Standard ECMA-262

June 1997

ECMA

Standardizing Information and Communication Systems

ECMAScript: A general purpose,
cross-platform programming
language

Phone: +41 22 849.60.00 - Fax: +41 22 849.60.01 - URL: http://www.ecma.ch - Internet: helpdesk@ecma.ch

Standard ECMA-262

June 1997

ECMA

Standardizing Information and Communication Systems

ECMAScript : A general purpose,
cross-platform programming
language

Phone: +41 22 849.60.00 - Fax: +41 22 849.60.01 - URL: http://www.ecma.ch - Internet: helpdesk@ecma.ch
IW Ecma-262.doc 16-09-97 12,08

Brief History

This ECMA Standard is based on several originating technologies, the most well known being JavaScript™ (Netsc
Communications) and JScript™ (Microsoft Corporation). The development of this Standard has started in November 1996.

The ECMA Standard is submitted to ISO/IEC JTC 1 for adoption under the fast-track procedure.

This ECMA Standard has been adopted by the ECMA General Assembly of June 1997.

1 Scope
2 Conformance
3 References

4 Overview

4.1 Web Scripting
4.2 Language Overview

4.2.1 Objects
4.3 Definitions

4.3.1 Type

4.3.2 Primitive value
4.3.3 Object

4.3.4 Constructor
4.3.5 Prototype

4.3.6 Native object
4.3.7 Built-in object
4.3.8 Host object
4.3.9 Undefined
4.3.10 Undefined type
4.3.11 Null

4.3.12 Null type
4.3.13 Boolean value
4.3.14 Boolean type
4.3.15 Boolean object
4.3.16 String value
4.3.17 String type
4.3.18 String object
4.3.19 Number value
4.3.20 Number type
4.3.21 Number object
4.3.22 Infinity

4.3.23 NaN

5 Notational Conventions
5.1 Syntactic and Lexical Grammars

5.1.1 Context-Free Grammars
5.1.2 The lexical grammar

5.1.3 The numeric string grammar
5.1.4 The syntactic grammar
5.1.5 Grammar Notation

5.2 Algorithm conventions
6 Source Text
7 Lexical Conventions

7.1 White Space
7.2 Line Terminators

Table of contents

MU UOUORAMRMARMARARARARWWOWD W N NN B

7.3 Comments
7.4 Tokens

7.4.1 Reserved Words
7.4.2 Keywords
7.4.3 Future Reserved Words

7.5 ldentifiers
7.6 Punctuators
7.7 Literals
7.7.1 Null Literals
7.7.2 Boolean Literals
7.7.3 Numeric Literals
7.7.4 String Literals
7.8 Automatic semicolon insertion

7.8.1 Rules of automatic semicolon insertion
7.8.2 Examples of Automatic Semicolon Insertion

8 Types
8.1 The Undefined type
8.2 The Null type
8.3 The Boolean type
8.4 The String type
8.5 The Number type
8.6 The Object type

8.6.1 Property attributes

8.6.2 Internal Properties and Methods
8.7 The Reference Type

8.7.1 GetBase(V)

8.7.2 GetPropertyName(V)

8.7.3 GetValue(V)
8.7.4 PutValue(V, W)

8.8 The List type
8.9 The Completion Type

9 Type Conversion

9.1 ToPrimitive
9.2 ToBoolean
9.3 ToNumber

9.3.1 ToNumber Applied to the String Type

9.4 Tolnteger

9.5 TolInt32: (signed 32 bit integer)
9.6 ToUint32: (unsigned 32 bit integer)
9.7 ToUint16: (unsigned 16 bit integer)
9.8 ToString

9.8.1 ToString Applied to the Number Type
9.9 ToObject

10 Execution Contexts
10.1 Definitions

10.1.1 Function Objects
10.1.2 Types of Executable Code
10.1.3 Variable instantiation

10
11

11
11
11

11
12
12

12
12
13
15

17

17
18

19

19
19
19
20
20
21

21
21

24

24
24
24
24

25
25

25

25
26
26

27

29
29
30
30
30
31

32

32
32

32
32
33

10.1.4 Scope Chain and Identifier Resolution
10.1.5 Global Object

10.1.6 Activation object

10.1.7 This

10.1.8 Arguments Object

10.2 Entering An Execution Context

10.2.1 Global Code

10.2.2 Eval Code

10.2.3 Function and Anonymous Code
10.2.4 Implementation-supplied Code

11 Expressions
11.1 Primary Expressions

11.1.1 The this keyword
11.1.2 Identifier reference
11.1.3 Literal reference
11.1.4 The Grouping Operator

11.2 Left-Hand-Side Expressions

11.2.1 Property Accessors
11.2.2 The new operator
11.2.3 Function Calls
11.2.4 Argument Lists

11.3 Postfix expressions

11.3.1 Postfix increment operator
11.3.2 Postfix decrement operator

11.4 Unary operators

11.4.1 The delete operator

11.4.2 The void operator

11.4.3 The typeof operator

11.4.4 Prefix increment operator
11.4.5 Prefix decrement operator
11.4.6 Unary + operator

11.4.7 Unary - operator

11.4.8 The bitwise NOT operator (~)

11.4.9 Logical NOT operator (!)
11.5 Multiplicative operators

11.5.1 Applying the * operator
11.5.2 Applying the / operator
11.5.3 Applying the % operator

11.6 Additive operators

11.6.1 The addition operator (+)
11.6.2 The subtraction operator (-)
11.6.3 Applying the additive operators (+, -) to numbers

11.7 Bitwise shift operators

11.7.1 The left shift operator (<<)
11.7.2 The signed right shift operator (>>)
11.7.3 The unsigned right shift operator (>>>)

11.8 Relational operators

11.8.1 The less-than operator (<)
11.8.2 The greater-than operator (>)
11.8.3 The less-than-or-equal operator (<=)

33
34
34
34
34

35

35

35
35
35

36
36

36
36
36
36

36

37
37
38
38

38

38
39

39

39
39
39
40
40
40
40
41

41
41

41
42
42

43

43
43
43

44

44
44
45

45

45
45
45

11.8.4 The greater-than-or-equal operator (>=)
11.8.5 The abstract relational comparison algorithm

11.9 Equality operators

11.9.1 The equals operator (==
11.9.2 The does-not-equals operator (!=)
11.9.3 The abstract equality comparison algorithm

11.10 Binary bitwise operators
11.11 Binary logical operators
11.12 Conditional operator?:)
11.13 Assignment operators

11.13.1 Simple Assignment (=)
11.13.2 Compound assignment (op=)

11.14 Comma operator,()

12 Statements

12.1 Block

12.2 Variable statement
12.3 Empty statement
12.4 Expression statement
12.5 ThelF statement

12.6 Iteratiorstatements

12.6.1 The while statement
12.6.2 The for statement
12.6.3 The for..in statement

12.7 TheCONTINUE statement
12.8 TheBREAK statement
12.9 TheRETURN statement
12.10 ThewITH statement

13 Function Definition
14 Program

15 Native ECMAScript objects
15.1 The global object

15.1.1 Value properties of the global object

15.1.2 Function properties of the global object
15.1.3 Constructor Properties of the Global Object
15.1.4 Other Properties of the Global Object

15.2 Object Objects

15.2.1 The Object Constructor Called as a Function
15.2.2 The Object Constructor

15.2.3 Properties of the Object Constructor

15.2.4 Properties of the Object Prototype Object
15.2.5 Properties of Object Instances

15.3 Function Objects

15.3.1 The Function Constructor Called as a Function
15.3.2 The Function Constructor

15.3.3 Properties of the Function Constructor

15.3.4 Properties of the Function Prototype Object
15.3.5 Properties of Function Instances

46

48
48
49
49

50

50

50
51
52
52
52
53

53
53
54

55
55
55
56

56

57

57
58

61

62

63

46
46

47
47
47

50

50

58
58
61

61

61

62
62
63

63
63
64
64
64

15.4 Array Objects

15.4.1 The Array Constructor Called as a Function
15.4.2 The Array Constructor

15.4.3 Properties of the Array Constructor

15.4.4 Properties of the Array Prototype Object
15.4.5 Properties of Array Instances

15.5 String Objects

15.5.1 The String Constructor Called as a Function
15.5.2 The String Constructor

15.5.3 Properties of the String Constructor

15.5.4 Properties of the String Prototype Object
15.5.5 Properties of String Instances

15.6 Boolean Objects

15.6.1 The Boolean Constructor Called as a Function
15.6.2 The Boolean Constructor

15.6.3 Properties of the Boolean Constructor

15.6.4 Properties of the Boolean Prototype Object
15.6.5 Properties of Boolean Instances

15.7 Number Objects

15.7.1 The Number Constructor Called as a Function
15.7.2 The Number Constructor

15.7.3 Properties of the Number Constructor

15.7.4 Properties of the Number Prototype Object
15.7.5 Properties of Number Instances

15.8 The Math Object

15.8.1 Value Properties of the Math Object
15.8.2 Function Properties of the Math Object

15.9 Date Objects

15.9.1 Overview of Date Objects and Definitions of Internal Operators
15.9.2 The Date Constructor Called As a Function

15.9.3 The Date Constructor

15.9.4 Properties of the Date Constructor

15.9.5 Properties of the Date Prototype Object

15.9.6 Properties of Date Instances

16 Errors

65

65
65
66
66
68

69

69
69
69
70
73

73

73
73
74
74
74

74

74
75
75
75
76

76

76
77

81

81
85
85
87
89
95

95

- Vi -

Scope
This Standard defines the ECMAScript scripting language.

Conformance

A conforming implementation of ECMAScript must provide and support all the types, values, objects, propertie
functions, and program syntax described in this specification.

A conforming implementation of ECMAScript is permitted to provide additional types, values, objects, properties, at
functions beyond those described in this specificaition. In particular, a conforming implementation of ECMAScript
permitted to provide properties not described in this specification, and values for those properties, for objects that
described in this specification.

A conforming implementation of ECMAScript is permitted to support program syntax not described in thi
specification. In particular, a conforming implementation of ECMAScript is permitted to support program syntax th:
makes use of the “future reserved words” listed in section O of this specification.

References

ANSI X3.159-1989: American National Standard for Information Systems - Programmnggdge - C, American
National Standards Institute (1989).

ANSI/IEEE Std 1754-1985: IEEE Standard for Binary Floating-Point Arithmetic. Institute of Electrical and
Electronics Engineers, New York (1985).

Berners-Lee, T., Masinter, L., and McCabhill, M. Uniform Resource Locators. RFC 1738, Network Working Grouy
December 1994.

Gay, David M. Correctly Rounded Binary-Decimal and Decimal -Binary Conversions. Numerical Analysis Manucrif
90-10. AT&T Bell Laboratories (Murray Hill, New Jersey). November 30, 1990. Availabit@é/'cm.bell-
labs.com/cm/cs/doc/90/4-10.ps.gz . Associated code available ashttp://cm.bell-
labs.com/netlib/fp/dtoa.c.gz and as http://cm.bell-labs.com/netlib/fp/g_fmt.c.gz

and may also be found at the varioetlib mirror sites.

Gosling, James, Bill Joy and Guy Steele. The Java Language Specification. Addison Wesley Publishing Comp,
1996.

Ungar, David, and SmittRandallB. Self: The Power of Simplicity. OOPSLA '87 Conference Proceedings, pp. 227—
241, Orlando, FL, October, 1987.

Unicode Consortium. The Unicode Standard, Version 2.0. Addison-Wesley, Reading, Massachusetts (1996).

Overview

EMCAScript is an object-oriented programming language for performing computations and manipulatin
computational objects within a host environment. ECMAScript as defined here is not intended to be computatione
self-sufficient; indeed, there are no provisions in this specification for input of external data or output of comput
results. Instead, it is expected that the computational environment of an ECMAScript program will provide not only t
objects and other facilities described in this specification but also certain environment-dpestifibjects, whose
description and behavior are beyond the scope of this specification except to indicate that they may provide cer
properties that can be accessed and certain functions that can be called from an ECMAScript program.

A scripting languageis a programming language that is used to manipulate, customize, and automate the facilities
an existing system. In such systems, useful functionality is already available through a user interface, and the scrif
language is a mechanism for exposing that functionality to program control. In this way, the existing system is saic
provide a host environment of objects and facilities which completes the capabilities of the scripting language.
scripting language is intended for use by both professional and non-professional programmers, and therefore there
be a number of informalities and built into the language.

ECMAScript was originally designed to b&\&eb scripting languaggproviding a mechanism to enliven Web pages in
browsers and to perform server computation as part of a Web-based client-server architecture. ECMAScript

provide core scripting capabilities for a variety of host environments, and therefore the core scripting language is
specified in this document apart from any particular host environment.

4.1

4.2

4.2.1

Web Scripting

A web browser provides an ECMAScript host environment for client-side computation including, for instance,
objects that represent windows, menus, pop-ups, dialog boxes, text areas, anchors, frames, history, cookies, and
input/output. Further, the host environment provides a means to attach scripting code to events such as change of
focus, page and image loading, unloading, error, and abort, selection, form submission, and mouse actions.
Scripting code appears within the HTML and the displayed page is a combination of user interface elements and
fixed and computed text and images. The scripting code is reactive to user interaction and there is no need for a
main program.

A web server provides a different host environment for server-side computation including objects representing
requests, clients, and files, and mechanisms to lock and share data. By using browser-side and server side scripting
together it is possible to distribute computation between the client and server while providing a customized user
interface for a Web-based application.

Each Web browser and server that supports ECMAScript supplies its own host environment, completing the
ECMAScript execution environment.

Language Overview

The following is an informal overview of ECMAScript—not all parts of the language are described. This overview
is not part of the standard proper.

ECMAScript is object-based: basic language and host facilities are provided by objects, and an ECMAScript
program is a cluster of communicating objects. An ECMASatip¢ctis an unordered collection pfopertieseach

with 0 or moreattributes which determine how each property can be used—for example, when the ReadOnly
attribute for a property is set to true, any attempt by executed ECMAScript code to change the value of the property
has no effect. Properties are containers that hold other olgaantgjve values or methods A primitive value is a

member of one of the following built-in typesndefined, Null, Boolean Number, and String; an object is a
member of the remaining built-in tygigbject; and a method is a function associated with an object via a property.

ECMAScript defines a collection diuilt-in objectswhich round out the definition of ECMAScript entities. These
built-in objects include thé&lobal object, theObject object, theFunction object, theArray object, theString
object, theBooleanobject, theNumber object, theMath object, and th®ate object.

ECMAScript also defines a set of built-operatorswhich may not be, strictly speaking, functions or methods.
ECMAScript operators include various unary operations, multiplicative operators, additive operators, bitwise shift
operators, relational operators, equality operators, binary bitwise operators, binary logical operators, assignment
operators, and the comma operator.

ECMAScript syntax intentionally resembles Java syntax. ECMAScript syntax is relaxed to enable it to serve as an
easy-to-use scripting language. For example, a variable is not required to have its type declared nor are types
associated with properties, anddefined functions are not required to have their declarations appear textually before
calls to them

Objects

ECMAScript does not contain proper classes such as those in C++, Smalltalk, or Java, but rather, supports
constructorswhich create objects by executing code that allocates storage for the objects and initializes all or
part of them by assigning initial values to their properties. All functions including constructors are objects, but
not all objects are constructors. Each constructor h&sototype property which is used to implement
prototype-based inheritanceand shared properties Objects are created by using constructorsnew
expressions, for examplagw String(“A String”) creates a new string object. Invoking a constructor
without usingnew has consequences that depend on the constructor. For ex&mplg;'A String”)

produces a primitive string, not an object.

ECMAScript supportgrototype-based inheritancd&very constructor has an associated prototype, and every
object created by that constructor has an implicit reference to the prototype (callebjeties prototype
associated with its constructor. Furthermore, aprototype may have a non-null implicit reference to its prototype,
and so on; this is called tipeototype chainWhen a reference is made to a property in an object, that reference

is to the property of that name in the first object in the prototype chain that contains a property of that name. In

other words, first the object mentioned directly is examined for such a property; if that object contains the narr
property, that is the property to which the reference refers; if that object does not contain the named property,
prototype for that object is examined next; and so on.

In a class-based object-oriented language, in general, state is carried by instances, methods are carried by cl:
and inheritance is only of structure and behavior. In ECMAScript, the state and methods are carried by obje
and structure, behavior, and state are all inherited.

All objects that do not directly contain a particular property that their prototype contains share that property a
its value. The following diagram may illustrate this discussion:

S -
B CFE ‘ implicit prototype link

prototype » “To :

P1 CFP1 |77

P2

YR

------- Cfl T sz Cf3 Cf4 Cf5

ql ql ql ql ql

02 a2 a2 a2 a2

4.3

4.3.1

4.3.2

4.3.3

CF is a constructor (and also an object). Five objects have been created by using new expissionets,

cf,, andcfs.Each of these objects contains properties nammedndqg2. The dashed lines represent the implicit
prototype relationship; so, for examptd;'s prototype isCF,. The constructorCF, has two properties itself,
namedP1 and P2, which are not visible t&€F,, cfi, cf,, cf;, cfs, or cfs. The property name@FP1 in CF, is
shared bycf,, cfy, cfs, cfs, andcfs, as are any properties found@f's implicit prototype chain which are not
namedql, g2, or CFP1 Notice that there is no implicit prototype link betwezf, andCF.

Unlike class-based object languages, properties can be added to objects on the fly simply by assigning value
them. That is, constructors are not required to name or assign values to all or any of its properties. In the ab
diagram, one could add a new shared propertycfigrcf,, cfs, cf;, andcfs by assigning a new value to the
property inCF,.

Definitions
The following are informal definitions of key terms associated with ECMAScript.

Type
A typeis a set of data values. In general, the correct functioning of a program is not affected if different da
values of the same type are substituted for others.

Primitive value

A primitive valueis a member of one of the typgsdefined, Null, Boolean Number, or String. A primitive
value is a datum which is represented directly at the lowest level of the language implementation.

Object

An objectis a member of the typ@bject. It is an unordered collection of properties which contain primitive
values, objects, or functions. A function stored in the property of an object is called a method.

4.3.4

4.3.5

4.3.6

4.3.7

4.3.8

4.3.9

4.3.10

4.3.11

4.3.12

4.3.13

4.3.14

4.3.15

4.3.16

Constructor

A constructor is a function object which creates and initializes objects. Each constructor has an associated
prototype object which is used to implement inheritance and shared properties.

Prototype

A prototypeis an object used to implement structure, state, and behavior inheritance in ECMAScript. When a
constructor creates an object, that object implicitly references the constructor’s associated prototype for the
purpose of resolving property references. The constructor’s associated prototype can be referenced by the
program expressiowonstructor .prototype , and properties added to an object’'s prototype are shared,
through inheritance, by all objects sharing the prototype.

Native object

A native objectis any object supplied by an ECMAScript implementation independent of the host environment.
Standard native objects are defined in this specification. Some native objects are built-in; others may be
constructed during the course of execution of an ECMAScript program.

Built-in object

A built-in object is any object supplied by an ECMAScript implementation, independent of the host
environment, that is present at the start of the execution of an ECMAScript program. Standard built-in objects are
defined in this specification, and the ECMAScript implementation may specify and define others. Every built-in
object is a native object.

Host object

A host objectis any object supplied by the host environment to complete the execution environment of
ECMAScript. Any object that is not native is a host object.

Undefined
Undefined is a primitive value used when a variable has not been assigned a value.

Undefined type
The typeUndefined has exactly one value, calladdefined.

Null
Null is a primitive value that represents the null, empty, or nonexistent reference.

Null type
The typeNull has exactly one value, calladll.

Boolean value
A boolean valugs a member of the tyg@ooleanand is one of either two unique valugge andfalse

Boolean type

The typeBooleanrepresents a logical entity and consists of exactly two unique values. One israalledd the
other is calledalse

Boolean object

A Boolean objecis a member of the typg@bject and is an instance of the Boolean object which is a constructor.

That is, a boolean object is created by using the Boolean constructor in a new expression, supplying a boolean as
an argument. The resulting object has an implicit (unnamed) property whictbizallean. A boolean object can

be coerced to a boolean value. A boolean object can be used anywhere a boolean value is expected.

This is an example of one of the conveniences built into ECMAScript—in this case it is to accommodate

programmers of varying backgrounds. Those familiar with imperative or procedural programming languages may
find number values more natural, while those familiar with object-oriented languages may find number objects
more intuitive.

String value

A string valueis a member of the typBtring and is the set of all finite ordered sequences of zero or more
Unicode characters.

4.3.17

4.3.18

4.3.19

4.3.20

4.3.21

4.3.22

4.3.23

String type
The typeString is the set of all finite ordered sequences of zero or more Unicode characters.
String object

A string objectis a member of the tyg@bject and is an instance of the String object which is a constructor. That
is, a string object is created by using the String constructor in a new expression, supplying a string as
argument. The resulting object has an implicit (unnamed) property which is the string. A string object can |
coerced to a string value. A string object can be used anywhere a string value is expected.

Number value
A number valuea member of the typgdumber and is a direct representation of a number.

Number type

The typeNumber is a set of values representing numbers. In ECMAScript the set of values represent the doub
precision 64-bit format IEEE 754 value along with a special “Not-a-Number” (NaN) value, positive infinity, and
negative infinity.
Number object

A number objectis a member of the typg@bject and is an instance of the Number object which is a constructor.
That is, a number object is created by using the Number constructor in a new expression, supplying a numbe
an argument. The resulting object has an implicit (unnamed) property which is the number. A number object
be coerced to a number value. A number object can be used anywhere a number value is expected. Note t
number object can have shared properties by adding them to the Number prototype.

