Standard ECMA-262

3'Y Edition - December 1999

ECMA

Standardizing Information and Communication Systems

ECMAScript Language
Specification

Phone: +41 22 849.60.00 - Fax: +41 22 849.60.01 - URL: http://www.ecma.ch - Internet: helpdesk@ecma.ch

Standard ECMA-262

3'Y Edition - December 1999

ECMA

Standardizing Information and Communication Systems

ECMAScript Language
Specification

Phone: +41 22 849.60.00 - Fax: +41 22 849.60.01 - URL: http://www.ecma.ch - Internet: helpdesk@ecma.ch
MB Ecma-262.doc 08-04-02 16,53

Brief History

This ECMA Standard is based on several originating technologies, the most well known being JavaScript (Netscape)
and JScript (Microsoft). The language was invented by Brendan Eich at Netscape and first appeared in that
company’s Navigator 2.0 browser. It has appeared in all subsequent browsers from Netscape and in all browsers from
Microsoft starting with Internet Explorer 3.0.

The development of this Standard started in November 1996. The first edition of this ECMA Standard was adopted by
the ECMA General Assembly of June 1997.

That ECMA Standard was submitted to ISO/IEC JTC 1 for adoption under the fast-track procedure, and approved as
international standard 1SO/IEC 16262, in April 1998. The ECMA General Assembly of June 1998 approved the
second edition of ECMA-262 to keep it fully aligned with ISO/IEC 16262. Changes between the first and the second
edition are editorial in nature.

The current document defines the third edition of the Standard and includes powerful regular expressions, better
string handling, new control statements, try/catch exception handling, tighter definition of errors, formatting for
numeric output and minor changes in anticipation of forthcoming internationalisation facilities and future language
growth.

Work on the language is not complete. The technical committee is working on significant enhancements, including
mechanisms for scripts to be created and used across the Internet, and tighter coordination with other standards bodies
such as groups within the World Wide Web Consortium and the Wireless Application Protocol Forum.

This Standard has been adopted as 3rd Edition of ECMA-262 by the ECMA General Assembly in December, 1999.

4

5

Scope

Conformance

References

Overview

4.1 Web Scripting
4.2 Language Overview

4.2.1 Objects
4.3 Definitions
4.3.1 Type
4.3.2 Primitive Value
4.3.3 Object
4.3.4 Constructor
4.3.5 Prototype
4.3.6 Native Object
4.3.7 Built-in Object
4.3.8 Host Object
4.3.9 Undefined Value
4.3.10 Undefined Type
4.3.11 Null Value
4.3.12 Null Type
4.3.13 Boolean Value
4.3.14 Boolean Type
4.3.15 Boolean Object
4.3.16 String Value
4.3.17 String Type
4.3.18 String Object
4.3.19 Number Value
4.3.20 Number Type
4.3.21 Number Object
4.3.22 Infinity
4.3.23 NaN
Notational Conventions
5.1 Syntactic and Lexical Grammars
51.1 Context-Free Grammars
5.1.2
513
5.1.4 The Syntactic Grammar
5.1.5 Grammar Notation

5.2 Algorithm Conventions

Table of contents

The Lexical and RegExp Grammars

The Numeric String Grammar

Sour ce Text

L exical Conventions

7.1 Unicode Format-Control Characters

7.2 White Space
7.3 Line Terminators
7.4 Comments

QUOUOUUOUORNRMBEARARNMADNANARNDNDNDN N WNN P

© NOOOoOOOoO O O

10

11

11
11
12
12

7.5

7.5.1
7.5.2
7.5.3

7.6
7.7
7.8

7.8.1
7.8.2
7.8.3
7.8.4
7.8.5

7.9

7.9.1
7.9.2

8.1
8.2
8.3
8.4
8.5
8.6

8.6.1
8.6.2

8.7

8.7.1
8.7.2

8.8
8.9

9.1
9.2
9.3

9.3.1

9.4
9.5
9.6
9.7
9.8

9.8.1
9.9

10
10.1

10.1.
10.1.
10.1.
10.1.
10.1.
10.1.

Tokens

Reserved Words
Keywords
Future Reserved Words

Identifiers
Punctuators
Literals
Null Literals
Boolean Literals
Numeric Literals
String Literals
Regular Expression Literals

Automatic Semicolon Insertion

Rules of Automatic Semicolon Insertion

Examples of Automatic Semicolon Insertion

Types
The Undefined Type
The Null Type
The Boolean Type
The String Type
The Number Type
The Object Type
Property Attributes
Internal Properties and Methods

The Reference Type

GetValue (V)
PutValue (V, W)

The List Type
The Completion Type

Type Conversion
ToPrimitive
ToBoolean
ToNumber

ToNumber Applied to the String Type
Tolnteger
Tolnt32: (Signed 32 Bit Integer)
ToUint32: (Unsigned 32 Bit Integer)
ToUint16: (Unsigned 16 Bit Integer)
ToString

ToString Applied to the Number Type

ToObject

Execution Contexts
Definitions

1 Function Objects

2 Types of Executable Code

3 Variable Instantiation

4 Scope Chain and Identifier Resolution
5 Global Object

6 Activation Object

13

13
13
14

14
15
16

16
16
16
18
20

21

21
22

24

24
24
24
24
24
25

25
26
29
29
29

30
30

30

30
30
31

31

34
34
34
35
35

35
36

37
37

37
37
37
38
38
38

10.1.7 This
10.1.8 Arguments Object
10.2 Entering An Execution Context
10.2.1 Global Code
10.2.2 Eval Code
10.2.3 Function Code
11 Expressions
11.1 Primary Expressions
11.1.1 Thet hi s Keyword
11.1.2 ldentifier Reference
11.1.3 Literal Reference
11.1.4 Array Initialiser
11.1.5 Object Initialiser
11.1.6 The Grouping Operator
11.2 Left-Hand-Side Expressions
11.2.1 Property Accessors
11.2.2 The new Operator
11.2.3 Function Calls
11.2.4 Argument Lists
11.2.5 Function Expressions
11.3 Postfix Expressions
11.31 Postfix Increment Operator
11.3.2 Postfix Decrement Operator
114 Unary Operators
11.4.1 Thedel et e Operator
11.4.2 Thevoi d Operator
11.4.3 Thetypeof Operator
11.4.4 Prefix Increment Operator
11.4.5 Prefix Decrement Operator
11.4.6 Unary + Operator
11.4.7 Unary - Operator
11.4.8 Bitwise NOT Operator (~)
11.4.9 Logical NOT Operator (!)
11.5 Multiplicative Operators
11.5.1 Applying the * Operator
11.5.2 Applying the/ Operator
11.5.3 Applying the %Operator
11.6 Additive Operators
11.6.1 The Addition operator (+)
11.6.2 The Subtraction Operator (-)
11.6.3 Applying the Additive Operators (+, -) to Numbers
11.7 Bitwise Shift Operators
11.7.1 The Left Shift Operator (<<)
11.7.2 The Signed Right Shift Operator (>>)
11.7.3 The Unsigned Right Shift Operator (>>>)
11.4 Relational Operators
11.8.1 The Less-than Operator (<)
11.8.2 The Greater-than Operator (>)
11.8.3 The Less-than-or-equal Operator (<=)
11.8.4 The Greater-than-or-equal Operator (>=)
11.8.5 The Abstract Relational Comparison Algorithm

39
39

39

39
39
39

40
40

40
40
40
40
41
42

43

43
44
44
45
45

45

45
45

46

46
46
46
47
a7
47
47
48
48

48

48
49
49

50

50
50
51

51

51
51
52

52

53
53
53
53
53

-jv -

11.8.6 The instanceof operator
11.8.7 Thein operator

11.9 Equality Operators

11.9.1 The Equals Operator (==

11.9.2 The Does-not-equals Operator (! =)

11.9.3 The Abstract Equality Comparison Algorithm
11.9.4 The Strict Equals Operator (===

11.9.5 The Strict Does-not-equal Operator (! ==)
11.9.6 The Strict Equality Comparison Algorithm

11.10 Binary Bitwise Operators
11.11 Binary Logical Operators

11.12 Conditional Operator (?:)
11.13 Assignment Operators

11.13.1 Simple Assignment (=)
11.13.2 Compound Assignment (op=)

11.14 Comma Operator (,)

12 Statements

12.1 Block

12.2 Variable statement
12.3 Empty Statement
12.4 Expression Statement
12.5 Thei f Statement
12.6 Iteration Statements

12.6.1 The do-whi | e Statement
12.6.2 The whi | e statement
12.6.3 Thef or Statement
12.6.4 The f or -i n Statement

12.7 The cont i nue Statement
12.8 The br eak Statement
12.9 Ther et ur n Statement
12.10 Thewi t h Statement
12.11 Theswi t ch Statement
12.12 Labelled Statements
12.13 Thet hr ow statement
12.14 Thet ry statement

13 Function Definition
13.1 Definitions

13.1.1 Equated Grammar Productions
13.1.2 Joined Objects

13.2 Creating Function Objects

13.2.1 [[Cdl]]
13.2.2 [[Construct]]

14 Program

15 Native ECMAScript Objects
15.1 The Global Object

15.1.1 Value Properties of the Global Object
15.1.2 Function Properties of the Global Object
15.1.3 URI Handling Function Properties

54
54

54

55
55
55
56
56
56

57

58
58
59

59
60

60

61

61
62
63
63
63
64

64
64
65
65
66
67
67
67
68
69
69
70

71
72

72
72

72

73
74

75

76
76

77
77
78

15.1.4
15.1.5

15.2

15.2.1
15.2.2
15.2.3
15.2.4
15.2.5

15.3

15.3.1
15.3.2
15.3.3
15.3.4
15.3.5

15.4

15.4.1
15.4.2
15.4.3
15.4.4
15.4.5

15.5

1551
15.5.2
15.5.3
1554
15.5.5

15.6

15.6.1
15.6.2
15.6.3
15.6.4
15.6.5

15.7

15.7.1
15.7.2
15.7.3
15.7.4
15.7.5

15.8

15.8.1
15.8.2

15.9

15.9.1
15.9.2
15.9.3
15.9.4
15.9.5
15.9.6

15.10

15.10.1
15.10.2
15.10.3
15.10.4

Constructor Properties of the Global Object
Other Properties of the Global Object

Object Objects

The Object Constructor Called as a Function
The Object Constructor

Properties of the Object Constructor
Properties of the Object Prototype Object
Properties of Object Instances

Function Objects

The Function Constructor Called as a Function
The Function Constructor

Properties of the Function Constructor
Properties of the Function Prototype Object
Properties of Function Instances

Array Objects

The Array Constructor Called as a Function
The Array Constructor

Properties of the Array Constructor
Properties of the Array Prototype Object
Properties of Array Instances

String Objects

The String Constructor Called as a Function
The String Constructor

Properties of the String Constructor
Properties of the String Prototype Object
Properties of String Instances

Boolean Objects

The Boolean Constructor Called as a Function
The Boolean Constructor
Properties of the Boolean Constructor
Properties of the Boolean Prototype Object
Properties of Boolean Instances

Number Objects
The Number Constructor Called as a Function
The Number Constructor
Properties of the Number Constructor
Properties of the Number Prototype Object
Properties of Number Instances

The Math Object
Value Properties of the Math Object
Function Properties of the Math Object

Date Objects

Overview of Date Objects and Definitions of Internal Operators

The Date Constructor Called as a Function
The Date Constructor

Properties of the Date Constructor
Properties of the Date Prototype Object
Properties of Date I nstances

RegExp (Regular Expression) Objects
Patterns
Pattern Semantics

The RegExp Constructor Called as a Function
The RegExp Constructor

83
83

83

83
84
84
84
85

85

85
86
86
86
87

88

88
88
89
89
97

98

98
98
98
98
106

106

106
106
107
107
107

107

107
107
108
108
112

112

112
113

117

117
121
121
122
123
129

129

129
131
143
143

15.10.5
15.10.6
15.10.7

15.11

15.11.1
15.11.2
15.11.3
15.11.4
15.11.5
15.11.6
15.11.7

16 Er

Annex A

Annex B

- Vi

Properties of the RegExp Constructor
Properties of the RegExp Prototype Object
Properties of RegExp Instances

Error Objects

The Error Constructor Called as a Function
The Error Constructor

Properties of the Error Constructor
Properties of the Error Prototype Object
Properties of Error Instances

Native Error Types Used in This Standard
NativeError Object Structure

rors
- Grammar Summary

- Compatibility

144
144
145

146

146
146
146
146
147
147
147

149

151

169

Scope
This Standard defines the ECMA Script scripting language.

Conformance

A conforming implementation of ECMAScript must provide and support all the types, values, objects,
properties, functions, and program syntax and semantics described in this specification.

A conforming implementation of this International standard shall interpret characters in conformance with the
Unicode Standard, Version 2.1 or later, and I1SO/IEC 10646-1 with either UCS-2 or UTF-16 as the adopted
encoding form, implementation level 3. If the adopted | SO/IEC 10646-1 subset is not otherwise specified, it is
presumed to be the BMP subset, collection 300. If the adopted encoding form is not otherwise specified, it
presumed to be the UTF-16 encoding form.

A conforming implementation of ECMAScript is permitted to provide additional types, values, objects,
properties, and functions beyond those described in this specification. In particular, a conforming
implementation of ECMAScript is permitted to provide properties not described in this specification, and
values for those properties, for objects that are described in this specification.

A conforming implementation of ECMAScript is permitted to support program and regular expression syntax
not described in this specification. In particular, a conforming implementation of ECMAScript is permitted to
support program syntax that makes use of the “future reserved words” listed in 7.5.3 of this specification.

References
I SO/IEC 9899:1996 Programming Languages — C, including amendment 1 and technical corrigenda 1 and 2.

ISO/IEC 10646-1:1993 Information Technology -- Universal Multiple-Octet Coded Character Set (UCS) plus
its amendments and corrigenda.

Unicode Inc. (1996), The Unicode Standard”, Version 2.0. ISBN: 0-201-48345-9, Addison-Wesley
Publishing Co., Menlo Park, California.

Unicode Inc. (1998), Unicode Technical Report #8: The Unicode Standard”, Version 2.1.
Unicode Inc. (1998), Unicode Technical Report #15: Unicode Normalization Forms.

ANSI/IEEE Std 754-1985: IEEE Standard for Binary Floating-Point Arithmetic. Institute of Electrical and
Electronic Engineers, New Y ork (1985).

Overview
This section contains a non-normative overview of the ECMA Script language.

ECMAScript is an object-oriented programming language for performing computations and manipulating
computational objects within a host environment. ECMAScript as defined here is not intended to be
computationally self-sufficient; indeed, there are no provisions in this specification for input of external data
or output of computed results. Instead, it is expected that the computational environment of an ECMA Script
program will provide not only the objects and other facilities described in this specification but also certain
environment-specific host objects, whose description and behaviour are beyond the scope of this specification
except to indicate that they may provide certain properties that can be accessed and certain functions that can
be called from an ECMA Script program.

A scripting language is a programming language that is used to manipulate, customise, and automate the
facilities of an existing system. In such systems, useful functionality is already available through a user
interface, and the scripting language is a mechanism for exposing that functionality to program control. In this
way, the existing system is said to provide a host environment of objects and facilities, which completes the
capabilities of the scripting language. A scripting language is intended for use by both professional and non-
professional programmers. To accommodate non-professional programmers, some aspects of the language
may be somewhat less strict.

4.1

4.2

ECMAScript was originally designed to be a Web scripting language, providing a mechanism to enliven Web
pages in browsers and to perform server computation as part of a Web-based client-server architecture.
ECMAScript can provide core scripting capabilities for a variety of host environments, and therefore the core
scripting language is specified in this document apart from any particular host environment.

Some of the facilities of ECMAScript are similar to those used in other programming languages; in particular
Java™ and Self, as described in:

Gosling, James, Bill Joy and Guy Steele. The Java” Language Specification. Addison Wesley Publishing
Co., 1996.

Ungar, David, and Smith, Randall B. Self: The Power of Simplicity. OOPSLA '87 Conference
Proceedings, pp. 227-241, Orlando, FL, October 1987.

Web Scripting

A web browser provides an ECMAScript host environment for client-side computation including, for
instance, objects that represent windows, menus, pop-ups, dialog boxes, text areas, anchors, frames,
history, cookies, and input/output. Further, the host environment provides a means to attach scripting code
to events such as change of focus, page and image loading, unloading, error and abort, selection, form
submission, and mouse actions. Scripting code appears within the HTML and the displayed page is a
combination of user interface elements and fixed and computed text and images. The scripting code is
reactive to user interaction and there is no need for a main program.

A web server provides a different host environment for server-side computation including objects
representing requests, clients, and files; and mechanisms to lock and share data. By using browser-side and
server-side scripting together, it is possible to distribute computation between the client and server while
providing a customised user interface for a Web-based application.

Each Web browser and server that supports ECMAScript supplies its own host environment, completing
the ECM A Script execution environment.

Language Overview

The following is an informal overview of ECMAScript—not all parts of the language are described. This
overview is not part of the standard proper.

ECMAScript is object-based: basic language and host facilities are provided by objects, and an
ECMAScript program is a cluster of communicating objects. An ECMAScript object is an unordered
collection of properties each with zero or more attributes that determine how each property can be used—
for example, when the ReadOnly attribute for a property is set to true, any attempt by executed
ECMAScript code to change the value of the property has no effect. Properties are containers that hold
other objects, primitive values, or methods. A primitive value is a member of one of the following built-in
types: Undefined, Null, Boolean, Number, and String; an object is a member of the remaining built-in
type Object; and a method is a function associated with an object via a property.

ECMAScript defines a collection of built-in objects that round out the definition of ECMAScript entities.
These built-in objects include the Global object, the Object object, the Function object, the Array object,
the String object, the Boolean object, the Number object, the Math object, the Date object, the RegExp
object and the Error objects Error, EvalError, RangeError, ReferenceError, SyntaxError, TypeError
and URIError.

ECMAScript also defines a set of built-in operators that may not be, strictly speaking, functions or
methods. ECMAScript operators include various unary operations, multiplicative operators, additive
operators, bitwise shift operators, relational operators, equality operators, binary bitwise operators, binary
logical operators, assignment operators, and the comma operator.

ECMAScript syntax intentionally resembles Java syntax. ECMAScript syntax is relaxed to enable it to
serve as an easy-to-use scripting language. For example, a variable is not required to have its type declared
nor are types associated with properties, and defined functions are not required to have their declarations
appear textually before calls to them.

4.2.1

Objects

ECMAScript does not contain proper classes such as those in C++, Smalltalk, or Java, but rather,
supports constructors which create objects by executing code that allocates storage for the objects and
initialises all or part of them by assigning initial values to their properties. All constructors are objects,
but not all objects are constructors. Each constructor has a Prototype property that is used to implement
prototype-based inheritance and shared properties. Objects are created by using constructors in new
expressions; for example, new String("A String") creates a new String object. Invoking a
constructor without using new has consequences that depend on the constructor. For example,
String("A String") produces a primitive string, not an object.

ECMAScript supports prototype-based inheritance. Every constructor has an associated prototype, and
every object created by that constructor has an implicit reference to the prototype (called the object’s
prototype) associated with its constructor. Furthermore, a prototype may have a non-null implicit
reference to its prototype, and so on; this is called the prototype chain. When a reference is made to a
property in an object, that reference is to the property of that name in the first object in the prototype
chain that contains a property of that name. In other words, first the object mentioned directly is
examined for such a property; if that object contains the named property, that is the property to which
the reference refers; if that object does not contain the named property, the prototype for that object is
examined next; and so on.

In a class-based object-oriented language, in general, state is carried by instances, methods are carried
by classes, and inheritance is only of structure and behaviour. In ECMAScript, the state and methods are
carried by objects, and structure, behaviour, and state are all inherited.

All objects that do not directly contain a particular property that their prototype contains share that
property and its value. The following diagram illustrates this:

P -
CF implicit prototype link
pr ot ot ype ™ cfy | ; >
P1 CFP1 explicit prototype link
P
TR
Cfl sz Cf3 Cf4 ' Cf5
ql gl ql ql ql
g2 g2 g2 g2 q2

CF is a constructor (and also an object). Five objects have been created by using new expressions: cfy,
cf,, cfs, cfy, and cfs. Each of these objects contains properties named gl and g2. The dashed lines
represent the implicit prototype relationship; so, for example, cfs's prototype is CF,. The constructor,
CF, has two properties itself, named P1 and P2, which are not visible to CF,, cfy, cf,, cfs, cf,, or cfs. The
property named CFP1 in CF, is shared by cf;, cf,, cfs, cf,, and cfs (but not by CF), as are any properties
found in CFp’s implicit prototype chain that are not named g1, g2, or CFP1. Notice that there is no
implicit prototype link between CF and CF,.

Unlike class-based object languages, properties can be added to objects dynamically by assigning values
to them. That is, constructors are not required to name or assign values to all or any of the constructed
object’s properties. In the above diagram, one could add a new shared property for cf,, cf,, cfs, cfs, and
cfs by assigning a new value to the property in CF,.

4.3

4.3.1

4.3.2

4.3.3

4.3.4

4.3.5

4.3.6

4.3.7

4.3.8

4.3.9

4.3.10

4.3.11

4.3.12

4.3.13

4.3.14

Definitions
The following are informal definitions of key terms associated with ECMA Script.

Type

A typeis aset of data values.

Primitive Value

A primitive value is a member of one of the types Undefined, Null, Boolean, Number, or String. A
primitive value is a datum that is represented directly at the lowest level of the language implementation.
Object

An object is a member of the type Object. It is an unordered collection of properties each of which
contains a primitive value, object, or function. A function stored in a property of an object is called a
method.

Constructor

A constructor is a Function object that creates and initialises objects. Each constructor has an associated
prototype object that is used to implement inheritance and shared properties.

Prototype

A prototype is an object used to implement structure, state, and behaviour inheritance in ECMA Script.
When a constructor creates an object, that object implicitly references the constructor’s associated
prototype for the purpose of resolving property references. The constructor’s associated prototype can be
referenced by the program expression const r uct or . pr ot ot ype, and properties added to an object’s
prototype are shared, through inheritance, by all objects sharing the prototype.

Native Object

A native object is any object supplied by an ECMAScript implementation independent of the host
environment. Standard native objects are defined in this specification. Some native objects are built-in;
others may be constructed during the course of execution of an ECMA Script program.

Built-in Object
A built-in object is any object supplied by an ECMAScript implementation, independent of the host
environment, which is present at the start of the execution of an ECMA Script program. Standard built-in

objects are defined in this specification, and an ECMAScript implementation may specify and define
others. Every built-in object is a native object.

Host Object

A host object is any object supplied by the host environment to complete the execution environment of
ECMAScript. Any object that is not native is a host object.

Undefined Value

The undefined value is a primitive value used when a variable has not been assigned a value.
Undefined Type

The type Undefined has exactly one value, called undefined.

Null Value

The null value is a primitive value that represents the null, empty, or non-existent reference.
Null Type

The type Null has exactly one value, called null.

Boolean Value

A boolean value is a member of the type Boolean and is one of two unique values, true and false.
Boolean Type

The type Boolean represents a logical entity and consists of exactly two unique values. One is called
true and the other is called false.

4.3.15

4.3.16

4.3.17

4.3.18

4.3.19

4.3.20

4.3.21

4.3.22

4.3.23

Boolean Object

A Boolean object is a member of the type Object and is an instance of the built-in Boolean object. That
is, a Boolean object is created by using the Boolean constructor in a new expression, supplying a
boolean as an argument. The resulting object has an implicit (unnamed) property that is the boolean. A
Boolean object can be coerced to a boolean value.

String Value

A string value is a member of the type String and is a finite ordered sequence of zero or more 16-bit
unsigned integer values.

NOTE

Although each value usually represents a single 16-bit unit of UTF-16 text, the language does not place
any restrictions or requirements on the values except that they be 16-bit unsigned integers.

String Type

The type String is the set of all string values.

String Object

A String object is a member of the type Object and is an instance of the built-in String object. That is, a
String object is created by using the String constructor in a new expression, supplying a string as an
argument. The resulting object has an implicit (unnamed) property that is the string. A String object can
be coerced to a string value by calling the String constructor as a function (15.5.1).

Number Value

A number value is a member of the type Number and is a direct representation of a number.

Number Type

The type Number is a set of values representing numbers. In ECMA Script, the set of values represents
the double-precision 64-bit format |EEE 754 values including the special “Not-a-Number” (NaN) values,
positive infinity, and negative infinity.

Number Object

A Number object is a member of the type Object and is an instance of the built-in Number object. That
is, a Number object is created by using the Number constructor in a new expression, supplying a number

as an argument. The resulting object has an implicit (unnamed) property that is the number. A Number
object can be coerced to a number value by calling the Number constructor as a function (15.7.1).

Infinity

The primitive value Infinity represents the positive infinite number value. This value is a member of the
Number type.

NaN

The primitive value NaN represents the set of |IEEE Standard “Not-a-Number” values. This value is a
member of the Number type.

5

51

51.1

51.2

513

51.4

Notational Conventions

Syntactic and Lexical Grammars

This section describes the context-free grammars used in this specification to define the lexical and
syntactic structure of an ECMA Script program.

Context-Free Grammars

A context-free grammar consists of a number of productions. Each production has an abstract symbol
called a nonterminal as its left-hand side, and a sequence of zero or more nonterminal and terminal
symbols as its right-hand side. For each grammar, the terminal symbols are drawn from a specified
alphabet.

Starting from a sentence consisting of a single distinguished nonterminal, called the goal symbol, a given
context-free grammar specifies a language, namely, the (perhaps infinite) set of possible sequences of
terminal symbols that can result from repeatedly replacing any nonterminal in the sequence with a right-
hand side of a production for which the nonterminal is the left-hand side.

The Lexical and RegeExp Grammars

A lexical grammar for ECMAScript is given in clause 7. This grammar has as its terminal symbols the
characters of the Unicode character set. It defines a set of productions, starting from the goal symbol
InputElementDiv or InputElementRegExp, that describe how sequences of Unicode characters are
translated into a sequence of input elements.

Input elements other than white space and comments form the terminal symbols for the syntactic
grammar for ECMAScript and are called ECMAScript tokens. These tokens are the reserved words,
identifiers, literals, and punctuators of the ECMA Script language. Moreover, line terminators, although
not considered to be tokens, also become part of the stream of input elements and guide the process of
automatic semicolon insertion (7.8.5). Simple white space and single-line comments are discarded and
do not appear in the stream of input elements for the syntactic grammar. A MultiLineComment (that is, a
comment of the form “/ * ...*/” regardless of whether it spans more than one line) is likewise simply
discarded if it contains no line terminator; but if a MultiLineComment contains one or more line
terminators, then it is replaced by a single line terminator, which becomes part of the stream of input
elements for the syntactic grammar.

A RegExp grammar for ECMAScript is given in 15.10. This grammar also has as its terminal symbols
the characters of the Unicode character set. It defines a set of productions, starting from the goal symbol
Pattern, that describe how sequences of Unicode characters are translated into regular expression
patterns.

Productions of the lexical and RegExp grammars are distinguished by having two colons “:: " as
separating punctuation. The lexical and RegExp grammars share some productions.

The Numeric String Grammar

A second grammar is used for translating strings into numeric values. This grammar is similar to the part
of the lexical grammar having to do with numeric literals and has as its terminal symbols the characters
of the Unicode character set. This grammar appearsin 9.3.1.

Productions of the numeric string grammar are distinguished by having three colons “:::" as
punctuation.

The Syntactic Grammar

The syntactic grammar for ECMAScript is given in clauses 11, 12, 13 and 14. This grammar has
ECMAScript tokens defined by the lexical grammar as its terminal symbols (5.1.2). It defines a set of
productions, starting from the goal symbol Program, that describe how sequences of tokens can form
syntactically correct ECMA Script programs.

When a stream of Unicode characters is to be parsed as an ECMAScript program, it is first converted to
a stream of input elements by repeated application of the lexical grammar; this stream of input elements
is then parsed by a single application of the syntax grammar. The program is syntactically in error if the
tokens in the stream of input elements cannot be parsed as a single instance of the goal nonterminal
Program, with no tokens left over.

5.1.5

Productions of the syntactic grammar are distinguished by having just one colon “: " as punctuation.

The syntactic grammar as presented in sections 0, 0, 0 and 0O is actually not a complete account of which
token sequences are accepted as correct ECMAScript programs. Certain additional token sequences are
also accepted, namely, those that would be described by the grammar if only semicolons were added to
the sequence in certain places (such as before line terminator characters). Furthermore, certain token
sequences that are described by the grammar are not considered acceptable if a terminator character
appears in certain “awkward” places.

Grammar Notation

Terminal symbols of the lexical and string grammars, and some of the terminal symbols of the syntactic
grammar, are shown in fi xed wi dt h font, both in the productions of the grammars and throughout
this specification whenever the text directly refers to such a terminal symbol. These are to appear in a
program exactly as written. All nonterminal characters specified in this way are to be understood as the
appropriate Unicode character from the ASCII range, as opposed to any similar-looking characters from
other Unicode ranges.

Nonterminal symbols are shown in italic type. The definition of a nonterminal is introduced by the name
of the nonterminal being defined followed by one or more colons. (The number of colons indicates to
which grammar the production belongs.) One or more alternative right-hand sides for the nonterminal
then follow on succeeding lines. For example, the syntactic definition:

WithSatement :

wi t h (Expression) Satement

states that the nonterminal WithStatement represents the token wi t h, followed by a left parenthesis
token, followed by an Expression, followed by a right parenthesis token, followed by a Statement. The
occurrences of Expression and Statement are themselves nonterminals. As another example, the syntactic
definition:

ArgumentList :

AssignmentExpression
ArgumentList , AssignmentExpression

states that an ArgumentList may represent either a single AssignmentExpression or an ArgumentList,
followed by a comma, followed by an AssignmentExpression. This definition of ArgumentList is
recursive, that is, it is defined in terms of itself. The result is that an ArgumentList may contain any
positive number of arguments, separated by commas, where each argument expression is an
AssignmentExpression. Such recursive definitions of nonterminals are common.

The subscripted suffix “opt”, which may appear after a terminal or nonterminal, indicates an optional
symbol. The alternative containing the optional symbol actually specifies two right-hand sides, one that
omits the optional element and one that includes it. This means that:

VariableDeclaration :

Identifier Initialiser gy

is aconvenient abbreviation for:

VariableDeclaration :

Identifier
Identifier Initialiser

and that:

IterationSatement :

for (ExpressionNolng ; Expressiony ; Expressiony) Statement

is a convenient abbreviation for:

IterationSatement :

for (; Expressiony ; Expressiony) Statement
for (ExpressionNoln ; Expression,: ; Expressiony) Statement

which in turn is an abbreviation for:

IterationStatement :

for (; ; Expressiony) Statement
for (; Expression ; Expressiony) Statement
for (ExpressionNoln ; ; Expressiony) Statement

for (ExpressonNoln ; Expression ; Expressiony) Statement

which in turn is an abbreviation for:

IterationStatement :

for (; ;) Satement

for (; ; Expression) Satement

for (; Expression ;) Satement

for (; Expression ; Expression) Satement

for (ExpressonNoln; ;) Satement

for (ExpressionNoln; ; Expression) Satement

for (ExpressionNoln; Expression ;) Satement

for (ExpressonNoln; Expression ; Expression) Satement

so the nonterminal IterationStatement actually has eight alternative right-hand sides.

If the phrase “[empty]” appears as the right-hand side of a production, it indicates that the production's
right-hand side contains no terminals or nonterminals.

If the phrase “[lookahead O set]” appears in the right-hand side of a production, it indicates that the
production may not be used if the immediately following input terminal is a member of the given set.
The set can be written as a list of terminals enclosed in curly braces. For convenience, the set can also be
written as a nonterminal, in which case it represents the set of all terminals to which that nonterminal
could expand. For example, given the definitions

DecimalDigit :: one of
0 1 2 3 45 6 7 8 9

DecimalDigits ::
Decimal Digit
Decimal Digits Decimal Digit

the definition

LookaheadExample ::
N [lookahead 0 {1, 3, 5, 7, 9}] DecimalDigits
Decimal Digit [lookahead 0 Decimal Digit]

matches either the letter n followed by one or more decimal digits the first of which is even, or a
decimal digit not followed by another decimal digit.

If the phrase “[no LineTerminator here]” appears in the right-hand side of a production of the syntactic
grammar, it indicates that the production is a restricted production: it may not be used if a
LineTerminator occurs in the input stream at the indicated position. For example, the production:

ReturnStatement :
return [nolLineTerminator here] EXPressiongy ;

indicates that the production may not be used if a LineTerminator occurs in the program between the
r et ur n token and the Expression.

Unless the presence of a LineTerminator is forbidden by a restricted production, any number of
occurrences of LineTerminator may appear between any two consecutive tokens in the stream of input
elements without affecting the syntactic acceptability of the program.

When the words “one of” follow the colon(s) in a grammar definition, they signify that each of the
terminal symbols on the following line or lines is an alternative definition. For example, the lexical
grammar for ECMA Script contains the production:

NonZeroDigit :: one of
1 2 3 4 5 6 7 8 9

which is merely a convenient abbreviation for:

NonZeroDigit :: one of

OCO~NOOUTAWNPE

When an alternative in a production of the lexical grammar or the numeric string grammar appears to be
a multi-character token, it represents the sequence of characters that would make up such a token.

The right-hand side of a production may specify that certain expansions are not permitted by using the
phrase “but not” and then indicating the expansions to be excluded. For example, the production:

Identifier ::
IdentifierName but not ReservedWord

means that the nonterminal Identifier may be replaced by any sequence of characters that could replace
IdentifierName provided that the same sequence of characters could not replace ReservedWord.

Finally, a few nonterminal symbols are described by a descriptive phrase in roman type in cases where it
would be impractical to list all the alternatives:

SourceCharacter ::
any Unicode character

Algorithm Conventions

The specification often uses a numbered list to specify steps in an algorithm. These algorithms are used to
clarify semantics. In practice, there may be more efficient algorithms available to implement a given
feature.

When an algorithm is to produce a value as a result, the directive “return x” is used to indicate that the
result of the algorithm is the value of x and that the algorithm should terminate. The notation Result(n) is
used as shorthand for “the result of step n”. Type(x) is used as shorthand for “the type of x".

Mathematical operations such as addition, subtraction, negation, multiplication, division, and the
mathematical functions defined later in this section should always be understood as computing exact
mathematical results on mathematical real numbers, which do not include infinities and do not include a
negative zero that is distinguished from positive zero. Algorithms in this standard that model floating-point
arithmetic include explicit steps, where necessary, to handle infinities and signed zero and to perform
rounding. If a mathematical operation or function is applied to a floating-point number, it should be
understood as being applied to the exact mathematical value represented by that floating-point number;
such a floating-point number must be finite, and if it is +0 or —0 then the corresponding mathematical value
issimply O.

The mathematical function abs(x) yields the absolute value of x, which is —x if x is negative (less than zero)
and otherwise is x itself.

The mathematical function sign(x) yields 1 if x is positive and -1 if x is negative. The sign function is not
used in this standard for cases when x is zero.

- 10 -

The notation “x modulo y” (y must be finite and nonzero) computes a value k of the same sign asy (or zero)
such that abs(k) < abs(y) and x-k = g x y for some integer q.

The mathematical function floor(x) yields the largest integer (closest to positive infinity) that is not larger
than x.

NOTE
floor(x) = x—=x modulo 1).

If an algorithm is defined to “throw an exception”, execution of the algorithm is terminated and no result is
returned. The calling algorithms are also terminated, until an algorithm step is reached that explicitly deals
with the exception, using terminology such as “If an exception was thrown...”. Once such an algorithm
step has been encountered the exception is no longer considered to have occurred.

Sour ce Text

ECMAScript source text is represented as a sequence of characters in the Unicode character encoding, version
2.1 or later, using the UTF-16 transformation format. The text is expected to have been normalised to
Unicode Normalised Form C (canonical composition), as described in Unicode Technical Report #15.
Conforming ECMA Script implementations are not required to perform any normalisation of text, or behave as
though they were performing normalisation of text, themselves.

SourceCharacter ::
any Unicode character

ECMAScript source text can contain any of the Unicode characters. All Unicode white space characters are
treated as white space, and all Unicode line/paragraph separators are treated as line separators. Non-Latin
Unicode characters are allowed in identifiers, string literals, regular expression literals and comments.

Throughout the rest of this document, the phrase “code point” and the word “character” will be used to refer
to a 16-bit unsigned value used to represent a single 16-bit unit of UTF-16 text. The phrase “Unicode
character” will be used to refer to the abstract linguistic or typographical unit represented by a single Unicode
scalar value (which may be longer than 16 bits and thus may be represented by more than one code point).
This only refers to entities represented by single Unicode scalar values. the components of a combining
character sequence are still individual “Unicode characters,” even though a user might think of the whole
sequence as a single character.

In string literals, regular expression literals and identifiers, any character (code point) may also be expressed
as a Unicode escape sequence consisting of six characters, namely \ u plus four hexadecimal digits. Within a
comment, such an escape sequence is effectively ignored as part of the comment. Within a string literal or
regular expression literal, the Unicode escape sequence contributes one character to the value of the literal.
Within an identifier, the escape sequence contributes one character to the identifier.

NOTE 1

Although this document sometimes refers to a “ transformation” between a “ character” within a “ string” and
the 16-bit unsigned integer that is the UTF-16 encoding of that character, there is actually no transformation
because a “ character” within a “ string” is actually represented using that 16-bit unsigned value.

NOTE 2

ECMAScript differs from the Java programming language in the behaviour of Unicode escape sequences. In a
Java program, if the Unicode escape sequence \ uO00A, for example, occurs within a single-line comment, it
is interpreted as a line terminator (Unicode character 000A is line feed) and therefore the next character is
not part of the comment. Similarly, if the Unicode escape sequence \ uO00A occurs within a string literal in a
Java program, it is likewise interpreted as a line terminator, which is not allowed within a string literal—one
must write \ n instead of \ uOOOA to cause a line feed to be part of the string value of a string literal. In an
ECMAScript program, a Unicode escape sequence occurring within a comment is never interpreted and
therefore cannot contribute to termination of the comment. Similarly, a Unicode escape sequence occurring
within a string literal in an ECMAScript program always contributes a character to the string value of the
literal and is never interpreted as a line terminator or as a quote mark that might terminate the string literal.

- 11 -

7 L exical Conventions
The source text of an ECMAScript program is first converted into a sequence of input elements, which are
either tokens, line terminators, comments, or white space. The source text is scanned from left to right,
repeatedly taking the longest possible sequence of characters as the next input element.
There are two goal symbols for the lexical grammar. The InputElementDiv symbol is used in those syntactic
grammar contexts where a division (/) or division-assignment (/=) operator is permitted. The
InputElementRegExp symbol is used in other syntactic grammar contexts.
Note that contexts exist in the syntactic grammar where both a division and a RegularExpressionLiteral are
permitted by the syntactic grammar; however, since the lexical grammar uses the InputElementDiv goal
symbol in such cases, the opening slash is not recognised as starting a regular expression literal in such a
context. As aworkaround, one may enclose the regular expression literal in parentheses.
Syntax
InputElementDiv ::
WhiteSpace
LineTerminator
Comment
Token

DivPunctuator

InputElementRegExp ::

7.1

7.2

WhiteSpace
LineTerminator
Comment

Token
RegularExpressionLiteral

Unicode Format-Control Characters

The Unicode format-control characters (i.e., the characters in category “Cf” in the Unicode Character
Database such as LEFT-TO-RIGHT MARK Or RIGHT-TO-LEFT MARK) are control codes used to control the
formatting of a range of text in the absence of higher-level protocols for this (such as mark-up languages).
It is useful to allow these in source text to facilitate editing and display.

The format control characters can occur anywhere in the source text of an ECMAScript program. These
characters are removed from the source text before applying the lexical grammar. Since these characters are
removed before processing string and regular expression literals, one must use a. Unicode escape sequence
(see 7.6) to include a Unicode format-control character inside a string or regular expression literal.

White Space

White space characters are used to improve source text readability and to separate tokens (indivisible
lexical units) from each other, but are otherwise insignificant. White space may occur between any two
tokens, and may occur within strings (where they are considered significant characters forming part of the
literal string value), but cannot appear within any other kind of token.

The following characters are considered to be white space:

Code Point Value Name Formal Name
\ u0009 Tab <TAB>
\ u000B Vertical Tab <VT>
\ u000C Form Feed <FF>
\ u0020 Space <SpP>
\ u00AQ No-break space <NBSP>
Other category “Zs” Any other Unicode <USP>
“ space separator”

- 12 -

Syntax
WhiteSpace ::
<TAB>
<VT>
<FF>
<S>
<NBSP>
<UsP>
7.3 Line Terminators
Like white space characters, line terminator characters are used to improve source text readability and to
separate tokens (indivisible lexical units) from each other. However, unlike white space characters, line
terminators have some influence over the behaviour of the syntactic grammar. In general, line terminators
may occur between any two tokens, but there are a few places where they are forbidden by the syntactic
grammar. A line terminator cannot occur within any token, not even a string. Line terminators also affect
the process of automatic semicolon insertion (7.8.5).
The following characters are considered to be line terminators:
Code Point Value Name Formal Name
\ u0O0OA Line Feed <LF>
\ u000D Carriage Return <CR>
\'u2028 Line separator <LS
\'u2029 Paragraph separator <PS>
Syntax
LineTerminator ::
<LF>
<CR>
<LS
<PS>
7.4 Comments
Description
Comments can be either single or multi-line. Multi-line comments cannot nest.
Because a single-line comment can contain any character except a LineTerminator character, and because
of the general rule that a token is always as long as possible, a single-line comment always consists of all
characters from the / / marker to the end of the line. However, the LineTerminator at the end of the line is
not considered to be part of the single-line comment; it is recognised separately by the lexical grammar and
becomes part of the stream of input elements for the syntactic grammar. This point is very important,
because it implies that the presence or absence of single-line comments does not affect the process of
automatic semicolon insertion (7.9).
Comments behave like white space and are discarded except that, if a MultiLineComment contains a line
terminator character, then the entire comment is considered to be a LineTerminator for purposes of parsing
by the syntactic grammar.
Syntax
Comment ::

MultiLineComment
SngleLineComment

- 13 -

MultiLineComment ::
/* MultiLineCommentChar sy * /

MultiLineCommentChars ::
MultiLineNotAsteriskChar MultiLineCommentChar sy
* PostAsteriskCommentChar Sy

PostAsteriskCommentChars ::
MultiLineNotForwardSashOrAsteriskChar MultiLineCommentChar Sy
* PostAsteriskCommentChar Sy

MultiLineNotAsteriskChar ::
SourceCharacter but not asterisk *

MultiLineNotForwardSashOrAsteriskChar ::
SourceCharacter but not forward-slash/ or asterisk *

SingleLineComment ::
/1 SingleLineCommentChar s,y

SngleLineCommentChars ::
SingleLineCommentChar SingleLineCommentChar s,

SingleLineCommentChar ::
SourceCharacter but not LineTerminator

7.5 Tokens
Syntax

Token ::
ReservedWord
Identifier
Punctuator
NumericLiteral
StringLiteral

7.5.1 Reserved Words
Description

Reserved words cannot be used as identifiers.

Syntax

ReservedWord ::

Keyword
FutureReservedWord
NullLiteral
BooleanLiteral

7.5.2 Keywords

The following tokens are ECMAScript keywords and may not be used as identifiers in ECMA Script
programs.

Syntax
Keyword ::

7.5.3

Syntax

- 14 -

one of
br eak el se new var
case finally return voi d
catch for swi tch whil e
conti nue function this W th
def aul t if t hr ow
del ete in try
do i nst anceof t ypeof

Future Reserved Words

The following words are used as keywords in proposed extensions and are therefore reserved to allow
for the possibility of future adoption of those extensions.

FutureReservedWord :: one of

7.6

Syntax

Identifier ::

abstract enum i nt short
bool ean export interface static
byt e ext ends | ong super
char final native synchroni zed
cl ass fl oat package t hr ows
const goto private transi ent
debugger i mpl enent s protected vol atile
doubl e i mport public

Identifiers

Description

Identifiers are interpreted according to the grammar given in Section 5.16 of the upcoming version 3.0 of
the Unicode standard, with some small modifications. This grammar is based on both normative and
informative character categories specified by the Unicode standard. The characters in the specified
categories in version 2.1 of the Unicode standard must be treated as in those categories by all conforming
ECMAScript implementations; however, conforming ECMA Script implementations may allow additional
legal identifier characters based on the category assignment from later versions of Unicode.

This standard specifies one departure from the grammar given in the Unicode standard: The dollar sign ($)
and the underscore () are permitted anywhere in an identifier. The dollar sign is intended for use only in
mechanically generated code.

Unicode escape sequences are also permitted in identifiers, where they contribute a single character to the
identifier, as computed by the CV of the UnicodeEscapeSequence (see 7.8.4). The \ preceding the
UnicodeEscapeSequence does not contribute a character to the identifier. A UnicodeEscapeSequence
cannot be used to put a character into an identifier that would otherwise be illegal. In other words, if a\
UnicodeEscapeSequence sequence were replaced by its UnicodeEscapeSequence's CV, the result must still
be avalid Identifier that has the exact same sequence of characters as the original Identifier.

Two identifiers that are canonically equivalent according to the Unicode standard are not equal unless they
are represented by the exact same sequence of code points (in other words, conforming ECMA Script
implementations are only required to do bitwise comparison on identifiers). The intent is that the incoming
source text has been converted to normalised form C before it reaches the compiler.

| dentifier Name but not ReservedWord

- 15 -

IdentifierName ::
Identifier Start
Identifier Name | dentifier Part

IdentifierSart ::
Unicodel etter
$

\ Uni codeEscapeSequence

IdentifierPart ::
Identifier Sart
UnicodeCombiningMark
UnicodeDigit
UnicodeConnector Punctuation
\ UnicodeEscapeSequence

Unicodel etter
any character in the Unicode categories “Uppercase letter (Lu)”, “Lowercase letter (LI)", “Titlecase letter (Lt)”,
“Modifier letter (Lm)”, “Other letter (Lo)”, or “Letter number (NI)”.

UnicodeCombiningMark
any character in the Unicode categories “Non-spacing mark (Mn)” or “Combining spacing mark (Mc)”

UnicodeDigit
any character in the Unicode category “Decimal number (Nd)”

UnicodeConnector Punctuation
any character in the Unicode category “Connector punctuation (Pc)

UnicodeEscapeSequence
see7.84.

HexDigit :: one of
0 1.2 3 456 7 8 9 ab c d e f A BCDEF

7.7 Punctuators
Syntax

Punctuator :: one of

{ } () []

; y < > <=
>= == | = === | ==
+ - * % ++ --
<< >> >>> & | A
! ~ && I ?
= += -= * = 7= <<=
>>= >>>= &= | = N=

DivPunctuator :: one of
/ /=

- 16 -

7.8 Literals
Syntax

Literal ::
NullLiteral
BooleanLiteral
NumericLiteral
SringLiteral

7.8.1 Null Literals

Syntax
NullLiteral ::
nul |
Semantics
The value of the null literal nul | isthe sole value of the Null type, namely null.
7.8.2 Boolean Literals
Syntax
BooleanLiteral ::
true
fal se
Semantics
The value of the Boolean literal t r ue isavalue of the Boolean type, namely true.
The value of the Boolean literal f al se is avalue of the Boolean type, namely false.
7.8.3 Numeric Literals
Syntax

NumericLiteral ::
DecimalLiteral
HexlntegerLiteral

DecimalLiteral ::
DecimalintegerLiteral . DecimalDigits,,: ExponentPartqy
. Decimal Digits ExponentPartoy
Decimallnteger Literal ExponentPar toy

DecimalIntegerLiteral ::
0

NonZeroDigit Decimal DigitSyy

DecimalDigits ::
Decimal Digit
Decimal Digits Decimal Digit

DecimalDigit :: one of
0 1. 2 3 45 6 7 8 9

NonZeroDigit :: one of
1 2 3 4 5 6 7 8 9

ExponentPart ::
Exponentlndicator Signedinteger

- 17 -

Exponentindicator :: one of

e E

Sgnedinteger ::

Decimal Digits
+ DecimalDigits
- DecimalDigits

HexIntegerLiteral ::
Ox HexDigit
0X HexDigit
HexlntegerLiteral HexDigit

The source character immediately following a NumericLiteral must not be an ldentifierStart or
DecimalDigit.

NOTE
For example:

3in

isan error and not the two input elements 3 and in.

Semantics

A numeric literal stands for a value of the Number type. This value is determined in two steps: first, a
mathematical value (MV) is derived from the literal; second, this mathematical value is rounded as
described below.

The MV of NumericLiteral :: DecimalLiteral isthe MV of DecimalLiteral.

The MV of NumericLiteral :: HexIntegerLiteral isthe MV of HexIntegerLiteral.

The MV of DecimalLiteral :: DecimallntegerLiteral . isthe MV of DecimallntegerLiteral.

The MV of DecimalLiteral :: DecimallntegerLiteral . DecimalDigits is the MV of DecimallntegerLiteral
plus (the MV of DecimalDigitstimes 10™"), where n is the number of charactersin Decimal Digits.

The MV of DecimalLiteral :: DecimallntegerLiteral . ExponentPart is the MV of DecimallntegerLiteral
times 10°%, where eisthe MV of ExponentPart.

The MV of Decimalliteral :: DecimallntegerLiteral . DecimalDigits ExponentPart is (the MV of
DecimalIntegerLiteral plus (the MV of DecimalDigits times 10™) times 10° where n is the number of
charactersin DecimalDigits and e isthe MV of ExponentPart.

