibility Errors

Error values in this category shall indicate that the service request was not compatible with the condition o
related CSTA object. This category shall include one of the following specific error values:

e generic - This is a general purpose value that can be used when the server is unable to be any more spe
about the cause of the error.

« invalidObjectState - An object (device, connection, call, message) is in an incorrect state for the servic
This error value may be used when the server cannot be any more specific.

« invalidDeviceState - A device object is in an incorrect state for the service request.

« connectedCallExists - A physical element is already associated with another connection in the
connected state.

« invalidActiveDeviceState - The device in activeCall or callToBePickedUp connection is not
in the correct state.

« invalidCalledDeviceState - The device in the calledDevice connection is not in the correct
state.

« invalidCallingDeviceState - The device in the callingDevice connection is not in the correct
state.

- 96 -

* invalidCallToParkDeviceState - The device in the callToPark connection is not in the correct
state.

< invalidDestinationDeviceState - The newDestination device is not in the correct state.
« invalidDivertingDeviceState - The diverting device is not in a correct state.
e invalidHeldDeviceState - The device in heldCall connection is not in the correct state.
e invalidParkToDeviceState - The parkTo device is not in the correct state.

« invalidConnectionState - A connection object is in an incorrect state for the service request.
¢ invalidActiveConnectionState - The activeCall connection is not in the correct state.

¢ invalidConnectionldentifierForActiveCall - A Connection Identifier specified as the
activeCall in the service request is not in the correct state.

« invalidHeldConnectionState - The heldCall connection is not in the correct state.
* noActiveCall - The service request operates on an active call, but there was no active call.

« noCallToAnswer - There is no call active for the connection identifier specified as the
callToBeAnswered.

+ noCallToClear - There is no call associated with the connection identifier of the Clear Call
request.

¢ noCallToComplete - There is no call active for the connection Identifier specified as the
callToBeCompleted.

« noConnectionToClear - There is no connection for the connection identifier specified as the
connectionToBeCleared.

« noHeldCall - The service request operates on a held call, but the specified call was not in the
Hold state.

* incorrectMessageState - A message object is in an incorrect state for the service.
* beginningOfMessage - The message pointer is at the beginning of the message.
* endOfMessage - The message pointer is at the end of the message.
¢ messageSuspended - The specified message is already suspended on the same Connection.
« notAbleToPlay - The specified message exists, but cannot be played.
¢ notAbleToResume - The specified message cannot be resumed.

12.2.12.4 System Resource Availability Errors

Error values in this category shall indicate that the service request could not be fulfilled because of a lack of system
resources within the serving sub-domain. This category shall include one of the following specific error values:

e generic - This is a general purpose value that can be used when the server is unable to be any more specific
about the cause of the error.

« resourceBusy - The service is supported by the server, but is unavailable due to a resource that is busy.
« internalResourceBusy - An internal resource is in use.
« classifierBusy - All available classifiers are in use.

¢ noMediaChannelsAvailable - There are no available media stream channels to complete the
request.

¢ channelsinUseForBridgedDevices - All applicable media stream channels are in use by
other devices associated in a bridged device configuration.

-97 -

« channelsinUseForData - All applicable media stream channels are in use for digital date
connections.

» toneDetectorBusy - All available tone detectors are in use.
» toneGeneratorBusy - All available tone generators are in use.
* networkBusy - The server sub-domain is busy.

» resourceOutOfService - The service is supported by the server, but is unavailable due to a resource th:
out of service.

« deviceOutOfService - A device that is needed to carry out the service is out of service.
» activeDeviceOutOfService - The device specified in activeCall connection is out of service.

» calledDeviceOutOfService - The device specified in the calledDevice connection is out of
service.

« callingDeviceOutOfService - The device specified in the callingDevice connection is out of
service.

« callToParkDeviceOutOfService - The device specified in callToPark connection is out of
service.

+ destinationDeviceOutOfService - The newDestination device is out of service.

« divertingDeviceOutOfService - The device specified as the diverting device is out of service.

« heldDeviceOutOfService- The device specified in heldCall connection is out of service.

« parkToDeviceOutOfService - The device specified in parkTo is out of service.

« pickupDeviceOutOfService - The device in callToBePickedUp is out of service.

« divertingDeviceOutOfService - The device specified as the diverting device is out of service.
* networkOutOfService - The server sub-domain is Out Of Service.

« otherResourceOutOfService - Some resource needed to carry out the service other than the abov
out of service.

« resourceLimitExceeded - The service is supported by the server, but is unavailable because it wol
exceed the internal usage limit of the resource.

« overallMonitorLimitExceeded - The service request would exceed a switching function limit on the
number of monitors (either an overall limit on the aggregate number of monitors or a limit on the
number of monitors of different types (device-type, call-type) or some combination of the two).

« conferenceMemberLimitExceeded - The requested service would exceed the server’s limit on tl
number of members of a conference.

e registrationLimitExceeded - This service would exceed the switching function’s maximum numbe
of registrations.
12.2.12.5 Subscribed Resource Availability Errors

Error values in this category shall indicate that the service request could not be fulfilled because a required reso
must be purchased or contracted by the client system. This category shall include one of the following specific er
values:

e generic - This is a general purpose value to be used when the server is unable to be any more specific abou
cause of the error.

« objectMonitorLimitExceeded - The service request would exceed the server’s limit of monitors for the
specified object.

« trunkLimitExceeded - The service request would exceed the server’s limit of trunks.

-908 -

e outstandingRequestsLimitExceeded - The service request would exceed the servers’s limit on the number
of outstanding service requests.

* objectRegistrationLimitExceeded - This service request would exceed the switching function’s limit on
the number of registrations for this device.

12.2.12.6 Performance Management Errors

Error values in this category shall indicate that an error has been returned as a performance management
mechanism. This category shall include one of the following specific error values:

e generic - This is a general purpose value to be used when the server is unable to be any more specific about the
cause of the error.

« performancelLimitExceeded - A performance limit has been exceeded.

12.2.12.7 Private Data Information Errors

Error values in this category shall indicate an error in the CSTA Private Data Information. The reason(s) why the
Private Data Information is incorrect is not relevant to this CSTA Standard. This category shall include the
following specific error value:

e CcSTAPrivateDatalnfoError - An error occurred in the privateData parameter. The reason for this error is
implementation specific.

12.2.12.8 Unspecified Errors

Error values in this category shall indicate that the error did not belong to any of the other error value categories.
This category shall include the following error value:

e unspecifiedError - Some error other than those covered by the error categories has occurred or server cannot
determine the category of the error.

12.2.13 EventCause
The EventCause parameter type provides additional information on why an event was generated.

Format

Event causes are defined within the context of an event. For a description of an event cause refer to the event cause
description associated with a specific event.

This parameter type contains one of the following event causes:
¢ ACD Busy

e ACD Forward

e ACD Saturated

e Active Participation
e Alert Time Expired
* Alternate

e Auto Work

* Blocked

e Busy

e Call Back

» Call Cancelled

» Call Forward

e Call Forward - Busy

* Call Forward - Immediate

Call Forward - No Answer
Call Not Answered

Call Pickup

Camp On

Camp On Trunks
Character Count Reached
Conference

Consultation

Destination Detected
Destination Not Obtainable
Destination Out of Order
Distributed

Distribution Delay

Do Not Disturb

DTMF Digit Detected
Duration Exceeded

End of Message Detected
Entering Distribution
Forced Pause

Forced Transition
Incompatible Destination
Intrude

Invalid Account Code
Invalid Number Format
Join Call

Key Operation

Key Operation In Use
Lockout

Maintenance

Make Call

Make Predictive Call
Message Duration Exceeded
Message Size Exceeded
Multiple Alerting

Multiple Queuing

Network Congestion
Network Dialling

Network Not Obtainable

- 99 -

- 100 -

* Network Out of Order

¢ Network Signal

* New Call

¢ Next Message

« No Available Agents

e Normal

¢ Normal Clearing

¢ No Speech Detected

* Not Available Bearer Service
* Not Supported Bearer Service
¢ Number Changed

¢ Number Unallocated

¢ Overflow
* OQOverride
« Park

¢ Queue Cleared

* Recall

* Redirected

¢ Remains in Queue

* Reorder Tone

* Reserved

* Resources Not Available

e Selected Trunk Busy

¢ Silent Participation

¢ Single Step Conference

¢ Single Step Transfer

e Speech Detected

e Suspend

e Switching Function Terminated
e Termination Character Received
* Timeout

e Transfer

e Trunks Busy

* Unauthorized Bearer Service

Functional Requirements

1. Event causes are only present in events that result from the feature/situation associated with the meaning of
the cause. Once that feature or situation ceases to be active, then the event cause is no longer present in the
events.

-101 -

12.2.14 LocalConnectionState

The LocalConnectionState parameter type describes the connection state of the device associated with the Mo
Cross Reference ID.

This parameter type is only applicable for events generated by device-type monitors.

Format

This parameter type shall contain one of the following connection states:

Alerting
Connected
Fail

Hold
Initiated
Null
Queued

Refer to 6.1.5, “Connection”, for detailed descriptions of the connection states.

Example

The following is a scenario that illustrates the usage of this parameter.

Consider the case of a two device call where device one has called device two, and device two is ringing. If b
devices are monitored, then the switching function generates two separate (Delivered) events to indicate that
call has been delivered. While the subject device is identical for both Delivered events, the localConnectionlr
parameters are different.

Both events contain the same subject device, device two in this case, since that is the device in the call b
alerted.

The connection state for device one is connected (most likely listening to ringback). This is reported in tl
localConnectioninfo parameter of the Delivered event for device one.

The connection state for device two is alerting. This is reported in the localConnectioninfo parameter of t
Delivered event for device two.

12.2.15 MediaCallCharacteristics
The MediaCallCharacteristics parameter type specifies the media (voice, digital data, etc.) characteristics of the ¢

Format

This parameter type is comprised of the following:

1.

mediaClass (M) Bitmap - Specifies the media class (voice, digital data, etc.).

A CSTA call shall belong to at least one and may belong to more than one of the following classes:

e Audio - 3.1 KHz audio. Calls in this class involve devices that are used to make audio calls excludin
speech calls. This includes calls involving devices such as G3 FAX and facsimile machines.

- Data - This class of calls involve digital data calls (both circuit switched and packet switched). Calls ir
this class include devices such as digital computer interfaces and G4 facsimile machines.

« Image - Digital data calls involving imaging, or high-speed, circuit-switched data in general. This
includes calls involving devices such as digital video telephones and CODECs.

» Voice - Speech calls. This class of calls involves devices such as standard telephones.

-102 -

¢ Not Known - The media class is not known.
e Other - A class of call not in the Data, Image, Audio or Voice classes.

connectionRate (O) Value - The digital data connection rate of the call. The contents of this parameter is
switching function specific (the capability exchange services may be used to obtain the list of possible values
that are supported by the switching function). A value of zero (0) indicates that the type of media stream
associated with the connection is digital data but the connection rate is unknown.

bitRate (O) Enumerated - The digital data bit rate of the call. If this parameter is not present, the bit rate of the
call is a constant bit. The following is the complete set of possible values:

e Constant (Default) - A bit rate which ensures a dedicated bandwidth and a constant rate of media stream
delivery.

e Variable - A bit rate which may variable during the life of the call.

delayTolerance (O) Value - The digital data delay tolerance of the call. This parameter specifies the maximum
amount of media stream delivery delay that will be toleranced for the call. If the bit rate is constant, then this
value will indicate the actual amount of media stream delivery delay for the life of the call. Where as if the bit
rate is variable, it will be the maximum delay allowed during the life of the call. The contents of this
parameter is switching function specific, use the capability exchange services to obtain the list of possible
values that are supported by the switching function. If this parameter is not present, the delay tolerance of the
call is not known.

switchingSubDomainCCIEType (O) Enumerated - The type of switching sub-domain private call control
information elements that are present in the switchingSubDomaininformationElements parameter. If this
parameter is not present, there are no information elements associated with the call and the
switchingSubDomainlinformationElements parameter should be ignored. The following is the complete set of
possible values:

» ISDN

+ ATM (B-ISDN)

¢ ISO-Ethernet (TDM part only)

* RSVP

e Other (switching sub-domain specific)

switchingSubDomainIinformationElements (C) Characters - These parameters contain the private information
elements that are available from the switching sub-domain (as specified by switchingSubDomainCCIEType)
which represents a specific set of information elements. The format, meaning and behaviour of these
information elements are specific to the given switching function. This parameter is only present and
mandatory when the switchingSubDomainCCIEType parameter is present.

12.2.16 MediaServiceType

The mediaServiceType parameter type is used to indicate which media service is to be (or has been) attached to or
detached from a particular call or connection that the computing function is controlling and/or monitoring.

Format

This parameter type shall contain one of the following values:

cstaVoiceUnit

dataModem
digitalDatalsochronousleee1394
digitalDatalsochronousGeoport

digitalDatalsochronousleeeAtm

- 103 -

« digitalDatalsochronousleeelsdn
« digitalDataAPI

* ectfS100MediaServicesDefault
+ ectfS100MediaServicesASI

e ivrScriptl
e ivrScript2
e ivrScript3
e ivrScript4
e ivrScript5
e ivrScript6
e ivrScript7
e ivrScript8
e ivrScript9

e ivrScriptl0

« liveSoundCaptureAnalog

« liveSoundTransmitAnalog

« liveSoundCaptureleee1394

* liveSoundTransmitleee1394

» liveSoundCaptureTransmitGeoport
« liveSoundCaptureTransmitAtm
e liveSoundCaptureTransmitiISDN
e soundCaptureTransmitADPCM
e soundCaptureTransmitApi

* usb

» sfSpecificl

» sfSpecific2

« sfSpecific3

» sfSpecific4

» sfSpecifich

» sfSpecificé

« sfSpecific7

« sfSpecific8

« sfSpecific9

« sfSpecificl0

Refer to Table 6-10 on page 57 for a description of these service types.
12.2.17 MonitorFilter

The MonitorFilter parameter type specifies the list of events that are filtered (not sent) for a specific monitor.

12.2.18

12.2.19

- 104 -

Format

The parameter type consists of a list of bitmaps, each entry corresponding to a category of events, each bit in each
category corresponding to a CSTA event. If the bit is TRUE, then the event corresponding to the bit is filtered (not
sent) for the monitor. The list of bitmaps include:

« call control events - bitmap of the call control events as specified in Table 17-138 on page 267.

e call associated events - bitmap of the call associated events as specified in Table 18-22 on page 343.

* media attachment events - bit map of the media attachment events as specified in Table 19-14 on page 362.

« physical device events - bitmap of the physical device events as specified in Table 21-58 on page 418.

« logical device events - bitmap of the logical device events as specified in Table 22-54 on page 463.

* maintenance events - bit map of the maintenance events as specified in Table 23-1 on page 481.

e voice unit events - bit map of the voice unit events as specified in Table 26-38 on page 537.

< vendor specific (private) events - bit map of the vendor specific events as specified in Table 28-12 on page 564.

ServicesPermitted

The ServicesPermitted parameter type specifies the set of services that the switching function permits to be applied
to a connection.

The servicesPermitted parameter (when provided in a call event) is similar to the localConnectioninfo parameter in
that it applies to the services permitted for the connection at the monitored device.

This parameter type is only applicable for events generated by device-type monitors.
Format

This parameter type is a list of bitmaps where each bit represents a service that can be applied to a connection.
When a bit is set, the corresponding service is permitted. The following is the list of bitmaps (multiple bits may be
set in this parameter):

« call control services - the call control services as specified in Table 17-1 on page 185.

« call associated services - the call associated services as specified in Table 18-1 on page 331.

* media attachment services - the media attachment services as specified in Table 19-1 on page 354.
e routeing services - the routeing services as specified in Table 20-7 on page 371.

e voice unit services - the voice unit services as specified in Table 26-1 on page 517.

Functional Requirements

1. This parameter indicates which of a subset of CSTA services are permitted.

2. When the servicesPermitted parameter is provided in an event, it applies to the connection at the monitored
device. This may or may not be the same as the subject device.

3. If there are multiple connections at a device, the information reported in the servicesPermitted parameter may
not accurately reflect all possible service restrictions and interactions between multiple connections at a
device.

4. There may be situations in a switching function that cause a service to fail after being presented as permitted
in the servicesPermitted parameter. This may be due to dynamic system and/or resource conditions that may
cause service availability restrictions. The switching function shall provide the appropriate error code in the
negative acknowledgement to the failed service request.

SimpleCallState

The SimpleCallState parameter type indicates the main call states in simplified encoding. The semantics are
identical to the sequence of connection states but they are represented by an item from the list below.

12.2.20

- 105 -

Format

This parameter type may contain one of the following:

callNull

callPending
callOriginated
callDelivered
callDeliveredHeld
callReceived
callEstablished
callEstablishedHeld
callReceivedOnHold
callEstablishedOnHold
callQueued
callQueuedHeld
callFailed
callFailedHeld

callBlocked

SystemStatus

The SystemStatus parameter type indicates the reason for the System Status service request.

Format

The complete set of possible values are:

Disabled- Existing Monitor Requests have been disabled. Other requests and acknowledgements also may
disabled, but negative acknowledgements should always be provided.

Partially Disabled- Some of the objects in the system can not be reached. Existing monitors on these obje
will not provide events and computer requests targeting these objects will be rejected. This cause indicate:
the receiving function that a degradation of service level may occur but not complete system disabilit
Automatic or manual actions may be taken to remedy the parts disabled.

Enabled- Requests and acknowledgements have been enabled. This usually occurs after a disruption or res
This status cause is always sent after an Initializing cause has been sent and may be sent under ¢
conditions. This status indicates that there are no outstanding monitors (existing monitors and their associe
monitor cross reference identifiers are no longer valid).

Initializing - The system is initializing or restarting. This status indicates that a system is temporarily unable
respond to any requests. If provided, this status message is followed by an Enable status message to ind
that the initialization process has completed.

Messages LostRequests and/or acknowledgements, including event reports, may have been lost.

Normal - May be sent at any time and indicates that the status is normal. This status has no effect on ot
Services.

Overload Imminent The receiver is requested to take initiative to shed load.

Overload Reached The requester may take initiative to shed load. This cause may be followed by Sto
Monitor requests sent to the client and by rejections to additional service requests.

12.2.21

12.2.22

- 106 -

¢ Overload Relieved The overload condition has passed.

Timelnfo

The Timelnfo parameter type provides the calendar date and the time of day. There are three possible value
representations: as local time, coordinated universal time, or as local time with a time differential factor. All
representations use a four character representation of the year.

Format

This parameter type is based upon the GeneralizedTime as defined in ISO/IEC 8824:1990 (Information technology
- Open Systems Interconnection - Specification of Abstract Syntax Notation One (ASN.1)).
UserData

The UserData parameter type contains computing sub-domain to computing sub-domain data. Note that the
capabilities exchange services return the maximum length of the user data for a switching function.

User Data is described further in 6.1.4.4, “User Data”, on page 29. Also, refer to 12.2.9, “CorrelatorData”, on page
87.

This specification defines a mechanism for delivering both user data and correlator data through an external ISDN
network at the same time. This mechanism is described in Annex B.

