Standard ECMA-262

2"% Edition - August1998

ECMA

Standardizing Information and Communication Systems

ECMAScript Language
Specification

Phone: +41 22 849.60.00 - Fax: +41 22 849.60.01 - URL: http://www.ecma.ch - Internet: helpdesk@ecma.ch

Standard ECMA-262

2"% Edition - August1998

ECMA

Standardizing Information and Communication Systems

ECMAScript Language
Specification

Phone: +41 22 849.60.00 - Fax: +41 22 849.60.01 - URL: http://www.ecma.ch - Internet: helpdesk@ecma.ch
MB E-262-ii.doc 31-08-98 17,06

Brief History

This ECMA Standard is based on several originating technologies, the most well-known being JavaScript (Netsc:
Communications) and Jscript (Microsoft Corporation). The language was invented by Brendan Eich at Netscape
first appeared in that company’s Navigator 2.0 browser. It has appeared in all subsequent browsers from Netsc
and in all browsers from Microsoft starting with Internet Explorer 3.0.

The development of this Standard started in November 1996. The first edition of this ECMA Standard was adop!
by the ECMA General Assembly of June 1997.

That ECMA Standard was submitted to ISO/IEC JTC 1 for adoption under the fast-track procedure, and approvec
international standard ISO/IEC 16262, in April 1998. The ECMA General Assembly of June 1998 has approved t
second edition of ECMA-262 to keep it fully aligned with ISO/IEC 16262. Changes from the first edition are
editorial in nature.

The work on standardization of the language continues ppat regular expressions, richer control statements and
better string handling, in addition to the core language standardized in the first two editions of the ECMA Standa
These features and others, such as try/catch exception handling and better internationalization facilities, are be
documented in anticipation of the third edition of the standard about the end of 1999 which will contain the seco
version of the language.

This Standard has been adopted ¥sEtlition of ECMA-262 by the ECMA General Assembly ingust1998.

1 Scope
2 Conformance
3 Normative References

4 Overview

4.1 Web Scripting
4.2 Language Overview

4.2.1 Objects
4.3 Definitions

4.3.1 Type

4.3.2 Primitive value
4.3.3 Object

4.3.4 Constructor
4.3.5 Prototype

4.3.6 Native object
4.3.7 Built-in object
4.3.8 Host object
4.3.9 Undefined value
4.3.10 Undefined type
4.3.11 Null value
4.3.12 Null type
4.3.13 Boolean value
4.3.14 Boolean type
4.3.15 Boolean object
4.3.16 String value
4.3.17 String type
4.3.18 String object
4.3.19 Number value
4.3.20 Number type
4.3.21 Number object
4.3.22 Infinity

4.3.23 NaN

5 Notational Conventions
5.1 Syntactic and Lexical Grammars

5.1.1 Context-Free Grammars
5.1.2 The lexical grammar

5.1.3 The numeric string grammar
5.1.4 The syntactic grammar
5.1.5 Grammar Notation

5.2 Algorithm Conventions

6 Source Text

7 Lexical Conventions

7.1 White Space
7.2 Line Terminators

Table of contents

CUUOUOAUOMDMEAMAMBRDNDADAADNDDAEDN WNNN R

o Ol

[e20Ne)]

10

10
10

7.3 Comments
7.4 Tokens
7.4.1 Reserved Words
7.4.2 Keywords
7.4.3 Future Reserved Words
7.5 ldentifiers
7.6 Punctuators
7.7 Literals

7.7.1 Null Literals
7.7.2 Boolean Literals
7.7.3 Numeric Literals
7.7.4 String Literals
7.8 Automatic semicolon insertion

7.8.1 Rules of automatic semicolon insertion

7.8.2 Examples of Automatic Semicolon Insertion

8 Types
8.1 The Undefined type
8.2 The Null type
8.3 The Boolean type
8.4 The String type
8.5 The Number type
8.6 The Object type
8.6.1 Property attributes
8.6.2 Internal Properties and Methods

8.7 The Reference Type

8.7.1 GetBase(V)

8.7.2 GetPropertyName(V)
8.7.3 GetValue(V)

8.7.4 PutValue(V, W)

8.8 The List type
8.9 The Completion Type

9 Type Conversion

9.1 ToPrimitive
9.2 ToBoolean
9.3 ToNumber
9.3.1 ToNumber Applied to the String Type
9.4 Tolnteger
9.5 Tolnt32: (signed 32 bit integer)
9.6 ToUint32: (unsigned 32 bit integer)
9.7 ToUint16: (unsigned 16 bit integer)
9.8 ToString
9.8.1 ToString Applied to the Number Type

9.9 ToObject

10 Execution Contexts
10.1 Definitions

10.1.1 Function Objects

10.1.2 Types of Executable Code

10.1.3 Variable instantiation

10.1.4 Scope Chain and Identifier Resolution

11
12

12
12
12

13
13
14

14
14
14
17

20

20
21

22

22
22
22
22
22
23

23
24

26

26
27
27
27

27
27

27

28
28
28

29

32
32
32
33

33

33
34

35
35

35
35
35
36

10.1.5 Global Object
10.1.6 Activation object
10.1.7 This

10.1.8 Arguments Object

10.2 Entering An Execution Context

10.2.1 Global Code

10.2.2 Eval Code

10.2.3 Function and Anonymous Code
10.2.4 Implementation-supplied Code

11 Expressions
11.1 Primary Expressions

11.1.1 The this keyword
11.1.2 Identifier reference
11.1.3 Literal reference
11.1.4 The Grouping Operator

11.2 Left-Hand-Side Expressions

11.2.1 Property Accessors
11.2.2 The new operator
11.2.3 Function Calls
11.2.4 Argument Lists

11.3 Postfix expressions

11.3.1 Postfix increment operator
11.3.2 Postfix decrement operator

11.4 Unary operators

11.4.1 The delete operator

11.4.2 The void operator

11.4.3 The typeof operator

11.4.4 Prefix increment operator
11.4.5 Prefix decrement operator
11.4.6 Unary + operator

11.4.7 Unary - operator

11.4.8 The bitwise NOT operator (~)
11.4.9 Logical NOT operator (!)

11.5 Multiplicative operators

11.5.1 Applying the * operator

11.5.2 Applying the / operator

11.5.3 Applying the % operator
11.6 Additive operators

11.6.1 The addition operator (+)

11.6.2 The subtraction operator (-)

11.6.3 Applying the additive operators (+, -) to numbers
11.7 Bitwise shift operators

11.7.1 The left shift operator (<<)

11.7.2 The signed right shift operator (>>)

11.7.3 The unsigned right shift operator (>>>)
11.8 Relational operators

11.8.1 The less-than operator (<)

11.8.2 The greater-than operator (>)

11.8.3 The less-than-or-equal operator (<=)

11.8.4 The greater-than-or-equal operator (>=)
11.8.5 The abstract relational comparison algorithm

36
37
37
37

37

37

37
38
38

38
38

38
38
38
39

39

39
40
40
41

41

41
41

42

42
42
42
43
43
43
43
44
44

44

44
45
45

46

46
46
46

47

47
47
48

48

48

48
49
49
49

11.9 Equality operators

11.9.1 The equals operator (==
11.9.2 The does-not-equals operator (!=)
11.9.3 The abstract equality comparison algorithm

11.10 Binary bitwise operators
11.11 Binary logical operators
11.12 Conditional operator?:)
11.13 Assignment operators

11.13.1 Simple Assignment (=)
11.13.2 Compound assignment (op=)

11.14 Comma operator,()

12 Statements

12.1 Block

12.2 Variable statement

12.3 Empty statement

12.4 Expression statement

12.5 The if statement

12.6 Iteratiorstatements
12.6.1 The while statement
12.6.2 The for statement
12.6.3 The for..in statement

12.7 The continue statement

12.8 The break statement

12.9 The return statement

12.10 The with statement

13 Function Definition
14 Program

15 Native ECMAScript objects

15.1 The Global Object
15.1.1 Value properties of the Global Object
15.1.2 Function properties of the Global Object
15.1.3 Constructor Properties of the Global Object
15.1.4 Other Properties of the Global Object

15.2 Object Objects
15.2.1 The Object Constructor Called as a Function
15.2.2 The Object Constructor
15.2.3 Properties of the Object Constructor
15.2.4 Properties of the Object Prototype Object
15.2.5 Properties of Object Instances

15.3 Function Objects
15.3.1 The Function Constructor Called as a Function
15.3.2 The Function Constructor
15.3.3 Properties of the Function Constructor
15.3.4 Properties of the Function Prototype Object
15.3.5 Properties of Function Instances

15.4 Array Objects

15.4.1 The Array Constructor Called as a Function
15.4.2 The Array Constructor

50

50
50
50

51
52
52
53

53
53

53

54

54
55
56
56
56
56

57
57
58

59
59
59
60

60

61

61
62

62

63
65

66

66

66
66
66
67
67
67
67
67
68
69
69
69

69
70

15.4.3 Properties of the Array Constructor 70
15.4.4 Properties of the Array Prototype Object 71
15.4.5 Properties of Array Instances 73
15.5 String Objects 74
15.5.1 The String Constructor Called as a Function 74
15.5.2 The String Constructor 74
15.5.3 Properties of the String Constructor 74
15.5.4 Properties of the String Prototype Object 74
15.5.5 Properties of String Instances 78
15.6 Boolean Objects 78
15.6.1 The Boolean Constructor Called as a Function 78
15.6.2 The Boolean Constructor 78
15.6.3 Properties of the Boolean Constructor 79
15.6.4 Properties of the Boolean Prototype Object 79
15.6.5 Properties of Boolean Instances 79
15.7 Number Objects 79
15.7.1 The Number Constructor Called as a Function 79
15.7.2 The Number Constructor 80
15.7.3 Properties of the Number Constructor 80
15.7.4 Properties of the Number Prototype Object 80
15.7.5 Properties of Number Instances 81
15.8 The Math Object 81
15.8.1 Value Properties of the Math Object 81
15.8.2 Function Properties of the Math Object 82
15.9 Date Objects 86
15.9.1 Overview of Date Objects and Definitions of Internal Operators 86
15.9.2 The Date Constructor Called As a Function 90
15.9.3 The Date Constructor 91
15.9.4 Properties of the Date Constructor 93
15.9.5 Properties of the Date Prototype Object 95
15.9.6 Properties of Date Instances 101

16 Errors 101

- Vi -

Scope
This Standard defines the ECMAScript scripting language.

Conformance

A conforming implementation of ECMAScript must provide and support all the types, values, objects
properties, functions, and program syntax described in this specification.

A conforming implementation of this International standard shall interpret charactemsnformance with

the Unicode Standard, Version 2.0, and ISO/IEC 10646-1 with UCS-2 as the adopted encoding forr
implementation level 3. If the adopted ISO/IEC 10646-1 subset is not otherwise specified, it is presumed
be the BMP subset, collection 300.

A conforming implementation of ECMAScript is permitted to provide additional types, values, objects,
properties, and functions beyond those described in this specification. In particular, a conformin
implementation of ECMAScript is permitted to provide properties not described in this specification, an
values for those properties, for objects that are described in this specification.

A conforming implementation of ECMAScript is permitted to support program syntax not described in thi:
specification. In particular, a conforming implementation of ECMAScript is permitted to support program
syntax that makes use of the “future reserved words” listed in section Future Reserved Word of th
specification.

References
ISO/IEC 9899:1996 Programming hguages — C, including amendment 1 and technical corrigenda 1 and 2.

ISO/IEC 10646-1:1993 Information Technology -- Universal Multiple-Octet Coded Character Set (UCS)
including amendments 1 through 9 and technical corrigendum 1.

ISO/IEC 646.IRV:1991 -- Information Processing -- ISO 7-bit Coded Character Set for Information
Interchange.

Unicode Inc. (1996), The Unicode Standard™, Version 2.0. ISBN: 0-201-48345-9, Addison-Wesle)
Publishing Co., Menlo Park, California.

ANSI/IEEE Std 754-1985: IEEE Standard for Binary Floating-Point Arithmetic. Institute of Electrical and
Electronics Engineers, New York (1985).

Overview
This section contains a non-normative overview of the ECMAScript language.

ECMAScript is an object-oriented programming language for performing computations and manipulatin
computational objects within a host environment. ECMAScript as defined here is not intended to b
computationally self-sufficient; indeed, there are no provisions in this specification for input of external dat
or output of computed results. Instead, it is expected that the computational environment of an ECMAScri
program will provide not only the objects and other facilities described in this specification but also certai
environment-specifichost objects, whose description and behaviour are beyond the scope of this
specification except to indicate that they may provide certain properties that can be accessed and cer
functions that can be called from an ECMAScript program.

A scripting languageis a programming language that is used to manipulate, customise, and automate tt
facilities of an existing system. In such systems, useful functionality is already available through a us
interface, and the scripting language is a mechanism for exposing that functionality to program control.

this way, the existing system is said to provide a host environment of objects and facilities, which complet:
the capabilities of the scripting language. A scripting language is intended for use by both professional a
non-professional programmers, and therefore there may be a number of informalities built into the language

ECMAScript was originally designed to beVileb scripting language providing a mechanism to enliven
Web pages in browsers and to perform server computation as part of a Web-based client-server architect

ECMAScript can provide core scripting capabilities for a variety of host environments, and therefore the core
scripting language is specified in this document apart from any particular host environment.

Some of the facilities of ECMAScript are similar to those used in other programming languages; in particular
Javd" and Self, as described in:

4.1

4.2

4.2.1

Gosling, James, Bill Joy and Guy Steele. The Java Language Specification. Addison Wesley Publishing
Co., 1996.

Ungar, David, and Smith, Randall B. Self: The Power of Simplicity. OOPSLA '87 Conference
Proceedings, pp. 227-241, Orlando, FL, October, 1987.

Web Scripting

A web browser provides an ECMAScript host environment for client-side computation including, for
instance, objects that represent windows, menus, pop-ups, dialog boxes, text areas, anchors, frames,
history, cookies, and input/output. Further, the host environment provides a means to attach scripting code
to events such as change of focus, page and image loading, unloading, error and abort, selection, form
submission, and mouse actions. Scripting code appears within the HTML and the displayed page is a
combination of user interface elements and fixed and computed text and images. The scripting code is
reactive to user interaction and there is no need for a main program.

A web server provides a different host environment for server-side computation including objects
representing requests, clients, and files; and mechanisms to lock and share data. By using browser-side and
server side scripting together it is possible to distribute computation between the client and server while
providing a customised user interface for a Web-based application.

Each Web browser and server that supports ECMAScript supplies its own host environment, completing
the ECMAScript execution environment.

Language Overview

The following is an informal overview of ECMAScript—not all parts of the language are described. This
overview is not part of the standard proper.

ECMAScript is object-based: basic language and host facilities are provided by objects, and an
ECMAScript program is a cluster of communicating objects. An ECMASooigect is an unordered
collection ofpropertieseach with 0 or morattributes which determine how each property can be used—

for example, when the ReadOnly attribute for a property is set to true, any attempt by executed
ECMAScript code to change the value of the property has no effect. Properties are containers that hold
other objectsprimitive values or methods A primitive value is a member of one of the following built-in
types:Undefined, Null, Boolean Number, and String; an object is a member of the remaining built-in

type Object; and a method is a function associated with an object via a property.

ECMAScript defines a collection obuilt-in objects which round out the definition of ECMAScript
entities. These built-in objects include tk&obal object, theObject object, theFunction object, the
Array object, theString object, theBoolean object, theNumber object, theMath object, and théate
object.

ECMAScript also defines a set of built-ioperatorsthat may not be, strictly speaking, functions or
methods. ECMAScript operators include various unary operations, multiplicative operators, additive
operators, bitwise shift operators, relational operators, equality operators, binary bitwise operators, binary
logical operators, assignment operators, and the comma operator.

ECMAScript syntax intentionally resembles Java syntax. ECMAScript syntax is relaxed to enable it to
serve as an easy-to-use scripting language. For example, a variable is not required to have its type
declared nor are types associated with properties, and defined functions are not required to have their
declarations appear textually before calls to them.

Objects

ECMAScript does not contain proper classes such as those in C++, Smalltalk, or Java, but rather,
supportsconstructorswhich create objects by executing code that allocates storage for the objects and
initialises all or part of them by assigning initial values to their properties. All functions including
constructors are objects, but not all objects are constructors. Each constructd®roastype property

4.3

that is used to implemergrototype-based inheritancand shared propertiesObjects are created by

using constructors inew expressions; for examplagw String("A String") creates a new string
object. Invoking a constructor without usimgw has consequences that depend on the constructor. For
example,String("A String") produces a primitive string, not an object.

ECMAScript supportgrototype-based inheritancé&very constructor has an associated prototype, and
every object created by that constructor has an implicit reference to the prototype (caltdgettiés
prototypg associated with its constructor. Furthermore, a prototype may have a non-null implicit
reference to its prototype, and so on; this is calledpti¢otype chain When a reference is made to a
property in an object, that reference is to the property of that name in the first object in the prototyr
chain that contains a property of that name. In other words, first the object mentioned directly i
examined for such a property; if that object contains the named property, that is the property to whic
the reference refers; if that object does not contain the named property, the prototype for that object
examined next; and so on.

In a class-based object-oriented language, in general, state is carried by instances, methods are cal
by classes, and inheritance is only of structure and behaviour. In ECMAScript, the state and metho
are carried by objects, and structure, behaviour, and state are all inherited.

All objects that do not directly contain a particular property that their prototype contains share the
property and its value. The following diagram illustrates this:

L

“.aunud CF . implicit prototype link
prototype F :
o1 E— CFp1
P2 explicit prototype link

:...]cF1 S Kol CF3 CcFal..: CF5 ...k
a1 q1 q1 q1 q1
2 q2 q2 q2 q2

CF is a constructor (and also an object). Five objects have been created by using new expressions: C
CF2, CF3, CF4, and CF5. Each of these objects contains properties named gl and gq2. The dashed |
represent the implicit prototype relationship; so, for example, CF3’s prototype is CFp. The constructo
CF, has two properties itself, named pl and p2, which are not visible to CFp, CF1, CF2, CF3, CF4,

CF5. The property named CFpl in CFp is shared by CF1, CF2, CF3, CF4, and CF5, as are a
properties found in CFp’s implicit prototype chain which are not named ql1, g2, or CFpl. Notice tha
there is no implicit prototype link between CFp and CF.

Unlike class-based object languages, properties can be added to objects dynamically by assign
values to them. That is, constructors are not required to name or assign values to all or any of t
constructed object’s properties. In the above diagram, one could add a new shared property for CI
CF2, CF3, CF4, and CH¥y assigning a new value to the property in CFp.

Definitions
The following are informal definitions of key terms associated with ECMAScript.

4.3.1

4.3.2

4.3.3

4.3.4

4.3.5

4.3.6

4.3.7

4.3.8

4.3.9

4.3.10

4.3.11

4.3.12

4.3.13

4.3.14

Type

A typeis a set of data values.

Primitive value

A primitive valueis a member of one of the typemdefined, Null, Boolean Number, or String. A
primitive value is a datum that is represented directly at the lowest level of the language
implementation.

Object

An objectis a member of the typ®bject. It is an unordered collection of properties each of which
contains a primitive value, object, or function. A function stored in a property of an object is called a
method.

Constructor

A constructoris a function object that creates and initialises objects. Each constructor has an associated
prototype object that is used to implement inheritance and shared properties.

Prototype

A prototypeis an object used to implement structure, state, and behaviour inheritance in ECMAScript.
When a constructor creates an object, that object implicitly references the constructor's associated
prototype for the purpose of resolving property references. The constructor’s associated prototype can
be referenced by the program expressiommstructor .prototype , and properties added to an
object’s prototype are shared, through inheritance, by all objects sharing the prototype.

Native object

A native objectis any object supplied by an ECMAScript implementation independent of the host
environment. Standard native objects are defined in this specification. Some native objects are built-in;
others may be constructed during the course of execution of an ECMAScript program.

Built-in object

A built-in object is any object supplied by an ECMAScript implementation, independent of the host
environment, which is present at the start of the execution of an ECMAScript program. Standard built-in
objects are defined in this specification, and the ECMAScript implementation may specify and define
others. Every built-in object is a native object.

Host object

A host objectis any object supplied by the host environment to complete the execution environment of
ECMAScript. Any object that is not native is a host object.

Undefined value

Theundefined valueis a primitive value used when a variable has not been assigned a value.

Undefined type

The typeUndefined has exactly one value, calleddefined.

Null value

Thenull value is a primitive value that represents the null, empty, or non-existent reference.

Null type
The typeNull has exactly one value, calledll.

Boolean value
A boolean valuels a member of the typBooleanand is one of two unique valugsye andfalse.

Boolean type

The typeBooleanrepresents a logical entity and consists of exactly two unique values. One is called
true and the other is callef@lse.

4.3.15 Boolean object
A boolean objecis a member of the typ®@bject and is an instance of the built-in Boolean object. That
is, a boolean object is created by using the Boolean constructor in a new expression, supplying
boolean as an argument. The resulting object has an implicitagmed) property that is thmolean. A
boolean object can be coerced to a boolean value. A boolean object can be used anywhere a bool
value is expected.
This is an example of one of the conveniences built into ECMAScript—in this case, the purpose is t
accommodate programmers of varying backgrounds. Those familiar with imperative or procedure
programming languages may fifmbolean, string and number values more natural, while those familiar
with object-oriented languages may fibdolean, string and number objects more intuitive.

4.3.16 String value
A string valueis a member of the typ®tring and is a finite ordered sequence of zero or more Unicode
characters.

4.3.17 String type
The typeString is the set of all finite ordered sequences of zero or more Unicode characters.

4.3.18 String object
A string objectis a member of the typ@bject and is an instance of the built-in String object. That is, a
string object is created by using the String constructor in a new expression, supplying a string as
argument. The resulting object has an implicit (unnamed) property that is the string. A string object ce
be coerced to a string value. A string object can be used anywhere a string value is expected.

4.3.19 Number value
A number valueis a member of the typdumber and is a direct representation of a number.

4.3.20 Number type
The typeNumber is a set of values representing numbers. In ECMAScript the set of values represer
the double-precision 64-bit format IEEE 754 values including the special “Not-a-Number” (NaN)
values, positive infinity, and negative infinity.

4.3.21 Number object
A number objectis a member of the typ®bject and is an instance of the built-in Number object. That
is, a number object is created by using the Number constructor in a new expression, supplying a numl
as an argument. The resulting object has an implicit (unnamed) property that is the number. A humb
object can be coerced to a number value. A number object can be used anywhere a number valu
expected. Note that a number object can have shared properties by adding them to the Numl
prototype.

4.3.22 Infinity
The primitive valudnfinity represents the positive infinite number value.

4.3.23 NaN
The primitive valueNaN represents the set of IEEE Standard “Not-a-Number” values.

5 Notational Conventions
5.1 Syntactic and Lexical Grammars

5.1.1

This section describes the context-free grammars used in this specification to define the lexical al
syntactic structure of an ECMAScript program.

Context-Free Grammars

A context-free grammaconsists of a number gfroductions Each production has an abstract symbol
called anonterminal as itsleft-hand side and a sequence of one or more nonterminal t@nohinal
symbols as itgight-hand side For each grammar, the terminal symbols are drawn from a specified
alphabet.

5.1.2

5.1.3

5.1.4

5.1.5

Starting from a sentence consisting of a single distinguished nonterminal, callegbahesymbol a

given context-free grammar specifies language namely, the (perhaps infinite) set of possible
sequences of terminal symbols that can result from repeatedly replacing any nonterminal in the
sequence with a right-hand side of a production for which the nonterminal is the left-hand side.

The lexical grammar

A lexical grammarfor ECMAScript is given in Section 7. This grammar has as its terminal symbols the
characters of the Unicode character set. It defines a set of productions, starting from the goal symbol
InputElementthat describe how sequences of Unicode characters are translated into a sequence of input
elements.

Input elements other than white space and comments form the terminal symbols for the syntactic
grammar for ECMAScript and are called ECMAScripkens These tokens are the reserved words,
identifiers, literals, and punctuators of the ECMAScript language. Moreover, line terminators, although
not considered to be tokens, also become part of the stream of input elements and guide the process of
automatic semicolon insertion (see section7.8). Simple white space and single-line comments are simply
discarded and do not appear in the stream of input elements for the syntactic grammar. A
MultiLineCommen{that is, a comment of the forn#*“...*/ " regardless of whether it spans more than

one line) is likewise simply discarded if it contains no line terminator; but if a multi-line comment
contains one or more line terminators, then it is replaced by a single line terminator, which becomes
part of the stream of input elements for the syntactic grammar.

Productions of the lexical grammar are distinguished by having two colan$ &s separating
punctuation.

The numeric string grammar

A second grammar is used for translating strings into numeric values. This grammar is similar to the
part of the lexical grammar having to do with numeric literals and has as its terminal symbols the
characters of the Unicode character set. This grammar appears in section 9.3.1.

Productions of the numeric string grammar are distinguished by having three calons as
punctuation.

The syntactic grammar

The syntactic grammarfor ECMAScript is given in sections1l, 12, 13, and 14. This grammar has
ECMAScript tokens defined by the lexical grammar as its terminal symbols (see section 5.1.2). It
defines a set of productions, starting from the goal synmsogram that describe how sequences of
tokens can form syntactically correct ECMAScript programs.

When a stream of Unicode characters is to be parsed as an ECMAScript program, it is first converted to
a stream of input elements by repeated application of the lexical grammar; this stream of input elements
is then parsed by a single application of the syntax grammar. The program is syntactically in error if the
tokens in the stream of input elements cannot be parsed as a single instance of the goal nonterminal
Program with no tokens left over.

Productions of the syntactic grammar are distinguished by having just one cdlas punctuation.

The syntactic grammar as presented in sectionsl1l, 12, 13, and 14 is actually not a complete account of
which token sequences are accepted as correct ECMAScript programs. Certain additional token
sequences are also accepted, namely, those that would be described by the grammar if only semicolons
were added to the sequence in certain places (such as before line terminator characters). Furthermore,
certain token sequences that are described by the grammar are not considered acceptable if a terminator
character appears in certain “awkward” places.

Grammar Notation

Terminal symbols of the lexical and string grammars, and some of the terminal symbols of the syntactic
grammar, are shown ifixed width font, both in the productions of the grammars and throughout
this specification whenever the text directly refers to such a terminal symbol. These are to appear in a
program exactly as written.

Nonterminal symbols are shown italic type. The definition of a nonterminal is introduced by the
name of the nonterminal being defined followed by one or more colons. (The number of colons

indicates to which grammar the production belongs.) One or more alternative right-hand sides for ti
nonterminal then follow on succeeding lines. For example, the syntactic definition:

WithStatement
with (Expressior) Statement
states that the nontermin&ithStatementepresents the tokewith , followed by a left parenthesis
token, followed by arExpression followed by a right parenthesis token, followed bgtatementThe

occurrences ofExpressionand Statementare themselves nonterminals. As another example, the
syntactic definition:

ArgumentList
AssignmentExpression
ArgumentList AssignmentExpression

states that amrgumentListmay represent either a singhssignmentExpressioar an ArgumentList
followed by a comma, followed by aAssignmentExpressionThis definition of ArgumentListis
recursive that is, it is defined in terms of itself. The result is thatAagumentListmay contain any
positive number of arguments, separated by commas, where each argument expression is
AssignmentExpressiosuch recursive definitions of nonterminals are common.

The subscripted suffixdpt’, which may appear after a terminal or nonterminal, indicatesmional
symbol The alternative containing the optional symbol actually specifies two right-hand sides, one the
omits the optional element and one that includes it. This means that:

VariableDeclaration:

Identifier Initializeryy

is a convenient abbreviation for:
VariableDeclaration:

Identifier
Identifier Initializer

and that:
IterationStatement

for (Expressiog,; Expressiog,; Expressiop,) Statement

is a convenient abbreviation for:
IterationStatement
for (; Expressiog,; Expressiog,) Statement
for (Expressionn Expressiop,; Expressiog,) Statement
which in turn is an abbreviation for:

IterationStatement

for (;; Expressiog,) Statement
for (; Expression Expressiop,) Statement
for (Expression ; Expressiog,) Statement

for (Expressionn Expressionn Expressiog,) Statement

which in turn is an abbreviation for:

IterationStatement

for(;;) Statement

for (;; Expressio) Statement

for (; Expression) Statement

for (; Expressionn Expressior) Statement
for (Expression ;) Statement

for (Expression ; Expressio) Statement

for (Expressionn Expression) Statement
for (Expressionn Expression Expressior) Statement
so the nontermindkerationStatemenactually has eight alternative right-hand sides.

If the phrase fho LineTerminatorhere] appears in the right-hand side of a production of the syntactic
grammar, it indicates that the production as restricted production it may not be used if a
LineTerminatoroccurs in the input stream at the indicated position. For example, the production:

ReturnStatement
return [no LineTerminatothere] EXpreSSiO(,}pt;
indicates that the production may not be used ifireTerminatoroccurs in the program between the
return token and th&xpression

Unless the presence of laineTerminatoris forbidden by a restricted production, any number of
occurrences ofineTerminatormay appear between any two consecutive tokens in the stream of input
elements without affecting the syntactic acceptability of the program.

When the words dne of follow the colon(s) in a grammar definition, they signify that each of the
terminal symbols on the following line or lines is an alternative definition. For example, the lexical
grammar for ECMAScript contains the production:

ZeroToThree: one of

0 1 2 3

which is merely a convenient abbreviation for:
ZeroToThree:

0

1

2

3

When an alternative in a production of the lexical grammar or the numeric string grammar appears to be
a multicharacter token, it represents the sequence of characters that would make up such a token.

The right-hand side of a production may specify that certain expansions are not permitted by using the
phrase but not” and then indicating the expansions to be excluded. For example, the production:

Identifier ::

IdentifierNamebut not ReservedWord

means that the nonterminedentifier may be replaced by any sequence of characters that could replace
IdentifierNameprovided that the same sequence of characters could not répé¢seevedWord

Finally, a few nonterminal symbols are described by a descriptive phrase in roman type in cases where
it would be impractical to list all the alternatives:

SourceCharacter:

any Unicode character

5.2

6

Algorithm Conventions

The specification often uses a numbered list to specify steps in an algorithm. These algorithms are usec
clarify semantics. In practice, there may be more efficient algorithms available to implement a give
feature.

When an algorithm is to produce a value as a result, the directive “return x” is used to indicate that tl
result of the algorithm is the value of x and that the algorithm should terminate. The notation Result(n)
used as shorthand for “the result of step n”. Type(x) is used as shorthand for “the type of x”".

Mathematical operations such as addition, subtraction, negation, multiplication, division, and thi
mathematical functions defined later in this section should always be understood as computing exe
mathematical results on mathematical real numbers, which do not include infinities and do not include
negative zero that is distinguished from positive zero. Algorithms in this standard that model floating
point arithmetic include explicit steps, where necessary, to handle infinities and signed zero and
perform rounding. If a mathematical operation or function is applied to a floating-point number, it shoul
be understood as being applied to the exact mathematical value represented by that floating-point numt
such a floating-point number must be finite, and if it+i® or -0 then the corresponding mathematical
value is simply 0.