The MV of DecimalLiteral ::. DecimalDigits is the MV of DecimalDigits times 10™", where n is the
number of charactersin DecimalDigits.

The MV of DecimalLiteral ::. DecimalDigits ExponentPart isthe MV of DecimalDigits times 10°™, where
n isthe number of charactersin DecimalDigits and eisthe MV of ExponentPart.

The MV of DecimalLiteral :: DecimallntegerLiteral isthe MV of DecimalIntegerLiteral.

The MV of DecimallLiteral :: DecimallntegerLiteral ExponentPart is the MV of DecimallntegerLiteral
times 10°, where eisthe MV of ExponentPart.

The MV of DecimallntegerLiteral :: 0 isO.

The MV of DecimallntegerLiteral :: NonZeroDigit DecimalDigits is (the MV of NonZeroDigit times 10"
plusthe MV of Decimal Digits, where n isthe number of charactersin DecimalDigits.
The MV of DecimalDigits :: DecimalDigit isthe MV of DecimalDigit.

The MV of DecimalDigits :: DecimalDigits DecimalDigit is (the MV of DecimalDigits times 10) plus the
MV of DecimalDigit.

The MV of ExponentPart :: Exponentindicator Sgnedinteger isthe MV of Sgnedinteger.
The MV of Sgnedinteger :: DecimalDigitsisthe MV of Decimal Digits.

The MV of Sgnedinteger :: + DecimalDigitsisthe MV of DecimalDigits.

The MV of Sgnedinteger :: - DecimalDigitsisthe negative of the MV of DecimalDigits.

 TheMYV of DecimalDigit ::

- 18 -

0 or of HexDigit :: 0 isO.

7.8.4

Syntax

e TheMV of DecimalDigit :: 1 or of NonZeroDigit :: 1 or of HexDigit:: 1 is1.
e« TheMV of DecimalDigit :: 2 or of NonZeroDigit :: 2 or of HexDigit :: 2 is2.
* TheMV of DecimalDigit :: 3 or of NonZeroDigit :: 3 or of HexDigit :: 3is3.
« TheMYV of DecimalDigit :: 4 or of NonZeroDigit :: 4 or of HexDigit :: 4 is4.
e TheMV of DecimalDigit :: 5 or of NonZeroDigit :: 5 or of HexDigit :: 5is5.
e« TheMV of DecimalDigit :: 6 or of NonZeroDigit :: 6 or of HexDigit :: 6 is6.
* TheMV of DecimalDigit :: 7 or of NonZeroDigit :: 7 or of HexDigit :: 7 is7.
« TheMYV of DecimalDigit :: 8 or of NonZeroDigit :: 8 or of HexDigit :: 8 is8.
e« TheMV of DecimalDigit :: 9 or of NonZeroDigit :: 9 or of HexDigit :: 9 is9.
e TheMV of HexDigit :: a or of HexDigit :: Ais 10.

The MV of HexDigit :: b or of HexDigit :: Bis11.

The MV of HexDigit :: ¢ or of HexDigit :: Cis12.

The MV of HexDigit :: d or of HexDigit :: Dis 13.

The MV of HexDigit :: e or of HexDigit :: Eis 14.
* TheMV of HexDigit :: f or of HexDigit :: F is 15.

e TheMYV of HexintegerLiteral :: Ox HexDigit isthe MV of HexDigit.
e TheMV of HexintegerLiteral :: 0X HexDigit isthe MV of HexDigit.

« TheMYV of HexintegerLiteral :: HexIntegerLiteral HexDigit is (the MV of HexIntegerLiteral times 16) plus
the MV of HexDigit.

Once the exact MV for a numeric literal has been determined, it is then rounded to a value of the
Number type. If the MV is 0, then the rounded value is +0; otherwise, the rounded value must be the
number value for the MV (in the sense defined in 8.5), unless the literal is a DecimallLiteral and the
literal has more than 20 significant digits, in which case the number value may be either the number
value for the MV of aliteral produced by replacing each significant digit after the 20th with a 0 digit or
the number value for the MV of a literal produced by replacing each significant digit after the 20th with
a 0 digit and then incrementing the literal at the 20th significant digit position. A digit is significant if it
is not part of an ExponentPart and

e itisnotO; or
» thereisanonzero digit to its left and there is a nonzero digit, not in the ExponentPart, to its right.

String Literals

A string literal is zero or more characters enclosed in single or double quotes. Each character may be
represented by an escape sequence.

SringLiteral ::
" DoubleStringCharacter Sy

SingleStringCharacter Sy

DoubleStringCharacters ::
DoubleStringCharacter DoubleStringChar acter Sy

SngleStringCharacters ::
SingleStringCharacter SingleStringChar acter Sy

DoubleStringCharacter ::
SourceCharacter but not double-quote™ or backslash\ or LineTerminator
\ EscapeSeguence

-19 -

SngleStringCharacter ::
SourceCharacter but not single-quote' or backslash\ or LineTerminator

\ EscapeSequence

EscapeSequence ::
Character EscapeSequence
O [lookahead O DecimalDigit]

HexEscapeSequence
UnicodeEscapeSequence

Character EscapeSequence ::
SngleEscapeCharacter
NonEscapeCharacter

SngleEscapeCl

haracter :: one of

b f n r t v

NonEscapeCharacter ::
SourceCharacter but not EscapeCharacter or LineTerminator

EscapeCharacter ::
SingleEscapeCharacter
Decimal Digit

X
u

HexEscapeSequence ::
X HexDigit HexDigit

UnicodeEscapeSequence ::
u HexDigit HexDigit HexDigit HexDigit

The definitions of the nonterminal HexDigit is given in section 7.8.3. SourceCharacter is described in
sections 2 and 6.

A string literal stands for a value of the String type. The string value (SV) of the literal is described in
terms of character values (CV) contributed by the various parts of the string literal. As part of this
process, some characters within the string literal are interpreted as having a mathematical value (MV), as
described below or in section 7.8.3.

The SV of SringLiteral :: " " isthe empty character sequence.

The SV of SringLiteral :: ' ' isthe empty character sequence.

The SV of SringLiteral :: " DoubleStringCharacters” isthe SV of DoubleStringCharacters.

The SV of SringLiteral :: ' SngleStringCharacters' isthe SV of SngleStringCharacters.

The SV of DoubleStringCharacters :: DoubleSringCharacter is a sequence of one character, the CV of
DoubleStringCharacter.

The SV of DoubleStringCharacters :: DoubleStringCharacter DoubleStringCharacters is a sequence of the
CV of DoubleStringCharacter followed by all the charactersin the SV of DoubleStringCharactersin order.
The SV of SngleSringCharacters :: SngleSringCharacter is a sequence of one character, the CV of
SngleStringCharacter.

The SV of SingleSringCharacters :: SngleStringCharacter SingleSringCharacters is a sequence of the CV
of SingleStringCharacter followed by all the charactersin the SV of SngleSringCharactersin order.

The CV of DoubleSringCharacter :: SourceCharacter but not double-quote " or backslash \ or
LineTerminator is the SourceCharacter character itself.

The CV of DoubleStringCharacter :: \ EscapeSequence isthe CV of the EscapeSequence.

The CV of SngleStringCharacter :: SourceCharacter but not single-quote ' or backslash \ or
LineTerminator isthe SourceCharacter character itself.

7.8.5

- 20 -

* TheCV of SngleStringCharacter :: \ EscapeSequenceisthe CV of the EscapeSequence.

e TheCV of EscapeSequence :: Character EscapeSequence isthe CV of the Character EscapeSequence.
» TheCV of EscapeSequence:: O [lookahead O DecimalDigit]is @ <NUL> character (Unicode value 0000).
» TheCV of EscapeSequence :: HexEscapeSequenceisthe CV of the HexEscapeSequence.

* TheCV of EscapeSequence :: UnicodeEscapeSequenceisthe CV of the UnicodeEscapeSequence.

e The CV of CharacterEscapeSequence :: SngleEscapeCharacter is the character whose code point value is
determined by the SingleEscapeCharacter according to the following table:

Escape Sequence Code Point Value Name Symbol

\b \ u0008 backspace <BS>
\t \ u0009 horizontal tab <HT>
\n \ uOOOA line feed (new line) <LF>
\v \ u000B vertical tab <VT>
\ f \ u000C form feed <FF>
\r \ u000D carriage return <CR>
\ " \ u0022 double quote "

\! \ u0027 single quote '

\\ \ u005C backs ash \

» TheCV of CharacterEscapeSequence :: NonEscapeCharacter isthe CV of the NonEscapeCharacter.

* The CV of NonEscapeCharacter :: SourceCharacter but not EscapeCharacter or LineTerminator is the
SourceCharacter character itself.

e The CV of HexEscapeSequence :: x HexDigit HexDigit is the character whose code point value is (16 times
the MV of thefirst HexDigit) plusthe MV of the second HexDigit.

» The CV of UnicodeEscapeSequence :: u HexDigit HexDigit HexDigit HexDigit is the character whose code
point value is (4096 (that is, 16°) times the MV of the first HexDigit) plus (256 (that is, 16?) times the MV of
the second HexDigit) plus (16 timesthe MV of the third HexDigit) plus the MV of the fourth HexDigit.

NOTE

A 'LineTerminator' character cannot appear in a string literal, even if preceded by a backslash \ . The
correct way to cause a line terminator character to be part of the string value of a string literal is to use
an escape sequence such as\ n or \ uOO0A.

Regular Expression Literals

A regular expression literal is an input element that is converted to a RegExp object (section 15.10)
when it is scanned. The object is created before evaluation of the containing program or function begins.
Evaluation of the literal produces a reference to that object; it does not create a new object. Two regular
expression literals in a program evaluate to regular expression objects that never compare as === to each
other even if the two literals contents are identical. A RegExp object may also be created at runtime by
new RegExp (section 15.10.4) or calling the RegExp constructor as a function (section 15.10.3).

The productions below describe the syntax for a regular expression literal and are used by the input
element scanner to find the end of the regular expression literal. The strings of characters comprising the
RegularExpressionBody and the RegularExpressionFlags are passed uninterpreted to the regular
expression constructor, which interprets them according to its own, more stringent grammar. An
implementation may extend the regular expression constructor's grammar, but it should not extend the
RegularExpressionBody and RegularExpressionFlags productions or the productions used by these
productions.

Syntax

- 21 -

RegularExpressionLiteral ::
/ RegularExpressionBody / Regular ExpressionFlags

Regular ExpressionBody ::
Regular ExpressionFirstChar RegularExpressionChars

RegularExpressionChars ::

(empty]

Regular ExpressionChars Regular ExpressionChar

Regular ExpressionFirstChar ::
NonTerminator but not * or \ or /
BackslashSequence

RegularExpressionChar ::
NonTerminator but not\ or /
BackslashSequence

BackslashSequence ::
\ NonTerminator

NonTerminator ::
SourceCharacter but not LineTerminator

Regular ExpressionFlags ::

(empty]

Regular ExpressionFlags | dentifier Part

7.9

7.9.1

NOTE

Regular expression literals may not be empty; instead of representing an empty regular expression
literal, the characters // start a single-line comment. To specify an empty regular expression, use
[(?:)1.

Semantics

A regular expression literal stands for a value of the Object type. This value is determined in two steps:
first, the characters comprising the regular expression's RegularExpressionBody and
Regular ExpressionFlags production expansions are collected uninterpreted into two strings Pattern and
Flags, respectively. Then the new RegExp constructor is called with two arguments Pattern and Flags
and the result becomes the value of the RegularExpressionLiteral. If the call to new RegExp generates
an error, an implementation may, at its discretion, either report the error immediately while scanning the
program, or it may defer the error until the regular expression literal is evaluated in the course of
program execution.

Automatic Semicolon Insertion

Certain ECMAScript statements (empty statement, variable statement, expression statement, do-whi | e
statement, cont i nue statement, br eak statement, r et ur n statement, and t hr ow statement) must be
terminated with semicolons. Such semicolons may always appear explicitly in the source text. For
convenience, however, such semicolons may be omitted from the source text in certain situations. These
situations are described by saying that semicolons are automatically inserted into the source code token
stream in those situations.

Rules of Automatic Semicolon I nsertion

« When, as the program is parsed from left to right, a token (called the offending token) is encountered
that is not allowed by any production of the grammar, then a semicolon is automatically inserted
before the offending token if one or more of the following conditions is true:

7.9.2

- 22 -

1. The offending token is separated from the previous token by at least one LineTerminator.

2. The offending tokenis} .

When, as the program is parsed from left to right, the end of the input stream of tokens is
encountered and the parser is unable to parse the input token stream as a single complete
ECMAScript Program, then a semicolon is automatically inserted at the end of the input stream.

When, as the program is parsed from left to right, a token is encountered that is allowed by some
production of the grammar, but the production is a restricted production and the token would be the
first token for a terminal or nonterminal immediately following the annotation “[no LineTerminator
here]” within the restricted production (and therefore such a token is called a restricted token), and
the restricted token is separated from the previous token by at least one LineTerminator, then a
semicolon is automatically inserted before the restricted token.

However, there is an additional overriding condition on the preceding rules: a semicolon is never
inserted automatically if the semicolon would then be parsed as an empty statement or if that semicolon
would become one of the two semicolons in the header of af or statement (section 12.6.3).

NOTE
These are the only restricted productions in the grammar:

PostfixExpression :

LeftHandS deExpression [no LineTerminator here] ++
LeftHandS deExpression [no LineTerminator here] - -

ContinueStatement :

conti nue [noLineTerminator here] Identifierqy ;

BreakStatement :

break [noLineTerminator here] Identifierqy ;

ReturnSatement :

return [noLineTerminator here] EXpPressiong ;

ThrowStatement :

t hr ow [no LineTerminator here] Expression ;

The practical effect of these restricted productionsis as follows:

When a ++ or - - token is encountered where the parser would treat it as a postfix operator, and at
least one LineTerminator occurred between the preceding token and the ++ or - - token, then a
semicolon is automatically inserted before the ++ or - - token.

When a conti nue, break, return, or t hr ow token is encountered and a LineTerminator is
encountered before the next token, a semicolon is automatically inserted after the conti nue,
br eak, return, ort hr owtoken.

The resulting practical advice to ECMA Script programmersis:

A postfix ++ or - - operator should appear on the same line as its operand.

An Expression in areturn orthrow statement should start on the same line as the r et ur n or
t hr ow token.

A label in a break or conti nue statement should be on the same line as the break or
cont i nue token.

Examples of Automatic Semicolon Insertion
The source

{12} 3

is not a valid sentence in the ECMAScript grammar, even with the automatic semicolon insertion rules.
In contrast, the source

- 23 -

{1
2} 3

is also not a valid ECMAScript sentence, but is transformed by automatic semicolon insertion into the
following:

{1

7251 3
which is avalid ECMAScript sentence.
The source

for (a; b

)

is not a valid ECMAScript sentence and is not altered by automatic semicolon insertion because the
semicolon is needed for the header of af or statement. Automatic semicolon insertion never inserts one
of the two semicolons in the header of af or statement.

The source

return
a+b

is transformed by automatic semicolon insertion into the following:
return;

a + b;

NOTE
The expression a + b is not treated as a value to be returned by the r et ur n statement, because a
‘LineTerminator' separates it from the token r et ur n.

The source

is transformed by automatic semicolon insertion into the following:

a = b;
++C;

NOTE
The token ++ is not treated as a postfix operator applying to the variable b, because a 'LineTerminator’
occurs between b and ++.

The source
if (a>Dh)
elsec =d

is not avalid ECMAScript sentence and is not altered by automatic semicolon insertion before the el se
token, even though no production of the grammar applies at that point, because an automatically inserted
semicolon would then be parsed as an empty statement.

The source
a=>b+c
(d + e).print()

is not transformed by automatic semicolon insertion, because the parenthesised expression that begins
the second line can be interpreted as an argument list for a function call:

8.1

8.2

8.3

8.4

8.5

- 24 -

a=>b+c(d+ e).print()

In the circumstance that an assignment statement must begin with a left parenthesis, it is a good idea for
the programmer to provide an explicit semicolon at the end of the preceding statement rather than to rely
on automatic semicolon insertion.

Types

A value is an entity that takes on one of nine types. There are nine types (Undefined, Null, Boolean, String,
Number, Object, Reference, List, and Completion). Values of type Reference, List, and Completion are used
only as intermediate results of expression evaluation and cannot be stored as properties of objects.

The Undefined Type

The Undefined type has exactly one value, called undefined. Any variable that has not been assigned a
value has the value undefined.

The Null Type
The Null type has exactly one value, called null.

The Boolean Type
The Boolean type represents a logical entity having two values, called true and false.

The String Type

The String type is the set of all finite ordered sequences of zero or more 16-bit unsigned integer values
(“elements”). The String type is generally used to represent textual datain arunning ECMAScript program,
in which case each element in the string is treated as a code point value (see section 6). Each element is
regarded as occupying a position within the sequence. These positions are indexed with nonnegative
integers. The first element (if any) is at position 0, the next element (if any) at position 1, and so on. The
length of a string is the number of elements (i.e., 16-bit values) within it. The empty string has length zero
and therefore contains no elements.

When a string contains actual textual data, each element is considered to be a single UTF-16 unit. Whether
or not this is the actual storage format of a String, the characters within a String are numbered as though
they were represented using UTF-16. All operations on Strings (except as otherwise stated) treat them as
sequences of undifferentiated 16-bit unsigned integers; they do not ensure the resulting string is in
normalised form, nor do they ensure language-sensitive results.

NOTE

The rationale behind these decisions was to keep the implementation of Strings as simple and high-
performing as possible. The intent is that textual data coming into the execution environment from outside
(e.g., user input, text read from a file or received over the network, etc.) be converted to Unicode
Normalised Form C before the running program sees it. Usually this would occur at the same time
incoming text is converted from its original character encoding to Unicode (and would impose no
additional overhead). Since it is recommended that ECMAScript source code be in Normalised Form C,
string literals are guaranteed to be normalised (if source text is guaranteed to be normalised), as long as
they do not contain any Unicode escape sequences.

The Number Type

The Number type has exactly 18437736874454810627 (that is, 2°*-2°%+3) values, representing the double-
precision 64-bit format |IEEE 754 values as specified in the IEEE Standard for Binary Floating-Point
Arithmetic, except that the 9007199254740990 (that is, 2°°-2) distinct “Not-a-Number” values of the |IEEE
Standard are represented in ECMAScript as a single special NaN value. (Note that the NaN value is
produced by the program expression NaN, assuming that the globally defined variable NaN has not been
altered by program execution.) In some implementations, external code might be able to detect a difference
between various Non-a-Number values, but such behaviour is implementation-dependent; to ECMA Script
code, all NaN values are indistinguishable from each other.

There are two other special values, called positive I nfinity and negative I nfinity. For brevity, these values
are also referred to for expository purposes by the symbols +co and —oo, respectively. (Note that these two

8.6

8.6.1

- 25 -

infinite number values are produced by the program expressions +I nfi nity (or simply I nfinity) and
-1 nfinity, assuming that the globally defined variable | nfi ni ty has not been altered by program
execution.)

The other 18437736874454810624 (that is, 2°*-2°%) values are called the finite numbers. Half of these are
positive numbers and half are negative numbers; for every finite positive number there is a corresponding
negative number having the same magnitude.

Note that there is both a positive zero and a negative zero. For brevity, these values are also referred to for
expository purposes by the symbols +0 and —0, respectively. (Note that these two zero number values are
produced by the program expressions +0 (or simply 0) and - 0.)

The 18437736874454810622 (that is, 2%*~2°3-2) finite nonzero values are of two kinds:
18428729675200069632 (that is, 2%4~2°*) of them are normalised, having the form
sxmx 2°

where sis +1 or -1, mis a positive integer less than 2°3 but not less than 2%, and e is an integer ranging
from —-1074 to 971, inclusive.

The remaining 9007199254740990 (that is, 2°°*-2) values are denormalised, having the form
sxmx2°
where sis+1 or -1, mis a positive integer less than 2°2, and e is -1074.

Note that all the positive and negative integers whose magnitude is no greater than 2°° are representable in
the Number type (indeed, the integer O has two representations, +0 and - 0).

A finite number has an odd significand if it is nonzero and the integer m used to express it (in one of the
two forms shown above) is odd. Otherwise, it has an even significand.

In this specification, the phrase “the number value for X’ where x represents an exact nonzero real
mathematical quantity (which might even be an irrational number such as) means a number value chosen
in the following manner. Consider the set of all finite values of the Number type, with —0 removed and
with two additional values added to it that are not representable in the Number type, namely 2°%* (which is
+1 x 2°% x 291 and -219%* (which is -1 x 2% x 2%™1), Choose the member of this set that is closest in value
to x. If two values of the set are equally close, then the one with an even significand is chosen; for this
purpose, the two extra values 2'%%* and —2°** are considered to have even significands. Finally, if 2!%* was
chosen, replace it with +oo; if —2'%%* was chosen, replace it with —oo; if +0 was chosen, replace it with =0 if
and only if x is less than zero; any other chosen value is used unchanged. The result is the number value for
X. (This procedure corresponds exactly to the behaviour of the IEEE 754 “round to nearest” mode.)

Some ECMA Script operators deal only with integers in the range —2* through 2*'-1, inclusive, or in the
range O through 2**-1, inclusive. These operators accept any value of the Number type but first convert
each such value to one of 2* integer values. See the descriptions of the Tolnt32 and ToUint32 operators in
sections 0 and O, respectively.
The Object Type
An Object is an unordered collection of properties. Each property consists of a hame, a value and a set of
attributes.

Property Attributes

A property can have zero or more attributes from the following set:

- 26 -

Attribute

Description

ReadOnly

The property is a read-only property. Attempts by ECMAScript code to write to

the property will be ignored. (Note, however, that in some cases the value of a
property with the ReadOnly attribute may change over time because of actions
taken by the host environment; therefore “ReadOnly” does not mean “ constant
and unchanging”!)

DontEnum The property is not to be enumerated by af or -i n enumeration (section 12.6.4).

DontDelete Attempts to delete the property will be ignored. See the description of the

del et e operator in section 11.4.1.

Internal Internal properties have no name and are not directly accessible via the property

accessor operators. How these properties are accessed is implementation specific.
How and when some of these properties are used is specified by the language
specification.

8.6.2

Internal Properties and Methods

Internal properties and methods are not part of the language. They are defined by this specification
purely for expository purposes. An implementation of ECMAScript must behave as if it produced and
operated upon internal properties in the manner described here. For the purposes of this document, the
names of internal properties are enclosed in double square brackets [[]]. When an algorithm uses an
internal property of an object and the object does not implement the indicated internal property, a
TypeError exception is thrown.

There are two types of access for normal (non-internal) properties: get and put, corresponding to
retrieval and assignment, respectively.

Native ECMA Script objects have an internal property called [[Prototype]]. The value of this property is
either nul | or an object and is used for implementing inheritance. Properties of the [[Prototype]] object
are visible as properties of the child object for the purposes of get access, but not for put access.

The following table summarises the internal properties used by this specification. The description
indicates their behaviour for native ECMAScript objects. Host objects may implement these internal
methods with any implementation-dependent behaviour, or it may be that a host object implements only
some internal methods and not others.

Property Parameters Description

[[Prototype]] none The prototype of this object.

[[Class]] none A string value indicating the kind of this object.

[[Vauel] none Internal state information associated with this object.

[[Get]] (PropertyName) Returns the value of the property.

[[Put]] (PropertyName, Value) Sets the specified property to Value.

[[CanPut]] (PropertyName) Returns a boolean value indicating whether a [[Put]]
operation with PropertyName will succeed.

[[HasProperty]] (PropertyName) Returns a boolean value indicating whether the object
already has a member with the given name.

[[Delete]] (PropertyName) Removes the specified property from the object.

[[DefaultValue]] | (Hint) Returns a default value for the object, which should be
aprimitive value (not an object or reference).

[[Construct]] a list of argument values | Constructs an object. Invoked via the new operator.

provided by the caller Objects that implement this internal method are called

constructors.

[[Call]] a list of argument values | Executes code associated with the object. Invoked via

provided by the caller afunction call expression. Objects that implement this

internal method are called functions.

[[HasInstance]] (Value) Returns a boolean value indicating whether Value
delegates behaviour to this object. Of the native
ECMA Script objects, only Function objects implement
[[Haslnstance]].

[[Scopd]] none A scope chain that defines the environment in which a
Function object is executed.

[[Match]] (String, Index) Tests for a regular expression match and returns a
MatchResult value (see section 15.10.2.1).

Every object (including host objects) must implement the [[Prototype]] and [[Class]] properties and the
[[Get]], [[Put]], [[CanPut]], [[HasProperty]], [[Delete]], and [[DefaultValue]] methods. (Note, however,
that the [[DefaultValue]] method may, for some objects, simply throw a TypeError exception.)

The value of the [[Prototype]] property must be either an object or null, and every [[Prototype]] chain
must have finite length (that is, starting from any object, recursively accessing the [[Prototype]] property
must eventually lead to a null value). Whether or not a native object can have a host object as its
[[Prototype]] depends on the implementation.

The value of the [[Class]] property is defined by this specification for every kind of built-in object. The
value of the [[Class]] property of a host object may be any value, even a value used by a built-in object
for its [[Class]] property. The value of a [[Class]] property is used internally to distinguish different
kinds of built-in objects. Note that this specification does not provide any means for a program to access
that value except through Obj ect . prot ot ype.t oSt ri ng (see 15.2.4.2).

For native objects the [[Get]], [[Put]], [[CanPut]], [[HasProperty]], [[Delete]] and [[DefaultValue]]
methods behave as described in described in 8.6.2.1, 8.6.2.2, 8.6.2.3, 8.6.2.4, 8.6.2.5 and 8.6.2.6,
respectively, except that Array objects have a slightly different implementation of the [[Put]] method
(see 15.4.5.1). Host objects may implement these methods in any manner unless specified otherwise; for
example, one possibility is that [[Get]] and [[Put]] for a particular host object indeed fetch and store
property values but [[HasProperty]] always generates false.

In the following algorithm descriptions, assume O is a native ECMA Script object and P is a string.

8.6.2.1 [[Get]] (P)
When the [[Get]] method of O is called with property name P, the following steps are taken:
1. If O doesn’t have a property with name P, go to step 4.

2. Get the value of the property.
3. Return Result(2).

- 28 -

4. If the [[Prototype]] of O isnull, return undefined.
5. Call the [[Get]] method of [[Prototype]] with property name P.
6. Return Result(5).

8.6.2.2 [[Put]] (P, V)
When the [[Put]] method of O is called with property P and value V, the following steps are taken:
Call the [[CanPut]] method of O with name P.
If Result(1) is false, return.
If O doesn’'t have a property with name P, go to step 6.
Set the value of the property to V. The attributes of the property are not changed.
Return.

Create a property with name P, set its value to V and give it empty attributes.
Return.

Note, however, that if O isan Array object, it has a more elaborate [[Put]] method (15.4.5.1).

8.6.2.3 [[CanPut]] (P)
The [[CanPut]] method is used only by the [[Put]] method.

When the [[CanPut]] method of O is called with property P, the following steps are taken:

NogrwbhE

If O doesn’'t have a property with name P, go to step 4.

If the property has the ReadOnly attribute, return false.

Return true.

If the [[Prototype]] of O isnull, return true.

Call the [[CanPut]] method of [[Prototype]] of O with property name P.
Return Result(5).

ok whpE

8.6.2.4 [[HasProperty]] (P)
When the [[HasProperty]] method of O is called with property name P, the following steps are taken:

1. If O has aproperty with name P, return true.

2. If the [[Prototype]] of O isnull, return false.

3. Call the [[HasProperty]] method of [[Prototype]] with property name P.
4. Return Result(3).

8.6.2.5 [[Delete]] (P)
When the [[Delete]] method of O is called with property name P, the following steps are taken:

1. If O doesn’'t have a property with name P, return true.
2. If the property has the DontDelete attribute, return false.
3. Remove the property with name P from O.

4. Return true.

8.6.2.6 [[DefaultValue]] (hint)
When the [[DefaultValue]] method of O is called with hint String, the following steps are taken:

Call the [[Get]] method of object O with argument "t oSt ri ng".

If Result(1) is not an object, go to step 5.

Call the [[Call]] method of Result(1), with O as the this value and an empty argument list.
If Result(3) is aprimitive value, return Result(3).

Call the [[Get]] method of object O with argument "val ueCOF ".

If Result(5) is not an object, go to step 9.

Call the [[Call]] method of Result(5), with O as the this value and an empty argument list.
If Result(7) is a primitive value, return Result(7).

Throw a TypeError exception.

Loy

©OoNoO A~ WN

When the [[DefaultValue]] method of O is called with hint Number, the following steps are taken:
1. Call the [[Get]] method of object O with argument " val ueOf ".

8.7

8.7.1

8.7.2

- 29 -

If Result(1) is not an object, go to step 5.

Call the [[Call]] method of Result(1), with O as the this value and an empty argument list.
If Result(3) is aprimitive value, return Result(3).

Call the [[Get]] method of object O with argument "t oSt ri ng".

If Result(5) is not an object, go to step 9.

Call the [[Call]] method of Result(5), with O as the this value and an empty argument list.
If Result(7) is a primitive value, return Result(7).

Throw a TypeError exception.

©OoNO O~ WN

When the [[DefaultValue]] method of O is called with no hint, then it behaves as if the hint were
Number, unless O is a Date object (see 15.9), in which case it behaves as if the hint were String.

The above specification of [[DefaultValue]] for native objects can return only primitive values. If a
host object implements its own [[DefaultValue]] method, it must ensure that its [[DefaultValue]]
method can return only primitive values.

The Reference Type

The internal Reference type is not a language data type. It is defined by this specification purely for
expository purposes. An implementation of ECMAScript must behave as if it produced and operated upon
references in the manner described here. However, a value of type Reference is used only as an
intermediate result of expression evaluation and cannot be stored as the value of a variable or property.

The Reference type is used to explain the behaviour of such operators as del et e, t ypeof, and the
assignment operators. For example, the left-hand operand of an assignment is expected to produce a
reference. The behaviour of assignment could, instead, be explained entirely in terms of a case analysis on
the syntactic form of the left-hand operand of an assignment operator, but for one difficulty: function calls
are permitted to return references. This possibility is admitted purely for the sake of host objects. No built-
in ECMAScript function defined by this specification returns a reference and there is no provision for a
user-defined function to return a reference. (Another reason not to use a syntactic case analysis is that it
would be lengthy and awkward, affecting many parts of the specification.)

Another use of the Reference type is to explain the determination of the this value for a function call.

A Reference is a reference to a property of an object. A Reference consists of two components, the base
object and the property name.

The following abstract operations are used in this specification to access the components of references:

« GetBase(V). Returns the base object component of the reference V.
* GetPropertyName(V). Returns the property name component of the reference V.

The following abstract operations are used in this specification to operate on references:

GetValue (V)

If Type(V) is not Reference, return V.

Call GetBase(V).

If Result(2) is null, throw a ReferenceError exception.

Call the [[Get]] method of Result(2), passing GetPropertyName(V) for the property name.
Return Result(4).

agrwNPE

PutValue (V, W)

1. If Type(V) is not Reference, throw a ReferenceError exception.

2. Call GetBase(V).

3. If Result(2) isnull, go to step 6.

4. Call the [[Put]] method of Result(2), passing GetPropertyName(V) for the property name and W for

the value.

Return.

. Call the [[Put]] method for the global object, passing GetPropertyName(V) for the property name and
W for the value.

7. Return.

o o

8.8

8.9

9.1

9.2

- 30 -

TheList Type

Theinternal List type is not a language data type. It is defined by this specification purely for expository
purposes. An implementation of ECMAScript must behave as if it produced and operated upon List values
in the manner described here. However, a value of the List type is used only as an intermediate result of
expression evaluation and cannot be stored as the value of a variable or property.

The List type is used to explain the evaluation of argument lists (see 11.2.4) in new expressions and in
function calls. Values of the List type are simply ordered sequences of values. These sequences may be of
any length.

The Completion Type

The internal Completion type is not a language data type. It is defined by this specification purely for
expository purposes. An implementation of ECMA Script must behave as if it produced and operated upon
Completion values in the manner described here. However, a value of the Completion type is used only as
an intermediate result of statement evaluation and cannot be stored as the value of a variable or property.

The Completion type is used to explain the behaviour of statements (br eak, conti nue, return and
t hr ow) that perform nonlocal transfers of control. Values of the Completion type are triples of the form
(type, value, target), where type is one of normal, break, continue, return, or throw, value is any
ECMAScript value or empty, and target is any ECMAScript identifier or empty.

The term “abrupt completion” refers to any completion with a type other than normal.

Type Conversion

The ECMAScript runtime system performs automatic type conversion as needed. To clarify the semantics of
certain constructs it is useful to define a set of conversion operators. These operators are not a part of the
language; they are defined here to aid the specification of the semantics of the language. The conversion
operators are polymorphic; that is, they can accept a value of any standard type, but not of type Reference,
List, or Completion (the internal types).

ToPrimitive

The operator ToPrimitive takes a Value argument and an optional argument PreferredType. The operator
ToPrimitive converts its value argument to a non-Object type. If an object is capable of converting to more
than one primitive type, it may use the optional hint PreferredType to favour that type. Conversion occurs
according to the following table:

Input Type Result

Undefined The result equals the input argument (no conversion).

Null The result equals the input argument (no conversion).

Boolean The result equals the input argument (no conversion).

Number The result equals the input argument (no conversion).

String The result equals the input argument (no conversion).

Object Return a default value for the Object. The default value of an object is retrieved
by calling the internal [[DefaultValue]] method of the object, passing the optional
hint PreferredType. The behaviour of the [[DefaultValue]] method is defined by
this specification for al native ECMA Script objects (8.6.2.6).

ToBoolean
The operator ToBoolean converts its argument to a value of type Boolean according to the following table:

- 31 -

I nput Type Result
Undefined false
Null false
Boolean The result equals the input argument (no conversion).
Number Theresultisfalseif the argument is +0, =0, or NaN; otherwise the result istrue.
String Theresult isfalse if the argument is the empty string (its length is zero); otherwise
theresultistrue.
Object true
9.3 ToNumber
The operator ToNumber converts its argument to a value of type Number according to the following table:
Input Type Result
Undefined NaN
Null +0
Boolean Theresultis 1 if theargument istrue. Theresultis +0 if the argument is false.
Number The result equals the input argument (no conversion).
String See grammar and note below.
Object Apply the following steps:
1. Call ToPrimitive(input argument, hint Number).
2. Cdl ToNumber(Result(1)).
3. Return Result(2).
9.3.1 ToNumber Applied to the String Type

ToNumber applied to strings applies the following grammar to the input string. If the grammar cannot
interpret the string as an expansion of StringNumericLiteral, then the result of ToNumber is NaN.

SringNumericLiteral :::
StrwhiteSpace,
StrWhiteSpace,, StrNumericLiteral Str\WhiteSpace,

SrWhiteSpace :::
StrWhiteSpaceChar StrwhiteSpace,

SrwhiteSpaceChar ::
<TAB>
<SP>
<NBSP>
<FF>
<VT>
<CR>
<LF>
<LS
<PS>
<USP>

SrNumericLiteral :::
SrDecimalLiteral
HexlntegerLiteral

- 32 -

SrDecimalLiteral :::
SrUnsignedDecimalLiteral
+ SrUnsignedDecimalLiteral
- SrUnsignedDecimalLiteral

SrUnsignedDecimalLiteral :::
Infinity
DecimalDigits. Decimal Digits,y ExponentPartqy
. Decimal Digits ExponentPar toy
Decimal Digits ExponentPar toy

DecimalDigits:::
Decimal Digit
Decimal Digits Decimal Digit

DecimalDigit ::: one of
0 1 2 3 45 6 7 8 9

ExponentPart :::
ExponentIndicator Sgnedinteger

Exponentindicator ::: one of
e E

Sgnedinteger :::
Decimal Digits
+ DecimalDigits
- DecimalDigits

HexintegerLiteral :::
0x HexDigit
0X HexDigit
HexintegerLiteral HexDigit

HexDigit ::: one of
0 1 2 3 45 6 7 8 9 a b

c d e f A B C D E F

Some differences should be noted between the syntax of a StringNumericLiteral and a NumericLiteral

(see 7.8.3):

* A StringNumericLiteral may be preceded and/or followed by white space and/or line terminators.
e A StringNumericLiteral that is decimal may have any number of leading O digits.

* A StringNumericLiteral that is decimal may be preceded by + or - to indicate its sign.

» A StringNumericLiteral that is empty or contains only white space is converted to +0.

The conversion of a string to a number value is similar overall to the determination of the number value
for a numeric literal (see 7.8.3), but some of the details are different, so the process for converting a
string numeric literal to a value of Number type is given here in full. This value is determined in two
steps: first, a mathematical value (MV) is derived from the string numeric literal; second, this

mathematical value is rounded as described below.

e TheMYV of StringNumericLiteral ::: [empty] isO.

* The MV of StringNumericLiteral ::: StrWhiteSpace is 0.

* TheMV of StringNumericLiteral ::: StrWhiteSpace,,: StrNumericLiteral StrWhiteSpace,y is the MV
of StrNumericLiteral, no matter whether white space is present or not.

e TheMYV of StrNumericLiteral ::: StrDecimalLiteral isthe MV of StrDecimalLiteral.

e TheMYV of StrNumericLiteral ::: HexIntegerLiteral isthe MV of HexIntegerLiteral.

- 33 -

The MV of StrDecimalliteral SrUnsignedDecimalLiteral is the MV of
StrUnsignedDecimalLiteral.
The MV of StrDecimalliteral::: + StrUnsignedDecimalLiteral is the MV of

StrUnsignedDecimalLiteral.

The MV of StrDecimalliteral::: - StrUnsignedDecimalliteral is the negative of the MV of
StrUnsignedDecimalLiteral. (Note that if the MV of StrUnsignedDecimalLiteral is O, the negative of
this MV is also 0. The rounding rule described below handles the conversion of this sign less
mathematical zero to afloating-point +0 or —0 as appropriate.)
The MV of StrUnsignedDecimalLiteral::: | nfinity is 10
to +c0).

The MV of StrUnsignedDecimalLiteral::: DecimalDigits. isthe MV of DecimalDigits.

The MV of StrUnsignedDecimalLiteral::: DecimalDigits. DecimalDigits is the MV of the first
DecimalDigits plus (the MV of the second DecimalDigits times 10™"), where n is the number of
characters in the second DecimalDigits.
The MV of SrUnsignedDecimalLiteral:::
10°%, where eisthe MV of ExponentPart.
The MV of SrUnsignedDecimalLiteral::: DecimalDigits. DecimalDigits ExponentPart is (the MV of the
first DecimalDigits plus (the MV of the second Decimal Digits times 10™) times 10°, where n is the number
of charactersin the second Decimal Digits and eisthe MV of ExponentPart.
The MV of SrUnsignedDecimalLiteral:::. DecimalDigits is the MV of DecimalDigits times 10™, where n
is the number of charactersin DecimalDigits.
The MV of SrUnsignedDecimalLiteral:::. DecimalDigits ExponentPart isthe MV of DecimalDigits times
10°™", where n is the number of charactersin DecimalDigits and eisthe MV of ExponentPart.

The MV of SrUnsignedDecimalLiteral::: DecimalDigitsisthe MV of Decimal Digits.
The MV of SrUnsignedDecimalLiteral::: DecimalDigits ExponentPart is the MV of DecimalDigits times
10°%, where eisthe MV of ExponentPart.

The MV of DecimalDigits ::: DecimalDigit isthe MV of DecimalDigit.
The MV of DecimalDigits ::: DecimalDigits DecimalDigit is (the MV of DecimalDigits times 10) plus the
MV of DecimalDigit.

The MV of ExponentPart :::
The MV of Sgnedinteger :::
The MV of Sgnedinteger :::

The MV of Sgnedinteger :::

(avalue so large that it will round

DecimalDigits. ExponentPart is the MV of DecimalDigits times

Exponentlndicator Sgnedinteger isthe MV of Sgnedinteger.
Decimal Digitsisthe MV of Decimal Digits.

+ DecimalDigitsisthe MV of DecimalDigits.

- DecimalDigits isthe negative of the MV of DecimalDigits.

The MV of DecimalDigit :::

0 or of HexDigit :::

0isO.

The MV of DecimalDigit ::: 1 or of HexDigit ::: 1 is1.
The MV of DecimalDigit ::: 2 or of HexDigit ::: 2 is2.
The MV of DecimalDigit ::: 3 or of HexDigit ::: 3is3.
The MV of DecimalDigit ::: 4 or of HexDigit ::: 4 is4.
The MV of DecimalDigit ::: 5 or of HexDigit ::: 5 isb5.
The MV of DecimalDigit ::: 6 or of HexDigit ::: 6 is®6.
The MV of DecimalDigit ::: 7 or of HexDigit ::: 7 is7.
The MV of DecimalDigit ::: 8 or of HexDigit ::: 8 is8.
The MV of DecimalDigit ::: 9 or of HexDigit ::: 9 is9.
The MV of HexDigit ::: a or of HexDigit ::: Ais 10.
The MV of HexDigit ::: b or of HexDigit ::: Bis11.
The MV of HexDigit ::: ¢ or of HexDigit ::: Cis12.
The MV of HexDigit ::: d or of HexDigit ::: Dis13.
The MV of HexDigit ::: e or of HexDigit ::: Eis 14.
The MV of HexDigit ::: f or of HexDigit ::: Fis 15.

The MV of HexIntegerLiteral ::
The MV of HexintegerLiteral :::

: Ox HexDigit isthe MV of HexDigit.
: 0X HexDigit isthe MV of HexDigit.

9.4

9.5

9.6

- 34 -

» TheMV of HexintegerLiteral ::: HexIntegerLiteral HexDigit is (the MV of HexIntegerLiteral times 16) plus
the MV of HexDigit.

Once the exact MV for a string numeric literal has been determined, it is then rounded to a value of the
Number type. If the MV is O, then the rounded value is +0 unless the first non white space character in
the string numeric literal is ‘- ', in which case the rounded value is —0. Otherwise, the rounded value
must be the number value for the MV (in the sense defined in 8.5), unless the literal includes a
StrUnsignedDecimalLiteral and the literal has more than 20 significant digits, in which case the number
value may be either the number value for the MV of aliteral produced by replacing each significant digit
after the 20th with a 0 digit or the number value for the MV of a literal produced by replacing each
significant digit after the 20th with a O digit and then incrementing the literal at the 20th digit position.
A digit is significant if it is not part of an ExponentPart and

e itisnotO; or
» thereisanonzero digit to its left and there is a nonzero digit, not in the ExponentPart, to its right.

Tolnteger

The operator Tolnteger converts its argument to an integral numeric value. This operator functions as
follows:

Call ToNumber on the input argument.

If Result(1) is NaN, return +0.

If Result(1) is +0, =0, +oo, Or —oo, return Result(1).
Compute sign(Result(1)) * floor(abs(Result(1))).
Return Result(4).

Tolnt32: (Signed 32 Bit Integer)

The operator Tolnt32 converts its argument to one of 2% integer values in the range —2° through 2%'-1,
inclusive. This operator functions as follows:

agrwdRE

1. Call ToNumber on the input argument.

2. If Result(1) is NaN, +0, =0, +o0, or —oo, return +0.

3. Compute sign(Result(1)) * floor(abs(Result(1))).

4. Compute Result(3) modulo 2% that is, a finite integer value k of Number type with positive sign and
less than 2% in magnitude such the mathematical difference of Result(3) and k is mathematically an
integer multiple of 22,

5. If Result(4) is greater than or equal to 2%, return Result(4)- 2%, otherwise return Result(4).

NOTE
Given the above definition of Tolnt32:

The Tolnt32 operation is idempotent: if applied to a result that it produced, the second application leaves that value
unchanged.

Tolnt32(ToUint32(x)) is equal to Tolnt32(x) for all values of x. (It is to preserve this latter property that +c and -
are mapped to +0.)

Tolnt32 maps -0 to +0.

ToUint32: (Unsigned 32 Bit I nteger)

The operator ToUint32 converts its argument to one of 2*% integer values in the range O through 2%-1,
inclusive. This operator functions as follows:

1. Call ToNumber on the input argument.

2. If Result(1) is NaN, +0, =0, +oo, Or —oo, return +0.

3. Compute sign(Result(1)) * floor(abs(Result(1))).

4. Compute Result(3) modulo 2% that is, a finite integer value k of Number type with positive sign and
less than 2* in magnitude such the mathematical difference of Result(3) and k is mathematically an
integer multiple of 2%

5. Return Result(4).

- 35 -

NOTE
Given the above definition of ToUInt32:

Step 5 is the only difference between ToUint32 and Tolnt32.

The ToUint32 operation is idempotent: if applied to a result that it produced, the second application leaves that value
unchanged.

ToUint32(Tolnt32(x)) is equal to ToUint32(x) for all values of x. (It is to preserve this latter property that + e and —oo
are mapped to +0.)

ToUint32 maps -0 to +0.

9.7 ToUint16: (Unsigned 16 Bit I nteger)

The operator ToUint16 converts its argument to one of 2% integer values in the range 0 through 2*°-1,

inclusive. This operator functions as follows:

1. Call ToNumber on the input argument.

2. If Result(1) is NaN, +0, -0, +o0, or —oo, return +0.

3. Compute sign(Result(1)) * floor(abs(Result(1))).

4. Compute Result(3) modulo 2'°; that is, a finite integer value k of Number type with positive sign and
less than 2'® in magnitude such the mathematical difference of Result(3) and k is mathematically an
integer multiple of 2'°.

5. Return Result(4).

NOTE

Given the above definition of ToUint16:

The substitution of 2 for 2°2 in step 4 is the only difference between ToUint32 and ToUint16.

ToUint16 maps -0 to +0.

9.8 ToString
The operator ToString converts its argument to a value of type String according to the following table:

Input Type Result

Undefined "undef i ned"

Null “null”

Boolean If the argument istrue, then theresultis" t r ue".
If the argument isfalse, then theresultis” f al se".

Number See note below.

String Return the input argument (no conversion)

Object Apply the following steps:
Call ToPrimitive(input argument, hint String).
Call ToString(Result(1)).
Return Result(2).

9.8.1 ToString Applied to the Number Type

The operator ToString converts a number mto string format as follows:

If misNaN, return the string " NaN" .

If mis+0 or -0, return the string " 0" .

If mislessthan zero, return the string concatenation of the string " -
If misinfinity, return the string " I nfi ni ty".

Otherwise, let n, k, and s be integers such that k > 1, 104" < s < 10%, the number value for s x 10" ¥ is
m, and k is as small as possible. Note that k is the number of digits in the decimal representation of s,

and ToString(—m).

aprpLODE

- 36 -

that sis not divisible by 10, and that the least significant digit of sis not necessarily uniquely
determined by these criteria.

6. If k< n< 21, return the string consisting of the k digits of the decimal representation of s (in order,
with no leading zeroes), followed by n—k occurrences of the character ‘0’.

7. 1f 0<n< 21, return the string consisting of the most significant n digits of the decimal representation
of s, followed by a decimal point *. ', followed by the remaining k-n digits of the decimal
representation of s.

8. If =6 < n <0, return the string consisting of the character ‘0’, followed by a decimal point ‘. ’,
followed by —n occurrences of the character ‘0’, followed by the k digits of the decimal
representation of s.

9. Otherwise, if k =1, return the string consisting of the single digit of s, followed by lowercase
character ‘e’, followed by aplussign ‘+' or minus sign ‘=" according to whether n—1 is positive or
negative, followed by the decimal representation of the integer abs(n—1) (with no leading zeros).

10.Return the string consisting of the most significant digit of the decimal representation of s, followed
by a decimal point ‘.", folloarwed by the remaining k-1 digits of the decimal representation of s,
followed by the lowercase character ‘€', followed by a plus sign ‘+’ or minus sign ‘=’ according to
whether n—1 is positive or negative, followed by the decimal representation of the integer abs(n—1)
(with no leading zeros).

NOTE
The following observations may be useful as guidelines for implementations, but are not part of the normative
requirements of this Standard:

If x is any number value other than -0, then ToNumber(ToString(x)) is exactly the same number value as x.
The least significant digit of sis not always uniquely determined by the requirements listed in step 5.

For implementations that provide more accurate conversions than required by the rules above, it is recommended
that the following alternative version of step 5 be used as a guideline:

Otherwise, let n, k, and s be integers such that k > 1, 10 < s < 10X, the number value for s x 10" is m, and k
isas small as possible. If there are multiple possibilities for s, choose the value of s for which s x 10" is closest
in value to m. If there are two such possible values of s, choose the one that is even. Note that k is the number of
digitsin the decimal representation of s and that sis not divisible by 10.

Implementors of ECMAScript may find useful the paper and code written by David M. Gay for binary-to-decimal
conversion of floating-point numbers:

Gay, David M. Correctly Rounded Binary-Decimal and Decimal-Binary Conversions. Numerical Analysis
Manuscript 90-10. AT&T Bell Laboratories (Murray Hill, New Jersey). November 30, 1990. Available as
http://cm bell-1abs.com cm cs/doc/ 90/ 4-10. ps. gz. Associated code available as
http://cmbell-1labs.comnetlib/fp/dtoa.c.gzandashttp://cm bell -

| abs.com netlib/fp/g_fnt.c.gz and may also be found at the variousnet | i b mirror sites.

9.9 ToObject
The operator ToObject converts its argument to a value of type Object according to the following table:

I nput Type Result

Undefined Throw aTypeError exception.

Null Throw aTypeError exception.

Boolean Create a new Boolean object whose [[value]] property is set to the value of the
boolean. See 15.6 for a description of Boolean objects.