Infinity

The primitive valudnfinity represents the positive infinite number value.

NaN

The primitive valueNaN represents the set of IEEE Standard “Not-a-Number” values.

5 Notational Conventions

5.1

5.1.1

5.1.2

Syntactic and Lexical Grammars

This section describes the context-free grammars used in this specification to define the lexical and synta
structure of an ECMAScript program.

Context-Free Grammars

A context-free grammaconsists of a number gfoductions Each production has an abstract symbol called a
nonterminalas itsleft-hand sideand a sequence of one or more nonterminalt@miinal symbols as itsight-
hand side For each grammar, the terminal symbols are drawn from a specified alphabet.

Starting from a sentence consisting of a single distinguished nonterminal, caligdtisymbala given context-

free grammar specifieslanguage namely, the (perhaps infinite) set of possible sequences of terminal symbols
that can result from repeatedly replacing any nonterminal in the sequence with a right-hand side of a product
for which the nonterminal is the left-hand side.

The lexical grammar

A lexical grammarfor ECMAScript is given in Section 7. This grammar has as its terminal symbols the
characters of the Unicode character set. It defines a set of productions, starting from the godhpymiioht
describe how sequences of Unicode characters are translated into a sequence of input elements.

Input elements other than white space and comments form the terminal symbols for the syntactic grammar
ECMAScript and are called ECMAScriptkens These tokens are the reserved words, identifiers, literals, and
punctuators of the ECMAScript language. Moreover, line terminators, although not considered to be tokens, &
become part of the stream of input elements and guide the process of automatic semicolon insertion (see se
7.8). Simple white space and single-line comments are simply discarded and do not appear in the stream of i
elements for the syntactic grammar. A multi-line comment is likewise simply discarded if it contains no lin

terminator; but if a multi-line comment contains one or more line terminators, then it is replaced by a single line
terminator, which becomes part of the stream of input elements for the syntactic grammar.

Productions of the lexical grammar are distinguished by having two calori®$ separating punctuation.

5.1.3 The numeric string grammar

A second grammar is used for translating strings into numeric values. This grammar is similar to the part of the
lexical grammar having to do with numeric literals and has as its terminal symbols the characters of the Unicode
character set. This grammar appears in section 9.3.1.

Productions of the numeric string grammar are distinguished by having three coloris$ punctuation.

5.1.4 The syntactic grammar

The syntactic grammafor ECMAScript is given in Sections 11, 12, 13, and 14. This grammar has ECMAScript
tokens defined by the lexical grammar as its terminal symbols (see section 5.1.2). It defines a set of productions,
starting from the goal symbdétrogram that describe how sequences of tokens can form syntactically correct
ECMAScript programs.

When a stream of Unicode characters is to be parsed as an ECMAScript program, it is first converted to a stream
of input elements by repeated application of the lexical grammar; this stream of input elements is then parsed by
a single application of the syntax grammar. The program is syntactically in error if the tokens in the stream of
input elements cannot be parsed as a single instance of the goal nonteragrean with no tokens left over.

Productions of the syntactic grammar are distinguished by having just one cbsgunctuation.

The syntactic grammar as presented in Sections 11, 12, 13 and 14 is actually not a complete account of which
token sequences are accepted as correct ECMAScript programs. Certain additional token sequences are also
accepted, namely, those that would be described by the grammar if only semicolons were added to the sequence
in certain places (such as before end-of-line characters). Furthermore, certain token sequences that are describec
by the grammar are not considered acceptable if an end-of-line character appears in certain “awkward” places.

5.1.5 Grammar Notation
Terminal symbols of the lexical and string grammars, and some of the terminal symbols of the syntactic grammar,
are shown irfixed width font, both in the productions of the grammars and throughout this specification

whenever the text directly refers to such a terminal symbol. These are to appear in a program exactly as written.

Nonterminal symbols are shownitalic type. The definition of a nonterminal is introduced by the name of the
nonterminal being defined followed by one or more colons. (The number of colons indicates to which grammar
the production belongs.) One or more alternative right-hand sides for the nonterminal then follow on succeeding
lines. For example, the syntactic definition:

WithStatement
with (Expressior) Statement

states that the nontermin®ithStatementepresents the tokewith , followed by a left parenthesis token,
followed by anExpressionfollowed by a right parenthesis token, followed b$tatementThe occurrences of
ExpressiorandStatemenare themselves nonterminals. As another example, the syntactic definition:

ArgumentList
AssignmentExpression
ArgumentList AssignmentExpression

states that aArgumentListmay represent either a singlesignmentExpressiar anArgumentListfollowed by

a comma, followed by aAssignmentExpressiofhis definition ofArgumentLisis recursive that is to say, it is
defined in terms of itself. The result is that ArgumentListmay contain any positive number of arguments,
separated by commas, where each argument expressiossignmentExpressiosuch recursive definitions
of nonterminals are common.

The subscripted suffixdpt’, which may appear after a terminal or nonterminal, indicategpéional symbol
The alternative containing the optional symbol actually specifies two right-hand sides, one that omits the optional
element and one that includes it. This means that:

VariableDeclaration:
Identifier Initializer,y,

is a convenient abbreviation for:
VariableDeclaration:

Identifier
Identifier Initializer

and that:

IterationStatement
for (Expressiog,; Expressiop,; Expressiog;) Statement
is a convenient abbreviation for:

IterationStatement

for (; Expressiog,; Expressiog,) Statement
for (Expressionn Expressiop,; Expressiogy) Statement

which in turn is an abbreviation for:

IterationStatement

for (;; Expressiog,) Statement
for (; Expressionn Expressiop,) Statement
for(Expression ; Expressiog,) Statement

for (Expressionn Expressionn Expressiop,) Statement

which in turn is an abbreviation for:

IterationStatement

for(;;) Statement

for (;; Expressionl Statement

for (; Expression) Statement

for (; Expression Expressior) Statement
for (Expression ;) Statement

for (Expression ; Expressior) Statement

for (Expression Expression) Statement
for (Expression Expression Expressior) Statement

so the nontermindterationStatemenactually has eight alternative right-hand sides.

If the phrase [ho LineTerminatorhere] appears in the right-hand side of a production of the syntactic grammar, it
indicates that the productionasrestricted productionit may not be used if BineTerminatoroccurs in the input
stream at the indicated position. For example, the production:

ReturnStatement
return [no LineTerminatorhere] Expressioaﬁ ;

indicates that the production may not be usedLliin@ Terminatoroccurs in the program between tiegurn
token and th&xpression

Unless the presence ofLineTerminatoris forbidden by a restricted production, any number of occurrences of
LineTerminatormay appear between any two consecutive tokens in the stream of input elements witho
affecting the syntactic acceptability of the program.

When the words dne of follow the colon(s) in a grammar definition, they signify that each of the terminal
symbols on the following line or lines is an alternative definition. For example, the lexical grammar fol
ECMAScript contains the production:

ZeroToThree: one of
0 1 2 3

which is merely a convenient abbreviation for:

ZeroToThree:
0

1
2
3

When an alternative in a production of the lexical grammar or the numeric string grammar appears to be a
multicharacter token, it represents the sequence of characters that would make up such a token.

The right-hand side of a production may specify that certain expansions are not permitted by using the phrase
“but not” and then indicating the expansions to be excluded. For example, the production:

Identifier ::
IdentifierNamebut not ReservedWord

means that the nontermin&entifier may be replaced by any sequence of characters that could replace
IdentifierNameprovided that the same sequence of characters could not rBelseedWord

Finally, a few nonterminal symbols are described by a descriptive phrase in roman type in cases where it would
be impractical to list all the alternatives:

SourceCharacter:
any Unicode character

Algorithm conventions

We often use a numbered list to specify steps in an algorithm. These algorithms are used to clarify semantics. In
practice, there may be more efficient algorithms available to implement a given feature.

When an algorithm is to produce a value as a result, we use the directive “return x” to indicate that the result of the
algorithm is the value of x and that the algorithm should terminate. We use the notation Result(n) as shorthand for
“the result of step n”. We also use Type(x) as shorthand for “the type of x”".

Mathematical operations such as addition, subtraction, negation, multiplication, division, and the mathematical
functions defined later in this section should always be understood as computing exact mathematical results on
mathematical real numbers, which do not include infinities and do not include a negative zero that is distinguished
from positive zero. Algorithms in this standard that model floating-point arithmetic include explicit steps, where
necessary, to handle infinities and signed zero and to perform rounding. If a mathematical operation or function is
applied to a floating-point number, it should be understood as being applied to the exact mathematical value
represented by that floating-point number; such a floating-point number mustbe finite, and-@f @risO then the
corresponding mathematical value is simply 0.

The mathematical function ab(yields the absolute value &f which is—x if x is negative (less than zero) and
otherwise i itself.

The mathematical function sigg(yields 1 ifx is positive and-1 if x is negative. The sign function is not used in
this standard for cases wheis zero.

The notation X moduloy” (y must be finite and nonzero) computes a valoéthe same sign assuch that abgj
< absy) andx—k = gy for some integeq.

The mathematical function floody yields the largest integer (closest to positive infinity) that is not largerxthan
Note that floork) = x—(x modulo 1).

If an algorithm is defined to “generate a runtime error”, execution of the algorithm (and any calling algorithms) is
terminated and no result is returned.

6 Source Text

ECMAScript source text is represented as a sequence of characters representable using the Unicode versio
character encoding.

SourceCharacter.
any Unicode character

However, it is possible to represent every ECMAScript program using only ASCII characters (which are equivalent
the first 128 Unicode characters). Non-ASCII Unicode characters may appear only within comments and string literz
In string literals, any Unicode character may also be expressed as a Unicode escape sequence consisting of six /
characters, namely plus four hexadecimal digits. Within a comment, such an escape sequence is effectively ignor
as part of the comment. Within a string literal, the Unicode escape sequence contributes one character to the s
value of the literal.

Note that ECMAScript differs from the Java programming language in the behavior of Unicode escape sequences.
Java program, if the Unicode escape sequén@B0A , for example, occurs within a single-line comment, it is
interpreted as a line terminator (Unicode chard@®®A is line feed) and therefore the next character is not part of the
comment. Similarly, if the Unicode escape sequan®@0A occurs within a string literal in a Java program, it is
likewise interpreted as a line terminator, which is not allowed within a string literal—one mustnwritstead of
\UOOOA to cause a line feed to be part of the string value of a string literal. In an ECMAScript program, a Unicoc
escape sequence occurring within a comment is never interpreted and therefore cannot contribute to termination o
comment. Similarly, a Unicode escape sequence occurring within a string literal in an ECMAScript program alwa
contributes a character to the string value of the literal and is never interpreted as a line terminator or as a quote |
that might terminate the string literal.

7 Lexical Conventions

The source text of a ECMAScript program is first converted into a sequence of tokens and white space. A token
sequence of characters that comprise a lexical unit. The source text is scanned from left to right, repeatedly taking
longest possible sequence of characters as the next token.

7.1 White Space

White space characters are used to improve source text readability and to separate tokens (indivisible lexical u
from each other but are otherwise insignificant. White space may occur between any two tokens, and may oc
within strings (where they are considered significant characters forming part of the literal string value), but canr
appear within any other kind of token.

The following characters are considered to be white space:

Unicode Value Name Formal Name
\u0009 Tab <TAB>
\uO00B Vertical Tab <VT>
\u000C Form Feed <FF>
\u0020 Space <SP>
Syntax
WhiteSpace:

<TAB>

<VT>

<FF>

<SP>

7.2

Syntax

- 10 -

Line Terminators

Line terminator characters, like whitespace characters, are used to improve source text readability and to separate
tokens (indivisible lexical units) from each other. Unlike whitespace characters, line terminators have some
influence over the behavior of the syntactic grammar. In general, line terminators may occur between any two
tokens, but there are a few places where they are forbidden by the syntactic grammar. A line terminator cannot occur
within any token, not even a string. Line terminators also affect the process of automatic semicolon insertion (see
section 7.8.2).

The following characters are considered to be line terminators:

Unicode Value Name Formal Name
\uOOOA Line Feed <LF>
\u000D Carriage Return <CR>

LineTerminator:

7.3

Syntax

<LF>
<CR>

Comments
Description
Comments can be either single or multi-line. Multi-line comments cannot nest.

Because a single-line comment can contain any character extemTaerminatorcharacter, and because of the
general rule that a token is always as long as possible, a single-line comment always consists of all characters from
the// marker to the end of the line. However, LiieeTerminatorat the end of the line is not considered to be part

of the single-line comment; it is recognized separately by the lexical grammar and becomes part of the stream of
input elements for the syntactic grammar. This point is very important, because it implies that the presence or
absence of single-line comments does not affect the process of automatic semicolon insertion (see section 7.8.2).

Comment:

MultiLineComment
SingleLineComment

MultiLineComment:

/* MultiLineCommentChagsg, */

MultiLineCommentChars

MultiLineNotAsteriskChar MultiLineCommentChggs
* PostAsteriskCommentChaygs

PostAsteriskCommentChars

MultiLineNotForwardSlashOrAsteriskChar MultiLineCommentChars
* PostAsteriskCommentChaygs

MultiLineNotAsteriskChar:

SourceCharactebut not asterisk*

MultiLineNotForwardSlashOrAsteriskChar

SourceCharactebut not forward-slash or asterisk*

SingleLineComment

Il SingleLineCommentChaps

-11 -

SingleLineCommentChars
SingleLineCommentChaingleLineCommentChags

SingleLineCommentChar
SourceCharactebut not LineTerminator

7.4 Tokens

Syntax

Token::
ReservedWord
Identifier
Punctuator
Literal

7.4.1 Reserved Words
Description

Reserved words cannot be used as identifiers.

ReservedWord
Keyword
FutureReservedWord
NullLiteral
BooleanLiteral

7.4.2 Keywords
The following tokens are ECMAScript keywords and may not be used as identifiers in ECMAScript programs.

Syntax
Keyword:: one of
break for new var
continue function return void
delete if this while
else in typeof with

7.4.3 Future Reserved Words
The following words are used as keywords in proposed extensions and are therefore reserved to allow for
possibility of future adoption of those extensions.

Syntax
FutureReservedWord one of
case debugger export super
catch default extends switch
class do finally throw
const enum import try

7.5 Identifiers
Description
An identifier is a character sequence of unlimited length, where each character in the sequence must be a lett
decimal digit, an underscore)(character, or a dollar sigi$) character, and the first character may not be a
decimal digit. ECMAScript identifiers are case sensitive: identifiers whose characters differ in any way, even if on
in case, are considered to be distinct.

-12 -

Syntax

Identifier ::
IdentifierNamebut not ReservedWord

IdentifierName:
IdentifierLetter
IdentifierName IdentifierLetter
IdentifierName DecimalDigit

IdentifierLetter:: one of

abcdefghijklmnopgrstuvwxXxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
$

DecimalDigit:: one of
0123456172829

7.6 Punctuators
Syntax
Punctuator:: one of
= > < == <= >=
I= , ! ~ ?
&& Il ++ -- +

- * / & A
% << >> >>> += =
*= /= &= = N= 0=
<<= >>= >>>= () {

} [] ;
7.7 Literals
Syntax

Literal ::
NullLiteral
BooleanLiteral
NumericLiteral
StringLiteral

7.7.1 Null Literals
Syntax

NullLiteral ::
null

Semantics
The value of the null literaiull is the sole value of the Null type, namalyl.
7.7.2 Boolean Literals
Syntax

BooleanLiteral:
true
false

Semantics

The value of the Boolean literalie is a value of the Boolean type, namglye.

- 13 -

The value of the Boolean litertise is a value of the Boolean type, namfdise
7.7.3 Numeric Literals
Syntax

NumericLiteral::
DecimalLiteral
HexIntegerLiteral
OctallntegerLiteral

DecimalLiteral::
DecimalintegerLiteral DecimalDigits,: ExponentPagy,
. DecimalDigits ExponentPay
DecimalintegerLiteral ExponentPagt

DecimalintegerLiterat:
0
NonZeroDigit DecimalDigits;

DecimalDigits::
DecimalDigit
DecimalDigits DecimalDigit

NonZeroDigit:: one of
1 2 3 4 5 6 7 8 9

ExponentPart:
Exponentindicator Signedinteger

Exponentindicator: one of
e E

Signedinteger:
DecimalDigits
+ DecimalDigits
- DecimalDigits

HexIntegerLiteral:
0x HexDigit
0X HexDigit
HexIntegerLiteral HexDigit

HexDigit:: one of
01 2 3 456 7 8 9 abocdef ABTCDE F

OctallntegerLiteral::
0 OctalDigit
OctalLiteral OctalDigit

OctalDigit :: one of
0 1 2 3 4 5 6 7

Semantics

A numeric literal stands for a value of the Number type. This value is determined in two steps: first,
mathematical value (MV) is derived from the literal; second, this mathematical value is rounded, ideally usir
IEEE 754 round-to-nearest mode, to a representable value of the number type.

e The MV of NumericLiteral:: DecimalLiteralis the MV ofDecimallLiteral
e The MV of NumericLiteral:: HexIntegerLiteralis the MV ofHexIntegerLiteral

- 14 -

The MV of NumericLiteral:: OctalintegerLiteralis the MV ofOctallntegerLiteral

The MV of DecimalLiteral:: DecimallntegerLiteral isthe MV of DecimallntegerLiteral

The MV of DecimalLiteral:: DecimallntegerLiteral DecimalDigitsis the MV of DecimallntegerLiteraplus (the MV of
DecimalDigitstimes 10", wheren is the number of charactersDecimalDigits.

The MV of DecimalLiteral:: DecimalintegerLiteral ExponentParts the MV of DecimalintegerLiteratimes 16, where
eis the MV ofExponentPart

The MV of DecimalLiteral:: DecimallntegerLiteral DecimalDigits ExponentPars$ (the MV of DecimallntegerLiteral
plus (the MV ofDecimalDigitstimes 10") times 16, wheren is the number of charactersirecimalDigis ande is the
MV of ExponentPart

The MV of DecimallLiteral::.
in DecimalDigit.

The MV of DecimalLiteral::. DecimalDigits ExponentPai$ the MV ofDecimalDigitstimes 16", wheren is the number
of characters ilbecimalDigit ande is the MV ofExponentPart

The MV of DecimallLiteral:: DecimalintegerLiterals the MV of DecimallntegerLiteral

The MV of DecimalLiteral:: DecimalintegerLiteral ExponentPaig the MV of DecimallntegerLiteratimes 16, wheree

is the MV ofExponentPart

The MV of DecimalintegerLiterat: O is O.

The MV of DecimalintegerLiterat: NonZeroDigitDecimalDigitsis (the MV ofNonZeroDigittimes 10) plus the MV of
DecimalDigits wheren is the number of charactersbrecimalDigits

The MV of DecimalDigits:: DecimalDigitis the MV ofDecimalDigit

The MV of DecimalDigits:: DecimalDigitsDecimalDigitis (the MV ofDecimalDigitstimes 10) plus the MV of
DecimalDigit

The MV of ExponentPart: Exponentindicator Signedintegesrthe MV of Signedinteger

The MV of Signedinteger: DecimalDigitsis the MV of DecimalDigits

The MV of Signedinteger: + DecimalDigitsis the MV of DecimalDigits

The MV of Signedinteger: - DecimalDigitsis the negative of the MV ddecimalDigits

The MV of DecimalDigit:: 0 or of HexDigit:: 0 or of OctalDigit:: 0 is O.

DecimalDigitsis the MV ofDecimalDigitstimes 10", wheren is the number of characters

lis1.

The MV of DecimalDigit:: 1 or of NonZeroDigit::
The MV of DecimalDigit:: 2 or of NonZeroDigit::
The MV of DecimalDigit:: 3 or of NonZeroDigit::
The MV of DecimalDigit:: 4 or of NonZeroDigit::
The MV of DecimalDigit:: 5 or of NonZeroDigit::
The MV of DecimalDigit:: 6 or of NonZeroDigit::
The MV of DecimalDigit:: 7 or of NonZeroDigit::
The MV of DecimalDigit:: 8 or of NonZeroDigit::
The MV of DecimalDigit:: 9 or of NonZeroDigit::
The MV of HexDigit:: a or of HexDigit ::
The MV of HexDigit:: b or of HexDigit ::
The MV of HexDigit:: ¢ or of HexDigit ::
The MV of HexDigit:: d or of HexDigit ::
The MV of HexDigit:: e or of HexDigit ::

The MV of HexDigit:: f or of HexDigit

Ais 10.
Bis 11.
Cis 12.
Dis 13.
Eis 14.
o Fis 15.

1 or of HexDigit ::
2 or of HexDigit ::
3 or of HexDigit ::
4 or of HexDigit ::
5 or of HexDigit ::
6 or of HexDigit ::
7 or of HexDigit ::
8 or of HexDigit ::
9 or of HexDigit ::

The MV of HexIntegerLiterat: Ox HexDigitis the MV ofHexDigit
The MV of HexIntegerLiterat: 0X HexDigitis the MV ofHexDigit

1 or of OctalDigit ::
2 or of OctalDigit ::
3 or of OctalDigit ::
4 or of OctalDigit ::
5 or of OctalDigit ::
6 or of OctalDigit ::
7 or of OctalDigit ::

8 is 8.
9is 9.