Format

This parameter type is an octet string. The maximum length supported by the switching function is provided via the
capabilities exchange services, but is limited to 256 octets.

Functional Requirements

1. The ability to send User Data, the timing of when user data can be sent, and the size of user data, is dependent
upon the switching function’s capabilities and the underlying network (such as ISDN).

2. Unlike correlator data, User Data is not attached to a call for the life of the call. User Data that has been
associated with a primary or secondary call does not get retained with a resulting conference or transferred
call.

3. The switching function reflects the delivery of User Data in the call control events that result from the
switching function or network carrying out the call control activity with which the User Data was associated.
When the switching function receives user data independent of call activity (i.e., Send User Information
service), the User Data is provided in the Call Information event.

4. User data addresses a specific user in a call (e.g. the initially called device). The delivery and propagation of
the user data to other devices inside the switching sub-domain in regards to features that apply to the call (e.g.
forwarding, do not disturb) is switching function dependent.

5. When this data is being attached to a call through a service request, its association shall be completed prior to
any state transitions resulting from the request. Thus any state transition events which contain this parameter
shall contain the information passed on the request.

6. If a computing function issues a Snapshot Call service after a service request has been issued with this
information, but prior to the switching function making any state transitions, it is switching function specific
as to what will be returned in the positive acknowledgement with regards to this parameter.

12.3

Identifier Parameter Types

- 107 -

Identifier parameter types specific to these specifications are summarized in the following table.

Table 12-2 Identifier Parameter Types Summary

Defined Parameter Type Description Pg.
12.3.1 AgentlD Identifies an ACD agent. 108
12.3.2 AssociatedCalledDevicel) Describes the switching function’s internal representation of the originally called device 08
a call.

12.3.3 Describes the switching function’s internal representation of the calling device in the call 108

AssociatedCallingDevicelD when the calling device is outside the switching sub-domain (i.e., trunk number).

12.3.4 AuditoryApparatusiD Indicates the auditory apparatus containing the speaker whose volume has changed, 109

12.3.5 ButtonID Specifies the button identifier on a device. 109

12.3.6 CalledDevicelD Specifies the device to be called via a service. This parameter describes the originally 109
called device associated with a call.

12.3.7 CallingDevicelD Describes the calling device associated with the call. 110

12.3.8 CDRCrossReflD Specifies the CDR services cross reference identifier. 110

12.3.9 ConnectionID Describes a device’s connection in a given call. 110

12.3.10 DCollCrossRefID Used to identify a specific data collection. 112

12.3.11 DevicelD Identifies or represents a device in the switching function. 112

12.3.12 DisplayID Specifies the display identifier on a device. 112

12.3.13 EscapeRegisterID Used to identify an escape services registration. 112

12.3.14 HookswitchID Used to specify the hookswitch to query at a specified device. 112

12.3.15 10CrossRefID Specifies the I/0 services cross reference identifier. 113

12.3.16 IORegisterReqID Used to identify an I/O services registration. 113

12.3.17 LampID Specifies the lamp identifier. 113

12.3.18 MediaServicelnstancelD Identifies a particular media access service instance (e.g., specific media access servenaar
subsystem)

12.3.19 MediaStreamID Specifies a media stream identifier that can be used to access an attached media servite3

12.3.20 MessagelD Specifies a particular Voice Unit message. 114

12.3.21 MonitorCrossRefID Specifies an identifier that is used to correlate an event to an established monitor. 114

12.3.22 NetworkCalledDevicelD Specifies the called device information provided by the network for external incoming cailg.

12.3.23 NetworkCallingDevicelD Specifies the calling device information provided by the network for external incoming 114
calls.

12.3.24 RedirectionDevicelD Describes the last device known by the switching function from which the current call weEs
routed.

12.3.25 RingerID Specifies the ringer identifier associated with a physical device 116

12.3.26 RouteingCrossReflID References the routeing dialogues initiated by the switching function within a routeing 116
registration.

12.3.27 RouteRegisterReqID Identifies a routeing registration for which the computing function (acting as a routeing116
server) will receive routeing requests.

12.3.28 ServiceCrossReflD Specifies an identifier that is used to correlate one service request to another service 116
request.

12.3.29 SubjectDevicelD Describes the device where a telephony event occurred or was invoked. 117

12.3.30 SysStatRegisterID Used to identify system status registration. 117

1231

12.3.2

12.3.3

- 108 -

AgentID
The AgentID parameter type identifies an ACD agent.

Format

This parameter type is a character string with a maximum length of 32.
AssociatedCalledDevicelD

For outgoing external calls, the AssociatedCalledDevicelD parameter type specifies the Network Interface Device
(e.g., trunk, CO Line) within the switching sub-domain that is associated with the originally called device. This
parameter in mandatory on all events dealing with external outgoing calls.

For incoming external calls, this parameter specifies a device within the switching sub-domain that is associated
with the originally called device (such as a switching function internal representation of DNIS, for example). This
parameter is optional on all events dealing with incoming external calls.

Format and Status

This device identifier type may be one of the following (see Clause 10, “CSTA Device Identifier Formats”, on page
75 for more information):

¢ acharacter string when using the Diallable Digits and the Switching Function Representation formats.

¢ aninteger value when using the Device Number format.

* avalue of “Not Known”

Functional Requirements
1. A device identifier of this type will only be present when the switching sub-domain is using a network
interface device for an external call; that is, the call is an External Outgoing or External Incoming call.

2. A device identifier of this type is not used to provide DNIS (Dialed Number Identification Service) or DID
(Direct Inward Dialing) digit information or a string of digits that represents the called device. (This
information is provided in the corresponding CalledDevicelD parameter.)

3. A device identifier of this type is set to “Not Known” when the switching function does not know the Network
Interface Device associated with the original called device.

4. A device identifier of this type will never contain the value “Not Required” or “Not Specified”.

AssociatedCallingDevicelD

The AssociatedCallingDevicelD parameter type specifies the Network Interface Device (e.g., trunk, CO line)
within the switching sub-domain that is associated with the calling device in the call if the call is an external
incoming call. This parameter shall be included on all external incoming calls.

Format and Status

This device identifier type may be one of the following (see Clause 10, “CSTA Device Identifier Formats”, on page
75 for more information):

« acharacter string when using the Diallable Digits and the Switching Function Representation formats.
¢ aninteger value when using the Device Number format.

* avalue of “Not Known”

Functional Requirements

1. A device identifier of this type will only be present when the switching function is using a network interface
device for an inbound call; that is, the call is an external incoming call.

12.3.4

12.3.5

12.3.6

- 109 -

2. A device identifier of this type is not used to provide ANI (Automatic Number Identification), CLID
(CallerlD) or SID (Station Identification) digit information or a string of digits that represents the calling
device. (This information is provided in the corresponding CallingDevicelD parameter.)

A device identifier of this type will never contain the value “Not Required” or “Not Specified”.

4. |If a call is created that contains multiple AssociatedCallingDevicelDs (i.e., a conference call calling back to
device), the AssociatedCallingDevicelD status shall be “Not Known”.

AuditoryApparatusiD
The AuditoryApparatusID parameter type specifies a particular auditory apparatus associated with the device.

Format

This parameter type is an octet string with a maximum length of four.
ButtonID

The ButtonID parameter type specifies the button identifier on a device.

Format

This parameter type is an octet string with the maximum length of four.

Table 12-3 Reserved Button ID Assignments

Button ID Button Label
0-9 Keypad Digits: “0” through “9”
10 Keypad Symbol: “**
11 Keypad Symbol: “#”

CalledDevicelD
A device identifier of the CalledDevicelD type describes the originally called device associated with a call.

Format and Status

This device identifier type may be one of the following (see Clause 10, “CSTA Device Identifier Formats”, on pac
75 for more information):

« a character string when using the Diallable Digits and the Switching Function Representation formats.

e an integer value when using the Device Number format.

+ avalue of “Not Known”.

Functional Requirements

1. A device identifier of this type contains the originally called device in the call. For External Incoming calls, :
device identifier of this type will contain DNIS (Dialed Number Identification Service) or DID (Direct Inward
Dialing).

2. This parameter will never contain the value “Not Required” or “Not Specified”.

3. When two calls are being joined through a conference or transfer, the CalledDevicelD information for t
resulting call shall be taken from the secondary call.

4. This parameter type is different from the NetworkCalledDevicelD parameter type in that the CalledDevicel
information may change if the call is transferred and/or conferenced whereby the NetworkCalledDevicel
information does not change as long as the NID associated with the original calling device remains in the ¢
Also, the NetworkCalledDevicelD is limited to information passed over a Network Interface Device.

-110 -

12.3.7 CallingDevicelD
The CallingDevicelD parameter type specifies the calling device associated with the call.

Format and Status

This device identifier type may be one of the following (see Clause 10, “CSTA Device Identifier Formats”, on page
75 for more information):

« acharacter string when using the Diallable Digits and the Switching Function Representation formats.
¢ an integer value when using the Device Number format.

* avalue of “Not Known".

Functional Requirements

1. A device identifier of this type contains the calling device in the call. For External Incoming calls, a device
identifier of this type will contain ANI (Automatic Number Identification), CLID (CallerID) or SID (Station
Identification) digit information or a string of digits that represents the calling device.

2. This parameter will never contain the value “Not Required” or “Not Specified”.

3. If more than one device is the calling device in a call (i.e., a conference call calling back to a device), the
CallingDevicelD status will be “Not Known”.

4. This parameter type is different from the NetworkCallingDevicelD parameter type in that the
CallingDevicelD information may change if the call is transferred and/or conferenced whereby the
NetworkCallingDevicelD information does not change as long as the NID associated with the original calling
device remains in the call. Also, the NetworkCallingDevicelD is limited to information passed over a Network
Interface Device.

12.3.8 CDRCrossRefID

The CDRCrossRefID is used to correlate subsequent CDR services to the Start Call Detail Records Transmission
service.

Format

This parameter type is an octet string with a maximum length of four.
12.3.9 ConnectionlD

The ConnectionlD parameter type describes a device’s connection in a given call. (Connection Identifiers are also
discussed in 6.1.5, “Connection”, on page 31.)

Format

The ConnectionID is always comprised of the following parameters (except in special cases which are described
below):

1. calllD (M) Octet String - An identifier used by the switching function to represent a valid call. The maximum
length of this ID is eight octets. These IDs are created by the switching function and are globally unique
among all calls within the switching sub-domain.

2. devicelD (M) DevicelD - An identifier which is used to represent a device in the switching sub-domain. This
identifier can be either one of the two following values:

e Static- This type of identifier is defined in 6.1.3, “Device”, on page 6.

« Dynamic- This type of identifier is one that is created by the switching function for a device when it
enters into a call and shall remain constant for the life of the device’s participation in the call (i.e., the
creation of a connection identifier for the device). As soon as the device leaves the call, the identifier
becomes invalid. The use of a dynamic identifier by a switching function is determined when the

-111 -

switching function does not have a static identifier for the device or the identifier can not uniquely
identify the device in a call. This type of identifier is an octet string, with a maximum length of 32. It is
never a diallable number and can never be used outside the context of the connection identifier. This ty
of identifier is not directly related to a device element but is strictly used to make the connection identifie
unigue. Refer to 6.1.8, “Management of Dynamically-Assigned Identifiers”, on page 38, for more
information.

Functional Requirements

8.

10.

The computing function shall not fabricate its own Connection IDs. This will lead to unpredictable results.
The Connection IDs in events and service acknowledgements are always allocated by the switching functior

Computing functions can extract Device IDs from Connection IDs and use them on services that have Dev
ID parameters only if the Device ID extracted is a static Device ID that the switching function accept:
Otherwise, the Device ID cannot be used.

Computing functions shall extract Call IDs from Connection IDs, provided by the switching function, tc
correlate event reports associated with devices that are connected together in a call.

The computing function will always receive an event to indicate the termination of a Connection ID if th
appropriate monitor is started. Refer to the individual services and events to better understand the meanin
individual events with respect to connection states.

If the computing function issues a service with a Connection ID that cannot be controlled by the switchir
function, the service will be rejected with a negative acknowledgement.

Connection IDs used as parameters can only have three formats:

a. AcompleteConnection ID (i.e., call ID and device ID). This extracted from either events received by the
computing function or positive acknowledgements received as a result of services issued.

When supplied as a parameter, the Connection ID will be validated by the switching function with respec
to the service being issued. If this Connection ID is not valid, the service request will be rejected with a
negative acknowledgement.

b. A DevicelD onlyConnection ID. If a service has more than one Connection ID parameter, the switchin
function supports this type of Connection ID, and the computing function wants to use this type c
Connection ID, then all Connection ID parameters in the service shall be of this type.

If this type of Connection ID is used as the Connection ID parameter for a service, then rules documente
in the services sections will determine whether it is accepted or not by the switching function. If this type ¢
Connection ID is not accepted, then the service will be rejected with a negative acknowledgement.

c. ACallID onlyConnection ID. In events, this format can only be used for the Call Cleared and Failed even
If this format is used for any service other than Clear Call, Monitor Start, or Snapshot Call, it will be rejecte
with a negative acknowledgement.

If a call changes its Call ID when a Conference or Transfer occurs, Connection IDs shall be provided to li
the old Call IDs to the new Call IDs. When this occurs, the event will contain a list of originally known
Connection IDs of devices that are still in the call along with the new replacement Connection IDs. When tl
new Connection IDs are created in such cases, new dynamic Device IDs may also be used to create
Connection IDs.

Connection IDs that come from the switching function (events and positive acknowledgement to services) w
always contain both the Call ID and Device ID portions (see item 7a above) except for the Call Cleared a
Failed events that may also contain only a valid call ID in the connection ID (see item 7c above).

The computing function should never assume the reuse of calllDs, although some switching functions
reuse one or the other.

12.3.10

12.3.11

12.3.12

12.3.13

12.3.14

-112 -

DCollCrossReflD

The DCollCrossReflID parameter type identifies a specific data collection that was initiated via the Start Data
Collection service. The DCollCrossRefID is valid only for the duration of the data collection.

Format

This parameter type is an octet string with a maximum length of four.
DevicelD

The DevicelD parameter type identifies or represents a device.

Format

This DevicelD parameter type consists of two components:

« Device Identifier - A mandatory component that specifies the device identifier as described in Clause 10,
“CSTA Device Identifier Formats”, on page 75. This may include one of the following:

¢ acharacter string when using the Diallable Digits and the Switching Function Representation formats.
¢ aninteger value when using the Device Number format.

¢ Media Class - An optional component that specifies the media class(s) of the device. This may be used for
selecting a device based upon a particular media capability, for example. Refer to the mediaClass component in
12.2.15, “MediaCallCharacteristics”, on page 113 for the complete set of possible values. Note that multiple
bits may be set.

The maximum length of the Device Identifier component that is supported by the switching function is provided via
the capabilities exchange services.

Functional Requirements

1. For more details on DevicelD parameter types, refer to 6.1.3, “Device”.

2. For information on DevicelD in Connection Identifiers, refer to 12.3.9, “ConnectionID”, on page 110 and
6.1.5, “Connection”, on page 31.

DisplayID
The DisplayID parameter type specifies a particular display associated with the device.

Format

This parameter type is a string with the maximum length of four characters.
EscapeRegisterID

The EscapeRegisterID parameter type is used to identify an escape service registration.

Format

This parameter type is an octet string with the maximum length of four.
HookswitchID

The HookswitchID parameter type is used to specify the hookswitch to query at a specified device. If not provided,
the default is to get the status of each hookswitch at the specified device.

Format

This parameter type is an octet string with the maximum length of four.

12.3.15

12.3.16

12.3.17

12.3.18

12.3.19

-113 -

IOCrossReflD

The IOCrossRefID parameter type identifies each 1/O data path. The computing function receives a IOCrossRe
in each I/O service request. The Start Data Path service initiates an I/O data path. The I0CrossRefID is only vi
for the duration of the data path.

The 10CrossRefID is unique within the 1/O registration (IORegisterReqID). Some switching functions may provid
the additional benefit of a unique 10CrossRefID across the entire switching sub-domain. This is also the case if
registration is not supported by the switching function.

The parameter type also specifies if the switching function or the computing function started the data path.

Format

This parameter type shall be one of the following:

« switchProvided (octet string with a maximum length of four) - indicates that the switching function has starte
the data path

« computerProvided (octet string with a maximum length of four) - indicates that the computing function hea
started the data path
IORegisterReqID

The I0RegisterReqID parameter type identifies a I/O registration for which the computing function (acting as an
O server) will receive 1/O service requests. This identifier may be associated with a particular device within tl
switching sub-domain or it may indicate that the computing sub-domain is the 1/O server for all devices within t
switching sub-domain. When the computing function uses the 1/0 Register service to register for I/O services
receives a IORegisterReqID in the positive acknowledgement sent by the switching function. The IORegisterRec
is only valid until the 1/O registration is ended by the computing function or switching function.

IORegisterReqlD parameters are unique across a given CSTA service boundary.

Format

This parameter type is an octet string with a maximum length of four.

LamplD
The LamplD parameter type specifies the lamp identifier.

Format

This parameter type is an octet string with the maximum length of four.
MediaServicelnstancelD

The MediaServicelnstancelD parameter type identifies a particular media access service instance (e.g., spe
media access server or subsystem).

Format

This parameter type is an octet string with a maximum length of 64.
MediaStreamID

The MediaStreamID parameter type specifies a media stream identifier that can be used to access an attached |
service. The usage of the mediaStreamID is defined by a particular media service.

Format

This parameter type is an octet string. The maximum length supported by the switching function is provided via |
capabilities exchange services.

12.3.20

12.3.21

12.3.22

12.3.23

- 114 -

MessagelD
The MessagelD parameter type specifies a particular Voice Unit message.

Format

This parameter type is an octet string. The maximum length supported by the switching function is provided via the
capabilities exchange services.
MonitorCrossReflD

The MonitorCrossRefID parameter type specifies an identifier that is used to correlate an event to an established
monitor. When a monitor is established using the Monitor Start service, a monitorCrossReferencelD parameter is

returned as part of the positive acknowledgement message. This monitorCrossReferencelD parameter is included in
every event for that specific monitor.

Format

This parameter type is an octet string with a maximum length of four.

Functional Requirements

1. This parameter is allocated by the switching function.

2. The switching function is responsible for providing unique monitorCrossReferencelD parameters over a
specific service boundary.
NetworkCalledDevicelD

For external incoming calls, this parameter specifies the called device information that was provided by the
Network over a Network Interface Device. For example, this may contain DNIS (Dialed Number Identification
Service) or DID (Direct Inward Dialing) digit information or a string of digits that represents the called device.

This information is established when the call is first created and stays with the call as long as the Network Interface
Device (NID) associated with the original calling device remains in the call, even if the call is transferred from the
original called device, for example.

Format and Status

This device identifier type may be one of the following (see Clause 10, “CSTA Device Identifier Formats”, on page
75 for more information):

¢ acharacter string when using the Diallable Digits and the Switching Function Representation formats.

¢ aninteger value when using the Device Number format.

* avalue of “Not Known”.