Number Create a new Number object whose [[value]] property is set to the value of the
number. See 15.7 for a description of Number objects.

String Create a new String object whose [[value]] property is set to the value of the
string. See 15.5 for adescription of String objects.

Object The result is the input argument (no conversion).

- 37 -

10 Execution Contexts

When control is transferred to ECMA Script executable code, control is entering an execution context. Active
execution contexts logically form a stack. The top execution context on this logical stack is the running
execution context.

10.1
10.1.1

10.1.2

10.1.3

Definitions

Function Objects
There are two types of Function objects:

Program functions are defined in source text by a FunctionDeclaration or created dynamically either
by using a FunctionExpression or by using the built-in Funct i on object as a constructor.

Internal functions are built-in objects of the language, such as par sel nt and Mat h. exp. An
implementation may also provide implementation-dependent internal functions that are not described
in this specification. These functions do not contain executable code defined by the ECMA Script
grammar, so they are excluded from this discussion of execution contexts.

Types of Executable Code
There are three types of ECMA Script executable code:

Global code is source text that is treated as an ECMAScript Program. The global code of a particular
Program does not include any source text that is parsed as part of a FunctionBody.

Eval code is the source text supplied to the built-in eval function. More precisely, if the parameter
to the built-in eval functionisastring, it istreated as an ECMAScript Program. The eval code for a
particular invocation of eval isthe global code portion of the string parameter.

Function code is source text that is parsed as part of a FunctionBody. The function code of a
particular FunctionBody does not include any source text that is parsed as part of a nested
FunctionBody. Function code also denotes the source text supplied when using the built-in
Functi on object as a constructor. More precisely, the last parameter provided to the Functi on
constructor is converted to a string and treated as the FunctionBody. If more than one parameter is
provided to the Funct i on constructor, all parameters except the last one are converted to strings
and concatenated together, separated by commas. The resulting string is interpreted as the
FormalParameterList for the FunctionBody defined by the last parameter. The function code for a
particular instantiation of a Functi on does not include any source text that is parsed as part of a
nested FunctionBody.

Variable Instantiation

Every execution context has associated with it a variable object. Variables and functions declared in the
source text are added as properties of the variable object. For function code, parameters are added as
properties of the variable object.

Which object is used as the variable object and what attributes are used for the properties depends on the
type of code, but the remainder of the behaviour is generic. On entering an execution context, the
properties are bound to the variable object in the following order:

For function code: for each formal parameter, as defined in the FormalParameterList, create a
property of the variable object whose name is the Identifier and whose attributes are determined by
the type of code. The values of the parameters are supplied by the caller as arguments to [[Call]]. If
the caller supplies fewer parameter values than there are formal parameters, the extra formal
parameters have value undefined. If two or more formal parameters share the same name, hence the
same property, the corresponding property is given the value that was supplied for the last parameter
with this name. If the value of this last parameter was not supplied by the caller, the value of the
corresponding property is undefined.

For each FunctionDeclaration in the code, in source text order, create a property of the variable
object whose name is the Identifier in the FunctionDeclaration, whose value is the result returned by

10.1.4

10.1.5

10.1.6

- 38 -

creating a Function object as described in 13, and whose attributes are determined by the type of
code. If the variable object already has a property with this name, replace its value and attributes.
Semantically, this step must follow the creation of FormalParameterList properties.

» For each VariableDeclaration or VariableDeclarationNoln in the code, create a property of the
variable object whose name is the Identifier in the VariableDeclaration or VariableDeclarationNoln,
whose value is undefined and whose attributes are determined by the type of code. If there is
already a property of the variable object with the name of a declared variable, the value of the
property and its attributes are not changed. Semantically, this step must follow the creation of the
FormalParameterList and FunctionDeclaration properties. In particular, if a declared variable has
the same name as a declared function or formal parameter, the variable declaration does not disturb
the existing property.

Scope Chain and Identifier Resolution

Every execution context has associated with it a scope chain. A scope chain is a list of objects that are
searched when evaluating an Identifier. When control enters an execution context, a scope chain is
created and populated with an initial set of objects, depending on the type of code. During execution
within an execution context, the scope chain of the execution context is affected only by with
statements (see 12.10) and cat ch clauses (see 12.14).

During execution, the syntactic production PrimaryExpression : ldentifier is evaluated using the
following algorithm:

1. Get the next object in the scope chain. If thereisn't one, go to step 5.

2. Call the [[HasProperty]] method of Result(1), passing the Identifier as the property.

3. If Result(2) istrue, return a value of type Reference whose base object is Result(1) and whose
property name is the Identifier.

4. Gotostep 1.

5. Return avalue of type Reference whose base object is nul | and whose property name is the
I dentifier.

The result of evaluating an identifier is always a value of type Reference with its member name
component equal to the identifier string.

Global Object

There is a unique global object (15.1), which is created before control enters any execution context.
Initially the global object has the following properties:

» Built-in objects such as Math, String, Date, parselnt, etc. These have attributes { DontEnum }.

» Additional host defined properties. This may include a property whose value is the global object
itself; for example, in the HTML document object model the wi ndow property of the global object is
the global object itself.

As control enters execution contexts, and as ECMA Script code is executed, additional properties may be
added to the global object and the initial properties may be changed.

Activation Object

When control enters an execution context for function code, an object called the activation object is
created and associated with the execution context. The activation object is initialised with a property
with name ar gunent s and attributes { DontDelete }. The initial value of this property is the arguments
object described below.

The activation object is then used as the variable object for the purposes of variable instantiation.

The activation object is purely a specification mechanism. It is impossible for an ECMA Script program
to access the activation object. It can access members of the activation object, but not the activation
object itself. When the call operation is applied to a Reference value whose base object is an activation
object, nul | isused as the this value of the call.

10.1.7

10.1.8

10.2

10.2.1

10.2.2

10.2.3

- 39 -

This
There is athis value associated with every active execution context. The this value depends on the caller

and the type of code being executed and is determined when control enters the execution context. The
this value associated with an execution context is immutable.

Arguments Object

When control enters an execution context for function code, an arguments object is created and
initialised as follows:

e The value of the internal [[Prototype]] property of the arguments object is the original Object
prototype object, the one that is the initial value of Obj ect . pr ot ot ype (see 15.2.3.1).

« A property is created with name cal | ee and property attributes { DontEnum }. The initial value of
this property is the Function object being executed. This allows anonymous functions to be recursive.

e A property is created with name | engt h and property attributes { DontEnum }. The initial value of
this property is the number of actual parameter values supplied by the caller.

« For each non-negative integer, arg, less than the value of the | engt h property, a property is created
with name ToString(arg) and property attributes { DontEnum }. The initial value of this property is
the value of the corresponding actual parameter supplied by the caller. The first actual parameter
value corresponds to arg = 0, the second to arg = 1, and so on. In the case when arg is less than the
number of formal parameters for the Function object, this property shares its value with the
corresponding property of the activation object. This means that changing this property changes the
corresponding property of the activation object and vice versa.

Entering An Execution Context

Every function and constructor call enters a new execution context, even if a function is calling itself
recursively. Every return exits an execution context. A thrown exception, if not caught, may also exit one
or more execution contexts.

When control enters an execution context, the scope chain is created and initialised, variable instantiation
is performed, and the this value is determined.

The initialisation of the scope chain, variable instantiation, and the determination of the this value depend
on the type of code being entered.

Global Code

« The scope chain is created and initialised to contain the global object and no others.

« Variable instantiation is performed using the global object as the variable object and using property
attributes { DontDelete }.

e Thethisvalueisthe global object.

Eval Code

When control enters an execution context for eval code, the previous active execution context, referred
to as the calling context, is used to determine the scope chain, the variable object, and the this value. If
there is no calling context, then initialising the scope chain, variable instantiation, and determination of
the this value are performed just as for global code.

e The scope chain is initialised to contain the same objects, in the same order, as the calling context's
scope chain. This includes objects added to the calling context's scope chain by wi t h statements and
cat ch clauses.

* Variable instantiation is performed using the calling context's variable object and using empty
property attributes.

e Thethisvalueisthe same as the this value of the calling context.

Function Code

e The scope chain is initialised to contain the activation object followed by the objects in the scope
chain stored in the [[Scope]] property of the Function object.

- 40 -

« Variable instantiation is performed using the activation object as the variable object and using
property attributes{ DontDelete }.

e The caller provides the this value. If the this value provided by the caller is not an object (including
the case where it isnul 1), then the this value is the global object.

11 Expressions
11.1 Primary Expressions
Syntax
PrimaryExpression :
this
Identifier
Literal
ArrayLiteral
ObjectLiteral

(Expression)

11.1.1 Thet hi s Keyword
Thet hi s keyword evaluates to the this value of the execution context.
11.1.2 ldentifier Reference
An ldentifier is evaluated using the scoping rules stated in 10.1.4. The result of evaluating an Identifier
is always a value of type Reference.
11.1.3 Literal Reference
A Literal is evaluated as described in 7.8.
11.1.4 Array Initialiser
An array initialiser is an expression describing the initialisation of an Array object, written in aform of a
literal. It is a list of zero or more expressions, each of which represents an array element, enclosed in
square brackets. The elements need not be literals; they are evaluated each time the array initialiser is
evaluated.
Array elements may be elided at the beginning, middle or end of the element list. Whenever a comma in
the element list is not preceded by an AssignmentExpression (i.e., a comma at the beginning or after
another comma), the missing array element contributes to the length of the Array and increases the index
of subsequent elements. Elided array elements are not defined.
Syntax
ArrayLiteral :
[Elisiong]

[ElementList]
[ElementList, Elisiongg]

ElementList :

Elisiong, AssignmentExpression
ElementList , Elisiong, AssignmentExpression

Elision :

Elision,

Semantics
The production ArrayLiteral : [Elisiongy] isevaluated as follows:

1. Create anew array asif by the expression new Array().

- 41 -

2. Evaluate Elision; if not present, use the numeric value zero.
3. Call the [[Put]] method of Result(1) with arguments" | engt h" and Result(2).
4. Return Result(1).

The production ArrayLiteral : [ElementList] isevaluated as follows:

1. Evaluate ElementList.
2. Return Result(1).

The production ArrayLiteral : [ElementList , Elisiong,] isevaluated as follows:

Evaluate ElementList.

Evaluate Elision; if not present, use the numeric value zero.

Call the [[Get]] method of Result(1) with argument " | engt h".

Call the [[Put]] method of Result(1) with arguments ™| engt h" and (Result(2)+Result(3)).
Return Result(1).

gL

The production ElementList : Elisiong,: AssignmentExpression is evaluated as follows:

Create anew array as if by the expression new Array() .

Evaluate Elision; if not present, use the numeric value zero.

Evaluate AssignmentExpr ession.

Call GetValue(Result(3)).

Call the [[Put]] method of Result(1) with arguments Result(2) and Result(4).
Return Result(1)

ok wpnE

The production ElementList : ElementList , Elisiong, AssignmentExpression is evaluated as follows:

Evaluate ElementList.

Evaluate Elision; if not present, use the numeric value zero.

Evaluate AssignmentExpression.

Call GetValue(Result(3)).

Call the [[Get]] method of Result(1) with argument " | engt h".

Call the [[Put]] method of Result(1) with arguments (Result(2)+Result(5)) and Result(4).
Return Result(1)

NogpwhE

The production Elision: , isevaluated as follows:

1. Return the numeric value 1.

The production Elision : Elision, isevaluated as follows:

1. Evaluate Elision.
2. Return (Result(1)+1).

11.1.5 Object Initialiser
An object initialiser is an expression describing the initialisation of an Object, written in a form
resembling aliteral. It isalist of zero or more pairs of property names and associated values, enclosed in
curly braces. The values need not be literals; they are evaluated each time the object initialiser is
evaluated.

Syntax

ObjectLiteral :

{}
{ PropertyNameAndValueList }

PropertyNameAndValuel.ist :
PropertyName : AssignmentExpression
PropertyNameAndValuelist , PropertyName : AssignmentExpression

- 42 -

PropertyName :
Identifier
SringLiteral
NumericLiteral

11.1.6

Semantics
The production ObjectLiteral : { } isevaluated as follows:

1. Create anew object asif by the expression new Cbj ect () .
2. Return Result(1).

The production ObjectLiteral : { PropertyNameAndValueList} isevaluated as follows:

1. Evaluate PropertyNameAndValueList.
2. Return Result(1);

The production
PropertyNameAndValueList : PropertyName : AssignmentExpression
is evaluated as follows:

Create a new object asif by the expression new Obj ect () .

Evaluate PropertyName.

Evaluate AssignmentExpression.

Call GetVaue(Result(3)).

Call the [[Put]] method of Result(1) with arguments Result(2) and Result(4).
Return Result(1).

onkwdrE

The production
PropertyNameAndValueList : PropertyNameAndValueList , PropertyName : AssignmentExpression
is evaluated as follows:

Evaluate PropertyNameAndVal ueL.ist.

Evaluate PropertyName.

Evaluate AssignmentExpression.

Call GetVaue(Result(3)).

Call the [[Put]] method of Result(1) with arguments Result(2) and Result(4).
Return Result(1).

ok wbnpE

The production PropertyName : ldentifier isevaluated as follows:

1. Form astring literal containing the same sequence of characters as the Identifier.
2. Return Result(1).

The production PropertyName: StringLiteral isevaluated as follows:

1. Return the value of the StringLiteral.

The production PropertyName : NumericLiteral isevaluated as follows:
1. Form the value of the NumericLiteral.
2. Return ToString(Result(1)).

The Grouping Operator
The production PrimaryExpression : (Expression) is evaluated as follows:

1. Evaluate Expression. This may be of type Reference.
2. Return Result(1).

- 43 -

NOTE
This algorithm does not apply GetValue to Result(1). The principal motivation for this is so that
operators such asdel et e andt ypeof may be applied to parenthesised expressions.

11.2 Left-Hand-Side Expressions
Syntax

MemberExpression :
PrimaryExpression
FunctionExpression
MemberExpression [Expression]
MemberExpression . ldentifier
new MemberExpression Arguments

NewExpression :
Member Expression
new NewExpression

CallExpression :
MemberExpression Arguments
CallExpression Arguments
CallExpression [Expression]
CallExpression . |dentifier

Arguments :

()
(ArgumentList)

ArgumentList :
AssignmentExpression
ArgumentList, AssignmentExpression

LeftHandS deExpression :
NewExpression
CallExpression

11.2.1 Property Accessors
Properties are accessed by name, using either the dot notation:
MemberExpression . ldentifier
CallExpression . |dentifier
or the bracket notation:
MemberExpression [Expression]
CallExpression [Expression]
The dot notation is explained by the following syntactic conversion:

MemberExpression . ldentifier

isidentical in its behaviour to

MemberExpression[<identifier-string> |

and similarly

CallExpression . Identifier

isidentical in its behaviour to

- 44 -

CallExpression [<identifier-string>]

11.2.2

11.2.3

where <identifier-string> is a string literal containing the same sequence of characters as the Identifier.
The production Member Expression : MemberExpression [Expression] is evaluated as follows:

Evaluate Member Expression.

Call GetVaue(Result(1)).

Evaluate Expression.

Call GetVaue(Result(3)).

Call ToObject(Result(2)).

Call ToString(Result(4)).

Return a value of type Reference whose base object is Result(5) and whose property name is
Result(6).

Nouo~cwdhE

The production CallExpression : CallExpression [Expression] is evaluated in exactly the same
manner, except that the contained CallExpression is evaluated in step 1.

The new Operator
The production NewExpression : new NewExpression is evaluated as follows:

Evaluate NewExpression.

Call GetVaue(Result(1)).

If Type(Result(2)) is not Object, throw a TypeError exception.

If Result(2) does not implement the internal [[Construct]] method, throw a TypeError exception.
Call the [[Construct]] method on Result(2), providing no arguments (that is, an empty list of
arguments).

6. Return Result(5).

aorwdDE

The production Member Expression : new Member Expression Arguments is evaluated as follows:

Evaluate Member Expression.

Call GetVaue(Result(1)).

Evaluate Arguments, producing an internal list of argument values (11.2.4).

If Type(Result(2)) is not Object, throw a TypeError exception.

If Result(2) does not implement the internal [[Construct]] method, throw a TypeError exception.
Call the [[Construct]] method on Result(2), providing the list Result(3) as the argument values.
Return Result(6).

NogkrwbdpE

Function Calls
The production CallExpression : Member Expression Arguments is evaluated as follows:

Evaluate Member Expression.

Evaluate Arguments, producing an internal list of argument values (see 11.2.4).

Call GetVaue(Result(1)).

If Type(Result(3)) is not Object, throw a TypeError exception.

If Result(3) does not implement the internal [[Call]] method, throw a TypeError exception.

If Type(Result(1)) is Reference, Result(6) is GetBase(Result(1)). Otherwise, Result(6) is null.

If Result(6) is an activation object, Result(7) is null. Otherwise, Result(7) is the same as Result(6).
Call the [[Call]] method on Result(3), providing Result(7) as the this value and providing the list
Result(2) as the argument values.

9. Return Result(8).

ONOO A~ WNE

The production CallExpression : CallExpression Arguments is evaluated in exactly the same manner,
except that the contained CallExpression is evaluated in step 1.

NOTE
Result(8) will never be of type Reference if Result(3) is a native ECMAScript object. Whether calling a
host object can return a value of type Reference is implementation-dependent.

11.2.4

11.2.5

11.3
Syntax

- 45 -

Argument Lists
The evaluation of an argument list produces an internal list of values (see 8.8).

The production Arguments: () isevaluated as follows:

1. Return an empty internal list of values.

The production Arguments : (ArgumentList) isevaluated as follows:

1. Evaluate ArgumentList.
2. Return Result(1).

The production ArgumentList : AssignmentExpression is evaluated as follows:

1. Evaluate AssignmentExpression.
2. Call GetValue(Result(1)).
3. Return an internal list whose sole item is Result(2).

The production ArgumentList : ArgumentList , AssignmentExpression is evaluated as follows:

1. Evaluate ArgumentList.

2. Evaluate AssignmentExpression.

3. Call GetValue(Result(2)).

4. Return an internal list whose length is one greater than the length of Result(1) and whose items are
the items of Result(1), in order, followed at the end by Result(3), which is the last item of the new
list.

Function Expressions
The production Member Expression : FunctionExpression is evaluated as follows:

1. Evaluate FunctionExpression.
2. Return Result(1).

Postfix Expressions

PostfixExpression :
LeftHandS deExpression
LeftHandSideExpression [no LineTerminator here] ++
LeftHandS deExpression [no LineTerminator here] - -

11.3.1

11.3.2

Postfix Increment Operator

The production PostfixExpression : LeftHandSideExpression [no LineTerminator here] ++ is evaluated as
follows:

Evaluate LeftHandS deExpression.

Call GetValue(Result(1)).

Call ToNumber(Result(2)).

Add the value 1 to Result(3), using the same rules as for the + operator (see 11.6.3).
Call PutValue(Result(1), Result(4)).

Return Result(3).

ouhswhrE

Postfix Decrement Operator

The production PostfixExpression : LeftHandSideExpression [no LineTerminator here] - - is evaluated as
follows:

1. Evaluate LeftHandS deExpression.

2. Call GetValue(Result(1)).

3. Call ToNumber(Result(2)).

4. Subtract the value 1 from Result(3), using the same rules as for the - operator (11.6.3).

- 46 -

Call PutValue(Result(1), Result(4)).
Return Result(3).

Unary Operators

5.
6.
11.4
Syntax
UnaryExpression :

PostfixExpression

del et e UnaryExpression
voi d UnaryExpression

t ypeof UnaryExpression
++ UnaryExpression

- - UnaryExpression

+ UnaryExpression

- UnaryExpression

~ UnaryExpression

I UnaryExpression

11.4.1

11.4.2

11.4.3

Thedel et e Operator
The production UnaryExpression : del et e UnaryExpression is evaluated as follows:

ok wnE

Evaluate UnaryExpression.

If Type(Result(1)) is not Reference, return true.

Call GetBase(Result(1)).

Call GetPropertyName(Result(1)).

Call the [[Delete]] method on Result(3), providing Result(4) as the property name to delete.
Return Result(5).

Thevoi d Operator
The production UnaryExpression : voi d UnaryExpression is evaluated as follows;

1.
2.
3.

Evaluate UnaryExpression.
Call GetValue(Result(1)).
Return undefined.

Thet ypeof Operator

The production UnaryExpression : t ypeof UnaryExpression is evaluated as follows:

ogrwNE

Evaluate UnaryExpression.

If Type(Result(1)) is not Reference, go to step 4.

If GetBase(Result(1)) is null, return " undef i ned" .

Call GetVaue(Result(1)).

Return a string determined by Type(Result(4)) according to the following table:

- 47 -

Type Result
Undefined "undefi ned"
Null "obj ect"
Boolean "bool ean"
Number "nunber"
String "string"
Object (native and | "obj ect”
doesn’'t implement

[[CAll]])

Object (native and | "function”
implements [[Call]])

Object (host) I mplementation-dependent

11.4.4 Prefix Increment Operator
The production UnaryExpression : ++ UnaryExpression is evaluated as follows:

Evaluate UnaryExpression.

Call GetValue(Result(1)).

Call ToNumber(Result(2)).

Add the value 1 to Result(3), using the same rules as for the + operator (see 11.6.3).
Call PutValue(Result(1), Result(4)).

Return Result(4).

ouhswhE

11.4.5 Prefix Decrement Operator
The production UnaryExpression : - - UnaryExpression is evaluated as follows:;

Evaluate UnaryExpression.

Call GetValue(Result(1)).

Call ToNumber(Result(2)).

Subtract the value 1 from Result(3), using the same rules as for the - operator (see 11.6.3).
Call PutValue(Result(1), Result(4)).

Return Result(4).

oM whE

11.4.6 Unary + Operator
The unary + operator converts its operand to Number type.

The production UnaryExpression : + UnaryExpression is evaluated as follows:

1. Evaluate UnaryExpression.
2. Call GetValue(Result(1)).
3. Call ToNumber(Result(2)).
4. Return Result(3).

11.4.7 Unary - Operator

The unary - operator converts its operand to Number type and then negates it. Note that negating +0
produces -0, and negating —0 produces +0.

The production UnaryExpression : - UnaryExpression is evaluated as follows:

Evaluate UnaryExpression.

Call GetValue(Result(1)).

Call ToNumber(Result(2)).

If Result(3) is NaN, return NaN.

Negate Result(3); that is, compute a number with the same magnitude but opposite sign.
Return Result(5).

ok wpnpE

- 48 -

11.4.8 Bitwise NOT Operator (~)
The production UnaryExpression : ~ UnaryExpression is evaluated as follows:

agrwNE

Evaluate UnaryExpression.

Call GetVaue(Result(1)).

Call Tolnt32(Result(2)).

Apply bitwise complement to Result(3). The result is a signed 32-bit integer.
Return Result(4).

11.4.9 Logical NOT Operator (!)
The production UnaryExpression : ! UnaryExpression is evaluated as follows:

SHEI A

Evaluate UnaryExpression.

Call GetVaue(Result(1)).

Call ToBoolean(Result(2)).

If Result(3) istrue, return false.
Return true.

11.5 Multiplicative Operators

Syntax

MultiplicativeExpression :
UnaryExpression
MultiplicativeExpression * UnaryExpression
MultiplicativeExpression / UnaryExpression
MultiplicativeExpression %UnaryExpression

Semantics

The production MultiplicativeExpression : MultiplicativeExpression @ UnaryExpression, where @ stands
for one of the operators in the above definitions, is evaluated as follows:

NooA~MwNE

8.

Evaluate MultiplicativeExpression.

Call GetVaue(Result(1)).

Evaluate UnaryExpression.

Call GetVaue(Result(3)).

Call ToNumber(Result(2)).

Call ToNumber(Result(4)).

Apply the specified operation (*, /, or %) to Result(5) and Result(6). See the notes below (11.5.1,
11.5.2, 11.5.3).

Return Result(7).

11.5.1 Applying the * Operator

The * operator performs multiplication, producing the product of its operands. Multiplication is
commutative. Multiplication is not always associative in ECM A Script, because of finite precision.

The result of a floating-point multiplication is governed by the rules of IEEE 754 double-precision
arithmetic:

If either operand is NaN, the result is NaN.

The sign of the result is positive if both operands have the same sign, negative if the operands have
different signs.

Multiplication of an infinity by a zero resultsin NaN.

Multiplication of an infinity by an infinity results in an infinity. The sign is determined by the rule
already stated above.

Multiplication of an infinity by a finite non-zero value results in a signed infinity. The sign is
determined by the rule already stated above.

11.5.2

11.5.3

- 49 -

* In the remaining cases, where neither an infinity or NaN is involved, the product is computed and
rounded to the nearest representable value using |EEE 754 round-to-nearest mode. If the magnitude
is too large to represent, the result is then an infinity of appropriate sign. If the magnitude is too
small to represent, the result is then a zero of appropriate sign. The ECMAScript language requires
support of gradual underflow as defined by |IEEE 754.

Applying the/ Operator

The / operator performs division, producing the quotient of its operands. The left operand is the
dividend and the right operand is the divisor. ECMAScript does not perform integer division. The
operands and result of all division operations are double-precision floating-point numbers. The result of
division is determined by the specification of IEEE 754 arithmetic:

» |If either operand is NaN, the result is NaN.

e The sign of the result is positive if both operands have the same sign, negative if the operands have
different signs.

e Division of an infinity by an infinity resultsin NaN.

e Division of an infinity by a zero results in an infinity. The sign is determined by the rule already
stated above.

« Division of an infinity by a non-zero finite value results in a signed infinity. The sign is determined
by the rule already stated above.

« Division of a finite value by an infinity results in zero. The sign is determined by the rule already
stated above.

« Division of a zero by a zero results in NaN; division of zero by any other finite value results in zero,
with the sign determined by the rule already stated above.

« Division of a non-zero finite value by a zero results in a signed infinity. The sign is determined by
the rule already stated above.

* In the remaining cases, where neither an infinity, nor a zero, nor NaN is involved, the quotient is
computed and rounded to the nearest representable value using IEEE 754 round-to-nearest mode. If
the magnitude is too large to represent, the operation overflows; the result is then an infinity of
appropriate sign. If the magnitude is too small to represent, the operation underflows and the result is
a zero of the appropriate sign. The ECMAScript language requires support of gradual underflow as
defined by |IEEE 754.

Applying the %Operator
The % operator yields the remainder of its operands from an implied division; the left operand is the
dividend and the right operand is the divisor.

NOTE
In C and C++, the remainder operator accepts only integral operands; in ECMAScript, it also accepts
floating-point operands.

The result of a floating-point remainder operation as computed by the %operator is not the same as the
“remainder” operation defined by |IEEE 754. The IEEE 754 “remainder” operation computes the
remainder from a rounding division, not a truncating division, and so its behaviour is not analogous to
that of the usual integer remainder operator. Instead the ECMAScript language defines % on floating-
point operations to behave in a manner analogous to that of the Javainteger remainder operator; this may
be compared with the C library function fmod.

The result of a ECMAScript floating-point remainder operation is determined by the rules of IEEE
arithmetic:

e If either operand is NaN, the result is NaN.

* The sign of the result equals the sign of the dividend.

¢ If thedividend is an infinity, or the divisor is a zero, or both, the result is NaN.

e If thedividend is finite and the divisor is an infinity, the result equals the dividend.

« |If thedividend is azero and the divisor is finite, the result is the same as the dividend.

- 50 -

* In the remaining cases, where neither an infinity, nor a zero, nor NaN is involved, the floating-point
remainder r from a dividend n and a divisor d is defined by the mathematical relationr =n - (d * q)
where g is an integer that is negative only if n/d is negative and positive only if n/d is positive, and
whose magnitude is as large as possible without exceeding the magnitude of the true mathematical
quotient of nand d.

11.6 Additive Operators
Syntax

AdditiveExpression :
MultiplicativeExpression
AdditiveExpression + MultiplicativeExpression
AdditiveExpression - MultiplicativeExpression

11.6.1 The Addition operator (+)
The addition operator either performs string concatenation or numeric addition.

The production AdditiveExpression : AdditiveExpression + MultiplicativeExpression is evaluated as
follows:

Evaluate AdditiveExpression.

Call GetVaue(Result(1)).

Evaluate MultiplicativeExpression.

Call GetVaue(Result(3)).

Call ToPrimitive(Result(2)).

Call ToPrimitive(Result(4)).

If Type(Result(5)) is String or Type(Result(6)) is String, go to step 12. (Note that this step differs
from step 3 in the comparison algorithm for the relational operators, by using or instead of and.)
8. Call ToNumber(Result(5)).

9. Call ToNumber(Result(6)).

10. Apply the addition operation to Result(8) and Result(9). See the note below (11.6.3).

11. Return Result(10).

12. Call ToString(Result(5)).

13. Call ToString(Result(6)).

14. Concatenate Result(12) followed by Result(13).

15. Return Result(14).

NogasrwNE

NOTE

No hint is provided in the calls to ToPrimitive in steps 5 and 6. All native ECMAScript objects except
Date objects handle the absence of a hint as if the hint Number were given; Date objects handle the
absence of a hint as if the hint String were given. Host objects may handle the absence of a hint in some
other manner.

11.6.2 The Subtraction Operator (-)

The production AdditiveExpression : AdditiveExpression - MultiplicativeExpression is evaluated as
follows:

Evaluate AdditiveExpression.

Call GetValue(Result(1)).

Evaluate MultiplicativeExpression.

Call GetVaue(Result(3)).

Call ToNumber(Result(2)).

Call ToNumber(Result(4)).

Apply the subtraction operation to Result(5) and Result(6). See the note below (11.6.3).
Return Result(7).

ONoTOA~LONE

- 51 -

11.6.3 Applying the Additive Operators (+, -) to Numbers

The + operator performs addition when applied to two operands of numeric type, producing the sum of

the operands. The - operator performs subtraction, producing the difference of two numeric operands.

Addition is a commutative operation, but not always associative.

The result of an addition is determined using the rules of |EEE 754 double-precision arithmetic:

e |If either operand is NaN, the result is NaN.

e The sum of two infinities of opposite sign is NaN.

e The sum of two infinities of the same sign is the infinity of that sign.

e Thesum of aninfinity and afinite value is equal to the infinite operand.

e The sum of two negative zeros is —0. The sum of two positive zeros, or of two zeros of opposite sign,
is +0.

e Thesum of azero and a nonzero finite value is equal to the nonzero operand.

¢ The sum of two nonzero finite values of the same magnitude and opposite sign is +0.

¢ In the remaining cases, where neither an infinity, nor a zero, nor NaN is involved, and the operands
have the same sign or have different magnitudes, the sum is computed and rounded to the nearest
representable value using | EEE 754 round-to-nearest mode. If the magnitude is too large to represent,
the operation overflows and the result is then an infinity of appropriate sign. The ECMA Script
language requires support of gradual underflow as defined by |EEE 754.

The - operator performs subtraction when applied to two operands of numeric type, producing the

difference of its operands; the left operand is the minuend and the right operand is the subtrahend. Given

numeric operands a and b, it is always the case that a—b produces the same result as a+(—b) .

11.7 Bitwise Shift Operators
Syntax
ShiftExpression :

AdditiveExpression

ShiftExpression << AdditiveExpression
ShiftExpression >> AdditiveExpression
ShiftExpression >>> AdditiveExpression

11.7.1

11.7.2

The Left Shift Operator (<<)
Performs a bitwise left shift operation on the left operand by the amount specified by the right operand.

The production ShiftExpression : ShiftExpression << AdditiveExpression is evaluated as follows:

Evaluate ShiftExpression.

Call GetValue(Result(1)).

Evaluate AdditiveExpression.

Call GetValue(Result(3)).

Call Tolnt32(Result(2)).

Call ToUint32(Result(4)).

Mask out all but the least significant 5 bits of Result(6), that is, compute Result(6) & Ox1F.
L eft shift Result(5) by Result(7) bits. The result is a signed 32 bit integer.

Return Result(8).

©CoNoO~wWNE

The Signed Right Shift Operator (>>)

Performs a sign-filling bitwise right shift operation on the left operand by the amount specified by the
right operand.

The production ShiftExpression : ShiftExpression >> AdditiveExpression is evaluated as follows:

1. Evaluate ShiftExpression.
2. Call GetValue(Result(1)).

©oNo O AW

9.

- 52 -

Evaluate AdditiveExpression.

Call GetVaue(Result(3)).

Call Tolnt32(Result(2)).

Call ToUint32(Result(4)).

Mask out all but the least significant 5 bits of Result(6), that is, compute Result(6) & Ox1F.
Perform sign-extending right shift of Result(5) by Result(7) bits. The most significant bit is
propagated. The result is a signed 32 bit integer.

Return Result(8).

11.7.3 The Unsigned Right Shift Operator (>>>)

Performs a zero-filling bitwise right shift operation on the left operand by the amount specified by the
right operand.

The production ShiftExpression : ShiftExpression >>> AdditiveExpression is evaluated as follows:

©ONoOOAWNE

9.

Evaluate ShiftExpression.

Call GetVaue(Result(1)).

Evaluate AdditiveExpression.

Call GetVaue(Result(3)).

Call ToUint32(Result(2)).

Call ToUint32(Result(4)).

Mask out all but the least significant 5 bits of Result(6), that is, compute Result(6) & Ox1F.
Perform zero-filling right shift of Result(5) by Result(7) bits. Vacated bits are filled with zero. The
result is an unsigned 32 bit integer.

Return Result(8).

11.4 Relational Operators

Syntax

Relational Expression :
ShiftExpression
Relational Expression < ShiftExpression
Relational Expression > ShiftExpression
Relational Expression <= ShiftExpression
Relational Expression >= ShiftExpression
RelationalExpressioni nst anceof ShiftExpression
RelationalExpression i n ShiftExpression

Relational ExpressionNoln :
ShiftExpression
Relational ExpressionNoln < ShiftExpression
Relational ExpressionNoln > ShiftExpression
Relational ExpressionNoln <= ShiftExpression
Relational ExpressionNoln >= ShiftExpression
RelationalExpressionNolni nst anceof ShiftExpression

NOTE
The 'Noln' variants are needed to avoid confusing the i n operator in a relational expression with the i n
operator inaf or statement.

Semantics

The result of evaluating a relational operator is always of type Boolean, reflecting whether the relationship
named by the operator holds between its two operands.

The RelationalExpressionNoln productions are evaluated in the same manner as the Relational Expression
productions except that the contained RelationalExpressionNoln is evaluated instead of the contained
Relational Expression.

11.8.1

11.8.2

11.8.3

11.8.4

11.8.5

- 53 -

The Less-than Operator (<)
The production Relational Expression : Relational Expression < ShiftExpression is evaluated as follows:

oo wNE

Evaluate Relational Expression.

Call GetValue(Result(1)).

Evaluate ShiftExpression.

Call GetValue(Result(3)).

Perform the comparison Result(2) < Result(4). (see 11.8.5)

If Result(5) is undefined, return false. Otherwise, return Result(5).

The Greater-than Operator (>)
The production Relational Expression : Relational Expression > ShiftExpression is evaluated as follows:

ok wNE

Evaluate Relational Expression.

Call GetValue(Result(1)).

Evaluate ShiftExpression.

Call GetValue(Result(3)).

Perform the comparison Result(4) < Result(2). (see 11.8.5).

If Result(5) is undefined, return false. Otherwise, return Result(5).

The Less-than-or-equal Operator (<=)
The production Relational Expression : Relational Expression <= ShiftExpression is evaluated as follows:

ook wNE

Evaluate Relational Expression.

Call GetValue(Result(1)).

Evaluate ShiftExpression.

Call GetValue(Result(3)).

Perform the comparison Result(4) < Result(2). (see 11.8.5).

If Result(5) istrue or undefined, return false. Otherwise, return true.

The Greater-than-or-equal Operator (>=)
The production Relational Expression : Relational Expression >= ShiftExpression is evaluated as follows:

ok whNE

Evaluate Relational Expression.

Call GetValue(Result(1)).

Evaluate ShiftExpression.

Call GetValue(Result(3)).

Perform the comparison Result(2) < Result(4). (see 11.8.5).

If Result(5) istrue or undefined, return false. Otherwise, return true.

The Abstract Relational Comparison Algorithm

The comparison x <y, where x and y are values, produces true, false, or undefined (which indicates that
at least one operand is NaN). Such a comparison is performed as follows:

wn P

Call ToPrimitive(x, hint Number).

Call ToPrimitive(y, hint Number).

If Type(Result(1)) is String and Type(Result(2)) is String, go to step 16. (Note that this step differs
from step 7 in the algorithm for the addition operator + in using and instead of or.)

4. Call ToNumber(Result(1)).
5. Call ToNumber(Result(2)).
6.
7
8
9

If Result(4) is NaN, return undefined.

. If Result(5) is NaN, return undefined.
. If Result(4) and Result(5) are the same number value, return false.
. If Result(4) is +0 and Result(5) is =0, return false.

10. If Result(4) is -0 and Result(5) is +0, return false.
11. If Result(4) is +o0, return false.
12. 1f Result(5) is +oo, return true.
13. If Result(5) is —oo, return false.

- 54 -

14.1f Result(4) is —co, return true.

15.1f the mathematical value of Result(4) is less than the mathematical value of Result(5)—note that
these mathematical values are both finite and not both zero—return true. Otherwise, return false.

16.1f Result(2) is a prefix of Result(1), return false. (A string value p is a prefix of string value q if g
can be the result of concatenating p and some other string r. Note that any string is a prefix of itself,
because r may be the empty string.)

17.1f Result(1) is a prefix of Result(2), return true.

18.Let k be the smallest nonnegative integer such that the character at position k within Result(1) is
different from the character at position k within Result(2). (There must be such ak, for neither string
is aprefix of the other.)

19. Let m be the integer that is the code point value for the character at position k within Result(1).

20. Let n be the integer that is the code point value for the character at position k within Result(2).

21.1f m < n, return true. Otherwise, return false.

NOTE

The comparison of strings uses a simple lexicographic ordering on sequences of code point value values.
There is no attempt to use the more complex, semantically oriented definitions of character or string
equality and collating order defined in the Unicode specification. Therefore strings that are canonically
equal according to the Unicode standard could test as unequal. In effect this algorithm assumes that
both strings are already in normalised form.

11.8.6 Theinstanceof operator

The production Relational Expression: RelationalExpression i nst anceof ShiftExpression is evaluated
as follows:

Evaluate Relational Expression.

Call GetVaue(Result(1)).

Evaluate ShiftExpression.

Call GetVaue(Result(3)).

If Result(4) is not an object, throw a TypeError exception.

If Result(4) does not have a [[Haslnstance]] method, throw a TypeError exception.
Call the [[Haslnstance]] method of Result(4) with parameter Result(2).

Return Result(7).

ONogA~MWNE

11.8.7 Thein operator
The production Relational Expression : Relational Expression i n ShiftExpression is evaluated as follows:

Evaluate Relational Expression.

Call GetValue(Result(1)).

Evaluate ShiftExpression.

Call GetVaue(Result(3)).

If Result(4) is not an object, throw a TypeError exception.

Call ToString(Result(2)).

Call the [[HasProperty]] method of Result(4) with parameter Result(6).
Return Result(7).

©ONoOA~LONE

11.9 Equality Operators
Syntax

EqualityExpression :
Relational Expression
EqualityExpression == Relational Expression
EqualityExpression ! = Relational Expression
EqualityExpression === Relational Expression
EqualityExpression ! == Relational Expression

- 55 -

EqualityExpressionNoln :
Relational ExpressionNoln
EqualityExpressionNoln == Relational ExpressionNoln
EqualityExpressionNoln ! = Relational ExpressionNoln

EqualityExpressionNoln === Relational ExpressionNoln
EqualityExpressionNoln ! == Relational ExpressionNoln
Semantics

The result of evaluating an equality operator is always of type Boolean, reflecting whether the relationship
named by the operator holds between its two operands.

The EqualityExpressionNoln productions are evaluated in the same manner as the EqualityExpression
productions except that the contained EqualityExpressionNoln and Relational ExpressionNoln are evaluated
instead of the contained EqualityExpression and Relational Expression, respectively.

11.9.1 TheEquals Operator (==

The production EqualityExpression : EqualityExpression == RelationalExpression is evaluated as
follows:

Evaluate EqualityExpression.

Call GetValue(Result(1)).

Evaluate Relational Expression.

Call GetValue(Result(3)).

Perform the comparison Result(4) == Result(2). (see 11.9.3).
Return Result(5).

ok wnpE

11.9.2 The Does-not-equals Operator (! =)

The production EqualityExpression : EqualityExpression ! = RelationalExpression is evaluated as
follows:

Evaluate EqualityExpression.

Call GetValue(Result(1)).

Evaluate Relational Expression.

Call GetValue(Result(3)).

Perform the comparison Result(4) == Result(2). (see 11.9.3).
If Result(5) istrue, return false. Otherwise, return true.

ok wNE

11.9.3 The Abstract Equality Comparison Algorithm

The comparison x ==y, where x and y are values, produces true or false. Such a comparison is
performed as follows:

If Type(x) is different from Type(y), go to step 14.

If Type(x) is Undefined, return true.

If Type(x) is Null, return true.

If Type(x) is not Number, go to step 11.

If x is NaN, return false.

If yis NaN, return false.

If x isthe same number value asy, return true.

If xis+0andyis-0, return true.

. If xis=0andyis+0, return true.

10. Return false.

11.1f Type(x) is String, then return true if x and y are exactly the same sequence of characters (same
length and same characters in corresponding positions). Otherwise, return false.

12.1f Type(x) is Boolean, return true if x and y are both true or both false. Otherwise, return false.

13.Return trueif x and y refer to the same object or if they refer to objects joined to each other (see
13.1.2). Otherwise, return false.

14.1f x isnull and y is undefined, return true.

15.1f x isundefined and y is null, return true.

©CONoOOrWNE

11.9.4

11.9.5

11.9.6

- 56 -

16.1f Type(x) is Number and Type(y) is String,
return the result of the comparison x == ToNumber(y).
17.1f Type(X) is String and Type(y) is Number,
return the result of the comparison ToNumber(x) ==.
18. If Type(x) is Boolean, return the result of the comparison ToNumber(x) ==
19. If Type(y) is Boolean, return the result of the comparison x == ToNumber(y).
20.1f Type(x) is either String or Number and Type(y) is Object,
return the result of the comparison x == ToPrimitive(y).
21.1f Type(x) is Object and Type(y) is either String or Number,
return the result of the comparison ToPrimitive(x) ==.
22. Return false.

NOTE
Given the above definition of equality:

String comparison can be forced by: "" + a == "" + b.
Numeric comparison can beforcedby: a - 0 == - 0.
Boolean comparison can be forced by: ''a == !b.

The equality operators maintain the following invariants:
A!=Bisequivalentto! (A==B).
A == Bisequivalent to B == A, except in the order of evaluation of A and B.

The equality operator is not always transitive. For example, there might be two distinct String objects,
each representing the same string value; each String object would be considered equal to the string
value by the == operator, but the two String objects would not be equal to each other.

Comparison of strings uses a simple equality test on sequences of code point value values. There is no
attempt to use the more complex, semantically oriented definitions of character or string equality and
collating order defined in the Unicode 2.0 specification. Therefore strings that are canonically equal
according to the Unicode standard could test as unequal. In effect this algorithm assumes that both
strings are already in normalised form.

The Strict Equals Operator (===

The production EqualityExpression : EqualityExpression === RelationalExpression is evaluated as
follows:

Evaluate EqualityExpression.

Call GetVaue(Result(1)).

Evaluate Relational Expression.

Call GetVaue(Result(3)).

Perform the comparison Result(4) === Result(2). (See below.)
Return Result(5).

ok wnpE

The Strict Does-not-equal Operator (! ==

The production EqualityExpression : EqualityExpression ! == RelationalExpression is evaluated as
follows:

Evaluate EqualityExpression.

Call GetVaue(Result(1)).

Evaluate Relational Expression.

Call GetVaue(Result(3)).

Perform the comparison Result(4) === Result(2). (See below.)
If Result(5) istrue, return false. Otherwise, return true.

ok wNE

The Strict Equality Comparison Algorithm

The comparison x ===y, where x and y are values, produces true or false. Such a comparison is
performed as follows:

- 57 -

If Type(x) is different from Type(y), return false.

If Type(x) is Undefined, return true.

If Type(x) is Null, return true.

If Type(x) is not Number, go to step 11.

If x is NaN, return false.

If yis NaN, return false.

If x is the same number value asy, return true.

If xis+0andyis -0, return true.

. If xis-0andyis+0, return true.

10. Return false.

11.1f Type(x) is String, then return true if x and y are exactly the same sequence of characters (same
length and same characters in corresponding positions); otherwise, return false.

12.1f Type(x) is Boolean, return true if x and y are both true or both false; otherwise, return false.

13.Return trueif x and y refer to the same object or if they refer to objects joined to each other (see

13.1.2). Otherwise, return false.

©ON>O~WNE

11.10 Binary Bitwise Operators

Syntax

BitwiseANDEXpression :
EqualityExpression
BitwiseANDEXpression & EqualityExpression

BitwiseANDEXxpressionNoln :
EqualityExpressionNoln
BitwiseANDEXpressionNol n & EqualityExpressionNoln

BitwiseXORExpression :
BitwiseANDEXpression

BitwiseXOREXxpression N BitwiseANDEXxpression

BitwiseXOREXxpressionNoln :
BitwiseANDEXxpressionNoln
BitwiseXORExpressionNoln ~ BitwiseANDEXxpressionNoln

BitwiseORExpression :
BitwiseXOREXxpression

BitwiseORExpression | BitwiseXORExpression

BitwiseORExpressionNoln :
BitwiseXOREXxpressionNoln
BitwiseOREXpressionNoln | BitwiseXOREXxpressionNoln

Semantics

The production A : A @ B, where @ is one of the bitwise operators in the productions above, is evaluated
as follows:

Evaluate A.

Call GetValue(Result(1)).

Evaluate B.

Call GetValue(Result(3)).

Call Tolnt32(Result(2)).

Call Tolnt32(Result(4)).

Apply the bitwise operator @ to Result(5) and Result(6). The result is a signed 32 bit integer.
Return Result(7).

NG ALONE

- 58 -

11.11 Binary Logical Operators
Syntax

Logical ANDEXxpression :
Bitwi seOREXpression
Logical ANDExpression && BitwiseOREXpression

Logical ANDExpressionNoln :
BitwiseOREXpressionNoln
Logical ANDExpressionNol n && BitwiseORExpressionNoln

Logical ORExpression :
Logical ANDExpression
Logical ORExpression | | Logical ANDExpression

Logical ORExpressionNoln :
Logical ANDExpressionNoln
Logical ORExpressionNoln | | Logical ANDExpressionNoln

Semantics

The production Logical ANDEXxpression : Logical ANDExpression && BitwiseORExpression is evaluated as
follows:

Evaluate Logical ANDEXxpression.
Call GetValue(Result(1)).

Call ToBoolean(Result(2)).

If Result(3) is false, return Result(2).
Evaluate BitwiseOREXpr ession.

Call GetVaue(Result(5)).

Return Result(6).

NooMwDdDE

The production Logical ORExpression : LogicalORExpression | | LogicalANDExpression is evaluated as
follows:

Evaluate Logical ORExpression.

Call GetValue(Result(1)).

Call ToBoolean(Result(2)).

If Result(3) istrue, return Result(2).
Evaluate Logical ANDExpression.
Call GetVaue(Result(5)).

Return Result(6).

Noo~MwDdE

The Logical ANDExpressionNoln and Logical ORExpressionNoln productions are evaluated in the same
manner as the Logical ANDExpression and LogicalORExpression productions except that the contained
Logical ANDExpressionNoln, BitwiseORExpressionNoln and Logical ORExpressionNoln are evaluated
instead of the contained LogicalANDExpression, BitwiseORExpression and Logical ORExpression,
respectively.

NOTE
The value produced by a && or | | operator is not necessarily of type Boolean. The value produced will
always be the value of one of the two operand expressions.

11.12 Conditional Operator (?:)
Syntax

Conditional Expression :
Logical ORExpression
LogicalORExpression ? AssignmentExpression : AssignmentExpression

- 59 -

Conditional ExpressionNoln :
Logical ORExpressionNoln
Logical ORExpressionNoln ? AssignmentExpression : AssignmentExpressionNoln

Semantics

The production Conditional Expression : Logical ORExpression ? AssignmentExpression :
AssignmentExpression is evaluated as follows:

Evaluate Logical ORExpression.

Call GetValue(Result(1)).

Call ToBoolean(Result(2)).

If Result(3) isfalse, go to step 8.

Evaluate the first AssignmentExpression.
Call GetValue(Result(5)).

Return Result(6).

Evaluate the second AssignmentExpression.
Call GetValue(Result(8)).

0. Return Result(9).

BOO~NOOOAODNE

The Conditional ExpressionNoln production is evaluated in the same manner as the Conditional Expression
production except that the contained LogicalORExpressionNoln, AssignmentExpression and
AssignmentExpressionNoln are evaluated instead of the contained LogicalORExpression, first
AssignmentExpression and second AssignmentExpression, respectively.

NOTE

The grammar for a Conditional Expression in ECMAScript is a little bit different from that in C and Java,
which each allow the second subexpression to be an Expression but restrict the third expression to be a
ConditionalExpression. The motivation for this difference in ECMAScript is to allow an assignment
expression to be governed by either arm of a conditional and to eliminate the confusing and fairly useless
case of a comma expression as the centre expression.