The mathematical function abg(yields the absolute value af which is—x if x is negative (less than
zero) and otherwise isitself.

The mathematical function sigx)(yields 1 ifx is positive and-1 if x is negative. The sign function is not
used in this standard for cases wixes zero.

The notation X moduloy” (y must be finite and nonzero) computes a vatud the same sign ag such
that absk) < absy) andx—k = gy for some integeq.

The mathematical function floot) yields the largest integer (closest to positive infinity) that is not larger
thanx.

NOTE floor(x) = x—(x modulo 1).

If an algorithm is defined to “generate a runtime error”, execution of the algorithm (and any calling
algorithms) is terminated and no result is returned.

Source Text

ECMAScript source text is represented as a sequence of characters representable using the Unicode vel
2.0 character encoding.

SourceCharacter.

any Unicode character

Except within comments and string literals, every ECMAScript program shall consist of only characters froi
the first 128 Unicode characters (that is, the first half of row zero). Other Unicode characters may appe
only within comments and string literals. In string literals, any Unicode character may also be expressed a
Unicode escape sequence consisting of six characters from the first 128 characters, \namkhlyg four
hexadecimal digits. Within a comment, such an escape sequence is effectively ignored as part of f
comment. Within a string literal, the Unicode escape sequence contributes one character to the string valu
the literal.

Although the characters in an ECMAScript program are Unicode characters, they are treated as indepenc
16-bit values with none of the context-dependent interpretation specified in the Unicode standard. Su
values are often called “code points”. The Unicode standard refers to code points as “coded character o
elements”. Throughout this International standard the terms “character” and “code point” areagdésst
mean “coded character data element”.

NOTE ECMAScript differs from the Java programming language in the behaviour of Unicode escape sequences. In a
Java program, if the Unicode escape sequence \uOOOA , for example, occurs within a single-line comment, it is
interpreted as a line terminator (Unicode character 000A is line feed) and therefore the next character is not part of the

- 10 -

comment. Similarly, if the Unicode escape sequence \uOOOA occurs within a string literal in a Java program, it is
likewise interpreted as a line terminator, which is not allowed within a string literal—one must write \n instead of
\uOOOA to cause a line feed to be part of the string value of a string literal. In an ECMAScript program, a Unicode
escape sequence occurring within a comment is never interpreted and therefore cannot contribute to termination of the
comment. Similarly, a Unicode escape sequence occurring within a string literal in an ECMAScript program always
contributes a character to the string value of the literal and is never interpreted as a line terminator or as a quote mark
that might terminate the string literal.

7 Lexical Conventions

The source text of an ECMAScript program is first converted into a sequence of input elements, which are
either tokens, line terminators, comments, or white space. The source text is scanned from left to right,
repeatedly taking the longest possible sequence of characters as the next input element.

Syntax
InputElement:

WhiteSpace
LineTerminator
Comment
Token

7.1 White Space

White space characters are used to improve source text readability and to separate tokens (indivisible
lexical units) from each other, but are otherwise insignificant. White space may occur between any two

tokens, and may occur within strings (where they are considered significant characters forming part of the
literal string value), but cannot appear within any other kind of token.

The following characters are considered to be white space:

Unicode Value Name Formal Name
\u0009 Tab <TAB>
\uO00B Vertical Tab <VT>
\u000C Form Feed <FF>
\u0020 Space <SP>
Syntax
WhiteSpace:
<TAB>
<VT>
<FF>
<SP>
7.2 Line Terminators

Like whitespace characters, line terminator characters are used to improve source text readability and to
separate tokens (indivisible lexical units) from each other. However, unlike whitespace characters, line
terminators have some influence over the behaviour of the syntactic grammar. In general, line terminators
may occur between any two tokens, but there are a few places where they are forbidden by the syntactic
grammar. A line terminator cannot occur within any token, not even a string. Line terminators also affect
the process of automatic semicolon insertion (see section 7.8).

The following characters are considered to be line terminators:

-11 -

Unicode Value Name Formal Name
\uOOOA Line Feed <LF>
\u000D Carriage Return <CR>
Syntax
LineTerminator:
<LF>
<CR>

7.3 Comments
Description

Comments can be either single or multi-line. Multi-line comments cannot nest.

Because a single-line comment can contain any character extémBerminatorcharacter, and because

of the general rule that a token is always as long as possible, a single-line comment always consists of
characters from th& marker to the end of the line. However, thaeTerminatorat the end of the line is

not considered to be part of the single-line comment; it is recognised separately by the lexical gramm
and becomes part of the stream of input elements for the syntactic grammar. This point is very importa
because it implies that the presence or absence of single-line comments does not affect the proces:
automatic semicolon insertion (see section7.8.2).

Comments behave like white space and are discarded except thadluitihineCommentcontains a line
terminator character, then the entire comment is considered td.ine Berminatorfor purposes of parsing
by the syntactic grammar.

Syntax

Comment:
MultiLineComment
SingleLineComment

MultiLineComment:

* MultiLineCommentChags; */

MultiLineCommentChars

MultiLineNotAsteriskChar MultiLineCommentChggs
* PostAsteriskCommentChaygs

PostAsteriskCommentChars

MultiLineNotForwardSlashOrAsteriskChar MultiLineCommentChars
* PostAsteriskCommentChaygs

MultiLineNotAsteriskChar:

SourceCharactebut not asterisk

MultiLineNotForwardSlashOrAsteriskChar

SourceCharactebut neither forward-slasiY nor asterisk*

SingleLineComment

Il SingleLineCommentChaps

-12 -

SingleLineCommentChars

SingleLineCommentChar SingleLineCommentClars

SingleLineCommentChar

SourceCharactebut not LineTerminator

7.4 Tokens
Syntax
Token::

ReservedWord
Identifier
Punctuator
NumericLiteral
StringLiteral

7.4.1 Reserved Words
Description

Reserved words cannot be used as identifiers.

Syntax
ReservedWord

Keyword
FutureReservedWord
NullLiteral
BooleanLiteral

7.4.2 Keywords
The following tokens are ECMAScript keywords and may not be used as identifiers in ECMAScript

programs.

Syntax

Keyword:: one of
break for new var
continue function return void
delete if this while
else in typeof with

7.4.3 Future Reserved Words

The following words are used as keywords in proposed extensions and are therefore reserved to allow
for the possibility of future adoption of those extensions.

Syntax
FutureReservedWord one of
abstract do import short
boolean double instanceof static
byte enum int super
case export interface switch
catch extends long synchronized
char final native throw

class finally package throws

-13 -

const float private transient
debugger goto protected try
default implements public volatile

7.5 Identifiers
Description

An identifier is a character sequence of unlimited length, where each character in the sequence must
letter, a decimal digit, an underscore) (character, or a dollar sigi$) character, and the first character
may not be a decimal digit. ECMAScript identifiers are case sensitive: identifiers whose characters diffe
in any way, even if only in case, are considered to be distinct. The dollar®ighdracter is intended for

use only in mechanically generated code.

Syntax
Identifier ::

IdentifierNamebut not ReservedWord

IdentifierName:

IdentifierLetter

IdentifierName ldentifierLetter

IdentifierName DecimalDigit
IdentifierLetter:: one of

abcdefghijklmnopgrstuvwxXxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
$

DecimalDigit:: one of
012345671829

7.6 Punctuators
Syntax

Punctuator:: one of

= > < == <= >=
1= , ! ~ ?

&& Il ++ - +
- * / & A
% << >> >>> += -=
*= /= &= |= = %=

7.7 Literals
Syntax
Literal ::

NullLiteral
BooleanLiteral
NumericLiteral
StringLiteral

7.7.1 Null Literals

Syntax
NullLiteral ::
null
Semantics
The value of the null literahull
7.7.2 Boolean Literals
Syntax
BooleanLiteral:
true
false
Semantics
The value of the Boolean liter&iue
The value of the Boolean literfdlse
7.7.3 Numeric Literals
Syntax

NumericLiteral::

DecimalLiteral
HexIntegerLiteral
OctallntegerLiteral

DecimallLiteral::

- 14 -

is the sole value of the Null type, nameiyll.

is a value of the Boolean type, naméiye.

is a value of the Boolean type, namédyse.

DecimalintegerLiteral DecimalDigits,ExponentPag

. DecimalDigits ExponentPay
DecimalintegerLiteral ExponentPagt

DecimallntegerLiterat:

0
NonZeroDigit DecimalDigitg;

DecimalDigits::

DecimalDigit
DecimalDigits DecimalDigit

NonZeroDigit:: one of

1 2 3 4 5

- 15 -

ExponentPart:

Exponentindicator Signedinteger

Exponentindicator: one of
eE

Signedinteger:

DecimalDigits

+ DecimalDigits

- DecimalDigits
HexIntegerLiteral:

Ox HexDigit
0X HexDigit
HexIntegerLiteral HexDigit
HexDigit:: one of
01 2 3 456 7 8 9 abocdef ABTCDEF

OctallntegerLiteral::
0 OctalDigit
OctallntegerLiteral OctalDigit
OctalDigit :: one of
0 1 2 3 4 5 6 7
Semantics

A numeric literal stands for a value of the Number type. This value is determined in two steps: first,
mathematical value (MV) is derived from the literal; second, if this mathematical value is not
representable using the number type, it is rounded to either the nearest representable value type ak
the mathematical value or the nearest representable value below the mathematical value.

The rounding mechanism is unspecified, but implementations are encouraged to use IEEE 754 round-
nearest.

e The MV of NumericLiteral:: DecimalLiteralis the MV ofDecimalLiteral

e The MV of NumericLiteral:: HexIntegerLiteralis the MV ofHexIntegerLiteral

e The MV of NumericLiteral:: OctallntegerLiteralis the MV ofOctalintegerLiteral

e The MV of DecimalLiteral:: DecimalintegerLiteral is the MV ofDecimallntegerLiteral

e The MV of DecimalLiteral:: DecimallntegerLiteral. DecimalDigitsis the MV of DecimalintegerLiteral
plus (the MV ofDecimalDigitstimes 10"), wheren is the number of charactersDecimalDigit.

e The MV of DecimalLiteral :: DecimallntegerLiteral. ExponentParts the MV of DecimalintegerLiteral
times 10, wheree is the MV ofExponentPart

e The MV of DecimalLiteral :: DecimalintegerLiteral. DecimalDigits ExponentParis (the MV of
DecimalintegerLiteralplus (the MV ofDecimalDigitstimes 10") times 16, wheren is the number of
characters imecimalDigit ande is the MV ofExponentPart

e The MV ofDecimallLiteral::. DecimalDigitsis the MV ofDecimalDigitstimes 10", wheren is the number
of characters ilDecimalDigit.

-16 -

The MV of DecimalLiteral::. DecimalDigits ExponentPait the MV of DecimalDigitstimes 16", where
n is the number of charactersbecimalDigit ande is the MV ofExponentPart

The MV of DecimalLiteral:: DecimallintegerLiterals the MV ofDecimalintegerLiteral

The MV of DecimalLiteral:: DecimallntegerLiteral ExponentPaig the MV ofDecimalintegerLiteratimes
1¢°, wheree is the MV ofExponentPart

The MV of DecimalintegerLiterat: O is 0.

The MV of DecimalintegerLiteral:: NonZeroDigitDecimalDigitsis (the MV of NonZeroDigittimes 10)
plus the MV ofDecimalDigits wheren is the number of charactersDecimalDigits

The MV of DecimalDigits:: DecimalDigitis the MV ofDecimalDigit

The MV of DecimalDigits:: DecimalDigitsDecimalDigitis (the MV of DecimalDigitstimes 10) plus the
MV of DecimalDigit

The MV of ExponentPart: Exponentindicator Signedintegimsrthe MV ofSignedinteger

The MV of Signedinteger: DecimalDigitsis the MV ofDecimalDigits

The MV of Signedinteger: + DecimalDigitsis the MV of DecimalDigits

The MV of Signedinteger: - DecimalDigitsis the negative of the MV ddecimalDigits

The MV of DecimalDigit:: 0 or of HexDigit:: 0 or of OctalDigit:: O is O.

The MV of DecimalDigit:: 1 or of NonZeroDigit:: 1 or of HexDigit:: 1 or of OctalDigit:: 1 is 1.
The MV of DecimalDigit:: 2 or of NonZeroDigit:: 2 or of HexDigit:: 2 or of OctalDigit:: 2 is 2.
The MV of DecimalDigit:: 3 or of NonZeroDigit:: 3 or of HexDigit:: 3 or of OctalDigit:: 3 is 3.
The MV of DecimalDigit:: 4 or of NonZeroDigit:: 4 or of HexDigit:: 4 or of OctalDigit:: 4 is 4.
The MV of DecimalDigit:: 5 or of NonZeroDigit:: 5 or of HexDigit:: 5 or of OctalDigit:: 5 is 5.
The MV of DecimalDigit:: 6 or of NonZeroDigit:: 6 or of HexDigit:: 6 or of OctalDigit:: 6 is 6.
The MV of DecimalDigit:: 7 or of NonZeroDigit:: 7 or of HexDigit:: 7 or of OctalDigit:: 7 is 7.
The MV of DecimalDigit:: 8 or of NonZeroDigit:: 8 or of HexDigit:: 8 is 8.

The MV of DecimalDigit:: 9 or of NonZeroDigit:: 9 or of HexDigit:: 9 is 9.

The MV of HexDigit:: a or of HexDigit:: Ais 10.

The MV of HexDigit:: b or of HexDigit:: Bis 11.

The MV of HexDigit:: ¢ or of HexDigit:: Cis 12.

The MV of HexDigit:: d or of HexDigit:: Dis 13.

The MV of HexDigit:: e or of HexDigit:: Eis 14.

The MV of HexDigit:: f or of HexDigit:: F is 15.

The MV of HexIntegerLiterat: 0x HexDigitis the MV ofHexDigit

The MV of HexIntegerLiterat: 0X HexDigitis the MV ofHexDigit

The MV of HexIntegerLiteral:: HexIntegerLiteraHexDigit is (the MV ofHexIntegerLiteraltimes 16) plus
the MV of HexDigit

The MV of OctalintegerLiteral:: 0 OctalDigit is the MV ofOctalDigit.

7.7.4

Syntax

17 -

e The MV of OctallntegerLiteral:: OctallntegerLiteralOctalDigit is (the MV ofOctallntegerLiteraltimes 8)
plus the MV ofOctalDigit.

Once the exact MV for a numeric literal has been determined, it is then rounded to a value of ti
Number type. If the MV is 0, then the rounded valuet@ otherwise, the rounded value must the
number value for the MV (in the sense defined in section8.5), unless the literBleisimallLiteral and

the literal has more than 20 significant digits, in which case the number value may be either the numt
value for the MV of a literal produced by replacing each significant digit after the 20th Wittigit or

the number value for the MV of a literal produced by replacing each significant digit after the 20th witt
a 0 digit and then incrementing the literal at the 20th significant digit position. A digigrsficantif it

is not part of arExponentPartand

e itisnotO; or
e there is a nonzero digit to its left and there is a nonzero digit, not iBxpenentPartto its right.

String Literals

A string literal is zero or more characters enclosed in single or double quotes. Each character may
represented by an escape sequence.

StringLiteral::

" DoubleStringCharactegs; "
' SingleStringCharactegs '

DoubleStringCharacters

DoubleStringCharacter DoubleStringCharactgys

SingleStringCharacters

SingleStringCharacter SingleStringCharactgrs

DoubleStringCharacter.

SourceCharactebut not double-quoté or backslasi or LineTerminator
EscapeSequence

SingleStringCharacter.

SourceCharactebut not single-quoté or backslasi or LineTerminator
EscapeSequence

EscapeSequence

CharacterEscapeSequence
OctalEscapeSequence
HexEscapeSequence
UnicodeEscapeSequence

CharacterEscapeSequence

\ SingleEscapeCharacter
\' NonEscapeCharacter

SingleEscapeCharacter one of

" \ b f n r t

- 18 -

NonEscapeCharacter

SourceCharactebut not EscapeCharactesr LineTerminator

EscapeCharacter.

SingleEscapeCharacter
OctalDigit
X

u

HexEscapeSequence

\x HexDigit HexDigit

OctalEscapeSequence

\ OctalDigit
\ OctalDigit OctalDigit
\ ZeroToThree OctalDigit OctalDigit

ZeroToThree: one of
0 1 2 3

UnicodeEscapeSequence
\u HexDigit HexDigit HexDigit HexDigit

The definitions of the nonterminaldHexDigit and OctalDigit are given in section 7.7.3.
SourceCharacteis described in sections 2 and 6.

A string literal stands for a value of the String type. The string value (SV) of the literal is described in
terms of character values (CV) contributed by the various parts of the string literal. As part of this
process, some characters within the string literal are interpreted as having a mathematical value (MV),
as described below or in section 7.7.3.

e The SV ofStringLiteral:: " is the empty character sequence .

e The SV ofStringLiteral:: " is the empty character sequence.

e The SV ofStringLiteral:: " DoubleStringCharacter’ is the SV oDoubleStringCharacters
e The SV ofStringLiteral:: ' SingleStringCharacters is the SV ofSingleStringCharacters

e The SV ofDoubleStringCharacters. DoubleStringCharacteis a sequence of one character, the CV of
DoubleStringCharacter

e The SV ofDoubleStringCharacters DoubleStringCharacteDoubleStringCharacterds a sequence of the
CV of DoubleStringCharactefollowed by all the characters in the SV@ubleStringCharacteri order.

e The SV of SingleStringCharacters: SingleStringCharacteis a sequence of one character, the CV of
SingleStringCharacter

e The SV ofSingleStringCharacters SingleStringCharactegingleStringCharacterss a sequence of the CV
of SingleStringCharactefollowed by all the characters in the SVIihgleStringCharacteri order.

e The CV of DoubleStringCharacter.: SourceCharacterbut not double-quote” or backslash\ or
LineTerminator is theSourceCharactecharacter itself.

e The CV ofDoubleStringCharacter. EscapeSequendgthe CV of theEscapeSequence

-19 -

The CV of SingleStringCharacter:: SourceCharacterbut not single-quote' or backslash\ or
LineTerminatoris theSourceCharactecharacter itself.

The CV ofSingleStringCharacter. EscapeSequendgthe CV of theEscapeSequence

The CV ofEscapeSequenceCharacterEscapeSequenisehe CV of theCharacterEscapeSequence
The CV ofEscapeSequenceOctalEscapeSequenegethe CV of theDctalEscapeSequence

The CV ofEscapeSequenceHexEscapeSequenizethe CV of theHexEscapeSequence

The CV ofEscapeSequenceUnicodeEscapeSequenisethe CV of theJnicodeEscapeSequence

The CV ofCharacterEscapeSequence SingleEscapeCharactés the Unicode character whose Unicode
value is determined by tl&ingleEscapeCharacterccording to the following table:

Escape Sequence Unicode Value Name Symbol
\b \u0008 backspace <BS>
\t \u0009 horizontal tab <HT>
\n \uOOOA line feed (new line) <LF>
\f \uoooC form feed <FF>
\r \u000D carriage return <CR>
\" \u0022 double quote "

\ \u0027 single quote '

\ \u005C backslash \

The CV ofCharacterEscapeSequencd NonEscapeCharactés the CV of theNonEscapeCharacter

The CV of NonEscapeCharacter SourceCharactebut not EscapeCharacteor LineTerminatoris the
SourceCharactecharacter itself.

The CV ofHexEscapeSequence\x HexDigit HexDigit is the Unicode character whose code is (16 times
the MV of the firstHexDigit) plus the MV of the seconidexDigit

The CV ofOctalEscapeSequence\ OctalDigit is the Unicode character whose code is the MV of the
OctalDigit.

The CV ofOctalEscapeSequence\ OctalDigit OctalDigit is the Unicode character whose code is (8 times
the MV of the firstOctalDigit) plus the MV of the secorfdctalDigit.

The CV ofOctalEscapeSequence\ ZeroToThreeOctalDigit OctalDigit is the Unicode character whose
code is (64 (that is,“Btimes the MV of the&ZeroToThreg plus (8 times the MV of the firébctalDigit) plus
the MV of the secon@®ctalDigit.

The MV of ZeroToThree: 0 is O.
The MV of ZeroToThree: 1 is 1.
The MV of ZeroToThree: 2 is 2.
The MV of ZeroToThree: 3 is 3.

The CV ofUnicodeEscapeSequencelu HexDigit HexDigit HexDigit HexDigit is the Unicode character
whose code is (4096 (that is,’L@mes the MV of the firsHexDigit) plus (256 (that is, Hptimes the MV of
the secondHexDigit) plus (16 times the MV of the thitdexDigit) plus the MV of the fourtidexDigit

- 20 -

NOTE A LineTerminator character cannot appear in a string literal, even if preceded by a backslash \ . The correct
way to cause a line terminator character to be part of the string value of a string literal is to use an escape sequence
such as \n or \uOOOA .

7.8 Automatic semicolon insertion
Certain ECMAScript statements (empty statement, variable statement, expression statemémie
statementpreak statement, andeturn statement) must each be terminated with a semicolon. Such a
semicolon may always appear explicitly in the source text. For convenience, however, such semicolons
may be omitted from the source text in certain situations. These situations are described by saying that
semicolons are automatically inserted into the source code token stream in those situations.
7.8.1 Rules of automatic semicolon insertion

e When, as the program is parsed from left to right, a token (calledfteeding tokehis encountered
that is not allowed by any production of the grammar and the parser is not currently parsing the
header of dgor statement, then a semicolon is automatically inserted before the offending token if
one or more of the following conditions is true:

1. The offending token is separated from the previous token by at leaktr@ieerminator
2. The offending token ik.

e When, as the program is parsed from left to right, the end of the input stream of tokens is
encountered and the parser is unable to parse the input token stream as a single complete
ECMAScriptProgram then a semicolon is automatically inserted at the end of the input stream.

However, there is an additional overriding condition on the preceding rules: a semicolon is never
inserted automatically if the semicolon would then be parsed as an empty statement.

e When, as the program is parsed from left to right, a token is encountered that is allowed by some
production of the grammar, but the production iestricted productiorand the token would be the
first token for a terminal or nonterminal immediately following the annotatian LineTerminator
here]" within the restricted production (and therefore such a token is called a restricted token), and
the restricted token is separated from the previous token by at leastirmieerminator then there
are two cases:

1. If the parser is not currently parsing the header ofola statement, a semicolon is
automatically inserted before the restricted token.
2. If the parser is currently parsing the header fifra statement, it is a syntax error.

These are the only restricted productions in the grammar:
PostfixExpression
LeftHandSideExpressioo LineTerminatorhere] ++
LeftHandSideExpressiono LineTerminatorere] --
ReturnStatement

return [no LineTerminatothere] EXpreSSiOth ;

The practical effect of these restricted productions is as follows:

1. When the toker+ or-- is encountered where the parser would treat it as a postfix operator,
and at least onkineTerminatoroccurred between the preceding token and+her -- token,
then a semicolon is automatically inserted beforetther -- token.

2. When the tokemeturn is encountered and laneTerminatoris encountered before the next
token is encountered, a semicolon is automatically inserted after theretkien

The resulting practical advice to ECMAScript programmers is:

1. A postfix++ or-- operator should appear on the same line as its operand.
2. AnExpressionn areturn statement should start on the same line agghan token.

7.8.2

- 21 -

Examples of Automatic Semicolon Insertion
The source
{12}3
is not a valid sentence in the ECMAScript grammar, even with the automatic semicolon insertion rule
In contrast, the source
{1
213
is also not a valid ECMAScript sentence, but is transformed by automatic semicolon insertion into th
following:
{1
213,
which is a valid ECMAScript sentence.
The source
for (a; b
)
is not a valid ECMAScript sentence and is not altered by automatic semicolon insertion because t
place where a semicolon is needed is within the header fofr a statement. Automatic semicolon
insertion never occurs within the header dba statement.
The source
return
a+b
is transformed by automatic semicolon insertion into the following:
return;
a+b;
NOTE The expression a + b is not treated as a value to be returned by the return statement, because a
LineTerminator separates it from the token return
The source
a=b
++C
is transformed by automatic semicolon insertion into the following:
a=b;
++C;
NOTE The token ++ is not treated as a postfix operator applying to the variable b, because a LineTerminator
occurs between b and ++.
The source
if (a>h)
elsec=d

is not a valid ECMAScript sentence and is not altered by automatic semicolon insertion before th
else token, even though no production of the grammar applies at that point, because an automatica
inserted semicolon would then be parsed as an empty statement.

The source

8.1

8.2

8.3

8.4

8.5

- 22 -

a=b+c
(d + e).print()

is not transformed by automatic semicolon insertion, because the parenthesised expression that begins
the second line can be interpreted as an argument list for a function call:

a=b+c(d+ e).print()

In the circumstance that an assignment statement must begin with a left parenthesis, it is a good idea for
the programmer to provide an explicit semicolon at the end of the preceding statement rather than to
rely on automatic semicolon insertion.

Types

A value is an entity that takes on one of nine types. There are nine typdsf{ned, Null, Boolean String,
Number, Object, Reference List, and Completion). Values of typeReference List, and Completion are
used only as intermediate results of expression evaluation and cannot be stored to properties of objects.

The Undefined type

The Undefined type has exactly one value, calledefined. Any variable that has not been assigned a
value is of type Undefined.

The Null type
The Null type has exactly one value, calladl.

The Boolean type
The Boolean type represents a logical entity having two values, dallecandfalse.

The String type

The String type is the set of all finite ordered sequences of zero or more Unicode characters (more

properly referred to as code points; see section 6). Each character is regarded as occupying a position
within the sequence. These positions are identified by nonnegative integers. The leftmost character (if any)

is at position 0, the next character (if any) at position 1, and so on. The length of a string is the number of

distinct positions within it. The empty string has length zero and therefore contains no characters.

The Number type

The Number type has exactly 18437736874454810627 (that‘s2°3+3) values, representing the double-
precision 64-bit format IEEE 754 values as specified in the IEEE Standard for Binary Floating-Point
Arithmetic, except that the 9007199254740990 (that f§-2) distinct “Not-a-Number” values of the

IEEE Standard are represented in ECMAScript as a single spdahibalue. (Note that th&laN value is
produced by the program expressidaN, assuming that the globally defined variaNaN has not been
altered by program execution.) In some implementations, external code might be able to detect a
difference between various Non-a-Number values, but such behaviour is implementation-dependent; to
ECMAScript code, alNaN values are indistinguishable from each other.

There are two other special values, calleakitive Infinity and negative Infinity. For brevity, these
values are also referred to for expository purposes by the symbwlsnd —«, respectively. (Note that
these two infinite number values are produced by the program expressiofisity (or simply

Infinity) and -Infinity , assuming that the globally defined variabieinity has not been
altered by program execution.)

The other 18437736874454810624 (that i¥-2°% values are called the finite numbers. Half of these are
positive numbers and half are negative numbers; for every finite positive number there is a corresponding
negative number having the same magnitude.

Note that there is both positive zeroand anegative zero For brevity, these values are also referred to
for expository purposes by the symbai@ and-0, respectively. (Note that these two zero number values
are produced by the program expressiofis(or simply0) and-0 .)

The 18437736874454810622 (that i§-2°3-2) finite nonzero values are of two kinds:

- 23 -

18428729675200069632 (that i€*2°% of them are normalised, having the form

s-m-2°

wheresis +1 or—1, mis a positive integer less thar®but not less than®2, ande is an integer ranging
from -1074 to 971, inclusive.

The remaining 9007199254740990 (that i$-2) values are denormalized, having the form

s-m-2°

8.6

8.6.1

wheresis +1 or-1, mis a positive integer less thaf’2ande is -1074.

Note that all the positive and negative integers whose magnitude is no greatetthem r2presentable in
the Number type (indeed, the integer 0 has two representatiorend-0).

A finite number has awdd significandif it is nonzero and the integen used to express it (in one of the
two forms shown above) is odd. Otherwise, it hagaan significand

In this specification, the phrase “the number value Xdrwhere x represents an exact nonzero real
mathematical quantity (which might even be an irrational number sugh mgans a number value chosen

in the following manner. Consider the set of all finite values of the Number type,—~@itemoved and

with two additional values added to it that are not representable in the Number type, n®fdiyHich is
+1-2°%. 29 and-2%°%* (which is—1 - 2°2. 2°7Y. Choose the member of this set that is closest in value to
x. If two values of the set are equally close, then the one with an even significand is chosen; for th
purpose, the two extra values’? and-2'°%* are considered to have even significands. Finally,'{f*2

was chosen, replace it witho; if —2'°%*was chosen, replace it witho; if +0 was chosen, replace it with

—0 if and only ifx is less than zero; any other chosen value is used unchanged. The result is the numt
value forx. (This procedure corresponds exactly to the behaviour of the IEEE 754 “round to nearest
mode.)

Some ECMAScript operators deal only with integers in the rafjé through 3'-1, inclusive, or in the
range 0 through %-1, inclusive. These operators accept any value of the Number type but first conver
each such value to one of?Anteger values. See the descriptions of the TolInt32 and ToUint32 operators
in sections 9.5 and 9.6, respectively.

The Object type
An Object is an unordered collection of propertiEach property consists of a name, a value and a set of
attributes.

Property attributes

A property can have zero or more attributes from the following set:

Attribute Description

ReadOnly The property is a read-only property. Attempts by ECMAScript code to wiite to
the property will be ignored. (Note, however, that in some cases the valug of a
property with the ReadOnly attribute may change over time because of gctions
taken by the underlying implementation; therefore “ReadOnly” does not mean
“constant and unchanging™).

DontEnum The property is not to be enumerated foy ain enumeration (section 12.6.3)

DontDelete Attempts to delete the property will be ignored. See the description pf the
delete operator in section 11.4.1.

Internal Internal properties have no name and are not directly accessible via the groperty
accessor operators. How these properties are accessed is implementation specific
How and when some of these properties are used is specified by the lapguage
specification.

8.6.2

- 24 -

Internal Properties and Methods

Internal properties and methods are not exposed in the language. For the purposes of this document,
their names are enclosed in double square brackets [[]]. When an algorithm uses an internal property of
an object and the object does not implement the indicated internal property, a runtime error is
generated.

There are two types of access for exposed propertiesiand put, corresponding to retrieval and
assignment, respectively.

Native ECMAScript objects have an internal property called [[Prototype]]. The value of this property is
either null or an object and is used for implementing inheritance. Properties of the [[Prototype]]
object are exposed as properties of the child object for the purposes of get access, but not for put
access.

The following table summarises the internal properties used by this specification. The description

indicates their behaviour for native ECMAScript objects. Host objects may implement these internal

methods with any implementation-dependent behaviour, or it may be that a host object implements only
some internal methods and not others.

Property Parameters Description

[[Prototypel]] none The prototype of this object.

[[Class]] none A string value indicating the kind of this object.

[[Value]] none Internal state information associated with this object.