2is 2.
3is 3.
4is 4.
5is 5.
6 is 6.
7is7.

The MV of HexIntegerLiterat: HexIntegerLiteraHexDigitis (the MV ofHexIntegerLiteraltimes 16) plus the MV of
HexDigit

The MV of OctallntegerLiteral:: 0 OctalDigit is the MV ofOctalDigit.

The MV of OctallntegerLiteral:: OctallntegerLiteralOctalDigit is (the MV ofOctallntegerLiteraltimes 8) plus the MV
of OctalDigit.

- 15 -

Once the exact MV for a numeric literal has been determined, it is then rounded to a value of the Number type
the MV is 0, then the rounded valuet8, otherwise, the rounded value mustthenumber value for the MV (in

the sense defined in section 8.4), unless the literaDiscanalLiteraland the literal has more than 20 significant
digits, in which case the number value may be either the number value for the MV of a literal produced |
replacing each significant digit after the 20th wit@ digit or the number value for the MV of a literal produced
by replacing each significant digit after the 20th with digit and then incrementing the literal at the 20th digit
position. A digit issignificantif it is not part of arExponentPartnd (either it is ndd or (there is a nonzero digit

to its left and there is a nonzero digit, not in EhgoonentPartto its right)).

7.7.4 String Literals

A string literal is zero or more characters enclosed in single or double quotes. Each character may be represe
by an escape sequence.

Syntax
StringLiteral::
" DoubleStringCharactegsg "
' SingleStringCharactegs '

DoubleStringCharacters
DoubleStringCharacter DoubleStringCharactgys

SingleStringCharacters
SingleStringCharacter SingleStringCharactgrs

DoubleStringCharacter.
SourceCharactebut not double-quoté or backslash or LineTerminator
EscapeSequence

SingleStringCharacter.
SourceCharactebut not single-quoté or backslash or LineTerminator
EscapeSequence

EscapeSequence
CharacterEscapeSequence
OctalEscapeSequence
HexEscapeSequence
UnicodeEscapeSequence

CharacterEscapeSequence
\ SingleEscapeCharacter
\ NonEscapeCharacter

SingleEscapeCharacter one of
' " \ b f n r t

NonEscapeCharacter
SourceCharactebut not EscapeCharactesr LineTerminator

EscapeCharacter.
SingleEscapeCharacter
OctalDigit
X

u

HexEscapeSequence
\x HexDigit HexDigit

- 16 -

OctalEscapeSequence
\ OctalDigit
\ OctalDigit OctalDigit
\ ZeroToThree OctalDigit OctalDigit

ZeroToThree: one of
0 1 2 3

UnicodeEscapeSequence
\u HexDigit HexDigit HexDigit HexDigit
The definitions of the nonterminaiexDigit andOctalDigit are given in section 7.7.3.

A string literal stands for a value of the String type. The string value (SV) of the literal is described in terms of
character values (CV) contributed by the various parts of the string literal. As part of this process, some
characters within the string literal are interpeted as having a mathematical value (MV), as described below or in

section 7.7.3.
The SV ofStringLiteral:: ™ is the empty character sequence .
The SV ofStringLiteral:: " is the empty character sequence.

The SV ofStringLiteral:: " DoubleStringCharacters is the SV ofDoubleStringCharacters

The SV ofStringLiteral:: ' SingleStringCharacters is the SV ofSingleStringCharacters

The SV ofDoubleStringCharacters DoubleStringCharacteis a sequence of one character, the CV of
DoubleStringCharacter

The SV ofDoubleStringCharacters DoubleStringCharacteDoubleStringCharacterss a sequence of the CV of
DoubleStringCharactefollowed by all the characters in the SVI@dubleStringCharacters order.

The SV ofSingleStringCharacters SingleStringCharacteis a sequence of one character, the CV of
SingleStringCharacter

The SV ofSingleStringCharacters SingleStringCharacte®ingleStringCharacterss a sequence of the CV of
SingleStringCharactefollowed by all the characters in the SVRihgleStringCharacteris order.

The CV ofDoubleStringCharacter. SourceCharactebut not double-quote or backslash or LineTerminator is the
SourceCharactecharacter itself.

The CV ofDoubleStringCharacter. EscapeSequendgthe CV of theEscapeSequence

The CV ofSingleStringCharacter. SourceCharactebut not single-quoté or backslasih or LineTerminatoris the
SourceCharactecharacter itself.

The CV ofSingleStringCharacter. EscapeSequendgthe CV of theEscapeSequence

The CV ofEscapeSequenceCharacterEscapeSequenisethe CV of theCharacterEscapeSequence

The CV ofEscapeSequenceOctalEscapeSequencethe CV of theDctalEscapeSequence

The CV ofEscapeSequenceHexEscapeSequenisthe CV of theHexEscapeSequence

The CV ofEscapeSequenceUnicodeEscapeSequenisghe CV of théJnicodeEscapeSequence

The CV ofCharacterEscapeSequenca SingleEscapeCharactés the Unicode character whose Unicode value is
determined by th8ingleEscapeCharacterccording to the following table:

- 17 -

Escape Sequence Unicode Value Name Symbol
\b \u0008 backspace <BS>
\t \u0009 horizontal tab <HT>
\n \uOOOA line feed (new line) <LF>
\f \u000C form feed <FF>
\r \u000D carriage return <CR>
\" \u0022 double quote !

\ \u0027 single quote '

\ \u005C backslash \

* The CV ofCharacterEscapeSequenced NonEscapeCharactas the CV of theNonEscapeCharacter

* The CV ofNonEscapeCharacter SourceCharactebut not EscapeCharacteor LineTerminatoris theSourceCharacter
character itself.

* The CV ofHexEscapeSequencéx HexDigitHexDigitis the Unicode character whose code is (16 times the MV of the
first HexDigit) plus the MV of the seconidexDigit

* The CV ofOctalEscapeSequence\ OctalDigitis the Unicode character whose code is the MV oOt&lIDigit.

* The CV ofOctalEscapeSequence\ OctalDigit OctalDigit is the Unicode character whose code is (8 times the MV of the
first OctalDigit) plus the MV of the secondctalDigit.

* The CV ofOctalEscapeSequence\ ZeroToThre@ctalDigit OctalDigit is the Unicode character whose code is (64 (that
is, 8) times the MV of theZeroToThregplus (8 times the MV of the fir@ctalDigit) plus the MV of the second
OctalDigit.

e The MV ofZeroToThree: 0 is 0.

e The MV ofZeroToThree: 1 is 1.

e The MV ofZeroToThree: 2 is 2.

e The MV ofZeroToThree: 3 is 3.

« The CV ofUnicodeEscapeSequencau HexDigitHexDigit HexDigit HexDigit is the Unicode character whose code is
(4096 (that is, 19 times the MV of the firsHexDigit) plus (256 (that is, fptimes the MV of the secortdexDigit) plus
(16 times the MV of the thirtiexDigif) plus the MV of the fourttHexDigit

Note that aLineTerminatorcharacter cannot appear in a string literal, even if preceded by a badkslsh correct way to

cause a line terminator character to be part of the string value of a string literal is to use an escape sequenge @uch as

\uOOOA .

7.8 Automatic semicolon insertion

Certain ECMAScript statements (empty statement, variable statement, expression statertieng statement,
break statement, andeturn statement) must each be terminated with a semicolon. Such a semicolon ma
always appear explicitly in the source text. For convenience, however, such semicolons may be omitted from
source text in certain situations. We describe such situations by saying that semicolons are automatically inse
into the source code token stream in those situations.

7.8.1 Rules of automatic semicolon insertion

* When, as the program is parsed from left to right, a token (calleafféheding tokehis encountered that is
not allowed by any production of the grammar and the parser is not currently parsing the hedder of a
statement, then a semicolon is automatically inserted before the offending token if one or more of t
following conditions is true:

1. The offending token is separated from the previous token by at ledshemerminator
2. The offending token is.

- 18 -

* When, as the program is parsed from left to right, the end of the input stream of tokens is encountered and the
parser is unable to parse the input token stream as a single complete ECMR®Sgpiptm then a semicolon
is automatically inserted at the end of the input stream.

However, there is an additional overriding condition on the preceding rules: a semicolon is never inserted
automatically if the semicolon would then be parsed as an empty statement.

« When, as the program is parsed from left to right, a token is encountered that is allowed by some production
of the grammar, but the production igestricted productiorand the token would be the first token for a
terminal or nonterminal immediately following the annotatig LineTerminatorhere] within the restricted
production (and therefore such a token is called a restricted token), and the restricted token is separated from

the previous token by at least drineTerminator then there are two cases:
1. If the parser is not currently parsing the headerfof a statement, a semicolon is automatically inserted
before the restricted token.

2. If the parser is currently parsing the headerfof a statement, it is a syntax error.

These are all the restricted productions in the grammar:

PostfixExpression
LeftHandSideExpressiomo LineTerminatotere] ++
LeftHandSideExpressiofo LineTerminatothere] --

ReturnStatement
return [no LineTerminatorhere] EXpI’eSSiOGpt ;

The practical effect of these restricted productions is as follows:

1. When the toker+ or-- is encountered where the parser would treat it as a postfix operator, and at least
onelLineTerminatoroccurred between the preceding token and+ther -- token, then a semicolon is
automatically inserted before the or-- token.

2. When the tokemeturn is encountered and laneTerminatoris encountered before the next token is
encountered, a semicolon is automatically inserted after the teken

The resulting practical advice to ECMAScript programmers is:
1. A postfix++ or-- operator should appear on the same line as its operand.

2. AnExpressiorin areturn statement should start on the same line aretiven token.

7.8.2 Examples of Automatic Semicolon Insertion
The source

{1213
is not a valid sentence in the ECMAScript grammar, even with the automatic semicolon insertion rules. In

contrast, the source
{1
2}3
is also not a valid ECMAScript sentence, but is transformed by automatic semicolon insertion into the following:

{1

23} 3;
which is a valid ECMAScript sentence.
The source

for(a; b
)

is not a valid ECMAScript sentence and is not altered by automatic semicolon insertion because the place where
a semicolon is needed is within the header dfra statement. Automatic semicolon insertion never occurs

within the header of for statement.

8.1

8.2

8.3

- 19 -

The source

return
a+b
is transformed by automatic semicolon insertion into the following:

return;

a+b;
Note that the expressian+ b is not treated as a value to be returned byr¢hern statement, because a
LineTerminatorseparates it from the tokegturn

The source

a=b

++C
is transformed by automatic semicolon insertion into the following:

a=Db;

++C;
Note that the toker+ is not treated as a postfix operator applying to the varlgbteecause &ineTerminator
occurs betweeh and++.
The source

if (@ >b)

elsec=d
is not a valid ECMAScript sentence and is not altered by automatic semicolon insertion beéise theken,
even though no production of the grammar applies at that point, because an automatically inserted semic
would then be parsed as an empty statement.
The source

a=b+c

(d + e).print()
is not transformed by automatic semicolon insertion, because the parenthesized expression that begins the se
line can be interpreted as an argument list for a function call:

a=Db+c(d+ e).print()
In the circumstance that an assignment statement must begin with a left parenthesis, it is a good idea for
programmer to provide an explicit semicolon at the end of the preceding statement rather than to rely
automatic semicolon insertion.

Types

A value is an entity that takes on one of nine types. There are six standardJlypenged, Null, Boolean String,
Number, andObject) and three internal types call®kference List, and Completion. Values of typeReference

List, andCompletion are used only as intermediate results of expression evaluation and cannot be stored to proper
of objects.

The Undefined type

The Undefined type has exactly one value, calledefined. Any variable that has not been assigned a value is of
type Undefined.

The Null type

The Null type has exactly one value, calied .

The Boolean type

The Boolean type represents a logical entity and consists of exactly two unique values. One tisieadied the
other is calledalse

8.4

8.5

- 20 -

The String type

The String type is the set of all finite ordered sequences of zero or more Unicode characters. Each character is
regarded as occupying a position within the sequence. These positions are identified by nonnegative integers. The
leftmost character (if any) is at position 0, the next character (if any) at position 1, and so on. The length of a string
is the number of distinct positions within it. The empty string has length zero and therefore contains no characters.

The Number type

The Number type has exactly 18437736874454810627 (th&f+€°%3) values, representing the double-precision

64-bit format IEEE 754 values as specified in the IEEE Standard for Binary Floating-Point Arithmetic, except that
the 9007199254740990 (that is>2) distinct “Not-a-Number” values of the IEEE Standard are represented in
ECMASCcript as a single specidaN value. (Note that the NaN value is produced by the program expré&sidn
assumingthat the globally defined variabldlaN has not been altered by program execution.) In some
implementations, external code might be able to detect a difference between various Non-a-Number values, but such
behavior is implementation-dependent; to ECMAScript code, all NaN values are the same.

There are two other special values, cafpleditive Infinity andnegative Infinity. For brevity, these values are also
referred to for expository purposes by the symbedsand—eo, respectively. (Note that these two infinite humber
values are produced by the program expressitmiity (or simplyInfinity) and-Infinity , assuming
that the globally defined variablefinity has not been altered by program execution.)

The other 18437736874454810624 (that %;2% values are called the finite numbers. Half of these are positive
numbers and half are negative numbers; for every finite positive number there is a corresponding negative number
having the same magnitude.

Note that there is both positive zero and anegative zero For brevity, these values are also referred to for
expository purposes by the symbedand-0, respectively. (Note that these two zero number values are produced
by the program expressiof® (or simply0) and-0 .)

The 18437736874454810622 (that i¥-2°°-2) finite nonzero values are of two kinds:
18428729675200069632 (that i§-2°% of them are normalized, having the form

sOm[P®

wheresis +1 or-1, mis a positive integer less thar? But not less than®2 ande is an integer ranging fror1074
to 971, inclusive.

The remaining 9007199254740990 (that ¥;2) values are denormalized, having the form

sm[P®

wheresis +1 or-1, mis a positive integer less tharf,2ande is -1074.

Note that all the positive and negative integers whose magnitude is no greatet’ them r2presentable in the
Number type (indeed, the integer 0 has two representatiOrend-0).

We say that a finite number hasaad significandf it is nonzero and the integerused to express it (in one of the
two forms shown above) is odd. Otherwise we say that it heseansignificand

In this specification, the phrase “the number valuexfowhere x represents an exact nonzero real mathematical
quantity (which might even be an irrational number sucmaseans a number value chosen in the following
manner. Consider the set of all finite values of the Number type,~@itemoved and with two additional values
added to it that are not representable in the Number type, natfélgndich is +12°% [2°"%) and-2'%%** (which is

-1 [2°2 °"). Choose the member of this set that is closest in valgeltdwo values of the set are equally close,
then the one with an even significand is chosen; for this purpose, the two extra ¥&ftesi22'° are considered

to have even significands. Finally, t2*was chosen, replace it witho; if —2'%*was chosen, replace it witho; if

+0 was chosen, replace it wittd if and only ifx is less than zero; any other chosen value is used unchanged. The
result is the number value far (This procedure corresponds exactly to the behavior of the IEEE 754 “round to
nearest” mode.)

Some ECMAScript operators deal only with integers in the ra@dethrough 3'-1, inclusive, or in the range 0
through -1, inclusive. These operators accept any value of the Number type but first convert each such value to

- 21 -

one of 2% integer values. See the descriptions of the Tolnt32 and ToUint32 operators in sections 9.5 and 9
respectively.

8.6 The Object type
An Object is an unordered collection of propertleach property consists of a name, a value and a set of attributes.

8.6.1 Property attributes
A property can have zero or more attributes from the following set:

Attribute Description

ReadOnly The property is a read-only property. Attempts by ECMAScript code to write to
the property will be ignored. (Note, however, that in some cases the valug of a
property with the ReadOnly attribute may change over time because of gctions
taken by the underlying implementation; therefore “ReadOnly” does not mean
“constant and unchanging™)

DontEnum The property is not to be enumerated foy ain enumeration (section 12.6.3)

DontDelete Attempts to delete the property will be ignored. See the description pf the
delete operator in section 11.4.1.

Internal Internal properties have no name and are not directly accessible via the property
accessor operators. How these properties are accessed is implementation gpecific.
How and when some of these properties are used is specified by the lahguage
specification.

8.6.2 Internal Properties and Methods
Internal properties and methods are not exposed in the language. For the purposes of this document, we
them names enclosed in double square brackets [[]]. When an algorithm uses an internal property of an ob
and the object does not implement the indicated internal property, a runtime error is generated.

There are two types of access for exposed propegeeandput, corresponding to retrieval and assignment.

Native ECMAScript objects have an internal property called [[Prototype]]. The value of this property is eithe
null or an object and is used for implementing inheritance. Properties of the [[Prototype]] object are exposed
properties of the child object for the purposes of get access, but not for put access.

The following table summarizes the internal properties used by this specification. The description indicates th
behavior for native ECMAScript objects. Host objects may implement these internal methods with an
implement-dependent behavior, or it may be that a host object implements only some internal methods and
others.

- 22 -

[[Prototypel]] none The prototype of this object.

[[Class]] none The kind of this object.

[[Value]] none Internal state information associated with this object.

[[Get]] (PropertyName) Returns the value of the property.

[[Put]] (PropertyName, Value) Sets the specified property to Value.

[[CanPut]] (PropertyName) Returns a boolean value indicating whether a [[Put]]
operation with the specified PropertyName will
succeed.

[[HasProperty]] (PropertyName) Returns a boolean value indicating whether the object
already has a member with the given name.

[[Delete]] (PropertyName) Removes the specified property from the object.

[[Defaultvalue]] | (Hint) Returns a default value for the object, which should be
a primitive value (not an object or reference).

[[Construct]] a list of argument valuesConstructs an object. Invoked via thew operator.

provided by the caller Objects that implement this internal method are called
constructors

[[Call]] a list of argument values Executes code associated with the object. Invoked via a

provided by the caller function call expression. Objects that implement this

internal method are callddnctions

8.6.2.1

Every object must implement the [[Class]] property and the [[Get]], [[Put]], [[HasProperty]], [[Delete]], and
[[DefaultValue]] methods, even host objects. (Note, however, that the [[DefaultValue]] method may, for some
objects, simply generate a runtime error.)

The value of the [[Prototype]] property must be either an objectilby and every [[Prototype]] chain must have

finite length (that is, starting from any object, recursively accessing the [[Prototype]] property must eventually
lead to anull value). Whether or not a native object can have a host object as its [[Prototype]] depends on the
implementation.

The value of the [[Class]] property is defined by this specification for every kind of built-in object. The value of
the [[Class]] property of a host object may be any value, even a value used by a built-in object for its [[Class]]
property. Note that this specification does not provide any means for a program to access the value of a [[Class]]
property; it is used internally to distinguish different kinds of built-in objects.

Every native object implements the [[Get]], [[Put]], [[CanPut]], [[HasProperty]], and [[Delete]] methods in the
manner described in sections 8.6.2.1, 8.6.2.2, 8.6.2.3, 8.6.2.4, and 8.6.2.5, respectively, except that Array objects
have a slightly different implementation of the [[Put]] method (section 15.4.5.1). Host objects may implement
these methods in any manner; for example, one possibility is that [[Get]] and [[Put]] for a particular host object
indeed fetch and store property values but [[HasProperty]] always gerfata¢es

In the following algorithm descriptions, assufMés a native ECMAScript object aitlis a string.

[[Get]](P)
When the [[Get]] method dD is called with property nant, the following steps are taken:

If O doesn't have a property with nafggo to step 4.

Get the value of the property.

Return Result(2).

If the [[Prototype]] ofO is null, returnundefined.

Call the [[Get]] method of [[Prototype]] with property nafe
Return Result(5).

oukwnpE

- 23 -

8.6.2.2 [[Put]](P, V)
When the [[Put]] method dD is called with property and valueV, the following steps are taken:

Call the [[CanPut]] method @ with nameP.

If Result(1) is false, return.

If O doesn’t have a property with namggo to step 6.

Set the value of the propertyMoThe attributes of the property are not changed.
Return.

Create a property with narfe set its value t& and give it empty attributes.
Return.

NooakwnNpE

Note, however, that iD is an Array object, it has a more elaborate [[Put]] method (section15.4.5.1).

8.6.2.3 [[CanPut]](P)
The [[CanPut]] method is used only by the [[Put]] method.

When the [[CanPut]] method @i is called with property, the following steps are taken:

If O doesn’'t have a property with nafggo to step 4.

If the property has the ReadOnly attribute, retalse

Returntrue.

If the [[Prototype]] ofO is null, returntrue.

If the [[Prototype]] ofO is a host object that does not implement the [[CanPut]] method, fatsen
Call the [[CanPut]] method of [[Prototype]] @fwith property name.

Return Result(4).

8.6.2.4 [[HasProperty]](P)
When the [[HasProperty]] method Gfis called with property nant, the following steps are taken:

NookrwbdpE

1. If O has a property with nank® returntrue.

2. If the [[Prototype]] ofO is null, returnfalse.

3. Call the [[HasProperty]] method of [[Prototype]] with property ndne
4. Return Result(3).

8.6.2.5 [[Delete]](P)
When the [[Delete]] method @ is called with property nant® the following steps are taken:

1. If O doesn’t have a property with namgereturntrue.
2. If the property has the DontDelete attribute, refalse
3. Remove the property with narRé¢rom O.