11.13 Assignment Operators
Syntax
AssignmentExpression :

Conditional Expression
LeftHandS deExpression AssignmentOperator AssignmentExpression

AssignmentExpressionNoln :
Conditional ExpressionNoln
LeftHandS deExpression AssignmentOperator AssignmentExpressionNoln

AssignmentOperator : one of

*= /= % += -= <<= >>= >>>= &= A= =

Semantics

The AssignmentExpressionNol n productions are evaluated in the same manner as the AssignmentExpression
productions except that the contained ConditionalExpressionNoln and AssignmentExpressionNoln are
evaluated instead of the contained Conditional Expression and AssignmentExpression, respectively.

11.13.1 Simple Assignment (=)

The production AssignmentExpression : LeftHandSideExpression = AssignmentExpression is evaluated
as follows:

1. Evaluate LeftHandS deExpression.
2. Evaluate AssignmentExpression.

3. Call GetVaue(Result(2)).

4. Call PutValue(Result(1), Result(3)).

- 60 -

5. Return Result(3).

11.13.2 Compound Assignment (op=)

The production AssignmentExpression : LeftHandSideExpression @ = AssignmentExpression, where @
represents one of the operators indicated above, is evaluated as follows:

Evaluate LeftHandS deExpression.

Call GetVaue(Result(1)).

Evaluate AssignmentExpression.

Call GetVaue(Result(3)).

Apply operator @ to Result(2) and Result(4).
Call PutVaue(Result(1), Result(5)).

Return Result(5).

NouosMwbhE

11.14 Comma Operator (,)

Syntax
Expression :
AssignmentExpression

Expression, AssignmentExpression

ExpressionNoln :
AssignmentExpressionNoln
ExpressionNoln, AssignmentExpressionNoln

Semantics
The production Expression : Expression, AssignmentExpression is evaluated as follows:

Evaluate Expression.

Call GetVaue(Result(1)).
Evaluate AssignmentExpression.
Call GetVaue(Result(3)).
Return Result(4).

agrwNE

The ExpressionNoln production is evaluated in the same manner as the Expression production except that
the contained ExpressionNoln and AssignmentExpressionNoln are evaluated instead of the contained
Expression and AssignmentExpression, respectively.

- 61 -

12 Statements
Syntax

Satement :
Block
VariableSatement
EmptyStatement
ExpressionSatement
IfSatement
IterationSatement
ContinueStatement
BreakSatement
ReturnSatement
WithSatement
LabelledSatement
SwitchSatement
ThrowSatement
TrySatement

Semantics

A Statement can be part of a LabelledStatement, which itself can be part of a LabelledStatement, and so on.
The labels introduced this way are collectively referred to as the “current label set” when describing the
semantics of individual statements. A LabelledStatement has no semantic meaning other than the introduction
of a label to a label set. The label set of an IterationStatement or a SwitchStatement initially contains the
single element empty. The label set of any other statement is initially empty.

12.1 Block
Syntax
Block :
{ StatementListoy }

SatementList :
Satement
SatementList Satement
Semantics
The production Block : { } is evaluated as follows:

1. Return (normal, empty, empty).

The production Block : { StatementList } is evaluated as follows:

1. Evaluate StatementList.
2. Return Result(1).

The production StatementList : Statement is evaluated as follows:

1. Evauate Statement.

2. If an exception was thrown, return (throw, V, empty) where V is the exception. (Execution now
proceeds as if no exception were thrown.)

3. Return Result(1).

The production StatementList : StatementList Statement is evaluated as follows:

1. Evauate StatementList.
2. If Result(1) is an abrupt completion, return Result(1).
3. Evaluate Statement.

- 62 -

4. If an exception was thrown, return (throw, V, empty) where V is the exception. (Execution now
proceeds as if no exception were thrown.)

5. If Result(3).valueis empty, let V = Result(1).value, otherwise let V = Result(3).value.

6. Return (Result(3).type, V, Result(3).target).

12.2 Variable statement
Syntax

VariableSatement :
var VariableDeclarationList ;

VariableDeclarationList :
VariableDeclaration
VariableDeclarationList, VariableDeclaration

VariableDeclarationListNoln :
VariableDeclarationNoln
VariableDeclarationListNoln, VariableDeclarationNoln

VariableDeclaration :
Identifier Initialiser gy

VariableDeclarationNoln :
Identifier InitialiserNol ngy

Initialiser :
= AssignmentExpression
InitialiserNoln :

= AssignmentExpressionNoln

Description

If the variable statement occurs inside a FunctionDeclaration, the variables are defined with function-local
scope in that function, as described in s10.1.3. Otherwise, they are defined with global scope (that is, they
are created as members of the global object, as described in 10.1.3) using property attributes { DontDelete
}. Variables are created when the execution scope is entered. A Block does not define a new execution
scope. Only Program and FunctionDeclaration produce a new scope. Variables are initialised to undefined
when created. A variable with an Initialiser is assigned the value of its AssignmentExpression when the
VariableStatement is executed, not when the variable is created.

Semantics

The production VariableStatement : var VariableDeclarationList ; isevaluated as follows:
1. Evaluate VariableDeclarationList.

2. Return (normal, empty, empty).

The production VariableDeclarationList : VariableDeclaration is evaluated as follows:

1. Evaluate VariableDeclaration.

The production VariableDeclarationList : VariableDeclarationList , VariableDeclaration is evaluated as
follows:

1. Evaluate VariableDeclarationList.

2. Evaluate VariableDeclaration.

The production VariableDeclaration : Identifier is evaluated as follows:

1. Return astring value containing the same sequence of characters as in the Identifier.

- 63 -

The production VariableDeclaration : Identifier Initialiser is evaluated as follows:

Evaluate Identifier as described in 11.1.2.

Evaluate Initialiser.

Call GetValue(Result(2)).

Call PutValue(Result(1), Result(3)).

Return a string value containing the same sequence of characters as in the ldentifier.

ogrwNE

The production Initialiser : = AssignmentExpression is evaluated as follows:

1. Evaluate AssignmentExpression.
2. Return Result(1).

The VariableDeclarationListNoln, VariableDeclarationNoln and InitialiserNoln productions are evaluated
in the same manner as the VariableDeclarationList, VariableDeclaration and Initialiser productions except
that the contained VariableDeclarationListNoln, VariableDeclarationNoln, InitialiserNoln and
AssignmentExpressionNoln are evaluated instead of the contained VariableDeclarationList,
VariableDeclaration, Initialiser and AssignmentExpression, respectively.

12.3 Empty Statement
Syntax
EmptyStatement :
Semantics
The production EmptyStatement : ; is evaluated as follows:
1. Return (normal, empty, empty).
12.4 Expression Statement
Syntax
ExpressionSatement :

[lookahead O {{, function}] Expression;

Note that an ExpressionStatement cannot start with an opening curly brace because that might make it
ambiguous with a Block. Also, an ExpressionStatement cannot start with the f unct i on keyword because
that might make it ambiguous with a FunctionDeclaration.

Semantics
The production ExpressionStatement : [lookahead 0 {{, functi on}] Expression; isevaluated as follows:

1. Evaluate Expression.
2. Cal GetVaue(Result(1)).
3. Return (normal, Result(2), empty).

12.5 Thei f Statement
Syntax
IfSatement :

i f (Expression) Satement el se Satement
i f (Expression) Satement

Each el se for which the choice of associated i f is ambiguous shall be associated with the nearest
possible if that would otherwise have no corresponding el se.

Semantics

The production IfStatement : i f (Expression) Statement el se Statement is evaluated as follows:

- 64 -

Evaluate Expression.

Call GetVaue(Result(1)).

Call ToBoolean(Result(2)).

If Result(3) is false, go to step 7.
Evaluate the first Statement.
Return Result(5).

Evaluate the second Statement.
Return Result(7).

ONoOOA~WNE

The production IfStatement : i f (Expression) Statement is evaluated as follows:

Evaluate Expression.

Call GetVaue(Result(1)).

Call ToBoolean(Result(2)).

If Result(3) isfalse, return (normal, empty, empty).
Evaluate Statement.

Return Result(5).

ok wnNE

12.6 Iteration Statements

An iteration statement consists of a header (which consists of a keyword and a parenthesised control
construct) and a body (which consists of a Statement).

Syntax

IterationStatement :
do Satement whil e (Expression) ;
whi | e (Expression) Satement
for (ExpressionNolngy; Expressiong; Expressiong,) Statement
for (var VariableDeclarationListNoln; Expressiongy ; Expressiong,) Statement
f or (LeftHandSdeExpressioni n Expression) Satement
for (var VariableDeclarationNolni n Expression) Satement

12.6.1 Thedo-whi | e Statement
The production do Statement whi | e (Expression) ; is evaluated as follows:

Let V = empty.

Evaluate Statement.

If Result(2).value is not empty, let V = Result(2).value.

If Result(2).typeis continue and Result(2).target is in the current label set, go to step 7.
If Result(2).typeis break and Result(2).target isin the current label set, return (normal, V, empty).
If Result(2) is an abrupt completion, return Result(2).

Evaluate Expression.

Call GetVaue(Result(7)).

. Call ToBoolean(Result(8)).

10. If Result(9) istrue, go to step 2.

11. Return (normal, V, empty);

©CoNo~wWNE

12.6.2 Thewhi | e statement
The production IterationStatement : whi | e (Expression) Statement is evaluated as follows:

Let V = empty.

Evaluate Expression.

Call GetVaue(Result(2)).

Call ToBoolean(Result(3)).

If Result(4) is false, return (normal, V, empty).

Evaluate Statement.

If Result(6).value is not empty, let V = Result(6).value.

If Result(6).type is continue and Result(6).target is in the current label set, go to 2.

NGO~ WDNE

- 65 -

9. If Result(6).typeis break and Result(6).target is in the current label set, return (normal, V, empty).
10. If Result(6) is an abrupt completion, return Result(6).
11. Go to step 2.

12.6.3 Thef or Statement

The production IterationStatement : f or (ExpressionNolngg ; EXpressiong ; Expressiongy) Statement
is evaluated as follows:

If the first Expression is not present, go to step 4.

Evaluate ExpressionNoln.

Call GetValue(Result(2)). (This value is not used.)

Let V = empty.

If the first Expression is not present, go to step 10.

Evaluate the first Expression.

Call GetValue(Result(6)).

Call ToBoolean(Result(7)).

If Result(8) is false, go to step 19.

10. Evaluate Statement.

11. If Result(10).value is not empty, let V = Result(10).value

12. If Result(10).type is break and Result(10).target is in the current label set, go to step 19.
13. If Result(10).type is continue and Result(10).target isin the current label set, go to step 15.
14. 1f Result(10) is an abrupt completion, return Result(10).

15. If the second Expression is not present, go to step 5.

16. Evaluate the second Expression.

17. Call GetVaue(Result(16). (This valueis not used.)

18. Go to step 5.

19. Return (normal, V, empty).

©CoNoOM~WNE

The production IterationStatement : for (var VariableDeclarationListNoln ; ExXpressiong ;
Expressiongy) Statement is evaluated as follows:

Evaluate VariableDeclarationListNoln.

Let V = empty.

If the first Expression is not present, go to step 8.

Evaluate the first Expression.

Call GetValue(Result(4)).

Call ToBoolean(Result(5)).

If Result(6) is false, go to step 14.

Evaluate Statement.

If Result(8).value is not empty, let V = Result(8).value.

10. If Result(8).typeis break and Result(8).target isin the current label set, go to step 17.
11. If Result(8).type is continue and Result(8).target is in the current label set, go to step 13.
12. 1f Result(8) is an abrupt completion, return Result(8).

13. If the second Expression is not present, go to step 3.

14. Evaluate the second Expression.

15. Call GetValue(Result(14)). (Thisvalue is not used.)

16. Go to step 3.

17. Return (normal, V, empty).

©CoOoNoT~WNE

12.6.4 Thef or -i n Statement

The production IterationStatement : f or (LeftHandSideExpression i n Expression) Statement is
evaluated as follows:

=

Evaluate the Expression.
2. Call GetValue(Result(1)).
3. Call ToObject(Result(2)).
4. LetV =empty.

- 66 -

5. Get the name of the next property of Result(3) that doesn’t have the DontEnum attribute. If there is
no such property, go to step 14.

Evaluate the LeftHandSideExpression (it may be evaluated repeatedly).

Call PutValue(Result(6), Result(5)).

Evaluate Statement.

If Result(8).value is not empty, let V = Result(8).value.

10 If Result(8).typeis break and Result(8).target isin the current label set, go to step 14.
11. If Result(8).type is continue and Result(8).target is in the current label set, go to step 5.
12. If Result(8) is an abrupt completion, return Result(8).

13. Go to step 5.

14. Return (normal, V, empty).

© N

The production IterationStatement : f or (var VariableDeclarationNoln i n Expression) Statement is
evaluated as follows:

Evaluate VariableDeclarationNoln.

Evaluate Expression.

Call GetValue(Result(2)).

Call ToObject(Result(3)).

Let V = empty.

Get the name of the next property of Result(4) that doesn’t have the DontEnum attribute. If there is
no such property, go to step 15.

7. Evaluate Result(1) asif it were an Identifier; see O (yes, it may be evaluated repeatedly).
8. Call PutValue(Result(7), Result(6)).

9. Evaluate Statement.

10.1f Result(9).value is not empty, let V = Result(9).value.

11.1f Result(9).typeis break and Result(9).target is in the current label set, go to step 15.
12.1f Result(9).type is continue and Result(9).target is in the current label set, go to step 6.
13.1f Result(8) is an abrupt completion, return Result(8).

14.Go to step 6.

15.Return (normal, V, empty).

ok wNE

The mechanics of enumerating the properties (step 5 in the first algorithm, step 6 in the second) is
implementation dependent. The order of enumeration is defined by the object. Properties of the object
being enumerated may be deleted during enumeration. If a property that has not yet been visited during
enumeration is deleted, then it will not be visited. If new properties are added to the object being
enumerated during enumeration, the newly added properties are not guaranteed to be visited in the active
enumeration.

Enumerating the properties of an object includes enumerating properties of its prototype, and the
prototype of the prototype, and so on, recursively; but a property of a prototype is not enumerated if it is
“shadowed” because some previous object in the prototype chain has a property with the same name.

12.7 Theconti nue Statement
Syntax
ContinueStatement :
conti nue [noLineTerminator here] ldentifierqy ;
Semantics
A program is considered syntactically incorrect if either of the following are true:

 The program contains a cont i nue statement without the optional Identifier, which is not nested,
directly or indirectly (but not crossing function boundaries), within an IterationStatement.

* The program contains a cont i nue statement with the optional Identifier, where Identifier does not
appear in the label set of an enclosing (but not crossing function boundaries) IterationStatement.

A ContinueStatement without an Identifier is evaluated as follows:

- 67 -

1. Return (continue, empty, empty).

A ContinueStatement with the optional Identifier is evaluated as follows:

1. Return (continue, empty, ldentifier).

12.8 Thebr eak Statement
Syntax
BreakSatement :

break [noLineTerminator here] |dentifierqy ;

Semantics
A program is considered syntactically incorrect if either of the following are true:

e The program contains a br eak statement without the optional Identifier, which is not nested, directly
or indirectly (but not crossing function boundaries), within an IterationStatement or a SwitchStatement.

e The program contains a br eak statement with the optional Identifier, where Identifier does not appear
in the label set of an enclosing (but not crossing function boundaries) Statement.

A BreakStatement without an Identifier is evaluated as follows:

1. Return (break, empty, empty).

A BreakStatement with an ldentifier is evaluated as follows:

1. Return (break, empty, ldentifier).

12.9 Ther et urn Statement
Syntax
ReturnSatement :

return [noLineTerminator here] EXPressiongy ;

Semantics

An ECMAScript program is considered syntactically incorrect if it containsar et ur n statement that is not
within a FunctionBody. A r et ur n statement causes a function to cease execution and return a value to the
caller. If Expression is omitted, the return value is undefined. Otherwise, the return value is the value of
Expression.

The production ReturnStatement : r et ur n [no LineTerminator here] EXpressiong ; is evaluated as:

1. If the Expression is not present, return (return, undefined, empty).
2. Evaluate Expression.

3. Cadl GetValue(Result(2)).

4. Return (return, Result(3), empty).

12.10 Thewi t h Statement

Syntax

WithStatement :
wi t h (Expression) Satement

Description

The wi t h statement adds a computed object to the front of the scope chain of the current execution
context, then executes a statement with this augmented scope chain, then restores the scope chain.

- 68 -

Semantics

The production WithStatement : wi t h (Expression) Statement is evaluated as follows:

1. Evaluate Expression.

2. Cadl GetVaue(Result(1)).

3. Call ToObject(Result(2)).

4. Add Result(3) to the front of the scope chain.

5. Evaluate Statement using the augmented scope chain from step 4.

6. Let C be Result(5). If an exception was thrown in step 5, let C be (throw, V, empty), where V is the
exception. (Execution now proceeds as if no exception were thrown.)

7. Remove Result(3) from the front of the scope chain.

8. Return C.

NOTE

No matter how control leaves the embedded 'Statement’, whether normally or by some form of abrupt
completion or exception, the scope chain is always restored to its former state.

12.11 Theswi t ch Statement
Syntax

SwitchSatement :
swi t ch (Expression) CaseBlock

CaseBlock :
{ CaseClausesyy }
{ CaseClauses,, DefaultClause CaseClausesyy }

CaseClauses :
CaseClause
CaseClauses CaseClause

CaseClause :
case Expression: StatementListqy

DefaultClause :
def aul t : StatementListoy

Semantics
The production SwitchStatement : swi t ch (Expression) CaseBlock is evaluated as follows:

1. Evaluate Expression.

2. Cadl GetVaue(Result(1)).

3. Evaluate CaseBlock, passing it Result(2) as a parameter.

4. If Result(3).type is break and Result(3).target is in the current label set, return (normal,
Result(3).value, empty).

5. Return Result(3).

The production CaseBlock : { CaseClauses DefaultClause CaseClauses } is given an input parameter,
input, and is evaluated as follows:

Let A be the list of CaseClause itemsin the first CaseClauses, in source text order.

For the next CaseClause in A, evaluate CaseClause. If there is no such CaseClause, go to step 7.
If input is not equal to Result(2), as defined by the ! == operator, go to step 2.

Evaluate the StatementList of this CaseClause.

If Result(4) is an abrupt completion then return Result(4).

Go to step 13.

Let B be the list of CaseClause items in the second CaseClauses, in source text order.

For the next CaseClause in B, evaluate CaseClause. If there is no such CaseClause, go to step 15.

NGO~ ®WDRE

- 69 -

9. If inputisnot equal to Result(8), as defined by the ! == operator, go to step 8.

10. Evaluate the StatementList of this CaseClause.

11. If Result(10) is an abrupt completion then return Result(10)

12. Go to step 18.

13. For the next CaseClause in A, evaluate the StatementList of this CaseClause. If there is no such
CaseClause, go to step 15.

14. If Result(13) is an abrupt completion then return Result(13).

15. Execute the StatementList of DefaultClause.

16. If Result(15) is an abrupt completion then return Result(15)

17. Let B be the list of CaseClause items in the second CaseClauses, in source text order.

18. For the next CaseClause in B, evaluate the StatementList of this CaseClause. If there is no such
CaseClause, return (normal, empty, empty).

19. If Result(18) is an abrupt completion then return Result(18).

20. Go to step 18.

The production CaseClause : case Expression : StatementListy is evaluated as follows:

1. Evaluate Expression.
2. Call GetVaue(Result(1)).
3. Return Result(2).

NOTE

Evaluating CaseClause does not execute the associated StatementList. It simply evaluates the Expression
and returns the value, which the CaseBlock algorithm uses to determine which StatementList to start
executing.

12.12 Labelled Statements
Syntax
LabelledSatement :
Identifier : Satement
Semantics

A Statement may be prefixed by a label. Labelled statements are only used in conjunction with labelled
br eak and cont i nue statements. ECMAScript has no got o statement.

An ECMAScript program is considered syntactically incorrect if it contains a LabelledStatement that is
enclosed by a LabelledStatement with the same Identifier as label. This does not apply to labels appearing
within the body of a FunctionDeclaration that is nested, directly or indirectly, within a labelled statement.

The production Identifier : Statement is evaluated by adding Identifier to the label set of Statement and
then evaluating Statement. If the LabelledStatement itself has a non-empty label set, these labels are also
added to the label set of Statement before evaluating it. If the result of evaluating Statement is (break, V,
L) where L is equal to Identifier, the production resultsin (normal, V, empty).

Prior to the evaluation of a LabelledStatement, the contained Statement is regarded as possessing an empty
label set, except if it is an IterationStatement or a SwitchStatement, in which case it is regarded as
possessing a label set consisting of the single element, empty.

12.13 Thet hr ow statement
Syntax

ThrowStatement :
t hr ow [no LineTerminator here] EXpression ;

Semantics

The production ThrowStatement : t hr ow [no LineTerminator here] Expression ; is evaluated as:

1. Evaluate Expression.

- 70 -

2. Cadl GetVaue(Result(1)).
3. Return (throw, Result(2), empty).

12.14 Thetry statement
Syntax

TryStatement :
t ry Block Catch
t ry Block Finally
t ry Block Catch Finally

Catch:
cat ch (Identifier) Block

Finally :
final |y Block

Description

The try statement encloses a block of code in which an exceptional condition can occur, such as a
runtime error or a t hr ow statement. The cat ch clause provides the exception-handling code. When a
catch clause catches an exception, its Identifier is bound to that exception.

Semantics
The production TryStatement : t r y Block Catch is evaluated as follows:

1. Evaluate Block.

2. If Result(1).typeis not throw, return Result(1).
3. Evaluate Catch with parameter Result(1).

4. Return Result(3).

The production TryStatement : t r y Block Finally is evaluated as follows:

1. Evaluate Block.

2. Evaluate Finally.

3. If Result(2) .typeis normal, return Result(1).
4. Return Result(2).

The production TryStatement : t r y Block Catch Finally is evaluated as follows:

Evaluate Block.

Let C = Result(1).

If Result(1).typeis not throw, go to step 6.
Evaluate Catch with parameter Result(1).

If Result(4).typeis not normal, Let C = Result(4).
Evaluate Finally.

If Result(6).typeis normal, return C.

Return Result(6).

N~ RE

The production Catch : cat ch (Identifier) Block is evaluated as follows:

1. Let C bethe parameter that has been passed to this production.

2. Create anew object asif by the expression new Cbj ect () .

3. Create a property in the object Result(2). The property's name is ldentifier, value is C.value, and
attributes are { DontDelete }.

Add Result(2) to the front of the scope chain.

Evaluate Block.

Remove Result(2) from the front of the scope chain.

Return Result(5).

No oA

- 71 -

The production Finally : fi nal | y Block is evaluated as follows:

1. Evaluate Block.
2. Return Result(1).

Function Definition

Syntax

FunctionDeclaration :

functi on Identifier (FormalParameterListyy) { FunctionBody }

FunctionExpression :

functi on Identifierqy (FormalParameterListy,) { FunctionBody }

Formal ParameterList :

Identifier
FormalParameterList, ldentifier

FunctionBody :

Sour ceElements

Semantics

The production FunctionDeclaration : f uncti on Identifier (FormalParameterList,,) { FunctionBody }
is processed for function declarations as follows:

1. Create anew Function object as specified in 13.2 with parameters specified by Formal ParameterList, and
body specified by FunctionBody. Pass in the scope chain of the running execution context as the Scope.

2. Create a property of the current variable object (as specified in 10.1.3) with name Identifier and value
Result(1).

The production FunctionExpression : f uncti on (FormalParameterListy,) { FunctionBody } is evaluated
as follows:

1. Create a new Function object as specified in 13.2 with parameters specified by Formal Parameter Listqp
and body specified by FunctionBody. Pass in the scope chain of the running execution context as the
Scope.

2. Return Result(2).

The production FunctionExpression : f uncti on ldentifier (FormalParameterList,y,) { FunctionBody
} isevaluated as follows:

1. Create anew object asif by the expression new Cbj ect () .
2. Add Result(1) to the front of the scope chain.
3. Create a new Function object as specified in 13.2 with parameters specified by FormalParameter Listqy

and body specified by FunctionBody. Pass in the scope chain of the running execution context as the
Scope.

4. Create a property in the object Result(1). The property's name is ldentifier, value is Result(3), and
attributes are { DontDelete, ReadOnly }.

5. Remove Result(1) from the front of the scope chain.

6. Return Result(3).

NOTE

The Identifier in a FunctionExpression can be referenced from inside the FunctionExpression's FunctionBody
to allow the function to call itself recursively. However, unlike in a FunctionDeclaration, the Identifier in a
FunctionExpression cannot be referenced from and does not affect the scope enclosing the
FunctionExpression.

The production FunctionBody : SourceElements is evaluated as follows:

1. Process SourceElements for function declarations.

- 72 -

2. Evaluate SourceElements.
3. Return Result(2).

13.1

13.1.1

13.1.2

13.2

Definitions
A couple of definitions are needed to describe the process of creating function objects:

Equated Grammar Productions

Two uses of the FunctionBody grammar production are defined to be equated when one of the following
istrue:

e Both uses obtained their FunctionBody from the same location in the source text of the same
ECMAScript program. This source text consists of global code and any contained function codes
according to the definitionsin 10.1.2.

» Both uses obtained their FunctionBody from the same location in the source text of the same call to
eval (15.1.2.1). This source text consists of eval code and any contained function codes according
to the definitionsin 10.1.2.

NOTE

Two uses of FunctionBody obtained from a call to the Functi on constructor 15.3.1 and 15.3.2) are
never equated. Also, two uses of FunctionBody obtained from two different calls to eval are never
equated, even if those two callsto eval were passed the same argument.

Joined Objects
When two or more Function objects are joined, they have the following special behaviours:

e Any time a non-internal property of an object O is created or set, the corresponding property is
immediately also created or set with the same value and attributes in all objects joined with O.

« Any time a non-internal property of an object O is deleted, the corresponding property is
immediately also deleted in all objects joined with O.

» |If objects O and P are joined, they compare as == and === to each other.

e Joining is transitive and symmetric, so that if objects O and P are joined and objects P and Q are
joined, then objects O and Q are also automatically joined.

NOTE

Two or more objects joined to each other are effectively indistinguishable except that they may have
different internal properties. The only such internal property that may differ in this specification is
[[Scope]].

Joined objects are used as a tool for precise specification technique in this standard. They are not meant
to be used as a guideline to how Function objects are implemented in practice. Rather, in practice an
implementation may detect when the differences in the [[Scope]] properties of two or more joined
Function objects are not externally observable and in those cases reuse the same Function object rather
than making a set of joined Function objects. This is a legal optimisation because this standard only
specifies observable behaviour of ECMAScript programs.

Creating Function Objects

Given an optional parameter list specified by FormalParameterList, a body specified by FunctionBody, and
a scope chain specified by Scope, a Function object is constructed as follows:

1.

NogarwN

If there already exists an object E that was created by an earlier call to this section's algorithm, and if
that call to this section's algorithm was given a FunctionBody that is equated to the FunctionBody
given now, then go to step 13. (If there is more than one object E satisfying these criteria, choose one
at the implementation's discretion.)

Create a new native ECMAScript object and let F be that object.

Set the [[Class]] property of F to " Functi on".

Set the [[Prototype]] property of F to the original Function prototype object as specified in 15.3.3.1.
Set the [[Call]] property of F as described in 13.2.1.

Set the [[Construct]] property of F as described in 13.2.2.

Set the [[Scope]] property of F to a new scope chain (10.1.4) that contains the same objects as Scope.

13.2.1

- 73 -

8. Setthel engt h property of F to the number of formal properties specified in Formal ParameterList. If
no parameters are specified, set the | engt h property of F to 0. This property is given attributes as
specified in 15.3.5.1.

9. Create a new object as would be constructed by the expression new Obj ect () .

10. Set theconst ruct or property of Result(9) to F. This property is given attributes { DontEnum }.

11. Set the pr ot ot ype property of F to Result(9). This property is given attributes as specified in
15.3.5.2.

12. Return F.

13. At the implementation's discretion, go to either step 2 or step 14.

14. Create a new native ECMAScript object joined to E and let F be that object. Copy all non-internal
properties and their attributes from E to F so that all non-internal properties are identical in E and F.

15. Set the [[Class]] property of Fto " Functi on".

16. Set the [[Prototype]] property of F to the original Function prototype object as specified in 15.3.3.1.

17. Set the [[Call]] property of F as described in 13.2.1.

18. Set the [[Construct]] property of F as described in 13.2.2.

19. Set the [[Scope]] property of F to a new scope chain (10.1.4) that contains the same objects as Scope.

20. Return F.

NOTE
A pr ot ot ype property is automatically created for every function, to allow for the possibility that the
function will be used as a constructor.

Step 1 allows an implementation to optimise the common case of a function A that has a nested function B
where B is not dependent on A. In this case the implementation is allowed to reuse the same object for B
instead of creating a new one every time A is called. Step 13 makes this optimisation optional; an
implementation that chooses not to implement it will go to step 2.

For example, in the code

function A() {
function B(x) {return x*x;}
return B;

}

function C() {
return eval ("(function (x) {return x*x;})");

}
var bl = A();
var b2 = A();

function b3(x) {return x*x;}
function b4(x) {return x*x;}
var b5 C();
var b6 C();

an implementation is allowed, but not required, to join b1l and b2. In fact, it may make b1 and b2 the
same object because there is no way to detect the difference between their [[Scope]] properties. On the
other hand, an implementation must not join b3 and b4 because their source codes are not equated
(13.1.1). Also, an implementation must not join b5 and b6 because they were produced by two different
callsto eval and therefore their source codes are not equated.

In practice it's likely to be productive to join two Function objects only in the cases where an
implementation can prove that the differences between their [[Scope]] properties are not observable, so
one object can be reused. By following this policy, an implementation will only encounter the vacuous case
of an object being joined with itself.

[[Calll]
When the [[Call]] property for a Function object F is called, the following steps are taken:

1. Establish anew execution context using F's Formal ParameterList, the passed arguments list, and the
this value as described in 10.2.3.

2. Evaluate F's FunctionBody.

3. Exit the execution context established in step 1, restoring the previous execution context.

- 74 -

4. If Result(2).typeisthrow then throw Result(2).value.
5. If Result(2).typeisreturn then return Result(2).value.
6. (Result(2).type must be normal.) Return undefined.

13.2.2 [[Construct]]
When the [[Construct]] property for a Function object F is called, the following steps are taken:

1. Create anew native ECMA Script object.

2. Setthe[[Class]] property of Result(1) to " Obj ect ".

3. Get the value of the pr ot ot ype property of the F.

4. If Result(3) is an object, set the [[Prototype]] property of Result(1) to Result(3).

5. If Result(3) is not an object, set the [[Prototype]] property of Result(1) to the original Object
prototype object as described in 15.2.3.1.

6. Invoke the [[Call]] property of F, providing Result(1) as the this value and providing the argument
list passed into [[Construct]] as the argument values.

7. If Type(Result(6)) is Object then return Result(6).

8. Return Result(1).

- 75 -

14 Program

Syntax

Program:
SourceElements

SourceElements :
Sour ceElement
Sour ceElements Sour ceElement

SourceElement :
Statement
FunctionDeclaration
Semantics
The production Program : SourceElements is evaluated as follows:

1. Process SourceElements for function declarations.
2. Evaluate SourceElements.
3. Return Result(2).

The production SourceElements : SourceElement is processed for function declarations as follows:

1. Process SourceElement for function declarations.

The production SourceElements : SourceElement is evaluated as follows:

1. Evaluate SourceElement.

2. Return Result(1).

The production SourceElements : SourceElements SourceElement is processed for function declarations as
follows:

1. Process SourceElements for function declarations.

2. Process SourceElement for function declarations.

The production SourceElements : SourceElements SourceElement is evaluated as follows:

1. Evaluate SourceElements.

2. If Result(1) is an abrupt completion, return Result(1)
3. Evaluate SourceElement.

4. Return Result(3).

The production SourceElement : Statement is processed for function declarations by taking no action.
The production SourceElement : Statement is evaluated as follows:

1. Evaluate Statement.
2. Return Result(1).

The production SourceElement : FunctionDeclaration is processed for function declarations as follows:

1. Process FunctionDeclaration for function declarations (see clause 13).

The production SourceElement : FunctionDeclaration is evaluated as follows:;

1. Return (normal, empty, empty).

15

15.1

- 76 -

Native ECMAScript Objects

There are certain built-in objects available whenever an ECMAScript program begins execution. One, the
global object, isin the scope chain of the executing program. Others are accessible as initial properties of the
global object.

Unless specified otherwise, the [[Class]] property of a built-in object is " Functi on" if that built-in object
has a[[Call]] property, or " Obj ect " if that built-in object does not have a [[Call]] property.

Many built-in objects are functions: they can be invoked with arguments. Some of them furthermore are
constructors: they are functions intended for use with the new operator. For each built-in function, this
specification describes the arguments required by that function and properties of the Function object. For each
built-in constructor, this specification furthermore describes properties of the prototype object of that
constructor and properties of specific object instances returned by a new expression that invokes that
constructor.

Unless otherwise specified in the description of a particular function, if a function or constructor described in
this section is given fewer arguments than the function is specified to require, the function or constructor shall
behave exactly as if it had been given sufficient additional arguments, each such argument being the
undefined value.

Unless otherwise specified in the description of a particular function, if a function or constructor described in
this section is given more arguments than the function is specified to allow, the behaviour of the function or
constructor is undefined. In particular, an implementation is permitted (but not required) to throw a
TypeError exception in this case.

NOTE
Implementations that add additional capabilities to the set of built-in functions are encouraged to do so by
adding new functions rather than adding new parameters to existing functions.

Every built-in function and every built-in constructor has the Function prototype object, which is the initial
value of the expression Functi on. prot otype (15.3.2.1), as the value of its internal [[Prototype]]

property.

Every built-in prototype object has the Object prototype object, which is the initial value of the expression
Obj ect . prototype (15.3.2.1), as the value of its internal [[Prototype]] property, except the Object
prototype object itself.

None of the built-in functions described in this section shall implement the internal [[Construct]] method
unless otherwise specified in the description of a particular function. None of the built-in functions described
in this section shall initially have a pr ot ot ype property unless otherwise specified in the description of a
particular function. Every built-in Function object described in this section—whether as a constructor, an
ordinary function, or both—has a | engt h property whose value is an integer. Unless otherwise specified,
this value is equal to the largest number of named arguments shown in the section headings for the function
description, including optional parameters.

NOTE

For example, the Function object that is the initial value of the sl i ce property of the String prototype object
is described under the section heading “ String.prototype.slice (start , end)” which shows the two named
arguments start and end; therefore the value of the | engt h property of that Function object is 2.

In every case, the | engt h property of a built-in Function object described in this section has the attributes
{ ReadOnly, DontDelete, DontEnum } (and no others). Every other property described in this section has the
attribute { DontEnum } (and no others) unless otherwise specified.

The Global Object

The global object does not have a [[Construct]] property; it is not possible to use the global object as a
constructor with the new operator.

The global object does not have a [[Call]] property; it is not possible to invoke the global object as a
function.

The values of the [[Prototype]] and [[Class]] properties of the global object are implementation-dependent.

15.1.1
15.1.1.1

15.1.1.2

15.1.1.3

15.1.2
15.1.2.1

15.1.2.2

- 77 -

Value Properties of the Global Object

NaN

The initial value of NaNis NaN (8.5). This property has the attributes { DontEnum, DontDelete} .
Infinity

The initial value of Infinity is +e (8.5). This property has the attributes { DontEnum,
DontDelete} .

undefined

The initial value of undef i ned is undefined (8.1). This property has the attributes { DontEnum,
DontDelete} .

Function Properties of the Global Object

eval (x)
When the eval function is called with one argument x, the following steps are taken:

If x is not a string value, return x.

Parse x as a Program. If the parse fails, throw a SyntaxError exception (but see also clause 16).
Evaluate the program from step 2.

If Result(3).typeis normal and its completion value is avalue V, then return the value V.

If Result(3).type isnormal and its completion value is empty, then return the value undefined.
Result(3).type must be throw. Throw Result(3).value as an exception.

ok wNE

If value of the eval property is used in any way other than a direct call (that is, other than by the
explicit use of its name as an Identifier which is the Member Expression in a CallExpression), or if the
eval property isassigned to, an EvalError exception may be thrown.

parselnt (string, radix)

The par sel nt function produces an integer value dictated by interpretation of the contents of the
string argument according to the specified radix. Leading whitespace in the string is ignored. If radix
is undefined or O, it is assumed to be 10 except when the number begins with the character pairs 0x
or 0X, in which case a radix of 16 is assumed. Any radix-16 number may also optionally begin with
the character pairs Ox or OX.

When the par sel nt function is called, the following steps are taken:

1. Call ToString(string).

2. Let S be a newly created substring of Result(1) consisting of the first character that is not a
StrwhiteSpaceChar and all characters following that character. (In other words, remove leading
white space.)

3. Letsignbel.

4. If Sisnot empty and the first character of Sisaminussign -, let sign be —1.

If Sis not empty and the first character of Sis a plus sign + or a minus sign -, then remove the

first character from S.

6. Let R=Tolnt32(radix).

7. If R=0,gotostep 11.

8. If R<2or R> 36, then return NaN.

9. If R=16, goto step 13.

10. Go to step 14.

11. Let R=10.

12. If the length of Sis at least 1 and the first character of Sis “0", then at the implementation's
discretion either let R = 8 or leave R unchanged.

13. If the length of Sis at least 2 and the first two characters of S are either “0x” or “0X”, then
remove the first two characters from Sand let R = 16.

14. If Scontains any character that is not a radix-R digit, then let Z be the substring of S consisting of
all characters before the first such character; otherwise, let Z be S.

15. If Z is empty, return NaN.

o

15.1.2.3

15.1.2.4

15.1.2.5

15.1.3

- 78 -

16. Compute the mathematical integer value that is represented by Z in radix-R notation, using the
letters A-Z and a-z for digits with values 10 through 35. (However, if Ris 10 and Z contains more
than 20 significant digits, every significant digit after the 20th may be replaced by a 0 digit, at
the option of the implementation; and if Ris not 2, 4, 8, 10, 16, or 32, then Result(16) may be an
implementation-dependent approximation to the mathematical integer value that is represented by
Z in radix-R notation.)

17. Compute the number value for Result(16).

18. Return sign x Result(17).

NOTE

par sel nt may interpret only a leading portion of the string as an integer value; it ignores any
characters that cannot be interpreted as part of the notation of an integer, and no indication is given
that any such characters were ignored.

When radix is 0 or undefined and the string's number begins with a O digit not followed by an x or X,
then the implementation may, at its discretion, interpret the number either as being octal or as being
decimal. Implementations are encouraged to interpret numbers in this case as being decimal.

parseFloat (string)
The par seFl oat function produces a number value dictated by interpretation of the contents of the
string argument as a decimal literal.

When the par seFl oat functionis called, the following steps are taken:

1. Call ToString(string).

2. Compute a substring of Result(1) consisting of the leftmost character that is not a
StrwhiteSpaceChar and all characters to the right of that character.(In other words, remove
leading white space.)

3. If neither Result(2) nor any prefix of Result(2) satisfies the syntax of a StrDecimalLiteral (see 0),
return NaN.

4. Compute the longest prefix of Result(2), which might be Result(2) itself, which satisfies the
syntax of a StrDecimalLiteral.

5. Return the number value for the MV of Result(4).

NOTE

par seFl oat may interpret only a leading portion of the string as a number value; it ignores any
characters that cannot be interpreted as part of the notation of an decimal literal, and no indication
is given that any such characters were ignored.

isNaN (number)
Applies ToNumber to its argument, then returns true if the result is NaN, and otherwise returns fal se.

isFinite (number)

Applies ToNumber to its argument, then returns false if the result is NaN, +o, or —eo, and otherwise
returns true.

URI Handling Function Properties

Uniform Resource ldentifiers, or URIs, are strings that identify resources (e.g. web pages or files) and
transport protocols by which to access them (e.g. HTTP or FTP) on the Internet. The ECMA Script
language itself does not provide any support for using URIs except for functions that encode and decode
URIs as described in 15.1.3.1, 15.1.3.2, 15.1.3.3 and 15.1.3.4.

NOTE
Many implementations of ECMAScript provide additional functions and methods that manipulate web
pages; these functions are beyond the scope of this standard.

A URI is composed of a sequence of components separated by component separators. The general form
is:

Scheme : First / Second ; Third ? Fourth

- 79 -

where the italicised names represent components and the “: 7, “/”, “; ” and “?” are reserved characters
used as separators. The encodeURI and decodeURI functions are intended to work with complete
URIs; they assume that any reserved characters in the URI are intended to have special meaning and so
are not encoded. The encodeURI Conponent and decodeURI Conmponent functions are intended
to work with the individual component parts of a URI; they assume that any reserved characters
represent text and so must be encoded so that they are not interpreted as reserved characters when the
component is part of a complete URI.

The following lexical grammar specifies the form of encoded URIs.
uri o
uriCharacter sy

uriCharacters:::
uriCharacter uriCharacter Soy

uriCharacter :::
uriReserved
uriUnescaped
uriEscaped

uriReserved ::: oneo
0?0 @ & = + $

uriUnescaped :::
uriAlpha
Decimal Digit
uriMark

uriEscaped :::
%HexDigit HexDigit

uriAlpha::: one of
a b c d e f g h i j Kk
A B CDEFGHI J K L

<3
Z >
oOo©°
To
o)
-
novw
4~
cCc
< <
==
=< X
<<
N N

uriMark ::: one of
- | ~

- ! ()

When a character to be included in a URI is not listed above or is not intended to have the special
meaning sometimes given to the reserved characters, that character must be encoded. The character is
first transformed into a sequence of octets using the UTF-8 transformation, with surrogate pairs first
transformed from their UCS-2 to UCS-4 encodings. (Note that for code points in the range [0,127] this
results in a single octet with the same value.) The resulting sequence of octets is then transformed into a
string with each octet represented by an escape sequence of the form “%xx”.

The encoding and escaping process is described by the hidden function Encode taking two string
arguments string and unescapedSet. This function is defined for expository purpose only.

Compute the number of charactersin string.

Let R be the empty string.

Let k be 0.

If k equals Result(1), return R.

Let C be the character at position k within string.

If Cisnotin unescapedSet, go to step 9.

Let Sbe a string containing only the character C.

Go to step 24.

If the code point value of C is not less than OxDCOO and not greater than OxDFFF, throw a
URIError exception.

©CoNoO~wWNE

10.

11.
12.
13.
14.
15.
16.

17.
18.
19.

20.
21.
22.
23.
24.
25.
26.

- 80 -

If the code point value of C is less than 0xD800 or greater than OXDBFF, let V be the code point
value of C and go to step 16.

Increase k by 1.

If k equals Result(1), throw a URIError exception.

Get the code point value of the character at position k within string.

If Result(13) isless than 0xDCOO or greater than OxDFFF, throw a URIError exception.

Let V be (((the code point value of C) — 0xD800) * 0x400 + (Result(13) — 0xDCO00) + 0x10000).

Let Octets be the array of octets resulting by applying the UTF-8 transformation to V, and let L be
the array size.

Let|j beO.

Get the value at position j within Octets.

Let Sbe a string containing three characters “%XY” where XY are two uppercase hexadecimal digits
encoding the value of Result(18).

Let R be a new string value computed by concatenating the previous value of Rand S.

Increasej by 1.

If j isequal to L, go to step 25.

Go to step 18.

Let R be a new string value computed by concatenating the previous value of Rand S.

Increase k by 1.

Go to step 4.

The unescaping and decoding process is described by the hidden function Decode taking two string
arguments string and reservedSet. This function is defined for expository purpose only.

©oNo~WNE

Compute the number of charactersin string.

Let R be the empty string.

Let k be 0.

If k equals Result(1), return R.

Let C be the character at position k within string.

If Cisnot ‘%', go to step 40.

Let start be k.

If k + 2 isgreater than or equal to Result(1), throw a URIError exception.

If the characters at position (k+1) and (k + 2) within string do not represent hexadecimal digits,
throw a URIError exception.

. Let B be the 8-bit value represented by the two hexadecimal digits at position (k + 1) and (k + 2).

. Increment k by 2.

. If the most significant bit in Bis 0, let C be the character with code point value B and go to step 37.
. Let n be the smallest non-negative number such that (B << n) & 0x80 is equal to 0.

. If nequals 1 or nis greater than 4, throw a URIError exception.

. Let Octets be an array of 8-bit integers of size n.

. Put B into Octets at position 0.

. Ifk+(3* (n-1)) isgreater than or equal to Result(1), throw a URIError exception.

. Letj bel.

. If j equals n, go to step 29.

. Increment k by 1.

. If the character at position kis not ‘%', throw a URIError exception.

. If the characters at position (k +1) and (k + 2) within string do not represent hexadecimal digits,

throw a URIError exception.

. Let B be the 8-bit value represented by the two hexadecimal digits at position (k + 1) and (k + 2).

. If the two most significant bitsin B are not 10, throw a URIError exception.

. Increment k by 2.

. Put B into Octets at position j.

. Increment j by 1.

. Go to step 19.

. Let V be the value obtained by applying the UTF-8 transformation to Octets, that is, from an array of

octets into a 32-bit value.

. If Vislessthan 0x10000, go to step 36.
. If Vis greater than Ox10FFFF, throw a URIError exception.

- 81 -

32. Let L be (((V — 0x10000) & 0x3FF) + 0xDCO00).

33. Let H be ((((V — 0x10000) >> 10) & 0x3FF) + 0xD800).

34. Let She the string containing the two characters with code point values H and L.
35. Goto step 41.

36. Let C be the character with code point value V.

37. If Cisnot in reservedSet, go to step 40.

38. Let She the substring of string from position start to position k included.

39. Goto step 41.

40. Let Sbe the string containing only the character C.

41. Let R be anew string value computed by concatenating the previous value of R and S.
42. Increase k by 1.

43. Go to step 4.

NOTE 1
The syntax of Uniform Resource ldentifiersis given in RFC2396.

NOTE 2
A formal description and implementation of UTF-8 is given in the Unicode Standard, Version 2.0,
Appendix A.

In UTF-8, characters are encoded using sequences of 1 to 6 octets. The only octet of a "sequence” of one
has the higher-order bit set to 0, the remaining 7 bits being used to encode the character value. In a
sequence of n octets, n>1, theinitial octet has the n higher-order bits set to 1, followed by a bit set to 0.
The remaining bits of that octet contain bits from the value of the character to be encoded. The following
octets all have the higher-order bit set to 1 and the following bit set to O, leaving 6 bits in each to
contain bits from the character to be encoded. The possible UTF-8 encodings of ECMAScript characters

are:
Code Point Value Representation 1% Octet 2" Octet 3 Octet 4™ Octet
0x0000 - OxO007F 00000000 0Ozzzzzzz 0zzzzzzz
0x0080 - OxO7FF 00000yyy yyzzzzzz 110yyyyy 10zzzzzz
0x0800 - OxD7FF XXXXYYVYY Yyzzzzz7 1110xXXXX 10yyyyyy 10zzzzzz
0xD800 - OxDBFF 110110vV VVWWMIXX
followed by followed by 11110uuu 10uuwww 10xxyyyy 10zzzzzz
0xDC00 — OxDFFF 110111yy yyzzzzzz

0xD800 - OxDBFF

not followed by causes URI Error
0xDCO0 — OxDFFF

0xDCO0 — OxDFFF causes URI Error
OXEO00 - OxFFFF XXXXYYYY Yyzzzzz7 11210xxXX 10yyyyyy 10zzzzzz
Where

uuuuu = vvvv + 1
to account for the addition of 0x10000 as in 3.7, Surrogates of the Unicode Standard version 2.0.

The range of code point values 0xD800-OXxDFFF is used to encode surrogate pairs; the above
transformation combines a UCS-2 surrogate pair into a UCS-4 representation and encodes the resulting
21-bit value in UTF-8. Decoding reconstructs the surrogate pair.

15.1.3.1 decodeURI (encodedURI)

ThedecodeURI function computes a new version of a URI in which each escape sequence and UTF-
8 encoding of the sort that might be introduced by the encodeURI function is replaced with the

15.1.3.2

15.1.3.3

15.1.3.4

- 82 -

character that it represents. Escape sequences that could not have been introduced by encodeURI are
not replaced.

When the decodeURI function is called with one argument encodedURI, the following steps are
taken:

1. Call ToString(encodedURI).

2. Let reservedURISet be a string containing one instance of each character valid in uriReserved
plus “#".

3. Call Decode(Result(1), reservedURI Set)

4. Return Result(3).

NOTE
The character “#" is not decoded from escape sequences even though it is not a reserved URI
character.

decodeURIComponent (encodedURIComponent)

The decodeURI Component function computes a new version of a URI in which each escape
sequence and UTF-8 encoding of the sort that might be introduced by the encodeURI Conponent
function is replaced with the character that it represents.

When the decodeURI Conponent function is called with one argument encodedURIComponent, the
following steps are taken:

1. Call ToString(encodedURIComponent).

2. Let reservedURIComponentSet be the empty string.
3. Call Decode(Result(1), reservedURIComponentSet)
4. Return Result(3).

encodeURI (uri)

The encodeURI function computes a new version of a URI in which each instance of certain
characters is replaced by one, two or three escape sequences representing the UTF-8 encoding of the
character.

When the encodeURI function is called with one argument uri, the following steps are taken:

1. Call ToString(uri).

2. Let unescapedURI Set be a string containing one instance of each character valid in uriReserved
and uriUnescaped plus “#”.