[[Get]] (PropertyName) Returns the value of the property.

[[Put]] (PropertyName, Value) Sets the specified property to Value.

[[CanPut]] (PropertyName) Returns a boolean value indicating whether a [[Put]]
operation with the specified PropertyName will
succeed.

[[HasProperty]] (PropertyName) Returns a boolean value indicating whether the jobject
already has a member with the given name.

[[Delete]] (PropertyName) Removes the specified property from the object.

[[DefaultvValue]] | (Hint) Returns a default value for the object, which should be
a primitive value (not an object or reference).

[[Construct]] a list of argument valuesConstructs an object. Invoked via thew operator.

provided by the caller Objects that implement this internal method are called
constructors

[[Call]] a list of argument values Executes code associated with the object. Invoked via a

provided by the caller function call expression. Objects that implement this

internal method are callddnctions

Every object must implement the [[Class]] property and the [[Get]], [[Put]], [[HasProperty]], [[Delete]],
and [[DefaultValue]] methods, even host objects. (Note, however, that the [[DefaultValue]] method
may, for some objects, simply generate a runtime error.)

The value of the [[Prototype]] property must be either an objectudi, and every [[Prototype]] chain
must have finite length (that is, starting from any object, recursively accessing the [[Prototype]]
property must eventually lead tonalll value). Whether or not a native object can have a host object as
its [[Prototype]] depends on the implementation.

The value of the [[Class]] property is defined by this specification for every kind of built-in object. The
value of the [[Class]] property of a host object may be any value, even a value used by a built-in object
for its [[Class]] property. Note that this specification does not provide any means for a program to

8.6.2.1

8.6.2.2

8.6.2.3

8.6.2.4

8.6.2.5

- 25 -

access the value of a [[Class]] property; that value is used internally to distinguish different kinds c
built-in objects.

Every native object implements the [[Get]], [[Put]], [[CanPut]], [[HasProperty]], and [[Delete]]
methods in the manner described in sections 8.6.2.1, 8.6.2.2, 8.6.2.3, 8.6.3.4, and 8.6.2.5, respectiv
except that Array objects have a slightly different implementation of the [[Put]] method (section
15.4.5.1). Host objects may implement these methods in any manner; for example, one possibility is t
[[Get]] and [[Put]] for a particular host object indeed fetch and store property values but
[[HasProperty]] always generatésise.

In the following algorithm descriptions, assuf@és a native ECMAScript object arfélis a string.

[[Get]](P)
When the [[Get]] method dD is called with property nami, the following steps are taken:

If O doesn’t have a property with narRe go to step 4.

Get the value of the property.

Return Result(2).

If the [[Prototype]] ofO is null, returnundefined.

Call the [[Get]] method of [[Prototype]] with property nae
Return Result(5).

[[Put]](P, V)
When the [[Put]] method oD is called with property and valueV, the following steps are taken:

Call the [[CanPut]] method @ with nameP.

If Result(1) is false, return.

If O doesn’t have a property with narRe go to step 6.

Set the value of the property¥o The attributes of the property are not changed.
Return.

Create a property with nanke set its value t&/ and give it empty attributes.
Return.

SR R

Nogaswh =

Note, however, that iD is an Array object, it has a more elaborate [[Put]] method (section 15.4.5.1).

[[CanPut]](P)
The [[CanPut]] method is used only by the [[Put]] method.

When the [[CanPut]] method @ is called with property, the following steps are taken:

If O doesn’t have a property with narRe go to step 4.

If the property has the ReadOnly attribute, refiaise.

Returntrue.

If the [[Prototype]] ofO is null, returntrue.

If the [[Prototype]] ofO is a host object that does not implement the [[CanPut]] method, return
false.

Call the [[CanPut]] method of [[Prototype]] &f with property namé.

Return Result(6).

[[HasProperty]](P)

1. When the [[HasProperty]] method &f is called with property namB, the following steps are
taken:

RN E

No

If O has a property with name P, return true.

If the [[Prototype]] of O is null, return false.

Call the [[HasProperty]] method of [[Prototype]] with property name P.
Return Result(3).

[[Delete]](P)
When the [[Delete]] method d® is called with property nami, the following steps are taken:

akrowobn

1. If O doesn’t have a property with narRe returntrue.
2. If the property has the DontDelete attribute, refiatse.

- 26 -

3. Remove the property with narfefrom O.
4. Returntrue.

8.6.2.6 [[DefaultValue]](hint)

8.7

8.7.1

When the [[DefaultValue]] method @ is called with hint String, the following steps are taken:

Call the [[Get]] method of object O with argument "toString”.

If Result(1) is not an object, go to step 5.

Call the [[Call]] method of Result(1), with O as the this value and an empty argument list.
If Result(3) is a primitive value, return Result(3).

Call the [[Get]] method of object O with argument "valueOf".

If Result(5) is not an object, go to step 9.

Call the [[Call]] method of Result(5), with O as the this value and an empty argument list.
If Result(7) is a primitive value, return Result(7).

Generate a runtime error.

CoNOOALNE

When the [[DefaultValue]] method @ is called with hint Number, the following steps are taken:

Call the [[Get]] method of obje@ with argument'valueOf"

If Result(1) is not an object, go to step 5.

Call the [[Call]] method of Result(1), wit® as thethis value and an empty argument list.
If Result(3) is a primitive value, return Result(3).

Call the [[Get]] method of obje&® with argument'toString"

If Result(5) is not an object, go to step 9.

Call the [[Call]] method of Result(5), wit® as thethis value and an empty argument list.
If Result(7) is a primitive value, return Result(7).

Generate a runtime error.

CoONOAWNE

When the [[DefaultValue]] method d® is called with no hint, then it behaves as if the hint were
Number, unles® is a Date object (see section), in which case it behaves as if the hint were String.

The Reference Type

The internal Reference type is not a language data tyfteis defined by this specification purely for
expository purposes. An implementation of ECMAScript must behave as if it produced and operated upon
references in the manner described here. However, a value of Rgperenceis used only as an
intermediate result of expression evaluation and cannot be stored as the value of a variable or property.

The Reference type is used to explain the behaviour of such operatdededs , typeof , and the
assignment operators. For example, the left-hand operand of an assignment is expected to produce a
reference. The behaviour of assignment could, instead, be explained entirely in terms of a case analysis on
the syntactic form of the left-hand operand of an assignment operator, but for one difficulty: function calls
are permitted to return references. This possibility is admitted purely for the sake of host objects. No
built-in ECMAScript function defined by this specification returns a reference and there is no provision
for a user-defined function to return a reference. (Another reason not to use a syntactic case analysis is
that it would be lengthy and awkward, affecting many parts of the specification.)

Another use of the Reference type is to explain the determination dfithe value for a function call.

A Referenceis a reference to a property of an object. A Reference consists of two componeritas¢he
objectand theproperty name.

The following abstract operations are used in this specification to describe the behaviour of references:

GetBase(V). Returns the base object component of the reference V.
GetPropertyName(V). Returns the property name component of the reference V.
GetValue(V). Returns the value of the property indicated by the reference V.

PutValue(V, W). Changes the value of the property indicated by the reference V to be W.

GetBase(V)

1. If Type(V) is Reference, return the base object component of V.
2. Generate a runtime error.

8.7.2

8.7.3

8.7.4

8.8

- 27 -

GetPropertyName(V)

1. If Type(V) is Reference, return the property nhame component of V.
2. Generate a runtime error.

GetValue(V)

If Type(V) is not Reference, return V.

Call GetBase(V).

If Result(2) isnull, generate a runtime error.

Call the [[Get]] method of Result(2), passing GetPropertyName(V) for the property name.
Return Result(4).

PutValue(V, W)

abrwd e

1. If Type(V) is not Reference, generate a runtime error.

2. Call GetBase(V).

3. If Result(2) is null, go to step 6.

4. Call the [[Put]] method of Result(2), passing GetPropertyName(V) for the property name and W fo
the value.

5. Return.

6. Call the [[Put]] method for the global object, passing GetPropertyName(V) for the property nam
and W for the value.

7. Return.

The List type

The internal List type is not a language data tydeéis defined by this specification purely for expository
purposes. An implementation of ECMAScript must behave as if it produced and operated upon List valu
in the manner described here. However, a value of the List type is used only as an intermediate result
expression evaluation and cannot be stored as the value of a variable or property.

The List type is used to explain the evaluation of argument lists (section 11.2dyiaxpressions and in
function calls. Values of the List type are simply ordered sequences of values. These sequences may b
any length.

8.9 The Completion Type

9

The internal Completion type is not a language data typeis defined by this specification purely for

expository purposes. An implementation of ECMAScript must behave as if it produced and operated upt
Completion values in the manner described here. However, a value of the Completion type is used only
an intermediate result of statement evaluation and cannot be stored as the value of a variable or propert

The Completion type is used to explain the behaviour of statemerdak(, continue , andreturn)
that perform nonlocal transfers of control. Values of the Completion type have one of the following forms

¢ “normal completion”

e “normal completion after valug”

e ‘“abrupt completion because bfeak ”

e ‘“abrupt completion after valu¥ because obreak ”
e “abrupt completion because obntinue "

e “abrupt completion after valu¥ because ofontinue
e ‘“abrupt completion because ofturn V" whereV is a value

Any completion of one of the four forms that carries a vallés called avalue completion Any
completion of one of the first two forms is callecharmal completionany other completion is called an
abrupt completion Any completion of a form that mentioseak is called abreak completion Any
completion of a form that mentiorontinue is called acontinue completion Any completion of a
form that mentionseturn is called areturn completion

Type Conversion

The ECMAScript runtime system performs automatic type conversion as needed. To clarify the semantics
certain constructs it is useful to define a set of conversion operators. These operators are not a part of

9.1

9.2

9.3

- 28 -

language; they are defined here to aid the specification of the semantics of the language. The conversion
operators are polymorphic; that is, they can accept a value of any standard type, but not of type Reference,
List, or Completion (the internal types).

ToPrimitive

The operator ToPrimitive takes a Value argument and an optional PreferredType argument. The operator
ToPrimitive converts its value argument to a non-Object type. If an object is capable of converting to more
than one primitive type, it may use the optional HtnéferredTypeo favour that type. Conversion occurs
according to the following table:

Input Type Result

Undefined The result equals the input argument (no conversion).

Null The result equals the input argument (no conversion).

Boolean The result equals the input argument (no conversion).

Number The result equals the input argument (no conversion).

String The result equals the input argument (no conversion).

Object Return a default value for the Object. The default value of an object is retrieyed by
calling the internal [[DefaultValue]] method of the object, passing the optional hint
PreferredType The behaviour of the [[DefaultValue]] method is defined by this
specification for all native ECMAScript objects (see section 8.6.2.6). If the return
value is of type Object or Reference, a runtime error is generated.

ToBoolean

The operator ToBoolean

converts its argument to a value of type Boolean according to the following table:

ro);

Input Type Result

Undefined false

Null false

Boolean The result equals the input argument (no conversion).

Number The result isfalse if the argument is+0, —0, or NaN; otherwise the result i
true .

String The result idalse if the argument is the empty string (its length is ze
otherwise the result isue .

Object true

ToNumber

The operator ToNumber converts its argument to a value of type Number according to the following table:

- 29 -

Input Type Result
Undefined NaN
Null +0
Boolean The result idl if the argument isrue . The result is0 if the argument ifalse
Number The result equals the input argument (no conversion).
String See grammar and note below.
Object Apply the following steps:
1. Call ToPrimitive(input argument, hint Number).
2. Call ToNumber(Result(1)).
3. Return Result(2).

9.3.1 ToNumber Applied to the String Type
ToNumber applied to strings applies the following grammar to the input string. If the grammar cannc
interpret the string as an expansionSafingNumericLiteral then the result of ToNumber aN.
StringNumericLiterat::

StrwhiteSpacg;
StrwhiteSpacg; StrNumericLiteral StrwhiteSpage

StrWhiteSpace:
StrWhiteSpaceChar StrWhiteSpgee

StrWhiteSpaceChar:

<TAB>
<SP>
<FF>
<VT>
<CR>
<LF>

StrNumericLiteral::

StrDecimalLiteral
+ StrDecimalLiteral
- StrDecimallLiteral
HexIntegerLiteral

StrDecimalLiteral::

Infinity

DecimalDigits. DecimalDigits,ExponentPag
. DecimalDigits ExponentPay

DecimalDigits ExponentPagj;

DecimalDigits:::

DecimalDigit
DecimalDigits DecimalDigit

DecimalDigit::: one of
012345672829

- 30 -

ExponentPart::

Exponentindicator Signedinteger

Exponentindicator:: one of
e E

Signedinteger::

DecimalDigits
+ DecimalDigits
- DecimalDigits

HexIntegerLiteral::

0x HexDigit
0X HexDigit
HexIntegerLiteral HexDigit

HexDigit::: one of
0 1 2 3 456 7 8 9 abocdefABTCDEF

Some differences should be noted between the syntaxSafimgNumericLiteraland aNumericLiteral
(section 7.7.3):

e A StringNumericLiteralmay be preceded and/or followed by whitespace and/or line terminators.
e A StringNumericLiteral may not use octal notation.

e A StringNumericLiteralthat is decimal may have any number of leadindjgits.

e A StringNumericLiteralthat is decimal may be preceded-byr - to indicate its sign.

e A StringNumericLiteralthat is empty or contains only whitespace is convertetDto

The conversion of a string to a number value is similar overall to the determination of the number value
for a numeric literal (section 7.7.3), but some of the details are different, so the process for converting a
string numeric literal to a value of Number type is given here in full. This value is determined in two
steps: first, a mathematical value (MV) is derived from the string numeric literal; second, this
mathematical value is rounded, ideally using IEEE 754 round-to-nearest mode, to a representable value
of the number type.

e The MV of StringNumericLiteral:: (an empty character sequence) is 0.
e The MV of StringNumericLiteral:: StrwhiteSpaces 0.

e The MV of StringNumericLiteral::: StrWhiteSpacg: StrNumericLiteral StrWhiteSpageis the MV of
StrNumericLiteral no matter whether whitespace is present or not.

e The MV of StrNumericLiteral:: StrDecimalLiteralis the MV ofStrDecimalLiteral
e The MV of StrNumericLiterat:: + StrDecimalLiteralis the MV ofStrDecimalLiteral

e The MV of StrNumericLiteral:: - StrDecimalLiteralis the negative of the MV @trDecimalLiteral (Note
that if the MV ofStrDecimalLiteralis 0, the negative of this MV is also 0. The rounding rule described below
handles the conversion of this signless mathematical zero to a floating-pa@nt0 as appropriate.)

e The MV of StrNumericLiteral:: HexIntegerLiteralis the MV ofHexIntegerLiteral
e The MV of StrDecimalLiteral:: Infinity is 10°°°°°(a value so large that it will round teo).
e The MV of StrDecimalLiteral::: DecimalDigits is the MV ofDecimalDigits

e The MV of StrDecimalLiteral::: DecimalDigits DecimalDigitsis the MV of the firstDecimalDigits plus
(the MV of the secondecimalDigits times 1Q"), wheren is the number of characters in the second
DecimalDigit.

- 31 -

The MV of StrDecimalLiteral::: DecimalDigits ExponentPartis the MV of DecimalDigits times 16,
wheree is the MV ofExponentPart

The MV of StrDecimallLiteral ::: DecimalDigits DecimalDigits ExponentParts (the MV of the first
DecimalDigitsplus (the MV of the seconBecimalDigitstimes 10") times 16, wheren is the number of
characters in the secobcimalDigis ande is the MV ofExponentPart

The MV of StrDecimalLiteral:::. DecimalDigitsis the MV of DecimalDigitstimes 10", wheren is the
number of characters DecimalDigits.

The MV of StrDecimalLiteral:::. DecimalDigits ExponentPais the MV of DecimalDigitstimes 16",
wheren is the number of charactersecimalDigit ande is the MV ofExponentPart

The MV of StrDecimalLiteral::: DecimalDigitsis the MV ofDecimalDigits

The MV of StrDecimalLiteral::: DecimalDigitsExponentParts the MV of DecimalDigitstimes 16, where
eis the MV ofExponentPart

The MV of DecimalDigits::: DecimalDigitis the MV ofDecimalDigit

The MV of DecimalDigits::: DecimalDigitsDecimalDigitis (the MV of DecimalDigitstimes 10) plus the
MV of DecimalDigit

The MV of ExponentPart:: Exponentindicator Signedintegisrthe MV ofSignedinteger
The MV of Signedinteger:: DecimalDigitsis the MV ofDecimalDigits
The MV of Signedinteger:: + DecimalDigitsis the MV ofDecimalDigits
The MV of Signedinteger:: - DecimalDigitsis the negative of the MV decimalDigits
The MV of DecimalDigit::: 0 or of HexDigit::: 0 is 0.

The MV of DecimalDigit::: 1 or of HexDigit::: 1 is 1.

The MV of DecimalDigit::: 2 or of HexDigit::: 2 is 2.

The MV of DecimalDigit::: 3 or of HexDigit::: 3 is 3.

The MV of DecimalDigit::: 4 or of HexDigit::: 4 is 4.

The MV of DecimalDigit::: 5 or of HexDigit::: 5 is 5.

The MV of DecimalDigit::: 6 or of HexDigit::: 6 is 6.

The MV of DecimalDigit::: 7 or of HexDigit::: 7 is 7.

The MV of DecimalDigit::: 8 or of HexDigit::: 8 is 8.

The MV of DecimalDigit::: 9 or of HexDigit::: 9 is 9.

The MV of HexDigit::: a or of HexDigit::: Ais 10.

The MV of HexDigit::: b or of HexDigit::: Bis 11.

The MV of HexDigit::: ¢ or ofHexDigit::: Cis 12.

The MV of HexDigit::: d or of HexDigit::: Dis 13.

The MV of HexDigit::: e or of HexDigit::: E is 14.

The MV of HexDigit::: f or ofHexDigit::: Fis 15.

The MV of HexIntegerLiterat:: Ox HexDigitis the MV ofHexDigit

The MV of HexIntegerLiterat:: 0X HexDigitis the MV ofHexDigit

9.4

9.5

9.6

- 32 -

e The MV of HexIntegerLiteral:: HexIntegerLiteraHexDigitis (the MV ofHexIntegerLiteraltimes 16) plus
the MV of HexDigit.

Once the exact MV for a string numeric literal has been determined, it is then rounded to a value of the
Number type. If the MV is 0O, then the rounded value is +0 unless the first non-whitespace character in
the string numeric literal is ‘-, in which case the rounded valueGs Otherwise, the rounded value

must be the number value for the MV (in the sense defined in section 8.5), unless the literal includes a
StrDecimalLiteral and the literal has more than 20 significant digits, in which case the number value
may be either the number value for the MV of a literal produced by replacing each significant digit after
the 20th with a 0 digit or the number value for the MV of a literal produced by replacing each
significant digit after the 20th with a 0 digit and then incrementing the literal at the 20th digit position.
A digit is significant if it is not part of an ExponentPart and (either it is not O or (there is a nonzero
digit to its left and there is a nonzero digit, not in the ExponentPart, to its right)).

Tolnteger
The operator Tolnteger converts its argument to an integral numeric value. This operator functions as
follows:

Call ToNumber on the input argument.

If Result(1) isNaN, return+0.

If Result(1) is+0, -0, +w, or —o, return Result(1).
Compute sign(Result(1)) * floor(abs(Result(1))).
Return Result(4).

Tolnt32: (signhed 32 bit integer)

The operator Tolnt32 converts its argument to one®4firkeger values in the range*! through 3'-1,
inclusive. This operator functions as follows:

Ok wNE

1. Call ToNumber on the input argument.

2. If Result(1) isNaN, +0, =0, +w, or —o, return +0.

3. Compute sign(Result(1)) * floor(abs(Result(1))).

4. Compute Result(3) moduld®® that is, a finite integer value k of Number type with positive sign and
less than % in magnitude such the mathematical difference of Result(3) and k is mathematically an
integer multiple of .

5. If Result(4) is greater than or equal t§,2eturn Result(4) 2°2, otherwise return Result(4).

NOTE Given the above definition of Tolnt32:

The Tolnt32 operation is idempotent: if applied to a result that it produced, the second application leaves that value
unchanged.

Tolnt32(ToUint32(x)) is equal to Tolnt32(x) for all values of x. (It is to preserve this latter property that +c and —w are
mapped to +0.)

Tolnt32 maps -0 to +0.

ToUint32: (unsigned 32 bit integer)

The operator ToUint32 converts its argument to one *6fiteger values in the range 0 throug¥-2,
inclusive. This operator functions as follows:

1. Call ToNumber on the input argument.

2. If Result(1) isNaN, +0,-0, +w, or —o, return +0.

3. Compute sign(Result(1)) * floor(abs(Result(1))).

4. Compute Result(3) moduld®® that is, a finite integer value k of Number type with positive sign and
less than # in magnitude such the mathematical difference of Result(3) and k is mathematically an
integer multiple of .

5. Return Result(4).

NOTE Given the above definition of ToUInt32::

Step 5 is the only difference between ToUint32 and Tolnt32.

9.7

9.8

9.8.1

- 33 -

The ToUint32 operation is idempotent: if applied to a result that it produced, the second application leaves that value
unchanged.

ToUint32(Tolnt32(x)) is equal to ToUint32(x) for all values of x. (It is to preserve this latter property that +co and —oo
are mapped to +0.)

ToUint32 maps -0 to +0.

ToUint16: (unsigned 16 bit integer)
The operator ToUintl6 converts its argument to one ‘8fiteger values in the range 0 througtf-2,
inclusive. This operator functions as follows:

1.
2. If Result(1) isNaN, +0,-0, +w, or —o, return +0.

3.

4. Compute Result(3) moduld® that is, a finite integer value k of Number type with positive sign and

5.

Call ToNumber on the input argument.

Compute sign(Result(1)) * floor(abs(Result(1))).

less than 2 in magnitude such the mathematical difference of Result(3) and k is mathematically at

integer multiple of 2°.
Return Result(4).

NOTE Given the above definition of ToUInt16::

The substitution of 2*° for 2% in step 4 is the only difference between ToUint32 and ToUnit16.

ToUint16 maps -0 to +0.

ToString
The operator ToString converts its argument to a value of type String according to the following table:

Input Type Result

Undefined "undefined"

Null "null”

Boolean If the argument isrue, then the result i%rue”

If the argument igalse, then the result i¥alse"

Number See note below.
String Return the input argument (no conversion)
Object Apply the following steps:

1. Call ToPrimitive(input argument, hint String).
2. Call ToString(Result(1)).
3. Return Result(2).

ToString Applied to the Number Type
The operator ToString converts a numbeto string format as follows:

If mis NaN, return the stringNaN" .

If mis +0 or -0, return the string0" .

If mis less than zero, return the string concatenation of the sttingand ToStringfm).

If mis infinity, return the stringInfinity"

Otherwise, len, k, ands be integers such that= 1, 16-* = s < 10, the number value fos:10"¥ is

m, andk is as small as possible. Note tlkaits the number of digits in the decimal representation of
s, thats is not divisible by 10, and that the least significant digitsdé not necessarily uniquely
determined by these criteria.

agkwbdE

- 34 -

6. If k=n =21, return the string consisting of tkaligits of the decimal representation of s (in order,
with no leading zeroes), followed lmy-k occurrences of the charactér.

7. If 0 < n = 21, return the string consisting of the most significantigits of the decimal
representation o, followed by a decimal point.”, followed by the remaining-n digits of the
decimal representation af

8. If -6 < n = 0, return the string consisting of the charac®r followed by a decimal point.",
followed by —n occurrences of the characte®’, followed by the k digits of the decimal
representation os.

9. Otherwise, ifk = 1, return the string consisting of the single digit spffollowed by lowercase
character ¢’, followed by a plus sign+’ or minus sign =’ according to whethen-1 is positive or
negative, followed by the decimal representation of the integenaby(with no leading zeros).

10.Return the string consisting of the most significant digit of the decimal representation of s, followed
by a decimal point ‘., followed by the remaining-X digits of the decimal representation of s,
followed by the lowercase character ‘e’, followed by a plus sign ‘+’ or minus sigaccording to
whether i1 is positive or negative, followed by the decimal representation of the integer-aps(n
(with no leading zeros).

NOTE The following observations may be useful as guidelines for implementations, but are not part of the
normative requirements of this standard.
If x is any number value other than -0, then ToNumber(ToString(x)) is exactly the same number value as x.

The least significant digit of s is not always uniquely determined by the requirements listed in step 5.

For implementations which provide more accurate conversions than required by the rules above, it is
recommended that the following alternative version of step 5 be used as a guideline:

Otherwise, let n, k, and s be be integers such that k> 1, 10“* = s < 10% the number value for s.10"*is m, and k
is as small as possible. If there are multiple possibilities for s, choose the value of s for which s.10"“is closest
in value to m. Note that k is the number of digits in the decimal representation of s, that s is not divisible by 10. If
there are two such possible values of s, choose the one that is even.

Implementors of ECMAScript may find useful the paper and code written by David M. Gay for binary-to-decimal
conversion of floating-point numbers:

Gay, David M. Correctly Rounded Binary-Decimal and Decimal —Binary Conversions. Numerical Analysis
Manuscript 90-10. AT&T Bell Laboratories (Murray Hill, New Jersey). November 30, 1990. Available as

http://cm.bell-labs.com/cm/cs/doc/90/4-10.ps.gz . Associated code available as
http://cm.bell-labs.com/netlib/fp/dtoa.c.gz and as http://cm.bell-
labs.com/netlib/fp/g_fmt.c.gz and may also be found at the various netlib ~ mirror sites.

9.9 ToObject
The operator ToObject converts its argument to a value of type Object according to the following table:

Input Type Result

Undefined Generate a runtime error.

Null Generate a runtime error.

Boolean Create a new boolean object whose default value is the value of the boolgan. See

section 15.6 for a description of boolean objects.

Number Create a new number object whose default value is the value of the number. See
section 15.7 for a description of number objects.

String Create a new string object whose default value is the value of the string. See
section 15.5 for a description of string objects.

Object The result is the input argument (no conversion).

- 35 -

10 Execution Contexts

When control is transferred to ECMAScript executable code, control is enteriagezntion contextActive
execution contexts logically form a stack. The top execution context on this logical stack is the runnin
execution context.

10.1
10.1.1

10.1.2

10.1.3

Definitions

Function Objects
There are four types of function objects:

e Declared functions are defined in source text ByuactionDeclaration

e Anonymous functions are created dynamically by using the builkimction object as a
constructor, which is referred to as an instantiafugction

e Implementation-supplied functions are created at the request of the host with source text supplied
the host. The mechanism for their creation is implementation-dependent. Implementation-supplie
functions may have any subset of the following attributes {ImplicitThis, ImplicitParents }. Note that
these are attributes of function objects, not of properties. The use of these attributes is described
section 10.2.4.

e Internal functions are built-in objects of the language, suclpaselnt and Math.exp . An
implementation may also provide implementation-dependent internal functions that are not describe
in this specification. These functions do not contain executable code defined by the ECMAScrif
grammar, so are excluded from this discussion of execution contexts.

Types of Executable Code
There are five types of executable ECMAScript source text:

e Global codeis source text that is outside all function declarations. More precisely, the global code
of a particular ECMAScriptProgram consists of allSourceElementsn the Program production,
which come from th&tatementlefinition.

e Eval codeis the source text supplied to the builtémal function. More precisely, if the parameter
to the built-ineval function is a string, it is treated as an ECMAScipbgram The eval code for
a particular invocation oéval is the global code portion of the string parameter.

e Function codeis source text that is inside a function declaration. More precisely, the function code
of a particular ECMAScriptFunctionDeclaration consists of theBlock in the definition of
FunctionDeclaration

e Anonymous codes the source text supplied when instantiatigction . More precisely, the last
parameter provided in an instantiation lBfinction is converted to a string and treated as the
StatementLisbf the Block of a FunctionDeclaration If more than one parameter is provided in an
instantiation of Function , all parameters except the last one are converted to strings and
concatenated together, separated by commas. The resulting string is interpreted as t
FormalParameterLisof a FunctionDeclarationfor the StatementListefined by the last parameter.

e |Implementation-suppliedcode is the source text supplied by the host when creating an
implementation-supplied function. The source text is treated aStdementLisbf the Block of a
FunctionDeclaration Depending on the implementation, the host may also supply a
FormalParameterList

Variable instantiation

Every execution context has associated with it a variable object. Variables declared in the source te
are added as properties of the variable object. For global and eval code, functions defined in the sou
text are added as properties of the variable object. Function declarations in other types of code are

allowed by the grammar. For function, anonymous, and implementation-supplied code, parameters &
added as properties of the variable object.

Which object is used as the variable object and what attributes are used for the properties depends
the type of code, but the remainder of the behaviour is generic:

10.1.4

10.1.5

- 36 -

¢ For eachFunctionDeclarationin the code, in source text order, instantiate a declared function from
the FunctionDeclarationand create a property of the variable object whose name is the Identifier in
the FunctionDeclaration whose value is the declared function and whose attributes are determined
by the type of code. If the variable object already has a property with this name, replace its value
and attributes.

e For each formal parameter, as defined in FoemalParameterListcreate a property of the variable
object whose name is thdentifier and whose attributes are determined by the type of code. The
values of the parameters are supplied by the caller. If the caller supplies fewer parameter values than
there are formal parameters, the extra formal parameters have wadeéined . If two or more
formal parameters share the same name, hence the same property, the corresponding property is
given the value that was supplied for the last parameter with this name. If the value of this last
parameter was not supplied by the caller, the value of the corresponding propartefmned

e For eachvariableDeclarationin the code, create a property of the variable object whose name is the
Identifier in VariableDeclaration whose value isindefined and whose attributes are determined
by the type of code. If there is already a property of the variable object with the name of a declared
variable, the value of the property and its attributes are not changed. Semantically, this step must
follow the creation of thé&-unctionDeclarationandFormalParameterLisproperties. In particular, if
a declared variable has the same name as a declared function or formal parameter, the variable
declaration does not disturb the existing property.

Scope Chain and Identifier Resolution

Every execution context has associated with stape chainThis is logically a list of objects that are
searched wheminding an Identifier. When control enters an execution context, the scope chain is
created and is populated with an initial set of objects, depending on the type of code. When control
leaves the execution context, the scope chain is destroyed.

During execution, the scope chain of the execution context is affected onlyithtatementWhen
execution enters with block, the object specified in theith statement is added to the front of the
scope chain. When execution leavewith block, whether normally or via bBreak or continue
statement, the object is removed from the scope chain. The object being removed will always be the
first object in the scope chain.

During execution, the syntactic productidPrimaryExpression: ldentifier is evaluated using the
following algorithm;

1. Get the next object in the scope chain. If there isn't one, go to step 5.

2. Call the [[HasProperty]] method of Result(l), passinglttentifier as the property.

3. If Result(2) istrue , return a value of type Reference whose base object is Result(l) and whose
property name is thidentifier.