4. Returntrue.

8.6.2.6 [[DefaultValue]](hint)
When the [[DefaultValue]] method @ is called with hint String, the following steps are taken:

Call the [[Get]] method of obje@ with argumenttoString"

If Result(1) is not an object, go to step 5.

Call the [[Call]] method of Result(1), with as thethis value and an empty argument list.
If Result(3) is a primitive value, return Result(3).

Call the [[Get]] method of obje@ with argumentvalueOf"

If Result(5) is not an object, go to step 9.

Call the [[Call]] method of Result(5), with as thethis value and an empty argument list.
If Result(7) is a primitive value, return Result(7).

Generate a runtime error.

©CeNoOr~wNE

When the [[DefaultValue]] method @ is called with hint Number, the following steps are taken:

Call the [[Get]] method of obje@ with argumentvalueOf"

If Result(1) is not an object, go to step 5.

Call the [[Call]] method of Result(1), with as thethis value and an empty argument list.
If Result(3) is a primitive value, return Result(3).

Call the [[Get]] method of obje@ with argumenttoString"

arwnE

8.7

8.7.1

8.7.2

8.7.3

8.7.4

- 24 -

If Result(5) is not an object, go to step 9.

Call the [[Call]] method of Result(5), with as thehis value and an empty argument list.
If Result(7) is a primitive value, return Result(7).

Generate a runtime error.

When the [[DefaultValue]] method @ is called with no hint, then it behaves as if the hint were Number,
unless0 is a Date object (see section 15.9), in which case it behaves as if the hint were String.

©®NO

The Reference Type

The internal Reference type is not a language data tyipés defined by this specification purely for expository
purposes. An implementation of ECMAScript must behave as if it produced and operated upon references in the
manner described here. However, a value of §p#erenceis used only as an intermediate result of expression
evaluation and cannot be stored as the value of a variable or property.

The Reference type is used to explain the behavior of such operaetetes , typeof , and the assignment
operators. For example, the left-hand operand of an assignment is expected to produce a reference. The behavior of
assignment could, instead, be explained entirely in terms of a case analysis on the syntactic form of the left-hand
operand of an assignment operator, but for one difficulty: function calls are permitted to return references. This
possibility is admitted purely for the sake of host objects. No built-in ECMAScript function defined by this
specification returns a reference and there is no provision for a user-defined function to return a reference. (Another
reason not to use a syntactic case analysis is that it would be lengthy and awkward, affecting many parts of the
specification.)

Another use of the Reference type is to explain the determinationtbighevalue for a function call.

A Referenceis a reference to a property of an object. A Reference consists of two patias¢hebjecand the
property name

The following abstract operations are used in this specification to describe the behavior of references:

» GetBase(V). Returns the base object component of the reference V.

» GetPropertyName(V). Returns the property name component of the reference V.

» GetValue(V). Returns the value of the property indicated by the reference V.

« PutValue(V, W). Changes the value of the property indicated by the reference V to be W.

GetBase(V)

1. If Type(V) is Reference, return the base object component of V.

2. Generate a runtime error.

GetPropertyName(V)

1. If Type(V) is Reference, return the property name component of V.
2. Generate a runtime error.

GetValue(V)

If Type(V) is not Reference, return V.

Call GetBase(V).

If Result(2) iswll, generate a runtime error.

Call the [[Get]] method of Result(2), passing GetPropertyName(V) for the property name.
Return Result(4).

PutValue(V, W)

agrwdE

1. If Type(V) is not Reference, generate a runtime error.

2. Call GetBase(V).

3. If Result(2) isull, go to step 6.

4. Call the [[Put]] method of Result(2), passing GetPropertyName(V) for the property name and W for the
value.

5. Return.

6. Call the [[Put]] method for the global object, passing GetPropertyName(V) for the property name and W for
the value.

7. Return.

8.8

8.9

9.1

- 25 -

The List type

The internal List type is not a language data typeis defined by this specification purely for expository purposes.
An implementation of ECMAScript must behave as if it produced and operated upon List values in the manr
described here. However, a value of the List type is used only as an intermediate result of expression evaluation
cannot be stored as the value of a variable or property.

The List type is used to explain the evaluation of argument lists (section 11.8edy Expressions and in function
calls. Values of the List type are simply ordered sequences of values. These sequences may be of any length.

The Completion Type

The internal Completion type is not a language data tyfiaés defined by this specification purely for expository
purposes. An implementation of ECMAScript must behave as if it produced and operated upon Completion vall
in the manner described here. However, a value of the Completion type is used only as an intermediate resu
statement evaluation and cannot be stored as the value of a variable or property.

The Completion type is used to explain the behavior of statemergak(, continue , andreturn) that
perform nonlocal transfers of control. Values of the Completion type have one of the following forms:

¢ “normal completion”

* “normal completion after value¢’

« ‘“abrupt completion because lfeak ”

« ‘“abrupt completion after valué because dbreak ”
e ‘“abrupt completion because abntinue "

« ‘“abrupt completion after valué because ofontinue
e ‘“abrupt completion because &turn V' whereV is a value

Any completion of one of the four forms that carries a v&lue called avalue completionAny completion of one
of the first two forms is called aormal completionany other completion is called abrupt completion. Any
completion of a form that mentiolseak is called ereak completion Any completion of a form that mentions
continue is called acontinue completion Any completion of a form that mentiometurn is called a
return completion

Type Conversion

The ECMAScript runtime system performs automatic type conversion as needed. To clarify the semantics of cert
constructs it is useful to define a set of conversion operators. These operators are not a part of the language; the
defined here to aid the specification of the semantics of the language. The conversion operators are polymorphic;
is, they can accept a value of any standard type, but not of type Reference, List, or Completion (the internal types).

ToPrimitive

The operator ToPrimitive takes a Value argument and an optional PreferredType argument. The opere
ToPrimitive attempts to convert its value argument to a non-Object type. If an object is capable of converting
more than one primitive type, it may use the optional RigferredTypeto favor that type. Conversion occurs
according to the following table:

- 26 -

Input Type Result

Undefined The result equals the input argument (no conversion).

Null The result equals the input argument (no conversion).

Boolean The result equals the input argument (no conversion).

Number The result equals the input argument (no conversion).

String The result equals the input argument (no conversion).

Object Return a default value for the Object. The default value of an object is retrieyed by
calling the internal [[DefaultValue]] method of the object, passing the optional hint
PreferredType The behavior of the [[DefaultValue]] method is defined by this
specification for all native ECMAScript objects (see section 8.6.2.5). If the return
value is of type Object or Reference, a runtime error is generated.

ToBoolean

The operator ToBoolean attempts to convert its argument to a value of type Boolean according to the following
table:

Input Type Result

Undefined false

Null false

Boolean The result equals the input argument (no conversion).

Number The result isfalse if the argument ist0, —0, or NaN; otherwise the result is
true .

String The result idalse if the argument is the empty string (its length is zejo);
otherwise the result tsue .

Object true

ToNumber

The operator ToNumber attempts to convert its argument to a value of type Number according to the following
table:

Input Type Result
Undefined NaN
Null +0
Boolean The result isl if the argument isrue . The result is0 if the argument ifalse
Number The result equals the input argument (no conversion).
String See grammar and discussion below.
Object Apply the following steps:
1. Call ToPrimitive(input argument, hint Number).
2. Call ToNumber(Result(1)).
3. Return Result(2).

- 27 -

9.3.1 ToNumber Applied to the String Type

ToNumber applied to strings applies the following grammar to the input string. If the grammar cannot interpr
the string as an expansion@tfingNumericLiteralthen the result of ToONumberMaN.

StringNumericLiterat::
StrwhiteSpacg;
StrwhiteSpacg; StrNumericLiteral StrwhiteSpage

StrWhiteSpace:
StrWhiteSpaceChar StrWhiteSpgee

StrWhiteSpaceChar:
<TAB>
<SP>
<FF>
<VT>
<CR>
<LF>

StrNumericLiteral::
StrDecimalLiteral
+ StrDecimalLiteral
- StrDecimalLiteral
HexIntegerLiteral

StrDecimalLiteral:::
Infinity
DecimalDigits. DecimalDigits, ExponentPag,;
. DecimalDigits ExponentPay
DecimalDigits ExponentPay

DecimalDigits:::
DecimalDigit
DecimalDigits DecimalDigit

DecimalDigit::: one of
0123456172829

ExponentPart::
Exponentindicator Signedinteger

Exponentindicator:: one of
e E

Signedinteger:
DecimalDigits
+ DecimalDigits
- DecimalDigits

HexIntegerLiteral::
0x HexDigit
0X HexDigit
HexIntegerLiteral HexDigit

HexDigit::: one of
0 1 2 3 456 7 8 9 abocdef ABTCTDE F

- 28 -

Some differences should be noted between the syntaxstfregNumericLiteraland aNumericLiteral (section
7.7.3):

A StringNumericLiteraimay be preceded and/or followed by whitespace and/or line terminators.
A StringNumericLiteraimay not use octal notation.

A StringNumericLiterathat is decimal may have any number of leadirtigits.

A StringNumericLiterathat is decimal may be preceded+bygr - to indicate its sign.

A StringNumericLiterathat is empty or contains only whitespaceis convertedto

The conversion of a string to a number value is similar overall to the determination of the number value for a
numeric literal (section 7.7.3), but some of the details are different, so the process for converting a string numeric
literal to a value of Number type is given here in full. This value is determined in two steps: first, a mathematical
value (MV) is derived from the string numeric literal; second, this mathematical value is rounded, ideally using
IEEE 754 round-to-nearest mode, to a representable value of the number type.

The MV of StringNumericLiterat:: (an empty character sequenis=).
The MV of StringNumericLiteral:: StrWhiteSpaces 0.

The MV of StringNumericLiterat:: StrWhiteSpagg; StrNumericLiteral StrWhiteSpageis the MV ofStrNumericLiteral
no matter whether whitespace is present or not.

The MV of StrNumericLiterat:: StrDecimalLiteralis the MV ofStrDecimalLiteral

The MV of StrNumericLiterat:: + StrDecimalLiteralis the MV ofStrDecimalLiteral

The MV of StrNumericLiteral:: - StrDecimalLiteralis the negative of the MV @trDecimalLiteral (Note that if the MV
of StrDecimalLiteralis 0, the negative of this MV is also 0. The rounding rule described below handles the conversion of
this signless mathematical zero to a floating-pehor —0 as appropriate.)

The MV of StrNumericLiteral:: HexIntegerLiteralis the MV ofHexIntegerLiteral

The MV of StrDecimalLiteral:: Infinity is 10"°%(a value so large that it will round 4eo).

The MV of StrDecimalLiteral::: DecimalDigits is the MV of DecimalDigits

The MV of StrDecimalLiteral::: DecimalDigits DecimalDigitsis the MV of the firstDecimalDigitsplus (the MV of the
secondDecimalDigitstimes 10"), wheren is the number of characters in the secbedimalDigits.

The MV of StrDecimalLiteral::: DecimalDigits ExponentParts the MV of DecimalDigitstimes 16, wheree is the MV
of ExponentPart

The MV of StrDecimalLiteral::: DecimalDigits DecimalDigits ExponentPai$ (the MV of the firstDecimalDigitsplus
(the MV of the secon®ecimalDigitstimes 10") times 16, wheren is the number of characters in the second
DecimalDigits ande is the MV ofExponentPart

The MV of StrDecimalLiteral::. DecimalDigitsis the MV ofDecimalDigitstimes 10", wheren is the number of
characters imDecimalDigit.

The MV of StrDecimalLiteral:::. DecimalDigits ExponentPais the MV ofDecimalDigitstimes 16", wheren is the
number of characters DecimalDigits ande is the MV ofExponentPart

The MV of StrDecimalLiteral::: DecimalDigitsis the MV of DecimalDigits

The MV of StrDecimalLiteral::: DecimalDigitsExponentParts the MV of DecimalDigitstimes 16, wheree is the MV of
ExponentPart

The MV of DecimalDigits::: DecimalDigitis the MV ofDecimalDigit

The MV of DecimalDigits::: DecimalDigitsDecimalDigitis (the MV ofDecimalDigitstimes 10) plus the MV of
DecimalDigit

The MV of ExponentPart:: Exponentindicator Signedintegesrthe MV of Signedinteger
The MV of Signedinteger:: DecimalDigitsis the MV of DecimalDigits

The MV of Signedinteger:: + DecimalDigitsis the MV of DecimalDigits

The MV of Signedinteger:: - DecimalDigitsis the negative of the MV dbecimalDigits
The MV of DecimalDigit::: 0 or of HexDigit::: 0 is 0.

The MV of DecimalDigit::: 1 or of HexDigit::: 1 is 1.

The MV of DecimalDigit::: 2 or of HexDigit::: 2 is 2.

The MV of DecimalDigit::: 3 or of HexDigit::: 3 is 3.

The MV of DecimalDigit::: 4 or of HexDigit::: 4 is 4.

- 29 -

The MV of DecimalDigit::: 5 or of HexDigit::: 5 is 5.

The MV of DecimalDigit::: 6 or of HexDigit::: 6 is 6.

The MV of DecimalDigit::: 7 or of HexDigit::: 7 is 7.

The MV of DecimalDigit::: 8 or of HexDigit::: 8 is 8.

The MV of DecimalDigit::: 9 or of HexDigit::: 9 is 9.

The MV of HexDigit::: a or of HexDigit::: Ais 10.

The MV of HexDigit::: b or of HexDigit::: Bis 11.

The MV of HexDigit::: ¢ or of HexDigit::: Cis 12.

The MV of HexDigit::: d or of HexDigit::: Dis 13.

The MV of HexDigit::: e or of HexDigit::: Eis 14.

The MV of HexDigit::: f or of HexDigit::: Fis 15.

The MV of HexIntegerLiteral: 0x HexDigitis the MV ofHexDigit
The MV of HexIntegerLiteral: 0X HexDigitis the MV ofHexDigit
The MV of HexIntegerLiteral:: HexIntegerLiteraHexDigitis (the MV ofHexIntegerLiteratimes 16) plus the MV of
HexDigit

Once the exact MV for a string numeric literal has been determined, it is then rounded to a value of the Num
type. If the MV is 0, then the rounded valuerBunless the first non-whitespace character in the string numeric
literal is -, in which case the rounded value-8. Otherwise, the rounded value mustthenumber value for

the MV (in the sense defined in section 8.4), unless the literal incluBe®acimallLiteraland the literal has
more than 20 significant digits, in which case the number value may be either the number value for the MV o
literal produced by replacing each significant digit after the 20th wtldigit or the number value for the MV of

a literal produced by replacing each significant digit after the 20th v@tdigit and then incrementing the literal

at the 20th digit position. A digit isignificantif it is not part of arExponentPartnd (either it is nod or (there

is a nonzero digit to its left and there is a nonzero digit, not iExpenentPartto its right)).

9.4 Tolnteger

The operator Tolnteger attempts to convert its argument to an integral numeric value. This operator functions
follows:

Call ToNumber on the input argument.

If Result(1) iNaN, return+0.

If Result(1) ist0, =0, +o0, Or —oo0, return Result(1).
Compute sign(Result(1)) * floor(abs(Result(1))).
Return Result(4).

9.5 Tolnt32: (signhed 32 bit integer)

The operator Tolnt32 converts its argument to one®dinfeger values in the rang@® through 3'-1, inclusive.
This operator functions as follows:

agrpwbdPRE

1. Call ToNumber on the input argument.

2. If Result(1) isNaN, +0, =0, +oo, Or —oo, return+0.

3. Compute sign(Result(1)) * floor(abs(Result(1))).

4. Compute Result(3) moduld®that is, a finite integer valueof Number type with positive sign and less than
2%2 in magnitude such the mathematical difference of Result(3kasdnathematically an integer multiple of
2%,

5. If Result(4) is greater than or equal &, Peturn Result(5)2°% otherwise return Result(5).

Discussion:

Note that the ToInt32 operation is idempotent: if applied to a result that it produced, the second application lea
that value unchanged.

Note also that Tolnt32(ToUint32(x)) is equal to Tolnt32(x) for all values of x.
(It is to preserve this latter property that and—co are mapped to +0.)

Note that Tolnt32 maps0 to +O0.

9.6

9.7

9.8

- 30 -

ToUint32: (unsigned 32 bit integer)
The operator ToUint32 converts its argument to one*dfn2eger values in the range 0 througf-2, inclusive.
This operator functions as follows:

1. Call ToNumber on the input argument.

2. If Result(1) iNaN, +0, -0, +oo, Or —co, return+0.

3. Compute sign(Result(1)) * floor(abs(Result(1))).

4. Compute Result(3) moduld®that is, a finite integer valueof Number type with positive sign and less than
2:2 in magnitude such the mathematical difference of Result(3kasdnathematically an integer multiple of
2

5. Return Result(4).

Discussion:
Note that step 5 is the only difference between ToUint32 and Tolnt32.

Note that the ToUint32 operation is idempotent: if applied to a result that it produced, the second application leaves
that value unchanged.

Note also that ToUint32(Tolnt32(x)) is equal to ToUint32(x) for all values of x.
(It is to preserve this latter property that and—c are mapped to +0.)
Note that ToUint32 maps0 to +0.

ToUint16: (unsigned 16 bit integer)
The operator ToUint16 converts its argument to one'dfn2eger values in the range 0 throudf-2, inclusive.
This operator functions as follows:

1. Call ToNumber on the input argument.

2. If Result(1) iNaN, +0, =0, +o0, or —co, return+0.

3. Compute sign(Result(1)) * floor(abs(Result(1))).

4. Compute Result(3) moduld®that is, a finite integer valueof Number type with positive sign and less than
22 in magnitude such the mathematical difference of Result(3kasdnathematically an integer multiple of
2

5. Return Result(4).

Discussion:
Note that the substitution of%for 2*2in step 4 is the only difference between ToUint32 and ToUnit16.
Note that ToUint16 maps0 to +0.

ToString
The operator ToString attempts to convert its argument to a value of type String according to the following table:

- 31 -

Input Type Result

Undefined "undefined"

Null "null”

Boolean If the argument tsue , then the result irue"

If the argument ifalse , then the result i¥alse”

Number See discussion below.
String Return the input argument (no conversion)
Object Apply the following steps:

1. Call ToPrimitive(input argument, hint String).
2. Call ToString(Result(1)).
3. Return Result(2).

9.8.1

ToString Applied to the Number Type
The operator ToString converts a numbeo string format as follows:

If mis NaN, return the stringNaN" .

If mis+0 or -0, return the string0" .

If mis less than zero, return the string concatenation of the ttingnd ToStringtm).

If mis infinity, return the stringInfinity"

Otherwise, leb, k, ands be integers such that>= 1, 167 <= s < 10, the number value fa10"* is m, and

k is as small as possible. Note tkas the number of digits in the decimal representatios tfats is not

divisible by 10, and that the least significant digitsois not necessarily uniquely determined by these

criteria.

6. If k<=n <= 21, return the string consisting of theigits of the decimal representation of s (in order, with
no leading zeroes), followed Iyk occurences of the charactér.'

7. 1f 0 < n<=21, return the string consisting of the most significatgits of the decimal representationspf
followed by a decimal point *, followed by the remaining—n digits of the decimal representationsof

8. If -6 < n <=0, return the string consisting of the chara€erfollowed by a decimal point *, followed by
—n occurences of the charactét,followed by thek digits of the decimal representationsof

9. Otherwise, ik = 1, return the string consisting of the single digis,dbllowed by lowercase character,
followed by a plus sign+’ or minus sign ~' according to whethen-1 is positive or negative, followed by
the decimal representation of the integer bk (with no leading zeros).

10. Return the string consisting of the most significant digit of the decimal representasioioltafwved by a

decimal point ! ’, followed by the remaining—1 digits of the decimal representationspfollowed by the

lowercase charactee”, followed by a plus sign+’ or minus sign +~" according to whethen-1 is positive

or negative, followed by the decimal representation of the integardfg(vith no leading zeros).

aogkrwnpPE

Note that ifx is any number value other thafl, then ToNumber(ToString)) is exactly the same number value
asx.

As noted, the least significant digit efs not always uniquely determined by the requirements listed in step 5.
The following specification for step 5 was considered, but not adopted:

(This paragraph is not part of the ECMAScript specification.)rl é¢ ands be be integers such that 1,
10! <= s < 10, the number value fos10"* is m, andk is as small as possible. If there are multiple
possibilities fors, choose the value sffor whichs10™ is closest in value tm. If there are two such possible
values ofs, choose the one that is even.

While such a strategy is recommended to implementors, the actual rule is somewhat more permissi
Implementors of ECMAScript may find useful the paper and code written by David M. Gay for binary-to-
decimal conversion of floating-point numbers [Gay 1990].

-32 -

9.9 ToObject
The operator ToObject attempts to convert its argument to a value of type Object according to the following table:

Input Type Result

Undefined Generate a runtime error.

Null Generate a runtime error.

Boolean Create a new Boolean object whose default value is the value of the boolgan. See
section 15.6 for a description of Boolean objects.

Number Create a new Number object whose default value is the value of the number. See
section 15.7 for a description of Number objects.

String Create a new String object whose default value is the value of the string. See
section 15.5 for a description of String objects.

Object The result is the input argument (no conversion).

10 Execution Contexts

When control is transferred to ECMAScript executable code, we say that control is enteexgcation context
Active execution contexts logically form a stack. The top execution context on this logical stack is the running
execution context.