3. Call Encode(Result(1), unescapedURI Set)

4. Return Result(3).

NOTE
The character “#" is not encoded to an escape sequence even though it is not a reserved or
unescaped URI character.

encodeURIComponent (uriComponent)

The encodeURI Conponent function computes a new version of a URI in which each instance of
certain characters is replaced by one, two or three escape sequences representing the UTF-8 encoding
of the character.

When the encodeURI Conponent function is called with one argument uriComponent, the
following steps are taken:

1. Call ToString(uriComponent).

2. Let unescapedURIComponentSet be a string containing one instance of each character valid in
uriUnescaped.

3. Call Encode(Result(1), unescapedURIComponentSet)

4. Return Result(3).

- 83 -

15.1.4 Constructor Properties of the Global Object
15.1.4.1 Object (...)
See 15.2.1 and 15.2.2.

15.1.4.2 Function (...)
See 15.3.1 and 15.3.2.

15.1.43 Array(...)
See 15.4.1 and 15.4.2.

15.1.4.4 String (...)
See 15.5.1 and 15.5.2.

15.1.4.5 Boolean (...)
See 15.6.1 and 15.6.2.

15.1.4.6 Number (...)
See 15.7.1 and 15.7.2.

15.1.4.7 Date(...)
See 15.9.2.

15.1.48 RegExp(...)
See 15.10.3 and 15.10.4.

15.1.49 Error (...)
See 15.11.1 and 15.11.2.

15.1.4.10 EvalError (...)
See 15.11.6.1.

15.1.4.11 RangeError (...)
See 15.11.6.2.

15.1.4.12 ReferenceError (...)
See 15.11.6.3.

15.1.4.13 SyntaxError (...)
See 15.11.6.4.

15.1.4.14 TypeError (...)
See 15.11.6.5.

15.1.4.15 URIError (...)
See 15.11.6.6.

15.1.5 Other Properties of the Global Object
15.1.5.1 Math
See 15.8.

15.2 Object Objects
15.2.1 The Object Constructor Called as a Function
When Obj ect iscalled as a function rather than as a constructor, it performs a type conversion.

15.2.1.1 Object ([value])

When the Obj ect function is called with no arguments or with one argument value, the following
steps are taken:

1. If valueisnull, undefined or not supplied, create and return a new Object object exactly if the
object constructor had been called with the same arguments (15.2.2.1).
2. Return ToObject(value).

15.2.2

15.2.2.1

15.2.3

15.2.3.1

15.2.4

15.24.1

15.2.4.2

15.2.4.3

-84 -

The Object Constructor
When Obj ect iscalled as part of anew expression, it is a constructor that may create an object.

new Object ([value])
When the Obj ect constructor is called with no arguments or with one argument value, the following
steps are taken:

If value is not supplied, go to step 8.

If the type of value is not Object, go to step 5.

If the value is a native ECMA Script object, do not create a new object but simply return value.
If the value is a host object, then actions are taken and a result is returned in an implementation-
dependent manner that may depend on the host object.

If the type of value is String, return ToObject(value).

If the type of value is Boolean, return ToObject(value).

If the type of value is Number, return ToObject(value).

(The argument value was not supplied or its type was Null or Undefined.)

Create a new native ECM A Script object.

The [[Prototype]] property of the newly constructed object is set to the Object prototype object.
The [[Class]] property of the newly constructed object is set to " Cbj ect .

The newly constructed object has no [[Value]] property.

Return the newly created native object.

PR

©No O

Properties of the Object Constructor
The value of the internal [[Prototype]] property of the Object constructor is the Function prototype
object.

Besides the internal properties and the | engt h property (whose value is 1), the Object constructor has
the following properties:

Object.prototype
Theinitial value of Obj ect . pr ot ot ype isthe Object prototype object (15.2.4).

This property has the attributes { DontEnum, DontDelete, ReadOnly }.

Properties of the Object Prototype Object

The value of the internal [[Prototype]] property of the Object prototype object is null and the value of
the internal [[Class]] property is" Obj ect .

Object.prototype.constructor
Theinitial value of Obj ect . pr ot ot ype. construct or isthebuilt-in Obj ect constructor.

Object.prototype.toString ()
When thet oSt r i ng method is called, the following steps are taken:

1. Get the[[Class]] property of this object.
2. Compute a string value by concatenating the three strings " [obj ect ", Result(1),and "] ".
3. Return Result(2).

Object.prototype.toL ocaleString ()
This function returns the result of callingt oStri ng() .

NOTE 1

This function is provided to give all Objects a generict oLocal eSt ri ng interface, even though not
all may use it. Currently, Array, Nunber, and Date provide their own locale-sensitive
toLocal eStri ng methods.

NOTE 2
The first parameter to this function is likely to be used in a future version of this standard; it is
recommended that implementations do not use this parameter position for anything else.

15.2.4.4

15.2.4.5

15.2.4.6

15.2.4.7

15.2.5

- 85 -

Object.prototype.valueOf ()

The val ueOf method returns its this value. If the object is the result of calling the Object
constructor with a host object (15.2.2.1), it is implementation-defined whether val ueOf returns its
this value or another value such as the host object originally passed to the constructor.

Object.prototype.hasOwnProperty (V)
When the hasOwnPr oper t y method is called with argument V, the following steps are taken:

1. Let O be this object.

2. Cadll ToString(V).

3. If O doesn’t have a property with the name given by Result(2), return false.
4. Return true.

NOTE
Unlike [[HasProperty]] (8.6.2.4), this method does not consider objects in the prototype chain.

Object.prototype.isPrototypeOf (V)
When thei sPr ot ot ypeOf method is called with argument V, the following steps are taken:

Let O be this object.

If Visnot an object, return false.

Let V be the value of the [[Prototype]] property of V.

if Visnull, return false

If O and V refer to the same object or if they refer to objects joined to each other (13.1.2), return
true.

6. Goto step 3.

SHES SN

Object.prototype.propertyl sEnumerable (V)

When the propertyl sEnumer abl e method is called with argument V, the following steps are
taken:

Let O be this object.

Call ToString(V).

If O doesn’t have a property with the name given by Result(2), return false.
If the property has the DontEnum attribute, return false.

Return true.

SUEI S

NOTE
This method does not consider objects in the prototype chain.

Properties of Object I nstances
Object instances have no special properties beyond those inherited from the Object prototype object.

15.3 Function Objects

15.3.1

15.3.1.1

The Function Constructor Called as a Function

When Functi on is called as a function rather than as a constructor, it creates and initialises a new
Function object. Thus the function call Functi on(..) is equivalent to the object creation expression
new Function(..) with the same arguments.

Function (p1, p2, ..., pn, body)
When the Funct i on function is called with some arguments p1, p2, ... , pn, body (where n might be

0, that is, there are no “p” arguments, and where body might also not be provided), the following steps
are taken:

1. Create and return a new Function object as if the function constructor had been called with the
same arguments (15.3.2.1).

15.3.2

15.3.2.1

15.3.3

15.3.3.1

15.3.4

- 86 -

The Function Constructor

When Function is called as part of a new expression, it is a constructor: it initialises the newly
created object.

new Function (pl, p2, ..., pn, body)

The last argument specifies the body (executable code) of a function; any preceding arguments
specify formal parameters.

When the Funct i on constructor is called with some arguments p1, p2, ... , pn, body (where n might
be 0, that is, there are no “p” arguments, and where body might also not be provided), the following
steps are taken:

Let P be the empty string.

If no arguments were given, let body be the empty string and go to step 13.

If one argument was given, let body be that argument and go to step 13.

Let Result(4) be the first argument.

Let P be ToString(Result(4)).

Let k be 2.

If k equals the number of arguments, let body be the k'™ argument and go to step 13.

Let Result(8) be the k'™ argument.

Call ToString(Result(8)).

0. Let P be the result of concatenating the previous value of P, the string ", " (a comma), and

Result(9).

11. Increase k by 1.

12. Gotostep 7.

13. Call ToString(body).

14. If P isnot parsable as a FormalParameter List,, then throw a SyntaxError exception.

15. If body is not parsable as FunctionBody then throw a SyntaxError exception.

16. Create a new Function object as specified in 13.2 with parameters specified by parsing P as a
Formal Parameter List,y: and body specified by parsing body as a FunctionBody. Pass in a scope
chain consisting of the global object as the Scope parameter.

17. Return Result(16).

BOONOURAWNE

A pr ot ot ype property is automatically created for every function, to provide for the possibility that
the function will be used as a constructor.

NOTE
It is permissible but not necessary to have one argument for each formal parameter to be specified.
For example, all three of the following expressions produce the same result:

new Function("a", "b", "c", "return a+b+c")

new Function("a, b, c", "return atb+c")

new Function("a,b", "c", "return a+b+c")

Properties of the Function Constructor
The value of the internal [[Prototype]] property of the Function constructor is the Function prototype
object (15.3.4).

Besides the internal properties and the | engt h property (whose value is 1), the Function constructor
has the following properties:

Function.prototype
Theinitial value of Funct i on. pr ot ot ype isthe Function prototype object (15.3.4).

This property has the attributes { DontEnum, DontDelete, ReadOnly }.

Properties of the Function Prototype Object

The Function prototype object is itself a Function object (its [[Class]] is " Functi on") that, when
invoked, accepts any arguments and returns undefined.

15.3.4.1

15.3.4.2

15.3.4.3

15.3.4.4

15.3.5

15.3.5.1

15.3.5.2

- 87 -

The value of the internal [[Prototype]] property of the Function prototype object is the Object prototype
object (15.3.2.1).

It is afunction with an “empty body”; if it isinvoked, it merely returns undefined.

The Function prototype object does not have a val ueCOf property of its own; however, it inherits the
val ueOF property from the Object prototype Object.

Function.prototype.constructor

The initial value of Function. prototype.constructor is the built-in Function
constructor.

Function.prototype.toString ()

An implementation-dependent representation of the function is returned. This representation has the
syntax of a FunctionDeclaration. Note in particular that the use and placement of white space, line
terminators, and semicolons within the representation string is implementation-dependent.

The t oSt ri ng function is not generic; it throws a TypeError exception if its this value is not a
Function object. Therefore, it cannot be transferred to other kinds of objects for use as a method.

Function.prototype.apply (thisArg, argArray)

The appl y method takes two arguments, thisArg and argArray, and performs a function call using
the [[Call]] property of the object. If the object does not have a [[Call]] property, a TypeError
exception is thrown.

If thisArg is null or undefined, the called function is passed the global object as the this value.
Otherwise, the called function is passed ToObject(thisArg) as the this value.

If argArray is null or undefined, the called function is passed no arguments. Otherwise, if argArray
is neither an array nor an arguments object (see 10.1.8), a TypeError exception is thrown. If
argArray is either an array or an arguments object, the function is passed the
(ToUint32(argArray.length)) arguments argArray[0], argArray[1], ...,

argArray[ToUint32(argArray.length)-1].

Thel engt h property of the appl y method is 2.

Function.prototype.call (thisArg[,argl[,arg2,...]1])

The cal | method takes one or more arguments, thisArg and (optionally) argl, arg2 etc, and performs
afunction call using the [[Call]] property of the object. If the object does not have a [[Call]] property,
aTypeError exception is thrown. The called function is passed argl, arg2, etc. as the arguments.

If thisArg is null or undefined, the called function is passed the global object as the this value.
Otherwise, the called function is passed ToObject(thisArg) as the this value.

Thel engt h property of thecal | method is 1.

Properties of Function Instances

In addition to the required internal properties, every function instance has a [[Call]] property, a
[[Construct]] property and a [[Scope]] property (see 8.6.2 and 13.2). The value of the [[Class]] property
is" Function".

length

The value of the | engt h property is usually an integer that indicates the “typical” number of
arguments expected by the function. However, the language permits the function to be invoked with
some other number of arguments. The behaviour of a function when invoked on a number of
arguments other than the number specified by its | engt h property depends on the function. This
property has the attributes { DontDelete, ReadOnly, DontEnum }.

prototype

The value of the pr ot ot ype property is used to initialise the internal [[Prototype]] property of a
newly created object before the Function object is invoked as a constructor for that newly created
object. This property has the attribute { DontDelete }.

- 88 -

15.3.5.3 [[Haslnstance]] (V)

15.4

15.4.1

Assume F is a Function object.
When the [[Hasl nstance]] method of F is called with value V, the following steps are taken:

If Visnot an object, return false.

Call the [[Get]] method of F with property name " pr ot ot ype" .

Let O be Result(2).

If Oisnot an object, throw a TypeError exception.

Let V be the value of the [[Prototype]] property of V.

If Visnul |, return false.

If O and V refer to the same object or if they refer to objects joined to each other (13.1.2), return
true.

8. Gotostep 5.

NouogrwdhrE

Array Objects

Array objects give special treatment to a certain class of property names. A property name P (in the form of
astring value) is an array index if and only if ToString(ToUint32(P)) is equal to P and ToUint32(P) is not
equal to 2%°-1. Every Array object has a | engt h property whose value is always a nonnegative integer
less than 2%. The value of the | engt h property is numerically greater than the name of every property
whose name is an array index; whenever a property of an Array object is created or changed, other
properties are adjusted as necessary to maintain this invariant. Specifically, whenever a property is added
whose name is an array index, the | engt h property is changed, if necessary, to be one more than the
numeric value of that array index; and whenever the | engt h property is changed, every property whose
name is an array index whose value is not smaller than the new length is automatically deleted. This
constraint applies only to properties of the Array object itself and is unaffected by | engt h or array index
properties that may be inherited from its prototype.

The Array Constructor Called as a Function

When Arr ay is called as a function rather than as a constructor, it creates and initialises a new Array
object. Thus the function call Array(..) is equivalent to the object creation expression
new Array(..) withthe same arguments.

15.4.1.1 Array ([iteml][,item2[,...111)

15.4.2

When the Ar r ay function is called the following steps are taken:

1. Create and return a new Array object exactly as if the array constructor had been called with the
same arguments (15.4.2).

The Array Constructor

When Arr ay is called as part of a new expression, it is a constructor: it initialises the newly created
object.

15.4.2.1 new Array ([itemO[,item1[,...]111])

This description applies if and only if the Array constructor is given no arguments or at least two
arguments.

The [[Prototype]] property of the newly constructed object is set to the original Array prototype
object, the one that is the initial value of Arr ay. pr ot ot ype (15.4.3.1).

The [[Class]] property of the newly constructed object issetto" Array".
Thel engt h property of the newly constructed object is set to the number of arguments.

The O property of the newly constructed object is set to itemO (if supplied); the 1 property of the
newly constructed object is set to iteml (if supplied); and, in general, for as many arguments as there
are, the k property of the newly constructed object is set to argument k, where the first argument is
considered to be argument number 0.

15.4.2.2

15.4.3

15.4.3.1

15.4.4

15.4.4.1

15.4.4.2

15.4.4.3

- 89 -

new Array (len)

The [[Prototype]] property of the newly constructed object is set to the original Array prototype
object, the one that is the initial value of Arr ay. pr ot ot ype (15.4.3.1). The [[Class]] property of
the newly constructed object isset to " Array" .

If the argument len is a Number and ToUint32(len) is equal to len, then the | engt h property of the
newly constructed object is set to ToUint32(len). If the argument len is a Number and ToUint32(len)
is not equal to len, a RangeError exception is thrown.

If the argument len is not a Number, then the | engt h property of the newly constructed object is set
to 1 and the O property of the newly constructed object is set to len.

Properties of the Array Constructor
The value of the internal [[Prototype]] property of the Array constructor is the Function prototype object
(15.3.4).

Besides the internal properties and the | engt h property (whose value is 1), the Array constructor has
the following properties:

Array.prototype

Theinitial value of Array. pr ot ot ype isthe Array prototype object (15.4.4).

This property has the attributes { DontEnum, DontDelete, ReadOnly }.

Properties of the Array Prototype Object

The value of the internal [[Prototype]] property of the Array prototype object is the Object prototype
object (15.2.3.1).

The Array prototype object is itself an array; its [[Class]] is " Array", and it has a| engt h property
(whose initial valueis +0) and the special internal [[Put]] method described in 15.2.3.1.

In following descriptions of functions that are properties of the Array prototype object, the phrase “this
object” refers to the object that is the this value for the invocation of the function. It is permitted for the
this to be an object for which the value of the internal [[Class]] property isnot " Arr ay".

NOTE
The Array prototype object does not have a val ueOf property of its own; however, it inherits the
val ueOf property from the Object prototype Object.

Array.prototype.constructor
Theinitial value of Array. prot ot ype. construct or isthe built-in Ar r ay constructor.

Array.prototype.toString ()

The result of calling this function is the same as if the built-in j oi n method were invoked for this
object with no argument.

The t oSt ri ng function is not generic; it throws a TypeError exception if its this value is not an
Array object. Therefore, it cannot be transferred to other kinds of objects for use as a method.

Array.prototype.toLocaleString ()

The elements of the array are converted to strings using their t oLocal eSt r i ng methods, and these
strings are then concatenated, separated by occurrences of a separator string that has been derived in
an implementation-defined locale-specific way. The result of calling this function is intended to be
analogous to the result of t oSt ri ng, except that the result of this function is intended to be locale-
specific.

Theresult is calculated as follows:

1. Call the [[Get]] method of this object with argument " | engt h" .

2. Cdl ToUint32(Result(1)).

3. Let separator be the list-separator string appropriate for the host environment’s current locale
(thisis derived in an implementation-defined way).

15.4.4.4

No o

8.
9

10.
11.
12.
13.

14.
15.
16.

- 90 -

Call ToString(separator).

If Result(2) is zero, return the empty string.

Call the [[Get]] method of this object with argument " 0" .

If Result(6) is undefined or null, use the empty string; otherwise, call
ToObject(Result(6)).toL ocaleString().

Let R be Result(7).

Letk be 1.

If k equals Result(2), return R.

Let Sbe astring value produced by concatenating R and Result(4).
Call the [[Get]] method of this object with argument ToString(k).

If Result(12) is undefined or null, use the empty string; otherwise, call
ToObject(Result(12)).toL ocaleString().

Let R be a string value produced by concatenating S and Result(13).
Increase k by 1.

Go to step 10.

Thet oLocal eStri ng function is not generic; it throws a TypeError exception if its this value is
not an Array object. Therefore, it cannot be transferred to other kinds of objects for use as a method.

NOTE
The first parameter to this function is likely to be used in a future version of this standard; it is
recommended that implementations do not use this parameter position for anything else.

Array.prototype.concat ([item1][,item2[,...1]1])

When the concat method is called with zero or more arguments iteml, item2, etc., it returns an array
containing the array elements of the object followed by the array elements of each argument in order.

The following steps are taken:

©oN>O AWM R

Let A be anew array created as if by the expression new Array().

Let n beO.

Let E be this object.

If E isnot an Array object, go to step 16.

Let k be 0.

Call the [[Get]] method of E with argument " | engt h" .

If k equals Result(6) go to step 19.

Call ToString(k).

If E has a property named by Result(8), go to step 10, but if E has no property named by
Result(8), go to step 13.

. Call ToString(n).

. Call the [[Get]] method of E with argument Result(8).

. Call the [[Put]] method of A with arguments Result(10) and Result(11).
. Increase n by 1.

. Increase k by 1.

. Gotostep 7.

. Call ToString(n).

. Call the [[Put]] method of A with arguments Result(16) and E.

. Increase n by 1.

. Get the next argument in the argument list; if there are no more arguments, go to step 22.
. Let E be Result(19).

. Go to step 4.

. Call the [[Put]] method of A with arguments” | engt h" and n.

. Return A.

Thel engt h property of the concat method is 1.

15.4.4.5

15.4.4.6

15.4.4.7

- 91 -

NOTE

The concat function is intentionally generic; it does not require that its this value be an Array
object. Therefore it can be transferred to other kinds of objects for use as a method. Whether the
concat function can be applied successfully to a host object is implementation-dependent.

Array.prototype.join (separator)

The elements of the array are converted to strings, and these strings are then concatenated, separated
by occurrences of the separator. If no separator is provided, a single comma is used as the separator.

Thej oi n method takes one argument, separator, and performs the following steps:

Call the [[Get]] method of this object with argument " | engt h".

Call ToUint32(Result(1)).

If separator is undefined, let separator be the single-character string ", " .

Call ToString(separator).

If Result(2) is zero, return the empty string.

Call the [[Get]] method of this object with argument " 0" .

If Result(6) is undefined or null, use the empty string; otherwise, call ToString(Result(6)).
Let R be Result(7).

Letkbel.

10. If k equals Result(2), return R.

11. Let Sbe astring value produced by concatenating R and Result(4).

12. Call the [[Get]] method of this object with argument ToString(k).

13. If Result(12) is undefined or null, use the empty string; otherwise, call ToString(Result(12)).
14. Let R be astring value produced by concatenating S and Result(13).

15. Increase k by 1.

16. Go to step 10.

CoNook~ WD R

Thel engt h property of thej oi n method is 1.

NOTE

The j oi n function is intentionally generic; it does not require that its this value be an Array object.
Therefore, it can be transferred to other kinds of objects for use as a method. Whether the j oi n
function can be applied successfully to a host object is implementation-dependent.

Array.prototype.pop ()
The last element of the array is removed from the array and returned.

Call the [[Get]] method of this object with argument "1 engt h".

Call ToUint32(Result(1)).

If Result(2) is not zero, go to step 6.

Call the [[Put]] method of this object with arguments ™| engt h" and Result(2).
Return undefined.

Call ToString(Result(2)-1).

Call the [[Get]] method of this object with argument Result(6).

Call the [[Delete]] method of this object with argument Result(6).

. Call the [[Put]] method of this object with arguments " | engt h" and (Result(2)-1).
10. Return Result(7).

CoNok~wDd R

NOTE

The pop function is intentionally generic; it does not require that its this value be an Array object.
Therefore it can be transferred to other kinds of objects for use as a method. Whether the pop
function can be applied successfully to a host object is implementation-dependent.

Array.prototype.push ([iteml[,item2[,...]111)
The arguments are appended to the end of the array, in the order in which they appear. The new length
of the array is returned as the result of the call.

When the push method is called with zero or more arguments iteml, item2, etc., the following steps
are taken:

15.4.4.8

15.4.4.9

- 92 -

1. Call the [[Get]] method of this object with argument " | engt h" .

2. Let n betheresult of calling ToUint32(Result(1)).

3. Get the next argument in the argument list; if there are no more arguments, go to step 7.
4. Call the [[Put]] method of this object with arguments ToString(n) and Result(3).

5. Increasen by 1.

6. Goto step 3.

7. Call the [[Put]] method of this object with arguments " | engt h" and n.

8. Returnn.

Thel engt h property of the push method is 1.

NOTE

The push function is intentionally generic; it does not require that its this value be an Array object.
Therefore it can be transferred to other kinds of objects for use as a method. Whether the push
function can be applied successfully to a host object is implementation-dependent.

Array.prototype.reverse ()

The elements of the array are rearranged so as to reverse their order. The object is returned as the
result of the call.

Call the [[Get]] method of this object with argument " | engt h" .

Call ToUint32(Result(1)).

Compute floor(Result(2)/2).

Let k be 0.

If k equals Result(3), return this object.

Compute Result(2)-k-1.

Call ToString(k).

Call ToString(Result(6)).

Call the [[Get]] method of this object with argument Result(7).

10. Call the [[Get]] method of this object with argument Result(8).

11. If this object does not have a property named by Result(8), go to step 19.

12. If this object does not have a property named by Result(7), go to step 16.

13. Call the [[Put]] method of this object with arguments Result(7) and Result(10).

14. Call the [[Put]] method of this object with arguments Result(8) and Result(9).

15. Go to step 25.

16. Call the [[Put]] method of this object with arguments Result(7) and Result(10).

17. Call the [[Delete]] method on this object, providing Result(8) as the name of the property to
delete.

18. Go to step 25.

19. If this object does not have a property named by Result(7), go to step 23.

20. Call the [[Delete]] method on this object, providing Result(7) as the name of the property to
delete..

21. Call the [[Put]] method of this object with arguments Result(8) and Result(9).

22. Go to step 25.

23. Call the [[Delete]] method on this object, providing Result(7) as the name of the property to
delete.

24. Call the [[Delete]] method on this object, providing Result(8) as the name of the property to
delete.

25. Increase k by 1.

26. Go to step 5.

©WoNO AWM R

NOTE

The rever se function is intentionally generic; it does not require that its this value be an Array
object. Therefore, it can be transferred to other kinds of objects for use as a method. Whether the
r ever se function can be applied successfully to a host object is implementation-dependent.

Array.prototype.shift ()
The first element of the array is removed from the array and returned.

15.4.4.10

RBOONOO A~MODNE

= o

NRPRRRRRRRE
SCVWO~NOOUAWN

- 03 -

Call the [[Get]] method of this object with argument "1 engt h".

Call ToUint32(Result(1)).

If Result(2) is not zero, go to step 6.

Call the [[Put]] method of this object with arguments ™| engt h" and Result(2).
Return undefined.

Call the [[Get]] method of this object with argument 0.

Let k be 1.

If k equals Result(2), go to step 18.

Call ToString(K).

Call ToString(k-1).

If this object has a property named by Result(9), go to step 12; but if this object has no property
named by Result(9), then go to step 15.

Call the [[Get]] method of this object with argument Result(9).

. Call the [[Put]] method of this object with arguments Result(10) and Result(12).

. Go to step 16.

. Call the [[Delete]] method of this object with argument Result(10).

. Increase k by 1.

. Go to step 8.

. Call the [[Delete]] method of this object with argument ToString(Result(2)-1).

. Call the [[Put]] method of this object with arguments " | engt h" and (Result(2)-1).
. Return Result(6).

NOTE

The shi ft function isintentionally generic; it does not require that its this value be an Array object.
Therefore it can be transferred to other kinds of objects for use as a method. Whether the shi f t
function can be applied successfully to a host object is implementation-dependent.

Array.prototype.slice (start, end)

The sl i ce method takes two arguments, start and end, and returns an array containing the elements
of the array from element start up to, but not including, element end (or through the end of the array
if end is undefined). If start is negative, it is treated as (length+start) where length is the length of
the array. If end is negative, it is treated as (length+end) where length is the length of the array. The
following steps are taken:

Let A be anew array created as if by the expression new Array().

Call the [[Get]] method of this object with argument " | engt h".

Call ToUint32(Result(2)).

Call Tolnteger(start).

If Result(4) is negative, use max((Result(3)+Result(4)),0); else use min(Result(4),Result(3)).
Let k be Result(5).

If end isundefined, use Result(3); else use Tolnteger(end).

If Result(7) is negative, use max((Result(3)+Result(7)),0); else use min(Result(7),Result(3)).
Let nbeO.

If kis greater than or equal to Result(8), go to step 19.

. Call ToString(k).
. If this object has a property named by Result(11), go to step 13; but if this object has no property

named by Result(11), then go to step 16.

Call ToString(n).

Call the [[Get]] method of this object with argument Result(11).

Call the [[Put]] method of A with arguments Result(13) and Result(14).
Increase k by 1.

. Increase n by 1.

Go to step 10.

. Call the [[Put]] method of A with arguments” | engt h” and n.

Return A.

Thel engt h property of thesl i ce method is 2.

15.4.4.11

- 94 -

NOTE

The sl i ce function is intentionally generic; it does not require that its this value be an Array object.
Therefore it can be transferred to other kinds of objects for use as a method. Whether the sl i ce
function can be applied successfully to a host object is implementation-dependent.

Array.prototype.sort (comparefn)
The elements of this array are sorted. The sort is not necessarily stable (that is, elements that compare
equal do not necessarily remain in their original order). If comparefn is not undefined, it should be a

function that accepts two arguments x and y and returns a negative value if x <y, zeroif x =y, or a
positive value if x > y.

If comparefn is not undefined and is not a consistent comparison function for the elements of this
array (see below), the behaviour of sort is implementation-defined. Let len be
ToUint32(t hi s. | engt h). If there exist integers i and j and an object P such that all of the
conditions below are satisfied then the behaviour of sor t isimplementation-defined:

e« 0<i<len

e« 0<j<len

e t hi s does not have a property with name ToString(i)

e Pisobtained by following one or more [[Prototype]] properties starting att hi s
* P has a property with name ToString(j)

Otherwise the following steps are taken.

1. Call the [[Get]] method of this object with argument " | engt h" .

2. Cdl ToUint32(Result(1)).

3. Perform an implementation-dependent sequence of calls to the [[Get]] , [[Put]], and [[Delete]]
methods of this object and to SortCompare (described below), where the first argument for each
call to [[Get]], [[Put]], or [[Delete]] is a nonnegative integer less than Result(2) and where the
arguments for calls to SortCompare are results of previous calls to the [[Get]] method.

4. Return this object.

The returned object must have the following two properties.

e There must be some mathematical permutation T of the nonnegative integers less than
Result(2), such that for every nonnegative integer j less than Result(2), if property ol d[j]
existed, then new 1(j)] is exactly the same value as ol d[] ,. but if property ol d[j] did not
exist, then new| 1(j)] does not exist.

« Then for all nonnegative integers j and k, each less than Result(2), if SortCompare(j,k) <0 (see
SortCompare below), then 1(j) < 11(K).

Here the notation ol d[j] is used to refer to the hypothetical result of calling the [[Get]] method of
this object with argument j before this function is executed, and the notation new{ j] to refer to the
hypothetical result of calling the [[Get]] method of this object with argument j after this function has
been executed.

A function comparefn is a consistent comparison function for a set of values S if all of the
requirements below are met for all values a, b, and c (possibly the same value) in the set S. The
notation a <cg b means comparefn(a,b) < 0; a =c¢ b means comparefn(a,b) = 0 (of either sign); and
a >cr b means comparefn(a,b) > 0.

« Calling comparefn(a,b) always returns the same value v when given a specific pair of values a
and b as its two arguments. Furthermore, v has type Number, and v is not NaN. Note that this
implies that exactly one of a <cg b, a =c¢ b, and a >¢r b will be true for a given pair of a and b.

e a=cra (reflexivity)

e Ifa=ceb,thenb=ccra (symmetry)

e Ifa=cgbandb =cc, thena=c:c (transitivity of =cf)
e Ifa<cebandb <cec, thena<cec (transitivity of <cf)

15.4.4.12

- 905 -

o Ifa>cbandb>cec, thena>ce ¢ (transitivity of >cf)

NOTE
The above conditions are necessary and sufficient to ensure that comparefn divides the set S into
equivalence classes and that these equivalence classes are totally ordered.

When the SortCompare operator is called with two arguments j and k, the following steps are taken:

1. Call TosString(j).

2. Call Tostring(k).

3. If this object does not have a property named by Result(1), and this object does not have a
property named by Result(2), return +0.

4. If this object does not have a property named by Result(1), return 1.

5. If this object does not have a property named by Result(2), return —1.

6. Call the [[Get]] method of this object with argument Result(1).

7. Call the [[Get]] method of this object with argument Result(2).

8. Let x be Result(6).

9. Lety be Result(7).

10. If x and y are both undefined, return +0.

11. If x isundefined, return 1.

12. If yisundefined, return -1.

13. If the argument comparefn is undefined, go to step 16.

14. Call comparefn with arguments x and y.

15. Return Result(14).

16. Call ToString(x).

17. Call ToString(y).

18. If Result(16) < Result(17), return -1.

19. If Result(16) > Result(17), return 1.

20. Return +0.

NOTE 1

Because non-existent property values always compare greater than undefined property values, and
undefined always compares greater than any other value, undefined property values always sort to
the end of the result, followed by non-existent property values.

NOTE 2

The sort function is intentionally generic; it does not require that its this value be an Array object.
Therefore, it can be transferred to other kinds of objects for use as a method. Whether the sort
function can be applied successfully to a host object is implementation-dependent.

Array.prototype.splice (start, deleteCount [, iteml1 [,item2[,...]1]1])

When the spl i ce method is called with two or more arguments start, deleteCount and (optionally)
iteml, item2, etc., the deleteCount elements of the array starting at array index start are replaced by
the arguments iteml, item2, etc. The following steps are taken:

1. Let Abeanew array created as if by the expression new Array().

2. Call the [[Get]] method of this object with argument " | engt h™.

3. Cdl ToUint32(Result(2)).

4. Call Tolnteger(start).

5. If Result(4) is negative, use max((Result(3)+Result(4)),0); else use min(Result(4),Result(3)).

6. Compute min(max(Tolnteger(deleteCount),0),Result(3)—-Result(5)).

7. LetkbeO.

8. If k equals Result(6), go to step 16.

9. Call ToString(Result(5)+k).

10. If this object has a property named by Result(9), go to step 11; but if this object has no property

named by Result(9), then go to step 14.
11. Call ToString(k).
12. Call the [[Get]] method of this object with argument Result(9).
13. Call the [[Put]] method of A with arguments Result(11) and Result(12).

15.4.4.13

14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.

25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.

42.
43.
44,
45,
46.
47.
48.
49.

50.
51.
52.
53.

54.

- 96 -

Increment k by 1.

Go to step 8.

Call the [[Put]] method of A with arguments | engt h” and Result(6).
Compute the number of additional arguments iteml, item2, etc.

If Result(17) is equal to Result(6), go to step 48.

If Result(17) is greater than Result(6), go to step 37.

Let k be Result(5).

If kisequal to (Result(3)—Result(6)), go to step 31.

Call ToString(k+Result(6)).

Call ToString(k+Result(17)).

If this object has a property named by Result(22), go to step 25; but if this object has no property
named by Result(22), then go to step 28.

Call the [[Get]] method of this object with argument Result(22).

Call the [[Put]] method of this object with arguments Result(23) and Result(25).
Go to step 29.

Call the [[Delete]] method of this object with argument Result(23).

Increase k by 1.

Go to step 21.

Let k be Result(3).

If kisequal to (Result(3)—Result(6)+Result(17)), go to step 48.

Call ToString(k-1).

Call the [[Delete]] method of this object with argument Result(33).

Decrease k by 1.

Go to step 32.

Let k be (Result(3)—Result(6)).

If kisequal to Result(5), go to step 48.

Call ToString(k+Result(6)-1).

Call ToString(k+Result(17)-1)

If this object has a property named by Result(39), go to step 42; but if this object has no property
named by Result(39), then go to step 45.

Call the [[Get]] method of this object with argument Result(39).

Call the [[Put]] method of this object with arguments Result(40) and Result(42).
Go to step 46.

Call the [[Delete]] method of this object with argument Result(40).

Decrease k by 1.

Go to step 38.

Let k be Result(5).

Get the next argument in the part of the argument list that starts with item1; if there are no more
arguments, go to step 53.

Call the [[Put]] method of this object with arguments ToString(k) and Result(49).
Increase k by 1.

Go to step 49.

Call the [[Put]] method of this object with arguments " | engt h" and (Result(3)—
Result(6)+Result(17)).

Return A.

Thel engt h property of thespl i ce method is 2.

NOTE
The spl i ce function is intentionally generic; it does not require that its this value be an Array
object. Therefore it can be transferred to other kinds of objects for use as a method. Whether the
spl i ce function can be applied successfully to a host object is implementation-dependent.

Array.prototype.unshift ([iteml1[,item2[,...111)

The arguments are prepended to the start of the array, such that their order within the array is the
same as the order in which they appear in the argument list.

When the unshi ft method is called with zero or more arguments item1, item2, etc., the following
steps are taken:

15.4.5

15.45.1

NN R

9

10.
11.
12.
13.
14.
15.
16.

17.
18.
19.
20.
21.
22.

- 97 -

Call the [[Get]] method of this object with argument "1 engt h".

Call ToUint32(Result(1)).

Compute the number of arguments.

Let k be Result(2).

If kiszero, go to step 15.

Call ToString(k-1).

Call ToString(k+Result(3)-1).

If this object has a property named by Result(6), go to step 9; but if this object has no property
named by Result(6), then go to step 12.

Call the [[Get]] method of this object with argument Result(6).

Call the [[Put]] method of this object with arguments Result(7) and Result(9).

Go to step 13.

Call the [[Delete]] method of this object with argument Result(7).

Decrease k by 1.

Go to step 5.

Let k be 0.

Get the next argument in the part of the argument list that starts with item1; if there are no more
arguments, go to step 21.

Call ToString(k).

Call the [[Put]] method of this object with arguments Result(17) and Result(16).

Increase k by 1.

Go to step 16.

Call the [[Put]] method of this object with arguments ™| engt h" and (Result(2)+Result(3)).
Return (Result(2)+Result(3)).

Thel engt h property of theunshi ft method is 1.

NOTE
The unshi ft function is intentionally generic; it does not require that its this value be an Array

object. Therefore it can be transferred to other kinds of objects for use as a method. Whether the

unshi ft function can be applied successfully to a host object is implementati on-dependent.

Properties of Array Instances

Array instances inherit properties from the Array prototype object and also have the following

properties.
[[Put]] (P, V)

Array objects use a variation of the [[Put]] method used for other native ECMAScript objects
(8.6.2.2).

Assume A is an Array object and P is astring.

When the [[Put]] method of A is called with property P and value V, the following steps are taken:

©CoNO AWM R

Call the [[CanPut]] method of A with name P.

If Result(1) is false, return.

If A doesn’t have a property with name P, go to step 7.

If Pis"l engt h", go to step 12.

Set the value of property P of Ato V.

Go to step 8.

Create a property with name P, set its value to V and give it empty attributes.

If P isnot an array index, return.

If ToUint32(P) is less than the value of thel engt h property of A, then return.
Change (or set) the value of the | engt h property of A to ToUint32(P)+1.

. Return.
. Compute ToUint32(V).

If Result(12) is not equal to ToNumber(V), throw a RangeError exception.

For every integer k that is less than the value of the | engt h property of A but not less than
Result(12), if Aitself has a property (not an inherited property) named ToString(k), then delete
that property.

15.45.2

155 St
15.5.1

15.5.1.1

15.5.2

155.2.1

15.5.3

15.5.3.1

15.5.3.2

15.5.4

15.54.1

- 908 -

15. Set the value of property P of A to Result(12).
16. Return.

length
The | engt h property of this Array object is always numerically greater than the name of every
property whose name is an array index.

Thel engt h property has the attributes { DontEnum, DontDelete }.

ring Objects
The String Constructor Called as a Function
When St ri ng is called as a function rather than as a constructor, it performs a type conversion.

String ([value])

Returns a string value (not a String object) computed by ToString(value). If value is not supplied, the
empty string " " is returned.

The String Constructor
When St ri ng is called as part of a new expression, it is a constructor: it initialises the newly created
object.

new String ([value])

The [[Prototype]] property of the newly constructed object is set to the original String prototype
object, the one that istheinitial value of St ri ng. pr ot ot ype (15.5.3.1).

The [[Class]] property of the newly constructed object issetto” St ri ng" .

The [[Value]] property of the newly constructed object is set to ToString(value), or to the empty
string if value is not supplied.

Properties of the String Constructor
The value of the internal [[Prototype]] property of the String constructor is the Function prototype object
(15.3.4).

Besides the internal properties and the | engt h property (whose value is 1), the String constructor has
the following properties:

String.prototype
Theinitial value of St ri ng. pr ot ot ype isthe String prototype object (15.5.4).

This property has the attributes { DontEnum, DontDelete, ReadOnly }.

String.fromCharCode ([charO[,charl[,...]1]1)

Returns a string value containing as many characters as the number of arguments. Each argument
specifies one character of the resulting string, with the first argument specifying the first character,
and so on, from left to right. An argument is converted to a character by applying the operation
ToUint16 (9.7) and regarding the resulting 16-bit integer as the code point value of a character. If no
arguments are supplied, the result is the empty string.

Thel engt h property of the f r onChar Code functionis 1.
Properties of the String Prototype Object

The String prototype object is itself a String object (its[[Class]] is" St ri ng") whose value is an empty
string.

The value of the internal [[Prototype]] property of the String prototype object is the Object prototype
object (15.2.3.1).

String.prototype.constructor
Theinitial value of St ri ng. pr ot ot ype. construct or isthebuilt-in St r i ng constructor.

15.5.4.2

15.5.4.3

15.5.4.4

15.5.4.5

15.5.4.6

- 99 -

String.prototype.toString ()

Returns this string value. (Note that, for a String object, thet oSt r i ng method happens to return the
same thing asthe val ueOf method.)

The t oSt ri ng function is not generic; it throws a TypeError exception if its this value is not a
String object. Therefore, it cannot be transferred to other kinds of objects for use as a method.

String.prototype.valueOf ()
Returns this string value.

The val ueOf function is not generic; it throws a TypeError exception if its this value is not a
String object. Therefore, it cannot be transferred to other kinds of objects for use as a method.

String.prototype.char At (pos)

Returns a string containing the character at position pos in the string resulting from converting this
object to a string. If there is no character at that position, the result is the empty string. The result is a
string value, not a String object.

If posis avalue of Number type that is an integer, then the result of x. char At (pos) is equal to the
result of x. substri ng(pos, pos+l).

When the char At method is called with one argument pos, the following steps are taken:

Call ToString, giving it the this value as its argument.

Call Tolnteger(pos).

Compute the number of charactersin Result(1).

If Result(2) islessthan O or is not less than Result(3), return the empty string.

Return a string of length 1, containing one character from Result(1), namely the character at
position Result(2), where the first (Ieftmost) character in Result(1) is considered to be at position
0, the next one at position 1, and so on.

agkrwdNE

NOTE
The char At function is intentionally generic; it does not require that its this value be a String
object. Therefore, it can be transferred to other kinds of objects for use as a method.

String.prototype.char CodeAt (pos)

Returns a number (a nonnegative integer less than 2'°) representing the code point value of the
character at position pos in the string resulting from converting this object to a string. If there is no
character at that position, the result is NaN.

When the char CodeAt method is called with one argument pos, the following steps are taken:

Call ToString, giving it the this value as its argument.

Call Tolnteger(pos).

Compute the number of characters in Result(1).

If Result(2) islessthan O or is not less than Result(3), return NaN.

Return a value of Number type, whose value is the code point value of the character at position
Result(2) in the string Result(1), where the first (leftmost) character in Result(1) is considered to
be at position 0, the next one at position 1, and so on.

agrwNE

NOTE
The char CodeAt function is intentionally generic; it does not require that its this value be a String
object. Therefore it can be transferred to other kinds of objects for use as a method.

String.prototype.concat ([stringl [, string2[,...]111)

When the concat method is called with zero or more arguments stringl, string2, etc., it returns a
string consisting of the characters of this object (converted to a string) followed by the characters of
each of stringl, string2, etc. (where each argument is converted to a string). The result is a string
value, not a String object. The following steps are taken:

1. Call ToString, giving it the this value as its argument.
2. Let Rbe Result(1).

15.5.4.7

15.5.4.8

- 100 -

3. Get the next argument in the argument list; if there are no more arguments, go to step 7.

4. Call ToString(Result(3)).

5. Let R bethe string value consisting of the characters in the previous value of R followed by the
characters Result(4).

6. Goto step 3.

7. Return R

Thel engt h property of the concat method is 1.

NOTE
The concat function is intentionally generic; it does not require that its this value be a String
object. Therefore it can be transferred to other kinds of objects for use as a method.

String.prototype.indexOf (searchString, position)

If searchString appears as a substring of the result of converting this object to a string, at one or more
positions that are greater than or equal to position, then the index of the smallest such position is
returned; otherwise, - 1 is returned. If position is undefined, O is assumed, so as to search all of the
string.

The i ndexOf method takes two arguments, searchString and position, and performs the following
steps:

Call ToString, giving it the this value as its argument.

Call ToString(searchString).

Call Tolnteger(position). (If position is undefined, this step produces the value 0).

Compute the number of charactersin Result(1).

Compute min(max(Result(3), 0), Result(4)).

Compute the number of characters in the string that is Result(2).

Compute the smallest possible integer k not smaller than Result(5) such that k+Result(6) is not
greater than Result(4), and for all nonnegative integers j less than Result(6), the character at
position k+j of Result(1) is the same as the character at position j of Result(2); but if thereis no
such integer k, then compute the value - 1.

8. Return Result(7).

NogsrwbhE

Thel engt h property of thei ndexOf method is 1.

NOTE
The i ndexOf function is intentionally generic; it does not require that its this value be a String
object. Therefore, it can be transferred to other kinds of objects for use as a method.

String.prototype.lastl ndexOf (searchString, position)

If searchString appears as a substring of the result of converting this object to a string at one or more
positions that are smaller than or equal to position, then the index of the greatest such position is
returned; otherwise, - 1 is returned. If position is undefined, the length of the string value is assumed,
so as to search all of the string.

The | ast | ndexOf method takes two arguments, searchString and position, and performs the
following steps:

Call ToString, giving it the this value as its argument.

Call ToString(searchString).

Call ToNumber(position). (If position is undefined, this step produces the value NaN).

If Result(3) is NaN, use +o; otherwise, call Tolnteger(Result(3)).

Compute the number of charactersin Result(1).

Compute min(max(Result(4), 0), Result(5)).

Compute the number of charactersin the string that is Result(2).

Compute the largest possible nonnegative integer k not larger than Result(6) such that k+Result(7)
is not greater than Result(5), and for all nonnegative integers j less than Result(7), the character at
position k+j of Result(1) is the same as the character at position j of Result(2); but if thereis no
such integer k, then compute the value - 1.

N~ WNE

15.5.4.9

15.5.4.10

- 101 -

9. Return Result(8).

Thel engt h property of thel ast | ndexOf method is 1.

NOTE
The | ast | ndexOf function is intentionally generic; it does not require that its this value be a
String object. Therefore, it can be transferred to other kinds of objects for use as a method.

String.prototype.localeCompare (that)

When the | ocal eConpar e method is called with one argument that, it returns a number other than
NaN that represents the result of a locale-sensitive string comparison of this object (converted to a
string) with that (converted to a string). The two strings are compared in an implementation-defined
fashion. The result is intended to order strings in the sort order specified by the system default locale,
and will be negative, zero, or positive, depending on whether this comes before that in the sort order,
the strings are equal, or this comes after that in the sort order, respectively.

The | ocal eConmpar e method, if considered as a function of two arguments this and that, is a
consistent comparison function (as defined in 15.4.4.11) on the set of all strings. Furthermore,
| ocal eConpar e returns 0 or —0 when comparing two strings that are considered canonically
equivalent by the Unicode standard.

The actual return values are left implementation-defined to permit implementers to encode additional
information in the result value, but the function is required to define a total ordering on all strings and
to return 0 when comparing two strings that are considered canonically equivalent by the Unicode
standard.

NOTE 1
The | ocal eConpare method itself is not directly suitable as an argument to
Array. prototype. sort because the latter requires a function of two arguments.

NOTE 2

This function is intended to rely on whatever language-sensitive comparison functionality is available
to the ECMAScript environment from the host environment, and to compare according to the rules of
the host environment’s current locale. It is strongly recommended that this function treat strings that
are canonically equivalent according to the Unicode standard as identical (in other words, compare
the strings as if they had both been converted to Normalised Form C or D first). It is also
recommended that this function not honour Unicode compatibility equivalences or decompositions.

If no language-sensitive comparison at all is available from the host environment, this function may
perform a bitwise comparison.

NOTE 3
The | ocal eConpar e function is intentionally generic; it does not require that its this value be a
String object. Therefore, it can be transferred to other kinds of objects for use as a method.

NOTE 4
The second parameter to this function is likely to be used in a future version of this standard; it is
recommended that implementations do not use this parameter position for anything else.

String.prototype.match (regexp)

If regexp is not an object whose [[Class]] property is " RegExp", it is replaced with the result of the
expression new RegExp(regexp). Let string denote the result of converting the this value to a
string. Then do one of the following:

« If regexp.gl obal is false: Return the result obtained by invoking RegExp. pr ot ot ype. exec
(see 15.10.6.2) on regexp with string as parameter.

e If regexp.gl obal is true: Set the regexp.l astlndex property to 0 and invoke
RegExp. pr ot ot ype. exec repeatedly until there is no match. If there is a match with an empty
string (in other words, if the value of regexp.l astl ndex is left unchanged), increment
regexp.l ast | ndex by 1. Let n be the number of matches. The value returned is an array with the

15.5.4.11

15.5.4.12

- 102 -

| engt h property set to n and properties 0 through n-1 corresponding to the first elements of the
results of all matching invocations of RegExp. pr ot ot ype. exec.

NOTE
The mat ch function is intentionally generic; it does not require that its this value be a String object.
Therefore, it can be transferred to other kinds of objects for use as a method.

String.prototype.replace (searchValue, replaceValue)
Let string denote the result of converting the this value to a string.

If searchValue is a regular expression (an object whose [[Class]] property is " RegExp"), do the
following: If searchValue.global is false, then search string for the first match of the regular
expression searchValue. If searchValue.global is true, then search string for all matches of the
regular expression searchValuee Do the search in the same manner as in
String. prototype. match, including the update of searchValue.l ast| ndex. Let m be the
number of left capturing parentheses in searchValue (NCapturingParens as specified in 15.10.2.1).

If searchValue is not a regular expression, let searchString be ToString(searchValue) and search
string for the first occurrence of searchString. Let m be 0.

If replaceValue is a function, then for each matched substring, call the function with the following m
+ 3 arguments. Argument 1 is the substring that matched. If searchValue is a regular expression, the
next m arguments are all of the captures in the MatchResult (see 15.10.2.1). Argument m + 2 is the
offset within string where the match occurred, and argument m + 3 is string. The result is a string
value derived from the original input by replacing each matched substring with the corresponding
return value of the function call, converted to a string if need be.

Otherwise, let newstring denote the result of converting replaceValue to a string. The result is a string
value derived from the original input string by replacing each matched substring with a string derived
from newstring by replacing characters in newstring by replacement text as specified in the following
table. These $ replacements are done left-to-right, and, once such a replacement is performed, the new
replacement text is not subject to further replacements. For example,
"$1, $2" . replace(/ (\$(\d))/g, "$$1-$1$2") returns "$1-$11, $1-$22". A $ in
newstring that does not match any of the forms below is left asis.