4. Goto step 1.

5. Return a value of type Reference whose base objenulis and whose property name is the
Identifier.

The result of binding an identifier is always a value of type Reference with its member name component
equal to the identifier string.

Global Object

There is a uniquglobal object which is created before control enters any execution context. Initially
the global object has the following properties:

e Built-in objects such as Math, String, Date, parselnt, etc. These have attributes { DontEnum }.

e Additional host defined properties. This may include a property whose value is the global object
itself, for examplevindow in HTML.

As control enters execution contexts, and as ECMAScript code is executed, additional properties may
be added to the global object and the initial properties may be changed.

10.1.6

10.1.7

10.1.8

10.2

10.2.1

10.2.2

- 37 -

Activation object

When control enters an execution context for declared function code, anonymous code ¢
implementation-supplied code, an object called the activation object is created and associated with -
execution context. The activation object is initialised with a property with nargaments and
property attributes { DontDelete }. The initial value of this property is the arguments object describec
below.

The activation object is then used as the variable object for the purposes of variable instantiation.

When a value is to be returned from the call to a function, its activation object is no longer needed al
may be permanently decommissioned.

The activation object is purely a specification mechanism. It is impossible for an ECMAScript progran
to access the activation object. It can access members of the activation object, but not the activati
object itself. When the call operation is applied to a Reference value whose base object is an activat
object,null is used as ththis value of the call.

This
There is ahis value associated with every active execution context.thtee value depends on the

caller and the type of code being executed and is determined when control enters the execution contc
Thethis value associated with an execution context is immutable.

Arguments Object

When control enters an execution context for declared function code, anonymous code, ¢
implementation-supplied code, an arguments object is created and initialised as follows:

e The value of the internal [[Prototype]] property of the arguments object is the original Object
prototype object, the one that is the initial valueddifect.prototype (section 15.2.3.1).

e A property is created with nanmllee and property attributes { DontEnum }. The initial value of
this property is the function object being executed. This allows anonymous functions to be recursiv

e A property is created with namength and property attributes { DontEnum }. The initial value of
this property is the number of actual parameter values supplied by the caller.

e For each non-negative integeigrg, less than the value of thength property, a property is
created with name ToStrinigfg) and property attributes { DontEnum }. The initial value of this
property is the value of the corresponding actual parameter supplied by the caller. The first actu
parameter value correspondsi&og = 0, the second t@arg = 1 and so on. In the case whiang is
less than the number of formal parameters for the function object, this property shares its value wi
the corresponding property of the activation object. This means that changing this property chang
the corresponding property of the activation object and vice versa. The value sharing mechanis
depends on the implementation.

Entering An Execution Context
When control enters an execution context, the scope chain is created and initialised, variable instantiat
is performed, and thehis value is determined.

The initialisation of the scope chain, variable instantiation, and the determination dhishe value
depend on the type of code being entered.

Global Code
e The scope chain is created and initialised to contain the global object and no others.

e Variable instantiation is performed using the global object as the variable object and using emp
property attributes.

e Thethis value is the global object.

Eval Code

When control enters an execution context for eval code, the previous active execution context, referr
to as thecalling context is used to determine the scope chain, the variable object, andishevalue.

- 38 -

If there is no calling context, then initialising the scope chain, variable instantiation, and determination
of thethis value are performed just as for global code.

e The scope chain is initialised to contain the same objects, in the same order, as the calling context's
scope chain. This includes objects added to the calling context's scope chilithByatement.

e Variable instantiation is performed using the calling context's variable object and using empty
property attributes.

e Thethis value is the same as thd@s value of the calling context.

10.2.3 Function and Anonymous Code
e The scope chain is initialised to contain the activation object followed by the global object.

e Variable instantiation is performed using the activation object as the variable object and using
property attributes { DontDelete }.

e The caller provides the¢his value. If thethis value provided by the caller is not an object
(including the case where it iull), then thethis value is the global object.
10.2.4 Implementation-supplied Code
e The scope chain is initialised to contain the activation object as its first element.

e Thethis value is determined just as for function and anonymous code.

e If the implementation-supplied function has the ImplicitThis attribute (10.1.1)thise value is
placed in the scope chain after the activation object.

e If the implementation-supplied function has the ImplicitParents attribute (10.1.1), a list of objects,
determined solely by ththis value, is inserted in the scope chain after the activation object (if
the implementation-supplied function does not have the ImplicitThis attribute) or after the activation
object andthis object (if the implementation-supplied function has the ImplicitThis attribute).
Note that this list is determined at run time by this value. It is not determined by any form of
lexical scoping.

e The global object is placed in the scope chain after all other objects.

e Variable instantiation is performed using the activation object as the variable object and using
attributes { DontDelete }.

11 Expressions
11.1 Primary Expressions
Syntax
PrimaryExpression
this
Identifier

Literal
(Expression

11.1.1 Thethis keyword
Thethis keyword evaluates to this value of the execution context.

11.1.2 Identifier reference

An Identifier is evaluated using the scoping rules stated in section 10.1.4. The resultdefrdifier is
always a value of type Reference.

11.1.3 Literal reference
A Literal is evaluated as described in section 7.7.

- 39 -

11.1.4 The Grouping Operator
The productiorPrimaryExpression (Expression is evaluated as follows:

1. Evaluate Expression. This may be of type Reference.
2. Return Result(1).

NOTE This algorithm does not apply GetValue to Result(1). The principal motivation for this is so that operators
such as delete and typeof may be applied to parenthesised expressions.
11.2 Left-Hand-Side Expressions
Syntax
MemberExpression

PrimaryExpression

MemberExpressioh Expressior]

MemberExpression Identifier

new MemberExpressiomArguments
NewExpression

MemberExpression

new NewExpression
CallExpression

MemberExpressioPArguments
CallExpression Arguments
CallExpressiorf Expressior]
CallExpression Identifier

Arguments

()
(ArgumentList)

ArgumentList
AssignmentExpression
ArgumentList AssignmentExpression
LeftHandSideExpressian
NewExpression
CallExpression
11.2.1 Property Accessors
Properties are accessed by name, using either the dot notation:
MemberExpression Identifier
CallExpression Identifier
or the bracket notation:
MemberExpressiofi Expressiornf
CallExpressiorf Expressior]
The dot notation is explained by the following syntactic conversion:
MemberExpression Identifier

is identical in its behaviour to

- 40 -

MemberExpressiofi <identifier-string> |
and similarly
CallExpression Identifier
is identical in its behaviour to
CallExpressiorf <identifier-string>]
where <identifier-string> is a string literal containing the same sequence of charactersdentifier.
The production MemberExpressioiMemberExpressioh Expressior] is evaluated as follows:

Evaluate MemberExpression.

Call GetValue(Result(1)).

Evaluate Expression.

Call GetValue(Result(3)).

Call ToObject(Result(2)).

Call ToString(Result(4)).

Return a value of type Reference whose base object is Result(5) and whose property name is
Result(6).

NoohkwnkE

The productionCallExpression: CallExpression[Expression] is evaluated in exactly the same
manner, except that the contain@dllExpressions evaluated in step 1.

11.2.2 Thenew operator
The productiorNewExpression new NewEXxpressiois evaluated as follows:

Evaluate NewExpression.

Call GetValue(Result(1)).

If Type(Result(2)) is not Object, generate a runtime error.

If Result(2) does not implement the internal [[Construct]] method, generate a runtime error.

Call the [[Construct]] method on Result(2), providing no arguments (that is, an empty list of
arguments).

6. If Type(Result(5)) is not Object, generate a runtime error.

7. Return Result(5).

agrwbdE

The productiorMemberExpression new MemberExpression Argumeritsevaluated as follows:

Evaluate MemberExpression.

Call GetValue(Result(1)).

Evaluate Arguments, producing an internal list of argument values (section 11.2.4).

If Type(Result(2)) is not Object, generate a runtime error.

If Result(2) does not implement the internal [[Construct]] method, generate a runtime error.
Call the [[Construct]] method on Result(2), providing the list Result(3) as the argument values.
If Type(Result(6)) is not Object, generate a runtime error.

Return Result(6).

11.2.3 Function Calls
The production CallExpressianMemberExpression Arguments is evaluated as follows:

Nk wNE

Evaluate MemberExpression.

Evaluate Arguments, producing an internal list of argument values (section 11.2.4).

Call GetValue(Result(1)).

If Type(Result(3)) is not Object, generate a runtime error.

If Result(3) does not implement the internal [[Call]] method, generate a runtime error.

If Type(Result(1)) is Reference, Result(6) is GetBase(Result(1)). Otherwise, Resutigd) is

If Result(6) is an activation object, Result(7hidl. Otherwise, Result(7) is the same as Result(6).
Call the [[Call]] method on Result(3), providing Result(7) asttiie value and providing the list
Result(2) as the argument values.

Return Result(8).

NG RWNE

©

11.2.4

11.3
Syntax

- 41 -

The productionCallExpression: CallExpression Argumentss evaluated in exactly the same manner,
except that the containdg@iallExpressions evaluated in step 1.

NOTE Result(8) will never be of type Reference if Result(3) is a native ECMAScript object. Whether calling a
host object can return a value of type Reference is implementation-dependent.

Argument Lists
The evaluation of an argument list produces an internal list of values (section 8).

The productioPArguments () is evaluated as follows:
1. Return an empty internal list of values.
The productiomMrguments (ArgumentList) is evaluated as follows:

1. Evaluate ArgumentList.
2. Return Result(1).

The productiomPArgumentList AssignmentExpressiois evaluated as follows:

1. Evaluate AssignmentExpression.
2. Call GetValue(Result(1)).
3. Return an internal list whose sole item is Result(2).

The productioPArgumentList ArgumentList, AssignmentExpressioms evaluated as follows:

. Evaluate ArgumentList.
. Evaluate AssignmentExpression.

1
2
3. Call GetValue(Result(2)).
4

. Return an internal list whose length is one greater than the length of Result(1) and whose items

the items of Result(1), in order, followed at the end by Result(3), which is the last item of the nev
list.

Postfix expressions

PostfixExpression

LeftHandSideExpression
LeftHandSideExpressiomo LineTerminatorhere] ++
LeftHandSideExpressioo LineTerminatorhere] --

11.3.1

11.3.2

Postfix increment operator

The productiorMemberExpression MemberExpressiom+ is evaluated as follows:

oo

1. Evaluate MemberExpression.

2. Call GetValue(Result(1)).

3.

4. Add the valudl to Result(3), using the same rules as fortheperator (section Applying the

Call ToNumber(Result(2)).

additive operators, -) to numbers).
Call PutValue(Result(1), Result(4)).
Return Result(3).

Postfix decrement operator
The productiorMemberExpression MemberExpressionr is evaluated as follows:

=

o o

Evaluate MemberExpression.

Call GetValue(Result(1)).

Call ToNumber(Result(2)).

Subtract the valug from Result(3), using the same rules as for-theperator (section Applying
the additive operatorst(-) to numbers).

Call PutValue(Result(1), Result(4)).

Return Result(3).

11.4
Syntax

- 42 -

Unary operators

UnaryExpression

PostfixExpression

delete

UnaryExpression

void UnaryExpression
typeof UnaryExpression
++ UnaryExpression

-- UnaryExpression

+ UnaryExpression

- UnaryExpression

~ UnaryExpression

I UnaryExpression

11.4.1

11.4.2

11.4.3

Thedelete operator
The productiorUnaryExpression delete UnaryExpressions evaluated as follows:

Evaluate UnaryExpression.

Call GetBase(Result(1)).

Call GetPropertyName(Result(1)).

If Type(Result(2)) is not Object, retutrue.

If Result(2) does not implement the internal [[Delete]] method, go to step 8.

Call the [[Delete]] method on Result(2), providing Result(3) as the property name to delete.

Return Result(6).

Call the [[HasProperty]] method on Result(2), providing Result(3) as the property hame to check for.
. If Result(8) igtrue, returnfalse.

10.Returntrue.

CoNTAWONME

Thevoid operator

The productiorUnaryExpression void UnaryExpressions evaluated as follows:

1. Evaluate UnaryExpression.

2. Call GetValue(Result(1)).

3. Returnundefined.

Thetypeof operator

The productiorUnaryExpression typeof UnaryExpressions evaluated as follows:
. Evaluate UnaryExpression.
. If Type(Result(1)) is Reference and GetBase(Result(Inulk return"undefined"

1

2

3. Call GetValue(Result(1)).

4. Return a string determined by Type(Result(3)) according to the following table:

- 43 -

Type Result
Undefined "undefined"
Null "object"
Boolean "boolean”
Number "number"
String "string”
Object (native and "object”
doesn’t implement

[[Call]])

Object (native ang "function”
implements [[Call]])

Object (host) Implementation-dependent

11.4.4 Prefix increment operator
The productionJnaryExpression ++ UnaryExpressions evaluated as follows:

Evaluate UnaryExpression.

Call GetValue(Result(1)).

Call ToNumber(Result(2)).

Add the valuel to Result(3), using the same rules as for+theperator (section 11.6.3).
Call PutValue(Result(1), Result(4)).

Return Result(4).

oakwnE

11.4.5 Prefix decrement operator
The productiorlUnaryExpression -- UnaryExpressioris evaluated as follows:

Evaluate UnaryExpression.

Call GetValue(Result(1)).

Call ToNumber(Result(2)).

Subtract the valug from Result(3), using the same rules as for-theperator (section 11.6.3).
Call PutValue(Result(1), Result(4)).

Return Result(4).

o sELONE

11.4.6 Unary+ operator
The unary + operator converts its operand to Number type.

The productiorlUnaryExpression + UnaryExpressions evaluated as follows:

1. Evaluate UnaryExpression.
2. Call GetVvalue(Result(1)).
3. Call ToNumber(Result(2)).
4. Return Result(3).

11.4.7 Unary- operator

The unary - operator converts its operand to Number type and then negates it. Note that rdgating
produces-0, and negating-0 producestO0.

The productionJnaryExpression - UnaryExpressions evaluated as follows:

Evaluate UnaryExpression.

Call GetValue(Result(1)).

Call ToNumber(Result(2)).

If Result(3) isNaN, returnNaN.

Negate Result(3); that is, compute a number with the same magnitude but opposite sign.
Return Result(5).

ok wNE

11.4.8

11.4.9

11.5
Syntax

- 44 -

The bitwise NOT operator (~)
The productiorlJnaryExpression ~ UnaryExpressioris evaluated as follows:

hwNE

Evaluate UnaryExpression.

Call GetValue(Result(1)).

Call ToInt32(Result(2)).

Apply bitwise complement to Result(3). The result is a signed 32-bit integer.
Return Result(4).

Logical NOT operator (!)
The productiorUnaryExpression ! UnaryExpressions evaluated as follows:

M

c okrwhpE

Evaluate UnaryExpression.
Call GetValue(Result(1)).
Call ToBoolean(Result(2)).

If Result(3) istrue, returnfalse.
Returntrue.

Itiplicative operators

MultiplicativeExpression

UnaryExpression

MultiplicativeExpressiori UnaryExpression
MultiplicativeExpressiort UnaryExpression
MultiplicativeExpressio®UnaryExpression

11.5.1

Semantics

The productionMultiplicativeExpression MultiplicativeExpression @ UnaryExpressiomhere @ stands
for one of the operators in the above definitions, is evaluated as follows:

NogoghwbhE

8.

Evaluate MultiplicativeExpression.

Call GetValue(Result(1)).

Evaluate UnaryExpression.

Call GetValue(Result(3)).

Call ToNumber(Result(2)).

Call ToNumber(Result(4)).

Apply the specified operation (*, /, or %) to Result(5) and Result(6). See the notes below (11.5.1,
11.5.2, 11.5.3).

Return Result(7).

Applying the* operator
The * operator performs multiplication, producing the product of its operands. Multiplication is
commutative. Multiplication is not always associative in ECMAScript, because of finite precision.

The result of a floating-point multiplication is governed by the rules of IEEE 754 double-precision
arithmetic:

If either operand idNaN, the result isNaN.

The sign of the result is positive if both operands have the same sign, negative if the operands have
different signs.

Multiplication of an infinity by a zero results iHaN.

Multiplication of an infinity by an infinity results in an infinity. The sign is determined by the rule
already stated above.

Multiplication of an infinity by a finite non-zero value results in a signed infinity. The sign is
determined by the rule already stated above.

11.5.2

11.5.3

- 45 -

¢ In the remaining cases, where neither an infinityNaN is involved, the product is computed and
rounded to the nearest representable value using IEEE 754 round-to-nearest mode. If the magnitt
is too large to represent, the result is then an infinity of appropriate sign. If the magnitude is to
small to represent, the result is then a zero of appropriate sign. The ECMAScript language requir
support of gradual underflow as defined by IEEE 754.

Applying the/ operator

The / operator performs division, producing the quotient of its operands. The left operand is th
dividend and the right operand is the divisor. ECMAScript does not perform integer division. The
operands and result of all division operations are double-precision floating-point numbers. The result
division is determined by the specification of IEEE 754 arithmetic:

o If either operand idNaN, the result iNaN.

e The sign of the result is positive if both operands have the same sign, negative if the operands he
different signs.

e Division of an infinity by an infinity results iNaN.

e Division of an infinity by a zero results in an infinity. The sign is determined by the rule already
stated above.

e Division of an infinity by a non-zero finite value results in a signed infinity. The sign is determined
by the rule already stated above.

o Division of a finite value by an infinity results in zero. The sign is determined by the rule already
stated above.

e Division of a zero by a zero results NaN; division of zero by any other finite value results in zero,
with the sign determined by the rule already stated above.

o Division of a non-zero finite value by a zero results in a signed infinity. The sign is determined by
the rule already stated above.

¢ In the remaining cases, where neither an infinity, nor a zeroNad\ is involved, the quotient is
computed and rounded to the nearest representable value using IEEE 754 round-to-nearest mode
the magnitude is too large to represent, the operation overflows; the result is then an infinity ¢
appropriate sign. If the magnitude is too small to represent, the operation underflows and the res
is a zero of the appropriate sign. The ECMAScript language requipgsoduof gradual underflow
as defined by IEEE 754.

Applying the%operator
The binary%operator is said to yield the remainder of its operands from an implied division; the left

operand is the dividend and the right operand is the divisor. In C and C++, the remainder operat
accepts only integral operands, but in ECMAScript, it also accepts floating-point operands.

The result of a floating-point remainder operation as computed bYtherator is not the same as the
“remainder” operation defined by IEEE 754. The IEEE 754 “remainder” operation computes the
remainder from a rounding division, not a truncating division, and so its behaviour is not analogous t
that of the usual integer remainder operator. Instead the ECMAScript language défimeHoating-

point operations to behave in a manner analogous to that of the Java integer remainder operator; f
may be compared with the C library function fmod.

The result of a ECMAScript floating-point remainder operation is determined by the rules of IEEE
arithmetic:

o If either operand idNaN, the result isNaN.

e The sign of the result equals the sign of the dividend.

o If the dividend is an infinity, or the divisor is a zero, or both, the resiNGis.

o |f the dividend is finite and the divisor is an infinity, the result equals the dividend.

e |[f the dividend is a zero and the divisor is finite, the result is the same as the dividend.

11.6
Syntax

- 46 -

¢ In the remaining cases, where neither an infinity, nor a zeroNadt is involved, the floating-point
remainder r from a dividend n and a divisor d is defined by the mathematical relation (e 1q)
where g is an integer that is negative only if n/d is negative and positive only if n/d is positive, and
whose magnitude is as large as possible without exceeding the magnitude of the true mathematical
guotient of n and d.

Additive operators

AdditiveExpression

MultiplicativeExpression
AdditiveExpressior MultiplicativeExpression
AdditiveExpression MultiplicativeExpression

11.6.1

11.6.2

11.6.3

The addition operator (+)
The addition operator either performs string concatenation or numeric addition.

The productionAdditiveExpression AdditiveExpression+ MultiplicativeExpressionis evaluated as
follows:

Evaluate AdditiveExpression.

Call GetValue(Result(1)).

Evaluate MultiplicativeExpression.

Call GetValue(Result(3)).

Call ToPrimitive(Result(2)).

Call ToPrimitive(Result(4)).

If Type(Result(5)) is String or Type(Result(6)) is String, go to step 12. (Note that this step differs
from step 3 in the algorithm for comparison for the relational operators in using or instead of and.)
8. Call ToNumber(Result(5)).

9. Call ToNumber(Result(6)).

10.Apply the addition operation to Result(8) and Result(9). See the note below (11.6.3).

11.Return Result(10).

12.Call ToString(Result(5)).

13.Call ToString(Result(6)).

14.Concatenate Result(12) followed by Result(13).

15.Return Result(14).

NOTE No hint is provided in the calls to ToPrimitive in steps 5 and 6. All native ECMAScript objects except Date
objects handle the absence of a hint as if the hint Number were given; Date objects handle the absence of a hint
as if the hint String were given. Host objects may handle the absence of a hint in some other manner.

NogoghkrwbhE

The subtraction operator (-)

The production AdditiveExpression AdditiveExpression- MultiplicativeExpression is evaluated as
follows:

Evaluate AdditiveExpression.

Call GetValue(Result(1)).

Evaluate MultiplicativeExpression.

Call GetValue(Result(3)).

Call ToNumber(Result(2)).

Call ToNumber(Result(4)).

Apply the subtraction operation to Result(5) and Result(6). See the note below (11.6.3).
Return Result(7).

Nk wWNE

Applying the additive operators ¢, -) to numbers

The + operator performs addition when applied to two operands of numeric type, producing the sum of
the operands. The operator performs subtraction, producing the difference of two numeric operands.

Addition is a commutative operation, but not always associative.

11.7
Syntax

ShiftExpression

- 47 -

The result of an addition is determined using the rules of IEEE 754 double-precision arithmetic:

If either operand i®NaN, the result isNaN.

The sum of two infinities of opposite signNaN.

The sum of two infinities of the same sign is the infinity of that sign.
The sum of an infinity and a finite value is equal to the infinite operand.

The sum of two negative zeros 49. The sum of two positive zeros, or of two zeros of opposite
sign, is+0.

The sum of a zero and a nonzero finite value is equal to the nonzero operand.
The sum of two nonzero finite values of the same magnitude and opposite si@n is

In the remaining cases, where neither an infinity, nor a zeroNad\ is involved, and the operands
have the same sign or have different magnitudes, the sum is computed and rounded to the nea
representable value using IEEE 754 round-to-nearest mode. If the magnitude is too large
represent, the operation overflows and the result is then an infinity of appropriate sign. Th
ECMAScript language requires gport of gradual underflow as defined by IEEE 754.

The - operator performs subtraction when applied to two operands of numeric type, producing th
difference of its operands; the left operand is the minuend and the right operand is the subtraher
Given numeric operandsandb, it is always the case that b produces the same resultas(- b) .

Bitwise shift operators

AdditiveExpression

ShiftExpressior< AdditiveExpression
ShiftExpressior> AdditiveExpression
ShiftExpressior>> AdditiveExpression

11.7.1

11.7.2

Semantics

The result of evaluatingShiftExpressionis always truncated to 32 bits. If the result of evaluating
ShiftExpressionproduces a fractional component, the fractional component is discarded. The result c
evaluating anAdditiveExpresiorthat is the right-hand operand of a shift operator is always truncated to
five bits.

The left shift operator (<<)
Performs a bitwise left shift operation on the left operand by the amount specified by the right operanc

The productiorShiftExpression ShiftExpressior< AdditiveExpressiois evaluated as follows:

©CONoO WD

Evaluate ShiftExpression.

Call GetValue(Result(1)).

Evaluate AdditiveExpression.

Call GetValue(Result(3)).

Call ToInt32(Result(2)).

Call ToUint32(Result(4)).

Mask out all but the least significant 5 bits of Result(6), that is, compute Result(6) & Ox1F.
Left shift Result(5) by Result(7) bits. The result is a signed 32 bit integer.

Return Result(8).

The signed right shift operator >)

Performs a sign-filling bitwise right shift operation on the left operand by the amount specified by the
right operand.

The productiorShiftExpression ShiftExpressior> AdditiveExpressiois evaluated as follows:

- 48 -

Evaluate ShiftExpression.

Call GetValue(Result(1)).

Evaluate AdditiveExpression.

Call GetValue(Result(3)).

Call ToInt32(Result(2)).

Call ToUint32(Result(4)).

Mask out all but the least significant 5 bits of Result(6), that is, compute Result(6) & Ox1F.
Perform sign-extending right shift of Result(5) by Result(7) bits. The most significant bit is
propagated. The result is a signed 32 bit integer.

9. Return Result(8).

Nk wNE

11.7.3 The unsigned right shift operator >>>)

Performs a zero-filling bitwise right shift operation on the left operand by the amount specified by the
right operand.

The productiorShiftExpression ShiftExpressior>> AdditiveExpressiois evaluated as follows:

Evaluate ShiftExpression.

Call GetValue(Result(1)).

Evaluate AdditiveExpression.

Call GetValue(Result(3)).

Call ToUint32(Result(2)).

Call ToUint32(Result(4)).

Mask out all but the least significant 5 bits of Result(6), that is, compute Result(6) & Ox1F.
Perform zero-filling right shift of Result(5) by Result(7) bits. Vacated bits are filled with zero. The
result is an unsigned 32 bit integer.

9. Return Result(8).

OGN ~LNE

11.8 Relational operators
Syntax
RelationalExpression

ShiftExpression

RelationalExpressior ShiftExpression
RelationalExpressior ShiftExpression
RelationalExpressior= ShiftExpression
RelationalExpressior= ShiftExpression

Semantics

The result of evaluatingRelationalExpressionis always of type Boolean, reflecting whether the
relationship named by the operator holds between its two operands.

11.8.1 The less-than operator €)
The productiorRelationalExpression RelationalExpressior ShiftExpressions evaluated as follows:

Evaluate RelationalExpression.

Call GetValue(Result(1)).

Evaluate ShiftExpression.

Call GetValue(Result(3)).

Perform the comparison Result(2) < Result(4). (See section 11.8.5).
If Result(5) isundefined, returnfalse. Otherwise, return Result(5).

oAb E

11.8.2 The greater-than operator (>)
The productiorRelationalExpression RelationalExpressiomr ShiftExpressions evaluated as follows:

1. Evaluate RelationalExpression.
2. Call GetValue(Result(1)).
3. Evaluate ShiftExpression.
4. Call GetValue(Result(3)).

- 49 -

5. Perform the comparison Result(4) < Result(2). (See section 11.8.5).
6. If Result(5) isundefined, returnfalse. Otherwise, return Result(5).

11.8.3 The less-than-or-equal operator €=)

The productionRelationalExpression: RelationalExpression<= ShiftExpressionis evaluated as
follows:

Evaluate RelationalExpression.

Call GetValue(Result(1)).

Evaluate ShiftExpression.

Call GetValue(Result(3)).

Perform the comparison Result(4) < Result(2). (See section 11.8.5).
If Result(5) istrue or undefined, returnfalse. Otherwise, returtrue.

ook wnNkE

11.8.4 The greater-than-or-equal operator =)

The productionRelationalExpression: RelationalExpression>= ShiftExpressionis evaluated as
follows:

Evaluate RelationalExpression.

Call GetValue(Result(1)).

Evaluate ShiftExpression.

Call GetValue(Result(3)).

Perform the comparison Result(2) < Result(4). (See section 11.8.5).
If Result(5) istrue or undefined, returnfalse. Otherwise, returtrue.

ook wnNE

11.8.5 The abstract relational comparison algorithm

The comparisorx <y, wherex andy are values, producedsue, false, or undefined (which indicates
that at least one operandN&N). Such a comparison is performed as follows:

1. Call ToPrimitivek, hint Number).

2. Call ToPrimitivey, hint Number).

3. If Type(Result(1)) is String and Type(Result(2)) is String, go to step 16. (Note that this step differ
from step 7 in the algorithm for the addition operatdan usingand instead ofor.)

4. Call ToNumber(Result(1)).

5. Call ToNumber(Result(2)).

6. If Result(4) isNaN, returnundefined.

7. If Result(5) isNaN, returnundefined.

8. If Result(4) and Result(5) are the same number value, riglsm

If Result(4) ist0 and Result(5) is-0, returnfalse.

10.1f Result(4) is-0 and Result(5) is-0, returnfalse.

11.1f Result(4) istw, returnfalse.

12.1f Result(5) istw, returntrue.

13.1f Result(5) is-=, returnfalse.

14.1f Result(4) is-, returntrue.

15.1f the mathematical value of Result(4) is less than the mathematical value of Result(5)—note th
these mathematical values are both finite and not both zero—netirnOtherwise, returfialse.

16.1f Result(2) is a prefix of Result(1), retufalse. (A string valuep is a prefix of string value if g
can be the result of concatenatipgnd some other string Note that any string is a prefix of itself,
because r may be the empty string.)

17.1f Result(1) is a prefix of Result(2), retumue.

18.Letk be the smallest nonnegative integer such that the character at pdsitibhin Result(1) is
different from the character at positiarwithin Result(2). (There must be suclk,aor neither string
is a prefix of the other.)

19.Letm be the integer that is the Unicode encoding for the character at pdsitidhin Result(1).

20.Letn be the integer that is the Unicode encoding for the character at pdsitibhin Result(2).

21.1f m < n, returntrue. Otherwise, returmalse.

©

11.9
Syntax

- 50 -

NOTE The comparison of strings uses a simple lexicographic ordering on sequences of Unicode code point
values. There is no attempt to use the more complex, semantically oriented definitions of character or string
equality and collating order defined in the Unicode 2.0 specification.

Equality operators

EqualityExpression

RelationalExpression
EqualityExpressior= RelationalExpression
EqualityExpressiot= RelationalExpression

11.9.1

11.9.2

11.9.3

Semantics

The result of evaluatingqualityExpressions always of type Boolean, reflecting whether the relationship
named by the operator holds between its two operands.

The equals operator €=)

The production EqualityExpression EqualityExpression== RelationalExpression is evaluated as
follows:

Evaluate EqualityExpression.

Call GetValue(Result(1)).

Evaluate RelationalExpression.

Call GetValue(Result(3)).

Perform the comparison Result(4) == Result(2). (See section 11.9.3).
Return Result(5).

cUuhRwnE

The does-not-equals operator!E)

The productionEqualityExpression: EqualityExpression!= RelationalExpressionis evaluated as
follows:

Evaluate EqualityExpression.

Call GetValue(Result(1)).

Evaluate RelationalExpression.

Call GetValue(Result(3)).

Perform the comparison Result(4) == Result(2). (See section 11.9.3).
If Result(5) igtrue, returnfalse. Otherwise, returtrue.

oukrwnE

The abstract equality comparison algorithm

The comparisorx ==y, wherex andy are values, producesue or false Such a comparison is
performed as follows:

If Type) is different from Typey), go to step 14.

If Type) is Undefined, returtrue.

If Type) is Null, returntrue.

If Type) is not Number, go to step 11.

If x is NaN, returnfalse.

If y is NaN, returnfalse.

If X is the same number value ysreturntrue.

If x is +0 andy is -0, returntrue.

. Ifxis-0andy is +0, returntrue.