Functional Requirements

1. This parameter will never contain the value “Not Required” or “Not Specified”.

2. This parameter type is different from the CalledDevicelD parameter type in that the CalledDevicelD
information may change if the call is transferred and/or conferenced whereby the NetworkCalledDevicelD
information does not change as long as the NID associated with the original calling device remains in the call.
Also, the NetworkCalledDevicelD is limited to information passed over a Network Interface Device.

NetworkCallingDevicelD

For external incoming calls, this parameter specifies the calling device information that was provided by the
Network over a Network Interface Device. For example, this may contain ANI (Automatic Number Identification),
CLID (CallerID) or SID (Station Identification) digit information or a string of digits that represents the calling
device.

12.3.24

-115-

This information is established when the call is first created and stays with the call as long as the Network Interf
Device (NID) associated with the original calling device remains in the call, even if the call is transferred from tt
original called device, for example.

Format and Status

This device identifier type may be one of the following (see Clause 10, “CSTA Device Identifier Formats”, on pac
75 for more information):

» a character string when using the Diallable Digits and the Switching Function Representation formats.

* an integer value when using the Device Number format.

* avalue of “Not Known”.

Functional Requirements

1. This parameter will never contain the value “Not Required” or “Not Specified”.

2. This parameter type is different from the CallingDevicelD parameter type in that the CallingDevicell
information may change if the call is transferred and/or conferenced whereby the NetworkCallingDevicel
information does not change as long as the NID associated with the original calling device remains in the ¢
Also, the NetworkCallingDevicelD is limited to information passed over a Network Interface Device.

RedirectionDevicelD

The RedirectionDevicelD parameter type describes the last device known by the switching function from which t
current call was routed. “Routed” includes forwarded from, diverted from, or redirected from.

Format and Status

This device identifier type may be one of the following (see Clause 10, “CSTA Device Identifier Formats”, on pac
75 for more information):

» a character string when using the Diallable Digits and the Switching Function Representation formats.
* an integer value when using the Device Number format.
« “Provided” - indicates that the DevicelD of the last redirection device is provided

« “Not Known” - indicates that the call has been redirected but the switching function cannot provide th
DevicelD

* “Not Required” - indicates that the current call has never been redirected during the existence of the call

* “Not Specified” - indicates that the switching function cannot determine whether or not the call has ever be
redirected

Functional Requirements

1. The information in a device identifier of this type will stay with the call until the call is established. If the call
is routed multiple time before it is established, then the information in this parameter will be updated to tt
last known device from which the call was routed. If the call was redirected from a device, but the devic
identifier is unknown, “Not Known” shall be used. Depending on the capabilities of the switching function,
the last known device for the call might be reflected by only one device identifier and in actuality the ca
might have been routed several times before arriving at the final destination.

Note that in the case of Immediate Forwarding, where forwarding is triggeferkthe call is delivered to a
device, the lastRedirectionDevice in the event associated with the delivery of the call to a new device (afte
was immediately forwarded) shall contain “Not Known”. Refer to 6.8.1, “Forwarding”, on page 51 for more
information on this behaviour.

- 116 -

12.3.25 RingerID
Specifies the ringer identifier associated with a physical element.

A device can be associated with one or more ringers.

Format

This parameter type is an octet string with a maximum length of four.

12.3.26 RouteingCrossReflD
The routeingCrossReflID parameter type identifies each routeing dialogue. The computing function receives a
routeingCrossRefID in each Route Request service request. The Route Request service initiates a routeing dialogue.
The routeingCrossRefID is only valid for the duration of the routeing dialogue pertaining to a specific call.

The routeingCrossRefID is unique within the routeing registration (routeRegisterReqlD). Some switching functions
may provide the additional benefit of a unique routeing cross reference identifier across the entire switching sub-
domain. This is also the case if routeing registration is not supported by the switching function.

Format

This parameter type is an octet string with a maximum length of four.

12.3.27 RouteRegisterReqID
The RouteRegisterReqID parameter type identifies a routeing registration for which the computing function (acting
as a routeing server) will receive routeing requests. This identifier may be associated with a particular routeing
device within the switching sub-domain or it may indicate that the computing sub-domain is the routeing server for
all routeing devices within the switching sub-domain. When the computing function uses the Route Register service
to register for routeing services, it receives a routeRegisterReqID in the positive acknowledgement sent by the
switching function. The routeRegisterReqID is only valid until the routeing registration is ended by the computing
function or switching function.

routeRegisterReqlID parameters are unique across a given CSTA service boundary.

Format

This parameter type is a string with a maximum length of four.

12.3.28 ServiceCrossRefID
The ServiceCrossReflD parameter type specifies an identifier that is used to correlate one service request to another
service request.

For example, a service may be specified to request information from a switching function using an asynchronous
mechanism. In this case there would be a service request from the computing function requesting information. The
switching function would return a ServiceCrossRefID in the positive acknowledgement to this request. The
switching function would subsequently send messages in the form of Service Requests to the computing function
that would contain the same ServiceCrossRefID that could be used to correlate the service request with the original
service request.

Format

This parameter type is an octet string with the maximum length of four.

Functional Requirements

1. This parameter is allocated by the switching function.

2. The switching function is responsible for providing unique ServiceCrossRefIDs over a specific CSTA service
boundary.

-117 -

12.3.29 SubjectDevicelD

The SubjectDevicelD parameter type represents a device which is the focus of the action associated with the €
being reported.

Format and Status

This device identifier type may be one of the following (see Clause 10, “CSTA Device Identifier Formats”, on pac
75 for more information):

« a character string when using the Diallable Digits and the Switching Function Representation formats.

e an integer value when using the Device Number format.

+ avalue of “Not Known”.

12.3.30 SysStatRegisterID
The SysStatRegisterID parameter type is used to identify system status registration.

Format and Status

This parameter type is an octet string with the maximum length of four.

-118 -

13 Capability Exchange Services

This clause describes the Capability Exchange Services.
13.1 Services

Table 13-1 Capability Exchange Services Summary

Capability E_xchange Description Pg.
Service
13.1.1 Get Logical Device Information Obtains the current set of logical device information for a given device ident|fie1.19
13.1.2 Get Physical Device Information Obtains the current set of physical device information for a given device identifi2g
13.1.3 Get Switching Function Capabilities Obtains the current set of capabilities for the entire switching function. 132
13.1.4 Get Switching Function Devices Obtains the devices in the application working domain (i.e. devices that can b&46
controlled and/or observed).
13.1.5 Switching Function Devices Provides the actual list of devices in the application working domain (i.e. deyic&48
that can be controlled and/or observed).

- 119 -

13.1.1 Get Logical Device Information cC —» S

The Get Logical Device Information service is used to obtain the current set of characteristics/capabiliti
associated with the logical element of a given device.
13.1.1.1 Service Request

Table 13-2 Get Logical Device Information—Service Request

Parameter Name Type C';/I//C Description
device DevicelD M Specifies the device being queried.
security CSTASecurityData (0] Specifies timestamp information, message sequence number,
and security information.
privateData CSTAPrivateData (0] Specifies non-standardized information.

13.1.1.2 Service Response

This service follows the atomic acknowledgement model for this request.
13.1.1.2.1 Positive Acknowledgement

Table 13-3 Get Logical Device Information—Positive Acknowledgement

Parameter Name Type (g%: Description
deviceCategory Enumerated M Specifies the device category (station, ACD device, etc.) of the

device in the service request. The complete set of possible values
is:

« ACD

e Group

» Network Interface (e.g., trunk, CO line)

» Park

* Routeing Device

 Station (default)

» Voice Unit

» Other

groupDeviceAttibutes Bitmap C Specifies the group device attributes of the device being queried.

If a bit is TRUE then the specified attribute is present. The
following is the list of bits (multiple bits may be set):

« ACD

* Hunt

» Pick

» Other
This parameter shall be provided if the deviceCategory is Group,
otherwise it shall not be provided.

-120 -

Table 13-3 Get Logical Device Information—Positive Acknowledgement (continued)

Parameter Name

Type

M/
o/C

Description

namedDeviceTypes

Enumerated

O

If assigned by the switching function, this parameter indicates
the named device type associated with the device in the servi
request. The complete set of possible values are:

« ACD

* ACD Group

e Button

« Button Group
« Conference Bridge
* Line

¢ Line Group

* Operator

¢ Operator Group
« Parking Device
» Station

e Station Group
e Trunk

e Trunk Group

e Other

¢ Other Group

shortFormDevicelD

DevicelD

Specifies an alternative (a shorter length, for example) device
identifier that the switching function may use to reference the
device in the service request.

hasPhysicalElement

Boolean

Specifies if the device has a physical element associated with
this device identifier. The complete set of possible values is:

« FALSE - The device does not have a physical element.
* TRUE - The device does have a physical element.

The device identifier in the service request should be used wit
the Get Physical Device Information service to obtain the
physical element’s characteristics for this device.

acdModels

Bitmap

Specifies the type of ACD Model(s) that are present at this
device. If a bit is TRUE, then the specified model is supported
The following is the list of bits (multiple bits may be set):

¢ Visible ACD-related Devices
¢ Non-Visible ACD-related Devices

Note that these bits are valid when the device is an ACD devi

-121 -

Table 13-3 Get Logical Device Information—Positive Acknowledgement (continued)

Parameter Name Type M/ Description
o/C
agentLogOnModels Bitmap C Specifies the types of agent log on models that are supported by
the device. If a bit is TRUE, then the specified agent log on
model is supported. The following is the list of bits (multiple bits
may be set):
* Log On to an ACD device
* Log On to an ACD Group (explicit/one step)
* Log On to an ACD Group (explicit/two steps)
* Log On to an ACD Group (implicit/one step)
Note that Log On to an ACD Group (implicit/one step) model
cannot be simultaneously supported with the Log On to an AQD
device model.
The switching function shall provide this parameter if the agent
log on model is configured by the switching function at the
logical device element level (agent, ACD device, or ACD
group), otherwise the parameter may or may not be provided.
appearanceAddressable Boolean M Specifies whether the appearances of the logical element are
addressable (via the Call Appearance “CA” string or the physical
element extension “EXT” string in the Switching Function
Representation Device Identifier format). The complete set of
possible values is:
* FALSE - The appearances are not addressable.
* TRUE - The appearances are addressable
appearanceType Enumerated M Specifies the type of appearances associated with the logical
element. The complete set of possible values is:
» Selected-Standard
» Basic-Standard
» Basic-Bridged
» Exclusive-Bridged
* Independent-Shared-Bridged
 Interdependent-Shared-Bridged
appearancelist List of Characters C Specifies the list of device identifier suffices for each of the
appearances that are available at the logical element. This
parameter is mandatory if the appearances are addressable and if

it is a Selected-Standard or a Basic-Standard type. This list wi
only contain appearance suffices that can be observed and/or
controlled within the switching sub-domain (via the Call
Appearance string in the Switching Function Representation

Device Identifier format).

-122 -

Table 13-3 Get Logical Device Information—Positive Acknowledgement (continued)

Parameter Name

Type

M/
o/C

Description

otherPhysicalDeviceList

List of DevicelDs

C

Specifies the list of device identifiers for other devices with
physical elements that are associated with the logical element
appearance.

This parameter is mandatory if the appearances are addressab

and any type of bridged appearance. The Get Physical Device
Information service should be used to obtain the physical

element characteristics associated with these other devices. Th

list will only contain devices that can be either observed and/o
controlled within the switching sub-domain.

Note that, for a Hybrid configuration, the order of device
identifiers in this list is the same as the order of devices in the
appearancelList parameter. See Functional Requirement #3 in
10.1.2 for additional information.

e

S
r

miscMonitorCaps

Bitmap

Specifies the special types of monitoring considerations for thi
device. If a bit is TRUE then the monitoring consideration is
associated with the device. The following is the list of bits
(Multiple bits may be set):

* Group Inclusive Model - the scope of the monitor on the gro|
device includes the distribution mechanism and all membe
devices. This bit is only valid for group devices that include
distribution mechanism (e.g. Hunt and ACD groups). This
shall not be set if the Group Exclusive Model bit is set.

* Group Exclusive Model - the scope of the monitor on the
group device includes only the distribution mechanism. Th
bit is only valid for group devices that include a distribution
mechanism (e.g. Hunt and ACD groups). This bit shall not
set if the Group Inclusive Model bit is set

* Monitor the physical element to report call control events f
all appearances associated with a device. (Only a valid bit
the appearanceType is any form of bridge appearance.) (i
use the device identifiers from the otherPhysicalDeviceLis

« ACD Device Inclusive - the scope of the monitor on an AC
device includes both the ACD device and the distributed-tg
devices (including ACD groups). (This capability is valid onl|
for ACD devices). This bit shall not be set if the ACD Devig
Exclusive bit is set

* ACD Device Exclusive - the scope of the monitor on an AG
device only the ACD device. (This capability is valid only fo
ACD devices). This bit shall not be set if the ACD Device
Inclusive bit is set

Note that if this parameter is not present, then the monitoring
considerations are not known.

up

a
bi

=3

be

pr
if

o

O

O

associatedGroupList

List of DevicelDs

Specifies the list of device identifiers for all the other devices
which are members of this group device. Use the appropriate
capabilities exchange services to obtain the characteristics of
these devices. This list shall only contain devices that can be
either observed and/or controlled within the switching sub-
domain.

This parameter shall be provided when the device is a Group
device. It may or may not be provided if the device is a memb
of a group and shall not be provided if the device is neither a

Group device nor is a member of a group.

er

-123 -

Table 13-3 Get Logical Device Information—Positive Acknowledgement (continued)

Parameter Name

Type

M/
o/C

Description

maxCallbacks

Value

o

Specifies the maximum number of concurrent call back reques
that can be outstanding for this device. If this parameter is not
present, then the maximum number of concurrent callback
requests is not known for the device.

maxAutoAnswerRings

Value

Specifies the maximum number of rings before a call is auto-
answered at this device. If this parameter is not present, then
maximum number of Auto Answer rings is not known for the
device.

maxActiveCalls

Value

Specifies the maximum number of concurrent calls that can bg
active at any one time for this device. If this parameter is not
present, then the maximum number of active calls is not kno
for the device.

maxHeldCalls

Value

Specifies the maximum number of concurrent calls that can bg
held at any one time for this device. If this parameter is not
present, then the maximum number of held calls is not known
for the device.

maxFwdSettings

Value

Specifies the maximum number of user-specified settings
(forwarding-type/forward-destination combinations) that can b
activated at any one time for this device. If this parameter is n
present, then the maximum number of activated user-specifie
settings is not known for the device.

%

Ot
]

maxDevicesInConf

Value

Specifies the maximum number of devices both within and
outside the switching function that this device can conference
into a call. If this parameter is not present, then the maximum

number of devices in a conference is not known for the device|.

The minimum value that can be supplied for this value is 3.

transAndConfSetup

Bitmap

Specifies the different ways that this device can set up for a
conference and/or transfer. (Note that if this parameter is not
present, then the device can only set up transfers and
conferences through the Consultation Call service.) If the bit ig
TRUE, then the specified way to setup a conference or transfg
supported by the switching function. The following is the list is
of bits (multiple bits may be set):

» Consultation Call

» Hold Call - Make Call

» Alternate Call

» two calls in the initial state of Hold

< two calls in the initial state of Connected

ris

deviceOnDeviceMonitorFilter

MonitorFilter

Specifies the complete monitorFilter parameter that this devicg
supports with respect to device-type monitoring. This paramet
shall be provided if this form of device-type monitoring is
supported, otherwise the parameter shall not be provided.

The information in the monitor filter parameters used in the Gg
Logical Device Information and the Get Physical Device
Information services should be the same when the same devi
identifier is used (assuming that the device identifier has a
logical and a physical element).

P
=

deviceOnConnectionMonitorFilter

MonitorFilter

Specifies the complete monitorFilter parameter that connectio
at this device supports with respect to device-type monitoring.
This parameter shall be provided if this form of device-type

monitoring is supported, otherwise the parameter shall not be

ns

provided.

-124 -

Table 13-3 Get Logical Device Information—Positive Acknowledgement (continued)

Parameter Name

Type

M/
o/C

Description

callOnDeviceMonitorFilter

MonitorFilter

C

Specifies the complete monitorFilter parameter that this devicg
supports with respect to call-type monitoring on a device. This|
parameter shall be provided if this form of call-type monitoring
is supported, otherwise the parameter shall not be provided.

D

callOnConnectionMonitorFilter

MonitorFilter

Specifies the complete monitorFilter parameter that this devicg
supports with respect to call-type monitoring for a connection
this device. This parameter shall be provided if this form of cal
type monitoring is supported, otherwise the parameter shall ng
be provided.

D

at
|

—

mediaClassSupport

Bitmap

Specifies the media class of calls that the device can support.
bit is TRUE then the specified type of call can be present at th
device. The following is the list of bits (multiple bits may be set

e Audio
« Data

* Image
* Voice
e Other

If a

[]

-125-

Table 13-3 Get Logical Device Information—Positive Acknowledgement (continued)

Parameter Name

Type

M/
o/C

Description

mediaServiceCapsList

List of Structures C

Specifies a list of structures of the media service types, versio
media service instances, connection modes supported. This
parameter is a list, each element of which contains the followi

* mediaServiceType (M) MediaServiceType - A media servi
type used to identify the media service.

* mediaSeviceVersion (O) Value - The version of the media
service.

* mediaServicelnstance (O) MediaServicelnstancelD - A me
service instance associated with the media service.

» connectionModeBMap (O) Bitmap - The media service
connection modes supported for the media service type,
version and instance. The following is the list of bits (multip
bits may be set):

» consultationConference

» consultationConferenceHold
» deflect

» directedPickup

e join

» singleStepConference

» singleStepConferenceHold

» singleStepTransfer

» transfer

» direct

* mediaStreamIDSupported (M) Boolean - Specifies if the
mediaStreamID is supported for the combination of media
service type, version, and instance. The complete set of va
is:

* TRUE - indicates that the switching function shall
provide the conditional mediaStreamID parameter whe
specified.

* FALSE - indicates that the conditional mediaStreamID
not provided.

This parameter shall be provided if the device is capable of
media access and shall not be provided otherwise.

=]

ng:

ce

i

a

[¢)

ues

is

connectionRateList

List of Values O

Specifies the list of connection rates that are supported for thi
device.

delayToleranceList

List of Values (6]

Specifies the list of delay Tolerances that are supported for thi
device.

numberOfChannels

Value

Specifies the number of available channels at this device. If th
parameter is not present, the number of channels at the devic
not known but it is one or greater.

e is

maxChannelBind

Value

Specifies the maximum number of channels that can be
associated with a given connection at a device. If the paramet
is not present, the maximum number of channels per connecti
is one.

e

=

-126 -

Table 13-3 Get Logical Device Information—Positive Acknowledgement (continued)

Parameter Name

Type

M/
o/C

Description

routeingServList

RouteingServList

C

Specifies a list of bitmaps. Each bitmap entry represents a

Routeing service that is supported by the device (both service
requests to and from the switching function, when the service
bi-directional). This includes the following categories of servicg

* Routing Services

This parameter shall be provided if the switching function
supports any of these categories of services for this device.

If a Routeing service’s bitmap entry is not included in the list,
then the service is not supported by the switching function.