Characters Replacement text
$$ $
$& The matched substring.
$ The portion of string that precedes the matched substring.
$ The portion of string that follows the matched substring.
$n The nth capture, where nis asingle digit 1-9 and $n is not followed by a decimal

digit. If nsm and the nth capture is undefined, use the empty string instead. If n>m,
the result is implementation-defined.

$nn The nn'™" capture, where nn is a two-digit decimal number 01-99. If nn<m and the
nn'" capture is undefined, use the empty string instead. If nn>m, the result is
implementation-defined.

NOTE
The r epl ace function is intentionally generic; it does not require that its this value be a String
object. Therefore, it can be transferred to other kinds of objects for use as a method.

String.prototype.search (regexp)

If regexp is not an object whose [[Class]] property is" RegExp", it is replaced with the result of the
expression new RegExp(regexp) . Let string denote the result of converting the this value to a
string.

15.5.4.13

15.5.4.14

- 103 -

The value string is searched from its beginning for an occurrence of the regular expression pattern
regexp. The result is a number indicating the offset within the string where the pattern matched, or —1
if there was no match.

NOTE 1
This method ignores the | ast | ndex and gl obal properties of regexp. The | ast | ndex property
of regexp is left unchanged.

NOTE 2
The sear ch function is intentionally generic; it does not require that its this value be a String
object. Therefore, it can be transferred to other kinds of objects for use as a method.

String.prototype.slice (start, end)

The sl i ce method takes two arguments, start and end, and returns a substring of the result of
converting this object to a string, starting from character position start and running to, but not
including, character position end (or through the end of the string if end is undefined). If start is
negative, it is treated as (sourcelLength+start) where sourcelLength is the length of the string. If end is
negative, it is treated as (sourcelLength+end) where sourcelength is the length of the string. The result
isastring value, not a String object. The following steps are taken:

Call ToString, giving it the this value as its argument.

Compute the number of characters in Result(1).

Call Tolnteger(start).

If end isundefined, use Result(2); else use Tolnteger(end).

If Result(3) is negative, use max(Result(2)+Result(3),0); else use min(Result(3),Result(2)).

If Result(4) is negative, use max(Result(2)+Result(4),0); else use min(Result(4),Result(2)).
Compute max(Result(6)—Result(5),0).

Return a string containing Result(7) consecutive characters from Result(1) beginning with the
character at position Result(5).

©ONoTOA~WNE

Thel engt h property of thesl i ce method is 2.

NOTE
The sl i ce function is intentionally generic; it does not require that its this value be a String object.
Therefore it can be transferred to other kinds of objects for use as a method.

String.prototype.split (separator, limit)

Returns an Array object into which substrings of the result of converting this object to a string have
been stored. The substrings are determined by searching from left to right for occurrences of
separator; these occurrences are not part of any substring in the returned array, but serve to divide up
the string value. The value of separator may be a string of any length or it may be a RegExp object
(i.e., an object whose [[Class]] property is" RegExp" ; see 15.10).

The value of separator may be an empty string, an empty regular expression, or a regular expression
that can match an empty string. In this case, separator does not match the empty substring at the
beginning or end of the input string, nor does it match the empty substring at the end of the previous
separator match. (For example, if separator is the empty string, the string is split up into individual
characters; the length of the result array equals the length of the string, and each substring contains
one character.) If separator is aregular expression, only the first match at a given position of the this
string is considered, even if backtracking could yield a non-empty-substring match at that position.
(For example, "ab".split(/a*?/) evaluates to the array ["a","b"], while
"ab".split(/a*/) evaluatestothearray["", "b"].)

If the this object is (or converts to) the empty string, the result depends on whether separator can
match the empty string. If it can, the result array contains no elements. Otherwise, the result array
contains one element, which is the empty string.

If separator is a regular expression that contains capturing parentheses, then each time separator is
matched the results (including any undefined results) of the capturing parentheses are spliced into the
output array. (For example,

" Abol d</ B>and<CODE>coded</ CODE>" . split (/<(\/)?(["<>]+)>/) evauates to

- 104 -

the array ["A", undefined, "B", "bold", "/", "B", "and", undefined,
"CODE", "coded", "/", "CODE", ""].

If separator is undefined, then the result array contains just one string, which is the this value
(converted to a string). If limit is not undefined, then the output array is truncated so that it contains
no more than limit elements.

When thespl i t method is called, the following steps are taken:

Let S= ToString(t hi s).

Let A be anew array created as if by the expression new Array().

If limit is undefined, let lim = 2°°~1; else let lim = ToUint32(limit).

Let s be the number of charactersin S.

Letp=0.

If separator is a RegExp object (its[[Class]] is" RegExp"), let R = separator; otherwise let R =

ToString(separator).

7. 1flim=0, return A.

8. |If separator is undefined, go to step 33.

9. Ifs=0, goto step 31.

10. Letg=p.

11. If g = s, go to step 28.

12. Call SplitMatch(R, S, g) and let z be its MatchResult result.

13. If zisfailure, go to step 26.

14. z must be a State. Let e be Zs endindex and let cap be Z's captures array.

15. If e =p, go to step 26.

16. Let T be a string value equal to the substring of Sconsisting of the characters at positions p
(inclusive) through g (exclusive).

17. Call the [[Put]] method of A with arguments A.length and T.

18. If A.length = lim, return A.

19. Letp==e

20. Leti=0.

21. If i isequal to the number of elementsin cap, go to step 10.

22. Leti=i+1.

23. Call the [[Put]] method of A with arguments A. | engt h and cap[i].

24. I1f A. | engt h =1im, return A.

25. Go to step 21.

26. Let g =qg+1.

27. Go to step 11.

28. Let T be astring value equal to the substring of S consisting of the characters at positions p
(inclusive) through s (exclusive).

29. Call the [[Put]] method of A with arguments A. | ength and T.

30. Return A.

31. Call splitMatch(R, S, 0) and let z be its MatchResult result.

32. If zisnot failure, return A.

33. Call the [[Put]] method of A with arguments” 0" and S.

34. Return A.

ok wdrE

The internal helper function SplitMatch takes three parameters, a string S, an integer ¢, and a string or
RegExp R, and performs the following in order to return a MatchResult (see 15.10.2.1):

1. If RisaRegExp object (its[[Class]] is" RegExp"), go to step 8.

R must be a string. Let r be the number of charactersin R.

Let s be the number of charactersin S.

If g+r > s then return the MatchResult failure.

If there exists an integer i between 0 (inclusive) and r (exclusive) such that the character at
position g+i of Sis different from the character at position i of R, then return failure.

Let cap be an empty array of captures (see 15.10.2.1).

Return the State (g+r, cap). (see 15.10.2.1)

Call the [[Match]] method of R giving it the arguments Sand q, and return the MatchResult result.

S S

© N o

15.5.4.15

15.5.4.16

15.5.4.17

- 105 -

Thel engt h property of thespl i t method is 2.

NOTE 1
The spl it function isintentionally generic; it does not require that its this value be a String object.
Therefore, it can be transferred to other kinds of objects for use as a method.

NOTE 2
The spl i t method ignores the value of separator. gl obal for separators that are RegExp objects.

String.prototype.substring (start, end)

The substring method takes two arguments, start and end, and returns a substring of the result of
converting this object to a string, starting from character position start and running to, but not
including, character position end of the string (or through the end of the string is end is undefined).
The result is a string value, not a String object.

If either argument is NaN or negative, it is replaced with zero; if either argument is larger than the
length of the string, it is replaced with the length of the string.

If start is larger than end, they are swapped.
The following steps are taken:

Call ToString, giving it the this value as its argument.

Compute the number of charactersin Result(1).

Call Tolnteger(start).

If end is undefined, use Result(2); else use Tolnteger(end).

Compute min(max(Result(3), 0), Result(2)).

Compute min(max(Result(4), 0), Result(2)).

Compute min(Result(5), Result(6)).

Compute max(Result(5), Result(6)).

Return a string whose length is the difference between Result(8) and Result(7), containing
characters from Result(1), namely the characters with indices Result(7) through Result(8)-1, in
ascending order.

©CoNoOh~wWNE

Thel engt h property of the subst ri ng method is 2.

NOTE
The subst ri ng function is intentionally generic; it does not require that its this value be a String
object. Therefore, it can be transferred to other kinds of objects for use as a method.

String.prototype.toL ower Case ()

If this object is not already a string, it is converted to a string. The characters in that string are
converted one by one to lower case. The result is a string value, not a String object.

The characters are converted one by one. The result of each conversion is the original character,
unless that character has a Unicode lowercase equivalent, in which case the lowercase equivalent is
used instead.

NOTE 1

The result should be derived according to the case mappings in the Unicode character database (this
explicitly includes not only the UnicodeData.txt file, but also the SpecialCasings.txt file that
accompanies it in Unicode 2.1.8 and later).

NOTE 2
The t oLower Case function is intentionally generic; it does not require that its this value be a
String object. Therefore, it can be transferred to other kinds of objects for use as a method.

String.prototype.toL ocaleL ower Case ()

This function works exactly the same ast oLower Case except that its result is intended to yield the
correct result for the host environment’s current locale, rather than a locale-independent result. There
will only be a difference in the few cases (such as Turkish) where the rules for that language conflict
with the regular Unicode case mappings.

15.5.4.18

15.5.4.19

- 106 -

NOTE 1
The t oLocal eLower Case function is intentionally generic; it does not require that its this value
be a String object. Therefore, it can be transferred to other kinds of objects for use as a method.

NOTE 2
The first parameter to this function is likely to be used in a future version of this standard; it is
recommended that implementations do not use this parameter position for anything else.

String.prototype.toUpperCase ()
This function behaves in exactly the same way as Stri ng. prot ot ype. t oLower Case, except

that characters are mapped to their uppercase equivalents as specified in the Unicode Character
Database.

NOTE 1

Because both t oUpper Case and t oLower Case have context-sensitive behaviour, the functions
are not symmetrical. In other words, s.t oUpper Case().tolLower Case() is not necessarily
equal tos. t oLower Case() .

NOTE 2
The t oUpper Case function is intentionally generic; it does not require that its this value be a
String object. Therefore, it can be transferred to other kinds of objects for use as a method.

String.prototype.toLocaleUpper Case ()

This function works exactly the same ast oUpper Case except that its result is intended to yield the
correct result for the host environment’s current locale, rather than a locale-independent result. There
will only be a difference in the few cases (such as Turkish) where the rules for that language conflict
with the regular Unicode case mappings.

NOTE 1
The t oLocal eUpper Case function is intentionally generic; it does not require that its this value
be a String object. Therefore, it can be transferred to other kinds of objects for use as a method.

NOTE 2
The first parameter to this function is likely to be used in a future version of this standard; it is
recommended that implementations do not use this parameter position for anything else.

15.5.5 Properties of String Instances

String instances inherit properties from the String prototype object and also have a [[Valueg]] property
and al engt h property.

The [[Value]] property is the string value represented by this String object.

15.5.5.1

length
The number of charactersin the String value represented by this String object.

Once a String object is created, this property is unchanging. It has the attributes { DontEnum,
DontDelete, ReadOnly }.

15.6 Boolean Objects
15.6.1 The Boolean Constructor Called as a Function
When Bool ean iscalled as a function rather than as a constructor, it performs a type conversion.

15.6.1.1

Boolean (value)
Returns a boolean value (not a Boolean object) computed by ToBoolean(value).

15.6.2 The Boolean Constructor
When Bool ean is called as part of a new expression it is a constructor: it initialises the newly created
object.

15.6.2.1

new Boolean (value)

The [[Prototype]] property of the newly constructed object is set to the original Boolean prototype
object, the one that istheinitial value of Bool ean. pr ot ot ype (15.6.3.1).

15.6.3

15.6.3.1

15.6.4

15.6.4.1

15.6.4.2

15.6.4.3

15.6.5

- 107 -

The [[Class]] property of the newly constructed Boolean object is set to " Bool ean”.
The [[Value]] property of the newly constructed Boolean object is set to ToBoolean(value).

Properties of the Boolean Constructor
The value of the internal [[Prototype]] property of the Boolean constructor is the Function prototype
object (15.3.4).

Besides the internal properties and the | engt h property (whose value is 1), the Boolean constructor has
the following property:

Boolean.prototype

The initial value of Bool ean. pr ot ot ype isthe Boolean prototype object (15.6.4).

This property has the attributes { DontEnum, DontDelete, ReadOnly }.

Properties of the Boolean Prototype Object
The Boolean prototype object is itself a Boolean object (its [[Class]] is " Bool ean") whose value is
false.

The value of the internal [[Prototype]] property of the Boolean prototype object is the Object prototype
object (15.2.3.1).

In following descriptions of functions that are properties of the Boolean prototype object, the phrase
“this Boolean object” refers to the object that is the this value for the invocation of the function; a
TypeError exception is thrown if the this value is not an object for which the value of the internal
[[Class]] property is " Bool ean". Also, the phrase “this boolean value’ refers to the boolean value
represented by this Boolean object, that is, the value of the internal [[Value]] property of this Boolean
object.

Boolean.prototype.constructor

The initial value of Bool ean. pr ot ot ype. const ruct or isthe built-in Bool ean constructor.

Boolean.prototype.toString ()
If this boolean value is true, then the string "t r ue" is returned. Otherwise, this boolean value must
be false, and the string " f al se" is returned.

The t oSt ri ng function is not generic; it throws a TypeError exception if its this value is not a
Boolean object. Therefore, it cannot be transferred to other kinds of objects for use as a method.

Boolean.prototype.valueOf ()
Returns this boolean value.

The val ueOf function is not generic; it throws a TypeError exception if its this value is not a
Boolean object. Therefore, it cannot be transferred to other kinds of objects for use as a method.

Properties of Boolean Instances
Boolean instances have no special properties beyond those inherited from the Boolean prototype object.

15.7 Number Objects

15.7.1

15.7.1.1

15.7.2

The Number Constructor Called as a Function
When Nunber iscalled as a function rather than as a constructor, it performs a type conversion.

Number ([value])
Returns a number value (not a Number object) computed by ToNumber(value) if value was supplied,
else returns +0.

The Number Constructor

When Nunber is called as part of a new expression it is a constructor: it initialises the newly created
object.

15.7.2.1

15.7.3

15.7.3.1

15.7.3.2

15.7.3.3

15.7.3.4

15.7.3.5

15.7.3.6

15.7.4

15.7.4.1

- 108 -

new Number ([value])

The [[Prototype]] property of the newly constructed object is set to the original Number prototype
object, the one that istheinitial value of Nunmber . pr ot ot ype (15.7.3.1).

The [[Class]] property of the newly constructed object is set to " Number " .

The [[Value]] property of the newly constructed object is set to ToNumber(value) if value was
supplied, else to +0.

Properties of the Number Constructor

The value of the internal [[Prototype]] property of the Number constructor is the Function prototype
object (15.3.4).

Besides the internal properties and the | engt h property (whose value is 1), the Number constructor has
the following property:

Number .prototype
Theinitial value of Nurmber . pr ot ot ype isthe Number prototype object (15.7.4).

This property has the attributes { DontEnum, DontDelete, ReadOnly }.

Number. MAX_VALUE

The value of Nurmber . MAX_VALUE is the largest positive finite value of the number type, which is
approximately 1.7976931348623157 x 10°%,

This property has the attributes { DontEnum, DontDelete, ReadOnly }.

Number MIN_VALUE

The value of Nunmber. M N_VALUE is the smallest positive value of the number type, which is
approximately 5 x 10732,

This property has the attributes { DontEnum, DontDelete, ReadOnly }.

Number.NaN
The value of Nunmber . NaNis NaN.

This property has the attributes { DontEnum, DontDelete, ReadOnly }.

Number NEGATIVE_INFINITY
The value of Nunber . NEGATI VE_I NFI NI TY is —co.

This property has the attributes { DontEnum, DontDelete, ReadOnly }.

Number.POSITIVE_INFINITY
The value of Nunber . POSI TI VE_| NFI NI TY is +oo,

This property has the attributes { DontEnum, DontDelete, ReadOnly }.

Properties of the Number Prototype Object
The Number prototype object is itself a Number object (its[[Class]] is" Nunmber ") whose value is +0.

The value of the internal [[Prototype]] property of the Number prototype object is the Object prototype
object (15.2.3.1).

In following descriptions of functions that are properties of the Number prototype object, the phrase
“this Number object” refers to the object that is the this value for the invocation of the function; a
TypeError exception is thrown if the this value is not an object for which the value of the internal
[[Class]] property is " Number " . Also, the phrase “this number value” refers to the number value
represented by this Number object, that is, the value of the internal [[Value]] property of this Number
object.

Number .prototype.constructor
The initial value of Nunber . pr ot ot ype. construct or isthe built-in Nunber constructor.

15.7.4.2

15.7.4.3

15.7.4.4

15.7.4.5

- 109 -

Number .prototype.toString (radix)
If radix is the number 10 or undefined, then this number value is given as an argument to the
ToString operator; the resulting string value is returned.

If radix is an integer from 2 to 36, but not 10, the result is a string, the choice of which is
implementation-dependent.

The t oSt ri ng function is not generic; it throws a TypeError exception if its this value is not a
Number object. Therefore, it cannot be transferred to other kinds of objects for use as a method.

Number .prototype.toL ocaleString()

Produces a string value that represents the value of the Number formatted according to the
conventions of the host environment’s current locale. This function is implementation-dependent, and
it is permissible, but not encouraged, for it to return the same thingast oSt ri ng.

NOTE

The first parameter to this function is likely to be used in a future version of this standard; it is
recommended that implementations do not use this parameter position for anything else.
Number.prototype.valueOf ()

Returns this number value.

The val ueOF function is not generic; it throws a TypeError exception if its this value is not a
Number object. Therefore, it cannot be transferred to other kinds of objects for use as a method.
Number .prototype.toFixed (fractionDigits)

Return a string containing the number represented in fixed-point notation with fractionDigits digits
after the decimal point. If fractionDigits is undefined, 0 is assumed. Specifically, perform the
following steps:

1. Letf be Tolnteger(fractionDigits). (If fractionDigits is undefined, this step produces the value
0).

2. Iff<0orf> 20, throw aRangeError exception.

3. Let x be this number value.

4. If xisNaN, return the string " NaN" .

5. Let s bethe empty string.

6. Ifx=0,gotostep9.

7. Letsbe"-".

8. Letx=-—x

9. If x=10?, let m= ToString(x) and go to step 20.

10. Let n be an integer for which the exact mathematical value of n + 10" — x is as close to zero as
possible. If there are two such n, pick the larger n.

11. If n=0, let m be the string " 0" . Otherwise, let m be the string consisting of the digits of the

decimal representation of n (in order, with no leading zeroes).
12. If f =0, go to step 20.
13. Let k be the number of charactersin m.
14. If k> f, go to step 18.
15. Let z be the string consisting of f+1-k occurrences of the character ‘0.
16. Let m be the concatenation of strings zand m.
17. Letk=1f+ 1.
18. Let a be the first k—f characters of m, and let b be the remaining f characters of m.
19. Let m be the concatenation of the three stringsa, " . ", and b.
20. Return the concatenation of the strings s and m.

Thel engt h property of thet oFi xed method is 1.

If thet oFi xed method is called with more than one argument, then the behaviour is undefined (see
clause 15).

15.7.4.6

- 110 -

An implementation is permitted to extend the behaviour of t oFi xed for values of fractionDigits less
than 0 or greater than 20. In this case t oFi xed would not necessarily throw RangeError for such
values.

NOTE

The output of t oFi xed may be more precise thant oSt ri ng for some values because toString only
prints enough significant digits to distinguish the number from adjacent number values. For example,
(1000000000000000128) . toString() returns " 1000000000000000100" , while
(1000000000000000128) . t oFi xed(0) returns" 1000000000000000128" .

Number .prototype.toExponential (fractionDigits)

Return a string containing the number represented in exponential notation with one digit before the
significand's decimal point and fractionDigits digits after the significand's decimal point. If
fractionDigits is undefined, include as many significand digits as necessary to uniquely specify the
number (just like in ToString except that in this case the number is always output in exponential
notation). Specifically, perform the following steps:

Let x be this number value.

Let f be Tolnteger(fractionDigits).

If x is NaN, return the string " NaN" .

Let s be the empty string.

If x>0, go to step 8.

Letsbhe"-".

Let x = —x.

If Xx=+co, letm="1nfinity" and go to step 30.

9. If fractionDigitsis undefined, go to step 14.

10. If f<O0or f > 20, throw a RangeError exception.

11. If x =0, go to step 16.

12. Let e and n be integers such that 10" < n < 10™* and for which the exact mathematical value of n x
10%" — x is as close to zero as possible. If there are two such sets of e and n, pick the e and n for
which n x 10" is larger.

13. Go to step 20.

14. If x # 0, go to step 19.

15. Letf=0.

16. Let m be the string consisting of f+1 occurrences of the character ‘0’.

17. Lete=0.

18. Go to step 21.

19. Let e, n, and f be integers such that f = 0, 10" < n < 10™*, the number value for n x 10°" isx, and f
isas small as possible. Note that the decimal representation of n has f+1 digits, n is not divisible
by 10, and the least significant digit of n is not necessarily uniquely determined by these criteria.

20. Let m be the string consisting of the digits of the decimal representation of n (in order, with no
leading zeroes).

21. If f =0, go to step 24.

22. Let a be the first character of m, and let b be the remaining f characters of m.

23. Let m be the concatenation of the three stringsa, " . ", and b.

24. Ife=0,letc="+" andd="0" and go to step 29.

25. If e>0,letc="+" and go to step 28.

26. Letc="-".

27. Lete=-e.

28. Let d be the string consisting of the digits of the decimal representation of e (in order, with no
leading zeroes).

29. Let mbe the concatenation of the four stringsm, " e", c, and d.

30. Return the concatenation of the strings s and m.

Thel engt h property of thet oExponent i al methodis 1.

© N A~ WNE

If the t oExponenti al method is called with more than one argument, then the behaviour is
undefined (see clause 15).

15.7.4.7

- 111 -

An implementation is permitted to extend the behaviour of t oExponential for values of
fractionDigits less than O or greater than 20. In this case t oExponenti al would not necessarily
throw RangeError for such values.

NOTE
For implementations that provide more accurate conversions than required by the rules above, it is
recommended that the following alternative version of step 19 be used as a guideline:

Let e, n, and f be integers such that f >0, 10" < n < 10™*, the number value for n x 10°"isx, and f is
as small as possible. If there are multiple possibilities for n, choose the value of n for which n x 10°
is closest in value to x. If there are two such possible values of n, choose the one that is even.

Number .prototype.toPrecision (precision)

Return a string containing the number represented either in exponential notation with one digit before
the significand's decimal point and precision—1 digits after the significand's decimal point or in fixed
notation with precision significant digits. If precision is undefined, call ToString (9.8.1) instead.
Specifically, perform the following steps:

Let x be this number value.

If precision is undefined, return ToString(x).

Let p be Tolnteger(precision).

If x is NaN, return the string " NaN" .

Let s be the empty string.

If x=0, goto step 9.

Letsbe"-".

Let x = —x.

If x=+00, letm="1nfinity" and go to step 30.

10. If p<1lorp> 21, throw aRangeError exception.

11. If x # 0, go to step 15.

12. Let m be the string consisting of p occurrences of the character ‘0.

13. Lete=0.

14. Go to step 18.

15. Let e and n be integers such that 10°™ < n < 10 and for which the exact mathematical value of n
x 10°P*1 —x is as close to zero as possible. If there are two such sets of e and n, pick the e and n
for which n x 105" jslarger.

16. Let m be the string consisting of the digits of the decimal representation of n (in order, with no
leading zeroes).

17. If e<—6 or e= p, go to step 22.

18. If e = p-1, go to step 30.

19. If e= 0, let m be the concatenation of the first e+1 characters of m, the character ‘. ’, and the
remaining p— (e+1) characters of m and go to step 30.

20. Let m be the concatenation of the string " 0. ", —(e+1) occurrences of the character ‘0’, and the
string m.

21. Go to step 30.

22. Let a be the first character of m, and let b be the remaining p—1 characters of m.

23. Let m be the concatenation of the three stringsa, " . ", and b.

24, 1fe=0,letc="+" andd="0" and go to step 29.

25. Ife>0,letc="+" and go to step 28.

26. Letc="-".

27. Lete=—e.

28. Let d be the string consisting of the digits of the decimal representation of e (in order, with no
leading zeroes).

29. Let m be the concatenation of the four stringsm, " e", ¢, and d.

30. Return the concatenation of the strings s and m.

©ONOO~WNE

Thel engt h property of thet oPr eci si on method is 1.

If thet oPreci si on method is called with more than one argument, then the behaviour is undefined
(see clause 15).

15.7.5

- 112 -

An implementation is permitted to extend the behaviour of t oPreci si on for values of precision
less than 1 or greater than 21. In this case t oPr eci si on would not necessarily throw RangeError
for such values.

Properties of Number Instances
Number instances have no special properties beyond those inherited from the Number prototype object.

15.8 The Math Object
The Math object is a single object that has some named properties, some of which are functions.

The value of the internal [[Prototype]] property of the Math object is the Object prototype object
(15.2.3.1). The value of the internal [[Class]] property of the Math object is" Mat h" .

The Math object does not have a [[Construct]] property; it is not possible to use the Math object as a
constructor with the new operator.

The Math object does not have a [[Call]] property; it is not possible to invoke the Math object as a
function.

NOTE
In this specification, the phrase “ the number value for x” has a technical meaning defined in 8.5.

15.8.1
15.8.1.1

15.8.1.2

15.8.1.3

15.8.1.4

15.8.1.5

15.8.1.6

15.8.1.7

Value Properties of the Math Object

E

The number value for e, the base of the natural logarithms, which is approximately
2.7182818284590452354.

This property has the attributes { DontEnum, DontDelete, ReadOnly }.

LN10

The number value for the natural logarithm of 10, which is approximately 2.302585092994046.
This property has the attributes { DontEnum, DontDelete, ReadOnly }.

LN2

The number value for the natural logarithm of 2, which is approximately 0.6931471805599453.
This property has the attributes { DontEnum, DontDelete, ReadOnly }.

LOG2E

The number value for the base-2 logarithm of e, the base of the natural logarithms; this value is
approximately 1.4426950408889634.

This property has the attributes { DontEnum, DontDelete, ReadOnly }.

NOTE
The value of Mat h. LOG2E is approximately the reciprocal of the value of Mat h. LN2.

LOGI0E

The number value for the base-10 logarithm of e, the base of the natural logarithms; this value is
approximately 0.4342944819032518.

This property has the attributes { DontEnum, DontDelete, ReadOnly }.

NOTE
The value of Mat h. LOGLOE is approximately the reciprocal of the value of Mat h. LN10.

Pl

The number value for 1, the ratio of the circumference of a circle to its diameter, which is
approximately 3.1415926535897932.

This property has the attributes { DontEnum, DontDelete, ReadOnly }.

SQRT1_2
The number value for the square root of 1/2, which is approximately 0.7071067811865476.

15.8.1.8

15.8.2

15.8.2.1

15.8.2.2

15.8.2.3

- 113 -

This property has the attributes { DontEnum, DontDelete, ReadOnly }.

NOTE
The value of Mat h. SQRT1_2 is approximately the reciprocal of the value of Mat h. SQRT2.

SQRT2
The number value for the square root of 2, which is approximately 1.4142135623730951.

This property has the attributes { DontEnum, DontDelete, ReadOnly }.

Function Properties of the Math Object

Every function listed in this section applies the ToNumber operator to each of its arguments (in left-to-
right order if there is more than one) and then performs a computation on the resulting number value(s).

In the function descriptions below, the symbols NaN, -0, +0, —c and + refer to the number values
described in 8.5.

NOTE

The behaviour of the functions acos, asi n, at an, at an2, cos, exp, | og, pow, sin, and sqgrt is
not precisely specified here except to require specific results for certain argument values that represent
boundary cases of interest. For other argument values, these functions are intended to compute
approximations to the results of familiar mathematical functions, but some latitude is allowed in the
choice of approximation algorithms. The general intent is that an implementer should be able to use the
same mathematical library for ECMAScript on a given hardware platform that is available to C
programmers on that platform.

Although the choice of algorithms is left to the implementation, it is recommended (but not specified by
this standard) that implementations use the approximation algorithms for IEEE 754 arithmetic
contained in f dl i bm the freely distributable mathematical library from Sun Microsystems (f dl i bm
conment @unpr 0. eng. sun. con) . This specification also requires specific results for certain
argument values that represent boundary cases of interest

abs (x)

Returns the absolute value of x; the result has the same magnitude as x but has positive sign.
o If xisNaN, theresultis NaN.

o If xis—0, theresult is +0.

o If xis—oo, theresultis +co.

acos (x)
Returns an implementation-dependent approximation to the arc cosine of x. The result is expressed in
radians and ranges from +0 to +Tt.

o If xis NaN, theresult is NaN.

e If xisgreater than 1, the result is NaN.
» If xislessthan -1, theresult is NaN.
* If xisexactly 1, theresult is +0.

asin (x)

Returns an implementation-dependent approximation to the arc sine of x. The result is expressed in
radians and ranges from —1v2 to +17/2.

o If xisNaN, the result is NaN.

o If xisgreater than 1, the result is NaN.

e If xislessthan —1, the result is NaN.

e If xis+0, theresult is +0.

o If xis -0, theresult is -0.

- 114 -

15.8.2.4 atan (x)

Returns an implementation-dependent approximation to the arc tangent of x. The result is expressed in
radians and ranges from —1v2 to +17/2.

o If xisNaN, theresult is NaN.

e If xis+0, theresult is +0.

e If xis -0, theresultis -0.

e If xis+eo, the result is an implementati on-dependent approximation to +1v/2.
e If xis—oo, the result is an implementation-dependent approximation to —1v2.

15.8.2.5 atan2 (y, x)

Returns an implementation-dependent approximation to the arc tangent of the quotient y/ x of the
arguments y and x, where the signs of y and x are used to determine the quadrant of the result. Note
that it is intentional and traditional for the two-argument arc tangent function that the argument named
y be first and the argument named X be second. The result is expressed in radians and ranges from -1t
to +1L

« If either x or y is NaN, the result is NaN.

e If y>0 and x is +0, the result is an implementation-dependent approximation to +17/2.

e If y>0 and x is -0, the result is an implementation-dependent approximation to +1v2.

e If yis+0 and x>0, the result is +0.

e Ifyis+0and xis+0, the result is +0.

e If yis+0and x is -0, the result is an implementation-dependent approximation to +7t.

e If yis+0 and x<0, the result is an implementation-dependent approximation to +Tt.

e If yis-0and x>0, the result is -0.

e Ifyis—-0and xis+0, the result is -0.

e If yis—-0and x is -0, the result is an implementation-dependent approximation to —Tt.

e If yis -0 and x<0, the result is an implementati on-dependent approximation to —Tt.

* If y<0and x is +0, the result is an implementation-dependent approximation to —1v2.

e If y<0 and x is -0, the result is an implementation-dependent approximation to —172.

e If y>0andyisfiniteand x is +o, the result is +0.

e If y>0andy isfinite and x is —o, the result if an implementation-dependent approximation to +Tt.
e If y<Oandyisfiniteand x is +, the result is —0.

e If y<Oandyisfinite and x is —, the result is an implementation-dependent approximation to -1t
e If yis+o and x is finite, the result is an implementation-dependent approximation to +172.
e If yis—o and x isfinite, the result is an implementation-dependent approximation to —172.
e If yis+c and x is +oo, the result is an implementation-dependent approximation to +17/4.

e If yis+o and X is —o, the result is an implementation-dependent approximation to +317/4.
e If yis—o and X is +o, the result is an implementation-dependent approximation to -174.

e If yis—o and x is —oo, the result is an implementation-dependent approximation to —3174.

15.8.2.6 ceil (x)
Returns the smallest (closest to —e) number value that is not less than x and is equal to a mathematical
integer. If x is already an integer, the result is x.
e If xisNaN, the result is NaN.
e If xis+0, theresult is +0.
e If xis -0, theresultis-0.
o If Xis+oo, theresult is +co.
e |f Xis—oo, theresult is —oo,
e If xislessthan O but greater than - 1, the result is —0.

15.8.2.7

15.8.2.8

15.8.2.9

15.8.2.10

15.8.2.11

- 115 -

Thevalue of Mat h. cei | (x) isthe same asthe value of - Mat h. f| oor (- x) .

cos (x)

Returns an implementation-dependent approximation to the cosine of x. The argument is expressed in
radians.

» If xisNaN, theresultis NaN.

o If Xis+0, theresultis 1.

e If xis-0, theresultis 1.

o If xis+oo, theresult is NaN.

o If Xis—oo, theresultis NaN.

exp (x)

Returns an implementation-dependent approximation to the exponential function of x (e raised to the
power of X, where e is the base of the natural logarithms).

» If xis NaN, theresult is NaN.

* If Xis+0, theresultis 1.

* If xis—0, theresultis 1.

e |f Xis+w, theresult is +w.

o If xis—oo, theresult is +0.

floor (x)

Returns the greatest (closest to +c) number value that is not greater than x and is equal to a
mathematical integer. If x is already an integer, the result is x.

o If xis NaN, theresult is NaN.

* If Xis+0, theresultis+0.

* If xis—0, theresult is -0.

e |f Xis+w, theresult is +w.

o If xXis—oo, theresultis —co.

e If xisgreater than O but lessthan 1, theresult is +0.

NOTE
The value of Mat h. f | oor (x) isthe same as the value of - Mat h. cei | (-Xx).

log (x)

Returns an implementation-dependent approximation to the natural logarithm of x.
e If xisNaN, the result is NaN.

e If xislessthan O, the result is NaN.

e If xis+0or -0, the result is —oo,

e If xis 1, theresultis+0.

e If Xis+co, theresult is +oo,

max ([valuel[,value2[,...111)

Given zero or more arguments, calls ToNumber on each of the arguments and returns the largest of
the resulting values.

» If no arguments are given, the result is —co.

e If any valueis NaN, the result is NaN.

e The comparison of values to determine the largest value is done as in 11.8.5 except that +0 is
considered to be larger than 0.

Thel engt h property of the max method is 2.

15.8.2.12

15.8.2.13

15.8.2.14

15.8.2.15

- 116 -

min ([valuel[,value2[,...]11)

Given zero or more arguments, calls ToNumber on each of the arguments and returns the smallest of
the resulting values.

* If no arguments are given, the result is +oo.
e If any valueis NaN, the result is NaN.

e The comparison of values to determine the smallest value is done as in 11.8.5 except that +0 is
considered to be larger than —0.

Thel engt h property of the mi n method is 2.

pow (X, y)

Returns an implementation-dependent approximation to the result of raising x to the power y.
e If yisNaN, theresult is NaN.

e Ifyis+0, theresultis 1, evenif x is NaN.

e Ifyis—0, theresultis1, evenif x is NaN.

» If xisNaN and y is nonzero, the result is NaN.

o If abs(x)>1 andyis +ow, the result is +co.

e If abs(x)>1 andyis—o, theresult is +0.

e If abs(x)==1and y is +oo, the result is NaN.

o If abs(x)==1andy is —o, theresult is NaN.

o If abs(x)<landyis +w, the result is +0.

e If abs(x)<landyis—o, theresult is +co.

e If xis+o and y>0, theresult is +co.

e If xis+o and y<0, the result is +0.

e If xis—o and y>0 and y is an odd integer, the result is —co.

e If xis—o and y>0 and y is not an odd integer, the result is +o.
e If xis—o and y<0 and y is an odd integer, the result is —0.

e If xis—e and y<0 and y is not an odd integer, the result is +0.
e If xis+0 and y>0, the result is +0.

e If xis+0 and y<0, theresult is +co.

e If xis-0and y>0 and y is an odd integer, the result is —0.

e If xis—-0and y>0 and y is not an odd integer, the result is +0.
e If xis—-0and y<0 and y is an odd integer, the result is —co.

e If xis—0and y<0 and y is not an odd integer, the result is +o.
e If x<0 and x isfinite and y isfinite and y is not an integer, the result is NaN.

random ()

Returns a number value with positive sign, greater than or equal to 0 but less than 1, chosen randomly
or pseudo randomly with approximately uniform distribution over that range, using an
implementation-dependent algorithm or strategy. This function takes no arguments.

round (x)

Returns the number value that is closest to x and is equal to a mathematical integer. If two integer
number values are equally close to x, then the result is the number value that is closer to +w. If X is
already an integer, the result is x.

e If xis NaN, the result is NaN.

e If xis+0, theresult is +0.

e If xis -0, theresult is -0.

e |f Xis+o, theresult is +o.

- 117 -

e If Xis—oo, theresult is —co.
e If xisgreater than O but lessthan 0. 5, the result is +0.
e If xislessthan O but greater than or equal to - 0. 5, the result is 0.

NOTE 1
Math.round(3.5) returns 4, but Math.round(-3.5) returns —3.

NOTE 2
The value of Mat h. r ound(x) isthe same as the value of Mat h. f | oor (x+0. 5) , except when x is

-0 or isless than O but greater than or equal to - 0. 5; for these cases Mat h. r ound(x) returns -0,
but Mat h. f| oor (x+0. 5) returns +0.

15.8.2.16 sin (x)

Returns an implementation-dependent approximation to the sine of x. The argument is expressed in
radians.

o If xis NaN, the result is NaN.

e If xis+0, theresultis+0.

* If xis—0, theresult is -0.

e |f Xis+ow or —oo, theresult is NaN.

15.8.2.17 sgrt (x)

Returns an implementation-dependent approximation to the square root of x.

e If xisNaN, the result is NaN.

e If xlessthan O, the result is NaN.
e If Xis+0, theresult is +0.

» If xis -0, theresult is -0.

e If Xis+co, theresult is +oo,

15.8.2.18 tan (x)

Returns an implementation-dependent approximation to the tangent of x. The argument is expressed in
radians.

o If xisNaN, theresult is NaN.

* If Xis+0, theresultis+0.

* If xis—0, theresult is -0.

e |f Xis+ow or —oo, theresult is NaN.

15.9 Date Objects

15.9.1

15.9.1.1

Overview of Date Objects and Definitions of Internal Operators

A Date object contains a number indicating a particular instant in time to within a millisecond. The
number may also be NaN, indicating that the Date object does not represent a specific instant of time.

The following sections define a number of functions for operating on time values. Note that, in every
case, if any argument to such a function is NaN, the result will be NaN.

Time Range

Time is measured in ECMAScript in milliseconds since 01 January, 1970 UTC. Leap seconds are
ignored. It is assumed that there are exactly 86,400,000 milliseconds per day. ECMA Script number
values can represent all integers from —9,007,199,254,740,991 to 9,007,199,254,740,991; this range
suffices to measure times to millisecond precision for any instant that is within approximately 285,616
years, either forward or backward, from 01 January, 1970 UTC.

The actual range of times supported by ECMAScript Date objects is slightly smaller: exactly —
100,000,000 days to 100,000,000 days measured relative to midnight at the beginning of 01 January,

15.9.1.2

15.9.1.3

15.9.1.4

- 118 -

1970 UTC. This gives a range of 8,640,000,000,000,000 milliseconds to either side of 01 January,
1970 UTC.

The exact moment of midnight at the beginning of 01 January, 1970 UTC is represented by the value
+0.

Day Number and Time within Day
A given time value t belongs to day number
Day(t) = floor(t / msPerDay)
where the number of milliseconds per day is
msPerDay = 86400000
The remainder is called the time within the day:
TimeWithinDay(t) = t modulo msPerDay
Year Number
ECMAScript uses an extrapolated Gregorian system to map a day number to a year number and to
determine the month and date within that year. In this system, leap years are precisely those which are
(divisible by 4) and ((not divisible by 100) or (divisible by 400)). The number of days in year number
y is therefore defined by
DaysinYear(y) =365 if (ymodulo4)#0
=366 if (y modulo 4) =0 and (y modulo 100) # 0
=365 if (y modulo 100) = 0 and (y modulo 400) # 0
=366 if (y modulo 400) =0
All non-leap years have 365 days with the usual number of days per month and leap years have an
extraday in February. The day number of the first day of year y is given by:
DayFromY ear(y) = 365 x (y—1970) + floor((y—1969)/4) — floor((y-1901)/100) + floor((y—1601)/400)
The time value of the start of ayear is:
TimeFromY ear(y) = msPerDay x DayFromY ear(y)
A time value determines a year by:
YearFromTime(t) = thelargest integer y (closest to positive infinity) such that TimeFromY ear(y) <t
The leap-year function is 1 for atime within aleap year and otherwise is zero:
InLeapY ear(t) =0 if DaysInY ear(Y earFromTime(t)) = 365
=1 if DaysinYear(YearFromTime(t)) = 366
Month Number
Months are identified by an integer in the range 0 to 11, inclusive. The mapping MonthFromTime(t)
from atime value t to a month number is defined by:
MonthFromTime(t) =0 if 0 < DayWithinY ear(t) < 31
=1 if 31 < DayWithinY ear (t) < 59+InLeapY ear(t)
=2 if 59+InLeapY ear(t) < DayWithinY ear (t) < 90+InLeapY ear(t)
=3 if 90+InLeapY ear(t) < DayWithinY ear (t) < 120+InLeapY ear(t)
= if 120+InLeapY ear(t) < DayWithinYear (t) < 151+InLeapY ear(t)
= if 151+InLeapY ear(t) < DayWithinY ear (t) < 181+InLeapY ear(t)
= if 181+InLeapY ear(t) < DayWithinYear (t) < 212+InLeapY ear(t)
=7 if 212+InLeapY ear(t) < DayWithinY ear (t) < 243+InLeapY ear(t)

=8 if 243+InLeapY ear(t) < DayWithinYear (t) < 273+InLeapY ear(t)

15.9.1.5

15.9.1.6

15.9.1.8

15.9.1.9

- 119 -

=9 if 273+InLeapY ear(t) < DayWithinY ear (t) < 304+InLeapY ear(t)
=10 if 304+InLeapY ear(t) < DayWithinY ear (t) < 334+InLeapY ear(t)
=11 if 334+InLeapY ear(t) < DayWithinY ear (t) < 365+InLeapY ear(t)

where

DayWithinY ear(t) = Day(t)-DayFromY ear(Y earFromTime(t))

A month value of 0 specifies January; 1 specifies February; 2 specifies March; 3 specifies April;
4 specifies May; 5 specifies June; 6 specifies July; 7 specifies August; 8 specifies September; 9
specifies October; 10 specifies November; and 11 specifies December. Note that MonthFromTime(0)
= 0, corresponding to Thursday, 01 January, 1970.

Date Number

A date number is identified by an integer in the range 1 through 31, inclusive. The mapping
DateFromTime(t) from a time value t to a month number is defined by:

DateFromTime(t) = DayWithinY ear(t)+1 if MonthFromTime(t)=0
= DayWithinY ear(t)-30 if MonthFromTime(t)=1
= DayWithinY ear(t)-58—-InLeapY ear(t) if MonthFromTime(t)=2
= DayWithinY ear(t)—89—-InL eapY ear(t) if MonthFromTime(t)=3
= DayWithinY ear(t)-119-InLeapY ear(t) if MonthFromTime(t)=4
= DayWithinY ear(t)—150-InL eapY ear(t) if MonthFromTime(t)=5
= DayWithinY ear(t)—180-InLeapY ear(t) if MonthFromTime(t)=6
= DayWithinY ear(t)—211-InL eapY ear(t) if MonthFromTime(t)=7
= DayWithinY ear(t)—242-InL eapY ear(t) if MonthFromTime(t)=8
= DayWithinY ear(t)—272-InLeapY ear(t) if MonthFromTime(t)=9
= DayWithinY ear(t)—303-InLeapY ear(t) if MonthFromTime(t)=10
= DayWithinY ear(t)—333-InLeapY ear(t) if MonthFromTime(t)=11

Week Day

The weekday for a particular time value t is defined as

WeekDay(t) = (Day(t) + 4) modulo 7

A weekday value of O specifies Sunday; 1 specifies Monday; 2 specifies Tuesday; 3 specifies
Wednesday; 4 specifies Thursday; 5 specifies Friday; and 6 specifies Saturday. Note that WeekDay(0)
= 4, corresponding to Thursday, 01 January, 1970.

Local Time Zone Adjustment

An implementation of ECMA Script is expected to determine the local time zone adjustment. The local
time zone adjustment is a value LocalTZA measured in milliseconds which when added to UTC
represents the local standard time. Daylight saving time is not reflected by LocaTZA. The value
Local TZA does not vary with time but depends only on the geographic location.

Daylight Saving Time Adjustment

An implementation of ECMAScript is expected to determine the daylight saving time algorithm. The
algorithm to determine the daylight saving time adjustment DaylightSavingTA(t), measured in
milliseconds, must depend only on four things:

(1) the time since the beginning of the year

t — TimeFromY ear(Y earFromTime(t))
(2) whether tisin aleap year

InLeapY ear(t)
(3) the week day of the beginning of the year

WeekDay/(TimeFromY ear(Y earFromTime(t))

15.9.1.9

15.9.1.10

15.9.1.11

15.9.1.12

- 120 -

and (4) the geographic location.

The implementation of ECMA Script should not try to determine whether the exact time was subject to
daylight saving time, but just whether daylight saving time would have been in effect if the current
daylight saving time algorithm had been used at the time. This avoids complications such as taking
into account the years that the locale observed daylight saving time year round.

If the host environment provides functionality for determining daylight saving time, the
implementation of ECMAScript is free to map the year in question to an equivalent year (same leap-
year-ness and same starting week day for the year) for which the host environment provides daylight
saving time information. The only restriction is that all equivalent years should produce the same
result.

Local Time
Conversion from UTC to local time is defined by

Local Time(t) =t + Loca TZA + DaylightSavingTA(t)

Conversion from local time to UTC is defined by

UTC(t) =t —Loca TZA — DaylightSavingTA(t — Loca TZA)
Note that UTC(Local Time(t)) is not necessarily always equal to t.

Hours, Minutes, Second, and Milliseconds
The following functions are useful in decomposing time values:

HourFromTime(t) = floor(t / msPerHour) modulo HoursPerDay
MinFromTime(t) = floor(t / msPerMinute) modulo MinutesPerHour
SecFromTime(t) = floor(t / msPerSecond) modulo SecondsPerMinute
msFromTime(t) = t modulo msPerSecond

where
HoursPerDay = 24
MinutesPerHour = 60
SecondsPerMinute = 60
msPerSecond = 1000
msPerMinute = msPerSecond x SecondsPerMinute = 60000
msPerHour = msPerMinute x MinutesPerHour = 3600000

MakeTime (hour, min, sec, ms)

The operator MakeTime calculates a number of milliseconds from its four arguments, which must be
ECMA Script number values. This operator functions as follows:

If hour is not finite or min is not finite or sec is not finite or msis not finite, return NaN.
Call Tolnteger(hour).

Call Tolnteger(min).

Call Tolnteger(sec).

Call Tolnteger(ms).

Compute Result(2) * msPerHour + Result(3) * msPerMinute + Result(4) * msPerSecond +
Result(5), performing the arithmetic according to |EEE 754 rules (that is, as if using the
ECMAScript operators * and +).

7. Return Result(6).

ok wnpE

MakeDay (year, month, date)

The operator MakeDay calculates a number of days from its three arguments, which must be
ECMA Script number values. This operator functions as follows:

15.9.1.13

15.9.1.14

- 121 -

If year is not finite or month is not finite or date is not finite, return NaN.

Call Tolnteger(year).

Call Tolnteger(month).

Call Tolnteger(date).

Compute Result(2) + floor(Result(3)/12).

Compute Result(3) modulo 12.

Find avaluet such that Y earFromTime(t) == Result(5) and MonthFromTime(t) == Result(6) and
DateFromTime(t) == 1; but if thisis not possible (because some argument is out of range), return
NaN.

8. Compute Day(Result(7)) + Result(4) - 1.

9. Return Result(8).

NogMwWNE

MakeDate (day, time)

The operator MakeDate calculates a number of milliseconds from its two arguments, which must be
ECMA Script number values. This operator functions as follows:;

1. If dayisnot finite or timeis not finite, return NaN.
2. Compute day x msPerDay + time.
3. Return Result(2).

TimeClip (time)

The operator TimeClip calculates a number of milliseconds from its argument, which must be an
ECMAScript number value. This operator functions as follows:

1. If timeisnot finite, return NaN.

2. If abs(Result(1)) > 8.64 x 10", return NaN.

3. Return an implementation-dependent choice of either Tolnteger(Result(2)) or
Tolnteger(Result(2)) + (+0).
(Adding a positive zero converts —0 to +0.)

NOTE

The point of step 3 is that an implementation is permitted a choice of internal representations of time
values, for example as a 64-bit signed integer or as a 64-bit floating-point value. Depending on the
implementation, this internal representation may or may not distinguish =0 and +0.

15.9.2 The Date Constructor Called as a Function

When Dat e is called as a function rather than as a constructor, it returns a string representing the
current time (UTC).

NOTE
The function call Dat e(..) is not equivalent to the object creation expression new Dat e(..) with the
same arguments.

15.9.2.1

Date ([year [, month [, date[, hours [, minutes|[, seconds[,ms]]11111)

All of the arguments are optional; any arguments supplied are accepted but are completely ignored. A
string is created and returned as if by the expression (new Date()).toString().

15.9.3 The Date Constructor

When Dat e is called as part of a new expression, it is a constructor: it initialises the newly created
object.

15.9.3.1

new Date (year, month [, date [, hours[, minutes[, seconds[, ms]]11]11)

When Date is called with two to seven arguments, it computes the date from year, month, and
(optionally) date, hours, minutes, seconds and ms.