10.Returrfalse.

11.1f Typek) is String, then returtrue if x andy are exactly the same sequence of characters (same
length and same characters in corresponding positions). Otherwise, fida&n

12.1f Typek) is Boolean, returtrue if X andy are bothtrue or bothfalse. Otherwise, returialse.

13.Returntrue if x andy refer to the same object. Otherwise, rettaise.

14.1f x is null andy is undefined, returntrue.

15.1f x is undefined andy is null, returntrue.

COoNOORWNE

- 51 -

16.1f Typek) is Number and Typ#] is String,
return the result of the comparisarr= ToNumbery).
17.1f Typek) is String and Typse/f) is Number,
return the result of the comparison ToNumbgK=y.
18.1f Typek) is Boolean, return the result of the comparison ToNumberf y.
19.If Typef) is Boolean, return the result of the comparisor= ToNumbery).
20.If Typef) is either String or Number and Typg(s Object,
return the result of the comparisgrs= ToPrimitivef).
21.1f Typek) is Object and Type] is either String or Number,
return the result of the comparison ToPrimitxet=y.
22.Returnfalse.

NOTE Given the above definition of equality::
String comparison can be forced by: "™ +a==""+b
Numeric comparison can be forced by:a-0==b-0
Boolean comparison can be forced by: la ==lb
The equality operators maintain the following invariants:

1. Al= Bis equivalentto (A == B).
2. A == Bis equivalent to B == A, except in the order of evaluation of A and B.

The equality operator is not always transitive. For example, there might be two distinct string objects, each
representing the same string value; each string object would be considered equal to the string value by the
== operator, but the two string objects would not be equal to each other.

Comparison of strings uses a simple equality test on sequences of Unicode code point values. There is no
attempt to use the more complex, semantically oriented definitions of character or string equality and
collating order defined in the Unicode 2.0 specification.

11.10 Binary bitwise operators
Syntax
BitwiseANDEXxpression
EqualityExpression
BitwiseANDEXxpressio& EqualityExpression
Bitwise XORExpression
BitwiseANDEXxpression
BitwiseXOREXxpressioh BitwiseANDEXxpression
BitwiseOREXxpression
Bitwise XORExpression
BitwiseOREXxpressioh Bitwise XORExpression
Semantics

The productiorA : A @ B where @ is one of the bitwise operators in the productions above, is evaluatec
as follows:

EvaluateA.

Call GetValue(Result(1)).

EvaluateB.

Call GetValue(Result(3)).

Call ToInt32(Result(2)).

Call ToInt32(Result(4)).

Apply the bitwise operator @ to Result(5) and Result(6). The result is a signed 32 bit integer.

Noos~WNE

-52 -

8. Return Result(7).
11.11 Binary logical operators
Syntax
LogicalANDEXxpression
BitwiseORExpression
LogicalANDExpressio&& BitwiseORExpression
LogicalORExpression
LogicalANDEXxpression
LogicalORExpressioff LogicalANDExpression
Semantics

The productionLogical ANDExpression LogicalANDEXxpressio&& BitwiseOREXxpressiors evaluated as
follows:

Evaluate LogicalANDExpression.
Call GetValue(Result(1)).

Call ToBoolean(Result(2)).

If Result(3) is false, return Result(2).
Evaluate BitwiseORExpression.

Call GetValue(Result(5)).

Return Result(6).

NoosEWNE

The productionLogical ORExpression LogicalORExpression| LogicalANDExpressions evaluated as
follows:

Evaluate LogicalORExpression.
Call GetValue(Result(1)).

Call ToBoolean(Result(2)).

If Result(3) is true, return Result(2).
Evaluate LogicalANDExpression.
Call GetValue(Result(5)).

Return Result(6).

NoosEWNE

NOTE The value produced by a && or || operator is not necessarily of type Boolean. The value produced will
always be the value of one of the two operand expressions.

11.12 Conditional operator (?:)
Syntax
ConditionalExpression

LogicalORExpression
LogicalORExpressiof? AssignmentExpressionAssignmentExpression

Semantics

The production ConditionalExpression : LogicalORExpression ? AssignmentExpression:
AssignmentExpressias evaluated as follows:

Evaluate LogicalORExpression.

Call GetValue(Result(1)).

Call ToBoolean(Result(2)).

If Result(3) is false, go to step 8.
Evaluate the first AssignmentExpression.
Call GetValue(Result(5)).

Return Result(6).

NoosrWNE

- 53 -

8. Evaluate the second AssignmentExpression.
9. Call GetValue(Result(8)).
10.Return Result(9).

NOTE The grammar for a ConditionalExpression in ECMAScript is a little bit different from that in C and Java,
which each allow the second subexpression to be an Expression but restrict the third expression to be a
ConditionalExpression. The motivation for this difference in ECMAScript is to allow an assignment expression to be
governed by either arm of a conditional and to eliminate the confusing and fairly useless case of a comma
expression as the centre expression.

11.13 Assignment operators
Syntax
AssignmentExpression
ConditionalExpression

LeftHandSideExpression AssignmentOperator AssignmentExpression

AssignmentOperatar one of

= *= /= %= += = <<= >>= >>>= &= N= =

11.13.1 Simple Assignment €)

The productionAssignmentExpressionLeftHandSideExpression AssignmentExpressiois evaluated
as follows:

Evaluate LeftHandSideExpression.
Evaluate AssignmentExpression.
Call GetValue(Result(2)).

Call PutValue(Result(1), Result(3)).
Return Result(3).

WD

11.13.2 Compound assignment dp=)

The productionAssignmentExpressianLeftHandSideExpression & AssignmentExpressipmwhere @
represents one of the operators indicated above, is evaluated as follows:

Evaluate LeftHandSideExpression.

Call GetValue(Result(1)).

Evaluate AssignmentExpression.

Call GetValue(Result(3)).

Apply operator @ to Result(2) and Result(4).
Call PutValue(Result(1), Result(5)).

Return Result(5).

NogoswWNE

11.14 Comma operator (,)
Syntax
Expression
AssignmentExpression
Expression AssignmentExpression
Semantics
The productiorExpression Expression AssignmentExpresside evaluated as follows:

Evaluate Expression.

Call GetValue(Result(1)).
Evaluate AssignmentExpression.
Call GetValue(Result(3)).

Return Result(4).

OhwNE

- 54 -

12 Statements
Syntax
Statement

Block
VariableStatement
EmptyStatement
ExpressionStatement
IfStatement
IterationStatement
ContinueStatement
BreakStatement
ReturnStatement
WithStatement

12.1 Block
Syntax

Block:
{ StatementLig};}

StatementList

Statement
StatementList Statement

Semantics

The productiorBlock: { } is evaluated as follows:

1. Return “normal completion”.

The productiorBlock: { StatementLis} is evaluated as follows:

1. Evaluate StatementList.
2. Return Result(1).

The productiorStatementList Statements evaluated as follows:

1. EvaluateStatement
2. Return Result(1).

The productiorStatementList StatementList Statemeistevaluated as follows:

Evaluate StatementList.

If Result(1) is an abrupt completion, return Result(1).

Evaluate Statement.

If Result(3) is a value completion, return Result(3).

If Result(1) is not a value completion, return Result(3).

Let V be the value carried by Result(1).

If Result(3) is “abrupt completion becauseboéak ",

return “abrupt completion after value V becausdafak .

8. If Result(3) is “abrupt completion becausecoftinue ",
return “abrupt completion after value V becauseafitinue

9. Return “normal completion after value V”.

NogswWNE

- 55 -

12.2 Variable statement
Syntax
VariableStatement

var VariableDeclarationList

VariableDeclarationList

VariableDeclaration

VariableDeclarationList VariableDeclaration
VariableDeclaration:

Identifier Initializeryy

Initializer :

= AssignmentExpression

Description

If the variable statement occurs insideFanctionDeclaration the variables are defined with function-
local scope in that function, as described in section 10.1.3. Otherwise, they are defined with global sco
(that is, they are created as members of the global object, as described in section 10.1.3) using propt
attributes { DontDelete }.. Variables are created when the execution scope is enteBéackAdoes not
define a new execution scope. OmyogramandFunctionDeclarationproduce a new scope. Variables are
initialised to theundefined value when created. A variable with &mitializer is assigned the value of

its AssignmentExpressionhen theVariableStatemenis executed, not when the variable is created.

Semantics
The productiorvariableStatementvar VariableDeclarationList is evaluated as follows:

1. Evaluate VariableDeclarationList.
2. Return “normal completion”.

The productiorivariableDeclarationList VariableDeclarationis evaluated as follows:
1. Evaluate VariableDeclaration.

The productionVariableDeclarationList: VariableDeclarationList, VariableDeclarationis evaluated as
follows:

1. Evaluate VariableDeclarationList.
2. Evaluate VariableDeclaration.

The productiorvVariableDeclaration: Identifieris evaluated as follows:
1. Return a string value containing the same sequence of characters atdientifeer.
The productioriVariableDeclaration: Identifier Initializeris evaluated as follows:

Evaluatddentifier as described in section 11.1.2.

Evaluate Initializer.

Call GetValue(Result(2)).

Call PutValue(Result(1), Result(3)).

Return a string value containing the same sequence of characters asdiantifeer.

grwdE

The productionnitializer : = AssignmentExpressida evaluated as follows:

1. Evaluate AssignmentExpression.
2. Return Result(1).

- 56 -

12.3 Empty statement
Syntax
EmptyStatement
Semantics
The productiorEmptyStatement; is evaluated as follows:
1. Return “normal completion”.
12.4 Expression statement
Syntax
ExpressionStatement

Expression

Semantics
The productiorExpressionStatementExpressiorn is evaluated as follows:

1. EvaluateExpression
2. Call GetVvalue(Result(1)).
3. Return “normal completion after value V", where the value V is Result(2).

12.5 Theif statement
Syntax
IfStatement

if (Expressior) Statemenglse Statement
if (Expression Statement

Eachelse for which the choice of associatéfl is ambiguous shall be associated with the nearest
possibleif that would otherwise have no correspondéige .

Semantics
The productionfStatement if (Expression) Statemenelse Statements evaluated as follows:

EvaluateExpression

Call GetValue(Result(1)).

Call ToBoolean(Result(2)).

If Result(3) isfalse, go to step 7.
Evaluate the firsbtatement
Return Result(5).

Evaluate the secorfBtatement
Return Result(7).

N A WNE

The productiorifStatement if (Expressior) Statementis evaluated as follows:

EvaluateExpression

Call GetValue(Result(1)).

Call ToBoolean(Result(2)).

If Result(3) isfalse, return “normal completion”.
EvaluateStatement

Return Result(5).

IS

12.6 I[teration statements

An iteration statement consists ofh@ader (which consists of a keyword and a parenthesized control
construct) and dody (which consists of &tatement

Syntax

- 57 -

IterationStatement

while (Expressior) Statement

for
for
for
for

12.6.1

12.6.2

(Expressiog,; Expressiopy; Expressiog,) Statement

(var VariableDeclarationList Expressiog,; Expressiop,) Statement
(LeftHandSideExpression Expressior) Statement

(var Identifier Initializer,y, in Expressior) Statement

Thewhile statement
The productionterationStatement while (Expression) Statements evaluated as follows:

LetC be “normal completion”.

EvaluateExpressia.

Call GetValue(Result(1)).

Call ToBoolean(Result(2)).

If Result(3) isfalse, go to step 12.

EvaluateStatement

If Result(6) is a value completion, chan@do be “normal completion after valo€ whereV is the
value carried by Result(6).

8. If Result(6) is &reak completion, go to step 12.

9. If Result(6) is a&ontinue completion, go to step 2.
10.If Result(6) is aeturn completion, return Result(6).
11.Go to step 2.

12.ReturnC.

NoaAwNE

Thefor statement

The productioniterationStatement for (Expressiop,; Expressiog, ; Expressiogy) Statemenis
evaluated as follows:

1. If the firstExpressions not present, go to step 4.

2. Evaluate the firsExpression

3. Call GetValue(Result(2)). (This value is not used.)

4. LetC be “normal completion”.

5. If the second&Expressions not present, go to step 10.

6. Evaluate the secorixpressia.

7. Call GetValue(Result(6)).

8. Call ToBoolean(Result(7)).

9. If Result(8) isfalse, go to step 19.

10.EvaluateStatement

11.1f Result(10) is a value completion, chary& be “normal completion after valo#& whereV is the
value carried by Result(10).

12.1f Result(10) is dreak completion, go to step 19.

13.1f Result(10) is @ontinue completion, go to step 15.

14.1f Result(10) is aeturn completion, return Result(10).

15.1f the thirdExpressions not present, go to step 5.

16.Evaluate the thirExpressia.

17.Call GetValue(Result(16). (This value is not used.)

18.Go to step 5.

19.ReturnC.

The production IterationStatement: for (var VariableDeclarationList ; Expressiogy ;
Expressiogy) Statements evaluated as follows:

1. Evaluate VariableDeclarationList.

2. Let C be “normal completion”.

3. If the second Expression is not present, go to step 8.
4. Evaluate the second Expression.

12.6.3

- 58 -

5. Call GetValue(Result(4)).

6. Call ToBoolean(Result(5)).

7. If Result(6) isfalse, go to step 15.

8. Evaluate Statement.

9. If Result(8) is a value completion, change C to be “normal completion after value V” where V is the
value carried by Result(8).

10.1f Result(8) is dreak completion, go to step 17.

11.1f Result(8) is a&ontinue completion, go to step 13.

12.1f Result(8) is aeturn completion, return Result(8).

13.If the third Expression is not present, go to step 3.

14.Evaluate the third Expression.

15.Call GetValue(Result(14)). (This value is not used.)

16.Go to step 3.

17.ReturnC.

Thefor..in statement

The productionlterationStatement for (LeftHandSideExpressiom Expression) Statementis
evaluated as follows:

Evaluate th&xpression

Call GetValue(Result(1)).

Call ToObject(Result(2)).

LetC be “normal completion”.

Get the name of the next property of Result(3) that doesn’t have the DontEnum attribute. If there is
no such property, go to step 14.

Evaluate théeftHandSideExpressiofit may be evaluated repeatedly).

Call PutValue(Result(6), Result(5)).

EvaluateStatement

If Result(8) is a value completion, change C to be “normal completion after value V” where V is the
value carried by Result(8).

10.If Result(8) is &reak completion, go to step 14.

11.If Result(8) is a&ontinue completion, go to step 5.

12.1f Result(8) is aeturn completion, return Result(8).

13.Go to step 5.

14.ReturnC.

agrwNE

©oNO

The productionlterationStatement for (var VariableDeclarationin Expression) Statements
evaluated as follows:

Evaluate VariableDeclaration.

Evaluate Expression.

Call GetValue(Result(2)).

Call ToObject(Result(3)).

LetC be “normal completion”.

Get the name of the next property of Result(4) that doesn’t have the DontEnum attribute. If there is

no such property, go to step 15.

Evaluate Result(1) as if it were an Identifier; see 11.1.2 (yes, it may be evaluated repeatedly).

Call PutValue(Result(7), Result(6)).

. Evaluate Statement.

0.If Result(9) is a value completion, change C to be “normal completion after value V” where V is the
value carried by Result(9).

11.1f Result(9) ébreak completion, go to step 15.

12.1f Result(9) acontinue completion, go to step 6.

13.If Result(9) aeturn completion, return Result(9).

14.Go to step 6.

15.ReturnC.

cukhwNE

12.7
Syntax

- 59 -

The mechanics of enumerating the properties (step 5 in the first algorithm, step 10 in the second)
implementation-dependent. The order of enumeration is defined by the object. Properties of the obje
being enumerated may be deleted during enumeration. If a property that has not yet been visited dur
enumeration is deleted, then it will not be visited. If new properties are added to the object bein
enumerated during enumeration, the newly added properties are not guaranteed to be visited in
active enumeration.

Enumerating the properties of an object includes enumerating properties of its prototype, and tt
prototype of the prototype, and so on, recursively; but a property of a prototype is not enumerated if
is “shadowed” because some previous object in the prototype chain has a property with the same nam

Thecontinue statement

ContinueStatement

continue

Semantics

An ECMAScript program is considered syntactically incorrect if it containerdinue statement that is
not within awhile orfor statement. Theontinue statement is evaluated as:

1. Return “abrupt completion becausecoftinue

12.8 Thebreak statement
Syntax
BreakStatement
break ;
Semantics
An ECMAScript program is considered syntactically incorrect if it contaibseak statement that is not
within awhile orfor statement. Théreak statementis evaluated as:
1. Return “abrupt completion becauseboéak ”.
12.9 Thereturn statement
Syntax
ReturnStatement

return [no LineTerminatothere] EXpressiop;

Semantics

An ECMAScript program is considered syntactically incorrect if it contaimetarn statement that is
not within theBlock of a FunctionDeclaration It causes a function to cease execution and return a value
to the caller. IfExpressionis omitted, the return value is thendefined value. Otherwise, the return
value is the value dExpression

The productiorReturnStatement return [no LineTerminatorhere] Expressiog,;; is evaluated as:

1. If the Expressionis not present, return “abrupt completion becauseetafrn undefined’.
2. EvaluateExpression

3. Call GetVvalue(Result(2)).

4. Return “abrupt completion becauserefurn V”, where the valué/ is Result(3).

- 60 -

12.10 Thewith statement

Syntax
WithStatement

with (Expressior) Statement

Description

The with statement adds a computed object to the front of the scope chain of the current execution
context, then executes a statement with this augmented scope chain, then restores the scope chain.

Semantics

The productiorWithStatement with (Expression) Statemenis evaluated as follows:

EvaluateExpression

Call GetValue(Result(1)).

Call ToObject(Result(2)).

Add Result(3) to the front of the scope chain.

Evaluate Statement using the augmented scope chain from step 4.
Remove Result(3) from the front of the scope chain.

Return Result(5).

NOTE No matter how control leaves the embedded Statement, whether normally or by some form of abrupt
completion, the scope chain is always restored to its former state.

NogosWNE

13 Function Definition
Syntax
FunctionDeclaration

function Identifier(FormalParameterLigf;) Block

FormalParameterList

Identifier
FormalParameterList Identifier

Semantics

Defines a property of the global object whose name iddRkatifier following thefunction keyword and
whose value is a function object with the given parameter list and statements. If the function definition is
supplied text to theeval function and the calling context has an activation object, then the declared
function is added to the activation object instead of to the global object. See section 10.1.3.

The production FunctionDeclaration : function Identifier () Block is processed for function
declarations as follows:

1. Create a new Function object (15.3.2.1) with no parameter8Bltduk as the body, antdentifier as its
name.

2. Put this new Function object as the new value of the property nkltaptfier in the global object or the
activation object, as appropriate (see above).

The productionFunctionDeclaration: function Identifier (FormalParameterLis) Blockis processed
for function declarations as follows:

1. Create a new Function object (15.3.2.1) with the parameters specified BpmmalParameterListthe
Block as the body, anttlentifier as its name.

2. Put this new Function object as the new value of the property nltaetfier in the global object or the
activation object, as appropriate (see above).

- 61 -

14 Program
Syntax
Program:

SourceElements

SourceElements
SourceElement
SourceElements SourceElement
SourceElement
Statement
FunctionDeclaration
Semantics
The productiorProgram: SourceElementss evaluated as follows:

1. Process SourceElements for function declarations.
2. Evaluate SourceElements.
3. Return Result(2).

The productiorSourceElements SourceElemenis processed for function declarations as follows:
1. ProcessSourceElemenfor function declarations.
The productiorSourceElements SourceElemens evaluated as follows:

1. Evaluate SourceElement.
2. Return Result(1).

The productionSourceElements SourceElements SourceEleméntprocessed for function declarations as
follows:

1. Proces$SourceElementfor function declarations.
2. ProcesSourceElemenfor function declarations.

The productiorSourceElementsSourceElements SourceEleménevaluated as follows:

1. Evaluate SourceElements.

2. Evaluate SourceElement.

3. If Result(2) is a value completion, return Result(2).
4. Return Result(1).

The productiorSourceElement Statements processed for function declarations by taking no action.
The productiorSourceElement Statemenis evaluated as follows:

1. EvaluateStatement
2. Return Result(1).

The productiorSourceElement FunctionDeclarationis processed for function declarations as follows:
1. Proces$unctionDeclarationfor function declarations.
The productiorSourceElement FunctionDeclarationis evaluated as follows:

1. Return “normal completion”.

15 Native ECMAScript objects

There are certain built-in objects available whenever an ECMAScript program begins execution. One, tl
global object, is in the scope chain of the executing program. Others are accessible as initial properties of
global object.

15.1

- 62 -

Many built-in objects are functions: they can be invoked with arguments. Some of them furthermore are
constructors: they are functions intended for use with tee operator. For each built-in function, this
specification describes the arguments required by that function and properties of the function object. For
each built-in constructor, this specification furthermore describes properties of the prototype object of that
constructor and properties of specific object instances returned bgwaexpression that invokes that
constructor.

Unless otherwise specified in the description of a particular function, if a function or constructor described in
this section is given fewer arguments than the function is specified to require, the function or constructor
shall behave exactly as if it had been given sufficient additional arguments, each such argument being the
undefined value.

Every built-in function and every built-in constructor has the Function prototype object, which is the value of
the expressiorFunction.prototype (15.3.2.1), as the value of its internal [[Prototype]] property,
except the Function prototype object itself.

Every built-in prototype object has the Object prototype object, which is the value of the expression
Object.prototype (15.2.3.1), as the value of its internal [[Prototype]] property, except the Object
prototype object itself. Every native prototype object associated with a program-created function also has the
Object prototype object as the value of its internal [[Prototype]] property.

None of the built-in functions described in this section shall implement the internal [[Construct]] method
unless otherwise specified in the description of a particular function. None of the built-in functions described
in this section shall initially have prototype property unless otherwise specified in the description of a
particular function. Every built-in function object described in this section—whether as a constructor, an
ordinary function, or both—has langth property whose value is an integer. Unless otherwise specified,

this value is equal to the number of named arguments shown in the section heading for the function
description; for example, the function object that is the initial value ofinfdexOf property of the String
prototype object is described under the section heading “indexOf(searchString, position)” which shows the
two named argumentearchStringandposition therefore the value of tHength property of that function

object is2. Sometimes the same function object is described under more than one heading to emphasise its
different behaviours when given different numbers of actual arguments; in such a case, unless otherwise
specified, thelength value is the largest number of arguments shown in any applicable section heading.
For example, the function object that is the initial value of @igect property of the global object is
described under four separate headings: as a function of one argument (section 15.2.1.1), as a function of
zero arguments (section 15.2.1.2), as a constructor of one argument (15.2.2.1), and as a constructor of zero
arguments (15.2.2.2). The largest number of arguments described is 1, so the valukegtthe property

of that function object i4.

In every case, #ngth property of a built-in function object described in this section has the attributes
{ ReadOnly, DontDelete, DontEnum } (and no others). Every other property described in this section has the
attribute { DontEnum } (and no others) unless otherwise specified.

The Global Object

The global object does not have a [[Construct]] property; it is not possible to use the global object as a
constructor with thenew operator.

The global object does not have a [[Call]] property; it is not possible to invoke the global object as a
function.

The value of the [[Prototype]] property of the global object is implementation-dependent.

15.1.1 Value properties of the Global Object
15.1.1.1 NaN

The initial value ofNaNis NaN.

15.1.1.2 Infinity

The initial value ofinfinity is +o0.

- 63 -

15.1.2 Function properties of the Global Object

15.1.2.1

15.1.2.2

eval(x)
When theeval function is called with one argumextthe following steps are taken:

If X is not a string value, retupn

Parsex as an ECMAScripProgram If the parse fails, generate a runtime error.
Evaluate the program from step 2.

If Result(3) is “normal completion after val¥g, return the valuéy.

Return undefined.

SA S

If value of theeval property is used in any way other than a direct call (that is, other than by the
explicit use of its name as ddentifier which is theMemberExpressionn a CallExpressioi, or if
theeval property is assigned to, a runtime error may be generated.

parselnt(string, radix)

The parseint function produces an integer value dictated by interpretation of the contents of the
string argument according to the specifieix.

When theparselnt function is called, the following steps are taken:

1. Call ToString$tring).

2. Compute a substring of Result(l) consisting of the leftmost character that is not :
StrWhiteSpaceChaand all characters to the right of that character. (In other words, remove
leading whitespace.)

3. Letsignbe 1.

If Result(2) is not empty and the first character of Result(2) is a minus sighsignbe-1.

5. If Result(2) is not empty and the first character of Result(2) is a plus+signa minus sign ,

then Result(5) is the substring of Result(2) produced by removing the first character; otherwise

Result(5) is Result(2).

If theradix argument is not supplied, go to step 12.

Call ToInt32¢adix).

If Result(7) is zero, go to step 12; otherwise, if Result(7) < 2 or Result(7) > 36, Nddn

. LetR be Result(7).

0.1f R = 16 and the length of Result(5) is at least 2 and the first two characters of Result(5) ar

either ‘Ox” or “0X", let S be the substring of Result(5) consisting of all but the first two
characters; otherwise, |&be Result(5).

11.Go to step 22.

12.1f Result(5) is empty or the first character of Result(5) isOnao to step 20.

13.1If the length of Result(5) is at least 2 and the second character of Resuk(B) b§, go to step
17.

14.LetR be 8.

15.LetSbe Result(5).

16.Go to step 22.

17.LetR be 16.

18.LetS be the substring of Result(5) consisting of all but the first two characters.

19.Go to step 22.

20.LetR be 10.

21.LetSbe Result(5).

22.1f Scontains any character that is not a raRigligit, then letZ be the substring db consisting of
all characters to the left of the leftmost such character; otherwisg bet.

23.1f Z is empty, returiNaN.

24.Compute the mathematical integer value that is representgdrbyadix-R notation. (But ifR is
10 andZ contains more than 20 significant digits, every digit after the 20th may be replaced by ¢
0 digit, at the option of the implementation; andRifs not 2, 4, 8, 10, 16, or 32, then Result(24)
may be an implementation-dependent approximation to the mathematical integer value that
represented by in radix-R notation.)

25.Compute the number value for Result(24).

26.Returnsign- Result(25).

>

BH©O®o~NO

- 64 -

Note thatparselnt may interpret only a leading portion of the string as an integer value; it ignores
any characters that cannot be interpreted as part of the notation of an integer, and no indication is
given that any such characters were ignored.

15.1.2.3 parseFloat(string)

The parseFloat function produces a number value dictated by interpretation of the contents of the
string argument as a decimal literal.

When theparseFloat function is called, the following steps are taken:
1. Call ToString$tring).

2. Compute a substring of Result(l) consisting of the leftmost character that is not a
StrWhiteSpaceChaand all characters to the right of that character.(In other words, remove
leading whitespace.)

3. If neither Result(2) nor any prefix of Result(2) satisfies the syntax $fr@ecimalliteral (see
9.3.1), returnrNaN.

4. Compute the longest prefix of Result(2), which might be Result(2) itself, which satisfies the
syntax of aStrDecimalLiteral

5. Return the number value for the MV of Result(4).

Note thatparseFloat may interpret only a leading portion of the string as a number value; it
ignores any characters that cannot be interpreted as part of the notation of an decimal literal, and no
indication is given that any such characters were ignored.

15.1.2.4 escape(string)

Theescape function computes a new version of a string value in which certain characters have been
replaced by a hexadecimal escape sequence.

For those characters being replaced whose Unicode encodibxfFs or less, a two-digit escape
sequence of the forixx is used. For those characters being replaced whose Unicode encoding is
greater thaxFF, a four-digit escape sequence of the f@fxxxis used

When theescape function is called with one argumesitring, the following steps are taken:

1. Call ToStringétring).

2. Compute the number of characters in Result(1).
3. LetR be the empty string.

4. Letk be 0.

5. If k equals Result(2), returR.

6. Get the character at positi&rwithin Result(1).

7

. If Result(6) is one of the 69 nonblank ISO/IEC 646 IRV characters
ABCDEFGHIJKLMNOPQRSTUVWXY ZAbcdefghijklmnopgrstuvwxyz 0123456789

@*_+-./ , go to step 14.

8. Compute the 16-bit unsigned integer that is the Unicode character encoding of Result(6).

9. If Result(8), is less than 256, go to step 12.

10.Let S be a string containing six character®%uvxyZ? where wxyz are four hexadecimal digits
encoding the value of Result(8).

11.Go to step 15.

12.LetS be a string containing three characte¥&y’ where xy are two hexadecimal digits encoding
the value of Result(8).

13.Go to step 15.

14.LetS be a string containing the single character Result(6).

15.LetR be a new string value computed by concatenating the previous vaRiarafS.

16.Increas&k by 1.

17.Go to step 5.

NOTE The encoding is partly based on the encoding described in RFC1738, but the entire encoding
specified in this standard is described above without regard to the contents of RFC1738.

15.1.2.5

15.1.2.6

15.1.2.7

15.1.3
15.1.3.1

15.1.3.2

15.1.3.3

15.1.3.4

15.1.3.5

15.1.3.6

- 65 -

unescape(string)

Theunescape function computes a new version of a string value in which each escape sequences
the sort that might be introduced by tlescape function is replaced with the character that it
represents.

When theunescape function is called with one argumesitring, the following steps are taken:

1. Call ToStringétring).

2. Compute the number of characters in Result(1).

3. LetR be the empty string.

4. Letk be 0.

5. If k equals Result(2), returR.

6. Letc be the character at positigwithin Result(1).

7. If cis not% go to step 18.

8. If kis greater than Result(2§, go to step 14.

9. If the character at positidar1 within result(1) is not, go to step 14.

10.If the four characters at positioks2, k+3, k+4, andk+5 within Result(1) are not all hexadecimal
digits, go to step 14.

11.Letc be the character whose Unicode encoding is the integer represented by the four hexadecin
digits at positionk+2, k+3, k+4, andk+5 within Result(1).

12.Increase k by 5.

13.Go to step 18.

14.1f k is greater than Result(23, go to step 18.

15.1f the two characters at positioksl andk+2 within Result(1) are not both hexadecimal digits, go
to step 18.

16.Letc be the character whose Unicode encoding is the integer represented by two zeroes plus t
two hexadecimal digits at positioks1 andk+2 within Result(1).

17.Increas&k by 2.

18.LetR be a new string value computed by concatenating the previous vaRiarafc.

19.Increas& by 1.

20.Go to step 5.

isNaN(number)

Applies ToNumber to its argument, then retutnge if the result isNaN, and otherwise returns
false.

isFinite(number)

Applies ToNumber to its argument, then retufakse if the result isNaN, +w, or —, and otherwise
returnstrue.

Constructor Properties of the Global Object

Object(.. .)
See sections 15.2.1 and 15.2.2.

Function(.. .)
See sections 15.3.1 and 15.3.2.

Array(...)
See sections 15.4.1 and 15.4.2.

String(. . .)
See sections 15.5.1 and 15.5.2.

Boolean(.. .)
See sections 15.6.1 and 15.6.2.

Number(...)
See sections 15.7.1 and 15.7.2.