Note that the Routeing Mode feature is grouped with Logical
Device features.

2S!

logDevServList

Structure

Specifies a list of capability bitmap parameter types
corresponding to categories of services. Each bitmap entry in
lists represents a service that applies to a logical device that ig
supported by the device. This includes the following categorie
of services:

« callControlServList (O) CallControlServList - specifies the
list of call control services supported.

« callAssociatedServList (O) CallAssociatedServList - specifi
the list of call associated services supported.

« logicalServList (O) LogicalServList - specifies the list of
logical device feature services supported.

* mediaServList (O) MediaServList - specifies the list of med
services supported.

« ioServicesServList (O) IOServicesServList - specifies the |
of 1/0 services supported.

« dataCollectionServList (O) DataCollectionServList - specifig
the list of data collection services supported.

« voiceUnitServList (O) VoiceUnitServList - specifies the list
voice unit services supported.

This parameter shall be provided if the switching function
supports at least one of these categories of services for this
device.

If a logical device service’s bitmap entry is not included in the
list, then the service is not supported by the device.

the

es

D

2]

-127 -

Table 13-3 Get Logical Device Information—Positive Acknowledgement (continued)

M/

Parameter Name Type oic

Description

logDevEvtsList Structure C Specifies a list of capability bitmap parameter types
corresponding to categories of events. Each bitmap entry in th
lists represents an event that applies to a logical device that i
supported by the device. This includes the following categories
of events:

[)

 callControlEvtsList (O) CallControlEvtsList - specifies the list
of call control events supported.

» callAssociatedEvtsList (O) CallAssociatedEvtsList - specifi¢s
the list of call associated events supported.

* logicalEvtsList (O) LogicalEvtsList - specifies the list of
logical device feature events supported.

» mediaEvtsList (O) MediaEvtsList - specifies the list of med|a
events supported.

 voiceUnitEvtsList (O) VoiceUnitEvtsList - specifies the list of
voice unit events supported.

This parameter shall be provided if the switching function
supports any of these categories of events for this device.

If a logical device event's bitmap entry is not included in the lig
then the event is not supported by the device.

—

deviceMaintEvtsList DeviceMaintEvtsL C Specifies a list of bitmaps. Each bitmap entry represents a deyice
ist maintenance event that is supported by the device. This includes
the following categories of services:

» Device Maintenance events

This parameter shall be provided if the switching function
supports any of these categories of events for this device.

If a device maintenance’s bitmap entry is not included in the lig
then the event is not supported by the switching function.

o~

security CSTASecurityData (0] Specifies timestamp information, message sequence number,
and security information.

privateData CSTAPrivateData (0] Specifies non-standardized information.

13.1.1.2.2 Negative Acknowledgement

The negative acknowledgement error codes are described in 12.2.12, “ErrorValue”, on page 88.
13.1.1.3 Operational Model
13.1.1.3.1 Connection State Transitions

There are no connection state changes as the result of this service.
13.1.1.3.2 Device-Type Monitoring Event Sequences

There are no events generated as a result of this service.
13.1.1.3.3 Call-Type Monitoring Event Sequences

There are no events generated as a result of this service.
13.1.1.3.4 Functional Requirements

1. This service shall be rejected with a negative acknowledgement (i.e., Error Value of Object Not Known),
the device does not contain a logical element.

-128 -

13.1.2 Get Physical Device Information C —» S

The Get Logical Device Information service is used to obtain the current set of characteristics/capabilities
associated with the physical element of a given device.
13.1.2.1 Service Request

Table 13-4 Get Physical Device Information—Service Request

Parameter Name Type C';/I//C Description
device DevicelD M Specifies the device being queried.
security CSTASecurityData (0] Specifies timestamp information, message sequence number,
and security information.
privateData CSTAPrivateData (0] Specifies non-standardized information.

13.1.2.2 Service Response

This service follows the atomic acknowledgement model for this service request.
13.1.2.2.1 Positive Acknowledgement

Table 13-5 Get Physical Device Information—Positive Acknowledgement

Parameter Name Type g}é Description
deviceCategory Enumerated M Specifies the device category (station, ACD device, etc.) of the
device being queried. The complete set of possible values is|
« ACD
¢ Group
» Network Interface (i.e., trunk)
e Park
¢ Routeing
» Station (default)
* Voice Unit
e Other
groupDeviceAttributes Bitmap C Specifies the group device attributes of the device being
queried. If a bit is TRUE then the specified attribute is present.
The following is the list of bits (multiple bits may be set):
« ACD
¢ Hunt
* Pick
* Other
This parameter shall be provided if the deviceCategory is
Group, otherwise it shall not be provided.

-129 -

Table 13-5 Get Physical Device Information—Positive Acknowledgement
(continued)

Parameter Name

Type

M/
o/C

Description

namedDeviceTypes

Enumerated

O

If assigned by the switching function, this parameter indicate
the named device type associated with the device being
gueried. The complete set of possible values are:

« ACD

e ACD Group

* Button

* Button Group
» Conference Bridge
* Line

* Line Group

* Operator

* Operator Group
» Parking Device
 Station

» Station Group
e Trunk

e Trunk Group

» Other

« Other Group

5

hasLogicalElement

Boolean

Specifies if the device has a logical element associated with
this device identifier. The complete set of possible values is:

* FALSE - The device does not have a logical element.
* TRUE - The device does have a logical element.

The device identifier in the service request should be used w
the Get Logical Device Information service to obtain the
logical element’s characteristics for this device.

ith

otherLogicalDeviceList

List of Device IDs

Specifies the list of device identifiers for other devices with
logical elements that are associated with this device. The G¢
Logical Device Information service should be used to obtain
the logical element characteristics associated with these oth
devices. This list will only contain devices that can be either
observed and/or controlled within the switching function.

er

deviceModelName

Characters (64)

Specifies the switching function specific model name of the
device. If this parameter is not present, then the model name
not known.

S

deviceOnDeviceMonitorFilter

MonitorFilter

Specifies the complete monitorFilter parameter that the devi
supports with respect to device-type monitoring. This
parameter shall be provided if this form of device-type
monitoring is supported, otherwise the parameter shall not b
provided.

The information in the monitor filter parameters used in the
Get Logical Device Information and the Get Physical Device
Information services should be the same when the same de
identifier is used (assuming that the device identifier has a
logical and a physical element).

0]

ice

- 130 -

Table 13-5 Get Physical Device Information—Positive Acknowledgement
(continued)

Parameter Name

Type

M/
o/C

Description

deviceOnConnectionMonitorFilter

MonitorFilter

C

Specifies the complete monitorFilter parameter that a
connection at the device supports with respect to device-type
monitoring. This parameter shall be provided if this form of
device-type monitoring is supported, otherwise the paramete
shall not be provided.

=

callOnDeviceMonitorFilter

MonitorFilter

Specifies the complete monitorFilter parameter that the devi
supports with respect to call-type monitoring on a device. Th
parameter shall be provided if this form of call-type monitorin
is supported, otherwise the parameter shall not be provided.

“ o

«Q

callOnConnectionMonitorFilter

MonitorFilter

Specifies the complete monitorFilter parameter that the devi
supports with respect to call-type monitoring on a connectior
at the device. This parameter shall be provided if this form o
call-type monitoring is supported, otherwise the parameter
shall not be provided.

maxDisplays

Value

Specifies the maximum number of displays associated with the

device being queried. If this parameter is not present, then t
device either does not have any displays or the maximum
number of displays at this device is not known.

maxButtons

Value

Specifies the maximum number of buttons associated with th
device being queried. If this parameter is not present, then t
device either does not have any buttons or the maximum
number of buttons at this device is not known.

® @D

maxLamps

Value

Specifies the maximum number of lamps associated with the
device being queried. If this parameter is not present, then t

device either does not have any lamps or the maximum number

of lamps at this device is not known.

maxRingPatterns

Value

Specifies the maximum number of ring patterns that the ring
has for the device being queried. If this parameter is not
present, then the device either does not have a ringer or the

maximum number of ring patterns at this device is not knowr).

D

=

physDevServList

PhysDevServList

Specifies a list of bitmaps. Each bitmap entry represents a
Physical Device service that is supported by the specified
device. This includes the following categories of services:

« Physical Device Feature services

This parameter shall be provided if the switching function
supports any of these categories of services for this device.

If a physical device service’s bitmap entry is not included in
the list, then the service is not supported by the specified
device.

physDevEvtsList

PhysDeVEvtsList

Specifies a list of bitmaps. Each bitmap entry represents a
Physical Device Event that is supported by the specified
device. This includes the following categories of events:

« Physical Device Feature events

This parameter shall be provided if the switching function
supports any of these categories of events for this device.

If a physical device event’s bitmap entry is not included in thg
list, then the event is not supported by the specified device.

h

security

CSTASecurityData

Specifies timestamp information, message sequence numbe
and security information.

privateData

CSTAPrivateData

Specifies non-standardized information.

-131-

13.1.2.2.2 Negative Acknowledgement

The negative acknowledgement error codes are described in 12.2.12, “ErrorValue”, on page 88.
13.1.2.3 Operational Model
13.1.2.3.1 Connection State Transitions

There are no connection state changes as the result of this service.
13.1.2.3.2 Device-Type Monitoring Event Sequences

There are no events generated as a result of this service.
13.1.2.3.3 Call-Type Monitoring Event Sequences

There are no events generated as a result of this service.
13.1.2.3.4 Functional Requirements

1. This service shall be rejected with a negative acknowledgement (i.e., Error Value of Object Not Known),
the device does not have a physical element.

2. In order to obtain the entire set of physical device capabilities and characteristics, the computing function st
also use the Get Button Information, Get Lamp Information, and Get Display services to collect the details
information on the device’s buttons, lamps, and displays.

-132 -

13.1.3 Get Switching Function Capabilities C —»S

The Get Switching Function Capabilities service is used by the computing function to obtain the current set of
capabilities for the entire switching function.
13.1.3.1 Service Request

Table 13-6 Get Switching Function Capabilities—Service Request

Parameter Name Type M/ Description
o/C
security CSTASecurityData O Specifies timestamp information, message sequence numbey,
and security information.
privateData CSTAPrivateData (0] Specifies non-standardized information.

13.1.3.2 Service Response
This service follows the atomic acknowledgement model for this service request.
13.1.3.2.1 Positive Acknowledgement

Table 13-7 Get Switching Function Capabilities—Positive Acknowledgement

M/

Parameter Name Type olc Description
switchingSubDomainName Character (64) M Specifies the name of switching sub-domain which
distinguishes it from other switching sub-domains.
manufacturerName Characters (64) M Specifies the name of the manufacturer of the
switching sub-domain.
profiles Bitmap M Specifies the CSTA Profiles supported by the

switching function. The following is the list of the
possible profiles (multiple bits may be set):

« Basic Telephony Profile
* Routing Profile

Note that at least one profile shall be supported by
the switching function.

-133-

Table 13-7 Get Switching Function Capabilities—Positive Acknowledgement

(continued)

Parameter Name Type oM/é: Description
devicelDFormat Bitmap M Specifies the types of device ID formats supported

by the switching function. If a bit is TRUE, then the

specified format is used by the switching function.
The following is the list of the possible formats
(multiple bits may be set):

Diallable Digits format - “*”

Diallable Digits format - “#"
Diallable Digits format - “A-D”
Diallable Digits format - “1”

Diallable Digits format - “P”
Diallable Digits format - “T”
Diallable Digits format - “,”

Diallable Digits format - “W”
Diallable Digits format - “@”
Diallable Digits format - “$”
Diallable Digits format - “;"

SF Representation format - “1”

SF Representation format - “&”

SF Representation format - “/”

SF Representation format - “%”

SF Representation format - “NM”
SF Representation format - Generic
SF Representation format - ImplicitTON

SF Representation format - PublicTON -
unknown

SF Representation format - PublicTON -
international number

SF Representation format - PublicTON - nation

SF Representation format - PublicTON -
subscriber

SF Representation format - Public TON -
abbreviated

SF Representation format - PrivateTON -
unknown

SF Representation format - PrivateTON - level
regional

SF Representation format - PrivateTON - level
regional

SF Representation format - PrivateTON - level
regional

SF Representation format - Private TON - local

SF Representation format - PrivateTON -
abbreviated

SF Representation format - Other

Device Number format

Note that the Diallable Digits format with the 0-9
characters shall be supported by the switching
function.

il

- 134 -

Table 13-7 Get Switching Function Capabilities—Positive Acknowledgement

(continued)

Parameter Name

Type

2
o/C

Description

swDomainFeatures

Bitmap

M

Specifies which features are supported by the
switching function. If a bit is TRUE, then the
specified feature is supported. The following is the
list of possible features (multiple bits can be set):

Forwarding Call Associated models:

Level of Forwarding Default Settings:

Connection Failure:

Other:

Is (Immediate) Forwarding triggered before the
call is logically delivered to the device?

Is (Immediate) Forwarding triggered after the ca
is logically delivered to the device?

Switching function default setting - allows
activation/deactivation of a single switching
function forwarding type/forwarding destination
combination.

User specified settings - allows the setting of
individual forwarding types and forwarding
destinations.

User specified setting (default forwarding type)
If this is TRUE, when the forwarding type is
omitted in the Set Forward service, the switchini
function applies a default value, otherwise there
no default value applied.

User specified setting (default forward
destination) - If this is TRUE, when the forward

destination is omitted in the Set Forward service

the switching function applies a default value,
otherwise there is no default value applied.

Negative Acknowledgement

Support of Failed event with an associated failg
connection

Support of Failed event without an associated
failed connection

Support of Failed event with an associated failg
connection, not reported via monitors on the
failing device

Recall

Call Back

External Calls—Incoming Calls
External Calls—Outgoing Calls
Prompting

swAppearanceAddressability

Bitmap

Specifies what types of appearance addressability
available within the switching sub-domain. The
following is the list of bits (multiple bits can be set):

addressable

0

non-addressable

-135-

Table 13-7 Get Switching Function Capabilities—Positive Acknowledgement

(continued)

Parameter Name

Type

M/
o/C

Description

SswAppearanceTypes

Bitmap

M

Specifies what types of appearances are available
within the switching sub-domain The following is
the list of bits (multiple bits can be set):

» Selected-Standard

» Basic-Standard

» Basic-Bridged

» Exclusive-Bridged

* Independent-Shared-Bridged
* Interdependent-Shared-Bridged

ignoreUnsupportedParameters

Enumerated

Specifies how the switching function handles
unsupported optional parameters in service reques
The complete set of possible values is:

» Ignore parameters - This indicates that the
switching function treats unsupported optional
parameters as if they were not present.

* Reject Request - This indicates that the switchir
function returns a negative acknowledgement i
response to any requests that contain unsuppor
optional parameters.

callCharacteristicsSupported

Bitmap

Specifies the characteristics that the switching
function reports via the callCharacteristics
parameter. If a bit is TRUE then the specified
characteristic is reported. The following is the list o
bits (multiple bits may be set):

» acdcCall

* priorityCall

* maintenanceCall
» directAgent
 assistCall

* voiceUnitCall

This parameter shall be provided if the switching
function characterizes calls via the
callCharacteristics parameter.

mediaClassSupport

Bitmap

Specifies the media class of calls the switching sulj
domain can support. If a bit is TRUE then the
specified type of call can be present within the
switching function. The following is the list of bits
(multiple bits may be set):

* Audio
» Data

* Image
» Voice
» Other

If this parameter is not present, then the switching

ts.

«Q

n
ted

function only supports voice calls.

- 136 -

Table 13-7 Get Switching Function Capabilities—Positive Acknowledgement

(continued)

Parameter Name

Type

2
o/C

Description

numberOfChannels

Value

O

Specifies the highest number of available channels
at a given device within the switching sub-domain.
If the parameter is not present, the number of
channels at a device is not known but is one or
greater.

maxChannelBind

Value

Specifies the highest maximum number of channels
that can be associated with a given connection at g
device within the switching sub-domain. If the
parameter is not present, the maximum number of
channels per connection is one.

miscMediaCallCharacteristics

Bitmap

Specifies the media call characteristics supported. |f
a bit is TRUE then the specified feature is present
within the switching function. The following is the
list of bits (multiple bits can be set)

« Does the switching function support the
adjustment of the media characteristics when a|
call is being made?

connectionRateList

List of Values

Specifies the list of connection rates that are
supported for the given switching function.

delayToleranceRateList

List of Values

Specifies the list of delay tolerances that are
supported for the given switching function.

pauseTime

Value (1..2000)

o

Specifies the amount time that a pause (as specifig
by the comma “,” character in the Diallable Digits
Device Identifier format) within a dialling sequence
will last for in the switching function. This time is
specified in milliseconds. If this parameter is not
present, then the pause time is not known for the

switching function.

currentTime

Timelnfo

Specifies the current date and time of the switching
function.

messageSeqNumbers

Bitmap

Specifies if the switching function supports message
sequence numbers (via the security parameter) on
services and events. If a bit is TRUE, then it is
supported. The following is the list of bits (multiple
bits may be set):

« allEvents - message sequence number is provided
on all events from the switching function.

o

« allAcks - message sequence number is provide
on all (positive and negative) acknowledgements
from the switching function.

« allServReqs - message sequence number is
provided on all service requests from the
switching function.

This parameter shall be provided if the switching
function provides message sequence number
information.

- 137 -

Table 13-7 Get Switching Function Capabilities—Positive Acknowledgement

(continued)

Parameter Name

Type

M/
o/C

Description

timeStampMode

Bitmap

Cc

Specifies when the switching function provides
timestamp information (via the security parameter)
If a bit is TRUE, then the mode is supported. The
following is the list of bits (multiple bits may be set)

 allEvents - timestamp parameter is provided on
events from the switching function.

 allAcks - timestamp parameter is provided on
(positive and negative) acknowledgements fron|
the switching function.
» allServReqgs - timestamp parameter is provided
all service requests from the switching function
This parameter shall be provided if the switching
function provides timestamp information.

securityMode

Enumerated

Specifies when the switching function provides
securityInfo (via the security parameter). The
following is the list of bits (multiple bits may be set)

« allEvents - securitylnfo is provided on all events
from the switching function.

« allAcks - securitylnfo is provided on all (positive|
and negative) acknowledgements from the
switching function.

» allServReqs - securitylnfo is provided on all
service requests from the switching function.

This parameter shall be provided if the switching
function provides securitylnfo via the security
parameter.

securityFormat

Bitmap

Specifies the format(s) of the securitylnfo

information (in the security parameter) supported by

the switching function. The following is the list of
bits (multiple bits may be set):

* octetStringFromSF - the switching function
provides securityData in the octetString format

» otherTypeFromSF - the switching function
provides securityData in another format.

* octetStringToSF - the switching function supports

receiving securityData in the octetString format

» otherTypeToSF - the switching function supports

receiving securityData in another format.

This parameter shall be provided if the switching
function supports sending or receiving securitylnfo
in the security parameter.