The [[Prototype]] property of the newly constructed object is set to the original Date prototype object,
the one that is the initial value of Dat e. pr ot ot ype (15.9.4.1).

The [[Class]] property of the newly constructed object is set to " Dat e" .

15.9.3.2

15.9.3.3

15.9.4

15.94.1

15.9.4.2

- 122 -

The [[Value]] property of the newly constructed object is set as follows:

Call ToNumber(year).

Call ToNumber(month).

If date is supplied use ToNumber(date); else use 1.

If hoursis supplied use ToNumber(hours); else use 0.

If minutes is supplied use ToNumber(minutes); else use 0.

If seconds is supplied use ToNumber(seconds); else use 0.

If msis supplied use ToNumber(ms); else use 0.

If Result(1) is not NaN and O < Tolnteger(Result(1)) < 99, Result(8) is
1900+Tol nteger(Result(1)); otherwise, Result(8) is Result(1).

9. Compute MakeDay(Result(8), Result(2), Result(3)).

10. Compute MakeTime(Result(4), Result(5), Result(6), Result(7)).

11. Compute MakeDate(Result(9), Result(10)).

12. Set the [[Valug]] property of the newly constructed object to TimeClip(UTC(Result(11))).

©NoTgALNE

new Date (value)

The [[Prototype]] property of the newly constructed object is set to the original Date prototype object,
the one that is the initial value of Dat e. pr ot ot ype (15.9.4.1).

The [[Class]] property of the newly constructed object is set to " Dat e" .
The [[Value]] property of the newly constructed object is set as follows:

Call ToPrimitive(value).

If Type(Result(1)) is String, then go to step 5.

Let V be ToNumber(Result(1)).

Set the [[Value]] property of the newly constructed object to TimeClip(V) and return.

Parse Result(1) as a date, in exactly the same manner as for the par se method (15.9.4.2); let V
be the time value for this date.

6. Go to step 4.

ogrwNE

new Date ()

The [[Prototype]] property of the newly constructed object is set to the original Date prototype object,
the one that is the initial value of Dat e. pr ot ot ype (15.9.4.1).

The [[Class]] property of the newly constructed object is set to " Dat e" .

The [[Value]] property of the newly constructed object is set to the current time (UTC).

Properties of the Date Constructor
The value of the internal [[Prototype]] property of the Date constructor is the Function prototype object
(15.3.4).

Besides the internal properties and the | engt h property (whose value is 7), the Date constructor has
the following properties:

Date.prototype
The initial value of Dat e. pr ot ot ype isthe built-in Date prototype object (15.9.5).

This property has the attributes { DontEnum, DontDelete, ReadOnly }.

Date.parse (string)

The par se function applies the ToString operator to its argument and interprets the resulting string
as a date; it returns a number, the UTC time value corresponding to the date. The string may be
interpreted as a local time, a UTC time, or a time in some other time zone, depending on the contents
of the string.

If x is any Date object whose milliseconds amount is zero within a particular implementation of
ECMAScript, then all of the following expressions should produce the same numeric value in that
implementation, if all the properties referenced have their initial values;

x.val ueCOr ()

15.9.4.3

15.9.5

15.9.5.1

15.9.5.2

- 123 -

Dat e. parse(x.toString())
Dat e. parse(x.toUTCString())

However, the expression
Dat e. parse(x.toLocal eString())

is not required to produce the same number value as the preceding three expressions and, in general,
the value produced by Dat e. par se is implementation-dependent when given any string value that
could not be produced in that implementation by thet oSt ri ng or t oUTCSt r i ng method.

Date.UTC (year, month [, date [, hours[, minutes[, seconds[, ms]]]11)

When the UTC function is called with fewer than two arguments, the behaviour is implementation-
dependent. When the UTC function is called with two to seven arguments, it computes the date from
year, month and (optionally) date, hours, minutes, seconds and ms. The following steps are taken:

Call ToNumber(year).

Call ToNumber(month).

If date is supplied use ToNumber(date); else use 1.

If hoursis supplied use ToNumber(hours); else use 0.

If minutes is supplied use ToNumber(minutes); else use 0.

If seconds is supplied use ToNumber(seconds); else use 0.

If msis supplied use ToNumber(ms); else use 0.

If Result(1) is not NaN and O < Tolnteger(Result(1)) < 99, Result(8) is
1900+Tol nteger(Result(1)); otherwise, Result(8) is Result(1).
9. Compute MakeDay(Result(8), Result(2), Result(3)).

10. Compute MakeTime(Result(4), Result(5), Result(6), Result(7)).
11. Return TimeClip(MakeDate(Result(9), Result(10))).

©NogrMLODE

Thel engt h property of the UTC function is 7.

NOTE
The UTC function differs from the Date constructor in two ways: it returns a time value as a number,
rather than creating a Date object, and it interprets the arguments in UTC rather than as local time.

Properties of the Date Prototype Object
The Date prototype object isitself a Date object (its[[Class]] is" Dat e") whose value is NaN.

The value of the internal [[Prototype]] property of the Date prototype object is the Object prototype
object (15.2.3.1).

In following descriptions of functions that are properties of the Date prototype object, the phrase “this
Date object” refers to the object that is the this value for the invocation of the function. None of these
functions are generic; a TypeError exception is thrown if the this value is not an object for which the
value of the internal [[Class]] property is " Dat e". Also, the phrase “this time value” refers to the
number value for the time represented by this Date object, that is, the value of the internal [[Value]]
property of this Date object.

Date.prototype.constructor
The initial value of Dat e. pr ot ot ype. const ruct or isthe built-in Dat e constructor.

Date.prototype.toString ()
This function returns a string value. The contents of the string are implementation-dependent, but are
intended to represent the Date in the current time zone in a convenient, human-readable form.

NOTE
It is intended that for any Date value d, the result of
Dat e. prototype. parse(d.toString()) (15.9.4.2) isequal tod.

15.9.5.3

15.9.5.4

15.9.5.5

15.9.5.6

15.9.5.7

15.9.5.8

15.9.5.9

15.9.5.10

15.9.5.11

15.9.5.12

- 124 -

Date.prototype.toDateString ()

This function returns a string value. The contents of the string are implementation-dependent, but are
intended to represent the “date” portion of the Date in the current time zone in a convenient, human-
readable form.

Date.prototype.toTimeString ()

This function returns a string value. The contents of the string are implementation-dependent, but are
intended to represent the “time” portion of the Date in the current time zone in a convenient, human-
readable form.

Date.prototype.toL ocaleString ()

This function returns a string value. The contents of the string are implementation-dependent, but are
intended to represent the Date in the current time zone in a convenient, human-readable form that
corresponds to the conventions of the host environment’s current locale.

NOTE
The first parameter to this function is likely to be used in a future version of this standard; it is
recommended that implementations do not use this parameter position for anything else.

Date.prototype.toL ocaleDateString ()

This function returns a string value. The contents of the string are implementation-dependent, but are
intended to represent the “date” portion of the Date in the current time zone in a convenient, human-
readable form that corresponds to the conventions of the host environment’s current locale.

NOTE
The first parameter to this function is likely to be used in a future version of this standard; it is
recommended that implementations do not use this parameter position for anything else.

Date.prototype.toLocaleTimeString ()

This function returns a string value. The contents of the string are implementation-dependent, but are
intended to represent the “time” portion of the Date in the current time zone in a convenient, human-
readable form that corresponds to the conventions of the host environment’s current locale.

NOTE
The first parameter to this function is likely to be used in a future version of this standard; it is
recommended that implementations do not use this parameter position for anything else.

Date.prototype.valueOf ()
Theval ueOF function returns a number, which is this time value.

Date.prototype.getTime ()

1. If thethisvalueis not an object whose [[Class]] property is" Dat ", throw a TypeError
exception.
2. Return thistime value.

Date.prototype.getFullYear ()

1. Lett bethistime value.
2. If tisNaN, return NaN.
3. Return YearFromTime(Local Time(t)).

Date.prototype.getUTCFullYear ()

1. Lett bethistimevalue.
2. If tisNaN, return NaN.
3. Return YearFromTime(t).

Date.prototype.getMonth ()
1. Lett bethistime value.

2. If tisNaN, return NaN.
3. Return MonthFromTime(L ocal Time(t)).

15.9.5.13

15.9.5.14

15.9.5.15

15.9.5.16

15.9.5.17

15.9.5.18

15.9.5.19

15.9.5.20

15.9.5.21

15.9.5.22

15.9.5.23

- 125 -

Date.prototype.getUTCMonth ()

1. Lett bethistime value.
2. If tis NaN, return NaN.
3. Return MonthFromTime(t).

Date.prototype.getDate ()

1. Lett bethistime value.
2. If tisNaN, return NaN.
3. Return DateFromTime(L ocal Time(t)).

Date.prototype.getUTCDate ()

1. Lett bethistime value.
2. If tisNaN, return NaN.
3. Return DateFromTime(t).

Date.prototype.getDay ()

1. Lett bethistime value.
2. If tis NaN, return NaN.
3. Return WeekDay(Local Time(t)).

Date.prototype.getUTCDay ()

1. Lett bethistime value.
2. If tis NaN, return NaN.
3. Return WeekDay(t).

Date.prototype.getHours ()

1. Lett bethistimevalue.
2. If tisNaN, return NaN.
3. Return HourFromTime(Local Time(t)).

Date.prototype.getUTCHours ()

1. Lett bethistime value.
2. If tisNaN, return NaN.
3. Return HourFromTime(t).

Date.prototype.getMinutes ()

1. Lett bethistime value.
2. If tis NaN, return NaN.
3. Return MinFromTime(Local Time(t)).

Date.prototype.getUTCMinutes ()

1. Lett bethistime value.
2. If tis NaN, return NaN.
3. Return MinFromTime(t).

Date.prototype.getSeconds ()

1. Lett bethistimevalue.
2. If tisNaN, return NaN.
3. Return SecFromTime(L ocal Time(t)).

Date.prototype.getUT CSeconds ()

1. Lett bethistime value.
2. If tisNaN, return NaN.
3. Return SecFromTime(t).

15.9.5.24

15.9.5.25

15.9.5.26

15.9.5.27

15.9.5.28

15.9.5.29

15.9.5.30

15.9.5.31

- 126 -

Date.prototype.getMilliseconds ()
1. Lettbethistimevalue.

2. If tisNaN, return NaN.
3. Return msFromTime(Local Time(t)).

Date.prototype.getUTCMilliseconds ()

1. Lett bethistimevalue.
2. If tisNaN, return NaN.
3. Return msFromTime(t).

Date.prototype.getTimezoneOffset ()
Returns the difference between local time and UTC time in minutes.

1. Lett bethistimevalue.
2. If tisNaN, return NaN.
3. Return (t — Local Time(t)) / msPerMinute.

Date.prototype.setTime (time)

If the this value is not a Date object, throw a TypeError exception.
Call ToNumber(time).

Call TimeClip(Result(1)).

Set the [[Value]] property of the this value to Result(2).

Return the value of the [[Value]] property of the this value.

SHE S

Date.prototype.setMilliseconds (ms)

Let t be the result of Local Time(this time value).

Call ToNumber(ms).

Compute MakeTime(HourFromTime(t), MinFromTime(t), SecFromTime(t), Result(2)).
Compute UTC(MakeDate(Day(t), Result(3))).

Set the [[Value]] property of the this value to TimeClip(Result(4)).

Return the value of the [[Value]] property of the this value.

ok~ wNE

Date.prototype.setUTCMilliseconds (ms)

Let t be this time value.

Call ToNumber(ms).

Compute MakeTime(HourFromTime(t), MinFromTime(t), SecFromTime(t), Result(2)).
Compute MakeDate(Day(t), Result(3)).

Set the [[Value]] property of the this value to TimeClip(Result(4)).

Return the value of the [[Value]] property of the this value.

oA~ wWNE

Date.prototype.setSeconds (sec [, ms])
If msis not specified, this behaves as if ms were specified with the value getMilliseconds().

Let t be the result of Local Time(this time value).

Call ToNumber(sec).

If msis not specified, compute msFromTime(t); otherwise, call ToNumber(ms).
Compute MakeTime(HourFromTime(t), MinFromTime(t), Result(2), Result(3)).
Compute UTC(MakeDate(Day(t), Result(4))).

Set the [[Value]] property of the this value to TimeClip(Result(5)).

Return the value of the [[Value]] property of the this value.

NookrwdhE

Thel engt h property of the set Seconds method is 2.

Date.prototype.setUT CSeconds (sec [, ms])
If msis not specified, this behaves as if ms were specified with the value getUTCMilliseconds().

1. Lett bethistimevalue.
2. Call ToNumber(sec).

15.9.5.33

15.9.5.34

15.9.5.35

15.9.5.36

- 127 -

If msis not specified, compute msFromTime(t); otherwise, call ToNumber(ms).
Compute MakeTime(HourFromTime(t), MinFromTime(t), Result(2), Result(3)).
Compute MakeDate(Day(t), Result(4)).

Set the [[Value]] property of the this value to TimeClip(Result(5)).

Return the value of the [[Value]] property of the this value.

No ok w

Thel engt h property of the set UTCSeconds method is 2.

Date.prototype.setMinutes (min [, sec[, ms]])
If sec is not specified, this behaves as if sec were specified with the value getSeconds().

If msis not specified, this behaves as if ms were specified with the value getMilliseconds().

Let t be the result of Local Time(this time value).

Call ToNumber(min).

If sec is not specified, compute SecFromTime(t); otherwise, call ToNumber(sec).
If msis not specified, compute msFromTime(t); otherwise, call ToNumber(ms).
Compute MakeTime(HourFromTime(t), Result(2), Result(3), Result(4)).
Compute UTC(MakeDate(Day(t), Result(5))).

Set the [[Value]] property of the this value to TimeClip(Result(6)).

Return the value of the [[Value]] property of the this value.

N~ WNE

Thel engt h property of the set M nut es method is 3.

Date.prototype.setUTCMinutes (min [, sec[, ms]])
If sec is not specified, this behaves as if sec were specified with the value getUTCSeconds().

If msis not specified, this behaves as if ms were specified with the value getUTCM illiseconds().

Let t be thistime value.

Call ToNumber(min).

If sec is not specified, compute SecFromTime(t); otherwise, call ToNumber(sec).
If msis not specified, compute msFromTime(t); otherwise, call ToNumber(ms).
Compute MakeTime(HourFromTime(t), Result(2), Result(3), Result(4)).
Compute MakeDate(Day(t), Result(5)).

Set the [[Value]] property of the this value to TimeClip(Result(6)).

Return the value of the [[Value]] property of the this value.

N>~ WNE

Thel engt h property of the set UTCM nut es method is 3.

Date.prototype.setHours (hour [, min [, sec[, ms]]])
If minis not specified, this behaves as if min were specified with the value getMinutes().

If sec is not specified, this behaves as if sec were specified with the value getSeconds().
If msis not specified, this behaves as if ms were specified with the value getMilliseconds().

Let t be the result of Local Time(this time value).

Call ToNumber(hour).

If minis not specified, compute MinFromTime(t); otherwise, call ToNumber(min).
If sec is not specified, compute SecFromTime(t); otherwise, call ToNumber(sec).
If msis not specified, compute msFromTime(t); otherwise, call ToNumber(ms).
Compute MakeTime(Result(2), Result(3), Result(4), Result(5)).

Compute UTC(MakeDate(Day(t), Result(6))).

Set the [[Value]] property of the this value to TimeClip(Result(7)).

Return the value of the [[Value]] property of the this value.

©CoOoNOA~AWNE

Thel engt h property of the set Hour s method is 4.

Date.prototype.setUTCHours (hour [, min[,sec[, ms]]])
If min is not specified, this behaves as if min were specified with the value getUTCMinutes().

15.9.5.36

15.9.5.37

15.9.5.38

15.9.5.39

15.9.5.40

- 128 -

If sec is not specified, this behaves as if sec were specified with the value getUTCSeconds().
If msis not specified, this behaves as if ms were specified with the value getUTCMilliseconds().

Let t be thistime value.

Call ToNumber(hour).

If minis not specified, compute MinFromTime(t); otherwise, call ToNumber(min).
If sec is not specified, compute SecFromTime(t); otherwise, call ToNumber(sec).
If msis not specified, compute msFromTime(t); otherwise, call ToNumber(ms).
Compute MakeTime(Result(2), Result(3), Result(4), Result(5)).

Compute MakeDate(Day(t), Result(6)).

Set the [[Value]] property of the this value to TimeClip(Result(7)).

Return the value of the [[Value]] property of the this value.

©COoONOUA~AWNE

Thel engt h property of the set UTCHour s method is 4.

Date.prototype.setDate (date)

Let t be the result of Local Time(this time value).

Call ToNumber(date).

Compute MakeDay(Y earFromTime(t), MonthFromTime(t), Result(2)).
Compute UTC(MakeDate(Result(3), TimeWithinDay(t))).

Set the [[Value]] property of the this value to TimeClip(Result(4)).
Return the value of the [[Value]] property of the this value.

ok wNE

Date.prototype.setUT CDate (date)

Let t be thistime value.

Call ToNumber(date).

Compute MakeDay(Y earFromTime(t), MonthFromTime(t), Result(2)).
Compute MakeDate(Result(3), TimeWithinDay(t)).

Set the [[Value]] property of the this value to TimeClip(Result(4)).
Return the value of the [[Value]] property of the this value.

oA~ wWNE

Date.prototype.setMonth (month [, date])
If date is not specified, this behaves as if date were specified with the value getDate().

Let t be the result of Local Time(this time value).

Call ToNumber(month).

If date is not specified, compute DateFromTime(t); otherwise, call ToNumber(date).
Compute MakeDay(Y earFromTime(t), Result(2), Result(3)).

Compute UTC(MakeDate(Result(4), TimeWithinDay(t))).

Set the [[Value]] property of the this value to TimeClip(Result(5)).

Return the value of the [[Value]] property of the this value.

NoouokwdpE

Thel engt h property of the set Mont h method is 2.

Date.prototype.setUTCMonth (month [, date])
If date is not specified, this behaves as if date were specified with the value getUTCDate().

Let t be thistime value.

Call ToNumber(month).

If date is not specified, compute DateFromTime(t); otherwise, call ToNumber(date).
Compute MakeDay(Y earFromTime(t), Result(2), Result(3)).

Compute MakeDate(Result(4), TimeWithinDay(t)).

Set the [[Value]] property of the this value to TimeClip(Result(5)).

Return the value of the [[Value]] property of the this value.

NookswdE

Thel engt h property of the set UTCMont h method is 2.

Date.prototype.setFullYear (year [, month [, date]])
If month is not specified, this behaves as if month were specified with the value getMonth().

- 129 -

If date is not specified, this behaves as if date were specified with the value getDate().

Let t be the result of Local Time(this time value); but if thistime value is NaN, let t be +0.
Call ToNumber(year).

If month is not specified, compute MonthFromTime(t); otherwise, call ToNumber(month).
If date is not specified, compute DateFromTime(t); otherwise, call ToNumber(date).
Compute MakeDay(Result(2), Result(3), Result(4)).

Compute UTC(MakeDate(Result(5), TimeWithinDay(t))).

Set the [[Value]] property of the this value to TimeClip(Result(6)).

Return the value of the [[Value]] property of the this value.

N~ WNE

Thel engt h property of the set Ful | Year method is 3.

15.9.5.41 Date.prototype.setUTCFullYear (year [, month [, date]])
If month is not specified, this behaves as if month were specified with the value getUTCMonth().

If date is not specified, this behaves as if date were specified with the value getUTCDate().

Let t be thistime value; but if thistime value is NaN, let t be +0.

Call ToNumber(year).

If month is not specified, compute MonthFromTime(t); otherwise, call ToNumber(month).
If date is not specified, compute DateFromTime(t); otherwise, call ToNumber(date).
Compute MakeDay(Result(2), Result(3), Result(4)).

Compute MakeDate(Result(5), TimeWithinDay(t)).

Set the [[Value]] property of the this value to TimeClip(Result(6)).

Return the value of the [[Value]] property of the this value.

©ONoOA~LNE

Thel engt h property of theset UTCFul | Year method is 3.

15.9.5.42 Date.prototype.toUTCString ()
This function returns a string value. The contents of the string are implementation-dependent, but are
intended to represent the Date in a convenient, human-readable form in UTC.
15.9.6 Properties of Date I nstances
Date instances have no special properties beyond those inherited from the Date prototype object.

15.10 RegExp (Regular Expression) Objects
A RegExp object contains a regular expression and the associated flags.
NOTE
The form and functionality of regular expressions is modelled after the regular expression facility in the
Perl 5 programming language.
15.10.1 Patterns

The RegExp constructor applies the following grammar to the input pattern string. An error occurs if
the grammar cannot interpret the string as an expansion of Pattern.

Syntax

Pattern ::
Digjunction

Digjunction ::
Alternative
Alternative| Digunction

Alternative ::
[empty]
Alternative Term

Term::
Assertion
Atom
Atom Quantifier

Assertion ::

AN

— —

b
B
Quantifier ::

QuantifierPrefix
QuantifierPrefix ?

QuantifierPrefix ::
*

+
?

{ DecimalDigits}

{ DecimalDigits, }

{ DecimalDigits, DecimalDigits}

Atom::
PatternCharacter

\ AtomEscape
CharacterClass
(Digunction)
(?: Digunction)
(? =Digunction)
(?! Digunction)

PatternCharacter :: SourceCharacter but not any of:
~Msn s w2 () [

AtomEscape ::
Decimal Escape
Character Escape
CharacterClassEscape

CharacterEscape ::
ControlEscape
c ControlLetter
HexEscapeSequence
UnicodeEscapeSequence
| dentityEscape

ControlEscape :: one of
f n r t

<

ControlLetter :: one of
a b

0o
(o=}
m o
n-—-
k)
T =
2
x x

| dentityEscape ::
SourceCharacter but not IdentifierPart

{

- —

- 130 -

b

<3
Z >

Oo©°o

Boke)

O

o -

0nwm

cc

< <

==

> X

<<

N N

Decimal Escape ::

- 131 -

DecimallntegerLiteral [lookahead O DecimalDigit]

CharacterClassEscape :: one of

d D s

CharacterClass ::

S w W

[[lookahead O {~}] ClassRanges]
[™ ClassRanges |

ClassRanges ::
[empty]

NonemptyClassRanges

NonemptyClassRanges ::

ClassAtom

ClassAtom NonemptyClassRangesNoDash
ClassAtom - ClassAtom ClassRanges

NonemptyClassRangesNoDash ::

ClassAtom

ClassAtomNoDash NonemptyClassRangesNoDash
ClassAtomNoDash - ClassAtom ClassRanges

ClassAtom ::

ClassAtomNoDash

ClassAtomNoDash ::
SourceCharacter but not oneof \] -
\ ClassEscape

ClassEscape ::

Decimal Escape

b

Character Escape
CharacterClassEscape

15.10.2 Pattern Semantics
A regular expression pattern is converted into an internal function using the process described below. An
implementation is encouraged to use more efficient algorithms than the ones listed below, as long as the
results are the same.
15.10.2.1 Notation
The descriptions below use the following variables:

Input is the string being matched by the regular expression pattern. The notation input[n] means the
nth character of input, where n can range between 0 (inclusive) and InputLength (exclusive).

InputLength is the number of charactersin the Input string.

NCapturingParens is the total number of left capturing parentheses (i.e. the total number of times
the Atom :: (Disjunction) production is expanded) in the pattern. A left capturing parenthesis is
any (pattern character that is matched by the (terminal of the Atom :: (Disjunction) production.

IgnoreCase is the setting of the RegExp object'si gnor eCase property.
Multiline is the setting of the RegExp object'smul ti | i ne property.

Furthermore, the descriptions below use the following internal data structures:

A CharSet is a mathematical set of characters.

15.10.2.2

- 132 -

A State is an ordered pair (endindex, captures) where endindex is an integer and captures is an
internal array of NCapturingParens values. States are used to represent partial match states in the
regular expression matching algorithms. The endindex is one plus the index of the last input
character matched so far by the pattern, while captures holds the results of capturing parentheses.
The nth element of captures is either a string that represents the value obtained by the nth set of
capturing parentheses or undefined if the nth set of capturing parentheses hasn't been reached yet.
Due to backtracking, many states may be in use at any time during the matching process.

* A MatchResult is either a State or the special token failure that indicates that the match failed.

e A Continuation function is an internal closure (i.e. an internal function with some arguments
already bound to values) that takes one State argument and returns a MatchResult result. If an
internal closure references variables bound in the function that creates the closure, the closure uses
the values that these variables had at the time the closure was created. The continuation attempts to
match the remaining portion (specified by the closure's already-bound arguments) of the pattern
against the input string, starting at the intermediate state given by its State argument. If the match
succeeds, the continuation returns the final State that it reached; if the match fails, the continuation
returns failure.

< A Matcher function is an internal closure that takes two arguments -- a State and a Continuation --
and returns a MatchResult result. The matcher attempts to match a middle subpattern (specified by
the closure's already-bound arguments) of the pattern against the input string, starting at the
intermediate state given by its State argument. The Continuation argument should be a closure that
matches the rest of the pattern. After matching the subpattern of a pattern to obtain a new State, the
matcher then calls Continuation on that state to test if the rest of the pattern can match as well. If it
can, the matcher returns the state returned by the continuation; if not, the matcher may try different
choices at its choice points, repeatedly calling Continuation until it either succeeds or all
possibilities have been exhausted.

« An AssertionTester function is an internal closure that takes a State argument and returns a boolean
result. The assertion tester tests a specific condition (specified by the closure's already-bound
arguments) against the current place in the input string and returns true if the condition matched or
falseif not.

e An EscapeValue is either a character or an integer. An EscapeValue is used to denote the
interpretation of a Decimal Escape escape sequence: a character ch means that the escape sequence
is interpreted as the character ch, while an integer n means that the escape sequence is interpreted
as a backreference to the nth set of capturing parentheses.

Pattern

The production Pattern :: Disjunction evaluates as follows:

1. Evaluate Disjunction to obtain a Matcher m.
2. Return an internal closure that takes two arguments, a string str and an integer index, and
performs the following:

1. Let Input be the given string str. This variable will be used throughout the functionsin
15.10.2.

2. Let InputLength be the length of Input. This variable will be used throughout the functionsin
15.10.2.

3. Let c be aContinuation that always returns its State argument as a successful MatchResult.

4. Let cap be aninternal array of NCapturingParens undefined values, indexed 1 through
NCapturingParens.

5. Let x be the State (index, cap).

6. Call m(x, c) and return its result.

Informative comments: A Pattern evaluates ("compiles’) to an internal function value.
RegExp. pr ot ot ype. exec can then apply this function to a string and an offset within the string
to determine whether the pattern would match starting at exactly that offset within the string, and, if it
does match, what the values of the capturing parentheses would be. The algorithms in 15.10.2 are
designed so that compiling a pattern may throw a SyntaxError exception; on the other hand, once the
pattern is successfully compiled, applying its result function to find a match in a string cannot throw

- 133 -

an exception (except for any host-defined exceptions that can occur anywhere such as out-of-
memory).

15.10.2.3 Disjunction

The production Disjunction :: Alternative evaluates by evaluating Alternative to obtain a Matcher and
returning that Matcher.

The production Disjunction :: Alternative | Disjunction evaluates as follows:

1. Evaluate Alternative to obtain a Matcher m1.

2. Evaluate Disjunction to obtain a Matcher m2.

3. Return an internal Matcher closure that takes two arguments, a State x and a Continuation ¢, and
performs the following:

1. Call ml(x, ¢) and let r beits result.

2. Ifrisn'tfailure, returnr.
3. Cal m2(x, c) and return its result.

Informative comments: The | regular expression operator separates two alternatives. The pattern
first tries to match the left Alternative (followed by the sequel of the regular expression); if it fails, it
tries to match the right Disjunction (followed by the sequel of the regular expression). If the left
Alternative, the right Disjunction, and the sequel all have choice points, all choices in the sequel are
tried before moving on to the next choice in the left Alternative. If choices in the left Alternative are
exhausted, the right Disjunction is tried instead of the left Alternative. Any capturing parentheses
inside a portion of the pattern skipped by | produce undefined values instead of strings. Thus, for
example,

[al| ab/ . exec("abc")
returns the result " a" and not " ab" . Moreover,
I((a)| (ab))((c)|(bc))/.exec("abc")

returns the array

["abc", "a", "a", undefined, "bc", undefined, "bc"]
and not
["abc", "ab", undefined, "ab", "c", "c", undefined]

15.10.2.4 Alternative

The production Alternative :: [empty] evaluates by returning a Matcher that takes two arguments, a
State x and a Continuation c, and returns the result of calling c(x).

The production Alternative :: Alternative Term evaluates as follows:

1. Evaluate Alternative to obtain a Matcher m1.

2. Evaluate Termto obtain a Matcher m2.

3. Return an internal Matcher closure that takes two arguments, a State x and a Continuation ¢, and
performs the following:

1. Create a Continuation d that takes a State argument y and returns the result of calling m2(y,
c).
2. Call ml(x, d) and return its result.

Informative comments. Consecutive Terms try to simultaneously match consecutive portions of the
input string. If the left Alternative, the right Term, and the sequel of the regular expression all have
choice points, all choices in the sequel are tried before moving on to the next choice in the right Term,
and all choicesin the right Term are tried before moving on to the next choice in the left Alternative.

15.10.25 Term

The production Term :: Assertion evaluates by returning an internal Matcher closure that takes two
arguments, a State x and a Continuation ¢, and performs the following:

- 134 -

Evaluate Assertion to obtain an AssertionTester t.
Call t(x) and let r be the resulting boolean value.
If r isfalse, return failure.

Call c(x) and return its result.

SN

The production Term :: Atom evaluates by evaluating Atom to obtain a Matcher and returning that
Matcher.

The production Term :: Atom Quantifier evaluates as follows:

1. Evaluate Atom to obtain a Matcher m.

2. Evaluate Quantifier to obtain the three results: an integer min, an integer (or) max, and boolean
greedy.

3. If maxisfinite and less than min, then throw a SyntaxError exception.

4. Let parenindex be the number of left capturing parentheses in the entire regular expression that
occur to the left of this production expansion's Term. This is the total number of times the Atom ::
(Disjunction) production is expanded prior to this production's Term plus the total number of
Atom :: (Disjunction) productions enclosing this Term.

5. Let parenCount be the number of left capturing parentheses in the expansion of this production's
Atom. Thisis the total number of Atom:: (Disjunction) productions enclosed by this
production's Atom.

6. Return an internal Matcher closure that takes two arguments, a State x and a Continuation ¢, and
performs the following:

1. Call RepeatMatcher(m, min, max, greedy, X, ¢, parenlndex, parenCount) and return its result.

The internal helper function RepeatMatcher takes eight parameters, a Matcher m, an integer min, an
integer (or o) max, a boolean greedy, a State x, a Continuation ¢, an integer parenindex, and an
integer parenCount, and performs the following:

1. If maxis zero, then call c(x) and return its result.
2. Create an internal Continuation closure d that takes one State argument y and performs the
following:

1. If miniszero andy's endindex is equal to x's endlndex, then return failure.

2. If minis zero then let min2 be zero; otherwise let min2 be min-1.

3. If maxis o, then let max2 be «; otherwise let max2 be max-1.

4. Call RepeatMatcher(m, min2, max2, greedy, y, ¢, parenindex, parenCount) and return its
result.

3. Let cap be afresh copy of x's captures internal array.

4. For every integer k that satisfies parenindex < k and k < parenlndex+parenCount, set cap[k] to
undefined.

Let e be x's endl ndex.

Let xr be the State (e, cap).

If minisnot zero, then call m(xr, d) and return its result.
If greedy istrue, then go to step 12.

9. Call ¢(x) and let z be its result.

10. If zisnot failure, return z.

11. Call m(xr, d) and return its result.

12. Call m(xr, d) and let z be its result.

13. If zisnot failure, return z.

14. Call c(x) and return its result.

Informative comments. An Atom followed by a Quantifier is repeated the number of times specified
by the Quantifier. A quantifier can be non-greedy, in which case the Atom pattern is repeated as few
times as possible while still matching the sequel, or it can be greedy, in which case the Atom pattern is
repeated as many times as possible while still matching the sequel. The Atom pattern is repeated rather
than the input string that it matches, so different repetitions of the Atom can match different input
substrings.

- 135 -

If the Atom and the sequel of the regular expression all have choice points, the Atom is first matched
as many (or as few, if non-greedy) times as possible. All choices in the sequel are tried before moving
on to the next choice in the last repetition of Atom. All choices in the last (n") repetition of Atom are
tried before moving on to the next choice in the next-to-last (n—1)* repetition of Atom; at which point
it may turn out that more or fewer repetitions of Atom are now possible; these are exhausted (again,
starting with either as few or as many as possible) before moving on to the next choice in the (n-1)*
repetition of Atom and so on.

Compare
/ala-z]{2,4}/.exec("abcdefghi™)
which returns " abcde" with
/a[a-z]{2,4}?/.exec("abcdefghi™)
which returns " abc" .
Consider also
/ (aa| aabaac| ba| b| ¢) */ . exec("aabaac")
which, by the choice point ordering above, returns the array
["aaba", "ba"]
and not any of:
["aabaac", "aabaac"]
["aabaac", "c"]

The above ordering of choice points can be used to write a regular expression that calculates the
greatest common divisor of two numbers (represented in unary notation). The following example
calculates the gcd of 10 and 15:

"aaaaaaaaaa, aaaaaaaaaaaaaaa".replace(/"(a+)\ 1*,\ 1+$/, " $1")
which returns the gcd in unary notation " aaaaa" .

Step 4 of the RepeatMatcher clears Atom's captures each time Atom is repeated. We can see its
behaviour in the regular expression

I (z)((a+)?(b+)?(c))*/.exec("zaacbhbbcac")

which returns the array

["zaacbbbcac", "z", "ac", "a", undefined, "c"]
and not
["zaacbbbcac", "z", "ac", "a", "bbb", "c"]

because each iteration of the outermost * clears all captured strings contained in the quantified Atom,
which in this case includes capture strings numbered 2, 3, and 4.

Step 1 of the RepeatMatcher's closure d states that, once the minimum number of repetitions has been
satisfied, any more expansions of Atom that match the empty string are not considered for further
repetitions. This prevents the regular expression engine from falling into an infinite loop on patterns
such as:

/[(a*)*/.exec("b")
or the slightly more complicated:

/ (a*) b\ 1+/ . exec("baaaac")
which returns the array

["b", "]

- 136 -

15.10.2.6 Assertion

The production Assertion :: N evaluates by returning an internal AssertionTester closure that takes a
State argument x and performs the following:

15.10.2.7

1
2.
3.
4

5.

Let e be x's endIndex.

If eiszero, return true.

If Multiline is false, return false.

If the character Input[e-1] is one of the line terminator characters <LF>, <CR>, <L S>, or <PS>,
return true.

Return false.

The production Assertion :: $ evaluates by returning an internal AssertionTester closure that takes a
State argument x and performs the following:

1
2.
3.
4

5.

Let e be x's endIndex.

If eisequal to InputLength, return true.

If multiline is false, return false.

If the character Input[€] is one of the line terminator characters <LF>, <CR>, <L S>, or <PS>,
return true.

Return false.

The production Assertion :: \ b evaluates by returning an internal AssertionTester closure that takes
a State argument x and performs the following:

S e o

Let e be x's endIndex.

Call IswordChar(e-1) and let a be the boolean result.
Call IswordChar(e) and let b be the boolean result.

If aistrueand b isfalse, return true.

If aisfalseand bistrue, returntrue.

Return false.

The production Assertion :: \ B evaluates by returning an internal AssertionTester closure that takes
a State argument x and performs the following:

oO0MwWNE

Let e be x's endIndex.

Call IswordChar(e-1) and let a be the boolean result.
Call I1swordChar(e) and let b be the boolean result.

If aistrueand b isfalse, return false.

If aisfalse and b istrue, return false.

Return true.

The internal helper function IsWordChar takes an integer parameter e and performs the following:

1. If e==-1or e == InputLength, return false.

2. Let c bethe character Input[e].

3. If cisone of the sixty-three characters in the table below, return true.
abcdef ghij kIl mnopagrstuvwxyz
ABCDEFGHI JKLMNOPQRSTUVWXY Z
012345672829

4. Return false.

Quantifier

The production Quantifier :: QuantifierPrefix evaluates as follows;

1.
2.

Evaluate Quantifier Prefix to obtain the two results: an integer min and an integer (or) max.
Return the three results min , max, and true.

- 137 -

The production Quantifier :: QuantifierPrefix ? evaluates as follows:

1. Evaluate QuantifierPrefix to obtain the two results: an integer min and an integer (or o) max.
2. Return the three results min , max, and false.

The production QuantifierPrefix :: * evaluates by returning the two results 0 and co.
The production Quantifier Prefix :: + evaluates by returning the two results 1 and c.
The production QuantifierPrefix :: ? evaluates by returning the two results 0 and 1.
The production QuantifierPrefix :: { DecimalDigits } evaluates as follows:

1. Leti bethe MV of DecimalDigits (see 7.8.3).
2. Return the two resultsi and i.

The production QuantifierPrefix :: { DecimalDigits , } evaluates as follows:

1. Leti bethe MV of DecimalDigits.
2. Return the two resultsi and oo.

The production QuantifierPrefix :: { DecimalDigits , DecimalDigits } evaluates as follows:

1. Leti bethe MV of thefirst DecimalDigits.
2. Letj bethe MV of the second DecimalDigits.
3. Returnthetwo resultsi and j.

15.10.2.8 Atom
The production Atom :: PatternCharacter evaluates as follows:

1. Let ch be the character represented by PatternCharacter.
2. Let A be aone-element CharSet containing the character ch.
3. Call CharacterSetMatcher (A, false) and return its Matcher result.

The production Atom:: . evaluates as follows:

1. Let Abethe set of all characters except the four line terminator characters <LF>, <CR>, <L S>, or
<PS>.
2. Call CharacterSetMatcher (A, false) and return its Matcher result.

The production Atom :: \ AtomEscape evaluates by evaluating AtomEscape to obtain a Matcher and
returning that Matcher.

The production Atom :: CharacterClass evaluates as follows:

1. Evaluate CharacterClass to obtain a CharSet A and a boolean invert.
2. Call CharacterSetMatcher (A, invert) and return its Matcher result.

The production Atom:: (Disjunction) evaluates as follows:

1. Evaluate Disjunction to obtain a Matcher m.

2. Let parenindex be the number of left capturing parentheses in the entire regular expression that
occur to the left of this production expansion'sinitial left parenthesis. This is the total number of
times the Atom :: (Disjunction) production is expanded prior to this production's Atom plus the
total number of Atom:: (Disjunction) productions enclosing this Atom.

3. Return an internal Matcher closure that takes two arguments, a State x and a Continuation ¢, and
performs the following:

1. Create an internal Continuation closure d that takes one State argument y and performs the
following:

1. Let cap be afresh copy of y's capturesinternal array.
2. Let xe be x's endIndex.
3. Letyebey'sendlindex.

- 138 -

4. Let sbe afresh string whose characters are the characters of Input at positions xe
(inclusive) through ye (exclusive).

5. Set cap[parenindex+1] to s.

6. Let z bethe State (ye, cap).

7. Call c(2) and return its result.

2. Cal m(x, d) and return its result.

The production Atom :: (? : Disjunction) evaluates by evaluating Disjunction to obtain a
Matcher and returning that Matcher.

The production Atom:: (? = Disjunction) evaluates as follows:

1. Evaluate Disjunction to obtain a Matcher m.
2. Return an internal Matcher closure that takes two arguments, a State x and a Continuation ¢, and
performs the following:

Let d be a Continuation that always returns its State argument as a successful MatchResult.
Call m(x, d) and let r be its result.

If risfailure, return failure.

Lety ber's State.

Let cap bey's captures internal array.

Let xe be x's endIndex.

Let z be the State (xe, cap).

Call ¢(2) and return its result.

N~ ONE

The production Atom:: (? ! Disjunction) evaluates as follows:

1. Evaluate Disjunction to obtain a Matcher m.
2. Return an internal Matcher closure that takes two arguments, a State x and a Continuation ¢, and
performs the following:

1. LetdbeaContinuation that always returns its State argument as a successful MatchResult.
2. Cal m(x, d) and let r be its result.

3. Ifrisn't failure, return failure.

4. Call ¢(x) and return its result.

The internal helper function Character SetMatcher takes two arguments, a CharSet A and a boolean
flag invert, and performs the following:

1. Return aninternal Matcher closure that takes two arguments, a State x and a Continuation ¢, and
performs the following:

Let e be x's endl ndex.

If e == InputLength, return failure.

Let ¢ be the character Input[e].

Let cc be the result of Canonicalize(c).

If invertistrue, go to step 8.

If there does not exist a member a of set A such that Canonicalize(a) == cc, then return
failure.

7. Gotostep9.

8. If there exists amember a of set A such that Canonicalize(a) == cc, then return failure.
9. Let cap be x's capturesinternal array.

10. Let y be the State (e+1, cap).

11. Call c(y) and return its result.

oukwbdpE

The internal helper function Canonicalize takes a character parameter ch and performs the following:

1. If IgnoreCase isfalse, return ch.

2. Let u be ch converted to upper case asif by calling St ri ng. pr ot ot ype. t oUpper Case on
the one-character string ch.

3. If udoes not consist of asingle character, return ch.

4. Let cu be u's character.

15.10.2.9

- 139 -

5. If ch's code point value is greater than or equal to decimal 128 and cu's code point value is less
than decimal 128, then return ch.
6. Return cu.

Informative comments: Parentheses of the form (Disjunction) serve both to group the
components of the Disjunction pattern together and to save the result of the match. The result can be
used either in a backreference (\ followed by a nonzero decimal number), referenced in a replace
string, or returned as part of an array from the regular expression matching function. To inhibit the
capturing behaviour of parentheses, use the form (?: Disjunction) instead.

The form (?= Disjunction) specifies a zero-width positive lookahead. In order for it to succeed,
the pattern inside Disjunction must match at the current position, but the current position is not
advanced before matching the sequel. If Disjunction can match at the current position in several ways,
only the first one is tried. Unlike other regular expression operators, there is no backtracking into a
(?= form (this unusual behaviour is inherited from Perl). This only matters when the Disjunction
contains capturing parentheses and the sequel of the pattern contains backreferences to those captures.

For example,
/[(?=(a+))/.exec("baaabac")

matches the empty string immediately after the first b and therefore returns the array:
[*", "aaa"]

To illustrate the lack of backtracking into the lookahead, consider:
/[(?=(a+))a*b\1l/.exec("baaabac")

This expression returns

["aba", "a"]
and not:
[n a.aaba.ll , n aII]

The form (?! Disjunction) specifies a zero-width negative lookahead. In order for it to succeed,
the pattern inside Disjunction must fail to match at the current position. The current position is not
advanced before matching the sequel. Disjunction can contain capturing parentheses, but
backreferences to them only make sense from within Disjunction itself. Backreferences to these
capturing parentheses from elsewhere in the pattern always return undefined because the negative
lookahead must fail for the pattern to succeed. For example,

[(.*?)a(?!'(a+)b\2c)\2(.*)/.exec("baaabaac")

looks for an a not immediately followed by some positive number n of a's, a b, another n a's
(specified by the first \ 2) and a c. The second \ 2 is outside the negative lookahead, so it matches
against undefined and therefore always succeeds. The whole expression returns the array:

["baaabaac", "ba", undefined, "abaac"]

In case-insignificant matches all characters are implicitly converted to upper case immediately before
they are compared. However, if converting a character to upper case would expand that character into
more than one character (such as converting " 3" (\ uOODF) into " SS"), then the character is left as-
isinstead. The character is also left as-isif it isnot an ASCII character but converting it to upper case
would make it into an ASCII character. This prevents Unicode characters such as \ u0131 and
\ u017F from matching regular expressions such as /[a-z] /i, which are only intended to match
ASCII letters. Furthermore, if these conversions were allowed, then / [*\ W /i would match each of
a,b,...,h,butnoti ors.

AtomEscape
The production AtomEscape :: Decimal Escape evaluates as follows:

1. Evaluate Decimal Escape to obtain an EscapeValue E.
2. If Eisnot acharacter then go to step 6.

©ONO O AW

9

10.

ONoUA~WDNE

Let ch be E's character.

Let A be a one-element CharSet containing the character ch.

Call Character SetMatcher (A, false) and return its Matcher result.

E must be an integer. Let n be that integer.

If n=0 or n>NCapturingParens then throw a SyntaxError exception.

Return an internal Matcher closure that takes two arguments, a State x and a Continuation ¢, and
performs the following:

- 140 -

Let cap be x's captures internal array.

Let s be cap[n].

If sisundefined, then call ¢(x) and return its result.
Let e be X's endIndex.

Let len be s'slength.
Let f be et+len.

If f>InputLength, return failure.
If there exists an integer i between 0 (inclusive) and len (exclusive) such that
Canonicalize(s[i]) is not the same character as Canonicalize(Input [e+i]), then return failure.

Let y be the State (f, cap).
Call c(y) and return its result.

The production AtomEscape :: Character Escape evaluates as follows:

1. Evaluate CharacterEscape to obtain a character ch.
2. Let A be aone-element CharSet containing the character ch.
3. Call CharacterSetMatcher (A, false) and return its Matcher result.

The production AtomEscape :: Character ClassEscape evaluates as follows:

1. Evaluate Character ClassEscape to obtain a CharSet A.
2. Call Character SetMatcher (A, false) and return its Matcher result.

Informative comments: An escape sequence of the form \ followed by a nonzero decimal nhumber n
matches the result of the nth set of capturing parentheses (see 15.10.2.11). It is an error if the regular
expression has fewer than n capturing parentheses. If the regular expression has n or more capturing
parentheses but the nth one is undefined because it hasn't captured anything, then the backreference
always succeeds.

15.10.2.10 Character Escape

The production CharacterEscape :: ControlEscape evaluates by returning the character according to
the table below:

ControlEscape Unicode Value Name Symbol
t \ u0009 horizontal tab <HT>
n \ UOOOA linefeed (new line) <LF>
% \ u000B vertical tab <VT>
f \ u000C form feed <FF>
r \ u000D carriage return <CR>

The production CharacterEscape :: ¢ ControlLetter evaluates as follows:

1. Let ch bethe character represented by ControlLetter.
2. Leti bech's code point value.
3. Letj betheremainder of dividing i by 32.
4. Return the Unicode character numbered j.

The production CharacterEscape ::
HexEscapeSequence (see 7.8.4) and returning its character result.

HexEscapeSequence evaluates by evaluating the CV of the

- 141 -

The production CharacterEscape :: UnicodeEscapeSequence evaluates by evaluating the CV of the
UnicodeEscapeSequence (see 7.8.4) and returning its character result.

The production CharacterEscape :: |dentityEscape evaluates by returning the character represented
by IdentityEscape.

15.10.2.11 Decimal Escape
The production Decimal Escape :: DecimallntegerLiteral [lookahead O DecimalDigit] evaluates as follows.

1. Leti bethe MV of DecimallntegerLiteral.
2. Ifiiszero, return the EscapeValue consisting of a <NUL> character (Unicode value 0000).
3. Return the EscapeValue consisting of the integer i.

The definition of “the MV of DecimallntegerLiteral” isin 7.8.3.

Informative comments: If \ is followed by a decimal number n whose first digit is not 0, then the
escape sequence is considered to be a backreference. It is an error if nis greater than the total number
of left capturing parentheses in the entire regular expression. \ 0 represents the NUL character and
cannot be followed by a decimal digit.

15.10.2.12 Character ClassEscape
The production CharacterClassEscape :: d evaluates by returning the ten-element set of characters
containing the characters 0 through 9 inclusive.

The production CharacterClassEscape :: D evaluates by returning the set of all characters not
included in the set returned by Character ClassEscape :: d.

The production CharacterClassEscape :: s evaluates by returning the set of characters containing the
characters that are on the right-hand side of the WhiteSpace (7.2) or LineTerminator (7.3)
productions.

The production CharacterClassEscape :: S evaluates by returning the set of all characters not
included in the set returned by CharacterClassEscape :: s.

The production Character ClassEscape :: w evaluates by returning the set of characters containing the
sixty-three characters:
abcdef ghij kIl mnopgrstuvwxyz
ABCDEFGHI JKLMNOPQRSTUVWXYZ
012345¢6 1732829

The production CharacterClassEscape :: W evaluates by returning the set of all characters not
included in the set returned by Character ClassEscape :: w.

15.10.2.13 CharacterClass
The production CharacterClass :: [[lookahead O {#}] ClassRanges] evaluates by evaluating
ClassRanges to obtain a CharSet and returning that CharSet and the boolean false.

The production CharacterClass :: [~ ClassRanges] evaluates by evaluating ClassRanges to
obtain a CharSet and returning that CharSet and the boolean true.

15.10.2.14 ClassRanges
The production ClassRanges :: [empty] evaluates by returning the empty CharSet.
The production ClassRanges o NonemptyClassRanges evaluates by evaluating
NonemptyClassRanges to obtain a CharSet and returning that CharSet.

15.10.2.15 NonemptyClassRanges
The production NonemptyClassRanges :: ClassAtom evaluates by evaluating ClassAtom to obtain a
CharSet and returning that CharSet.

The production NonemptyClassRanges :: ClassAtom NonemptyClassRangesNoDash evaluates as
follows:

- 142 -

1. Evaluate ClassAtom to obtain a CharSet A.
2. Evaluate NonemptyClassRangesNoDash to obtain a CharSet B.
3. Return the union of CharSets A and B.