15.1.3.7

15.1.4
15.1.4.1

15.2.1

15.2.1.1

15.2.1.2

15.2.2

15.2.2.1

15.2.2.2

15.2.3

- 66 -

Date(.. .)
See section 15.9.2.

Other Properties of the Global Object

Math
See section 15.8.

15.2 Object Objects
The Object Constructor Called as a Function
WhenObiject is called as a function rather than as a constructor, it performs a type conversion.

Object(value)
When theObject function is called with one argumewlue the following steps are taken:

1. If thevalueis null or undefined, create and return a new object with no properties (other than
internal properties) exactly as if the object constructor had been called on that same value
(15.2.2.1).

2. Return ToObject@alug.

Object()

When theObject function is called with no arguments, the following step is taken:

1.

Create and return a new object with no properties (other than internal properties) exactly if the
object constructor had been called with no argument (15.2.2.2).

The Object Constructor
WhenObject is called as part of aew expression, it is a constructor that may create an object.

new Object(value)
When theObject constructor is called with one argumenatiug the following steps are taken:

1.
2.

No g b

If the type of thevalueis not Object, go to step 4.
If thevalueis a native ECMAScript object, do not create a new object but simply realua

If thevalueis a host object, then actions are taken and a result is returned in an implementation-
dependent manner that may depend on the host object.

If the type of the value is String, return ToObjeat(e).
If the type of thevalueis Boolean, return ToObjestdlug).
If the type of thevalueis Number, return ToObjeactélue).

(The type of thealuemust be Null or Undefined.) Create a new native ECMAScript object.

The [[Prototype]] property of the newly constructed object is set to the Object prototype object.
The [[Class]] property of the newly constructed object is séOtnject”

The newly constructed object has no [[Value]] property.

Return the newly created native object.

new Object()
When theObject constructor is called with no argument, the following step is taken:

1. Create a new native ECMAScript object.

The [[Prototype]] property of the newly constructed object is set to the Object prototype object.
The [[Class]] property of the newly constructed object is séOtoject”

The newly constructed object has no [[Value]] property.

Return the newly created native object.

Properties of the Object Constructor

The value of the internal [[Prototype]] property of the Object constructor is the Function prototype
object.

- 67 -

Besides the internal [[Call]] and [[Construct]] properties and téegth property, the Object
constructor has the following properties:
15.2.3.1 Object.prototype
The initial value ofObject.prototype is the built-in Object prototype object (15.2.4).

This property shall have the attributes { DontEnum, DontDelete, ReadOnly }.

15.2.4 Properties of the Object Prototype Object
The value of the internal [[Prototype]] property of the Object prototype objeuilis

15.2.4.1 Object.prototype.constructor
The initial value ofObject.prototype.constructor is the built-inObject constructor.

15.2.4.2 Object.prototype.toString()
When thetoString method is called, the following steps are taken:
1. Get the [[Class]] property of this object.
2. Compute a string value by concatenating the three st¥[pggect " , Result(1), and]"
3. Return Result(2).

15.2.4.3 Object.prototype.valueOf()
As a rule, the valueOf method for an object simply returns the object; but if the object is a “wrapper
for a host object, as may perhaps be created by the Object constructor (see section 15.2.2.1), then
contained host object should be returned.

15.2.5 Properties of Object Instances
Object instances have no special properties beyond those inherited from the Object prototype object.

15.3 Function Objects
15.3.1 The Function Constructor Called as a Function
When Function is called as a function rather than as a constructor, it creates and initialises a ne!

function object. Thus the function caFunction(...) is equivalent to the object creation
expressiomew Function(...) with the same arguments.
15.3.1.1 Function(p1, p2, ..., pn, body)
When theFunction function is called with some argumergg, p2, . . . ,pn, body (wheren might

be 0, that is, there are np™arguments, and whereody might also not be provided), the following
steps are taken:

1. Create and return a new Function object exactly if the function constructor had been called wi
the same arguments (15.3.2.1).

15.3.2 The Function Constructor

When Function is called as part of aew expression, it is a constructor: it initialises the newly
created object.

15.3.2.1 new Function(pl, p2, . .., pn, body)

The last argument specifies the body (executable code) of a function; any preceding argumer
specify formal parameters.

When theFunction constructor is called with some argumepts p2, . . . ,pn, body (wheren
might be 0, that is, there are np”"“arguments, and wherbody might also not be provided), the
following steps are taken:

LetP be the empty string.

If no arguments were given, leddybe the empty string and go to step 13.
If one argument was given, lebdybe that argument and go to step 13.
Let Result(4) be the first argument.

LetP be ToString(Result(4)).

Letk be 2.

IS

- 68 -

7. If k equals the number of arguments,bedybe thek’'th argument and go to step 13.

8. Let Result(8) be thk'th argument.

9. Call ToString(Result(8)).

10.Let P be the result of concatenating the previous valué’othe string”,” (a comma), and
Result(9).

11.Increas& by 1.

12.Go to step 7.

13.Call ToStringifody).

14.LetF be the newly constructed Function object.

15.The [[Class]] property df is set to"Function”

16.The [[Prototype]] property df is set to the original Function prototype object, the one that is the
initial value of Function.prototype (15.3.3.1).

17.Set the [[Call]] property o to a method such that, when it is invoked, the executable function
will be invoked whose formal parameters are specifiedPbgnd whose body is specified by
Result(13). The string valuB must be parsable as RormalParameterlLisf,; the string value
result(13) must be parsable asStatementLigf. (Note that bothP and Result(13) may contain
whitespace, line terminators, and comments.) However, if efher Result(13) is syntactically
incorrect, or otherwise cannot be interpreted as part of a correct ECMAScript function definition,
then the [[Call]] property oF is not set and a runtime error is generated..

18.Set the [[Construct]] property ¢f to a method that, when it is invoked, constructs a new object
whose [[Prototype]] property is equal to the value~gfrototype at the time the [[Construct]]
method is invoked (but if this value is not an object then the valu@bjéct.prototype is
used), then invokeBE as a function (using its [[Call]] property) with the new object astthie
value and the arguments given to the [[Construct]] method as the arguments. If the result of
invoking the [[Call]] method is an object, that object becomes the result of the invocation of the
[[Construct]] method; otherwise the new object becomes the result of the invocation of the
[[Construct]] method.

19.If the toString method ofF is later invoked, it will use &nonymous” as the name of the
function in rendering the function as a string.

20.Compute, as an integer number value of positive sign, the number of formal parameters that
resulted from the parse &fas aFormalParameterLisf:.

21.Thelength property ofF is set to Result(20). This property is given attributes { DontDelete,
DontEnum, ReadOnly }.

22.Create a new object as if by the expressiew Object()

23.The prototype property of F is set to Result(22). This property is given attributes
{ DontEnum }.

24.The constructor property of Result(22) isset to F. This property is given attributes
{ DontEnum }.

25.ReturnF.

Note that it is permissible but not necessary to have one argument for each formal parameter to be
specified. For example, all three of the following expressions produce the same result:

new Function("a", "b", "c", "return a+b+c")

new Function("a, b, c", "return a+b+c")

new Function("a,b", "c", "return a+b+c")
A prototype property is automatically created for every function, against the possibility that the
function will be used as a constructor.

15.3.3 Properties of the Function Constructor
15.3.3.1 Function.prototype
The initial value ofFunction.prototype is the built-in Function prototype object (15.3.4).

This property shall have the attributes { DontEnum, DontDelete, ReadOnly }.

- 69 -

15.3.3.2 Function.length

15.3.4

Thelength property isl. (Of course, the Function constructor accepts more than one argument
because it accepts a variable number of arguments.)

Properties of the Function Prototype Object

The Function prototype object is itself a Function object (its [[Class]]Fisnction”) that, when
invoked, accepts any arguments and retumsefined.

The value of the internal [[Prototype]] property of the Function prototype object is the Object prototype
object (15.3.2.1).

It is a function with an “empty body”; if it is invoked, it merely retunnsdefined.

The Function prototype object does not haveatueOf property of its own; however, it inherits the
valueOf property from the Object prototype Object.

15.3.4.1 Function.prototype.constructor

The initial value of Function.prototype.constructor is the built-in Function
constructor.

15.3.4.2 Function.prototype.toString()

15.3.5

An implementation-dependent representation of the function is returned. This representation has t
syntax of aFunctionDeclaration Note in particular that the use and placement of whitespace, line
terminators, and semicolons within the representation string is implementation-dependent.

The toString function is not generic; it generates a runtime error iftitis value is not a
Function object. Therefore, it cannot be transferred to other kinds of objects for use as a method.

Properties of Function Instances
Every function instance has a [[Call]] property and a [[Construct]] property.

15.3.5.1 length

The value of thelength property is usually an integer that indicates the “typical” number of
arguments expected by the function. However, the language permits the function to be invoked wi
some other number of arguments. The behaviour of a function when invoked on a number ¢
arguments other than the number specified byeingth property depends on the function.

15.3.5.2 prototype

15.4

15.4.1

The value of theprototype property is used to initialise the internal [[Prototype]] property of a
newly created object before the Function object is invoked as a constructor for that newly create
object.

Array Objects

Array objects give special treatment to a certain class of property names. A property fantbe form

of a string value) is aarray indexif and only if ToString(ToUint32®)) is equal toP and ToUint32P) is

not equal to ¥-1. Every Array object has Eength property whose value is always an integer with
positive sign and less thari?21t is always the case that thength property is numerically greater than
the name of every property whose name is an array index; whenever a property of an Array object
created or changed, other properties are adjusted as necessary to maintain this invariant. Specifice
whenever a property is added whose name is an array indexienig¢h property is changed, if
necessary, to be one more than the numeric value of that array index; and whend&egtthe property

is changed, every property whose name is an array index whose value is not smaller than the new lengt
automatically deleted. This constraint applies only to properties of the Array object itself and is unaffecte
by length or array index properties that may be inherited from its prototype.

The Array Constructor Called as a Function

WhenArray is called as a function rather than as a constructor, it creates and initialises a new arr:
object. Thus the function calArray (...) is equivalent to the object creation expression
new Array (... with the same arguments.

15.4.1.1

15.4.1.2

15.4.1.3

15.4.2

15.4.2.1

15.4.2.2

15.4.2.3

15.4.3

15.4.3.1

15.4.3.2

- 70 -

Array(itemO, iteml1, . . .)
An array is created and returned as if by the expresstenArray (itemQ iteml ..).

Array(len)
An array is created and returned as if by the expreswonArray (len).

Array()
An array is created and returned as if by the expresstenArray () .

The Array Constructor

WhenArray is called as part of aew expression, it is a constructor: it initialises the newly created
object.

new Array(itemoO, iteml1, .. .)
This description applies if and only if the Array constructor is given two or more arguments.

The [[Prototype]] property of the newly constructed object is set to the original Array prototype
object, the one that is the initial value Afray.prototype (15.4.3.1).

The [[Class]] property of the newly constructed object is séAtoay"
Thelength property of the newly constructed object is set to the number of arguments.

The 0 property of the newly constructed object is setittomQ the 1 property of the newly
constructed object is set tiem1, and, in general, for as many arguments as there arés pheperty

of the newly constructed object is set to argumentvhere the first argument is considered to be
argument numbe0.

new Array(len)

The [[Prototype]] property of the newly constructed object is set to the original Array prototype
object, the one that is the initial value &fray.prototype (15.4.3.1). The [[Class]] property of
the newly constructed object is set'forray"

If the argumenten is a number and ToUint3®n) is equal tolen, then thelength property of the
newly constructed object is set to ToUintB). If the argumenten is a number and ToUint32(n)
is not equal tden, a runtime error is generated.

If the argumenten is not a number, then tHength property of the newly constructed object is set
to 1 and the0 property of the newly constructed object is seletm

new Array()

The [[Prototype]] property of the newly constructed object is set to the original Array prototype
object, the one that is the initial value Afray.prototype (15.4.3.1). The [[Class]] property of
the newly constructed object is set"farray”

Thelength property of the newly constructed object is set@

Properties of the Array Constructor
The value of the internal [[Prototype]] property of the Array constructor is the Function prototype
object.

Besides the internal [[Call]] and [[Construct]] properties, the Array constructor has the following
properties:

Array.prototype
The initial value ofArray.prototype is the built-in Array prototype object (15.4.4).

This property shall have the attributes { DontEnum, DontDelete, ReadOnly }.

Array.length

The length property isl. (Of course, the Array constructor accepts more than one argument,
because it accepts a variable number of arguments.)

15.4.4

15.4.4.1

15.4.4.2

15.4.4.3

15.4.4.4

- 71 -

Properties of the Array Prototype Object

The value of the internal [[Prototype]] property of the Array prototype object is the Object prototype
object (15.2.3.1).

Note that the Array prototype object is itself an array; it hésngth property (whose initial value is

+0) and the special internal [[Put]] method described in section 15.4.5.1. In following descriptions o
functions that are properties of the Array prototype object, the phrase “this object” refers to the obje
that is thethis value for the invocation of the function. It is permitted fois to refer to an object

for which the value of the internal [[Class]] property is hatray"

The Array prototype object does not havevalueOf property of its own; however, it inherits the
valueOf property from the Object prototype Object.

Array.prototype.constructor
The initial value ofArray.prototype.constructor is the built-inArray constructor.

Array.prototype.toString()

The elements of this object are converted to strings, and these strings are then concatenat
separated by comma characters. The result is the same as if the haift-inmethod were invoked
for this object with no argument.

Array.prototype.join(separator)

The elements of the array are converted to strings, and these strings are then concatenated, sepat
by occurrences of thgeparator If no separator is provided, a single comma is used as the separator.

When thejoin method is called with one argumesgparator the following steps are taken:

Call the [[Get]] method of this object with argumé&ieingth”

Call ToUint32(Result(1)).

If separatoris not supplied, leseparatorbe the single-character strifig

Call ToString§éeparato).

If Result(2) is zero, return the empty string.

Call the [[Get]] method of this object with arguméat .

If Result(6) isundefined or null, use the empty string; otherwise, call ToString(Result(6)).
LetR be Result(7).

Letk be1l.

10.1f k equals Result(2), retumr.

11.LetSbe a string value produced by concatenaiand Result(4).

12.Call the [[Get]] method of this object with argument ToStrijg(

13.1f Result(12) isundefined or null, use the empty string; otherwise, call ToString(Result(12)).
14.LetR be a string value produced by concatenaramnd Result(13).

15.Increas&k by 1.

16.Go to step 10.

CoNoORLWNE

Note that thegoin function is intentionally generic; it does not require thattlis value be an
Array object. Therefore, it can be transferred to other kinds of objects for use as a method. Whett
thejoin function can be applied successfully to a host object is implementation-dependent.

Array.prototype.reverse()

The elements of the array are rearranged so as to reverse their order. The object is returned as
result of the call.

Call the [[Get]] method of this object with argumékength”
Call ToUint32(Result(1)).

Compute floor(Result(2)/2).

Letk beO.

If k equals Result(3), return this object.

Compute Result(2k-1.

Call ToStringk).

Call ToString(Result(6)).

N RN E

15.4.4.5

- 72 -

9. Call the [[Get]] method of this object with argument Result(7).

10.Call the [[Get]] method of this object with argument Result(8).

11.If this object has a property named by Result(8), go to step 12; but if this object has no property
named by Result(8), then go to either step 12 or step 14, depending on the implementation.

12.Call the [[Put]] method of this object with arguments Result(7) and Result(10).

13.Go to step 15.

14.Call the [[Delete]] method on this object, providing Result(7) as the name of the property to
delete.

15.If this object has a property named by Result(7), go to step 16; but if this object has no property
named by Result(7), then go to either step 16 or step 18, depending on the implementation.

16.Call the [[Put]] method of this object with arguments Result(8) and Result(9).

17.Go to step 19.

18.Call the [[Delete]] method on this object, providing Result(8) as the name of the property to
delete.

19.Increas& by 1.

20.Go to step 5.

Note that thereverse function is intentionally generic; it does not require thatthtis value be

an Array object. Therefore, it can be transferred to other kinds of objects for use as a method.
Whether thereverse function can be applied successfully to a host object is implementation-
dependent.

Array.prototype.sort(comparefn)

The elements of this array are sorted. The sort is not necessarily stabbenpfirefnis supplied, it
should be a function that accepts two argumerdasdy and returns a negative valuexik y, zero if
X =y, or a positive value ix >vy.

If comparefnis supplied and is not a consistent comparison function for the elements of this array
(see below), the result is implementation-defined. Otherwise the following steps are taken

1. Call the [[Get]] method of this object with argument "length".

2. Call ToUint32(Result(1)).

3. Perform an implementation-dependent sequence of calls to the [[Get]] , [[Put]], and [[Delete]]
methods of this object and to SortCompare (described below), where the first argument for each
call to [[Get]], [[Put]], or [[Delete]] is a nonnegative integer less than Result(2) and where the
arguments for calls to SortCompare are results of previous calls to the [[Get]] method.

4. Return this object.

The returned object must have the following two properties.

1) There must be some mathematical permutatiorof the nonnegative integers less than
Result(2), such that for every nonnegative intepéess than Result(2), if propertyld[|]
existed, themew[=(j)] is exactly the same value aKl[|],. but if propertyold[j] did not
exist, themew[n(j)] either does not exist or exists with valuedefined.

2) Then for all nonnegative integefsandk, each less than Result(2),dfd[j] compares less
thanold[k] (see SortCompare below), thef) < =n(k).

Here the notatiomld[] is used to refer to the hypothetical result of calling the [[Get]] method of
this object with argumentbefore this function is executed, and the notatiew| j] to refer to the
hypothetical result of calling the [[Get]] method of this object with argumexiter this function has
been executed.

A function is a consistent comparison function for a set of values if (a) for any two of those values
(possibly the same value) considered as an ordered pair, it always returns the same value when given
that pair of values as its two arguments, and the result of applying ToNumber to this value is not
NaN; (b) when considered as a relation, where the paiy)(is considered to be in the relation if and

only if applying the function ta andy and then applying ToNumber to the result produces a negative
value, this relation is a partial order; and (c) when considered as a different relation, where the pair
(%, y) is considered to be in the relation if and only if applying the functiow &mdy and then
applying ToNumber to the result produces a zero value (of either sign), this relation is an equivalence

- 73 -

relation. In this context, the phrase compares less thayi means applying Result(2) toandy and
then applying ToNumber to the result produces a negative value.

When the SortCompare operator is called with two argumeataly, the following steps are taken:

If x andy are bothundefined, return+0.
If x is undefined, return 1.

If y isundefined, return-1.

If the argumentomparefnwas not provided in the call &ort , go to step 7.
Callcomparefnwith argumentx andy.
Return Result(5).

Call ToStringx).

Call ToStringy).

If Result(7) < Result(8), retural.

10 If Result(7) > Result(8), return 1.
11.Return+0.

ONoOkwhE

©

Note that, becausandefined always compares greater than any other value, undefined and non-
existent property values always sort to the end of the result. It is implementation-dependent wheth
or not such properties will exist or not at the end of the array when the sort is concluded.

Note that thesort function is intentionally generic; it does not require thattliis value be an
Array object. Therefore, it can be transferred to other kinds of objects for use as a method. Whett
thesort function can be applied successfully to a host object is implementation-dependent .

15.4.5 Properties of Array Instances

Array instances inherit properties from the Array prototype object and also have the following
properties.

15.4.5.1 [[Put]](P, V)

Array objects use a variation of the [[Put]] method used for other native ECMAScript objects
(section 8.6.2.2).

AssumeA is an Array object an® is a string.
When the [[Put]] method oA is called with property and valueV, the following steps are taken:

Call the [[CanPut]] method & with name P.

If Result(1) is false, return.

If A doesn’'t have a property with narRe go to step 7.

If P is"length" | go to step 12.

Set the value of properiof Ato V.

Go to step 8.

Create a property with nanke set its value t&/ and give it empty attributes.

If P is not an array index, return.

If ToUint32P) is less than the value of thength property ofA, then return.

10 Change (or set) the value of fleagth property ofA to ToUint32f)+1.

11.Return.

12.Compute ToUint32().

13.If Result(12) is not equal to Tolnteg¥y(generate a runtime error.

14.For every integek that is less than the value of thength property of A but not less than
Result(12), ifA itself has a property (not an inherited property) named ToSkjngifen delete
that property.

15.Set the value of properB/of A to Result(12).

16.Return.

15.4.5.2 length

The length property of this Array object is always numerically greater than the name of every
property whose name is an array index.

CeNOURAWONE

Thelength property has the attributes { DontEnum, DontDelete }.

- 74 -

15.5 String Objects
15.5.1 The String Constructor Called as a Function
WhenString is called as a function rather than as a constructor, it performs a type conversion.
15.5.1.1 String(value)
Returns a string value (not a string object) computed by ToString(value).
15.5.1.2 String()
Returns the empty strintf .
15.5.2 The String Constructor

WhenString is called as part of aew expression, it is a constructor: it initialises the newly created
object.

15.5.2.1 new String(value)
The [[Prototype]] property of the newly constructed object is set to the original String prototype
object, the one that is the initial value $tring.prototype (15.5.3.1).
The [[Class]] property of the newly constructed object is séStoing"

The [[Value]] property of the newly constructed object is set to ToString(value).

15.5.2.2 new String()
The [[Prototype]] property of the newly constructed object is set to the original String prototype
object, the one that is the initial value $tring.prototype (15.5.3.1).
The [[Class]] property of the newly constructed object is séStoing"

The [[Value]] property of the newly constructed object is set to the empty string.

15.5.3 Properties of the String Constructor
The value of the internal [[Prototype]] property of the String constructor is the Function prototype
object.

Besides the internal [[Call]] and [[Construct]] properties and tBegth property, the String
constructor has the following properties:
15.5.3.1 String.prototype
The initial value ofString.prototype is the built-in String prototype object (15.5.4).

This property shall have the attributes { DontEnum, DontDelete, ReadOnly }.

15.5.3.2 String.fromCharCode(char0, charl, . . .)

Returns a string value containing as many characters as the number of arguments. Each argument
specifies one character of the resulting string, with the first argument specifying the first character,
and so on, from left to right. An argument is converted to a character by applying the operation
ToUint16 (section 9.7) and regarding the resulting 16-bit integer as the Unicode code point encoding
of a character. If no arguments are supplied, the result is the empty string.
15.5.4 Properties of the String Prototype Object
The String prototype object is itself a string object (its [[Class]]S¢ring”) whose value is an
empty string.

The value of the internal [[Prototype]] property of the String prototype object is the Object prototype
object (15.2.3.1).

15.5.4.1 String.prototype.constructor
The initial value ofString.prototype.constructor is the built-inString constructor.

15.5.4.2 String.prototype.toString()

Returns this string value. (Note that, for a string objecttol®dring method happens to return the
same thing as thealueOf method.)

15.5.4.3

15.5.4.4

15.5.4.5

15.5.4.6

- 75 -

ThetoString function is not generic; it generates a runtime error ithis value is not a string
object. Therefore, it cannot be transferred to other kinds of objects for use as a method.

String.prototype.valueOf()
Returns this string value.

The valueOf function is not generic; it generates a runtime error ithis value is not a string
object. Therefore, it cannot be transferred to other kinds of objects for use as a method.

String.prototype.charAt(pos)

Returns a string containing the character at posifiosin the string resulting from converting this
object to a string. If there is no character at that position, the result is the empty string. The result is
string value, not a string object.

If posis a value of Number type that is an integer, then the resulicbrAt(pog is equal to the
result ofx.substring(pos postl) .

When thecharAt method is called with one argumepus the following steps are taken:

Call ToString, giving it thehis value as its argument.

Call Tolntegengos.

Compute the number of characters in Result(1).

If Result(2) is less than 0 or is not less than Result(3), return the empty string.

Return a string of length 1, containing one character from Result(1), namely the character .
position Result(2), where the first (leftmost) character in Result(1) is considered to be at positio
0, the next one at position 1, and so on.

o1 E W=

NOTE The charAt function is intentionally generic; it does not require that its this value be a string object.
Therefore, it can be transferred to other kinds of objects for use as a method.

String.prototype.charCodeAt(pos)

Returns a number (a nonnegative integer less th3rr@resenting the Unicode code point encoding
of the character at positigmosin the string resulting from converting this object to a string. If there
is no character at that position, the resuli&N.

When thecharCodeAt method is called with one argumens the following steps are taken:

Call ToString, giving it thehis value as its argument.

Call Tolntegengos.

Compute the number of characters in Result(1).

If Result(2) is less than 0 or is not less than Result(3), rétah

Return a value of Number type, of positive sign, whose magnitude is the Unicode encoding of or
character from Result(1), namely the character at position Result(2), where the first (leftmost
character in Result(1) is considered to be at position 0, the next one at position 1, and so on.

agrwb e

NOTE The charCodeAt function is intentionally generic; it does not require that its this value be a string
object. Therefore, it can be transferred to other kinds of objects for use as a method.

String.prototype.indexOf(searchString, position)

If the given searchString appears as a substring of the result of converting this object to a string,
one or more positions that are at or to the right of the specified position, then the index of th
leftmost such position is returned; otherwisk, is returned. If position is undefined or not supplied,

0 is assumed, so as to search all of the string.

When theindexOf method is called with two argumensgarchStringand position the following
steps are taken:

1. Call ToString, giving it theéhis value as its argument.

2. Call ToString$éearchString,.

3. Call ToIntegengosition). (If positionis undefined or not supplied, this step produces the value
0).

4. Compute the number of characters in Result(1).

15.5.4.7

15.5.4.8

- 76 -

5. Compute min(max(Result(3), 0), Result(4)).

6. Compute the number of characters in the string that is Result(2).

7. Compute the smallest possible integemot smaller than Result(5) such tHatResult(6) is not
greater than Result(4), and for all nonnegative integelesss than Result(6), the character at
positionk+j of Result(1) is the same as the character at posjtmhResult(2); but if there is no
such integek, then compute the valud .

8. Return Result(7).

NOTE The indexOf function is intentionally generic; it does not require that its this value be a string
object. Therefore, it can be transferred to other kinds of objects for use as a method.

String.prototype.lastindexOf(searchString, position)

If the given searchString appears as a substring of the result of converting this object to a string, at
one or more positions that are at or to the left of the specified position, then the index of the
rightmost such position is returned; otherwisé&, is returned. If position is undefined or not
supplied, the length of the string value is assumed, so as to search all of the string.

When thelastindexOf method is called with two argumentearchStringand position the
following steps are taken:

1. Call ToString, giving it thehis value as its argument.

2. Call ToStringéearchString.

3. Call ToNumbengosition). (If positionis undefined or not supplied, this step produces the value
NaN).

4. If Result(3) isNaN, use+w; otherwise, call Tolnteger(Result(3)).

5. Compute the number of characters in Result(1).

6. Compute min(max(Result(4), 0), Result(5)).

7. Compute the number of characters in the string that is Result(2).

8. Compute the largest possible intedenot larger than Result(6) such thietResult(7) is not
greater than Result(5), and for all nonnegative integelesss than Result(7), the character at
positionk+j of Result(1) is the same as the character at posjtmnResult(2); but if there is no
such integek, then compute the valué .

9. Return Result(8).

NOTE The lastindexOf function is intentionally generic; it does not require that its this value be a string
object. Therefore, it can be transferred to other kinds of objects for use as a method.

String.prototype.split(separator)

Returns an Array object into which substrings of the result of converting this object to a string have
been stored. The substrings are determined by searching from left to right for occurrences of the
given separator; these occurrences are not part of any substring in the returned array, but serve to
divide up the string value. The separator may be a string of any length.

As a special case, if the separator is the empty string, the string is split up into individual characters;
the length of the result array equals the length of the string, and each substring contains one
character.

If the separator is not supplied, then the result array contains just one string, which is the string.
When thesplit method is called with one argumesgparator the following steps are taken:

1. Call ToString, giving it thehis value as its argument.

2. Create a new Array object of lenddhand call itA.

3. If separatoris not supplied, call the [[Put]] method &fwith 0 and Result(1) as arguments, and
then returpA.

Call ToStringéeparato).

Compute the number of characters in Result(1).

Compute the number of characters in the string that is Result(4).

Letp beO.

If Result(6) is zero (the separator string is empty), go to step 17.

O N O

15.5.4.9

15.5.4.10

- 77 -

9. Compute the smallest possible integgemot smaller tharp such thatk+Result(6) is not greater
than Result(5), and for all nonnegative integjelsss than Result(6), the character at posikoj
of Result(1) is the same as the character at posjtadrResult(2); but if there is no such inteder
then go to step 14.

10.Compute a string value equal to the substring of Result(1), consisting of the characters
positionsp throughk-1, inclusive.

11.Call the [[Put]] method oA with A.length and Result(10) as arguments.

12.Letp bek+Result(6).

13.Go to step 9.

14.Compute a string value equal to the substring of Result(1), consisting of the characters fro
positionp to the end of Result(1).

15.Call the [[Put]] method oA with A.length and Result(14) as arguments.

16.ReturnA.

17.1f p equals Result(5), retus

18.Compute a string value equal to the substring of Result(1), consisting of the single character
positionp.

19.Call the [[Put]] method oA with A.length and Result(18) as arguments.

20.Increase by 1.

21.Go to step 17.

NOTE The split function is intentionally generic; it does not require that its this value be a string object.
Therefore, it can be transferred to other kinds of objects for use as a method.

String.prototype.substring(start)

Returns a substring of the result of converting this object to a string, starting from character positic
start and running to the end of the string. The result is a string value, not a string object.

If the argument idNaN or negative, it is replaced with zero; if the argument is larger than the length
of the string, it is replaced with the length of the string.

When thesubstring method is called with one argumestart, the following steps are taken:

Call ToString, giving it thehis value as its argument.

Call Tolntegergtart).

Compute the number of characters in Result(1).

Compute min(max(Result(2), 0), Result(3)).

Return a string whose length is the difference between Result(3) and Result(4), containir
characters from Result(1), namely the characters with indices Result(4) through Redult(3)
ascending order.

SR

String.prototype.substring(start, end)

Returns a substring of the result of converting this object to a string, starting from character positic
start and running to, but not including, character positeard of the string. The result is a string
value, not a string object.

If either argument idNaN or negative, it is replaced with zero; if either argument is larger than the
length of the string, it is replaced with the length of the string.

If startis larger tharend they are swapped.

When thesubstring method is called with two argumenssart and end the following steps are
taken:

Call ToString, giving it thehis value as its argument.
Call Tolntegergtart).

Call Tolntegerénd.

Compute the number of characters in Result(1).
Compute min(max(Result(2), 0), Result(4)).

Compute min(max(Result(3), 0), Result(4)).

Compute min(Result(5), Result(6)).

Compute max(Result(5), Result(6)).

PNoOR®DE

- 78 -

9. Return a string whose length is the difference between Result(8) and Result(7), containing
characters from Result(1), namely the characters with indices Result(7) through Re&uli(B)
ascending order.

NOTE The substring function is intentionally generic; it does not require that its this value be a string
object. Therefore, it can be transferred to other kinds of objects for use as a method.