10.1 Definitions

10.1.1

Function Objects

There are four types of function objects:

Declared functions are defined in source text ByactionDeclaration

Anonymous functions are created dynamically by using the buiitiittion object as a constructor, which
we refer to as instantiatirfgunction

Implementation-supplied functions are created at the request of the host with source text supplied by the host.
The mechanism for their creation is implementation dependent. Implementation-supplied functions may have
any subset of the following attributes {ImplicitThis, ImplicitParents }. Note that these are attributes of
function objects, not of properties. The use of these attributes are described in section 10.2.4.

Internal functions are built-in objects of the language, suchpaselnt and Math.exp . An
implementation may also provide implementation-dependent internal functions that are not described in this
specification. These functions do not contain executable code defined by the ECMAScript grammar, so are
excluded from this discussion of execution contexts.

10.1.2 Types of Executable Code
There are five types of executable ECMAScript source text:

Global codeis source text that is outside all function declarations. More precisely, the global code of a
particular ECMAScripProgramconsists of alsourceElementis the Programproduction which come from
the Statementlefinition.

Eval codeis the source text supplied to the builtemal function. More precisely, if the parameter to the
built-in eval function is a string, it is treated as an ECMAScRpbgram The eval code for a particular
invocation ofeval is the global code portion of the string parameter.

Function codeis source text that is inside a function declaration. More precisely, the function code of a
particular ECMAScripfunctionDeclarationconsists of th@&lockin the definition ofFunctionDeclaration

Anonymous codés the source text supplied when instantiatfgnction . More precisely, the last
parameter provided in an instantiationFafnction is converted to a string and treated asStegementList

10.1.3

10.1.4

- 33 -

of the Block of a FunctionDeclaration If more than one parameter is provided in an instantiation of
Function , all parameters except the last one are converted to strings and concatenated together, separ
by commas. The resulting string is interpreted ag-tirenalParameterLisbf a FunctionDeclarationfor the
StatementListlefined by the last parameter.

» Implementation-suppliedode is the source text supplied by the host when creating an implementation-
supplied function. The source text is treated asStagementLisof the Block of a FunctionDeclaration
Depending on the implementation, the host may also suppdyraalParameterList

Variable instantiation
Every execution context has associated withviirdable object Variables declared in the source text are

added as properties of the variable object. For global and eval code, functions defined in the source text
added as properties of the variable object. Function declarations in other types of code are not allowed by
grammar. For function, anonymous, and implementation-supplied code, parameters are added as properties c
variable object.

Which object is used as the variable object and what attributes are used for the properties depends on the
type of code, but the remainder of the behavior is generic:

» For eachFunctionDeclarationin the code, in source text order, instantiate a declared function from the
FunctionDeclarationand create a property of the variable object whose name is the Identifier in the
FunctionDeclarationwhose value is the declared function and whose attributes are determined by the type
code. If the variable object already has a property with this name, replace its value and attributes.

» For each formal parameter, as defined inFbemalParameterListcreate a property of the variable object
whose name is thilentifier and whose attributes are determined by the type of code. The values of the
parameters are supplied by the caller. If the caller supplies fewer parameter values than there are for
parameters, the extra formal parameters have valdefined . If two or more formal parameters share the
same name, hence the same property, the corresponding property is given the value that was supplied fo
last parameter with this name. If the value of this last parameter was not supplied by the caller, the value
the corresponding propertyusdefined

» For eachVariableDeclarationin the code, create a property of the variable object whose name is the
Identifier in VariableDeclaration whose value isindefined and whose attributes are determined by the
type of code. If there is already a property of the variable object with the name of a declared variable, t
value of the property and its attributes are not changed. Semantically, this step must follow the creation of
FunctionDeclarationand FormalParameterLisproperties. In particular, if a declared variable has the same
name as a declared function or formal parameter, the variable declaration does not disturb the exist

property.
Scope Chain and Identifier Resolution

Every execution context has associated withst@pe chainThis is logically a list of objects that are searched
whenbinding anldentifier. When control enters an execution context, the scope chain is created and is populat
with an initial set of objects, depending on the type of code. When control leaves the execution context, the sc
chain is destroyed.

During execution, the scope chain of the execution context is affected owjtlgtatementWhen execution
enters awith block, the object specified in thith statement is added to the front of the scope chain. When
execution leaves with block, whether normally or via Break or continue statement, the object is
removed from the scope chain. The object being removed will always be the first object in the scope chain.

During execution, the syntactic producti®rimaryExpression: ldentifier is evaluated using the following
algorithm:

1. Get the next object in the scope chain. If there isn't one, go to step 5.

2. Call the [[HasProperty]] method of Result(l), passingldeatifier as the property.

3. If Result(2) istrue , return a value of type Reference whose base object is Result(l) and whose proper
name is thédentifier.

Go to step 1.

Return a value of type Reference whose base objeall is and whose property name is tdentifier.

ok

10.1.5

10.1.6

10.1.7

10.1.8

- 34 -

The result of binding an identifier is always a value of type Reference with its member name component equal to
the identifier string.

Global Object

There is a uniquglobal objectwhich is created before control enters any execution context. Initially the global
object has the following properties:

< Built-in objects such as Math, String, Date, parselnt, etc. These have attributes { DontEnum }.

« Additional host defined properties. This may include a property whose value is the global object itself, for
examplewindow in HTML.

As control enters execution contexts, and as ECMAScript code is executed, additional properties may be added
to the global object and the initial properties may be changed.

Activation object

When control enters an execution context for declared function code, anonymous code or implementation-
supplied code, an object called the activation object is created and associated with the execution context. The
activation object is initialized with a property with nasmguments and property attributes { DontDelete }.

The initial value of this property is the arguments object described below.

If the function object being invoked has arguments property, letx be the value of that property; the
activation object is also given an internal property [[OldArguments]] whose initial valke dtherwise, an
arguments property is created for the function object but the activation object is not given an
[[OldArguments]] property. Next, arguments object described below (the same one storedrguthents

property of the activation object) is used as the new value drthenents property of the function object.

This new value is installed even if thgguments property already exists and has the ReadOnly attribute (as it
will for native Function objects). (These actions are taken to provide compatibility with a form of program syntax
that is now discouraged: to access the arguments object for fufictiithin the body off by using the
expressiorf.arguments . The recommended way to access the arguments object for fuhcti@hin the

body off is simply to refer to the variablgguments .)

The activation object is then used as the variable object for the purposes of variable instantiation.

When a value is to be returned from the call to a function, its activation object is no longer needed and may be
permanently decommissioned. At this time, if the activation object has no [[OldArguments]] property, then the
arguments property of the function object is deleted; otherwise, the value of the [[OldArguments]] property of
the activation object is stored into thlguments property of the function object (amguments property is

created for the function object if necessary). This old value is stored everaifgtimaents property already

exists and has the ReadOnly attribute (as it will for native Function objects).

The activation object is purely a specification mechanism. It is impossible for an ECMAScript program to access
the activation object. It can access members of the activation object, but not the activation object itself. When the
call operation is applied to a Reference value whose base object is an activationnabjecis used as the

this value of the call.

This

There is ahis value associated with every active execution contexttiie value depends on the caller and

the type of code being executed and is determined when control enters the execution contkig. Tvedue
associated with an execution context is immutable.

Arguments Object

When control enters an execution context for declared function code, anonymous code, or implementation-
supplied code, an arguments object is created and initialized as follows:

* The [[Prototype]] of the arguments object is to the original Object prototype object, the one that is the initial
value ofObject.prototype (section 15.2.3.1).

» A property is created with nan@llee and property attributes { DontEnum }. The initial value of this
property is the function object being executed. This allows anonymous functions to be recursive.

10.2

10.2.1

10.2.2

10.2.3

10.2.4

- 35 -

A property is created with namength and property attributes { DontEnum }. The initial value of this
property is the number of actual parameter values supplied by the caller.

For each non-negative integérg, less than the value of thength property, a property is created with
name ToStringérg) and property attributes { DontEnum }. The initial value of this property is the value of
the corresponding actual parameter supplied by the caller. The first actual parameter value correspond:
iarg = 0, the second tiarg = 1 and so on. In the case whary is less than the number of formal parameters
for the function object, this property shares its value with the corresponding property of the activation obje
This means that changing this property changes the corresponding property of the activation object and \
versa. The value sharing mechanism depends on the implementation.

Entering An Execution Context

When control enters an execution context, the scope chain is created and initialized, variable instantiation
performed, and ththis value is determined.

The initialization of the scope chain, variable instantiation, and the determinationtlisthevalue depend on the
type of code being entered.

Global Code

The scope chain is created and initialized to contain the global object and no others.

Variable instantiation is performed using the global object as the variable object and using empty prope
attributes.

Thethis value is the global object.

Eval Code

When control enters an execution context for eval code, the previous active execution context, referred to as
calling context is used to determine the scope chain, the variable object, atldighevalue. If there is no
calling context, then initializing the scope chain, variable instantiation, and determinatiortto$ thealue are
performed just as for global code.

The scope chain is initialized to contain the same objects, in the same order, as the calling context's sc
chain. This includes objects added to the calling context's scope chalith8tatement.

Variable instantiation is performed using the calling context's variable object and using empty proper
attributes.

Thethis value is the same as ttiés value of the calling context.

Function and Anonymous Code

The scope chain is initialized to contain the activation object followed by the global object.

Variable instantiation is performed using the activation object as the variable object and using propel
attributes { DontDelete }.

The caller provides thihis value. If thethis value provided by the caller is not an object (including the
case where it iaull), then thehis value is the global object.

Implementation-supplied Code

The scope chain is initialized to contain the activation object as its first element.
Thethis value is determined just as for function and anonymous code.

If the implementation-supplied function has the ImplicitThis attribute (10.1.1thibe value is placed in
the scope chain after the activation object.

If the implementation-supplied function has the ImplicitParents attribute (10.1.1), a list of objects, determine
solely by thethis value, is inserted in the scope chain after the activation object (if the implementation:
supplied function does not have the ImplicitThis attribute) or after the activation objethigndobject
object (if the implementation-supplied function has the ImplicitThis attribute). Note that this list is determine
at run time by théhis value. It is not determined by any form of lexical scoping.

- 36 -

« The global object is placed in the scope chain after all other objects.

« Variable instantiation is performed using the activation object as the variable object and using attributes
{ DontDelete }.

11 Expressions
11.1 Primary Expressions

Syntax
PrimaryExpression
this
Identifier
Literal

(Expression
11.1.1 Thethis keyword
Thethis keyword evaluates to thkis value of the execution context.

11.1.2 Identifier reference

An Identifier is evaluated using the scoping rules stated in section 10.1.4. The resultehtiier is always a
value of type Reference.

11.1.3 Literal reference
A Literal is evaluated as described in section 7.7.

11.1.4 The Grouping Operator
The productiorPrimaryExpression (Expressior) is evaluated as follows:

1. Evaluate Expression. This may be of type Reference.
2. Return Result(1).

Note that this algorithm does not apply GetValue to Result(1). The principal motivation for this is so that
operators such atelete andtypeof may be applied to parenthized expressions.

11.2 Left-Hand-Side Expressions
Syntax

MemberExpression
PrimaryExpression
MemberExpressioh Expressior]
MemberExpression Identifier
new MemberExpressiorArguments

NewExpression
MemberExpression
new NewExpression

CallExpression
MemberExpressiorArguments
CallExpression Arguments
CallExpressior] Expressior
CallExpression Identifier

Arguments

()
(ArgumentList)

- 37 -

ArgumentList
AssignmentExpression
ArgumentList AssignmentExpression

LeftHandSideExpressian
NewExpression
CallExpression

11.2.1 Property Accessors
Properties are accessed by name, using either the dot notation:

MemberExpression Identifier
CallExpression Identifier
or the bracket notation:
MemberExpressioh Expressior
CallExpressior] Expressior
The dot notation is explained by the following syntactic conversion:
MemberExpression Identifier
is identical in its behavior to
MemberExpressioh <identifier-string>]
and similarly
CallExpression Identifier
is identical in its behavior to
CallExpressior] <identifier-string>]
where <identifier-string> is a string literal containing the same sequence of characterslastifier.
The production MemberExpressioMemberExpressioh Expressior] is evaluated as follows:

EvaluateMemberExpressian

Call GetValue(Result(1)).

EvaluateExpression

Call GetValue(Result(3)).

Call ToObject(Result(2)).

Call ToString(Result(4)).

Return a value of type Reference whose base object is Result(5) and whose property name is Result(6).

NookrownE

The productiorCallExpression CallExpressiorf Expressior] is evaluated in exactly the same manner, except
that the containe@allExpressionis evaluated in step 1.

11.2.2 Thenew operator
The productiorNewExpression new NewExpressiors evaluated as follows:

EvaluateNewExpression

Call GetValue(Result(1)).

If Type(Result(2)) is not Object, generate a runtime error.

If Result(2) does not implement the internal [[Construct]] method, generate a runtime error.

Call the [[Construct]] method on Result(2), providing no arguments (that is, an empty list of arguments).
If Type(Result(5)) is not Object, generate a runtime error.

Return Result(5).

NookrownE

The productiorMemberExpressionnew MemberExpression Argumergsevaluated as follows:

1. EvaluateMemberExpression
2. Call GetValue(Result(1)).

11.2.3

11.2.4

11.3
Syntax

- 38 -

EvaluateArgumentsproducing an internal list of argument values (section 0).

If Type(Result(2)) is not Object, generate a runtime error.

If Result(2) does not implement the internal [[Construct]] method, generate a runtime error.
Call the [[Construct]] method on Result(2), providing the list Result(3) as the argument values.
If Type(Result(6)) is not Object, generate a runtime error.

Return Result(6).

©ONOoO O~

Function Calls
The production CallExpressiorMemberExpression Arguments is evaluated as follows:

EvaluateMemberExpressian

EvaluateArgumentsproducing an internal list of argument values (section 0).

Call GetValue(Result(1)).

If Type(Result(3)) is not Object, generate a runtime error.

If Result(3) does not implement the internal [[Call]] method, generate a runtime error.

If Type(Result(1)) is Reference, Result(6) is GetBase(Result(1)). Otherwise, Resuit(b) is

If Result(6) is an activation object, Result(7pudl. Otherwise, Result(7) is the same as Result(6).

Call the [[Call]] method on Result(3), providing Result(7) asthiee value and providing the list Result(2)
as the argument values.

9. Return Result(8).

ONoOA~WNE

The productiorCallExpression CallExpression Arguments evaluated in exactly the same manner, except that
the containedallExpressioris evaluated in step 1.

Note: Result(8) will never be of type Reference if Result(3) is a native ECMAScript object. Whether calling a
host object can return a value of type Reference is implementation-dependent.

Argument Lists
The evaluation of an argument list produces an internal list of values (section 8.8).

The productioArguments () is evaluated as follows:
1. Return an empty internal list of values.
The productiorArguments (ArgumentLis) is evaluated as follows:

1. EvaluatéArgumentList
2. Return Result(1).

The productiorArgumentList AssignmentExpressiois evaluated as follows:

1. EvaluateAssignmentExpression
2. Call GetValue(Result(1)).
3. Return an internal list whose sole item is Result(2).

The productiorArgumentList ArgumentList AssignmentExpressiois evaluated as follows:

1. EvaluatéArgumentList

2. EvaluatéAssignmentExpression

3. Call GetValue(Result(2)).

4. Return an internal list whose length is one greater than the length of Result(1) and whose items are the items
of Result(1), in order, followed at the end by Result(3), which is the last item of the new list.

Postfix expressions

PostfixExpression

11.3.1

LeftHandSideExpression

LeftHandSideExpressiofmo LineTerminatotere] ++

LeftHandSideExpressiofo LineTerminatothere] --

Postfix increment operator

The productiorMemberExpressionMemberExpressiofn+ is evaluated as follows:

11.3.2

11.4
Syntax

- 390 -

EvaluateMemberExpressian

Call GetValue(Result(1)).

Call ToNumber(Result(2)).

Add the valud to Result(3), using the same rules as forttloperator (section 0).
Call PutValue(Result(1), Result(4)).

Return Result(3).

ogrwdE

Postfix decrement operator
The productiorMemberExpressionMemberExpressiorr is evaluated as follows:

EvaluateMemberExpressian

Call GetValue(Result(1)).

Call ToNumber(Result(2)).

Subtract the valuk from Result(3), using the same rules as for-tloperator (section 0).
Call PutValue(Result(1), Result(4)).

Return Result(3).

ogrwdE

Unary operators

UnaryExpression

11.4.1

11.4.2

11.4.3

PostfixExpression

delete UnaryExpression
void UnaryExpression
typeof UnaryExpression
++ UnaryExpression

-- UnaryExpression

+ UnaryExpression

- UnaryExpression

~ UnaryExpression

I UnaryExpression

Thedelete operator
The productiorUnaryExpression delete UnaryExpressioris evaluated as follows:

EvaluatdJnaryExpression

Call GetBase(Result(1)).

Call GetPropertyName(Result(1)).

If Type(Result(2)) is not Object, retuinue.

If Result(2) does not implement the internal [[Delete]] method, go to step 8.

Return Result(6).

CoNoh,~wNE

. If Result(8) igrue, returnfalse
10. Returrtrue.

Thevoid operator
The productiornaryExpression void UnaryExpressioris evaluated as follows:
1. EvaluatdJnaryExpression

2. Call Getvalue(Result(1)).
3. Returnundefined.

Thetypeof operator
The productiorUnaryExpression typeof UnaryExpressioris evaluated as follows:

1. EvaluatdJnaryExpression

If Type(Result(1)) is Reference and GetBase(Result(h)lisreturn"undefined"”
Call GetValue(Result(1)).

Return a string determined by Type(Result(3)) according to the following table:

el

Call the [[Delete]] method on Result(2), providing Result(3) as the property hame to delete.

Call the [[HasProperty]] method on Result(2), providing Result(3) as the property name to check for.

11.4.4

11.4.5

11.4.6

11.4.7

- 40 -

Type Result
Undefined "undefined”
Null "object”
Boolean "boolean”
Number "number”
String "string"”
Object (native and "object"
doesn’t implemen

[[Calll])

Object (native and "function”
implements [[Call]])

Object (host) Implementation-dependent

Prefix increment operator
The productiorUnaryExpression ++ UnaryExpressiorfis evaluated as follows:

EvaluatdJnaryExpression

Call GetValue(Result(1)).

Call ToNumber(Result(2)).

Add the valud. to Result(3), using the same rules as fortloperator (section 11.6.3).
Call PutValue(Result(1), Result(4)).

Return Result(4).

ok whrE

Prefix decrement operator
The productiorUnaryExpression -- UnaryExpressioris evaluated as follows:

EvaluatdJnaryExpression

Call GetVvalue(Result(1)).

Call ToNumber(Result(2)).

Subtract the valuk from Result(3), using the same rules as for-tloperator (section 11.6.3).
Call PutValue(Result(1), Result(4)).

Return Result(4).

oukhwbhr

Unary+ operator
The unary + operator converts its operand to Number type.

The productiordnaryExpression + UnaryExpressioris evaluated as follows:

1. EvaluatdJnaryExpression
2. Call GetValue(Result(1)).
3. Call ToNumber(Result(2)).
4. Return Result(3).

Unary- operator

The unary - operator converts its operand to Number type and then negates it. Note that+@peatithgces-0,
and negating-0 produces+0.

The productiorJnaryExpression - UnaryExpressiornis evaluated as follows:

EvaluatdJnaryExpression

Call GetValue(Result(1)).

Call ToNumber(Result(2)).

If Result(3) is NaN, return NaN.

Negate Result(3); that is, compute a number with the same magnitude but opposite sign.
Return Result(5).

ouprwNE

11.4.8

11.4.9

11.5
Syntax

M

- 41 -

The bitwise NOT operator (~)
The productiorJnaryExpression ~ UnaryExpressiorns evaluated as follows:

EvaluatdJnaryExpression

Call GetValue(Result(1)).

Call Tolnt32(Result(2)).

Apply bitwise complement to Result(3). The result is a signed 32-bit integer.
Return Result(4).

agrwnpE

Logical NOT operator (!)
The productiorJnaryExpression ! UnaryExpressioris evaluated as follows:

EvaluatdJnaryExpression
Call GetValue(Result(1)).
Call ToBoolean(Result(2)).

If Result(3) idrue, returnfalse
Returntrue.

c orwbdPE

Itiplicative operators

MultiplicativeExpression

11.5.1

UnaryExpression

MultiplicativeExpressiorf UnaryExpression
MultiplicativeExpressiort UnaryExpression
MultiplicativeExpressiofoUnaryExpression

Semantics

The productionMultiplicativeExpression MultiplicativeExpression @ UnaryExpressjonhere @ stands for
one of the operators in the above definitions, is evaluated as follows:

EvaluateMultiplicativeExpression
Call GetValue(Result(1)).
EvaluatdJnaryExpression

Call GetValue(Result(3)).

Call ToNumber(Result(2)).

Call ToNumber(Result(4)).

NookrownE

7.4.3).
8. Return Result(7).

Applying the* operator

The * operator performs multiplication, producing the product of its operands. Multiplication is commutative.

Multiplication is not always associative in ECMAScript, because of finite precision.
The result of a floating-point multiplication is governed by the rules of IEEE 754 double-precision arithmetic:

» If either operand is NaN, the result is NaN.