Al

pn

-138 -

Table 13-7 Get Switching Function Capabilities—Positive Acknowledgement

(continued)

Parameter Name

Type

2
o/C

Description

privateDataFormat

Bitmap

C

Specifies the format(s) of the privateData
information supported by the switching function.
The following is the list of bits (multiple bits may be
set):
« octetStringFromSF - the switching function
provides privateData in the octetString format
« otherTypeFromSF - the switching function
provides privateData in another format.
» octetStringToSF - the switching function support
receiving privateData in the octetString format
« otherTypeToSF - the switching function support
receiving privateData in another format.
This parameter shall be provided if the switching
function supports sending or receiving privateData.|

transAndConfSetup

Bitmap

Specifies the different ways that the switching

function can set up for a conference and/or transfer.

(Note that if this parameter is not present, then the
switching function can only set up transfers and
conferences through the Consultation Call service.
If the bit is TRUE, then the specified way to setup g
conference or transfer is supported by at least one
device in the switching sub-domain. The following
is the list is of bits (multiple bits may be set):

« Consultation Call

« Hold Call - Make Call

« Alternate Call

« two calls in the initial state of Hold

¢ two calls in the initial state of Connected

deviceOnDeviceMonitorFilter

MonitorFilter

Specifies the complete monitorFilter parameter tha
is supported by the switching function when the
monitorObject is a device and the monitorType is a

device. Each bitmap entry represents an event that i

supported by at least one of the devices in the
switching function.

This parameter shall be provided if this form of
device-type monitoring is supported by at least one
of the devices in the switching function, otherwise i
shall not be provided.

[

deviceOnConnectionMonitorFilter

MonitorFilter

Specifies the complete monitorFilter parameter tha
is supported by the switching function when the
monitorObject is a connection and the monitorType
is a device. Each bitmap entry represents an event
that is supported by at least one of the devices in !
switching function.

This parameter shall be provided if this form of
device-type monitoring is supported by at least one
of the devices in the switching function, otherwise i

[

ne

shall not be provided.

-139-

Table 13-7 Get Switching Function Capabilities—Positive Acknowledgement

(continued)

Parameter Name

Type

M/
o/C

Description

callOnDeviceMonitorFilter

MonitorFilter

Cc

Specifies the complete monitorFilter parameter thaj
is supported by the switching function when the
monitorObject is a device and the monitorType is &
call. Each bitmap entry represents an event that is
supported by at least one of the devices in the
switching function.

This parameter shall be provided if this form of call
type monitoring is supported by at least one of the
devices in the switching function, otherwise it shall
not be provided.

calloOnConnectionMonitorFilter

MonitorFilter

Specifies the complete monitorFilter parameter thal
is supported by the switching function when the
monitorObject is a connection and the monitorType
is a call. Each bitmap entry represents an event thg
is supported by at least one of the devices in the
switching function.

This parameter shall be provided if this form of call
type monitoring is supported in the switching
function, otherwise it shall not be provided.

miscMonitorCaps

Bitmap

Specifies the special types of monitoring capabilitig
that are present within the switching sub-domain. If
a bit is TRUE then the monitoring capability is
present within the switching sub-domain. The
following is the list of bits (multiple bits may be set)

» Group Inclusive Model - the scope of the monitq
on a group device includes the distribution
mechanism and all member devices. This bit
applies to group devices that include a distributig
mechanism (e.g. Hunt and ACD groups).

» Group Exclusive Model - the scope of the monitg
on the group device includes only the distributio
mechanism. This bit applies to group devices th
include a distribution mechanism (e.g. Hunt ang
ACD groups).

* Monitor the physical element to report call contrg
events for all appearances associated with a
device. (This capability is valid only if an
appearanceType of any form of a bridge
appearance is supported.)

» ACD Device Inclusive - the scope of the monito
on an ACD device includes both the ACD devic|
and the distributed-to devices (including ACD
groups). (This capability is valid only for ACD
devices).

» ACD Device Exclusive - the scope of the monitg
on an ACD device only the ACD device. (This
capability is valid only for ACD devices).

If this parameter is not present, then the monitoring
considerations are not known.

=]

=

23

r

- 140 -

Table 13-7 Get Switching Function Capabilities—Positive Acknowledgement
(continued)

M/

Parameter Name Type oiC

Description

correlatorDataSupported Boolean (0] Specifies if the switching function supports the
correlatorData parameter on service requests and
events. The complete set of possible values is:

¢ TRUE - Option supported.
* FALSE - Option is not supported.

Refer to “Correlator Data” on page 28 for the
required events that shall support correlator data if
this option is supported.

dynamicFeatureSupported Enumerated (o] Specifies how the switching function provides the
servicesPermitted parameter on events. The
complete set of possible values is:

¢ none - servicesPermitted not provided on any
events

¢ all - servicesPermitted provided on all events
where it is specified

¢ some - servicesPermitted provided on some
events. Refer to the logDevEvtsList parameter fi
the events that support the parameter.

acdModels Bitmap (0] Specifies the types of ACD models that are
supported by the switching function. If a bit is
TRUE, then the specified ACD model is supported
by the switching function. The following is the list
of bits (multiple bits may be set):

¢ Visible ACD-Related Devices
* Non-Visible ACD-Related Devices

Note that if more than one type of ACD model is
present in the switching function, then the Get
Logical Device Information service shall be used to
determine the particular ACD models supported by
for each ACD device or ACD group by the
switching function.

agentLogOnModels Bitmap (o] Specifies the types of agent log on models that are|
supported by the switching function. If a bit is
TRUE, then the specified agent log on model is
supported by the switching function. The following
is the list of bits (multiple bits may be set):

* Log On to an ACD device

e Log On to an ACD Group (explicit/one step)

* Log On to an ACD Group (explicit/two steps)
¢ Log On to an ACD Group (implicit/one step)

Note that if more than one type of model is present
in the switching function, then the Get Logical
Device Information service shall be used to
determine the particular Log On models supported
for each device which is or can be associated with
an agent.

pr

- 141 -

Table 13-7 Get Switching Function Capabilities—Positive Acknowledgement

(continued)

Parameter Name

Type

M/
o/C

Description

agentStateModels

Bitmap

o

Specifies the types of agent models that are
supported by the switching function. If a bit is
TRUE, then the specified agent model is supported
by the switching function. The following is the list
of bits (multiple bits may be set):

» Agent Multi-State Model

* Agent Multi-State Model (Semi-Independent
Linked)

» Agent Oriented Model

Note that if more than one type of model is present
in the switching function, then the Get Logical
Device Information service shall be used to
determine the particular Agent models supported fq
each ACD device or ACD group by the switching
function.

=

connectionView

Enumerated

Specifies the meaning of the primary and secondary
old call parameters in the Conferenced and
Transferred events. The complete set of possible
values is:

« fixed view - the contents of the primary and
secondary old call parameters are independent of
the monitoring type and the role of the device in
the conference or transfer.

 local view - the contents of the primary and
secondary old call parameters are dependent upon
which device is being monitored.
Refer to the descriptions of the Conferenced and the
Transferred events for more information.

maxLengthParameters

List of Values

Each value is the switching function’s maximum
length (in octets/characters) for the corresponding
parameters and parameter types. The computing
function should not send larger data or the service
request will be rejected. The following list provides
the different parameters and parameter types for
which a maximum value is provided. The number i
parenthesis specifies the maximum possible length.

» Accountinfo parameter type: (32)

» AuthCode parameter type: (32)

» AgentID parameter type: (32)

» AgentPassword parameter type: (32)

« calllD in the ConnectionID parameter type: (8)
» CorrelatorData parameter type: (32)

» CSTAPrivateData parameter type: (any value)
» Device Identifiers parameter type: (128)

» UserData parameter type: (256)

» buttonLabel parameters: (64)

* lampLabel parameters: (64)

» charsToBeSent parameter: (64)

If any of the above values is zero, then the parameter
or parameter type is not supported.

- 142 -

Table 13-7 Get Switching Function Capabilities—Positive Acknowledgement

(continued)

Parameter Name

Type

2
o/C

Description

servEvtsList

List

C

Specifies a list of capability bitmap parameter types
corresponding to categories of services. Each bitm
entry in the lists represents a service or event that
supported by the switching function. This includes
the following categories of services/events:

« capExchangeServList (O) CapExchangeServLi
« systemStatusServList (O) SystemStatusServLi
* monitoringServList (O) MonitoringServList

« snapshotServList (O) SnapshotServList

« callControlServList (O) CallControlServList

« callControlEvtsList (O) CallControlEvtsList

« callAssociatedServList (O)
CallAssociatedServList

« callAssociatedEvtsList (O)
CallAssociatedEvtsList

* mediaServList (O) MediaServList

* mediaEvtsList (O) MediaEvtsList

¢ routeingServList (O) RouteingServList

¢ physServList (O) PhysServList

» physEvtsList (O) PhysEvtsList

« logicalServList (O) LogicalServList

« logicalEvtsList (O) LogicalEvtsList

» deviceMaintEvtsList (O) DeviceMaintEvtsLis
« ioServicesServList (O) I0ServicesServList

« dataCollectionServList (O)
DataCollectionServList

« voiceUnitServList (O) VoiceUnitServList
» voiceUnitEvtsList (O) VoiceUnitServList
¢ cdrServList (O) CDRServList

« vendorSpecificServList (O)
VendorSpecificServList

« vendorSpecificEvtsList (O)
VendorSpecificEvtsList

This parameter shall be provided if the switching
function supports any of these categories of servicg
events.

If a list entry is not included in the list, then the
corresponding category of services/events is not
supported by the switching function.

The bitmap parameter types are described in Anne
C.

Ap

U7
—

5t

ps/

privateDataVersionList

List of Values

If the switching function supports the private data
mechanism, this parameter provides the list of

supported private data versions associated with thg
switching function manufacturer

(manufacturerName).

- 143 -

Table 13-7 Get Switching Function Capabilities—Positive Acknowledgement

(continued)

Parameter Name

Type

M/
o/C

Description

systemStatusTimer

Value

Cc

Specifies a timer value indicating how often the
switching function sends periodic system status
requests to the computing function (i.e. heartbeats).
This parameter has a value between 0 and 180

seconds. 0 means that the switching function does
not send periodic System Status service requests.

This parameter shall be provided if the switching
function supports the heartbeat timer via the Syste
Status service.

simpleThreshold

Value

Specifies the number of unacknowledged service
requests that are allowed at any time for the
switching function. 0 means there is no limit.

If this parameter is not provided, the
simpleThreshold is unknown.

filterThreshold

List of Values

Specifies a list of values representing the number g
outstanding service requests, for every service
defined in this specification, that are allowed at any
time for each service. 0 means there is no limit.

If this parameter is not provided, the filterThreshold
is unknown.

- 144 -

Table 13-7 Get Switching Function Capabilities—Positive Acknowledgement
(continued)

Parameter Name

Type

2
o/C

Description

mediaServiceCapsList

List of Structures

C

Specifies a list of structures of the media service
types, version, media service instances, connectio
modes supported across the entire switching
function. This parameter is a list, each element of
which contains the following:

* mediaServiceType (M) MediaServiceType - A
media service type used to identify the media
service.

* mediaSeviceVersion (O) Value - The version of
the media service.

* mediaServicelnstance (O)
MediaServicelnstancelD - A media service
instance associated with the media service.

» connectionModeBMap (O) Bitmap - The media
service connection modes supported for the me
service type, version and instance. The followin
is the list of bits (multiple bits may be set):

» consultationConference

« consultationConferenceHold
« deflect

¢ directedPickup

¢ join

* singleStepConference

« singleStepConferenceHold

« singleStepTransfer

e transfer

» direct

* mediaStream|DSupported (M) Boolean -
Specifies if the mediaStreamID is supported fo
the combination of media service type, version,
and instance. The complete set of values is:

¢ TRUE - indicates that the switching functior

shall provide the conditional mediaStreaml[
parameter where specified.

* FALSE - indicates that the conditional
mediaStreamID is not provided.

This parameter shall be provided if media access i
supported by at least one of the devices in the
switching function, otherwise it shall not be
provided.

n

bi

a

D

security

CSTASecurityData

Specifies timestamp information, message sequen
number, and security information.

ce

privateData

CSTAPrivateData

Specifies non-standardized information.

13.1.3.2.2 Negative Acknowledgement

The negative acknowledgement error codes are described in 12.2.12, “ErrorValue”, on page 88.

13.1.3.3 Operational Model
13.1.3.3.1 Connection State Transitions

There are no connection state changes as the result of this service.

- 145 -

13.1.3.3.2 Device-Type Monitoring Event Sequences

There are no events generated as a result of this service.
13.1.3.3.3 Call-Type Monitoring Event Sequences

There are no events generated as a result of this service.

- 146 -

13.1.4 Get Switching Function Devices C —»S

The Get Switching Function Devices service is used by the computing function to obtain the current set of devices
in the application working domain along with their associated device categories and associated device names.
13.1.4.1 Service Request

Table 13-8 Get Switching Function Devices—Service Request

Parameter Name Type M/ Description
o/C
requestedDevicelD DevicelD O Specifies the device identifier of the device being queried. If
this parameter is not present, the switching function returns a
list of all devices (of the requestedDeviceCategory, if that
parameter is provided) in the switching sub-domain.
requestedDeviceCategory Enumerated O Specifies that only devices of the requested category be
provided. If this parameter is not present, the switching
function will return a list of all devices (or just the requested
device) in the switching function. The complete set of possible
values is:
+ ACD
* Group (ACD)
* Group (Hunt)
» Group (Pick)
* Group (Other)
» Network Interface
» Park
* Routeing Device
+ Station
» Voice Unit
» Other
security CSTASecurityData O Specifies timestamp information, message sequence number,
and security information.
privateData CSTAPrivateData (0] Specifies non-standardized information.

13.1.4.2 Service Response

This service follows the multi-step acknowledgement model for this service request.

13.1.4.2.1 Positive Acknowledgement
The positive acknowledgement for the Get Switching Function Devices service indicates that one or more
Switching Function Devices services will subsequently be generated by the switching function.

The computing function shall associate subsequent Switching Function Devices services to the original Get
Switching Function Devices service by means of the serviceCrossReflD parameter.

Table 13-9 Get Switching Function Devices—Positive Acknowledgement

Parameter Name Type M/ Description
o/C
serviceCrossRefID ServiceCrossReflD M Specifies the correlator used to associate subsequent
Switching Function Devices services to this service requegt.
security CSTASecurityData (0] Specifies timestamp information, message sequence
number, and security information.
privateData CSTAPrivateData (0] Specifies non-standardized information.

- 147 -

13.1.4.2.2 Negative Acknowledgement
The negative acknowledgement error codes are described in 12.2.12, “ErrorValue”, on page 88.
13.1.4.3 Operational Model
13.1.4.3.1 Connection State Transitions
There are no connection state changes as the result of this service.
13.1.4.3.2 Device-Type Monitoring Event Sequences
There are no events generated as a result of this service.
13.1.4.3.3 Call-Type Monitoring Event Sequences
There are no events generated as a result of this service.
13.1.4.3.4 Functional Requirements

1.

Due to the nature of the switching function configuration, there may be a significant time interval between tl
generation of the positive acknowledgement for this service and the generation of the first Switching Functi
Devices service (or between a sequence of Switching Function Device services).

If there are no devices that meet the conditions in the service request, the switching function provides
Positive Acknowledgement to the Get Switching Function Devices service request followed by a Switchir
Function Devices service that includes the deviceList parameter with no devices.

The Switching Function Devices service returns all device identifiers that refer to all devices in the applicati
working domain (i.e devices that can be controlled and/or observed).

13.1.5 Switching Function Devices

- 148 -

S —» C

The Switching Function Devices service is used by the switching function to provide a list of devices in the
application working domain. This service is generated as a result of the Get Switching Function Devices service.

The switching function may generate a sequence of Switching Function Devices services, individually referred to
as segments, in response to a single Get Switching Function Devices service request.

13.1.5.1 Service Request

Table 13-10 Switching Function Devices—Service Request

5sive
by

Parameter Name Type M/ Description
o/C
serviceCrossRefID ServiceCrossReflD M Specifies the cross reference used to associate the Switchin
Function Devices service request to the Get Switching
Function Devices service request.
segmentID Value (0] Specifies the segment number of this message. Each succe
segment number in the sequence increments the segmentiD
one.
lastSegment Boolean M Specifies if this segment is the last one associated with the
serviceCrossRefID. The complete set of possible values is:
* TRUE - Indicates that this is the last segment
* FALSE - Indicates that this is not the last segment in the
sequence.

- 149 -

Table 13-10 Switching Function Devices—Service Request (continued)

M/ -
Parameter Name Type oic Description
devicelList List of Structures M Specifies the list of device Identifiers representing the devices

that can be controlled and/or observed. It includes the
following components for each device in the list:

« devicelD (M) DevicelD - Specifies a Device Identifier
associated with the entry in the list.

« deviceCategory (O) Enumerated - Specifies the device
category associated with the entry in the list. The complete
set of possible values is:

« ACD

*« Group

« Network Interface (e.g. trunk, CO Line)
e Park

* Routeing

e Station (default)
* Voice Unit
¢ Other

« namedDeviceTypes (O) Enumerated - indicates the namged
device type associated with the device in the service requst.
The complete set of possible values is:

« ACD

« ACD Group

* Button

« Button Group

« Conference Bridge
e Line

« Line Group

¢ Operator

¢ Operator Group
« Parking Device
» Station

e Station Group

e Trunk

¢ Trunk Group

e Other

e Other Group

- 150 -

Table 13-10 Switching Function Devices—Service Request (continued)

Parameter Name Type g}é Description

(continued) (continued) » deviceAttributes (O) Bitmap - Specifies additional attributes
of the device associated with the entry in the list. This is a it
list of the following set of possible values (multiple bits may
be set):
» mediaAccessDevice - indicates that the device is alsp a
media access device

» routeingDevice - indicates that the device is also a
routeing device

» Group (ACD) - indicates that the Group device has an
ACD attribute (e.g. is an ACD Group)

* Group (Hunt) - indicates that the Group device has g
Hunt attribute

» Group (Pick) - indicates that the Group device has &
Pick attribute

» deviceName (O) Characters (64) - Specifies the name
associated with the entry in the list.

security CSTASecurityData (@) Specifies timestamp information, message sequence numbey,
and security information.

privateData CSTAPrivateData (0] Specifies non-standardized information.

13.1.5.2 Service Response
There are no service request completion conditions associated with this service.
13.1.5.2.1 Positive Acknowledgement
There is no positive acknowledgement associated with this service request.
13.1.5.2.2 Negative Acknowledgement
The negative acknowledgement error codes are described in 12.2.12, “ErrorValue”, on page 88.
13.1.5.3 Operational Model
13.1.5.3.1 Connection State Transitions
There are no connection state changes as the result of this service.
13.1.5.3.2 Device-Type Monitoring Event Sequences
There are no events generated as a result of this service.
13.1.5.3.3 Call-Type Monitoring Event Sequences
There are no events generated as a result of this service.
13.1.5.3.4 Functional Requirements
1. Due to the nature of the switching function configuration, the switching function may buffer the Switching
Function Devices messages to the computing function. The time between these messages may vary
significantly between various implementations.

2. The devicelist parameter may be provided without any devices in the list. This could occur when there are no
devices that meet the conditions provided in the Get Switching Function Devices service request.