15.5.4.11 String.prototype.toLowerCase
Returns a string equal in length to the length of the result of converting this object to a string. The
result is a string value, not a string object.

Every character of the result is equal to the corresponding character of the string, unless that
character has a Unicode 2.0 lowercase equivalent, in which case the lowercase equivalent is used
instead. (The canonical Unicode 2.0 case mapping shall be used, which does not depend on
implementation or locale.)

Note that thetoLowerCase function is intentionally generic; it does not require thatthis

value be a string object. Therefore, it can be transferred to other kinds of objects for use as a method.
15.5.4.12 String.prototype.toUpperCase

Returns a string equal in length to the length of the result of converting this object to a string. The

result is a string value, not a string object.

Every character of the result is equal to the corresponding character of the string, unless that

character has a Unicode 2.0 uppercase equivalent, in which case the uppercase equivalent is used
instead. (The canonical Unicode 2.0 case mapping shall be used, which does not depend on

implementation or locale.)

Note that thetoUpperCase function is intentionally generic; it does not require thatthss
value be a string object. Therefore, it can be transferred to other kinds of objects for use as a method.

15.5.5 Properties of String Instances

String instances inherit properties from the String prototype object and also have a [[Value]] property
and alength property.

The [[Value]] property is the string value represented by this string object.
15.5.5.1 length
The number of characters in the String value represented by this string object.

Once a string object is created, this property is unchanging. It has the attributes { DontEnum,
DontDelete, ReadOnly }.
15.6 Boolean Objects
15.6.1 The Boolean Constructor Called as a Function
WhenBoolean is called as a function rather than as a constructor, it performs a type conversion.

15.6.1.1 Boolean(value)
Returns a Boolean value (not a boolean object) computed by ToBoolean(value).

15.6.1.2 Boolean()
Returnsfalse.

15.6.2 The Boolean Constructor
WhenBoolean is called as part of aew expression, it is a constructor: it initialises the newly created
object.
15.6.2.1 new Boolean(value)
The [[Prototype]] property of the newly constructed object is set to the original Boolean prototype
object, the one that is the initial valueBdolean.prototype (15.6.3.1).

The [[Class]] property of the newly constructed boolean object is s&aolean”

- 79 -

The [[Value]] property of the newly constructed boolean object is set to ToBoolean(value).
15.6.2.2 new Boolean()
The [[Prototype]] property of the newly constructed object is set to the original Boolean prototype
object, the one that is the initial value®dolean.prototype (15.6.3.1).
The [[Class]] property of the newly constructed boolean object is s&aolean"
The [[Value]] property of the newly constructed boolean object is sttlse.

15.6.3 Properties of the Boolean Constructor
The value of the internal [[Prototype]] property of the Boolean constructor is the Function prototype
object.

Besides the internal [[Call]] and [[Construct]] properties and kbegth property, the Boolean
constructor has the following property:
15.6.3.1 Boolean.prototype
The initial value ofBoolean.prototype is the built-in Boolean prototype object (15.6.4).

This property shall have the attributes { DontEnum, DontDelete, ReadOnly }.

15.6.4 Properties of the Boolean Prototype Object
The Boolean prototype object is itself a boolean object (its [[Class]Bi®lean”) whose value is
false.

The value of the internal [[Prototype]] property of the Boolean prototype object is the Object prototype
object (15.2.3.1).

In following descriptions of functions that are properties of the Boolean prototype object, the phras
“this boolean object” refers to the object that is thes value for the invocation of the function; it is
a runtime error ithis does not refer to an object for which the value of the internal [[Class]] property
is "Boolean" . Also, the phrase “this boolean value” refers to the boolean value represented by thi
boolean object, that is, the value of the internal [[Value]] property of this boolean object.

15.6.4.1 Boolean.prototype.constructor

The initial value ofBoolean.prototype.constructor is the built-inBoolean constructor.

15.6.4.2 Boolean.prototype.toString()

If this boolean value isrue, then the stringtrue” is returned. Otherwise, this boolean value must
befalse, and the stringfalse" s returned.

The toString function is not generic; it generates a runtime error iftits value is not a
boolean object. Therefore, it cannot be transferred to other kinds of objects for use as a method.

15.6.4.3 Boolean.prototype.valueOf()
Returns this boolean value.

ThevalueOf function is not generic; it generates a runtime error iflits value is not a boolean
object. Therefore, it cannot be transferred to other kinds of objects for use as a method.

15.6.5 Properties of Boolean Instances
Boolean instances have no special properties beyond those inherited from the Boolean prototype obje

15.7 Number Objects
15.7.1 The Number Constructor Called as a Function
WhenNumber is called as a function rather than as a constructor, it performs a type conversion.
15.7.1.1 Number(value)
Returns a number value (not a Number object) computed by ToNumber(value).

15.7.1.2 Number()
Returns+0.

15.7.2

15.7.2.1

15.7.2.2

15.7.3

15.7.3.1

15.7.3.2

15.7.3.3

15.7.3.4

15.7.3.5

15.7.3.6

15.7.4

- 80 -

The Number Constructor

WhenNumber is called as part of new expression, it is a constructor: it initialises the newly created
object.

new Number(value)

The [[Prototype]] property of the newly constructed object is set to the original Number prototype
object, the one that is the initial value dfimber.prototype (15.7.3.1).

The [[Class]] property of the newly constructed object is séNtomber" .
The [[Value]] property of the newly constructed object is set to ToNumber(value).

new Number()

The [[Prototype]] property of the newly constructed object is set to the original Number prototype
object, the one that is the initial value dfimber.prototype (15.7.3.1).

The [[Class]] property of the newly constructed object is séNtomber" .
The [[Value]] property of the newly constructed object is set@o

Properties of the Number Constructor

The value of the internal [[Prototype]] property of the Number constructor is the Function prototype
object.

Besides the internal [[Call]] and [[Construct]] properties and taegth property, the Number
constructor has the following property:

Number.prototype
The initial value oNumber.prototype is the built-in Number prototype object ().
This property shall have the attributes { DontEnum, DontDelete, ReadOnly }.

Number.MAX_VALUE

The value ofNumber.MAX_VALUE s the largest positive finite value of the number type, which is
approximatelyl.7976931348623157e308

This property shall have the attributes { DontEnum, DontDelete, ReadOnly }.

Number.MIN_VALUE

The value oNumber.MIN_VALUE is the smallest positive nonzero value of the number type, which
is approximatelype-324 .

This property shall have the attributes { DontEnum, DontDelete, ReadOnly }.

Number.NaN
The value oNumber.NaN is NaN.

This property shall have the attributes { DontEnum, DontDelete, ReadOnly }.

Number.NEGATIVE_INFINITY
The value oNumber.NEGATIVE_INFINITY is—co.

This property shall have the attributes { DontEnum, DontDelete, ReadOnly }.

Number.POSITIVE_INFINITY
The value oNumber.POSITIVE_INFINITY is +w.

This property shall have the attributes { DontEnum, DontDelete, ReadOnly }.

Properties of the Number Prototype Object
The Number prototype object is itself a Number object (its [[Class]Nismber") whose value is-0.

The value of the internal [[Prototype]] property of the Number prototype object is the Object prototype
object (15.2.3.1).

- 81 -

In following descriptions of functions that are properties of the Number prototype object, the phras
“this Number object” refers to the object that is thés value for the invocation of the function; it is

a runtime error ithis does not refer to an object for which the value of the internal [[Class]] property
is "Number" . Also, the phrase “this number value” refers to the number value represented by thi
Number object, that is, the value of the internal [[Value]] property of this Number object.

15.7.4.1

15.7.4.2

15.7.4.3

15.7.5

Number.prototype.constructor
The initial value ofNumber.prototype.constructor is the built-inNumber constructor.

Number.prototype.toString(radix)
If the radix is the number 10 or not supplied, then this number value is given as an argument to tt
ToString operator; the resulting string value is returned.

If the radix is supplied and is an integer from 2 to 36, but not 10, the result is a string, the choice c
which is implementation-dependent.

The toString function is not generic; it generates a runtime error iftits value is not a
Number object. Therefore, it cannot be transferred to other kinds of objects for use as a method.

Number.prototype.valueOf()
Returns this number value.

ThevalueOf function is not generic; it generates a runtime error ithts value is not a Number
object. Therefore, it cannot be transferred to other kinds of objects for use as a method.

Properties of Number Instances

Number instances have no special properties beyond those inherited from the Number prototype objec

15.8 The Math Object
The Math object is merely a single object that has some named properties, some of which are functions.

The value of the internal [[Prototype]] property of the Math object is the Object prototype object
(15.2.3.1).

The Math object does not have a [[Construct]] property; it is not possible to use the Math object as
constructor with theew operator.

The Math object does not have a [[Call]] property; it is not possible to invoke the Math object as |
function.

NOTE In this specification, the phrase “the number value for x” has a technical meaning defined in section 8.5.

15.8.1
15.8.1.1

15.8.1.2

15.8.1.3

15.8.1.4

Value Properties of the Math Object

E

The number value fore, the base of the natural logarithms, which is approximately
2.7182818284590452354

This property shall have the attributes { DontEnum, DontDelete, ReadOnly }.

LN10
The number value for the natural logarithm of 10, which is approxim&t@l§2585092994046

This property shall have the attributes { DontEnum, DontDelete, ReadOnly }.

LN2
The number value for the natural logarithm of 2, which is approxim&&931471805599453

This property shall have the attributes { DontEnum, DontDelete, ReadOnly }.

LOG2E

The number value for the base-2 logarithmepfthe base of the natural logarithms; this value is
approximatelyl.4426950408889634 . (Note that the value dflath.LOG2E is approximately the
reciprocal of the value dflath.LN2 .)

15.8.1.5

15.8.1.6

15.8.1.7

15.8.1.8

15.8.2

15.8.2.1

15.8.2.2

- 82 -

This property shall have the attributes { DontEnum, DontDelete, ReadOnly }.

LOG10E

The number value for the base-10 logarithmepthe base of the natural logarithms; this value is
approximately0.4342944819032518 . (Note that the value oflath.LOG10E is approximately
the reciprocal of the value dflath.LN10 .)

This property shall have the attributes { DontEnum, DontDelete, ReadOnly }.

Pl

The number value fom, the ratio of the circumference of a circle to its diameter, which is
approximately3.14159265358979323846

This property shall have the attributes { DontEnum, DontDelete, ReadOnly }.

SQRT1_2

The number value for the square root of 1/2, which is approxima&el71067811865476
(Note that the value ofMath.SQRT1 2 is approximately the reciprocal of the value of
Math.SQRT2.)

This property shall have the attributes { DontEnum, DontDelete, ReadOnly }.

SQRT2
The number value for the square root of 2, which is approximdatdl$42135623730951

This property shall have the attributes { DontEnum, DontDelete, ReadOnly }.

Function Properties of the Math Object
Every function listed in this section applies the ToNumber operator to each of its arguments (in left-to-
right order if there is more than one) and then performs a computation on the resulting number value(s).

The behaviour of the functiorecos , asin , atan , atan2 , cos, exp, log , pow, sin , andsgrt is

not precisely specified here except to require specific results for certain argument values that represent
boundary cases of interest.. For other argument values, these functions are intended to compute
approximations to the results of familiar mathematical functions, but some latitude is allowed in the
choice of approximation algorithms. The general intent is that an implementor should be able to use the
same mathematical library for ECMAScript on a given hardware platform that is available to C
programmers on that platform.

Although the choice of algorithms is left to the implementation, it is recommended (but not specified by
this standard) that implementations use the approximation algorithms for IEEE 754 arithmetic contained
in fdlibm , the freely distributable mathematical library from Sun MicrosystertdibMm-
comment@sunpro.eng.sun.com).

abs(x)

Returns the absolute value of its argument; in general, the result has the same magnitude as the
argument but has positive sign.

e If the argument iNaN, the result ifNaN.

e If the argument is-0, the result is+0.

e If the argument is-w, the result istw.

acos(x)

Returns an implementation-dependent approximation to the arc cosine of the argument. The result is
expressed in radians and ranges fre@to +r.

e If the argument idNaN, the result idNaN.

e If the argument is greater thdn the result isNaN.

e If the argument is less thaf , the result ifNaN.

e If the argument is exactly, the result is+0.

15.8.2.3

15.8.2.4

15.8.2.5

- 83 -

asin(x)

Returns an implementation-dependent approximation to the arc sine of the argument. The result
expressed in radians and ranges fren2 to +r/2.

o If the argument iNaN, the result ifNaN.

o If the argument is greater thdn the result isNaN.

e |[f the argument is less thaf , the result ifNaN.

o If the argument is0, the result is+0.

o If the argument is-0, the result is-0.

atan(x)

Returns an implementation-dependent approximation to the arc tangent of the argument. The resull
expressed in radians and ranges frenf2 to +r/2.

o If the argument idNaN, the result isNaN.

e |f the argument is0, the result istO0.

e If the argument is-0, the result is-0.

e |f the argument ig-w, the result is an implementation-dependent approximatiomis. +

e |f the argument is-», the result is an implementation-dependent approximaticmi®.

atan2(y, x)

Returns an implementation-dependent approximation to the arc tangent of the qubtienf the
argumentsy and x, where the signs of the arguments are used to determine the quadrant of th
result. Note that it is intentional and traditional for the two-argument arc tangent function that the
argument nameg be first and the argument namedbe second. The result is expressed in radians
and ranges fromn to +mu.

o |f either argument i?NaN, the result idNaN.

e |f y>0 andx is +0, the result is an implementation-dependent approximationmi. +

e |If y>0 andx is -0, the result is an implementation-dependent approximationni(2. +

e If y is+0 andx>0, the result is+0.

e Ifyis+0andx is+0, the result ist0.

e If y is+0 andx is—0, the result is an implementation-dependent approximationto +

e If y is+0 andx<0, the result is an implementation-dependent approximationto +

e If y is—0andx>0, the result is-0.

o Ifyis-0andx is+0, the result is-0.

e If y is—0 andx is -0, the result is an implementation-dependent approximationnto

e If y is-0andx<0, the result is an implementation-dependent approximationanto

e |f y<O andx is +0, the result is an implementation-dependent approximationmni@.

e If y<O andx is -0, the result is an implementation-dependent approximationmi2.

e |f y>0 andy is finite andx is +w, the result ist+0.

e |f y>0 andy is finite andx is —«, the result if an implementation-dependent approximationtto +

e |f y<O andy is finite andx is +w, the result is-0.

o |f y<O andy is finite andx is —w, the result is an implementation-dependent approximatiemto

e |If y is+w andx is finite, the result is an implementation-dependent approximationat@. +

o |If y is—w andx is finite, the result is an implementation-dependent approximatioari@.

e |f y is+w andx is +w, the result is an implementation-dependent approximationsi@. +

o |If y is+w andx is -, the result is an implementation-dependent approximation to/4+3

o If y is—w andx is +w, the result is an implementation-dependent approximatioantid.

o |f y is—w andx is —w, the result is an implementation-dependent approximation3a/4.

15.8.2.6

15.8.2.7

15.8.2.8

15.8.2.9

15.8.2.10

-84 -

ceil(x)

Returns the smallest (closest+t®) number value that is not less than the argument and is equal to a
mathematical integer. If the argument is already an integer, the result is the argument itself.

e If the argument idNaN, the result isNaN.

e |If the argument is0, the result ist+0.

e |If the argument is-0, the result is-0.

e If the argument isrw, the result istco.

e If the argument is-w, the result is-c.

e If the argument is less thahbut greater thanl , the result is-0.

The value oMath.ceil(x) is the same as the value-ddath.floor(-x)

cos(x)

Returns an implementation-dependent approximation to the cosine of the argument. The argument is
expressed in radians.

e If the argument iNaN, the result ifNaN.

e If the argument is0, the result isl.

e |If the argument is-0, the result isl.

e If the argument istwo, the result idNaN.

e If the argument is-wo, the result idNaN.

exp(x)

Returns an implementation-dependent approximation to the exponential function of the argament (
raised to the power of the argument, wheiis the base of the natural logarithms).

e |If the argument iNaN, the result isNaN.

e |If the argument is0, the result isl.

e If the argument is-0, the result isl.

e |If the argument isrwo, the result istow.

e |f the argument is-w, the result is+0.

floor(x)

Returns the greatest (closest#®) number value that is not greater than the argument and is equal to
a mathematical integer. If the argument is already an integer, the result is the argument itself.

e |[f the argument idNaN, the result isNaN.

e [f the argument ig-0, the result istO.

e |[f the argument is-0, the result is-0.

e |[f the argument ig-w, the result istoo.

e |[f the argument is-, the result is-c.

o |[f the argument is greater thénbut less than, the result ist0.

NOTE The value of Math.floor(x) is the same as the value of -Math.ceil(-x)

log(x)
Returns an implementation-dependent approximation to natural logarithm of the argument.
e If the argument idNaN, the result idNaN.
e If the argument is less thdh the result ifNaN.
e |[f the argument is-0 or -0, the result is-w.
o |[f the argument id, the result is+0.
e If the argument i, the result istewo.

- 85 -

15.8.2.11 max(x, y)
Returns the larger of the two arguments.

o |[f either argument i®NaN, the result isNaN.

o |If x>y, the result ix.

o If y>x, the resultiy.

e If x is+0 andy is +0, the result is+0.

o If x is+0 andy is -0, the result is+0.

o |If x is—0 andy is +0, the result is+0.

e If x is-0 andy is -0, the result is-0.

e Otherwisex andy are identical; the result is that value.

15.8.2.12 min(x, y)
Returns the smaller of the two arguments.

e |[f either argument iNaN, the result isNaN.

o |f x<y, the result ix.

o If y<x, the result ig.

o |If x is+0 andy is +0, the result is+0.

e If x is+0 andy is -0, the result is-0.

o If x is-0 andy is +0, the result is-0.

e If x is-0 andy is -0, the result is-0.

e Otherwisex andy are identical; the result is that value.

15.8.2.13 pow(x, Yy)
Returns an implementation-dependent approximation to the result of raismthe power.

e If y isNaN, the result idNaN.

o Ifyis+0, the resultisl, even ifx is NaN.

e If y is-0, the resultisl, even ifx is NaN.

e If x isNaN andy is nonzero, the result MaN.

o If abs(x)>1 andy is +w, the result istw.

o If abs(x)>1 andy is—o, the result istO.

o |f abs(x)== andy is +w, the result ilNaN.

o If abs(x)== andy is -, the result isNaN.

e If abs(x)<l andy is+w, the result ist0.

e If abs(x)<l andy is—w, the result istow.

e If X is+w andy>0 , the result istew.

e If x is+w andy<0 , the result is+0.

e If x is—w andy>0 andy is an odd integer, the result-so.

e If x is—w andy>0 andy is not an odd integer, the resultti®.
e If X is—w andy<0 andy is an odd integer, the result+§.

e If x is—w andy<0 andy is not an odd integer, the result+8.
e If x is+0andy>0 , the result ist+O0.

e If x is+0 andy<0 , the result istw.

e If x is-0andy>0 andy is an odd integer, the result+4§.

e If x is—0andy>0 andy is not an odd integer, the result+6.
e If x is-0andy<0 andy is an odd integer, the result-so.

e If x is—0andy<0 andy is not an odd integer, the resulttis.

- 86 -

o |f x<0 andx is finite andy is finite andy is not an integer, the resultaN.

15.8.2.14 random()
Returns a number value with positive sign, greater than or equal to 0 but less than 1, chosen
randomly or pseudo randomly with approximately uniform distribution over that range, using an
implementation-dependent algorithm or strategy. This function takes no arguments.

15.8.2.15 round(x)

Returns the number value that is closest to the argument and is equal to a mathematical integer. If
two integer number values are equally close to the argument, then the result is the number value that
is closer totw. If the argument is already an integer, the result is the argument itself.

e If the argument idNaN, the result idNaN.

e If the argument is0, the result is+0.

e If the argument is-0, the result is-0.

e |If the argument i, the result isteo.

e |If the argument is-w, the result is-w.

e |If the argument is greater th&nbut less tha®.5 , the result ist0.

e If the argument is less thahbut greater than or equal 16.5 , the result is-0.

NOTE Math.round(3.5) returns 4, but Math.round(-3.5) returns -3.

The value ofMath.round(x) is the same as the value Mfth.floor(x+0.5) , except wherx
is -0 or is less tharD but greater than or equal 6.5 ; for these caseBlath.round(x) returns—
0, butMath.floor(x+0.5) returns+0.

15.8.2.16 sin(x)
Returns an implementation-dependent approximation to the sine of the argument. The argument is
expressed in radians.
e If the argument idNaN, the result idNaN.
e If the argument is0, the result is+0.
e If the argument is-0, the result is-0.
e If the argument isre or —oo, the result ilNaN.

15.8.2.17 sqrt(x)
Returns an implementation-dependent approximation to the square root of the argument.

e |[f the argument idNaN, the result idNaN.

e If the argument less thah the result isNaN.
e If the argument is0, the result is+0.

e If the argument is-0, the result is-0.

e If the argument isr«, the result istco.

15.8.2.18 tan(x)

Returns an implementation-dependent approximation to the tangent of the argument. The argument is
expressed in radians.

If the argument idNaN, the result idNaN.

If the argument is0, the result is+0.

If the argument is-0, the result is-0.

If the argument isre or —e, the result isNaN.

15.9 Date Objects
15.9.1 Overview of Date Objects and Definitions of Internal Operators

A Date object contains a number indicating a particular instant in time to within a millisecond. The
number may also bEaN, indicating that the Date object does not represent a specific instant of time.

- 87 -

The following sections define a number of functions for operating on time values. Note that, in ever

159.1.1

15.9.1.2

15.9.1.3

15.9.1.4

case, if any argument to such a functioMNiN, the result will beNaN.

Time Range

Time is measured in ECMAScript in milliseconds since 01 January, 1970 UTC. Leap seconds al
ignored. It is assumed that there are exactly 86,400,000 milliseconds per day. ECMAScript numb
values can represent all integers from —9,007,199,254,740,991 to 9,007,199,254,740,991; this rar
suffices to measure times to millisecond precision for any instant that is within approximately
285,616 years, either forward or backward, from 01 January, 1970 UTC.

The actual range of times supported by ECMAScript Date objects is slightly smaller: exactly -
100,000,000 days to 100,000,000 days measured relative to midnight at the beginning of 01 Janua
1970 UTC. This gives a range of 8,640,000,000,000,000 milliseconds to either side of 01 Januar
1970 UTC.

The exact moment of midnight at the beginning of 01 January, 1970 UTC is represented by the val
+0.

Day Number and Time within Day
A given time valué belongs to day number

Day(t) = floor(t / msPerDay)

where the number of milliseconds per day is
msPerDay = 86400000

The remainder is called the time within the day:
TimeWithinDay() =t modulo msPerDay

Year Number

ECMAScript uses an extrapolated Gregorian system to map a day number to a year number and
determine the month and date within that year. In this system, leap years are precisely those whi
are (divisible by 4) and ((not divisible by 100) or (divisible by 400)). The number of days in year
numbery is therefore defined by

DayslInYeary) = 365 if {f modulo 4)= 0
= 366 if (y modulo 4) = 0 and (y modulo 108)0
= 365 if (y modulo 100) = 0 and (y modulo 408)0
= 366 if (y modulo 400) =0

All non-leap years have 365 days with the usual number of days per month and leap years have
extra day in February. The day number of the first day of yeamiven by:

DayFromYear(y) = 368y-1970) + floor((y¥1969)/4)- floor((y—1901)/100) + floor((y
1601)/400)

The time value of the start of a year is:
TimeFromYeary) = msPerDaypayFromYeary)
A time value determines a year by:

YearFromTimel) = the largest integer (closest to positive infinity) such that
TimeFromYeary) <t

The leap-year function is 1 for a time within a leap year and otherwise is zero:

InLeapYearf)= 0 if DaysinYear(YearFromTimég)) = 365
=1 if DayslnYear(YearFromTin{®) = 366
Month Number

Months are identified by an integer in the range 0 to 11, inclusive. The mapping MonthFromTime(
from a time valua to a month number is defined by:

15.9.1.5

15.9.1.6

15.9.1.7

15.9.1.8

- 88 -

MonthFromTimet) = 0 if 0 < DayWithinYearf) < 31
=1 if 31 < DayWithinYear f) < 59+InLeapYeat
=2 if 59+InLeapYeart) < DayWithinYear {) < 90+InLeapYeait]
=3 if 90+InLeapYeart) < DayWithinYear) < 120+InLeapYeatj
=4 if 120+InLeapYear < DayWithinYear) < 151+InLeapYealt]
=5 if 151+InLeapYeatrt) < DayWithinYear f) < 181+InLeapYeatj
=6 if 181+InLeapYeat < DayWithinYear) < 212+InLeapYeat]
=7 if 212+InLeapYeaty < DayWithinYear f) < 243+InLeapYeat]
=8 if 243+InLeapYeart) < DayWithinYear) < 273+InLeapYeatj
=9 if 273+InLeapYealr) < DayWithinYear f) < 304+InLeapYeat]
= 10if 304+InLeapYeat] < DayWithinYear) < 334+InLeapYeatj
=11if 334+InLeapYeatj < DayWithinYear) < 365+InLeapYeatj

where

DayWithinYear¢) = Day(t)-DayFromYear(YearFromTimg))

A month value of 0 specifies January; 1 specifies February; 2 specifies March; 3 specifies April;
4 specifies May; 5 specifies June; 6 specifies July; 7 specifies August; 8 specifies September; 9
specifies October; 10 specifies November; and 11 specifies December. Note that MonthFromTime(0)
= 0, corresponding to Thursday, 01 January, 1970.

Date Number

A date number is identified by an integer in the range 1 through 31, inclusive. The mapping
DateFromTimet) from a time valud to a month number is defined by:

DateFromTimet) = DayWithinYear¢)+1 if MonthFromTime{)=0
= DayWithinYear¢)-30 if MonthFromTime()=1
= DayWithinYear{)-58-InLeapYearf) if MonthFromTime¢)=2
= DayWithinYearf)-89-InLeapYearf) if MonthFromTime¢)=3
= DayWithinYear{)-119-InLeapYear{) if MonthFromTime¢)=4
= DayWithinYearf)-150-InLeapYearf) if MonthFromTime¢)=5
= DayWithinYear{)-180-InLeapYearf) if MonthFromTime()=6
= DayWithinYearf)—-211-InLeapYearf) if MonthFromTime¢)=7
= DayWithinYear{)-242-InLeapYear() if MonthFromTime¢)=8
= DayWithinYearf)-272-InLeapYearf) if MonthFromTime¢)=9
= DayWithinYear{)-303-InLeapYear() if MonthFromTime¢)=10
= DayWithinYear{)-333-InLeapYear() if MonthFromTime¢)=11

Week Day

The weekday for a particular time valués defined as
WeekDayf) = (Day() + 4) modulo 7

A weekday value of 0 specifies Sunday; 1 specifies Monday; 2 specifies Tuesday; 3 specifies
Wednesday; 4 specifies Thursday; 5 specifies Friday; and 6 specifies Saturday. Note that
WeekDay(0) = 4, corresponding to Thursday, 01 January, 1970.

Local Time Zone Adjustment

An implementation of ECMAScript is expected to determine the local time zone adjustment. The
local time zone adjustment is a value LocalTZA measured in milliseconds which when added to UTC
represents the locatandardtime. Daylight saving time isot reflected by LocalTZA. The value
LocalTZA does not vary with time but depends only on the geographic location.

Daylight Saving Time Adjustment

An implementation of ECMAScript is expected to determine the daylight saving time algorithm. The
algorithm to determine the daylight saving time adjustment DaylightSaving,T Afeasured in
milliseconds, must depend only on four things:

(1) the time since the beginning of the year

- 89 -

t — TimeFromYear(YearFromTimg]
(2) whethert is in a leap year
InLeapYearf)
(3) the week day of the beginning of the year
WeekDay(TimeFromYear(YearFromTintg)
and (4) the geographic location.

The implementation of ECMAScript should not try to determine whether the exact time was subjec
to daylight saving time, but just whether daylight saving time would have been in effect if the curren
daylight saving time algorithm had been used at the time. This avoids complications such as takit
into account the years that the locale observed daylight saving time year round.

If the underlying operating system provides functionality for determining daylight saving time, the
implementation of ECMAScript is free to map the year in question to an equivalent year (same leaj
year-ness and same starting week day for the year) for which the operating system provides daylic
saving time information. The only restriction is that all equivalent years should produce the sam
result.

15.9.1.9 Local Time
Conversion from UTC to local time is defined by

LocalTime¢) =t + LocalTZA + DaylightSavingTAL)
Conversion from local time to UTC is defined by

UTC(t) =t — LocalTZA — DaylightSavingTAt(— LocalTZA)
Note that UTC(LocalTime}) is not necessarily always equaltto

15.9.1.10 Hours, Minutes, Second, and Milliseconds
The following functions are useful in decomposing time values:

HourFromTimet) = floor(t / msPerHour) modulo HoursPerDay
MinFromTime(t) = floor(t / msPerMinute) modulo MinutesPerHour
SecFromTime(t) = floor(t / msPerSecond) modulo SecondsPerMinute
msFromTime(t) = t modulo msPerSecond

where
HoursPerDay = 24
MinutesPerHour = 60
SecondsPerMinute = 60
msPerSecond = 1000
msPerMinute = msPerSecon&econdsPerMinute = 60000
msPerHour = msPerMinuteMinutesPerHour = 3600000

15.9.1.11 MakeTime(hour, min, sec, ms)

The operator MakeTime calculates a number of milliseconds from its four arguments, which must b
ECMAScript number values. This operator functions as follows:

If hour is not finite ormin is not finite orsecis not finite ormsis not finite, returrNaN.
Call Tolntegetour).

Call Tolntegentin).

Call Tolntegergeq.

Call Tolntegents).

Ok whE

15.9.1.1

15.9.1.1

15.9.1.1

15.9.2

15.9.2.1

15.9.2.2

15.9.2.3

- 90 -

6. Compute Result(2) msPerHour Result(3)* msPerMinutet Result(4)* msPerSecond
Result(5), performing the arithmetic according to IEEE 754 rules (that is, as if using the
ECMAScript operatorg and+).

7. Return Result(6).

2 MakeDay(year, month, date)

The operator MakeDay calculates a number of days from its three arguments, which must be
ECMAScript number values. This operator functions as follows:

If yearis not finite ormonthis not finite ordateis not finite, returriNaN.

Call Tolntegerjear).

Call Tolntegenfionth.

Call Tolntegerdate.

Compute Result(2) + floor(Result(3)/12).

Compute Result(3) modulo 12.

Find a valuet such that YearFromTimBE=Result(5) and MonthFromTimBE=Result(6) and
DateFromTimet)==1; but if this is not possible (because some argument is out of range), return
NaN.