» The sign of the result is positive if both operands have the same sign, negative if the operands have diffel

signs.
* Multiplication of an infinity by a zero results in NaN.

» Multiplication of an infinity by an infinity results in an infinity. The sign is determined by the rule already
stated above.

» Multiplication of an infinity by a finite non-zero value results in a signed infinity. The sign is determined by

the rule already stated above.

» In the remaining cases, where neither an infinity or NaN is involved, the product is computed and rounded
the nearest representable value using IEEE 754 round-to-nearest mode. If the magnitude is too large

Apply the specified operation (*, /, or %) to Result(5) and Result(6). See the discussions below (7.4.1, 7.4

11.5.2

11.5.3

- 42 -

represent, the result is then an infinity of appropriate sign. If the magnitude is too small to represent, the result
is then a zero of appropriate sign. The ECMAScript language requipperswof gradual underflow as
defined by IEEE 754.

Applying the/ operator

The/ operator performs division, producing the quotient of its operands. The left operand is the dividend and
the right operand is the divisor. ECMAScript does not perform integer division. The operands and result of all
division operations are double-precision floating-point numbers. The result of division is determined by the
specification of IEEE 754 arithmetic:

If either operand is NaN, the result is NaN.

The sign of the result is positive if both operands have the same sign, negative if the operands have different
signs.

Division of an infinity by an infinity results in NaN.
Division of an infinity by a zero results in an infinity. The sign is determined by the rule already stated above.

Division of an infinity by a non-zero finite value results in a signed infinity. The sign is determined by the
rule already stated above.

Division of a finite value by an infinity results in zero. The sign is determined by the rule already stated
above.

Division of a zero by a zero results in NaN; division of zero by any other finite value results in zero, with the
sign determined by the rule already stated above.

Division of a non-zero finite value by a zero results in a signed infinity. The sign is determined by the rule
already stated above.

In the remaining cases, where neither an infinity, nor a zero, nor NaN is involved, the quotient is computed
and rounded to the nearest representable value using IEEE 754 round-to-nearest mode. If the magnitude is too
large to represent, we say the operation overflows; the result is then an infinity of appropriate sign. If the
magnitude is too small to represent, we say the operation underflows and the result is a zero of the appropriate
sign. The ECMAScript language requires support of gradual underflow as defined by IEEE 754.

Applying the%operator

The binary%operator is said to yield the remainder of its operands from an implied division; the left operand is
the dividend and the right operand is the divisor. In C and C++, the remainder operator accepts only integral
operands, but in ECMAScript, it also accepts floating-point operands.

The result of a floating-point remainder operation as computed bysetbperator is not the same as the
"remainder" operation defined by IEEE 754. The IEEE 754 "remainder" operation computes the remainder from
a rounding division, not a truncating division, and so its behavior is not analogous to that of the usual integer
remainder operator. Instead the ECMAScript language defines floating-point operations to behave in a
manner analogous to that of the Java integer remainder operator; this may be compared with the C library
function fmod.

The result of a ECMAScript floating-point remainder operation is determined by the rules of IEEE arithmetic:

If either operand is NaN, the result is NaN.

The sign of the result equals the sign of the dividend.

If the dividend is an infinity, or the divisor is a zero, or both, the result is NaN.

If the dividend is finite and the divisor is an infinity, the result equals the dividend.

If the dividend is a zero and the divisor is finite, the result is the same as the dividend.

In the remaining cases, where neither an infinity, nor a zero, nor NaN is involved, the floating-point
remainder r from a dividend n and a divisor d is defined by the mathematical relation (d=*rg) where q

is an integer that is negative only if n/d is negative and positive only if n/d is positive, and whose magnitude is
as large as possible without exceeding the magnitude of the true mathematical quotient of n and d.

11.6
Syntax

- 43 -

Additive operators

AdditiveExpression

11.6.1

11.6.2

11.6.3

MultiplicativeExpression
AdditiveExpressior MultiplicativeExpression
AdditiveExpression MultiplicativeExpression

The addition operator (+)
The addition operator either performs string concatenation or numeric addition.

The productiorAdditiveExpression AdditiveExpressior MultiplicativeExpressioris evaluated as follows:

1. EvaluatéAdditiveExpressian

2. Call Getvalue(Result(1)).

3. EvaluatéMultiplicativeExpression

4. Call GetValue(Result(3)).

5. Call ToPrimitive(Result(2)).

6. Call ToPrimitive(Result(4)).

7. If Type(Result(5)) is String or Type(Result(6)) is String, go to step 12. (Note that this step differs from step
in the algorithm for comparison for the relational operators in using or instead of and.)

8. Call ToNumber(Result(5)).

9. Call ToNumber(Result(6)).

10. Apply the addition operation to Result(8) and Result(9). See the discussion below (11.6.3).

11. Return Result(10).

12. Call ToString(Result(5)).

13. Call ToString(Result(6)).

14. Concatenate Result(12) followed by Result(13).

15. Return Result(14).

Note that no hint is provided in the calls to ToPrimitive in steps 5 and 6. All native ECMAScript objects excey
Date objects handle the absence of a hint as if the hint Number were given; Date objects handle the absence
hint as if the hint String were given. Host objects may handle the absence of a hint in some other manner.

The subtraction operator (-)
The production AdditiveExpressiomAdditiveExpression MultiplicativeExpression is evaluated as follows:

EvaluateAdditiveExpression

Call GetValue(Result(1)).

EvaluateMultiplicativeExpression

Call GetValue(Result(3)).

Call ToNumber(Result(2)).

Call ToNumber(Result(4)).

Apply the subtraction operation to Result(5) and Result(6). See the discussion below (11.6.3).
Return Result(7).

N A WDNE

Applying the additive operators ¢, -) to numbers

The + operator performs addition when applied to two operands of numeric type, producing the sum of tf
operands. The operator performs subtraction, producing the difference of two numeric operands.

Addition is a commutative operation, but not always associative.

The result of an addition is determined using the rules of IEEE 754 double-precision arithmetic:
« If either operand idlaN, the result isNaN.

¢ The sum of two infinities of opposite signN&N.

» The sum of two infinities of the same sign is the infinity of that sign.

» The sum of an infinity and a finite value is equal to the infinite operand.

11.7
Syntax

- 44 -

e The sum of two negative zeros-8. The sum of two positive zeros, or of two zeros of opposite sig, is
« The sum of a zero and a nonzero finite value is equal to the nonzero operand.
¢ The sum of two nonzero finite values of the same magnitude and oppositetdgn is

* In the remaining cases, where neither an infinity, nor a zero, nor NaN is involved, and the operands have the
same sign or have different magnitudes, the sum is computed and rounded to the nearest representable value
using IEEE 754 round-to-nearest mode. If the magnitude is too large to represent, the operation overflows
and the result is then an infinity of appropriate sign. The ECMAScript language reqpipestaf gradual
underflow as defined by IEEE 754.

The- operator performs subtraction when applied to two operands of numeric type, producing the difference of
its operands; the left operand is the minuend and the right operand is the subtrahend. Given numeri@operands
andb, it is always the case thatb produces the same resultaag- b) .

Bitwise shift operators

ShiftExpression

11.7.1

11.7.2

AdditiveExpression

ShiftExpressior< AdditiveExpression
ShiftExpressior> AdditiveExpression
ShiftExpressior>> AdditiveExpression

Semantics

The result of evaluatinghiftExpressioris always truncated to 32 bits. If the result of evaluaBihdftExpression
produces a fractional component, the fractional component is discarded. The result of evaluating an
AdditiveExpresiorthat is the right-hand operand of a shift operator is always truncated to five bits.

The left shift operator (<<)
Performs a bitwise left shift operation on the left argument by the amount specified by the right argument.

The productiorShiftExpression ShiftExpressior< AdditiveExpressiois evaluated as follows:

EvaluateShiftExpression

Call GetValue(Result(1)).

EvaluateAdditiveExpression

Call GetValue(Result(3)).

Call Tolnt32(Result(2)).

Call ToUint32(Result(4)).

Mask out all but the least significant 5 bits of Result(6), that is, compute Result(6) & Ox1F.
Left shift Result(5) by Result(7) bits. The result is a signed 32 bit integer.

Return Result(8).

©CxNoGr~WNE

The signed right shift operator (>>)

Performs a sign-filling bitwise right shift operation on the left argument by the amount specified by the right
argument.

The productiorShiftExpression ShiftExpressiox> AdditiveExpressiois evaluated as follows:

EvaluateShiftExpression

Call GetValue(Result(1)).

EvaluateAdditiveExpression

Call GetValue(Result(3)).

Call Tolnt32(Result(2)).

Call ToUint32(Result(4)).

Mask out all but the least significant 5 bits of Result(6), that is, compute Result(6) & Ox1F.

Perform sign-extending right shift of Result(5) by Result(7) bits. The most significant bit is propagated. The
result is a signed 32 hit integer.

Return Result(8).

N A~WN R

©

11.7.3

11.8
Syntax

- 45 -

The unsigned right shift operator >>>)

Performs a zero-filling bitwise right shift operation on the left argument by the amount specified by the rigt
argument.

The productiorsShiftExpression ShiftExpressior>> AdditiveExpressiors evaluated as follows:

ONoOR~WNE

9.

EvaluateShiftExpression

Call GetValue(Result(1)).

EvaluatéAdditiveExpression

Call GetValue(Result(3)).

Call ToUint32(Result(2)).

Call ToUint32(Result(4)).

Mask out all but the least significant 5 bits of Result(6), that is, compute Result(6) & Ox1F.

Perform zero-filling right shift of Result(5) by Result(7) bits. Vacated bits are filled with zero. The result is al
unsigned 32 bit integer.

Return Result(8).

Relational operators

RelationalExpression

ShiftExpression

RelationalExpressior ShiftExpression
RelationalExpressior ShiftExpression
RelationalExpression= ShiftExpression
RelationalExpressior= ShiftExpression

11.8.1

11.8.2

11.8.3

Semantics

The result of evaluatinRelationalExpressiors always of type Boolean, reflecting whether the relationship named
by the operator holds between its two operands.

The less-than operator €)

The productiorRelationalExpressiarRelationalExpressior ShiftExpressiois evaluated as follows:

ourwNE

EvaluateRelationalExpressian

Call GetValue(Result(1)).

EvaluatesShiftExpression

Call GetValue(Result(3)).

Perform the comparison Result(2) < Result(4). (See section 11.8.5)
If Result(5) isundefined, returnfalse Otherwise, return Result(5).

The greater-than operator (>)

The productiorRelationalExpressiarRelationalExpressior ShiftExpressiois evaluated as follows:

ogprwNE

EvaluateRelationalExpressian

Call GetValue(Result(1)).

EvaluateShiftExpression

Call GetValue(Result(3)).

Perform the comparison Result(4) < Result(2). (See section 11.8.5)
If Result(5) isundefined, returnfalse Otherwise, return Result(5).

The less-than-or-equal operator €=)

The productiorRelationalExpressiarRelationalExpressior= ShiftExpressiolis evaluated as follows:

ogprwNE

EvaluateRelationalExpressian

Call GetValue(Result(1)).

EvaluateShiftExpression

Call GetValue(Result(3)).

Perform the comparison Result(4) < Result(2). (See section 11.8.5)
If Result(5) igrue or undefined, returnfalse. Otherwise, returtrue.

- 46 -

11.8.4 The greater-than-or-equal operator =)

The productiorRelationalExpressiarRelationalExpressior= ShiftExpressiolis evaluated as follows:

ogakwNPE

EvaluaterelationalExpressian

Call GetValue(Result(1)).

EvaluateShiftExpression

Call GetValue(Result(3)).

Perform the comparison Result(2) < Result(4). (See section 11.8.5)
If Result(5) idrue or undefined, returnfalse Otherwise, returtrue.

11.8.5 The abstract relational comparison algorithm

The comparison <y, wherex andy are values, producésie, false, or undefined (which indicates that at least
one operand iBlaN). Such a comparison is performed as follows:

1.
2.
3.

©CoNGO b

10.
11.
12.
13.
14.
15.

16.

17.
18.

19.
20.
21.

Call ToPrimitivex, hint Number).

Call ToPrimitivey, hint Number).

If Type(Result(1)) is String and Type(Result(2)) is String, go to step 16. (Note that this step differs from step
7 in the algorithm for the addition operatom usingandinstead obr.)

Call ToNumber(Result(1)).

Call ToNumber(Result(2)).

If Result(4) ifNaN, returnundefined.

If Result(5) ifNaN, returnundefined.

If Result(4) and Result(5) are the same number value, fataen

If Result(4) ist0 and Result(5) isO, returnfalse

If Result(4) is-0 and Result(5) is0, returnfalse

If Result(4) isteo, returnfalse

If Result(5) isteo, returntrue.

If Result(5) is-, returnfalse

If Result(4) is-o, returntrue.

If the mathematical value of Result(4) is less than the mathematical value of Result(5)—note that these
mathematical values are both finite and not both zero—retuen Otherwise, returfalse

If Result(2) is a prefix of Result (1), retdaise (A string valuep is a prefix of string valuq if g can be the

result of concatenating and some other string Note that any string is a prefix of itself, becausmay be

the empty string.)

If Result(1) is a prefix of Result (2), returoe.
Letk be the smallest nonnegative integer such that the character at pbsitithin Result(1) is different

from the character at positidewithin Result(2). (There must be suck,dor neither string is a prefix of the
other.)

Letm be the integer that is the Unicode encoding for the character at pésititiin Result(1).
Letn be the integer that is the Unicode encoding for the character at p&sitithin Result(2).
If m <n, returntrue. Otherwise, returfalse

Discussion

Note that comparison of strings uses a simple lexicographic ordering on sequences of Unicode code point values.
There is no attempt to use the more complex, semantically-oriented definitions of character or string equality and
collating order defined in the Unicode 2.0 specification.

11.9 Equality operators

Syntax

EqualityExpression
RelationalExpression
EqualityExpressior= RelationalExpression
EqualityExpressiot= RelationalExpression

Semantics

The result of evaluatingqualityExpressiolis always of type Boolean, reflecting whether the relationship named by
the operator holds between its two operands.

11.9.1

11.9.2

11.9.3

- 47 -

The equals operator £=)
The production EqualityExpressioRqualityExpressior= RelationalExpression is evaluated as follows:

Evaluate EqualityExpression.

Call GetValue(Result(1)).

Evaluate RelationalExpression.

Call GetValue(Result(3)).

Perform the comparison Result(4) == Result(2). (See section 11.9.3)
Return Result(5).

ourwdE

The does-not-equals operator!E)
The productiorEqualityExpressionEqualityExpressiolr RelationalExpressiors evaluated as follows:

EvaluateEqualityExpression

Call GetValue(Result(1)).

EvaluateRelationalExpressian

Call GetValue(Result(3)).

Perform the comparison Result(4) == Result(2). (See section 11.9.3)
If Result(b) idrue, returnfalse Otherwise, returtrue.

ouprwdE

The abstract equality comparison algorithm

The comparisorx ==y, wherex andy are values, producerle or false Such a comparison is performed as
follows:

If Typek) is different from Type(f), go to step 14.
If Typek) is Undefined, returtrue.
If Typek) is Null, returntrue.
If Type) is not Number, go to step 11.
If x is NaN, returnfalse
If y is NaN, returnfalse
If x is the same number valueyaseturntrue.
If xis+0 andy is =0, returntrue.
. Ifxis=0andy is +0, returntrue.
0. Returrfalse
1.If Typek) is String, then returtrue if x andy are exactly the same sequence of characters (same length anc
same characters in corresponding positions). Otherwise, fatsen
12. If Typef) is Boolean, returtrue if x andy are bothtrue or bothfalse Otherwise, returfalse
13. Returrtrue if x andy refer to the same object. Otherwise, refialge
14.1f x is null andy is undefined, returntrue.
15. If x is undefined andy is null, returntrue.
16. If Typek) is Number and Typ#] is String,
return the result of the compariser= ToNumbery).
17.1f Type() is String and Typs&] is Number,
return the result of the comparison ToONumge#r=y.
18. If Type() is Boolean, return the result of the comparison ToNumper(y.
19. If Typeg) is Boolean, return the result of the compariger= ToNumbery).
20. If Typef) is either String or Number and Typg(s Object,
return the result of the comparispr= ToPrimitivef).
21.If Typef) is Object and Typ#] is either String or Number,
return the result of the comparison ToPrimitk)yet=y.
22. Returrfalse.

RROXo~NooGO~ONE

Discussion
String comparison can be forced By+a==""+b
Numeric comparison can be forced ay:0==b -0

Boolean comparison can be forced y/=k 'b

- 48 -

The equality operators maintain the following invariants:
1. A= Bisequivalenttd(A ==B).
2. A== Bis equivalent t@ == A, except in the order of evaluation of A and B.

Note that the equality operator is not always transitive. For example, there might be two distinct String objects,
each representing the same string value; each String object would be considered equal to the string value by the
== operator, but the two String objects would not be equal to each other.

Note that comparison of strings uses a simple equality test on sequences of Unicode code point values. There is
no attempt to use the more complex, semantically-oriented definitions of character or string equality and collating
order defined in the Unicode 2.0 specification.

11.10 Binary bitwise operators

Syntax

BitwiseANDEXxpression

EqualityExpression
BitwiseANDExpressio& EqualityExpression

BitwiseXORExpression

BitwiseANDExpression
BitwiseXORExpressioh BitwiseANDEXxpression

BitwiseORExpression

BitwiseXORExpression
BitwiseORExpressioh Bitwise XORExpression

Semantics

The productionA : A @ B where @ is one of the bitwise operators in the productions above, is evaluated as
follows:

N A WDNE

EvaluateéA.

Call GetValue(Result(1)).

EvaluateB.

Call GetValue(Result(3)).

Call Tolnt32(Result(2)).

Call Tolnt32(Result(4)).

Apply the bitwise operator @ to Result(5) and Result(6). The result is a signed 32 bit integer.
Return Result(7).

11.11 Binary logical operators

Syntax

LogicalANDExpression

BitwiseORExpression
LogicalANDExpressio&& BitwiseORExpression

LogicalORExpression

LogicalANDExpression
LogicalORExpressiofj LogicalANDExpression

Semantics

The productioriLogical ANDEXxpression LogicalANDEXxpressio&& BitwiseOREXxpressiois evaluated as follows:

1. Evaluatd ogicalANDExpression

2. Call GetValue(Result(1)).

3.

4. If Result(3) is false, return Result(2).

Call ToBoolean(Result(2)).

- 49 -

5. EvaluateBitwiseORExpression
6. Call GetValue((Result(5)).
7. Return Result(6).

The productioriogical ORExpressionLogicalORExpressiof] LogicalANDEXxpressiois evaluated as follows:

Evaluatd ogical ORExpressian

Call GetVvalue(Result(1)).

Call ToBoolean(Result(2)).

If Result(3) is true, return Result(2).
Evaluatd ogicalANDEXxpression
Call GetVvalue(Result(5)).

Return Result(6).

Nogakwbdr

Discussion

Note that the value produced by&& or || operator is not necessarily of type Boolean. The value produced will
always be the value of one of the two operand expressions.

11.12 Conditional operator (?:)
Syntax

ConditionalExpression
LogicalORExpression
LogicalORExpressio? AssignmentExpressionAssignmentExpression

Semantics

The productionConditionalExpression LogicalORExpressiof? AssignmentExpressian AssignmentExpression
is evaluated as follows:

Evaluatd ogical ORExpressian

Call GetValue(Result(1)).

Call ToBoolean(Result(2)).

If Result(3) is false, go to step 8.
Evaluate the firsAssignmentExpression
Call GetVvalue(Result(5)).

Return Result(6).

Evaluate the secossignmentExpression
. Call GetVvalue(Result(8)).

10. Return Result(9).

CONDT A WNE

Discussion

The grammar for &£onditionalExpressionn ECMAScript is a little bit different from that in C and Java, which
each allow the second subexpression to be Expression but restrict the third expression to be a
ConditionalExpressianThe motivation for this difference in ECMAScript is to allow an assignment expression to
be governed by either arm of a conditional and to eliminate the confusing and fairly useless case of a con
expression as the center expression.

11.13 Assignment operators
Syntax

AssignmentExpression
ConditionalExpression
LeftHandSideExpression AssignmentOperator AssignmentExpression

AssignmentOperatar one of
=*= [= 0= += -= <<= >>= >>>= {= "= |:

- 50 -

11.13.1 Simple Assighment €)

The productionAssignmentExpression LeftHandSideExpressior AssignmentExpressiois evaluated as
follows:

1. Evaluatd eftHandSideExpression
2. EvaluatéAssignmentExpression

3. Call GetValue(Result(2)).

4. Call PutValue(Result(1), Result(3)).
5. Return Result(3).

11.13.2 Compound assignmentdp=)

The production AssignmentExpression LeftHandSideExpression @ AssignmentExpressipnvhere @
represents one of the operators indicated above, is evaluated as follows:

Evaluatd eftHandSideExpression

Call GetVvalue(Result(1)).
EvaluateAssignmentExpression

Call GetVvalue(Result(3)).

Apply operator @ to Result(2) and Result(4).
Call PutValue(Result(1), Result(5)).

Return Result(5).