3. The Switching Function Devices service returns all device identifiers that refer to all devices in the application
working domain (i.e. devices that can be controlled and/or observed).

- 151 -

14 System Services
This clause consists of:
« System Registration services
e System services

NOTE
This clause describes System Services between the Switching Function and the Computing Function.

14.1 Registration Services
Table 14-1 System Registration Services Summary

System Registration Service Description Pg.
14.1.1 Change System Status Filter Changes the system status filter options for a current system registration. 152
14.1.2 System Register Registers the computing function for system services with the switching function. 154
14.1.3 System Register Abort Indicates that the switching function has terminated a system registration. 157
14.1.4 System Register Cancel Unregisters the computing function for system services with the switching fungtion58

-152 -

14.1.1 Change System Status Filter C —»S

The Change System Status Filter service is used by the computing function to change the filter options for a current
system registration.
14.1.1.1 Service Request

Table 14-2 Change System Filter—Service Request

M/

Parameter Name Type oic

Description

sysStatRegisterlD SysStatRegisterID M Specifies the system registration identifier for which the status
filter should be changed.

requestedStatusFilter Bitmap M Specifies the requested System Status Types to be filtered (pot
sent) by the switching function. This parameter is a bitmap of
the following values:

* Initializing

» Enabled

* Normal

e Messages Lost

» Disabled

+ Partially Disabled
* Overload Imminent
» Overload Reached
* Overload Relieved

Multiple bits may be set.

security CSTASecurityData (0] Specifies timestamp information, message sequence number,
and security information.

privateData CSTAPrivateData (o] Specifies non-standardized information.

14.1.1.2 Service Response

This service follows the atomic acknowledgement model for this service request.
14.1.1.2.1 Positive Acknowledgement

Table 14-3 Change System Status Filter—Positive Acknowledgement

M/ -
Parameter Name Type olC Description

actualStatusFilter Bitmap M Specifies the actual set of System Status Types that will be
filtered (not sent) by the switching function.
This parameter is a bitmap with the same set of possible valuies
as in the service request.
The actualStatusFilter may differ from the
requestedStatusFilter parameter in the service request (See
Functional Requirement #2).

security CSTASecurityData (0] Specifies timestamp information, message sequence number,
and security information.

privateData CSTAPrivateData (o] Specifies non-standardized information.

14.1.1.2.2 Negative Acknowledgement

The negative acknowledgement error codes are described in 12.2.12, “ErrorValue”, on page 88.
14.1.1.3 Operational Model
14.1.1.3.1 Connection State Transitions

There are no connection state changes due to this service.

- 153 -

14.1.1.3.2 Device-Type Monitoring Event Sequences

There are no events generated as a result of this service.
14.1.1.3.3 Call-Type Monitoring Event Sequences

There are no events generated as a result of this service.
14.1.1.3.4 Functional Requirements

1.

The requestedStatusFilter parameter allows the computing function to choose the System Status Types
which no System Status service requests should be issued by the switching function. This parameter c
applies to the System Status service. If the System Status service has not been requested for this sy
registration, then the switching function shall send a negative acknowledgement to the Change System St:
Filter service request.

An implementation that does not support all System Status Types will nevertheless accept the Change Sy
Status Filter service even if the requested filter cannot be provided. The service acknowledgement indica
the actual set of System Status Types that will be filtered. This means that the actual set of filtered tyy
returned in the positive acknowledgement may include additional types to be filtered (or fewer type
generated by the switching function) than those requested in the service request.

- 154 -

14.1.2 System Register C —»S

The System Register service is used by the computing function to register to receive system services from the
switching function. The computing function may be required to register for system services before it can receive
any system service requests from the switching function.

14.1.2.1 Service Request

Table 14-4 System Register—Service Request

M/

olC Description

Parameter Name Type

requestTypes Bitmap M Specifies the system services that are being registered. Thig
parameter is a bitmap of the following values:

* System Status
* Request System Status

Multiple bits may be set.

requestedStatusFilter Bitmap C Specifies the requested set of System Status Types to be
filtered (not sent) by the switching function. This parameter is
a bitmap of the following values:

* Initializing

» Enabled

* Normal

* Messages Lost

» Disabled

« Partially Disabled

» Overload Imminent
* Overload Reached

* Overload Relieved

Multiple bits may be set.

This parameter is mandatory if the requestTypes parameter
includes System Status, otherwise it shall not be provided.

security CSTASecurityData (0] Specifies timestamp information, message sequence numberr,
and security information.

privateData CSTAPrivateData (0] Specifies non-standardized information.

14.1.2.2 Service Response
This service follows the atomic acknowledgement model for this service request.

- 155 -

14.1.2.2.1 Positive Acknowledgement

Table 14-5 System Register—Positive Acknowledgement

Parameter Name Type M/ Description
o/C

sysStatRegisterlD SysStatRegisterID M Specifies the system registration identifier for this registration.

actualStatusFilter Bitmap C Specifies the actual set of System Status Types that will be
filtered (not sent) by the switching function.
This parameter is a bitmap with the same set of possible valyes
as in the service request.
The actual types filtered may differ from what was requested
in the service request (See Functional Requirement #5).
If the requestType parameter in the service request includes
System Status, then this parameter is mandatory, otherwise it
shall not be provided.

security CSTASecurityData (0] Specifies timestamp information, message sequence number,
and security information.

privateData CSTAPrivateData (@) Specifies non-standardized information.

14.1.2.2.2 Negative Acknowledgement
The negative acknowledgement error codes are described in 12.2.12, “ErrorValue”, on page 88.
14.1.2.3 Operational Model
14.1.2.3.1 Connection State Transitions
There are no connection state changes due to this service.
14.1.2.3.2 Device-Type Monitoring Event Sequences
There are no events generated as a result of this service.
14.1.2.3.3 Call-Type Monitoring Event Sequences
There are no events generated as a result of this service.
14.1.2.3.4 Functional Requirements

1.

The sysStatRegisterID parameter returned in the positive acknowledgement is used to identify the registra
over which system services will be sent. The sysStatRegisterID is also used when cancelling the syst
registration.

The number of simultaneous system registrations allowed is switching function dependent. When the limit
reached, subsequent System Register service requests shall result in negative acknowledgements fron
switching function.

The requestTypes parameter specifies which system services are to be issued by the switching function tc
registering computing function.

The requestedStatusFilter parameter allows the computing function to choose the System Status Types
which no System Status service requests should be issued by the switching function. If the System Ste
service is not being requested (i.e., in the requestTypes parameter), then the actualStatusFilter parameter
not apply and shall not be provided. The actual system status filter is provided in the actualStatusFill
parameter in the positive acknowledgement.

An implementation that does not support all System Status Types will nevertheless accept the System Reg
service even if the requestedStatusFilter cannot be provided. The service acknowledgement indicates
actual set of System Status Types that will be filtered. This means that the actual set of filtered types retur
in the positive acknowledgement may include additional types to be filtered (or fewer types generated by t
switching function) than what was requested in the service request.

If explicit registration is not supported, all system services (e.g., System Status, Request System Status)
System Status Types (e.g., Initializing, Enabled) supported by the switching function shall be provided to t
computing functions. Note that the computing funcgball be prepared to respond to a System Status service

- 156 -

request from the switching function in such cases (because it has no way of specifying that ihshould
receive such requests).

Note that if a computing function registers for system services it shall support the ability to respond to any
switching function System Status service requests it may receive. In particular, for implicit registrations, a
CSTA-conformant computing function shall always be able to support such requests from the switching

function.

- 157 -

14.1.3 System Register Abort S —» C

The System Register Abort service is used by the switching function to asynchronously cancel an active sys
registration. This service invalidates a current systems status registration. There is no positive acknowledgen
defined for this service.

14.1.3.1 Service Request

Table 14-6 System Register Abort—Service Request

Parameter Name Type M/ Description
o/C
sysStatRegisterlD SysStatRegisterID M Specifies the system registration identifier for the system
registration that was aborted.
security CSTASecurityData (0] Specifies timestamp information, message sequence number,
and security information.
privateData CSTAPrivateData O Specifies non-standardized information.

14.1.3.2 Service Response
There are no service completion conditions for this service.
14.1.3.2.1 Positive Acknowledgement
There is no positive acknowledgement defined for this service.
14.1.3.2.2 Negative Acknowledgement
The negative acknowledgement error codes are described in 12.2.12, “ErrorValue”, on page 88.
14.1.3.3 Operational Model
14.1.3.3.1 Connection State Transitions
There are no connection state changes due to this service.
14.1.3.3.2 Device-Type Monitoring Event Sequences
There are no events generated as a result of this service.
14.1.3.3.3 Call-Type Monitoring Event Sequences
There are no events generated as a result of this service.
14.1.3.3.4 Functional Requirements
1. The switching function may issue this service at any time when it can no longer maintain the syste
registration.

2. The computing function may send a negative acknowledgement to this service request, but no posit
acknowledgement is defined.

- 158 -

14.1.4 System Register Cancel C —»S

The System Register Cancel service is used to cancel a previous system registration. This request terminates the
system registration and the computing function receives no further system service requests for that system
registration once it receives the positive acknowledgement to the System Register Cancel request.

14.1.4.1 Service Request

Table 14-7 System Register Cancel—Service Request

M/ -
Parameter Name Type olC Description
sysStatRegister|D SysStatRegisterID M Specifies the system registration identifier for which the
system registration is to be cancelled.
security CSTASecurityData (0] Specifies timestamp information, message sequence number,
and security information.
privateData CSTAPrivateData (0] Specifies non-standardized information.

14.1.4.2 Service Response

This service follows the atomic acknowledgement model for this service request.
14.1.4.2.1 Positive Acknowledgement

Table 14-8 System Register Cancel—Positive Acknowledgement

M/ -
Parameter Name Type oiC Description
security CSTASecurityData (0] Specifies timestamp information, message sequence numbser,
and security information.
privateData CSTAPrivateData (0] Specifies non-standardized information.

14.1.4.2.2 Negative Acknowledgement
The negative acknowledgement error codes are described in 12.2.12, “ErrorValue”, on page 88.
14.1.4.3 Operational Model
14.1.4.3.1 Connection State Transitions
There are no connection state changes due to this service.
14.1.4.3.2 Device-Type Monitoring Event Sequences
There are no events generated as a result of this service.
14.1.4.3.3 Call-Type Monitoring Event Sequences
There are no events generated as a result of this service.
14.1.4.3.4 Functional Requirements
1. The computing function shall continue to process outstanding system requests from the switching function
until it receives a positive acknowledgement for the System Register Cancel service request. The switching
function shall not send any further system requests for a registration once it has sent the positive
acknowledgement.

- 159 -

14.2 Services
Table 14-9 System Services Summary
System Service Description Pg.

14.2.1 Request System Statug Request to query the system status of the function receiving the request (bi-directional).160

14.2.2 System Status Request that reports the status of the function issuing the request to the function receivingahe
request (bi-directional). The indicated status may or may not have changed since the las
System Status request was issued.

14.2.3 Switching Function Request that reports that switching function level capability information (available via the|Get64

Capabilities Changed Switching Function Capability service) has changed.

14.2.4 Switching Function Request that reports that information associated with the current set of devices that can be 165

Devices Changed controlled and observed in the switching sub-domain (available via the Get Switching Domain
Devices service) has changed.

- 160 -

14.2.1 Request System Status C =-» S

The Request System Status service is used by the computing function or switching function to obtain (i.e., query)
the system status of its peer function.
14.2.1.1 Service Request

Table 14-10 Request System Status—Service Request

Parameter Name Type M/ Description
o/C

sysStatRegister|D SysStatRegisterID C Specifies the system registration identifier associated with the
system registration for this request.
This parameter is mandatory if the switching function is
issuing the request and supports system registration, and shall
not be provided otherwise.

security CSTASecurityData (0] Specifies timestamp information, message sequence number,
and security information.

privateData CSTAPrivateData O Specifies non-standardized information.

14.2.1.2 Service Response

This service follows the atomic acknowledgement model for this service request.
14.2.1.2.1 Positive Acknowledgement

Table 14-11 Request System Status—Positive Acknowledgement

Parameter Name Type g}é Description

systemStatus Enumerated M Specifies the status of the function issuing the service request.
The complete set of possible values is:

* Initializing

» Enabled

» Normal

* Messages Lost

» Disabled

» Partially Disabled
» Overload Imminent
* Overload Reached
» Overload Relieved

See 12.2.20, “SystemStatus”, on page 105 for a description pf
these values.

security CSTASecurityData (0] Specifies timestamp information, message sequence number,
and security information.

privateData CSTAPrivateData O Specifies non-standardized information.

14.2.1.2.2 Negative Acknowledgement
The negative acknowledgement error codes are described in 12.2.12, “ErrorValue”, on page 88.
14.2.1.3 Operational Model
14.2.1.3.1 Connection State Transitions
There are no connection state changes due to this service.
14.2.1.3.2 Device-Type Monitoring Event Sequences

There are no events generated as a result of this service.
14.2.1.3.3 Call-Type Monitoring Event Sequences

There are no events generated as a result of this service.

- 161 -

14.2.1.3.4 Functional Requirements
1. The systemStatus parameter in the positive acknowledgement provides the requesting function w
information regarding the state of the overall system of the responding function. This information is importal
for proper system operation and should be processed accordingly. If the responding function has informed
requesting function that an overload condition is imminent then the requesting function should attempt
decrease the overall traffic to the responding function.

- 162 -

14.2.2 System Status C =-» S

The System Status service is used by the computing function or switching function to report its system status to its
peer function. The indicated status may or may not have changed since the last System Status request was issued
This service can also be used to implement a heartbeat mechanism between the two functions.

14.2.2.1 Service Request

Table 14-12 System Status—Service Request

Parameter Name Type ON/”C Description

sysStatRegister|D SysStatRegisterID C Specifies the system registration identifier associated with the
system registration for this request.

This parameter is mandatory if the switching function is
issuing the request and supports system registration, and shgl
not be provided otherwise.

systemStatus Enumerated M Specifies the status of the function issuing the service request.
The complete set of possible values is:

« Initializing

» Enabled

» Normal

* Messages Lost

» Disabled

» Partially Disabled
» Overload Imminent
* Overload Reached
» Overload Relieved

See 12.2.20, “SystemStatus”, on page 105 for a description pf
these values.

security CSTASecurityData (0] Specifies timestamp information, message sequence number,
and security information.

privateData CSTAPrivateData O Specifies non-standardized information.

14.2.2.2 Service Response

This service follows the atomic acknowledgement model for this service request.
14.2.2.2.1 Positive Acknowledgement

Table 14-13 System Status—Positive Acknowledgement

Parameter Name Type M/ Description
o/C
security CSTASecurityData (o] Specifies timestamp information, message sequence number,
and security information.
privateData CSTAPrivateData O Specifies non-standardized information.

14.2.2.2.2 Negative Acknowledgement
The negative acknowledgement error codes are described in 12.2.12, “ErrorValue”, on page 88.
14.2.2.3 Operational Model
14.2.2.3.1 Connection State Transitions
There are no connection state changes due to this service.
14.2.2.3.2 Device-Type Monitoring Event Sequences

There are no events generated as a result of this service.
14.2.2.3.3 Call-Type Monitoring Event Sequences

There are no events generated as a result of this service.

- 163 -

14.2.2.3.4 Functional Requirements
1. The systemStatus parameter in the request provides the responding function with information regarding
state of the overall system of the requesting function. This information is important for proper syster
operation and should be processed accordingly. If the requesting function has informed the other function t
an overload condition is imminent then the responding function should attempt to decrease the overall traf
to the requesting function.

2. The computing function can determine if the switching function uses the System Status service for perio
status reporting (i.e., heartbeats) using the capabilities exchange services. The Get Switching Funct
Capabilities service positive acknowledgement defines a parameter (systemStatusTimer) that is used
indicate whether periodic status reporting is used and if so, how often the computing function should exps
the reports. The recovery action to be taken by the computing function in the event of a loss of heartbeat
implementation specific.

- 164 -

14.2.3 Switching Function Capabilities Changed S —» C

The Switching Function Capabilities Changed service is used to indicate that switching function level capability
information available via the Get Switching Function Capability service has changed.

The Get Switching Function Capability service may be used to obtain the revised information.
14.2.3.1 Service Request

Table 14-14 Switching Function Capabilities Changed—Service Request

Parameter Name Type M/ Description
o/C
security CSTASecurityData O Specifies timestamp information, message sequence number,
and security information.
privateData CSTAPrivateData (0] Specifies non-standardized information.

14.2.3.2 Service Response

This service follows the atomic acknowledgement model for this service request.
14.2.3.2.1 Positive Acknowledgement

Table 14-15 Switching Function Capabilities Changed—Positive Acknowledgement

Parameter Name Type M/ Description
o/C
security CSTASecurityData (0] Specifies timestamp information, message sequence number,
and security information.
privateData CSTAPrivateData (0] Specifies non-standardized information.

14.2.3.2.2 Negative Acknowledgement
The negative acknowledgement error codes are described in 12.2.12, “ErrorValue”, on page 88.
14.2.3.3 Operational Model
14.2.3.3.1 Connection State Transitions
There are no connection state changes due to this service.
14.2.3.3.2 Device-Type Monitoring Event Sequences
There are no events generated as a result of this service.
14.2.3.3.3 Call-Type Monitoring Event Sequences
There are no events generated as a result of this service.
14.2.3.3.4 Functional Requirements
1. If supported by the switching function, the Switching Function Capabilities Changed service shall be sent
whenever switching function level capability information has changed, whether or not the Get Switching
Function Capabilities service has been previously issued.

- 165 -

14.2.4 Switching Function Devices Changed S —» C

The Switching Function Devices Changed service is used to indicate that information associated with the curr
set of devices that can be controlled and observed in the switching sub-domain has changed.

The Get Switching Function Devices service may be used to obtain the revised information.
14.2.4.1 Service Request

Table 14-16 Switching Function Devices Changed—Service Request

M/ -
Parameter Name Type oic Description
security CSTASecurityData (0] Specifies timestamp information, message sequence number,
and security information.
privateData CSTAPrivateData (o] Specifies non-standardized information.

14.2.4.2 Service Response

This service follows the atomic acknowledgement model for this service request.
14.2.4.2.1 Positive Acknowledgement

Table 14-17 Switching Function Devices Changed—Positive Acknowledgement

Parameter Name Type M/ Description
o/C
security CSTASecurityData (0] Specifies timestamp information, message sequence numbey,
and security information.
privateData CSTAPrivateData (o] Specifies non-standardized information.

14.2.4.2.2 Negative Acknowledgement
The negative acknowledgement error codes are described in 12.2.12, “ErrorValue”, on page 88.
14.2.4.3 Operational Model
14.2.4.3.1 Connection State Transitions
There are no connection state changes due to this service.
14.2.4.3.2 Device-Type Monitoring Event Sequences
There are no events generated as a result of this service.
14.2.4.3.3 Call-Type Monitoring Event Sequences
There are no events generated as a result of this service.
14.2.4.3.4 Functional Requirements
1. If supported by the switching function, the Switching Function Devices Changed service shall be se
whenever switching function device information has changed, whether or not the Get Switching Functic
Devices service has been previously issued.