8. Compute Day(Result(7)) + Result(4)1.

9. Return Result(8).

3 MakeDate(day, time)

The operator MakeDate calculates a number of milliseconds from its two arguments, which must be
ECMAScript number values. This operator functions as follows:

NogoswWNE

1. If dayis not finite ortimeis not finite, returrNaN.
2. Computeday - msPerDay +time.
3. Return Result(2).

4 TimeClip(time)
The operator TimeClip calculates a number of milliseconds from its argument, which must be an
ECMAScript number value. This operator functions as follows:

1. If timeis not finite, returrNaN.

2. If abs(Result(1)) 8.64e15 (that is, 8.64 10"), returnNaN.

3. Return an implementation-dependent choice of either Tolnteger(Result(2)) or
Tolnteger(Result(2)) ++{0). (Adding a positive zero convert$ to +0.)

NOTE The point of step 3 is that an implementation is permitted a choice of internal representations of time
values, for example as a 64-bit signed integer or as a 64-bit floating-point value. Depending on the
implementation, this internal representation may or may not distinguish -0 and +0.

The Date Constructor Called As a Function

When Date is called as a function rather than as a constructor, it returns a string representing the
current time (UTC). Note that the function cé@lhte (...) is not equivalent to the object creation
expressiomew Date (...) with the same arguments.

Date(year, month, date, hours, minutes, seconds, ms)

The arguments are accepted but are completely ignored. A string is created and returned as if by the
expression(new Date ()).toString()

Date(year, month, date, hours, minutes, seconds)

The arguments are accepted but are completely ignored. A string is created and returned as if by the
expression(new Date ()).toString()

Date(year, month, date, hours, minutes)

The arguments are accepted but are completely ignored. A string is created and returned as if by the
expression(new Date ()).toString()

15.9.2.4

15.9.2.5

15.9.2.6

15.9.2.7

15.9.2.8

15.9.3

- 91 -

Date(year, month, date, hours)

The arguments are accepted but are completely ignored. A string is created and returned as if by |
expressior(new Date ()).toString()

Date(year, month, day)

The arguments are accepted but are completely ignored. A string is created and returned as if by
expressior(new Date ()).toString()

Date(year, month)

The arguments are accepted but are completely ignored. A string is created and returned as if by |
expressior(new Date ()).toString()

Date(value)

The argument is accepted but is completely ignored. A string is created and returned as if by ti
expressior(new Date ()).toString()

Date()

A string is created and returned as if by the expressém Date ().toString()

The Date Constructor

When Date is called as part of aew expression, it is a constructor: it initialises the newly created

15.9.3.1

15.9.3.2

object.

new Date(year, month, date, hours, minutes, seconds, ms)

The [[Prototype]] property of the newly constructed object is set to the original Date prototype
object, the one that is the initial value D&te.prototype 0.

The [[Class]] property of the newly constructed object is séDtte”
The [[Value]] property of the newly constructed object is set as follows:

Call ToNumberyear).

Call ToNumbenhonth.

Call ToNumbergate).

Call ToNumbergours).

Call ToNumbenfinutes.

Call ToNumbergecondy

Call ToNumbenfs).

If Result(1) is noNaN and 0< Tolnteger(Result(1)¥x 99, Result(8) is
1900+Tolnteger(Result(1)); otherwise, Result(8) is Result(1).

9. Compute MakeDay(Result(8), Result(2), Result(3)).

10.Compute MakeTime(Result(4), Result(5), Result(6), Result(7)).
11.Compute MakeDate(Result(9), Result(10)).

12.Set the [[Value]] property of the newly constructed object to TimeClip(UTC(Result(11))).

©NoOORWNE

new Date(year, month, date, hours, minutes, seconds)

The [[Prototype]] property of the newly constructed object is set to the original Date prototype
object, the one that is the initial value Déte.prototype 0.

The [[Class]] property of the newly constructed object is séDte"
The [[Value]] property of the newly constructed object is set as follows:

Call ToNumbergear).

Call ToNumbenfonth.

Call ToNumbemdate).

Call ToNumbenfours).

Call ToNumbenfinutes.

Call ToNumbergecond}

If Result(1) is noNaN and 0< Tolnteger(Result(1)¥ 99, Result(7) is
1900+Tolnteger(Result(1)); otherwise, Result(7) is Result(1).

NoOkWNE

- 92 -

8. Compute MakeDay(Result(7), Result(2), Result(3)).

9. Compute MakeTime(Result(4), Result(5), Result(6), 0).

10.Compute MakeDate(Result(8), Result(9)).

11.Set the [[Value]] property of the newly constructed object to TimeClip(UTC(Result(10))).

15.9.3.3 new Date(year, month, date, hours, minutes)

The [[Prototype]] property of the newly constructed object is set to the original Date prototype
object, the one that is the initial value Déte.prototype 0.

The [[Class]] property of the newly constructed object is séDiate"
The [[Value]] property of the newly constructed object is set as follows:

Call ToNumbenyean).

Call ToNumbenfonth.

Call ToNumbergate).

Call ToNumbetiours).

Call ToNumbenfinutes.

If Result(1) is noNaN and 0< Tolnteger(Result(1)¥ 99, Result(6) is
1900+Tolnteger(Result(1)); otherwise, Result(6) is Result(1).

7. Compute MakeDay(Result(6), Result(2), Result(3)).

8. Compute MakeTime(Result(4), Result(5), 0, 0).

9. Compute MakeDate(Result(7), Result(8)).

10.Set the [[Value]] property of the newly constructed object to TimeClip(UTC(Result(9))).

ok whE

15.9.3.4 new Date(year, month, date, hours)

The [[Prototype]] property of the newly constructed object is set to the original Date prototype
object, the one that is the initial value Dte.prototype 0.

The [[Class]] property of the newly constructed object is séDtte"
The [[Value]] property of the newly constructed object is set as follows:

Call ToNumberygear).

Call ToNumbenfonth.

Call ToNumbergate).

Call ToNumbettours).

If Result(1) is noNaN and 0< Tolnteger(Result(1)x 99, Result(5) is
1900+Tolnteger(Result(1)); otherwise, Result(5) is Result(1).

Compute MakeDay(Result(5), Result(2), Result(3)).

Compute MakeTime(Result(4), 0, 0, 0).

Compute MakeDate(Result(6), Result(7)).

Set the [[Value]] property of the newly constructed object to TimeClip(UTC(Result(8))).

ghrONE

©oNo

15.9.3.5 new Date(year, month, day)

The [[Prototype]] property of the newly constructed object is set to the original Date prototype
object, the one that is the initial value @#te.prototype 0.

The [[Class]] property of the newly constructed object is séDte"
The [[Value]] property of the newly constructed object is set as follows:

1. Call ToNumbergear).

2. Call ToNumbenfonth.

3. Call ToNumberngate).

4. If Result(1) is noNaN and 0< Tolnteger(Result(1)¥x 99, Result(4) is
1900+Tolnteger(Result(1)); otherwise, Result(4) is Result(1).

Compute MakeDay(Result(4), Result(2), Result(3)).

Compute MakeDate(Result(5), 0).

. Set the [[Value]] property of the newly constructed object to TimeClip(UTC(Result(6))).

No o

15.9.3.6

15.9.3.7

15.9.3.8

15.9.4

159.4.1

15.9.4.2

- 03 -

new Date(year, month)

The [[Prototype]] property of the newly constructed object is set to the original Date prototype
object, the one that is the initial value D&te.prototype 0.

The [[Class]] property of the newly constructed object is séDtte”

The [[Value]] property of the newly constructed object is set as follows:

1. Call ToNumbergear).

2. Call ToNumbenhonth.

3. If Result(1) is noNaN and 0< Tolnteger(Result(1)¥ 99, Result(3) is
1900+Tolnteger(Result(1)); otherwise, Result(3) is Result(1).

4. Compute MakeDay(Result(3), Result(2), 1).

5. Compute MakeDate(Result(4), 0).

6. Set the [[Value]] property of the newly constructed object to TimeClip(UTC(Result(5))).

new Date(value)

The [[Prototype]] property of the newly constructed object is set to the original Date prototype
object, the one that is the initial value Date.prototype 0.

The [[Class]] property of the newly constructed object is séDate"

The [[Value]] property of the newly constructed object is set as follows:

1. Call ToPrimitive(value).

2. If Type(Result(1)) is String, then go to step 5.

3. LetV be ToNumber(Result(1)).

4. Set the [[Value]] property of the newly constructed object to Time¥&Jipfd return.

5. Parse Result(1) as a date, in exactly the same manner as foardee method (); letV be the
time value for this date.

6. Go to step 4.

new Date()

The [[Prototype]] property of the newly constructed object is set to the original Date prototype
object, the one that is the initial value D&te.prototype 0.

The [[Class]] property of the newly constructed object is séDete"

The [[Value]] property of the newly constructed object is set to the current time (UTC).

Properties of the Date Constructor
The value of the internal [[Prototype]] property of the Date constructor is the Function prototype object

Besides the internal [[Call]] and [[Construct]] properties andl&dmgth property (whose value i8),
the Date constructor has the following properties:

Date.prototype
The initial value ofDate.prototype is the built-in Date prototype object ().

This property shall have the attributes { DontEnum, DontDelete, ReadOnly }.

Date.parse(string)

The parse function applies the ToString operator to its argument and interprets the resulting string
as a date; it returns a number, the UTC time value corresponding to the date. The string may
interpreted as a local time, a UTC time, or a time in some other time zone, depending on the contel
of the string.

If x is any Date object whose milliseconds amount is zero within a particular implementation o
ECMAScript, then all of the following expressions should produce the same numeric value in thea
implementation, if all the properties referenced have their initial values:

x.valueOf()

Date.parse(x.toString())

15.9.4.3

15.9.4.4

15.9.4.5

-94 -

Date.parse(x.toGMTString())

However, the expression
Date.parse(x.toLocaleString())

is not required to produce the same number value as the preceding three expressions and, in general,
the value produced bPate.parse is implementation-dependent when given any string value that
could not be produced in that implementation bytd®tring ortoGMTString method.

Date.UTC(year, month, date, hours, minutes, seconds, ms)
When theUTCfunction is called with seven arguments, the following steps are taken:

Call ToNumbergean).

Call ToNumbenfionth.

Call ToNumberate).

Call ToNumberfours.

Call ToNumbenfinutes.

Call ToNumbergeconds.

Call ToNumbenhs.

If Result(1) is noNaN and 0< Tolnteger(Result(1)x 99, Result(8) is
1900+Tolnteger(Result(1)); otherwise, Result(8) is Result(1).
9. Compute MakeDay(Result(8), Result(2), Result(3)).
10.Compute MakeTime(Result(4), Result(5), Result(6), Result(7)).
11.Return TimeClip(MakeDate(Result(9), Result(10))).

NGO~ E

NOTE The UTC function differs from the Date constructor in two ways: it returns a time value as a number,
rather than creating a Date object, and it interprets the arguments in UTC rather than as local time.

Date.UTC(year, month, date, hours, minutes, seconds)
When theUTCfunction is called with six arguments, the following steps are taken:

Call ToNumbergean).

Call ToNumbenfionth.

Call ToNumberate).

Call ToNumberfours.

Call ToNumbenfinutes.

Call ToNumbergeconds.

If Result(1) is noNaN and 0< Tolnteger(Result(1)x 99, Result(7) is
1900+Tolnteger(Result(1)); otherwise, Result(7) is Result(1).
8. Compute MakeDay(Result(7), Result(2), Result(3)).

9. Compute MakeTime(Result(4), Result(5), Result(6), 0).
10.Return TimeClip(MakeDate(Result(8), Result(9))).

NoahkwbhE

NOTE The UTC function differs from the Date constructor in two ways: it returns a time value as a number,
rather than creating a Date object, and it interprets the arguments in UTC rather than as local time.

Date.UTC(year, month, date, hours, minutes)
When theUTCfunction is called with five arguments, the following steps are taken:

1. Call ToNumbergear).

2. Call ToNumbenfionth.

3. Call ToNumbendate).

4. Call ToNumbergours).

5. Call ToNumbenfinutes.

6. If Result(1) is noiNaN and 0< Tolnteger(Result(1)x 99, Result(6) is
1900+Tolnteger(Result(1)); otherwise, Result(6) is Result(1).

7. Compute MakeDay(Result(6), Result(2), Result(3)).

8. Compute MakeTime(Result(4), Result(5), 0, 0).

9. Return TimeClip(MakeDate(Result(7), Result(8))).

- 95 -

NOTE The UTC function differs from the Date constructor in two ways: it returns a time value as a humber,
rather than creating a Date object, and it interprets the arguments in UTC rather than as local time.

15.9.4.6 Date.UTC(year, month, date, hours)
When theUTCfunction is called with four arguments, the following steps are taken:

Call ToNumbengear).

Call ToNumbenfionth.

Call ToNumberate).

Call ToNumberfours).

If Result(1) is noNaN and 0< Tolnteger(Result(1)X 99, Result(5) is
1900+Tolnteger(Result(1)); otherwise, Result(5) is Result(1).
Compute MakeDay(Result(5), Result(2), Result(3)).

7. Compute MakeTime(Result(4), 0, 0, 0).

8. Return TimeClip(MakeDate(Result(6), Result(7))).

R e

o

NOTE The UTC function differs from the Date constructor in two ways: it returns a time value as a humber,
rather than creating a Date object, and it interprets the arguments in UTC rather than as local time.

15.9.4.7 Date.UTC(year, month, date)
When theUTCfunction is called with three arguments, the following steps are taken:
1. Call ToNumbergear).
2. Call ToNumbenhonth.
3. Call ToNumberdate).
4. If Result(1) is noNaN and 0< Tolnteger(Result(1)¥ 99, Result(4) is
1900+Tolnteger(Result(1)); otherwise, Result(4) is Result(1).
5. Compute MakeDay(Result(4), Result(2), Result(3)).
6. Return TimeClip(MakeDate(Result(5), 0)).

NOTE The UTC function differs from the Date constructor in two ways: it returns a time value as a humber,
rather than creating a Date object, and it interprets the arguments in UTC rather than as local time.

15.9.4.8 Date.UTC(year, month)
The behaviour of th&TCfunction with two arguments is implementation-dependent.

15.9.4.9 Date.UTC(year)
The behaviour of th& TCfunction with one argument is implementation-dependent.

15.9.4.10 Date.UTC()
The behaviour of th& TCfunction with no arguments is implementation-dependent.

15.9.5 Properties of the Date Prototype Object
The Date prototype object is itself a Date object (its [[Class]D&te"”) whose value itNaN.

The value of the internal [[Prototype]] property of the Date prototype object is the Object prototype
object (15.2.3.1).

In following descriptions of functions that are properties of the Date prototype object, the phrase “thi
Date object” refers to the object that is thés value for the invocation of the function; it is a runtime
error if this does not refer to an object for which the value of the internal [[Class]] property is
"Date" . Also, the phrase “this time value” refers to the number value for the time represented by thi
Date object, that is, the value of the internal [[Value]] property of this Date object.

15.9.5.1 Date.prototype.constructor
The initial value ofDate.prototype.constructor is the built-inDate constructor.

15.9.5.2 Date.prototype.toString()

This function returns a string value. The contents of the string are implementation-dependent, but a
intended to represent the Date in a convenient, human-readable form in the current time zone.

15.9.5.3

15.9.5.4

15.9.5.5

15.9.5.6

15.9.5.7

15.9.5.8

15.9.5.9

- 96 -

ThetoString function is not generic; it generates a runtime error ithis value is not a Date
object. Therefore, it cannot be transferred to other kinds of objects for use as a method.

Date.prototype.valueOf()
ThevalueOf function returns a number, which is this time value.

The valueOf function is not generic; it generates a runtime error ifthis value is not a Date
object. Therefore, it cannot be transferred to other kinds of objects for use as a method.

Date.prototype.getTime()

1. If thethis value is not an object whose [[Class]] propertyDate" , generate a runtime error.
2. Return this time value.

Date.prototype.getYear()

NOTE This function is not part of this specification. The function getFullYear is much to be preferred for
nearly all purposes, because it avoids the “year 2000 problem.” If implemented, getYear may follow the
following rules:

1. Lett be this time value.
2. If tis NaN, returnNaN.
3. Return YearFromTime(LocalTimg) — 1900.

Date.prototype.getFullYear()

1. Lett be this time value.
2. Iftis NaN, returnNaN.
3. Return YearFromTime(LocalTim®J.

Date.prototype.getUTCFullYear()

1. Lett be this time value.
2. If tis NaN, returnNaN.
3. Return YearFromTimé).

Date.prototype.getMonth()

1. Lett be this time value.
2. If tis NaN, returnNaN.
3. Return MonthFromTime(LocalTimgj.

Date.prototype.getUTCMonth()

1. Lett be this time value.
2. If tis NaN, returnNaN.
3. Return MonthFromTime).

15.9.5.10 Date.prototype.getDate()

1. Lett be this time value.
2. IftisNaN, returnNaN.
3. Return DateFromTime(LocalTing).

15.9.5.11 Date.prototype.getUTCDate()

1. Lett be this time value.
2. If tis NaN, returnNaN.
3. Return DateFromTimé)

15.9.5.12 Date.prototype.getDay()

1. Lett be this time value.
2. IftisNaN, returnNaN.
3. Return WeekDay(LocalTim8j].

15.9.5.13 Date.prototype.getUTCDay()

1. Lett be this time value.
2. If tis NaN, returnNaN.

15.9.5.14

15.9.5.15

15.9.5.16

15.9.5.17

15.9.5.18

15.9.5.19

15.9.5.20

15.9.5.21

15.9.5.22

15.9.5.23

15.9.5.24

- 97 -

3. Return WeekDayy.

Date.prototype.getHours()

1. Lett be this time value.
2. If tisNaN, returnNaN.
3. Return HourFromTime(LocalTimBj.

Date.prototype.getUTCHours()

1. Lett be this time value.
2. If tis NaN, returnNaN.
3. Return HourFromTime).

Date.prototype.getMinutes()

1. Lett be this time value.
2. If tis NaN, returnNaN.
3. Return MinFromTime(LocalTime)).

Date.prototype.getUTCMinutes()

1. Lett be this time value.
2. If tis NaN, returnNaN.
3. Return MinFromTimdj.

Date.prototype.getSeconds()

1. Lett be this time value.
2. Iftis NaN, returnNaN.
3. Return SecFromTime(Local Timt).

Date.prototype.getUTCSeconds()

1. Lett be this time value.
2. If tis NaN, returnNaN.
3. Return SecFromTim#(

Date.prototype.getMilliseconds()

1. Lett be this time value.
2. IftisNaN, returnNaN.
3. Return msFromTime(LocalTimgj.

Date.prototype.getUTCMilliseconds()

1. Lett be this time value.
2. If tis NaN, returnNaN.
3. Return msFromTime).

Date.prototype.getTimezoneOffset()
Returns the difference between local time and UTC time in minutes.

1. Lett be this time value.
2. IftisNaN, returnNaN.
3. Return {—- LocalTimeg)) / msPerMinute.

Date.prototype.setTime(time)

1. If thethis value is not a Date object, generate a runtime error.
2. Call ToNumbertfme).

3. Call TimeClip(Result(1)).

4. Set the [[Value]] property of thihis value to Result(2).

5. Return the value of the [[Value]] property of tthés value.

Date.prototype.setMilliseconds(ms)

1. Lett be the result of LocalTime(this time value).
2. Call ToNumbenfs).
3. Compute MakeTime(HourFromTim¢(MinFromTime(), SecFromTimaj}, Result(2)).

15.9.5.25

15.9.5.26

15.9.5.27

15.9.5.28

15.9.5.29

- 908 -

4. Compute UTC(MakeDate(Day(Result(3))).
5. Set the [[Value]] property of thihis value to TimeClip(Result(4)).
6. Return the value of the [[Value]] property of tthes value.

Date.prototype.setUTCMilliseconds(ms)

Lett be this time value.

Call ToNumbenfs).

Compute MakeTime(HourFromTimg(MinFromTime€), SecFromTimd], Result(2)).
Compute MakeDate(Daty(Result(3)).

Set the [[Value]] property of thinis value to TimeClip(Result(4)).

Return the value of the [[Value]] property of ttheés value.

cuprwNE

Date.prototype.setSeconds(sec [, ms])
If msis not specified, this behaves asni§were specified with the value getMilliseconds().

Lett be the result of LocalTime(this time value).

Call ToNumbergeq.

If msis not specified, compute msFromTirt)e(©therwise, call ToNumbenm(s).
Compute MakeTime(HourFromTinmt¢(MinFromTime(), Result(2), Result(3)).
Compute UTC(MakeDate(Day(Result(4))).

Set the [[Value]] property of thidnis value to TimeClip(Result(5)).

Return the value of the [[Value]] property of tes value.

NogkwdbE

Date.prototype.setUTCSeconds(sec [, ms])

If msis not specified, this behaves asn§were specified with the value getUTCMilliseconds().

Lett be this time value.

Call ToNumbergeq.

If msis not specified, compute msFromTirt)e(©therwise, call ToNumbenm(s).
Compute MakeTime(HourFromTintg(MinFromTime(), Result(2), Result(3)).
Compute MakeDate(Daty(Result(4)).

Set the [[Value]] property of thidnis value to TimeClip(Result(5)).

Return the value of the [[Value]] property of ttes value.

NouokrwbE

Date.prototype.setMinutes(min [, sec [, ms]])
If secis not specified, this behaves asé&cwere specified with the value getSeconds ().

If msis not specified, this behaves asn§were specified with the value getMilliseconds().

Lett be the result of LocalTime(this time value).

Call ToNumbentin).

If secis not specified, compute SecFromTim)eptherwise, call ToNumbesgq.
If msis not specified, compute msFromTirt)e(©therwise, call ToNumbenm(s).
Compute MakeTime(HourFromTintg(Result(2), Result(3), Result(4)).
Compute UTC(MakeDate(Day(Result(5))).

Set the [[Value]] property of thidnis value to TimeClip(Result(6)).

Return the value of the [[Value]] property of ttes value.

NN E

Date.prototype.setUTCMinutes(min [, sec [, ms]])
If secis not specified, this behaves as#cwere specified with the value getUTCSeconds ().

If msis not specified, this behaves asn§were specified with the value getUTCMilliseconds().

Lett be this time value.

Call ToNumbentin).

If secis not specified, compute SecFromTim)eptherwise, call ToNumbeséq.
If msis not specified, compute msFromTirt)e(©therwise, call ToNumbenm{s).
Compute MakeTime(HourFromTintg(Result(2), Result(3), Result(4)).
Compute MakeDate(Daty(Result(5)).

Set the [[Value]] property of thidnis value to TimeClip(Result(6)).

Return the value of the [[Value]] property of ttes value.

N RONE

15.9.5.30

15.9.5.31

15.9.5.32

15.9.5.33

15.9.5.34

- 99 -

Date.prototype.setHours(hour [, min [, sec [, ms 1]])

If minis not specified, this behaves asrin were specified with the value getMinutes().
If secis not specified, this behaves asé#cwere specified with the value getSeconds ().
If msis not specified, this behaves asri§were specified with the value getMilliseconds().
1. Lett be the result of LocalTime(this time value).

2. Call ToNumbettgour).

3. If minis not specified, compute MinFromTim¥(otherwise, call ToNumbenm(in).

4. If secis not specified, compute SecFromTi)eptherwise, call ToNumbeséq.

5. If msis not specified, compute msFromTirt)e(©therwise, call ToNumbenm(s).

6. Compute MakeTime(Result(2), Result(3), Result(4), Result(5)).

7. Compute UTC(MakeDate(Day(Result(6))).

8. Set the [[Value]] property of thihis value to TimeClip(Result(7)).

9. Return the value of the [[Value]] property of tties value.
Date.prototype.setUTCHours(hour [, min [, sec [, ms]]])

If minis not specified, this behaves asnin were specified with the value getUTCMinutes().
If secis not specified, this behaves asé#cwere specified with the value getUTCSeconds ().
If msis not specified, this behaves asri§were specified with the value getUTCMilliseconds().
1. Lett be this time value.

2. Call ToNumbergour).

3. If minis not specified, compute MinFromTinm¥(otherwise, call ToNumbenm{in).

4. If secis not specified, compute SecFromTim)eptherwise, call ToNumbeséq.

5. If msis not specified, compute msFromTirt)e(©therwise, call ToNumbenm{s).

6. Compute MakeTime(Result(2), Result(3), Result(4), Result(5)).

7. Compute MakeDate(Daty(Result(6)).

8. Set the [[Value]] property of thimis value to TimeClip(Result(7)).

9. Return the value of the [[Value]] property of tthes value.
Date.prototype.setDate(date)

1. Lett be the result of LocalTime(this time value).

2. Call ToNumbergate).

3. Compute MakeDay(YearFromTintg(MonthFromTime(), Result(2)).

4. Compute UTC(MakeDate(Result(3), TimeWithinDgj)X.

5. Set the [[Value]] property of thimis value to TimeClip(Result(4)).

6. Return the value of the [[Value]] property of tthes value.
Date.prototype.setUTCDate(date)

1. Lett be this time value.

2. Call ToNumbergate).

3. Compute MakeDay(YearFromTimg(MonthFromTime(), Result(2)).

4. Compute MakeDate(Result(3), TimeWithinDgy(

5. Set the [[Value]] property of thinis value to TimeClip(Result(4)).

6. Return the value of the [[Value]] property of tthes value.
Date.prototype.setMonth(mon [, date])

If dateis not specified, this behaves asl#tewere specified with the value getDate().
1. Lett be the result of LocalTime(this time value).

2. Call ToNumbenfon.

3. If dateis not specified, compute DateFromTir)eptherwise, call ToNumbedate).

4. Compute MakeDay(YearFromTintg(Result(2), Result(3)).

5. Compute UTC(MakeDate(Result(4), TimeWithinDj).

6. Set the [[Value]] property of ththis value to TimeClip(Result(5)).

7. Return the value of the [[Value]] property of tthes value.

- 100 -

15.9.5.35 Date.prototype.setUTCMonth(mon [, date])

15.9.5.36

15.9.5.37

15.9.5.38

15.9.5.39

If dateis not specified, this behaves asl#te were specified with the value getUTCDate().

Lett be this time value.

Call ToNumbenton).

If dateis not specified, compute DateFromTinjeotherwise, call ToNumbedéte).
Compute MakeDay(YearFromTintg(Result(2), Result(3)).

Compute MakeDate(Result(4), TimeWithinDgy(

Set the [[Value]] property of thiis value to TimeClip(Result(5)).

Return the value of the [[Value]] property of tthes value.

NoohkwhE

Date.prototype.setFullYear(year [, mon [, date]])
If monis not specified, this behaves asnbnwere specified with the value getMonth().

If dateis not specified, this behaves asi#tewere specified with the value getDate().

Lett be the result of LocalTime(this time value); but if this time valuda§, lett be +0.
Call ToNumbergean).

If monis not specified, compute MonthFromTimg (otherwise, call ToNumbemion).

If dateis not specified, compute DateFromTirtjeotherwise, call ToNumbed@te).
Compute MakeDay(Result(2), Result(3), Result(4)).

Compute UTC(MakeDate(Result(5), TimeWithinD@y).

Set the [[Value]] property of thilis value to TimeClip(Result(6)).

Return the value of the [[Value]] property of tthes value.

ONoOkwNE

Date.prototype.setUTCFullYear(year [, mon [, date]])
If monis not specified, this behaves asnbnwere specified with the value getUTCMonth().

If dateis not specified, this behaves asld@tewere specified with the value getUTCDate().

Lett be this time value; but if this time valueNsaN, lett be +0.

Call ToNumberyear).

If monis not specified, compute MonthFromTimg (otherwise, call ToNumbemion).
If dateis not specified, compute DateFromTirjeotherwise, call ToNumbedéte).
Compute MakeDay(Result(2), Result(3), Result(4)).

Compute MakeDate(Result(5), TimeWithinDgy(

Set the [[Value]] property of thiis value to TimeClip(Result(6)).

Return the value of the [[Value]] property of ttes value.

NoO~ONE

Date.prototype.setYear(year)

NOTE This function is not part of this specification. The function setFullYear is much to be preferred for
nearly all purposes, because it avoids the “year 2000 problem.” If implemented, setYear may follow the
following rules:

1. Lett be the result of LocalTime(this time value); but if this time valu”as, lett be +0.

2. Call ToNumberjear).

3. If Result(2) isNaN, set the [[Value]] property of thiénis value toNaN and returnNaN.

4. If Result(2) is noNaN and 0 = Tolnteger(Result(2)) = 99 then Result(4) is Tolnteger(Result(2))
+ 1900. Otherwise, Result(4) is Result(2).

5. Compute MakeDay(Result(4), MonthFromTim)e DateFromTimet)).

6. Compute UTC(MakeDate(Result(5), TimeWithinD&j)X.

7. Set the [[Value]] property of thiis value to TimeClip(Result(6)).

8. Return the value of the [[Value]] property of tthes value.

Date.prototype.toLocaleString()

This function returns a string value. The contents of the string are implementation-dependent, but are
intended to represent the Date in a convenient, human-readable form appropriate to the geographic or
cultural locale.

- 101 -

15.9.5.40 Date.prototype.toUTCString()

This function returns a string value. The contents of the string are implementation-dependent, but a
intended to represent the Date in a convenient, human-readable form in UTC.

15.9.5.41 Date.prototype.toGMTString()

The function object that is the initial value ©&fate.prototype.toGMTString is the same
function object that is the initial value &fate.prototype.toUTCString . ThetoGMTString
property is provided principally for compatibility with old code. It is recommended that the
toUTCString property be used in new ECMAScript code.

15.9.6 Properties of Date Instances

16

Date instances have no special properties beyond those inherited from the Date prototype object.

Errors

This specification specifies the last possible moment an error occurs. A given implementation may gener:
errors sooner (e.g., at compile-time). Doing so may cause differences in behaviour among implementatio
Notably, if runtime errors become catchable in future versions, a given error would not be catchable if
implementation generates the error at compile-time rather than runtime.

An ECMAScript compiler should detect errors at compile time in all code presented to it, even code th
detailed analysis might prove to be “dead” (never executed). A programmer should not rely on the trick
placing code within anif (false) statement, for example, to try to suppress compile-time error
detection.

In general, if a compiler can prove that a construct cannot execute without error under any circumstanc
then it may issue a compile-time error even though the construct might never be executed at all.

Printed copies can be ordered from:

ECMA
114 Rue du Rhéne
CH-1204 Geneva

Switzerland
Fax: +41 22 849.60.01
Internet: documents@ecma.ch

Files can be downloaded from our FTP siftp.ecma.ch This Standard is available from libraBCMA-ST as a
compacted, self-expanding file in MSWord 6.0 format (file E262-DOC.EXE) and as an Acrobat PDF file (file E262
PDF.PDF). File E262-EXP.TXT gives a short presentation of the Standard.

Our web site, http://www.ecma.ch, gives full information on ECMA, ECMA at&s, ECMA Standards and
Technical Reports.

ECMA

114 Rue du Rhbéne
CH-1204 Geneva
Switzerland

This Standard ECMA-262 is available free of charge in printed form and as a file.

See inside cover page for instructions