NookwhpE

11.14 Comma operator (,)
Syntax

Expression
AssignmentExpression
Expression AssignmentExpression

Semantics
The productiorExpression Expression AssignmentExpressias evaluated as follows:

EvaluateExpression

Call GetValue(Result(1)).
EvaluateAssignmentExpression
Call GetValue(Result(3)).
Return Result(4).

akrwnhpE

12 Statements
Syntax

Statement
Block
VariableStatement
EmptyStatement
ExpressionStatement
IfStatement
IterationStatement
ContinueStatement
BreakStatement
ReturnStatement
WithStatement

12.1 Block

Block:
{ StatementLig;}

- 51 -

StatementList
Statement
StatementList Statement

Semantics

The productiorBlock: { } is evaluated as follows:

1. Return “normal completion”.

The productiorBlock: { StatementLis}is evaluated as follows:

1. EvaluateStatementList
2. Return Result(1).

The productiorBtatementList Statemenis evaluated as follows:

1. EvaluateStatement
2. Return Result(1).

The productiorStatementList StatementList Statemeésatevaluated as follows:

EvaluateStatementList

If Result(1) is an abrupt completion, return Result(1).

EvaluateStatement

If Result(3) is a value completion, return Result(3).

If Result(1) is not a value completion, return Result(3).

Let V be the value carried by Result(1).

If Result(3) is “abrupt completion becausédak ”,

return “abrupt completion after value V becausbérefk ”.

8. If Result(3) is “abrupt completion becauseoftinue 7,
return “abrupt completion after value V becauseaftinue

9. Return “normal completion after value V”.

NogkwnpE

”

12.2 Variable statement
Syntax
VariableStatement
var VariableDeclarationList

VariableDeclarationList
VariableDeclaration
VariableDeclarationList VariableDeclaration

VariableDeclaration:
Identifier Initializery

Initializer :
= AssignmentExpression
Description

If the variable statement occurs insidEunctionDeclaration the variables are defined with function-local scope in
that function, as described in section 10.1.3. Otherwise, they are defined with global scope, that is, they are cre
as members of the global object, as described in section 0. Variables are created when the execution scoj
entered. ABlock does not define a new execution scope. Glygram and FunctionDeclarationproduce a new
scope. Variables are initialized to thedefined value when created. A variable with laitializer is assigned the
value of itsAssignmentExpressiamhen theVariableStatemers executed, not when the variable is created.

Semantics
The production/ariableStatementvar VariableDeclarationList is evaluated as follows:

1. Evaluate/ariableDeclarationList

- 52 -

2. Return “normal completion”.

The productiorVariableDeclarationList VariableDeclarationis evaluated as follows:

1. EvaluatévariableDeclaration

The productiorVariableDeclarationList VariableDeclarationList VariableDeclarationis evaluated as follows:

1. Evaluate/ariableDeclarationList
2. Evaluate/ariableDeclaration

The productiorVariableDeclaration ldentifieris evaluated evaluated by taking no action.
The productiorVariableDeclaration: Identifier Initializeris evaluated as follows:

1. Evaluatddentifier.

2. Evaluatdnitializer.

3. Call Getvalue(Result(2)).

4. Call PutValue(Result(1), Result(3)).

The productiorinitializer : = AssignmentExpressias evaluated as follows:

1. EvaluateAssignmentExpression
2. Return Result(1).

12.3 Empty statement
Syntax
EmptyStatement

Semantics
The productiorEmptyStatement; is evaluated as follows:
1. Return “normal completion”.

12.4 Expression statement

Syntax
ExpressionStatement
Expression
Semantics

The productiorExpressionStatemenExpression is evaluated as follows:

1. EvaluateExpression
2. Call GetValue(Result(1)).
3. Return “normal completion after value V", where the value V is Result(2).

12.5 The IF statement

Syntax

IfStatement
if (Expressior) Statemenglse Statement
if (Expressior) Statement

Semantics
The productiorifStatement if (Expressior) Statementlse Statemenis evaluated as follows:

EvaluateExpression

Call GetValue(Result(1)).

Call ToBoolean(Result(2)).

If Result(3) idalse, go to step 7.
Evaluate the firsStatement

agrwnE

12.6
Syntax

6.
7.
8.

- 53 -

Return Result(5).
Evaluate the secor8tatement
Return Result(7).

The productiorfStatement if (Expression) Statemenis evaluated as follows:

ok whE

EvaluateExpression

Call GetVvalue(Result(1)).

Call ToBoolean(Result(2)).

If Result(3) idalse return “normal completion”.
EvaluateStatement

Return Result(5).

Iteration statements

IterationStatement

12.6.1

12.6.2

while (Expression Statement

for (Expressiop,; Expressiog,; Expressiop,) Statement

for (var VariableDeclarationList Expressiog,; Expressiop,) Statement
for (LeftHandSideExpression Expression) Statement

for (var Identifier Initializeg, in Expressior) Statement

Thewhile statement
The productioriterationStatementwhile (Expressior) Statemenis evaluated as follows:

LetC be “normal completion”.

EvaluateExpressio.

Call GetValue(Result(1)).

Call ToBoolean(Result(2)).

If Result(3) idalse, go to step 12.

EvaluateStatement

If Result(6) is a value completion, char@¢o be “normal completion after vallg whereV is the value
carried by Result(6).

8. If Result(6) is @reak completion, go to step 12.

9. If Result(6) is @ontinue completion, go to step 2.
10. If Result(6) is aeturn completion, return Result(6).
11. Go to step 2.

12. ReturrC.

Nookrwhr

Thefor statement

The productioriterationStatementfor (Expressiop,; Expressiog,; Expressiog:) Statemenis evaluated
as follows:

If the firstExpressioris not present, go to step 4.

Evaluate the firdExpression

Call GetValue(Result(2)). (This value is not used.)

LetC be “normal completion”.

If the secondExpressions not present, go to step 10.

Evaluate the secorttkpressio.

Call GetValue(Result(6)).

Call ToBoolean(Result(7)).

If Result(8) ifalse, go to step 19.

10 EvaluateéStatement

11. If Result(10) is a value completion, char@& be “normal completion after val® whereV is the value
carried by Result(10).

12. If Result(10) is &reak completion, go to step 19.

13. If Result(10) is @ontinue completion, go to step 15.

14. If Result(10) is aeturn completion, return Result(10).

©CoNoU~®LNE

12.6.3

15.
16.
17.
18.
19.

- 54 -

If the thirdExpressionis not present, go to step 5.
Evaluate the thirExpressio.

Call GetValue(Result(16). (This value is not used.)
Go to step 5.

ReturrC.

The productioniterationStatement for (var VariableDeclarationList; Expressiogy ; Expressiopy)
Statemenits evaluated as follows:

©CoNoGOhr~wWNE

10.
11.
12
13.
14.
15
16.
17.

Evaluatev/ariableDeclarationList

Let C be “normal completion”.

If the secondExpressions not present, go to step 8.
Evaluate the secorttkpression.

Call GetValue(Result(4)).

Call ToBoolean(Result(5)).

If Result(6) ifalse go to step 15.

EvaluateStatement

If Result(8) is a value completion, change C to be “normal completion after value V" where V is the value
carried by Result(8).

If Result(8) is dreak completion, go to step 17.

If Result(8) is @ontinue completion, go to step 13.

. If Result(8) is aeturn completion, return Result(8).

If the thirdExpressions not present, go to step 3.
Evaluate the thirBExpression

. Call GetValue(Result(14)). (This value is not used.)

Go to step 3.
Return C.

Thefor..in statement

The productionterationStatementfor (LeftHandSidExpressiorin Expression) Statemenis evaluated as
follows:

aghrwbhE

© o N

10.
11.
12.
13.
14.

Evaluate th&xpression

Call GetValue(Result(1)).

Call ToObject(Result(2)).

Let C be “normal completion”.

Get the name of the next property of Result(3) that doesn’t have the DontEnum attribute. If there is no such
property, go to step 14.

Evaluate théeftHandSideExpressight may be evaluated repeatedly).

Call PutValue(Result(6), Result(5)).

EvaluateStatement

If Result(8) is a value completion, change C to be “normal completion after value V’ where V is the value
carried by Result(8).

If Result(8) is &reak completion, go to step 14.

If Result(8) is @ontinue completion, go to step 5.

If Result(8) is aeturn completion, return Result(8).

Go to step 5.

Return C.

The productioriterationStatement for (var Identifier Initializer,, in Expression) Statements evaluated
as follows:

ONOoOOR~WNE

If thelnitializer is not present, go to step 6.
Evaluate thédentifier.

Evaluate thénitializer.

Call GetValue(Result(3)).

Call PutValue(Result(2), Result(4)).
Evaluate th&xpression

Call GetValue(Result(6)).

Call ToObject(Result(7)).

12.7
Syntax

- 55 -

9. LetC be “normal completion”.

10. Get the name of the next property of Result(8) that doesn't have the DontEnum attribute. If there is no s
property, go to step 19.

11. Evaluate th&entifier (yes, it may be evaluated repeatedly).

12. Call PutValue(Result(11), Result(10)).

13. EvaluateStatement

14.1f Result(13) is a value completion, chaf@& be “normal completion after val® whereV is the value
carried by Result(13).

15. If Result(13) dreak completion, go to step 19.

16. If Result(13) @ontinue completion, go to step 10.

17.If Result(13) aeturn completion, return Result(13).

18. Go to step 10.

19. ReturrC.

The mechanics of enumerating the properties (step 5 in the first algorithm, step 10 in the second)
implementation dependent. The order of enumeration is defined by the object. Properties of the object be
enumerated may be deleted during enumeration. If a property that has not yet been visited during enumeratic
deleted, then it will not be visited. If new properties are added to the object being enumerated duril
enumeration, the newly added properties are not guaranteed to be visited in the active enumeration.

Enumerating the properties of an object includes enumerating properties of its prototype, and the prototype of
prototype, and so on, recursively; but a property of a prototype is not enumerated if it is “shadowed” becat
some previous object in the prototype chain has a property with the same name.

TheCONTINUEStatement

ContinueStatement

continue ;

An ECMAScript program is considered syntactically incorrect and may not be executed at all if it contains
continue statement that is not within at least ombile or for statement. Theontinue statement is
evaluated as:

1. Return “abrupt completion becausecohtinue .

12.8 TheBREAKstatement
Syntax
BreakStatement
break ;
An ECMAScript program is considered syntactically incorrect and may not be executed at all if it cobtaais a
statement that is not within at least avigle orfor statement. Thbreak statement is evaluated as:
1. Return “abrupt completion becauseébofak .
12.9 TheRETURNstatement
Syntax
ReturnStatement

return [no LineTerminatorhere] Expressiogpt ;

An ECMAScript program is considered syntactically incorrect and may not be executed at all if it contains
return statement that is not within th&glock of a FunctionDeclaration It causes a function to cease execution
and return a value to the callerBkpressions omitted, the return value is thedefined value. Otherwise, the
return value is the value &xpression

The productiorReturnStatement return [no LineTerminatorhere] Expressiogy; is evaluated as:

1. If theExpressions not present, return “abrupt completion becausetafn undefined'.
2. EvaluateExpression

- 56 -

3. Call GetValue(Result(2)).
4. Return “abrupt completion becauseeatiirn V”, where the valu® is Result(3).

12.10 TheWITH statement

Syntax

WithStatement
with (Expressior) Statement

Description

Thewith statement adds a computed object to the front of the scope chain of the current execution context, then
executes a statement with this augmented scope chain, then restores the scope chain.

Semantics
The productiolWithStatementwith (Expression) Statemenis evaluated as follows:

EvaluateExpression

Call GetValue(Result(1)).

Call ToObject(Result(2)).

Add Result(3) to the front of the scope chain.
EvaluateStatementising the augmented scope chain from step 4.
Remove Result(3) from the front of the scope chain.

Return Result(5).

NookrownE

Discussion

Note that no matter how control leaves the embedtatementwhether normally or by some form of abrupt
completion, the scope chain is always restored to its former state.

13 Function Definition

Syntax

FunctionDeclaration
function Identifier(FormalParameterLigf;) Block

FormalParameterList
Identifier
FormalParameterList ldentifier

Semantics

Defines a property of the global object whose name itdrgtifier and whose value is a function object with the given
parameter list and statements. If the function definition is supplied text ev#the function and the calling context

has an activation object, then the declared function is added to the activation object instead of to the global object. See
section10.1.3.

The productionFunctionDeclaration function Identifier () Block is processed for function declarations as
follows:

1. Create a new Function object (15.3.2.1) with no parameteBigbkas the body, anidlentifier as its name.
2. Put this new Function object as the new value of the property rdexgdier in the global object or the activation
object, as appropriate (see above).

The productiorFunctionDeclarationfunction Identifier (FormalParameterLis} Blockis processed for function
declarations as follows:

1. Create a new Function object (15.3.2.1) with the parameters specifiedRoritiedParameterListhe Block as the
body, anddentifier as its name.

2. Put this new Function object as the new value of the property ndemdiier in the global object or the activation
object, as appropriate (see above).

14

- 57 -

Program

Syntax

15

Program:
SourceElements

SourceElements
SourceElement
SourceElements SourceElement

SourceElement
Statement
FunctionDeclaration

The productiorProgram: SourceElementss evaluated as follows:

1. Proces$SourceElement®r function declarations.
2. EvaluateSourceElements
3. Return Result(2).

The productiorSourceElementsSourceElemeis processed for function declarations as follows:
1. Proces$ourceElemerfor function declarations.
The productiorSourceElemenisSourceElemens evaluated as follows:

1. EvaluateSourceElement
2. Return Result(1).

The productiorSourceElementsSourceElements SourceElemisnprocessed for function declarations as follows:

1. ProcesSourceElement®r function declarations.
2. ProcesSourceElemerfor function declarations.

The productiorSourceElementsSourceElements SourceElemsnévaluated as follows:

1. EvaluatéSourceElements

2. EvaluatésourceElement

3. If Result(2) is a value completion, return Result(2).
4. Return Result(1).

The productiorSourceElementStatemenis processed for function declarations by taking no action.
The productiorSourceElementStatement isvaluated as follows:

1. EvaluateStatement
2. Return Result(1).

The productiorSourceElement-unctionDeclaratioris processed for function declarations as follows:
1. Proces$&unctionDeclaratiorfor function declarations.
The productiorSourceElementunctionDeclaratioris evaluated as follows:

1. Return “normal completion”.

Native ECMAScript objects

There are certain built-in objects available whenever an ECMAScript program begins execution. One, the glo
object, is in the scope chain of the executing program. Others are accessible as initial properties of the global objec

Many built-in objects are functions: they can be invoked with arguments. Some of them furthermore are construct
they are functions intended for use with tiew operator. For each built-in function, this specification describes the

arguments required by that function and properties of the function object. For each built-in constructor, tf
specification furthermore describes properties of the prototype object of that constructor and properties of spec

object instances returned byew expression that invokes that constructor.

- 58 -

Unless otherwise specified in the description of a particular function, if a function or constructor described in this
section is given fewer arguments than the function is specified to require, the function or constructor shall behave
exactly as if it had been given sufficient additional arguments, each such argument benugtimed value.

None of the built-in functions described in this section shall initially havargmments property, nor is one ever
automatically added during execution in the manner described for script functions in section 10.1.8.

Every built-in function and every built-in constructor has the Function prototype object, which is the value of the
expressionFunction.prototype (15.3.3.1), as the value of its internal [[Prototype]] property, except the
Function prototype object itself.

Every built-in prototype object has the Object prototype object, which is the value of the expression
Object.prototype (15.2.3.1), as the value of its internal [[Prototype]] property, except the Object prototype
object itself. Every native prototype object associated with a program-created function also has the Object prototype
object as the value of its internal [[Prototype]] property.

None of the built-in functions described in this section shall implement the internal [[Construct]] method unless
otherwise specified in the description of a particular function. None of the built-in functions described in this section
shall initially have grototype property unless otherwise specified in the description of a particular function.Every
built-in function object described in this section—whether as a constructor, an ordinary function, or both—has a
length property whose value is an integer. Unless otherwise specified, this value is equal to the number of named
arguments shown in the section heading for the function description; for example, the function object that is the initial
value of the indexOf property of the String prototype object is described under the section heading
“indexOf(searchString, position)” which shows the two named argunseatischStringand positiony therefore the

value of thelength property of that function object B. Sometimes the same function object is described under
more than one heading to emphasize its different behaviors when given different numbers of actual arguments; in such
a case, unless otherwise specified, ldrggth value is the largest number of arguments shown in any applicable
section heading. For example, the function object that is the initial value Objbet property of the global object

is described under four separate headings: as a function of one argument (section 15.2.1.1), as a function of zero
arguments (section 15.2.1.2), as a constructor of one argument (15.2.2.1), and as a constructor of zero arguments
(15.2.2.2). The largest number of arguments described is 1, so the valuelarigiiie property of that function

object isl.

In every case, kength property of a built-in function object described in this section has the attributes { ReadOnly,
DontDelete, DontEnum } (and no others). Every other property described in this section has the attribute
{ DontEnum } (and no others) unless otherwise specified.
15.1 The global object
The global object does not have a [[Construct]] property; it is not possible to use the global object as a constructor
with thenew operator.
The global object does not have a [[Call]] property; it is not possible to invoke the global object as a function.
The value of the [[Prototype]] property of the global object is implementation-dependent.

15.1.1 Value properties of the global object
15.1.1.1 NaN
The initial value oNaNis NaN.

15.1.1.2 Infinity
The initial value ofnfinity iS +00,

15.1.2 Function properties of the global object
15.1.2.1 eval(x)
When theeval function is called with one argumentthe following steps are taken:

If x is not a string value, retusa

Parsecas an ECMAScripProgram If the parse fails, generate a runtime error.
Evaluate the program from step 2.

If Result(3) is “normal completion after valug return the valué/.
Returnundefined.

agrwNE

15.1.2.2

15.1.2.3

- 59 -

parselnt(string, radix)

The parselnt function produces an integer value dictated by intepretation of the contents sifirtige
argument according to the specifiedlix.

When theparselnt function is called, the following steps are taken:

1. Call ToString$tring).

2. Compute a substring of Result(1) consisting of the leftmost character that iStnéthete SpaceChaand
all characters to the right of that character. (In other words, remove leading whitespace.)

3. Letsignbe 1.

If Result(2) is not empty and the first character of Result(2) is a minus digtrsignbe-1.

5. If Result(2) is not empty and the first character of Result(2) is a plusts@na minus sign , then

Result(5) is the substring of Result(2) produced by removing the first character; otherwise, Result(5)

Result(2).

If theradix argument is not supplied, go to step 12.

Call Tolnt32(adix).

If Result(7) is zero, go to step 12; otherwise, if Result(7) < 2 or Result(7) > 36,Mairn

LetR be Result(7).

0.1fR= 16 and the length of Result(5) is at least 2 and the first two characters of Result(5) ar@xitber “

“0X", let S be the substring of Result(5) consisting of all but the first two characters; otherwiSéelet
Result(5).

11. Go to step 22.

12. If Result(5) is empty or the first character of Result(5) i©ngb to step 20.

13. If the length of Result(5) is at least 2 and the second character of Result@)sgo to step 17.

14.Let R be 8.

15. LetSbe Result(5).

16. Go to step 22.

17.Let R be 16.

18. LetSbe the substring of Result(5) consisting of all but the first two characters.

19. Go to step 22.

20.Let R be 10.

21. LetSbe Result(b).

22.If S contains any character that is not a ragigigit, then letZ be the substring db consisting of all
characters to the left of the leftmost such character; otherwigebéss.

23.If Z is empty, returiNaN.

24. Compute the mathematical integer value that is represenih bgdixR notation. (But if R is 10 and
contains more than 20 significant digits, every digit after the 20th may be replaced ldigit, at the
option of the implementation; and if R is not 2, 4, 8, 10, 16, or 32, then Result(24) may be a
implementation-dependent approximation to the mathematical integer value that is represented by
radix-R notation.)

25. Compute the number value for Result(24).

26. Returrsign [(Result(25).

»

Hoo~No

Note thatparselnt may interpret only a leading portion of the string as an integer value; it ignores any
characters that cannot be interpreted as part of the notation of an integer, and no indication is given that
such characters were ignored.

parseFloat(string)

The parseFloat function produces a number value dictated by intepretation of the contentsstririje
argument as a decimal literal.

When theparseFloat function is called, the following steps are taken:

1. Call ToString$tring).

2. Compute a substring of Result(1) consisting of the leftmost character that iStnédthete SpaceChaand
all characters to the right of that character.(In other words, remove leading whitespace.)

3. If neither Result(2) nor any prefix of Result(2) satisfies the syntax Stf2ecimalLiteral(see 9.3.1),
returnNaN.

- 60 -

4. Compute the longest prefix of Result(2), which might be Result(2) itself, that satisfies the syntax of a
StrDecimalLiteral
5. Return the number value for the MV of Result(4).

Note thatparseFloat may interpret only a leading portion of the string as a number value; it ignores any
characters that cannot be interpreted as part of the notation of an decimal literal, and no indication is given that
any such characters were ignored.

15.1.2.4 escape(string)

The escape function computes a new version of a string value in which certain characters have been
replaced by a hexadecimal escape sequence. The result thus contains no special characters that might have
special meaning within a URL.

For characters whose Unicode encodin@xBF or less, a two-digit escape sequence of the fidris used
in accordance with RFC1738. For characters whose Unicode encoding is greateéxRRara four-digit
escape sequence of the fo¥bakxxxis used

When theescape function is called with one argumestting, the following steps are taken:

Call ToStringstring).