15

15.1

Monitoring Services
NOTE

This clause describes Monitoring Services between the Switching Function and the Computing Function.

- 166 -

Services
Table 15-1 Monitoring Services Summary
Monitoring Service Description Pg.
15.1.1 Change Monitor Filter Modifies the event filter for an existing monitor. 167
15.1.2 Monitor Start Initiates an event monitor on a specified device or call. 169
173

15.1.3 Monitor Stop

Terminates an existing monitor.

- 167 -

15.11 Change Monitor Filter cC —» S

The Change Monitor Filter service is used to modify the set of event reports that are filtered out (not sent) over
existing monitor.

The new set of filtered out (not sent) event reports may be listed in the service acknowledgement.
15.1.1.1 Service Request

Table 15-2 Change Monitor Filter—Service Request

Parameter Name Type M/ Description
o/C

crossRefldentifer MonitorCrossRefID M This indicates the monitor for which to change the filter.

requestedFilterList MonitorFilter M This parameter specifies the requested set of events to be
filtered out (not sent) by the server. It is a bitmap of all events
defined in this Standard.

security CSTASecurityData O Specifies timestamp information, message sequence numbar,
and security information.

privateData CSTAPrivateData (0] Specifies non-standardized information.

15.1.1.2 Service Response

This service follows the atomic acknowledgement model for this service request.
15.1.1.2.1 Positive Acknowledgement

Table 15-3 Change Monitor Filter—Positive Acknowledgement

Parameter Name Type OM//C Description

actualFilterList MonitorFilter C This parameter specifies the actual set of events that will be
filtered out (not sent) by the server. It is a bitmap of all eventg
defined in this Standard. The actual events filtered may diffe
from the requestedFilterList parameter on the service request
(See Functional Requirement #1).
This parameter is optional if the actualFilterList is the same gs
the requestedFilterList parameter on the service request,
otherwise it is mandatory.

security CSTASecurityData (0] Specifies timestamp information, message sequence numbef,
and security information.

privateData CSTAPrivateData (o] Specifies non-standardized information.

15.1.1.2.2 Negative Acknowledgement
The negative acknowledgement error codes are described in 12.2.12, “ErrorValue”, on page 88.
15.1.1.3 Operational Model
15.1.1.3.1 Connection State Transitions
There are no connection state changes due to this service.
15.1.1.3.2 Monitoring Requirements
1. Once arequest has been acknowledged, a new set of events will be filtered out (not sent) by the server.

15.1.1.3.3 Functional Requirements
1. An implementation that does not support all event reports, or that does not support filtering will neverthele
accept the Change Monitor Filter service even if the requested filter cannot be provided. In this case, |
service acknowledgement indicates the actual set of events that will be filtered out (not sent). This means t
the actual set of filtered events returned in the positive acknowledgement may include additional events to
filtered out (or fewer monitored events supported for the monitor) than those requested in the service requ
For example, an implementation that does not support event filtering responds to the Change Monitor Fil
service with a filter that shows provided events as unfiltered and unimplemented events as filtered o

- 168 -

Similarly, an implementation that does not support, for example, Delivered events, shall always respond with
a filter indicating that Delivered events will not be reported.

15.1.2

- 169 -

Monitor Start CcC —»S

The Monitor Start service initiates event reports (otherwise known as events) for a call, device, or for one or m
calls involving a device.

The server starts a monitor, allocates a Monitor Cross Reference Identifier that uniquely identifies the monitor, ¢
then positively acknowledges the request. All activities satisfying the filter provided (for example: call, feature
agent, private) trigger events which are delivered as a stream of event reports to the server. Each event contain
Monitor Cross Reference Identifier that correlates the event back to the Monitor Start service that established
monitor.

These event reports cease after the switching function terminates the monitor. Service termination can result fro
client request (15.1.3, “Monitor Stop” on page -173) or it can be initiated by the server. The switching functic
shall terminate the monitor if the monitorObject ceases to exist, or if the monitorObject leaves the switching st
domain. There may be other conditions that cause the server to terminate the monitor.

Once the monitor is terminated, the monitor cross reference ID is no longer valid.

Please refer to 6.7.2, “Monitoring”, on page 48 for an overview of monitoring and related concepts such as moni
objects, monitor types, monitor call types, and monitor filters.

15.1.2.1 Service Request

Table 15-4 Monitor Start—Service Request

M/

Parameter Name Type olc

Description

monitorObject Choice Structure M Specifies the monitor object of a call or device to be
monitored. This shall be one of the following choices:

=3

» call (ConnectionID) - Specifies a call (connection) obje
» device (DevicelD) - Specifies a device object.

See Functional Requirement #5.

requestedMonitorFilter MonitorFilter (@) This parameter specifies the requested set of events to be|
filtered out (not sent) by the switching function. It is a
bitmap of all events defined in this standard.

If this parameter is not provided (or if the parameter is not
supported by the switching function), then it shall mean that
no filtering of events is requested (all events are requested).

monitorType Enumerated (0] Specifies the type of monitor requested. The complete set of
possible values is:

» call-type

» device-type
If this parameter is not provided (or if the parameter is not
supported by the switching function), then the monitor typeg

shall be selected by the switching function (as indicated by
the capabilities exchange services).

requestedMonitorMediaClass Bitmap (0] Specifies the media classes (voice, digital data, etc.) of calls
that are being requested to be monitored for the
monitorObject.

Refer to the mediaClass component in 12.2.15,
“MediaCallCharacteristics”, on page 101 for the complete
set of possible values. Note that multiple bits may be set.

If this parameter is not provided (or if the parameter is not
supported by the switching function), it is switching function
dependent which media classes of calls are monitored.

security CSTASecurityData (@) Specifies timestamp information, message sequence number,
and security information.

-170 -

Table 15-4 Monitor Start—Service Request (continued)

Parameter Name

Type

M/
o/C

Description

privateData

CSTAPrivateData

O

Specifies non-standardized information.

15.1.2.2 Service Response

This service follows the atomic acknowledgement model for this service request.

15.1.2.2.1 Positive Acknowledgement

Table 15-5 Monitor Start—Positive Acknowledgement

Parameter Name

Type

M/
o/C

Description

crossRefldentifer

MonitorCrossRefID

M

This indicates a value that is unique within the association fo
the duration of the monitor and that can be used to relate
subsequent events to the monitor request that initiated them,|
shall also allow correlating Monitor Stop and subsequent
Change Monitor Filter services with the original Monitor Start
service on which they act.

=

actualMonitorFilter

MonitorFilter

This parameter specifies the actual set of events that will be
filtered (not sent) by the switching function. It is a bitmap of a
events defined in this standard. The actual events filtered ouf
may differ from the filterList parameter on the service reques
(See Functional Requirement #1).

If this parameter is supported by the switching function, it ma
be omitted if the requested and actual monitor filters are the
same, otherwise it shall be provided.

If the parameter is not supported by the switching function,
then the switching function does not filter events and all even
supported (as indicated by the capability exchange services)
shall be sent for this monitor.

ts

actualMonitorMediaClass

Bitmap

This parameter specifies the actual media classes of calls tha
are monitored by the switching function for this monitor.

The actual media classes of calls monitored may be the sam
a subset of what was requested on the service request.

If this parameter is supported by the switching function, it ma
be omitted if the requested and actual monitor media class
parameters are the same otherwise it shall be provided.

If the parameter is not supported by the switching function,
then the switching function does not filter call types for specif

e or

C

classes of calls that can be monitored.

monitors. The capability exchange services indicates the mewria

-171 -

Table 15-5 Monitor Start—Positive Acknowledgement (continued)

M/

Parameter Name Type oic

Description

monitorExistingCalls Boolean (0] Indicates whether or not the computing function will receive

event reports regarding calls that are currently existing at the
device at which the monitor was started. The complete set of]
possible values is:

(=3

* TRUE - Indicates event reports will be provided for calls tha
are at the device at the time of the acknowledgement
[Default].

* FALSE - Indicates event reports will not be provided for calls
that are at the device at the time of the acknowledgement.

This parameter is applicable to monitors that have devices ag
their object. For such monitors, if this parameter is not preser
(or the parameter is not supported), it means that the switching
function always provides event reports for calls that are

currently present at the device when the monitor was started

—

security CSTASecurityData O Specifies timestamp information, message sequence numbet,

and security information.

privateData CSTAPrivateData (0] Specifies non-standardized information.

15.1.2.2.2 Negative Acknowledgement
The negative acknowledgement error codes are described in 12.2.12, “ErrorValue”, on page 88.
15.1.2.3 Operational Model
15.1.2.3.1 Connection State Transitions
There are no connection state changes due to this service.
15.1.2.3.2 Monitoring Requirements

1.

3.

4.

For call related events, events are provided for all devices associated with the call or device being monito!
For non-call related events, events are provided for the monitored device.

Once a call is monitored (irrespective of the monitor type or monitor object), all connection state changes t
are known by the switching function are reported (subject to the Monitor Filter).

« For example, if device A is being monitored (with a device-type monitor) and a call is placed to device |
(no monitor on B), then any connection state changes for either device A or B (such as when B receiv
the Delivered event and answers the call) will be reported through device A's monitor.

* Monitoring is only guaranteed for devices in the switching sub-domain. Activity related to devices
outside the switching sub-domain may be only partially available or completely unreported.

Since some devices do not support all events, when a device enters a call that is being monitored with a
type monitor, there may be a reduced set of event reporting associated with that monitor.

Physical Device, Logical Device, and Maintenance events are only reported for device-type monitors.

15.1.2.3.3 Functional Requirements

1.

An implementation that does not support all event reports, or that does not support filtering will neverthele
accept the Monitor Start service even if the requested filter cannot be provided. In this case (if tt
actualMonitorFilter parameter is supported), the service acknowledgement indicates the actual set of eve
that will be filtered out. This means that the actual set of filtered events returned in the positiv
acknowledgement may include additional events to be filtered out (or less monitored events supported for
monitor) than those requested in the service request. For example, an implementation that does not sup
event filtering responds to the Monitor Start service with a filter that shows provided events as unfiltered al
unimplemented events as filtered out. Similarly, an implementation that does not support, for exampl
Delivered events, shall respond with a filter indicating that Delivered events will not be reported.

-172 -

If the switching function does not support the requestedMonitorFilter parameter (and the switching function is
ignoring unsupported parameters, as defined by the capability exchange services), the computing function
may receive events that it had requested to be filtered out.

When monitoring device configurations, refer to 6.1.7, “Referencing Devices, Elements, Appearances and
Device Configurations”.

Events that occurred prior to the Monitor Start positive acknowledgement are not reported.

When a call-type monitor is requested and a connection identifier is being provided, the connection identifier
may consist of only the calllD. This is an exception to the general rule that devicelDs are always provided in
connectionlIDs (refer to section 12.3.9, “ConnectionID").

The Service Completion Failure evenbigy reported to device-type monitors on the device which has or had
connection(s) that were used in the particular service request which is associated with this event (i.e., this
event is not reported to any call-type monitors or device-type monitors for other devices in the call(s)
associated with the service request).

If a computing function starts a monitor on a device, then issues another Monitor Start on the same device, the
switching function will start a new monitor and will create a new Monitor Cross Reference Identifier. The
new Monitor Start service request can be the same as the original or it may include a different Monitor Type
or a different Monitor Filter.

The event reporting of the Failed event may vary depending on the given switching function. For the
conditions under which the event reporting is limited, see section 6.8, “Additional Services, Features &
Behaviour” and the Failed event section.

If filtering of the individual Private Events is desired, then the CSTA Private Data Information (privateData
parameter) shall be used.

-173 -

15.1.3 Monitor Stop C =-» S
The Monitor Stop service is used to cancel a previously initiated Monitor Start service.

The Monitor Stop service can be issued by a function to terminate or signal the termination of a correspond
Monitor Start service.

A positive acknowledgement to the service request indicates that the Cross Reference ID used by the Monitor ¢
service has become invalid.
15.1.3.1 Service Request

Table 15-6 Monitor Stop—Service Request

M/ -
Parameter Name Type oliC Description
crossRefldentifer MonitorCrossRefID M This indicates the Cross Reference Identifier provided in the
original Monitor Start service positive acknowledgement.
security CSTASecurityData (0] Specifies timestamp information, message sequence number,
and security information.
privateData CSTAPrivateData O Specifies non-standardized information.

15.1.3.2 Service Response

This service follows the atomic acknowledgement model for this service request.
15.1.3.2.1 Positive Acknowledgement

Table 15-7 Monitor Stop—Positive Acknowledgement

M/ -
Parameter Name Type oic Description
security CSTASecurityData (0] Specifies timestamp information, message sequence numbet,
and security information.
privateData CSTAPrivateData (0] Specifies non-standardized information.

15.1.3.2.2 Negative Acknowledgement

The negative acknowledgement error codes are described in 12.2.12, “ErrorValue”, on page 88.
15.1.3.3 Operational Model
15.1.3.3.1 Connection State Transitions

There are no connection state changes due to this service.
15.1.3.3.2 Monitoring Requirements

1. Once arequest has been acknowledged, event reports are no longer sent.

15.1.3.3.3 Functional Requirements
1. This service can be sent to the function that requested a monitor to report that the monitor has been termina

2. The switching function may issue a Monitor Stop service when it can no longer provide information
Examples of when this may occur are:

« For monitors on calls that have ended (call monitoring).
* For load management reasons.

« If the monitor object leaves the switching sub-domain (via configuration, for example).

16

16.1

Snapshot Services
NOTE

- 174 -

This clause describes Snapshot Services between the Switching Function and the Computing Function.

Services

Table 16-1 Snapshot Services Summary

Snapshot Service Description Pg.
16.1.1 Snapshot Call Provides information about the devices participating in a specified call. 175
16.1.2 Snapshot Device Provides information on the status of calls at a specific device. 178
16.1.3 Snapshot CallData Provides Snapshot Call Information in segmented messages. 181
16.1.4 Snapshot DeviceData Provides Snapshot Device Information in segmented messages. 183

16.1.1 Snapshot Call

The Snapshot Call service provides information about the devices participating in a specified call. The informat
provided includes device identifiers, their connections in the call, and local connection states of the devices in

call as well as call related information.

-175-

CcC —»S

Information that applies to the entire call shall be provided in the Snapshot Call positive response.

Information that is specific to each endpoint in the call (snapshotData parameter) shall be provided using one
two possible mechanisms (as indicated by the capability exchange services): either in the Snapshot Call pos
acknowledgement or in one or more messages using the Snapshot CallData Service. Note that both mechan

cannot be used at the same time.

If the switching function supports the Dynamic Feature Availability option (as indicated through the capabilitie
exchange services), then for each connection in the call, this service provides the list of permitted call cont

services.
16.1.1.1 Service Request

Table 16-2 Snapshot Call—Service Request

M/ -
Parameter Name Type oic Description
snapshotObject ConnectionlD M This indicates the connectionID of the call to be snapshot. S
Functional Requirement #2.
security CSTASecurityData (0] Specifies timestamp information, message sequence numbe|
and security information.
privateData CSTAPrivateData (0] Specifies non-standardized information.

16.1.1.2 Service Response

This service follows the atomic acknowledgement model for this service request.

16.1.1.2.1 Positive Acknowledgement

Table 16-3 Snapshot Call—Positive Acknowledgement

ge

M/ _
Parameter Name Type oiC Description
serviceCrossRefID ServiceCrossReflD C Specifies the reference used to associate subsequent Snaps

CallData services to this service request.

This parameter is mandatory if the switching function is
providing the snapshot information using the Snapshot
CallData service, otherwise it shall not be provided.

hot

-176 -

Table 16-3 Snapshot Call—Positive Acknowledgement (continued)

M/

oic Description

Parameter Name Type

snapshotData List of Structures C Specifies information for each endpoint in a call.

This parameter is mandatory if the switching function is
providing all of the response information in this message. Th
parameter shall not be provided if the switching function is
providing the snapshot information using the Snapshot
CallData Service.

0

The complete set of possible information is:

» deviceOnCall (M) DevicelD - Of a device involved with the
endpoint.

» connectionldentifer (C) ConnectionID - For the endpoint.
This is mandatory if the endpoint is in the switching sub-
domain, otherwise it is optional.

» localConnectionState (O) LocalConnectionState - For the
endpoint.

» servicesPermitted (C) ServicesPermitted - This is mandatpry
if the switching function supports the Dynamic Feature
Availability option (as indicated through the capabilities
exchange service).

* mediaServicelnformationList (O) List of Structure -
Specifies information about the media services that are
attached (bound to) the connection in the call. The complete
set of possible information is:

* mediaServiceType (M) MediaServiceType - A medig
service type that has been bound to the connection.

* mediaServiceVersion (O) Value. The version of the
media services.

* mediaServicelnstance (O) MediaServicelnstancelD {A
media service instance associated with the media
service bound to the connection.

* mediaStreamID (C) MediaStreamID - The media
stream identifier for the media service binding. This
shall be provided if the switching function supports
providing the mediaStreamID as indicated by the
capability exchange services.

» connectioninformation (O) Connectioninformation -
The connection information associated with the
callldentifier connection.

mediaCallCharacteristics MediaCallCharacteristics (0] This specifies the media class and data characteristics of the
call. See 12.2.15, “MediaCallCharacteristics”, on page 101 f
the list of possible values.

=

callCharacteristics CallCharacteristics (0] Specifies the high level characteristics (ACD call, Priority call,
etc.) associated with the call. See 12.2.4, “CallCharacteristics”,
on page 84 for the complete set of possible values.

callingDevice CallingDevicelD (0] Specifies the calling device.

calledDevice CalledDevicelD (0] Specifies the called device.

O
(@]

Specifies the Network Interface Device associated with the
calling device if the call is an external incoming call. This
parameter is mandatory for all external incoming calls and
shall not be provided otherwise.

associatedCallingDevice AssociatedCallingDevicel

- 177 -

Table 16-3 Snapshot Call—Positive Acknowledgement (continued)

Parameter Name Type M/ Description
o/C

associatedCalledDevice AssociatedCalledDevicelD C For outgoing external calls, this parameter specifies the
Network Interface Device associated with the originally called
device. For incoming external calls, this parameter specifies ja
device within the switching sub-domain associated with the
originally called device. This parameter is mandatory for all
external outgoing calls and it is optional for external incoming
calls.

correlatorData CorrelatorData C Specifies the correlator data associated with the call. This
parameter is mandatory if there is correlator data associated
with the call.

security CSTASecurityData (0] Specifies timestamp information, message sequence numbey,
and security information.

privateData CSTAPrivateData (o] Specifies non-standardized information.

16.1.1.2.2 Negative Acknowledgement
The negative acknowledgement error codes are described in 12.2.12, “ErrorValue”, on page 88.

16.1.1.2.3 Operational Model
16.1.1.2.4 Connection State Transitions

There are no connection state changes due to this service.
16.1.1.2.5 Monitoring Requirements
This service does not affect existing monitors.
16.1.1.2.6 Functional Requirements
1. The Snapshot Call service is intended to provide information about devices in calls that makes furth
monitoring more meaningful. For example, if the computing function started working with a call, the even
reports needed to provide synchronization may not occur for some time. To facilitate operations before
event report is available to synchronize the monitor, it is necessary to be able to query the current state
devices. Snapshot Call service provides this function.