The production NonemptyClassRanges :: ClassAtom - ClassAtom ClassRanges evaluates as follows:

Evaluate the first ClassAtom to obtain a CharSet A.

Evaluate the second ClassAtom to obtain a CharSet B.
Evaluate ClassRanges to obtain a CharSet C.

Call CharacterRange(A, B) and let D be the resulting CharSet.
Return the union of CharSets D and C.

grwNE

The internal helper function Character Range takes two CharSet parameters A and B and performs the
following:

1. If A does not contain exactly one character or B does not contain exactly one character then throw
a SyntaxError exception.

Let a be the one character in CharSet A.

Let b be the one character in CharSet B.

Let i be the code point value of character a.

Let j be the code point value of character b.

If | >j then throw a SyntaxError exception.

Return the set containing all characters numbered i through j, inclusive.

Nk~ wWN

15.10.2.16 NonemptyClassRangesNoDash

The production NonemptyClassRangesNoDash :: ClassAtom evaluates by evaluating ClassAtom to
obtain a CharSet and returning that CharSet.

The production NonemptyClassRangesNoDash :: ClassAtomNoDash NonemptyClassRangesNoDash
evaluates as follows:

1. Evaluate ClassAtomNoDash to obtain a CharSet A.
2. Evaluate NonemptyClassRangesNoDash to obtain a CharSet B.
3. Return the union of CharSets A and B.

The production NonemptyClassRangesNoDash :: ClassAtomNoDash - ClassAtom ClassRanges
evaluates as follows:

Evaluate ClassAtomNoDash to obtain a CharSet A.

Evaluate ClassAtom to obtain a CharSet B.

Evaluate ClassRanges to obtain a CharSet C.

Call CharacterRange(A, B) and let D be the resulting CharSet.
Return the union of CharSets D and C.

agrwONE

Informative comments: ClassRanges can expand into single ClassAtoms and/or ranges of two
ClassAtoms separated by dashes. In the latter case the ClassRanges includes all characters between
the first ClassAtom and the second ClassAtom, inclusive; an error occurs if either ClassAtom does not
represent a single character (for example, if one is\ w) or if the first ClassAtom's code point value is
greater than the second ClassAtom's code point value.

Even if the pattern ignores case, the case of the two ends of a range is significant in determining
which characters belong to the range. Thus, for example, the pattern /[E- F] /i matches only the
letters E, F, e, and f, while the pattern / [E- f] / i matches all upper and lower-case ASCI| letters as
well asthe symbols[,\,],”, ,and .

A - character can be treated literally or it can denote a range. It is treated literally if it is the first or
last character of ClassRanges, the beginning or end limit of a range specification, or immediately
follows a range specification.

15.10.2.17 ClassAtom
The production ClassAtom :: - evaluates by returning the CharSet containing the one character - .

- 143 -

The production ClassAtom :: ClassAtomNoDash evaluates by evaluating ClassAtomNoDash to obtain
a CharSet and returning that CharSet.

15.10.2.18 ClassAtomNoDash

The production ClassAtomNoDash :: SourceCharacter but not one of \] - evaluates by returning a
one-element CharSet containing the character represented by SourceCharacter.

The production ClassAtomNoDash :: \ ClassEscape evaluates by evaluating ClassEscape to obtain a
CharSet and returning that CharSet.

15.10.2.19 ClassEscape
The production ClassEscape :: Decimal Escape eval uates as follows;

1. Evaluate Decimal Escape to obtain an EscapeValue E.

2. If Eisnot acharacter then throw a SyntaxError exception.
3. Let ch be E's character.

4. Return the one-element CharSet containing the character ch.

The production ClassEscape :: b evaluates by returning the CharSet containing the one character
<BS> (Unicode value 0008).

The production ClassEscape :: Character Escape evaluates by evaluating Character Escape to obtain a
character and returning a one-element CharSet containing that character.

The production ClassEscape :: Character ClassEscape evaluates by evaluating CharacterClassEscape
to obtain a CharSet and returning that CharSet.

Informative comments: A ClassAtom can use any of the escape sequences that are allowed in the rest
of the regular expression except for \ b, \ B, and backreferences. Inside a CharacterClass, \ b means
the backspace character, while \ B and backreferences raise errors. Using a backreference inside a
ClassAtom causes an error.

15.10.3 The RegExp Constructor Called as a Function

15.10.3.1 RegExp(pattern, flags)

If pattern is an object R whose [[Class]] property is" RegExp" and flags is undefined, then return R
unchanged. Otherwise call the RegExp constructor (15.10.4.1), passing it the pattern and flags
arguments and return the object constructed by that constructor.

15.10.4 The RegExp Constructor

When RegExp is called as part of a new expression, it is a constructor: it initialises the newly created
object.

15.10.4.1 new RegExp(pattern, flags)
If pattern is an object R whose [[Class]] property is " RegExp" and flags is undefined, then let P be
the pattern used to construct R and let F be the flags used to construct R. If pattern is an object R
whose [[Class]] property is "RegExp" and flags is not undefined, then throw a TypeError
exception. Otherwise, let P be the empty string if pattern is undefined and ToString(pattern)
otherwise, and let F be the empty string if flags is undefined and ToString(flags) otherwise.

The gl obal property of the newly constructed object is set to a Boolean value that is true if F
contains the character “ g” and false otherwise.

The i gnor eCase property of the newly constructed object is set to a Boolean value that is trueif F
contains the character “i ” and false otherwise.

Thenul tili ne property of the newly constructed object is set to a Boolean value that is true if F
contains the character “ ni' and fal se otherwise.

If F contains any character other than “g”, “i”, or “ni', or if it contains the same one more than
once, then throw a SyntaxError exception.

- 144 -

If P's characters do not have the form Pattern, then throw a SyntaxError exception. Otherwise let the
newly constructed object have a [[Match]] property obtained by evaluating ("compiling") Pattern.
Note that evaluating Pattern may throw a SyntaxError exception. (Note: if pattern is a StringLiteral,
the usual escape sequence substitutions are performed before the string is processed by RegExp. If
pattern must contain an escape sequence to be recognised by RegExp, the “\ " character must be
escaped within the StringLiteral to prevent its being removed when the contents of the StringLiteral
are formed.)

The sour ce property of the newly constructed object is set to an implementation-defined string
value in the form of a Pattern based on P.

Thel ast | ndex property of the newly constructed object is set to 0.

The [[Prototype]] property of the newly constructed object is set to the original RegExp prototype
object, the one that isthe initial value of RegExp. pr ot ot ype.

The [[Class]] property of the newly constructed object is set to " RegExp" .

15.10.5 Properties of the Regexp Constructor

The value of the internal [[Prototype]] property of the RegExp constructor is the Function prototype
object (15.3.4).

Besides the internal properties and the | engt h property (whose value is 2), the RegExp constructor has
the following properties:

15.10.5.1 RegExp.prototype
The initial value of RegExp. pr ot ot ype isthe RegExp prototype object (15.10.6).

This property shall have the attributes { DontEnum, DontDelete, ReadOnly }.

15.10.6 Properties of the RegExp Prototype Object

The value of the internal [[Prototype]] property of the RegExp prototype object is the Object prototype.
The value of the internal [[Class]] property of the RegExp prototype object is" Obj ect ".

The RegExp prototype object does not have a val ueCOf property of its own; however, it inherits the
val ueOf property from the Object prototype object.

In the following descriptions of functions that are properties of the RegExp prototype object, the phrase
“this RegExp object” refers to the object that is the this value for the invocation of the function; a
TypeError exception is thrown if the this value is not an object for which the value of the internal
[[Class]] property is" RegExp" .

15.10.6.1 RegExp.prototype.constructor
The initial value of RegExp. pr ot ot ype. const ruct or isthe built-in RegExp constructor.

15.10.6.2 RegEXxp.prototype.exec(string)

Performs a regular expression match of string against the regular expression and returns an Array
object containing the results of the match, or null if the string did not match

The string ToString(string) is searched for an occurrence of the regular expression pattern as follows:

Let Sbe the value of ToString(string).

Let length be the length of S.

Let lastlndex be the value of the | ast | ndex property.

Let i be the value of Tolnteger(lastindex).

If the gl obal property isfalse, leti = 0.

If I <Oorl>lengththenset| ast | ndex to0andreturnnul | .
Call [[Match]], giving it the arguments Sand i. If [[Match]] returned failure, go to step 8;
otherwise let r be its State result and go to step 10.

8. Leti=i+l.

9. Goto step 6.

10. Let e be r's endindex value.

NoorwbE

15.10.6.3

15.10.6.4

- 145 -

11. If the gl obal property istrue, setl ast | ndex toe.
12. Let n be the length of r's captures array. (Thisis the same value as 15.10.2.1's
NCapturingParens.)
13. Return a new array with the following properties:
e Thei ndex property is set to the position of the matched substring within the complete string
S.

e Thei nput property issetto S.

e Thel engt h property issetton + 1.

* The O property is set to the matched substring (i.e. the portion of S between offset i inclusive
and offset e exclusive).

« For each integer i such that | > 0 and | < n, set the property named ToString(i) to the i element
of r's captures array.

RegExp.prototype.test(string)
Equivalent to the expression RegEXxp. pr ot ot ype. exec(string) != null.

RegExp.prototype.toString()

Let src be a string in the form of a Pattern representing the current regular expression. src may or
may not be identical to the source property or to the source code supplied to the RegExp
constructor; however, if src were supplied to the RegExp constructor along with the current regular
expression's flags, the resulting regular expression must behave identically to the current regular
expression.

t oSt ri ng returns a string value formed by concatenating the strings "/ ", src, and "/ "; plus " g" if
the gl obal property istrue, "i " if thei gnor eCase property istrue, and " nt if thermul tili ne
property istrue.

NOTE

An implementation may choose to take advantage of src being allowed to be different from the source
passed to the RegExp constructor to escape special characters in src. For example, in the regular
expression obtained from new RegExp("/"), src could be, among other possibilities, "/ " or
"\ /". The latter would permit the entire result ("/\//") of thetoStri ng call to have the form
RegularExpressionLiteral.

15.10.7 Properties of RegExp Instances

RegEXxp instances inherit properties from their [[Prototype]] object as specified above and also have the
following properties.

15.10.7.1

15.10.7.2

15.10.7.3

15.10.7.4

15.10.7.5

source

The value of the sour ce property is string in the form of a Pattern representing the current regular
expression. This property shall have the attributes { DontDelete, ReadOnly, DontEnum }.

global

The value of the gl obal property is a Boolean value indicating whether the flags contained the
character “ g” . This property shall have the attributes { DontDelete, ReadOnly, DontEnum }.

ignoreCase

The value of thei gnor eCase property is a Boolean value indicating whether the flags contained the
character “i ” . This property shall have the attributes { DontDelete, ReadOnly, DontEnum }.
multiline

The value of thenul ti | i ne property is a Boolean value indicating whether the flags contained the
character “ ni' . This property shall have the attributes { DontDelete, ReadOnly, DontEnum }.

lastl ndex

The value of the | ast | ndex property is an integer that specifies the string position at which to start
the next match. This property shall have the attributes { DontDelete, DontEnum }.

- 146 -

15.11 Error Objects

Instances of Error objects are thrown as exceptions when runtime errors occur. The Error objects may also
serve as base objects for user-defined exception classes.

15.11.1 TheError Constructor Called as a Function
When Err or is called as a function rather than as a constructor, it creates and initialises a new Error
object. Thus the function call Error(..) is equivalent to the object creation expression new
Error (..) with the same arguments.
15.11.1.1 Error (message)

The [[Prototype]] property of the newly constructed object is set to the original Error prototype
object, the one that istheinitial value of Er r or . pr ot ot ype (15.11.3.1).

The [[Class]] property of the newly constructed object issetto" Error ".

If the argument message is not undefined, the message property of the newly constructed object is
set to ToString(message).
15.11.2 The Error Constructor
When Error is called as part of a new expression, it is a constructor: it initialises the newly created
object.
15.11.2.1 new Error (message)

The [[Prototype]] property of the newly constructed object is set to the original Error prototype
object, the one that istheinitial value of Er r or . pr ot ot ype (15.11.3.1).

The [[Class]] property of the newly constructed Error object issetto " Error ™.

If the argument message is not undefined, the message property of the newly constructed object is
set to ToString(message).

15.11.3 Properties of the Error Constructor

The value of the internal [[Prototype]] property of the Error constructor is the Function prototype object
(15.3.4).

Besides the internal properties and the | engt h property (whose value is 1), the Error constructor has
the following property:

15.11.3.1 Error.prototype
Theinitial value of Err or . pr ot ot ype isthe Error prototype object (15.11.4).

This property has the attributes { DontEnum, DontDelete, ReadOnly }.

15.11.4 Propertiesof the Error Prototype Object
The Error prototype object isitself an Error object (its[[Class]] is" Error ™).

The value of the internal [[Prototype]] property of the Error prototype object is the Object prototype
object (15.2.3.1).

15.11.4.1 Error.prototype.constructor
Theinitial value of Er r or . pr ot ot ype. const ruct or isthe built-in Er r or constructor.

15.11.4.2 Error.prototype.name
Theinitial value of Err or . prot ot ype. nane is"Error".

15.11.4.3 Error.prototype.message
Theinitial value of Err or . pr ot ot ype. nessage is an implementation-defined string.

15.11.4.4 Error.prototype.toString ()
Returns an implementation defined string.

- 147 -

15.11.5 Propertiesof Error Instances
Error instances have no special properties beyond those inherited from the Error prototype object.

15.11.6 Native Error Types Used in This Standard

One of the NativeError objects below is thrown when a runtime error is detected. All of these objects
share the same structure, as described in 15.11.7.

15.11.6.1

15.11.6.2

15.11.6.3

15.11.6.4

15.11.6.5

15.1.6.6

EvalError

Indicates that the global function eval was used in away that is incompatible with its definition. See
15.1.2.1.

RangeError

Indicates a numeric value has exceeded the allowable range. See 15.4.2.2, 15.4.5.1, 15.7.4.5, 15.7.4.6,
and 15.7.4.7.

ReferenceError
Indicate that an invalid reference value has been detected. See 8.7.1, and 8.7.2.

SyntaxError

Indicates that a parsing error has occurred. See 15.1.2.1, 15.3.2.1, 15.10.2.5, 15.10.2.9, 15.10.2.15,
15.10.2.19, and 15.10.4.1.

TypeError
Indicates the actual type of an operand is different than the expected type. See 8.6.2, 8.6.2.6, 9.9,
11.2.2, 11.2.3, 11.8.6, 11.8.7, 15.3.4.2, 15.3.4.3, 15.3.4.4, 15.3.5.3, 15.4.4.2, 15.4.4.3, 15.5.4.2,
15.5.4.3, 15.6.4, 15.6.4.2, 15.6.4.3, 15.7.4, 15.7.4.2, 15.7.4.4, 15.9.5, 15.9.5.9, 15.9.5.27, 15.10.4.1,
and 15.10.6.

URIError

Indicates that one of the global URI handling functions was used in a way that is incompatible with its
definition. See 15.1.3.

15.11.7 NativeError Object Structure

When an ECMAScript implementation detects a runtime error, it throws an instance of one of the
NativeError objects defined in 15.11.6. Each of these objects has the structure described below,
differing only in the name used as the constructor name instead of NativeError, in the name property of
the prototype object, and in the implementation-defined message property of the prototype object.

For each error object, references to NativeError in the definition should be replaced with the appropriate
error object name from 15.11.6.

15.11.7.1

15.11.7.2

15.11.7.3

15.11.7.4

NativeError Constructors Called as Functions

When a NativeError constructor is called as a function rather than as a constructor, it creates and
initialises a new object. A call of the object as a function is equivalent to calling it as a constructor
with the same arguments.

NativeError (message)

The [[Prototype]] property of the newly constructed object is set to the prototype object for this error
constructor. The [[Class]] property of the newly constructed object issetto " Err or ™.

If the argument message is not undefined, the message property of the newly constructed object is
set to ToString(message).

The NativeError Constructors

When a NativeError constructor is called as part of a new expression, it is a constructor: it initialises
the newly created object.

New NativeError (message)

The [[Prototype]] property of the newly constructed object is set to the prototype object for this
NativeError constructor. The [[Class]] property of the newly constructed object issetto" Err or ™.

15.11.7.5

15.11.7.6

15.11.7.7

15.11.7.8

15.11.7.9

- 148 -

If the argument message is not undefined, the message property of the newly constructed object is
set to ToString(message).

Properties of the NativeError Constructors

The value of the internal [[Prototype]] property of a NativeError constructor is the Function prototype
object (15.3.4).

Besides the internal properties and the | engt h property (whose value is 1), each NativeError
constructor has the following property:

NativeError.prototype

The initial value of NativeError. pr ot ot ype is a NativeError prototype object (15.11.7.7). Each
NativeError constructor has a separate prototype object.

This property has the attributes { DontEnum, DontDelete, ReadOnly }.

Properties of the NativeError Prototype Objects

Each NativeError prototype object is an Error object (its[[Class]] is" Error").

The value of the internal [[Prototype]] property of each NativeError prototype object is the Error
prototype object (15.11.4).

NativeError.prototype.constructor

The initial value of the const r uct or property of the prototype for a given NativeError constructor
is the NativeError constructor function itself (15.11.7).

NativeError.prototype.name

The initial value of the name property of the prototype for a given NativeError constructor is the
name of the constructor (the name used instead of NativeError).

15.11.7.10 NativeError.prototype.message

The initial value of the message property of the prototype for a given NativeError constructor is an
implementation-defined string.

NOTE

The prototypes for the NativeError constructors do not themselves provide at oSt ri ng function,
but instances of errors will inherit it from the Error prototype object.

15.11.7.11 Properties of NativeError I nstances

NativeError instances have no special properties beyond those inherited from the Error prototype
object.

16

- 149 -

Errors

An implementation should report runtime errors at the time the relevant language construct is evaluated. An
implementation may report syntax errors in the program at the time the program is read in, or it may, at its
option, defer reporting syntax errors until the relevant statement is reached. An implementation may report
syntax errors in eval code at the time eval is called, or it may, at its option, defer reporting syntax errors
until the relevant statement is reached.

An implementation may treat any instance of the following kinds of runtime errors as a syntax error and
therefore report it early:

» Improper uses of r et ur n, br eak, and cont i nue.
e Using theeval property other than viaadirect call.
» Errorsin regular expression literals.

» Attempts to call PutValue on a value that is not a reference (for example, executing the assignment
statement 3=4).

An implementation shall not report other kinds of runtime errors early even if the compiler can prove that a
construct cannot execute without error under any circumstances. An implementation may issue an early
warning in such a case, but it should not report the error until the relevant construct is actually executed.

An implementation shall report all errors as specified, except for the following:

* An implementation may extend program and regular expression syntax. To permit this, all operations (such
as calling eval , using a regular expression literal, or using the Funct i on or RegExp constructor) that
are allowed to throw SyntaxError are permitted to exhibit implementation-defined behaviour instead of
throwing SyntaxError when they encounter an implementation-defined extension to the program or regular
expression syntax.

« An implementation may provide additional types, values, objects, properties, and functions beyond those
described in this specification. This may cause constructs (such as looking up a variable in the global
scope) to have implementation-defined behaviour instead of throwing an error (such as ReferenceError).

* An implementation is not required to detect EvalError. If it chooses not to detect EvalError, the
implementation must allow eval to be used indirectly and/or allow assignmentsto eval .

* An implementation may define behaviour other than throwing RangeError for toFi xed,
t oExponenti al, and t oPreci si on when the fractionDigits or precision argument is outside the
specified range.

- 150 -

A.1 Lexical Grammar

SourceCharacter ::
any Unicode character

InputElementDiv ::
WhiteSpace
LineTer minator
Comment
Token
DivPunctuator

InputElementRegExp ::
WhiteSpace
LineTerminator
Comment
Token
Regular ExpressionLiteral

WhiteSpace ::
<TAB>
<VT>
<FF>
<S>
<NBSP>
<UsP>

LineTerminator ::
<LF>
<CR>
<LS
<PS

Comment ::
MultiLineComment
SingleLineComment

MultiLineComment ::

[* MultiLineCommentChar sy * /

MultiLineCommentChars ::

- 151 -

Annex A
(informative)

Grammar Summary

MultiLineNotAsteriskChar MultiLineCommentChar Sy

* PostAsteriskCommentChar Sy

See clause 6

See clause 6

See clause 6

See7.2

See7.3

See7.4

See7.4

See7.4

PostAsteriskCommentChars ::

MultiLineNotForwardSashOrAsteriskChar MultiLineCommentChar Sy

* PostAsteriskCommentChar sy

MultiLineNotAsteriskChar ::

SourceCharacter but not asterisk *

MultiLineNotForwardSashOrAsteriskChar ::
SourceCharacter but not forward-slash/ or asterisk *

SngleLineComment ::

/1 SingleLineCommentChar Sy

SngleLineCommentChars ::

- 152 -

SngleLineCommentChar SingleLineCommentChar sy

SngleLineCommentChar ::

SourceCharacter but not LineTerminator

Token ::
ReservedWord
Identifier
Punctuator
NumericLiteral
SringLiteral

ReservedWord ::
Keyword
FutureReservedWord
NullLiteral
BooleanLiteral

Keyword :: one of
br eak
case
catch
conti nue
def aul t
del ete
do

FutureReservedWord :: one of
abst ract
bool ean
byte
char
cl ass
const
debugger

el se
finally
for
function
if

in

i nst anceof

enum
export

ext ends
final

fl oat

goto

i npl emrent s

new
return
switch
this

t hr ow
try

t ypeof

i nt
interface
| ong
native
package
private
protected

See7.4
See7.4
See7.4
See7.4
See7.4
See7.4
See?7.5
See7.5.1
See75.2

var

voi d

whi | e

with
See 753

short

static

super

synchroni zed
t hr ows
transi ent

vol atile

- 153 -

doubl e i mport public

Identifier :: See 7.6
IdentifierName but not ReservedWord

IdentifierName :: See 7.6
Identifier Start
IdentifierName | dentifier Part

IdentifierSart :: See 7.6
Unicodel etter
$

UnicodeEscapeSequence

IdentifierPart :: See 7.6
IdentifierSart
UnicodeCombiningMark
UnicodeDigit
UnicodeConnector Punctuation
UnicodeEscapeSequence

Unicodel etter See7.6
any character in the Unicode categories “Uppercase letter (Lu)”, “Lowercase letter (LI)”, “Titlecase letter (Lt)”,
“Modifier letter (Lm)”, “Other letter (Lo)”, or “Letter number (NI)”.

UnicodeCombiningMark See7.6
any character in the Unicode categories “Non-spacing mark (Mn)” or “Combining spacing mark (Mc)”

UnicodeDigit See 7.6
any character in the Unicode category “Decimal number (Nd)”

UnicodeConnector Punctuation See 7.6
any character in the Unicode category “Connector punctuation (Pc)”

Uni codeEscapeSequence :: See 7.6
\ u HexDigit HexDigit HexDigit HexDigit
HexDigit :: one of See 7.6
0 1 2 3 45 6 7 8 9 a b c d e f A B CDE F
Punctuator :: one of See 7.7
{ } () []
: , < > <=
>= == | = === | ==
+ - * % ++ - -
<< >> >>> & | A
1 ~ && | 2
= += -= * = 7= <<=

>>= >>>= &=

|
{ } () []

DivPunctuator :: one of
/ /=

Literal ::
NullLiteral
BooleanLiteral
NumericLiteral
StringLiteral

NullLiteral ::
nul |

BooleanLiteral ::
true
fal se

NumericLiteral ::
DecimalLiteral
HexlIntegerLiteral

DecimalLiteral ::

- 154 -

DecimalIntegerLiteral . Decimal Digits,,: ExponentPartyy

. Decimal Digits ExponentPartqy
Decimallnteger Literal ExponentPartqy

DecimallntegerLiteral ::
0

NonZeroDigit Decimal DigitSyy

Decimal Digits ::
Decimal Digit

Decimal Digits Decimal Digit

DecimalDigit :: one of

012 3 45 6 7 8 9

Exponentlndicator :: one of

e E

Sgnedinteger ::
Decimal Digits
+ DecimalDigits
- DecimalDigits

See 7.7

See7.8

See7.8.1

See7.8.2

See7.8.3

See7.8.3

See7.8.3

See7.8.3

See7.8.3

See7.8.3

See7.8.3

HexintegerLiteral ::
0x HexDigit
0X HexDigit
HexintegerLiteral HexDigit

SringLiteral ::

" DoubleStringCharactersyy "
" SingleStringCharacter oy '

DoubleStringCharacters ::

DoubleStringCharacter DoubleStringChar acter sy

SngleStringCharacters ::

SingleStringCharacter SingleStringChar acter sy

DoubleStringCharacter ::

- 155 -

SourceCharacter but not double-quote” or backslash\ or LineTerminator

\ EscapeSequence

SngleStringCharacter ::

SourceCharacter but not single-quote' or backslash\ or LineTerminator

\ EscapeSeguence

EscapeSequence ::
Character EscapeSequence
0 [lookahead 0 DecimalDigit]
HexEscapeSequence
UnicodeEscapeSequence

Character EscapeSequence ::
SingleEscapeCharacter
NonEscapeCharacter

SingleEscapeCharacter :: one of
"\ b f n

EscapeCharacter ::
SingleEscapeCharacter
Decimal Digit
X
u

HexEscapeSequence ::
X HexDigit HexDigit

UnicodeEscapeSequence ::

u HexDigit HexDigit HexDigit HexDigit

See7.8.3

See7.84

See7.84

See7.84

See7.84

See7.84

See7.84

See7.84

See7.84

See7.8.4

See7.84

See7.84

- 156 -

RegularExpressionLiteral ::
/ RegularExpressionBody / Regular ExpressionFlags

RegularExpressionBody ::
RegularExpressionFirstChar RegularExpressionChars

RegularExpressionChars::
[empty]
Regular ExpressionChars Regular ExpressionChar

RegularExpressionFirstChar ::
NonTerminator but not * or \ or /
BackslashSequence

RegularExpressionChar ::
NonTerminator but not \ or /
BackslashSequence

BackslashSequence ::
\' NonTerminator

NonTerminator ::
SourceCharacter but not LineTerminator

RegularExpressionFlags ::
[empty]
RegularExpressionFlags | dentifier Part

A.2 Number Conversions
SringNumericLiteral :::
StriwhiteSpace,
StrWhiteSpace,, StrNumericLiteral Str\WhiteSpace,

SrWhiteSpace :::
StrwhiteSpaceChar StrwhiteSpace,:

SrwhiteSpaceChar :::
<TAB>
<SP>
<NBSP>
<FF>
<VT>
<CR>
<LF>
<LS>
<PS
<usSP>

See7.85

See7.85

See 7.85

See7.85

See7.8.5

See 7.85

See7.8.5

See7.85

See9.3.1

See9.3.1

See9.3.1

- 157 -

SrNumericLiteral ::: See9.3.1
SrDecimalLiteral
HexlntegerLiteral

SrDecimallLiteral ::: See9.3.1
SrUnsignedDecimalLiteral
+ SrUnsignedDecimalLiteral
- SrUnsignedDecimalLiteral

SrUnsignedDecimalLiteral ::: See9.3.1
Infinity
DecimalDigits. Decimal Digits,y ExponentPartqy
. Decimal Digits ExponentPar toy
Decimal Digits ExponentPar toy

DecimalDigits::: See9.3.1
DecimalDigit
Decimal Digits Decimal Digit

DecimalDigit ::: one of See9.3.1
0 1 2 3 45 6 7 8 9

ExponentPart ::: See9.3.1
ExponentIndicator Signedinteger

ExponentIndicator ::: one of See9.3.1
e E

Sgnedinteger ::: See9.3.1
DecimalDigits
+ DecimalDigits
- DecimalDigits

HexIntegerLiteral ::: See9.3.1
0x HexDigit
0X HexDigit
HexIntegerLiteral HexDigit

HexDigit ::: one of See9.3.1
0 1 2 3 45 6 7 8 9 ab c¢c de f A B CDE F

A.3 Expressions
PrimaryExpression : Seell.l
this
Identifier
Literal
ArrayLiteral
ObjectLiteral
(Expression)

- 158 -

ArrayLiteral :
[Elisiong]
[ElementList]
[ElementList, Elisiongy]

ElementList :
Elisiong, AssignmentExpression
ElementList , Elisiongy AssignmentExpression

Elision:

Elision,

ObjectLiteral :

{}
{ PropertyNameAndValueList }

PropertyNameAndValueL.ist :
PropertyName : AssignmentExpression
PropertyNameAndValuelList , PropertyName : AssignmentExpression

PropertyName :
Identifier
SringLiteral
NumericLiteral

MemberExpression :
PrimaryExpression
FunctionExpression
MemberExpression [Expression]
MemberExpression . |dentifier
new MemberExpression Arguments

NewExpression :
Member Expression
new NewExpression

CallExpression :
MemberExpression Arguments
CallExpression Arguments
CallExpression [Expression]
CallExpression . Identifier

Arguments :

()
(ArgumentList)

Seelll4

Seell.l4

Seell.l4

See 1115

Seel11.15

See11.15

See11.2

Seel11.2

Seel11.2

See11.2

- 159 -

ArgumentList : Seel1l1.2
AssignmentExpression
ArgumentList, AssignmentExpression

LeftHandS deExpression : Seel1l1.2
NewExpression
CallExpression

PostfixExpression : See11.3
LeftHandS deExpression

LeftHandSdeExpression [no LineTerminator here] ++
LeftHandS deExpression [no LineTerminator here] - -

UnaryExpression : Seell.4
PostfixExpression
del et e UnaryExpression
voi d UnaryExpression
t ypeof UnaryExpression
++ UnaryExpression
- - UnaryExpression
+ UnaryExpression
- UnaryExpression
~ UnaryExpression
I UnaryExpression

MultiplicativeExpression : See11.5
UnaryExpression
MultiplicativeExpression * UnaryExpression
MultiplicativeExpression / UnaryExpression
MultiplicativeExpression %UnaryExpression

AdditiveExpression : See11.6
MultiplicativeExpression
AdditiveExpression + MultiplicativeExpression
AdditiveExpression - MultiplicativeExpression

ShiftExpression : See 11.7
AdditiveExpression
ShiftExpression << AdditiveExpression
ShiftExpression >> AdditiveExpression
ShiftExpression >>> AdditiveExpression

Relational Expression : See11.8
ShiftExpression
Relational Expression < ShiftExpression
Relational Expression > ShiftExpression
Relational Expression <= ShiftExpression
Relational Expression >= ShiftExpression
RelationalExpression i nst anceof ShiftExpression
RelationalExpression i n ShiftExpression

- 160 -

Relational ExpressionNoln :
ShiftExpression
Relational ExpressionNoln < ShiftExpression
Relational ExpressionNoln > ShiftExpression
Relational ExpressionNoln <= ShiftExpression
Relational ExpressionNoln >= ShiftExpression
RelationalExpressionNolni nst anceof ShiftExpression

EqualityExpression :
Relational Expression
EqualityExpression == Relational Expression
EqualityExpression ! = Relational Expression
EqualityExpression === Relational Expression
EqualityExpression ! == Relational Expression

EqualityExpressionNoln :
Relational ExpressionNoln
EqualityExpressionNoln == Relational ExpressionNoln
EqualityExpressionNoln ! = Relational ExpressionNoln
EqualityExpressionNoln === Relational ExpressionNoln
EqualityExpressionNoln ! == Relational ExpressionNoln

BitwiseANDEXpression ;
EqualityExpression
BitwiseANDEXpression & EqualityExpression

BitwiseANDEXpressionNoln :
EqualityExpressionNoln
BitwiseANDEXpressionNoln & EqualityExpressionNoln

BitwiseXOREXxpression :
BitwiseANDEXpression

BitwiseXORExpression * BitwiseANDEXpression

BitwiseXORExpressionNoln :
BitwiseANDEXxpressionNoln
BitwiseXORExpressionNoln * BitwiseANDEXxpressionNoln

BitwiseOREXpression :
Bitwi seXOREXpression

BitwiseOREXpression | BitwiseXORExpression

BitwiseOREXxpressionNoln :
BitwiseXOREXxpressionNoln
BitwiseOREXpressionNoln | BitwiseXORExpressionNoln

Logical ANDEXxpression :
Bitwi seOREXpression
Logical ANDEXxpression && BitwiseOREXpression

See11.8

See 119

See 119

See 11.10

See 11.10

See 11.10

See 11.10

See 11.10

See 11.10

See11.11

- 161 -

Logical ANDExpressionNoln :
BitwiseORExpressionNoln
Logical ANDExpressionNol n && Bitwi seORExpressionNoln

Logical ORExpression :
Logical ANDExpression

Logical ORExpression | | Logical ANDEXxpression

Logical ORExpressionNoln :
Logical ANDExpressionNoln
Logical ORExpressionNoln | | Logical ANDExpressionNoln

Conditional Expression :
Logical ORExpression
Logical ORExpression ? AssignmentExpression : AssignmentExpression

Conditional ExpressionNoln :
Logical ORExpressionNoln

Logical ORExpressionNoln ? AssignmentExpressionNoln : AssignmentExpressionNoln

AssignmentExpression :
Conditional Expression
LeftHandS deExpression AssignmentOperator AssignmentExpression

AssignmentExpressionNoln :
Conditional ExpressionNoln
LeftHandS deExpression AssignmentOperator AssignmentExpressionNoln

AssignmentOperator : one of

= * = /| = (7= += -= <<= >>= >>>= &=
Expression :
AssignmentExpression

Expression, AssignmentExpression

ExpressionNoln :
AssignmentExpressionNoln
ExpressionNoln, AssignmentExpressionNoln

Seell.11

Seell.11

Seell.11

See11.12

See11.12

See11.13

See11.13

Seel1l.14

- 162 -

A.4 Statements

Satement :
Block
VariableSatement
EmptyStatement
ExpressionSatement
[fSatement
IterationSatement
ContinueStatement
BreakSatement
ReturnSatement
WithSatement
LabelledSatement
SwitchSatement
ThrowSatement
TryStatement

Block :
{ StatementListoy }

SatementList :
Satement
SatementList Satement

VariableSatement :
var VariableDeclarationList ;

VariableDeclarationList :
VariableDeclaration
VariableDeclarationList, VariableDeclaration

VariableDeclarationListNoln :
VariableDeclarationNoln
VariableDeclarationListNoln, VariableDeclarationNoln

VariableDeclaration :
Identifier Initialiser gy

VariableDeclarationNoln :
Identifier InitialiserNolngy

Initialiser :
= AssignmentExpression
InitialiserNoln :

= AssignmentExpressionNoln

EmptyStatement :

See clause 12

Seel2.1

Seel21

See12.2

See12.2

See12.2

See12.2

See12.2

See12.2

See12.2

See12.3

ExpressionSatement :
[lookahead O {{, functi on}] Expression;

IfStatement :
i f (Expression) Satement el se Satement
i f (Expression) Satement

IterationStatement :
do Satement whi | e (Expression) ;
whi | e (Expression) Satement

f or (ExpressionNolngy; Expressiong; Expressiong) Statement
for (var VariableDeclarationListNoln; Expressiongy ; Expressiong,) Statement

- 163 -

for (LeftHandSdeExpressioni n Expression) Statement

for (var VariableDeclarationNolni n Expression) Satement

ContinueStatement :
conti nue [noLineTerminator here] ldentifierqy ;

BreakStatement :
br eak [noLineTerminator here] |dentifierqy ;

ReturnSatement :
return [noLineTerminator here] EXPressiongy ;

WithStatement :
Wi t h (Expression) Statement

SwitchSatement :
swi t ch (Expression) CaseBlock

CaseBlock :
{ CaseClausesyy }
{ CaseClauses,,; DefaultClause CaseClausesyy }

CaseClauses:
CaseClause
CaseClauses CaseClause

CaseClause :
case Expression: SatementListyy

DefaultClause :
def aul t : StatementListoy

LabelledSatement :
Identifier : Satement

Seel12.4

See 125

See12.6

See12.7

See12.8

See12.9

See 12.10

See12.11

See12.11

See12.11

See12.11

See12.11

See 12.12

- 164 -

ThrowStatement :
t hr ow [no LineTerminator here] EXpression ;

TryStatement :
t ry Block Catch
t ry Block Finally
t ry Block Catch Finally

Catch:
cat ch (Identifier) Block

Finally :
final |y Block

A.5 Functions and Programs

FunctionDeclaration :
functi on ldentifier (FormalParameterList,,) { FunctionBody }

FunctionExpression :
functi on ldentifiery, (FormalParameterListyy) { FunctionBody }

Formal ParameterList :
Identifier
FormalParameterList, ldentifier

FunctionBody :
Sour ceElements

Program:
Sour ceElements

SourceElements :
Sour ceElement
Sour ceElements Sour ceElement

SourceElement :
Satement
FunctionDeclaration

A.6 Universal Resource ldentifier Character Classes
uri i
uriCharacter sy

uriCharacters:::
uriCharacter uriCharacter Soy

See 12.13

See 12.14

See 12.14

See12.14

See clause 13

See clause 13

Seeclause 13

Seeclause 13

See clause 14

See clause 14

See clause 14

See15.1.3

See15.1.3

- 165 -

uriCharacter ::: See 15.1.3
uriReserved
uriUnescaped
uriEscaped

uriReserved ::: one of See 15.1.3

o ? 0 @& = + $

uriUnescaped ::: See15.1.3
uriAlpha
DecimalDigit
uriMark

uriEscaped ::: See15.1.3

%HexDigit HexDigit

uriAlpha::: one of See15.1.3
a b c de f g h i j k I mnop qgqor s t uv w X
AB CDEFGHI JKLMNOP QRSTUV WX
uriMark ::: one of See15.1.3
SO

A.7 Regular Expressions

Pattern :: See 15.10.1
Digjunction

Digjunction :: See 15.10.1
Alternative

Alternative | Digjunction

Alternative :: See 15.10.1
[empty]
Alternative Term

Term:: See 15.10.1
Assertion
Atom
Atom Quantifier

Assertion :: See 15.10.1

AN

— —

T

<<
N N

Quantifier ::
Quantifier Prefix
QuantifierPrefix ?

QuantifierPrefix ::

+
?

{ DecimalDigits}
{ DecimalDigits, }
{ DecimalDigits, DecimalDigits}

Atom::
PatternCharacter

\ AtomEscape
CharacterClass
(Digjunction)
(?: Digunction)
(? =Disgunction)
(?! Digunction)

PatternCharacter :: SourceCharacter but not any of:

AN Do+ 72 ()]

AtomEscape ::
Decimal Escape
Character Escape
CharacterClassEscape

Character Escape ::
ControlEscape
¢ ControlLetter
HexEscapeSequence
UnicodeEscapeSequence
| dentityEscape

ControlEscape :: one of
f n r t v

ControlLetter :: one of
a b ¢c d e f g h i j Kk
A B CDEZFGHII J K
| dentityEscape ::

SourceCharacter but not |dentifier Part

Decimal Escape ::
DecimallntegerLiteral [lookahead O DecimalDigit]

- —

- 166 -

<3

Z 35

Oo©°o

uo

See 15.10.1

See 15.10.1

See 15.10.1

See 15.10.1

See 15.10.1

See 15.10.1

See 15.10.1

See 15.10.1

See 15.10.1

CharacterClass ::
[[lookahead O {~}] ClassRanges]
[™ ClassRanges |

ClassRanges ::
(empty]
NonemptyClassRanges

NonemptyClassRanges ::
ClassAtom
ClassAtom NonemptyClassRangesNoDash
ClassAtom - ClassAtom ClassRanges

NonemptyClassRangesNoDash ::
ClassAtom
ClassAtomNoDash NonemptyClassRangesNoDash
ClassAtomNoDash - ClassAtom ClassRanges

ClassAtom ::

ClassAtomNoDash

ClassAtomNoDash ::
SourceCharacter but not oneof\] -
\ ClassEscape

ClassEscape ::
Decimal Escape
b
CharacterEscape
CharacterClassEscape

- 167 -

See 15.10.1

See 15.10.1

See 15.10.1

See 15.10.1

See 15.10.1

See 15.10.1

See 15.10.1

- 168 -

- 169 -

Annex B
(informative)

Compatibility

B.1 Additional Syntax

Past editions of ECMAScript have included additional syntax and semantics for specifying octal literals and
octal escape sequences. These have been removed from this edition of ECMAScript. This non-normative
annex presents uniform syntax and semantics for octal literals and octal escape sequences for compatibility
with some older ECMA Script programs.

B.1.1 NumericLiterals
The syntax and semantics of 7.8.3 can be extended as follows:

Syntax

NumericLiteral ::
DecimalLiteral
HexlintegerLiteral
OctallntegerLiteral

OctallntegerLiteral ::
0 OctalDigit
OctallntegerLiteral OctalDigit

Semantics

e The MV of NumericLiteral :: OctallntegerLiteral isthe MV of OctallntegerLiteral.
e TheMV of OctalDigit:: 0isO.

e TheMV of OctalDigit:: 1is1.

e The MV of OctalDigit :: 2 is2.

e TheMYV of OctalDigit:: 3is3.

e TheMV of OctalDigit:: 4 is4.

e TheMV of OctalDigit:: 5is5.

e TheMV of OctalDigit:: 6 is6.

e TheMYV of OctalDigit:: 7 is7.

e TheMV of OctallntegerLiteral :: 0 OctalDigit isthe MV of OctalDigit.

e The MV of OctallntegerLiteral :: OctallntegerLiteral OctalDigit is (the MV of OctallntegerLiteral times 8) plus
the MV of OctalDigit.

B.1.2 String Literals
The syntax and semantics of 7.8.4 can be extended as follows:

Syntax

EscapeSequence ::
Character EscapeSequence

Octal EscapeSequence
HexEscapeSequence
UnicodeEscapeSequence

- 170 -

Octal EscapeSequence ::
OctalDigit [lookahead O Decimal Digit]
ZeroToThree Octal Digit [lookahead 0 Decimal Digit]
FourToSeven Octal Digit
ZeroToThree OctalDigit OctalDigit

ZeroToThree
0 1

FourToSeven
4 5

;o oneof
2 3

:: oneof
6 7

Semantics

The CV of EscapeSequence :: Octal EscapeSequence isthe CV of the Octal EscapeSequence.

The CV of OctalEscapeSequence :: OctalDigit [lookahead O Decimal Digit] iS the character whose code point value is
the MV of the OctalDigit.

The CV of Octal EscapeSequence :: ZeroToThree Octal Digit [lookahead O DecimalDigit] iS the character whose code
point valueis (8 timesthe MV of the ZeroToThree) plusthe MV of the OctalDigit.

The CV of OctalEscapeSequence :: FourToSeven Octal Digit is the character whose code point value is (8 times
the MV of the FourToSeven) plusthe MV of the OctalDigit.

The CV of OctalEscapeSequence :: ZeroToThree OctalDigit OctalDigit is the character whose code point value
is (64 (that is, 8%) times the MV of the ZeroToThree) plus (8 times the MV of the first Octal Digit) plus the MV
of the second Octal Digit.

The MV of ZeroToThree:: 0isO.
The MV of ZeroToThree:: 1is 1.
The MV of ZeroToThree:: 2 is2.
The MV of ZeroToThree:: 3is3.
The MV of FourToSeven :: 4 is4.
The MV of FourToSeven:: 5isb5.
The MV of FourToSeven:: 6 is6.
The MV of FourToSeven:: 7 is7.

B.2 Additional Properties

Some implementations of ECMAScript have included additional properties for some of the standard native
objects. This non-normative annex suggests uniform semantics for such properties without making the
properties or their semantics part of this standard.

B.2.1 escape (string)

The escape function is a property of the global object. It computes a new version of a string value in
which certain characters have been replaced by a hexadecimal escape sequence.

For those characters being replaced whose code point value is OXFF or less, a two-digit escape sequence

of

the form %xx is used. For those characters being replaced whose code point value is greater than OxFF, a

four-digit escape sequence of the form %uxxxx is used

When the escape function is called with one argument string, the following steps are taken:

NooAMWNE

Call ToString(string).

Compute the number of charactersin Result(1).

Let R be the empty string.

Let k be 0.

If k equals Result(2), return R.

Get the character (represented as a 16-bit unsigned integer) at position k within Result(1).

If Result(6) is one of the 69 nonblank characters

“ ABCDEFGHI JKLMNOPQRSTUVWKYZabcdef ghi j kl mopqr st uvwxyz0123456789@ _ +-

- 171 -

T
then go to step 13.

8. If Result(6), islessthan 256, go to step 11.

9. Let Sbe astring containing six characters “ Yuwxyz’ where wxyz are four hexadecimal digits encoding
the value of Result(6).

10. Go to step 14.

11. Let Sbe astring containing three characters “ %xy” where xy are two hexadecimal digits encoding the
value of Result(6).

12. Go to step 14.

13. Let Sbe a string containing the single character Result(6).

14. Let R be anew string value computed by concatenating the previous value of Rand S.

15. Increase k by 1.

16. Go to step 5.

NOTE
The encoding is partly based on the encoding described in RFC1738, but the entire encoding specified in
this standard is described above without regard to the contents of RFC1738.

B.2.2 unescape (string)

The unescape function is a property of the global object. It computes a new version of a string value in
which each escape sequence of the sort that might be introduced by the escape function is replaced with
the character that it represents.

When the unescape function is called with one argument string, the following steps are taken:

1. Cadl ToString(string).

2. Compute the number of characters in Result(1).

3. Let R be the empty string.

4. LetkbeO.

5. If k equals Result(2), return R.

6. Let c bethe character at position k within Result(1).

7. If cisnot % go to step 18.

8. If kisgreater than Result(2)-6, go to step 14.

9. If the character at position k+1 within Result(1) is not u, go to step 14.

10. If the four characters at positions k+2, k+3, k+4, and k+5 within Result(1) are not all hexadecimal

digits, go to step 14.

11. Let c be the character whose code point value is the integer represented by the four hexadecimal digits
at positions k+2, k+3, k+4, and k+5 within Result(1).

12. Increase k by 5.

13. Go to step 18.

14. If k is greater than Result(2)-3, go to step 18.

15. If the two characters at positions k+1 and k+2 within Result(1) are not both hexadecimal digits, go to
step 18.

16. Let c be the character whose code point value is the integer represented by two zeroes plus the two
hexadecimal digits at positions k+1 and k+2 within Result(1).

17. Increase k by 2.

18. Let R be anew string value computed by concatenating the previous value of R and c.

19. Increase k by 1.

20. Go to step 5.

B.2.3 String.prototype.substr (start, length)

The substr method takes two arguments, start and length, and returns a substring of the result of
converting this object to a string, starting from character position start and running for length characters
(or through the end of the string is length is undefined). If start is negative, it is treated as
(sourceLength+start) where sourcelLength is the length of the string. The result is a string value, not a
String object. The following steps are taken:

1. Call ToString, giving it the this value as its argument.

B.2.4

B.2.5

B.2.6

-172 -

Call Tolnteger(start).

If length is undefined, use +oo; otherwise call Tolnteger(length).

Compute the number of charactersin Result(1).

If Result(2) is positive or zero, use Result(2); else use max(Result(4)+Result(2),0).

Compute min(max(Result(3),0), Result(4)—Result(5)).

If Result(6) < 0, return the empty string “”.

Return a string containing Result(6) consecutive characters from Result(1) beginning with the
character at position Result(5).

ONoGr~WDN

Thel engt h property of the subst r method is 2.

NOTE
The subst r function is intentionally generic; it does not require that its this value be a String object.
Therefore it can be transferred to other kinds of objects for use as a method.

Date.prototype.getYear ()

NOTE
The get Ful | Year method is preferred for nearly all purposes, because it avoids the “year 2000
problem.”

When the getY ear method is called with no arguments the following steps are taken:

1. Lett bethistime value.
2. If tisNaN, return NaN.
3. Return YearFromTime(Local Time(t)) — 1900.

Date.prototype.setYear (year)

NOTE
The set Ful | Year method is preferred for nearly all purposes, because it avoids the “year 2000
problem.”

When the setY ear method is called with one argument year the following steps are taken:

Let t be the result of Local Time(this time value); but if thistime value is NaN, let t be +0.

Call ToNumber(year).

If Result(2) is NaN, set the [[Value]] property of the this value to NaN and return NaN.

If Result(2) is not NaN and 0 < Tolnteger(Result(2)) < 99 then Result(4) is Tolnteger(Result(2))
+ 1900. Otherwise, Result(4) is Result(2).

Compute MakeDay(Result(4), MonthFromTime(t), DateFromTime(t)).

Compute UTC(MakeDate(Result(5), TimeWithinDay(t))).

Set the [[Value]] property of the this value to TimeClip(Result(6)).

Return the value of the [[Value]] property of the this value.

AODNE

©No o

Date.prototype.toGMTString ()

NOTE

The property t oUTCSt ri ng is preferred. The t oGMTSt ri ng property is provided principally for
compatibility with old code. It is recommended that the t oUTCSt ri ng property be used in new
ECMAScript code.

The Function object that is the initial value of Dat e. pr ot ot ype. t oGMTSt ri ng is the same Function
object that is theinitial value of Dat e. pr ot ot ype. t oUTCSt ri ng.

Free printed copies can be ordered from:

ECMA
114 Rue du Rhoéne
CH-1204 Geneva

Switzerland
Fax: +41 22 849.60.01
Internet: documents@ecma.ch

Files of this Standard can be freely downloaded from our ECMA web site (www.ecma.ch). This site gives full
information on ECMA, ECMA activities, ECMA Standards and Technical Reports.

ECMA

114 Rue du Rhone
CH-1204 Geneva
Switzerland

Seeinside cover page for obtaining further soft or hard copies.