2. The connection ID provided in the service may consist of only a calllD portion. This is an exception to th
rule of always providing devicelDs in connectionlDs of service requests as described in 12.3.¢
“ConnectionID”, on page 110.

3. If the switching function is providing the snapshot response information in multiple messages, it shall supp
the Snapshot CallData service. In this case, the computing function can associate subsequent Snap
CallData services to the original Snapshot Call service by means of the serviceCrossReflD parameter.

-178 -

16.1.2 Snapshot Device S —»C

The Snapshot Device service provides information about calls associated with a given device. The information
provided identifies each call the device is participating in and the local connection state of the device in that call.

The switching function shall provide the response information using one of two possible mechanisms (as indicated
by the capability exchange services): either in the Snapshot Device positive acknowledgement or in one or more
messages using the Snapshot DeviceData Service. Note that both mechanisms cannot be used at the same time.

If the switching function supports the Dynamic Feature Availability option (as indicated through the capabilities

exchange services), then for each connection at the device, this service provides the list of permitted call control
services.

16.1.2.1 Service Request

Table 16-4 Snapshot Device—Service Request

Parameter Name Type M/ Description
o/C
shapshotObject DevicelD M This indicates the devicelD of the device to be snapshot.
security CSTASecurityData (0] Specifies timestamp information, message sequence numbey,
and security information.
privateData CSTAPrivateData O Specifies non-standardized information.

16.1.2.2 Service Response

This service follows the atomic acknowledgement model for this service request.
16.1.2.2.1 Positive Acknowledgement

Table 16-5 Snapshot Device—Positive Acknowledgement

Parameter Name Type M/ Description
o/C
serviceCrossRefID ServiceCrossReflD C

Specifies the reference used to associate subsequent Snapghot
DeviceData services to this service request.

This parameter is mandatory if the switching function is
providing the snapshot device information using the Snapsh
DeviceData service, otherwise it shall not be provided.

—

-179 -

Table 16-5 Snapshot Device—Positive Acknowledgement (continued)

Parameter Name Type

M/
o/C

Description

snapshotData List of Structures

C

Specifies information for each call at a device.

This parameter is mandatory if the switching function is
providing all of the response information in this message. Th
parameter shall not be provided if the switching function is
providing the response information using the Snapshot
DeviceData Service.

This complete set of information is:

connectionldentifier (M) ConnectionID

localCallState (M) Choice Structure - This shall be one of
following choices:

¢ compoundCallState (List of LocalConnectionStates)

This consists of a sequence of local connection states.

« simpleCallState (SimpleCallState) - the simple call
state.

¢ unknown

servicesPermitted (C) ServicesPermitted - This is mandat
if the switching function supports the Dynamic Feature
Availability option (as indicated through the capabilities
exchange services).

mediaServicelnformationList (O) List of Structures -
Specifies information about the media services that are
attached (bound to) the connection in the call. The compl
set of possible components is:

* mediaStreamID (C) MediaStreamID - The media
stream identifier for the media service binding. This
shall be provided if the switching function supports
providing the mediaStreamID as indicated by the
capability exchange services.

« connectioninformation (O) ConnectionInformation -
The connection information associated with the
callldentifier connection.

mediaCallCharacteristics (O) MediaCallCharacteristics -
specifies the media class and data characteristics of the
See 12.2.15, “MediaCallCharacteristics”, on page 101 fo
the list of possible values.

0

he

h

2

D

=

y

ete

call.

security CSTASecurityData

Specifies the timestamp information, message sequence
number, and security information.

privateData CSTAPrivateData

Specifies non-standardized information.

16.1.2.2.2 Negative Acknowledgement
The negative acknowledgement error codes are described in 12.2.12, “ErrorValue”, on page 88.

16.1.2.3 Operational Model

16.1.2.3.1 Connection State Transitions

There are no connection state changes due to this service.

16.1.2.3.2 Monitoring Requirements
This service does not affect existing monitors.
16.1.2.3.3 Functional Requirements

1.

The Snapshot Device service is intended to provide information about devices to make further monitori
more meaningful. For example, when a computing function starts working with a device, the event repot
needed to provide synchronization may not occur for some time. To facilitate operations before event repc
synchronize the monitor, it is necessary to be able to query the current state of devices. Snapshot De

service provides that function.

- 180 -

If the switching function is providing the snapshot device response information in multiple messages, it shall
support the Snapshot DeviceData service. In this case, the computing function can associate subsequent
Snapshot DeviceData services to the original Snapshot Device service by means of the serviceCrossReflD

parameter.

16.1.3 Snapshot CallData

-181 -

S —»C

This service is generated as a result of the Snapshot Call service. It is used when the switching function is provi
snapshot call information in multiple messages (otherwise the switching function provides the snapshot c
information in the Snapshot Call positive acknowledgement).

The information provided includes information about the endpoints in the call (information about the entire call
provided in the Snapshot Call positive response).

The switching function may generate a sequence of Snapshot CallData services, individually referred to
segments, in response to a single Snapshot Call service request.

16.1.3.1 Service Request

Table 16-6 Snapshot CallData—Service Request

Parameter Name

Type

M/
o/C

Description

serviceCrossRefID

ServiceCrossReflD

M

Specifies the reference used to associate the Snapshot Calll
service messages to the Snapshot Call service request.

Data

segmentiD

Value

Specifies the segment number of this message. Each succe:
segment nhumber in the sequence increments the segmentiD
one.

ssive
by

lastSegment

Boolean

Specifies if this segment is the last one associated with the
serviceCrossReflD. The complete set of possible values is:

¢ TRUE - Indicates that this is the last segment

« FALSE - Indicates that this is not the last segment in the
sequence.

snapshotData

List of Structures

Specifies information for each endpoint in a call. The comple]
set of possible information is:

« deviceOnCall (M) DevicelD - Of a device involved with the
endpoint.

¢ connectionldentifer (C) ConnectionID - For the endpoint.
This is mandatory if the endpoint is in the switching sub-
domain, otherwise it is optional.

« localConnectionState (O) LocalConnectionState - For the
endpoint.

« servicesPermitted (C) ServicesPermitted - This is mandat
if the switching function supports the Dynamic Feature
Availability option (as indicated through the capabilities
exchange service).

« mediaServicelnformationList (O) List of Structures -
Specifies information about the media services that are
attached (bound to) the connection in the call. The compl
set of components is:

¢ mediaServiceType (M) MediaServiceType - A medig
service type that has been bound to the connection.

* mediaServiceVersion (O) Value. The version of the
media services.

* mediaServicelnstance (O) MediaServicelnstancelD -
media service instance associated with the media
service bound to the connection.

* mediaStream|D (C) MediaStreamID - The media
stream identifier for the media service binding. This
shall be provided if the switching function supports
providing the mediaStreamID as indicated by the
capability exchange services.

« connectionInformation (O) Connectioninformation -
The connection information associated with the
callldentifier connection.

te

h

D

=

y

ete

-182 -

Table 16-6 Snapshot CallData—Service Request

Parameter Name Type M/ Description
o/C
security CSTASecurityData (0] Specifies timestamp information, message sequence number,
and security information.
privateData CSTAPrivateData O Specifies non-standardized information.

16.1.3.2 Service Response
There are no service request completion conditions associated with this service.
16.1.3.2.1 Positive Acknowledgement
There is no positive acknowledgement associated with this service request.
16.1.3.2.2 Negative Acknowledgement
The negative acknowledgement error codes are described in 12.2.12, “ErrorValue”, on page 88.
16.1.3.3 Operational Model
16.1.3.3.1 Connection State Transitions
There are no connection state changes due to this service.
16.1.3.3.2 Device-Type Monitoring Event Sequences
There are no events generated as a result of this service.
16.1.3.3.3 Call-Type Monitoring Event Sequences
There are no events generated as a result of this service.
16.1.3.3.4 Functional Requirements
1. Due to the nature of the switching function configuration, the switching function may buffer the Snapshot
CallData messages to the computing function. The time between these messages may vary significantly
between various implementations.

2. The switching function may include information for one or more endpoints in each segment.

3. The information reported in the sequence of segments generated from the Snapshot Call service request
represents the state of the call at the time the Snapshot Call service is positively acknowledged.

16.1.4 Snapshot DeviceData

This service is generated as a result of the Snapshot Device service. It is used when the switching functio
providing snapshot device response information in multiple messages (otherwise the switching function provic

- 183 -

S —»C

the snapshot device response in the Snapshot Device positive acknowledgement).

This includes information about calls associated with a given device. The information provided identifies each c

the device is participating in and the local connection state of the device in that call.

The switching function may generate a sequence of Snapshot DeviceData services, individually referred to

segments, in response to a single Snapshot Device service request.

16.1.4.1 Service Request

Table 16-7 Snapshot DeviceData—Service Request

Parameter Name

Type

M/
o/C

Description

serviceCrossRefID

ServiceCrossReflD

M

Specifies the reference used to associate the Snapshot
DeviceData service messages to the Snapshot Device servi
request.

segmentiD

Value

Specifies the segment number of this message. Each successive

segment number in the sequence increments the segmentiD
one.

lastSegment

Boolean

Specifies if this segment is the last one associated with the
serviceCrossReflD. The complete set of possible values is:

¢ TRUE - Indicates that this is the last segment

¢ FALSE - Indicates that this is not the last segment in the
sequence.

snapshotData

List of Structures

Specifies information for each call at a device.
This complete set of information is:

« connectionldentifier (M) ConnectionID

« localCallState (M) Choice Structure - This shall be one of t
following choices:

¢ compoundCallState (List of LocalConnectionStates)
This consists of a sequence of local connection statg

« simpleCallState (SimpleCallState) - The simple call
state.

¢ unknown

« servicesPermitted (C) ServicesPermitted - This is mandat
if the switching function supports the Dynamic Feature
Availability option (as indicated through the capabilities
exchange services).

« mediaServicelnformationList (O) List of Structures -
Specifies information about the media services that are
attached (bound to) the connection in the call. The compl
set of possible components include:

* mediaStreamID (C) MediaStreamID - The media
stream identifier for the media service binding. This
shall be provided if the switching function supports
providing the mediaStreamID as indicated by the
capability exchange services.

« connectioninformation (O) ConnectionInformation -
The connection information associated with the
callldentifier connection

« MediaCallCharacteristics (O) MediaCallCharacteristics -
specifies the media class and data characteristics of the

by

he

D

n

D

=

y

ete

call.

security

CSTASecurityData

Specifies timestamp information, message sequence numbe

and security information.

- 184 -

Table 16-7 Snapshot DeviceData—Service Request

Parameter Name Type M/ Description
o/C
privateData CSTAPrivateData (0] Specifies non-standardized information.

16.1.4.2 Service Response
There are no service request completion conditions associated with this service.
16.1.4.2.1 Positive Acknowledgement
There is no positive acknowledgement associated with this service request.
16.1.4.2.2 Negative Acknowledgement
The negative acknowledgement error codes are described in 12.2.12, “ErrorValue”, on page 88.
16.1.4.3 Operational Model
16.1.4.3.1 Connection State Transitions
There are no connection state changes due to this service.
16.1.4.3.2 Device-Type Monitoring Event Sequences
There are no events generated as a result of this service.
16.1.4.3.3 Call-Type Monitoring Event Sequences
There are no events generated as a result of this service.
16.1.4.3.4 Functional Requirements
1. Due to the nature of the switching function configuration, the switching function may buffer the Snapshot
DeviceData messages to the computing function. The time between these messages may vary significantly
between various implementations.

2. The switching function may include information for one or more connections in each segment.

3. The information reported in the sequence of segments generated from the Snapshot Device service request
represents the state of the device at the time the Snapshot Device service is positively acknowledged.

Printed copies can be ordered from:

ECMA
114 Rue du Rhbéne
CH-1204 Geneva

Switzerland
Fax: +41 22 849.60.01
Internet: documents@ecma.ch

Files can be downloaded from our FTP dtfeecma.ch logging in aanonymousand giving your E-mail addressaass-
word. This Standard is available from libraBCMA-ST as an Acrobat PDF file (file E269-PDF.PDF). File E269-
EXP.TXT gives a short presentation of the Standard.

Our web site, http://www.ecma.ch, gives full information on ECMA, ECMA activities, ECMA Standards and Technice
Reports.

ECMA

114 Rue du Rhéne
CH-1204 Geneva
Switzerland

This Standard ECMA-269 is available free of charge in printed form and as a file.

See inside cover page for instructions

	Brief History
	Table of Contents
	1 Scope
	2 Conformance
	2.1 Switching Function
	2.1.1 Conformant Services
	2.1.2 Conformant Events
	2.1.3 CSTA Profiles
	2.1.4 Support of Service Requests And Manual Mode

	2.2 Special Resource Function Conformance
	2.2.1 Conformant Services
	2.2.2 Conformant Events
	2.2.3 Support of Service Requests And Manual Mode

	2.3 Computing Function Conformance

	3 References
	3.1 ECMA References
	3.2 ISO References
	3.3 ITU-T References

	4 Definitions and Abbreviations
	5 Functional Architecture
	6 CSTA Operational Model
	6.1 Switching Sub-Domain Model
	6.1.1 Switching Sub-Domain Name
	6.1.2 Application Working Domain
	6.1.3 Device
	6.1.4 Call
	6.1.5 Connection
	6.1.6 Call State Definitions
	6.1.7 Referencing Devices, Elements, Appearances a...
	6.1.8 Management of Dynamically-Assigned Identifie...

	6.2 Special Resource Functions
	6.2.1 Voice Unit

	6.3 I/O Services
	6.3.1 Data Path Definition
	6.3.2 I/O Registration Services
	6.3.3 Data Path States and Operational Model
	6.3.4 I/O Services Example

	6.4 Call Detail Record (CDR) Services
	6.4.1 CDR Services Examples

	6.5 Capabilities Exchange
	6.5.1 Switching Function Capabilities
	6.5.2 Device Capabilities
	6.5.3 Dynamic Feature Availability

	6.6 Switching Function Information Synchronization...
	6.6.1 Switching Function Level Information
	6.6.2 Device Level Information
	6.6.3 Call Level Information

	6.7 Status Reporting Services
	6.7.1 System Status
	6.7.2 Monitoring
	6.7.3 Snapshot Services

	6.8 Additional Services, Features & Behaviour
	6.8.1 Forwarding
	6.8.2 Connection Failure
	6.8.3 Recall
	6.8.4 Call Back
	6.8.5 External Calls
	6.8.6 Tracking a Diverted Call
	6.8.7 Media Stream Access
	6.8.8 Routeing Services
	6.8.9 Device Maintenance
	6.8.10 Prompting
	6.8.11 Telephony Tones Features
	6.8.12 DTMF and Rotary Pulse Digits Features
	6.8.13 Data Collection Services

	7 Association Establishment
	7.1 Implicit Association
	7.2 Explicit Association

	8 Security Service
	9 Generic Service Requirements
	9.1 Service Request
	9.2 Service Response (Acknowledgements)
	9.2.1 Positive Acknowledgement Models
	9.2.2 Negative Acknowledgement

	9.3 Diagnostic Error Definitions
	9.3.1 Error Categories
	9.3.2 Error Values

	9.4 Vendor Specific Extensions
	9.4.1 Private Data
	9.4.2 Escape Services and Private Event

	9.5 General Services and Event Functional Requirem...
	9.5.1 Services
	9.5.2 Events

	10 CSTA Device Identifier Formats
	10.1 Device Identifier Formats
	10.1.1 Diallable Digits
	10.1.2 Switching Function Representation
	10.1.3 Device Number

	10.2 Functional Requirements

	11 Template Descriptions
	11.1 Service Template
	11.1.1 Service Description
	11.1.2 Service Request
	11.1.3 Service Response
	11.1.4 Operational Model

	11.2 Event Template
	11.2.1 Event Description
	11.2.2 Event Parameters
	11.2.3 Event Causes
	11.2.4 Functional Requirements

	11.3 Parameter Type Template
	11.3.1 Parameter Type Description
	11.3.2 Format
	11.3.3 Functional Requirements

	12 Parameter Types
	12.1 Definitions
	12.2 Defined Parameter Types
	12.2.1 AccountInfo
	12.2.2 AgentPassword
	12.2.3 AuthCode
	12.2.4 CallCharacteristics
	12.2.5 CallQualifyingData
	12.2.6 ChargingInfo
	12.2.7 ConnectionInformation
	12.2.8 ConnectionList
	12.2.9 CorrelatorData
	12.2.10 CSTAPrivateData
	12.2.11 CSTASecurityData
	12.2.12 ErrorValue
	12.2.13 EventCause
	12.2.14 LocalConnectionState
	12.2.15 MediaCallCharacteristics
	12.2.16 MediaServiceType
	12.2.17 MonitorFilter
	12.2.18 ServicesPermitted
	12.2.19 SimpleCallState
	12.2.20 SystemStatus
	12.2.21 TimeInfo
	12.2.22 UserData

	12.3 Identifier Parameter Types
	12.3.1 AgentID
	12.3.2 AssociatedCalledDeviceID
	12.3.3 AssociatedCallingDeviceID
	12.3.4 AuditoryApparatusID
	12.3.5 ButtonID
	12.3.6 CalledDeviceID
	12.3.7 CallingDeviceID
	12.3.8 CDRCrossRefID
	12.3.9 ConnectionID
	12.3.10 DCollCrossRefID
	12.3.11 DeviceID
	12.3.12 DisplayID
	12.3.13 EscapeRegisterID
	12.3.14 HookswitchID
	12.3.15 IOCrossRefID
	12.3.16 IORegisterReqID
	12.3.17 LampID
	12.3.18 MediaServiceInstanceID
	12.3.19 MediaStreamID
	12.3.20 MessageID
	12.3.21 MonitorCrossRefID
	12.3.22 NetworkCalledDeviceID
	12.3.23 NetworkCallingDeviceID
	12.3.24 RedirectionDeviceID
	12.3.25 RingerID
	12.3.26 RouteingCrossRefID
	12.3.27 RouteRegisterReqID
	12.3.28 ServiceCrossRefID
	12.3.29 SubjectDeviceID
	12.3.30 SysStatRegisterID

	13 Capability Exchange Services
	13.1 Services
	13.1.1 Get Logical Device Information
	13.1.2 Get Physical Device Information
	13.1.3 Get Switching Function Capabilities
	13.1.4 Get Switching Function Devices
	13.1.5 Switching Function Devices

	14 System Services
	14.1 Registration Services
	14.1.1 Change System Status Filter
	14.1.2 System Register
	14.1.3 System Register Abort
	14.1.4 System Register Cancel

	14.2 Services
	14.2.1 Request System Status
	14.2.2 System Status
	14.2.3 Switching Function Capabilities Changed
	14.2.4 Switching Function Devices Changed

	15 Monitoring Services
	15.1 Services
	15.1.1 Change Monitor Filter
	15.1.2 Monitor Start
	15.1.3 Monitor Stop

	16 Snapshot Services
	16.1 Services
	16.1.1 Snapshot Call
	16.1.2 Snapshot Device
	16.1.3 Snapshot CallData
	16.1.4 Snapshot DeviceData