Compute the number of characters in Result(1).

LetR be the empty string.

Letk be 0.

If k equals Result(2), retuR

Get the character at positikmvithin Result(1).

If Result(6) is one of the 69 nonblank ASCIlI charact&dBCDEFGHIJKLMNOPQRSTUVWXYZ

abcdefghijkimnopgrstuvwxyz 0123456789 @* +-./ , goto step 14.

8. Compute the 16-bit unsigned integer that is the Unicode character encoding of Result(6).

9. If Result(8), is less than 256, go to step 12.

10.Let She a string containing six characte¥suvxyZ? wherewxyzare four hexadecimal digits encoding the
value of Result(8).

11.Go to step 15.

12.Let S be a string containing three characteygy’ where xy are two hexadecimal digits encoding the
value of Result(8).

13.Go to step 15.

14. LetSbe a string containing the single character Result(6).

15. LetR be a new string value computed by concatenating the previous vdtuendt.

16. Increasd& by 1.

17. Go to step 5.

NookrwhrE

15.1.2.5 unescape(string)

Theunescape function computes a new version of a string value in which each escape sequences of the sort
that might be introduced by tlescape function is replaced with the character that it represents.

When theunescape function is called with one argumesiting, the following steps are taken:

1. Call ToStringétring).

2. Compute the number of characters in Result(1).

3. LetRbe the empty string.

4. Letkbe 0.

5. Ifk equals Result(2), retufR

6. Letc be the character at positiwithin Result(1).

7. If cis not% go to step 18.

8. If kis greater than Result(), go to step 14.

9. If the character at positidk+1 within result(1) is noti, go to step 14.

10.1f the four characters at positiok$2, k+3, k+4, andk+5 within Result(1) are not all hexadecimal digits,
go to step 14.

11.Letc be the character whose Unicode encoding is the integer represented by the four hexadecimal digits at
positionsk+2, k+3, k+4, andk+5 within Result(1).

12.Increase k by 5.

- 61 -

13.Go to step 18.

14.1f k is greater than Result(3, go to step 18.

15.If the two characters at positioksl andk+2 within Result(1) are not both hexadecimal digits, go to step
18.

16.Let ¢ be the character whose Unicode encoding is the integer represented by two zeroes plus the |
hexadecimal digits at positioks1 andk+2 within Result(1).

17.Increasek by 2.

18. LetR be a new string value computed by concatenating the previous vdusndt.

19. Increasé& by 1.

20. Go to step 5.

15.1.2.6 isNaN(number)

Applies ToNumber to its argument, then retume if the result ifNaN, and otherwise returrialse

15.1.2.7 isFinite(number)

Applies ToNumber to its argument, then retufaise if the result isNaN, +o, or —eo, and otherwise returns
true.

15.1.3 Constructor Properties of the Global Object
15.1.3.1 Object(...)
See sections 15.2.1 and 15.2.2.
15.1.3.2 Function(.. .)
See sections 15.3.1 and 15.3.2.
15.1.3.3 Array(...)
See section 15.4.1.
15.1.3.4 String(...)
See sections 15.5.1 and 15.5.2.
15.1.3.5 Boolean(...)
See sections 15.6.1 and 15,6,2.
15.1.3.6 Number(...)
See sections 15.7.1 and 15.7.2.
15.1.3.7 Date(...)
See section 15.9.2.
15.1.4 Other Properties of the Global Object
15.1.4.1 Math
See section 15.8.

15.2 Object Objects
15.2.1 The Object Constructor Called as a Function
WhenObject is called as a function rather than as a constructor, it performs a type conversion.
15.2.1.1 Object(value)
When theObject function is called with one argumerglue the following steps are taken:

1. If thevalueis null or undefined, create and return a newobject with no properties (other than internal
properties) exactly as if the object constructor had been called on that same value (15.2.2.1).
2. Return ToObject(alue.

15.2.1.2 Object()
When theObject function is called with no arguments, the following step is taken:

- 62 -

1. Create and return a newobject with no properties (other than internal properties) exactly if the object
constructor had been called with no argument (15.2.2.2).

15.2.2 The Object Constructor
WhenObject is called as part of mew expression, it is a constructor that may create an object.

15.2.2.1 new Object(value)
When theObject constructor is called with one argumeatue the following steps are taken:

1. If the type of thealueis not Object, go to step 4.

2. If thevalueis a native ECMAScript object, do not create a new object; simply realue

3. If thevalueis a host object, then actions are taken and a result is returned in an implementation-dependent
manner that may depend on the host object.

If the type of the value is String, return ToObjeal(e.

If the type of thevalueis Boolean, return ToObjeelug.

If the type of thevalueis Number, return ToObjeci#lue.

(The type of thealuemust be Null or Undefined.) Create a new native ECMAScript object.
The [[Prototype]] property of the newly constructed object is set to the Object prototype object.
The [[Class]] property of the newly constructed object is s&Dbject”

The newly constructed object has no [[Value]] property.
Return the newly created native object.
15.2.2.2 new Object()

When theObject constructor is called with no argument, the following step is taken:

No gk

1. Create a new native ECMAScript object.
The [[Prototype]] property of the newly constructed object is set to the Object prototype object.
The [[Class]] property of the newly constructed object is s&Dhgect”
The newly constructed object has no [[Value]] property.
Return the newly created native object.

15.2.3 Properties of the Object Constructor
The value of the internal [[Prototype]] property of the Object constructor is the Function prototype object.

Besides the internal [[Call]] and [[Construct]] properties andlength property, the Object constructor has
the following properties:

15.2.3.1 Object.prototype
The initial value ofObject.prototype is the built-in Object prototype object (15.2.4).

This property shall have the attributes { DontEnum, DontDelete, ReadOnly }.

15.2.4 Properties of the Object Prototype Object
The value of the internal [[Prototype]] property of the Object prototype objedtlis

15.2.4.1 Object.prototype.constructor
The initial value ofObject.prototype.constructor is the built-inObject constructor.

15.2.4.2 Object.prototype.toString()
When thetoString method is called, the following steps are taken:

1. Getthe [[Class]] property of this object.
2. Call ToString(Result(1)).
3. Compute a string value by concatenating the three stfwigject " , Result(2), and]" .

4. Return Result(3).

15.2.4.3 Object.prototype.valueOf()

As a rule, the valueOf method for an object simply returns the object; but if the object is a “wrapper” for a
host object, as may perhaps be created by the Object constructor (see section 15.2.2.1), then the contained host

object should be returned.

15.2.5

- 63 -

Properties of Object Instances
Object instances have no special properties beyond those inherited from the Object prototype object.

15.3 Function Objects

15.3.1

15.3.1.1

15.3.2

15.3.2.1

The Function Constructor Called as a Function

WhenFunction is called as a function rather than as a constructor, it creates and initializes a new functic
object. Thus the function calFunction(...) is equivalent to the object creation expressitew
Function(...) with the same arguments.

Function(pl, p2, ..., pn, body)

When theFunction function is called with some argumepts p2, . . . ,pn, body (wheren might be 0, that
is, there are nop” arguments, and whet@dymight also not be provided), the following steps are taken:

1. Create and return a new Function object exactly if the function constructor had been called with the sa
arguments (15.3.2.1).

The Function Constructor
WhenFunction is called as part of mew expression, it is a constructor: it initializes the newly created object.

new Function(pl, p2, ..., pn, body)

The last argument specifies the body (executable code) of a function; any preceding arguments specify for|
parameters.

When theFunction constructor is called with some argumepisp2, . . . ,pn, body (wheren might be 0,
that is, there are n@" arguments, and whet@mdymight also not be provided), the following steps are taken:

LetP be the empty string.

If no arguments were given, ledybe the empty string and go to step 13.

If one argument was given, leddybe that argument and go to step 13.

Let Result(4) be the first argument.

LetP be ToString(Result(4)).

Letk be 2.

If k equals the number of arguments betlybe thek'th argument and go to step 13.

Let Result(8) be thieth argument.

. Call ToString(Result(8)).

10. LetP be the result of concatenating the previous valu® tie strind'," (a comma), and Result(9).

11.Increase by 1.

12.Go to step 7.

13.Call ToStringbody).

14. LetF be the newly constructed Function object.

15.The [[Class]] property oF is set td'Function”

16.The [[Prototype]] property of is set to the original Function prototype object, the one that is the initial
value ofFunction.prototype (15.3.3.1)

17.Set the [[Call]] property of to a method such that, when it is invoked, the executable function will be
invoked whose formal parameters are specifiedPbgnd whose body is specified by Result(13). The
string valueP must be parsable asF@rmalParameterLisf; the string value result(13) must be parsable
as aStatementLig}. (Note that bothP and Result(13) may contain whitespace, line terminators, and
comments.) However, if eitheP or Result(13) is syntactically incorrect, or otherwise cannot be
interpreted as part of a correct ECMAScript function definition, then the [[Call]] propeRyi®hot set
and a runtime error is generated.

18.Set the [[Construct]] property &f to a method that, when it is invoked, constructs a new object whose

[[Prototype]] property is equal to the value Bfprototype at the time the [[Construct]] method is

invoked (but if this value is not an object then the valu®lgject.prototype is used), then invokes

F as a function (using its [[Call]] property) with the new object astliiee value and the arguments

given to the [[Construct]] method as the arguments. If the result of invoking the [[Call]] method is ar

object, that object becomes the result of the invocation of the [[Construct]] method; otherwise the ne

object becomes the result of the invocation of the [[Construct]] method.

©CNorwWNE

15.3.3
15.3.3.1

15.3.3.2

15.3.4

15.3.4.1

15.3.4.2

15.3.5

15.3.5.1

- 64 -

19.If the toString method ofF is later invoked, it will usednonymous ” as the name of the function in
rendering the function as a string.

20.Compute, as an integer number value of positive sign, the number of formal parameters that resulted from
the parse oP as aFormalParameterLisf,

21.The length property of F is set to Result(20). This property is given attributes { DontDelete,
DontEnum, ReadOnly }.

22.Create a new object as if by the expressiew Object()

23. Theprototype property ofF is set to Result(22). This property is given attributes { DontEnum }.

24. Theconstructor property ofResult(22) iset toF. This property is given attributes { DontEnum }.

25. Thearguments property ofF is set tonull. This property is given attributes { DontDelete, DontEnum,
ReadOnly }.

Note that it is permissible but not necessary to have one argument for each formal parameter to be specified.
For example, all three of the following expressions produce the same result:

new Function(“a”, “b”, “c”, “return a+b+c")
new Function(“a, b, c”, “return a+b+c”)
new Function(“a,b”, “c”, “return a+b+c")

A prototype property is automatically created for every function, against the possibility that the function
will be used as a constructor.

Properties of the Function Constructor
Function.prototype
The initial value ofFunction.prototype is the built-in Function prototype object (15.3.4).
This property shall have the attributes { DontEnum, DontDelete, ReadOnly }.

Function.length

Thelength property isl. (Of course, the Function constructor accepts more than one argument, because it
accepts a variable number of arguments.)

Properties of the Function Prototype Object

The Function prototype object is itself a Function object (its [[Class]Fusiction”) that, when invoked,
accepts any arguments and retwndefined.

The value of the internal [[Prototype]] property of the Function prototype object is the Object prototype object
(15.2.3.1).

Itis a function with an “empty body?”; if it is invoked, it merely retuumslefined.

The Function prototype object does not hawalaeOf property of its own; however, it inherits thialueOf
property from the Object prototype Object.

Function.prototype.constructor
The initial value ofFunction.prototype.constructor is the built-inFunction constructor.

Function.prototype.toString()

An implementation-dependent representation of the function is returned. This representation has the syntax of
a FunctionDeclaration Note in particular that the use and placement of whitespace, line terminators, and
semicolons within the representation string is implementation-dependent.

ThetoString function is not generic; it generates a runtime error thitss value is not a Function object.
Therefore it cannot be transferred to other kinds of objects for use as a method.

Properties of Function Instances

Every function instance has a [[Call]] property and a [[Construct]] property.

length

The value of thdength property is usually an integer that indicates the “typical” humber of arguments
expected by the function. However, the language permits the function to be invoked with some other nhumber

- 65 -

of arguments. The behavior of a function when invoked on a number of arguments other than the numl
specified by itdength property depends on the function.

15.3.5.2 prototype

The value of theprototype property is used to initialize the internal [[Prototype]] property of a newly
created object before the Function object is invoked as a constructor for that newly created object.

15.3.5.3 arguments

15.4

15.4.1

The value of tharguments property is normallywull if there is no outstanding invocation of the function in
progress (that is, the function has been called but has not yet returned). When a non-internal Function ob
(15.3.2.1) is invoked, it@rguments property is “dynamically bound” to a newly created object that
contains the arguments on which it was invoked (see 10.1.6 and 10.1.8). Note that the use of this propert
discouraged; it is provided principally for compatibility with existing old code.

Array Objects

Array objects give special treatment to a certain class of property names. A properfy fiartes form of a string
value) is ararray indexif and only if ToString(ToUint32)) is equal toP and ToUint32P) is not equal to Z-1.

Every Array object has length property whose value is always an integer with positive sign and less’thén 2

is always the case that thength property is numerically greater than the name of every property whose name i
an array index; whenever a property of an Array object is created or changed, other properties are adjustec
necessary to maintain this invariant. Specifically, whenever a property is added whose name is an array index,
length property is changed, if necessary, to be one more than the numeric value of that array index; and whene
thelength property is changed, every property whose name is an array index whose value is not smaller than
new length is automatically deleted. This constraint applies only to properties of the Array object itself and
unaffected byength or array index properties that may be inherited from its prototype.

The Array Constructor Called as a Function

WhenArray is called as a function rather than as a constructor, it creates and initializes a new array obje
Thus the function calrray (...) is equivalent to the object creation expressiew Array (...) with
the same arguments.

15.4.1.1 Array(itemO, item1, . . .)

An array is created and returned as if by the expresgianArray (itemQ iteml, ..).

15.4.1.2 Array(len)

An array is created and returned as if by the expressanArray (len) .

15.4.1.3 Array()

15.4.2

An array is created and returned as if by the expresganrArray () .

The Array Constructor
WhenArray is called as part of @ew expression, it is a constructor: it initializes the newly created object.

15.4.2.1 new Array(itemO, item1, . . .)

This description applies if and only if the Array constructor is given two or more arguments.

The [[Prototype]] property of the newly constructed object is set to the original Array prototype object, thi
one that is the initial value @frray.prototype (15.4.3.1)

The [[Class]] property of the newly constructed object is stat@y"
Thelength property of the newly constructed object is set to the number of arguments.

The 0 property of the newly constructed object is satdamQ the 1 property of the newly constructed object
is set toitem1 and, in general, for as many arguments as there ark,ptaperty of the newly constructed
object is set to argumektwhere the first argument is considered to be argument ninber

15.4.2.2 new Array(len)

The [[Prototype]] property of the newly constructed object is set to the original Array prototype object, thi
one that is the initial value dfrray.prototype (0).The [[Class]] property of the newly constructed object
is set to'Array”

15.4.2.3

15.4.3

15.4.3.1

15.4.3.2

15.4.4

15.4.4.1

15.4.4.2

15.4.4.3

- 66 -

If the argumentlen is a number, then thkength property of the newly constructed object is set to
ToUint32(en). If the argumenlen is not a number, then tihength property of the newly constructed object
is set tol and theD property of the newly constructed object is sdéto

new Array()

The [[Prototype]] property of the newly constructed object is set to the original Array prototype object, the
one that is the initial value oArray.prototype (15.4.3.1)The [[Class]] property of the newly
constructed object is set ‘tArray"

Thelength property of the newly constructed object is set@o
Properties of the Array Constructor
The value of the internal [[Prototype]] property of the Array constructor is the Function prototype object.
Besides the internal [[Call]] and [[Construct]] properties, the Array constructor has the following properties:
Array.prototype
The initial value ofArray.prototype is the built-in Array prototype object (15.4.4).
This property shall have the attributes { DontEnum, DontDelete, ReadOnly }.

Array.length
Thelength property isl. (Of course, the Array constructor accepts more than one argument, because it
accepts a variable number of arguments.)
Properties of the Array Prototype Object
The value of the internal [[Prototype]] property of the Array prototype object is the Object prototype object
(15.2.3.1).

Note that the Array prototype object is itself an array; it hesgth property (whose initial value i80) and

the special internal [[Put]] method described in section 15.4.5.1. In following descriptions of functions that are
properties of the Array prototype object, the phrase “this object” refers to the object thathis thealue for

the invocation of the function. It is permitted fhis to refer to an object for which the value of the internal
[[Class]] property is notArray"

The Array prototype object does not haveadueOf property of its own; however, it inherits thalueOf
property from the Object prototype Object.

Array.prototype.constructor
The initial value ofArray.prototype.constructor is the built-inArray constructor.

Array.prototype.toString()

The elements of this object are converted to strings, and these strings are then concatenated, separated by

comma characters. The result is the same as if the bidlitain method were invoked for this object with no
argument.

Array.prototype.join(separator)

The elements of the array are converted to strings, and these strings are then concatenated, separated by

occurrences of theeparator If no separator is provided, a single comma is used as the separator.
When thgoin method is called with one argumeeiparator the following steps are taken:

1. Call the [[Get]] method of this object with argum#denhgth”

2. Call ToUint32(Result(1)).

3. If separatoris not supplied, leteparatorbe the single-character strihg .

4. Call ToStringgéeparatoy.

5. If Result(2) i, return the empty string.

6. Call the [[Get]] method of this object with argument ToStng(

7. If Result(6) isundefined or null, use the empty string; otherwise, call ToString(Result(6)).
8. LetRbe Result(7).
9. Letkbel.
10. If k equals Result(2), retuf

15.4.4.4

15.4.4.5

- 67 -

11. LetSbe a string value produced by concatenaframnd Result(4).

12. Call the [[Get]] method of this object with argument ToStikhg(

13. If Result(12) isindefined or null, use the empty string; otherwise, call ToString(Result(12)).
14. LetR be a string value produced by concatenafiagd Result(13).

15. Increasé& by 1.

16. Go to step 10.

Note that thgoin function is intentionally generic; it does not require thattits value be an Array
object. Therefore it can be transferred to other kinds of objects for use as a method. Whegthier the
function can be applied successfully to a host object is implementation dependent .

Array.prototype.reverse()

The elements of the array are rearranged so as to reverse their order. This object is returned as the result
call.

Call the [[Get]] method of this object with argum#denhgth”

Call ToUint32(Result(1)).

Compute floor(Result(2)/2).

Letk beO.

If k equals Result(3), return this object.

Compute Result(Zk-1.

Call ToStringk).

ToString(Result(6)).

Call the [[Get]] method of this object with argument Result(7).

10 Call the [[Get]] method of this object with argument Result(8).

11. If this object has a property named by Result(8), go to step 12; but if this object has no property named
Result(8), then go to either step 12 or step 14, depending on the implementation.

12. Call the [[Put]] method of this object with arguments Result(7) and Result(10).

13. Go to step 15.

14. Call the [[Delete]] method on this object, providing Result(7) as the name of the property to delete.

15. If this object has a property named by Result(7), go to step 16; but if this object has no property named
Result(7), then go to either step 16 or step 18, depending on the implementation.

16. Call the [[Put]] method of this object with arguments Result(8) and Result(9).

17. Go to step 19.

18. Call the [[Delete]] method on this object, providing Result(8) as the name of the property to delete.

19. Increasé& by 1.

20.Go to step 5.

CoNooO~wNE

Note that theeverse function is intentionally generic; it does not require thathits value be an Array
object. Therefore it can be transferred to other kinds of objects for use as a method. Whetweardbe
function can be applied successfully to a host object is implementation dependent .

Array.prototype.sort(comparefn)

The elements of this array are sorted. The sort is not necessarily stable. If comparefn is provided, it shoulc
a function that accepts two argumexit@ndy and returns a negative valueik y, zero ifx =y, or a positive
value ifx >y.

1. Call the [[Get]] method of this object with argumdehgth”

2. Call ToUint32(Result(1)).

3. Perform an implementation-dependent sequence of calls to the [[Get]] , [[Put]], and [[Delete]] methods o
this object and toSortCompare (described below), where the first argument for each call to [[Get]], [[Put]
, or [[Delete]] is a nonnegative integer less than Result(2) and where the arguments for calls to
SortCompare are results of previous calls to the [[Get]] method. After this sequence is complete, this
object must have the following two properties.
(1) There must be some mathematical permutatiohthe nonnegative integers less than Result(2), such
that for every nonnegative integdess than Result(2), if propertyd[j] existed, themew[11j)] is
exactly the same value aekl[] ,. butif propertyold[j] did not exist, themew][1(j)] either does not
exist or exists with valuendefined.
(2) If comparefris not supplied or is a consistent comparison function for the elements of this array, then

15.4.5

15.45.1

- 68 -

for all nonnegative integefsandk, each less than Result(2)pifi[j] compares less thamd[K]
(see SortCompare below), thaf)) < (k).
Here we use the notatiatd[] to refer to the hypothetical result of calling the [[Get]] method of this
object with argumerijtbefore this step is executed, and the notatmm(j] to refer to the hypothetical
result of calling the [[Get]] method of this object with argumjeaiiter this step has been completely
executed.
A function is a consistent comparison function for a set of values if (a) for any two of those values
(possibly the same value) considered as an ordered pair, it always returns the same value when given that
pair of values as its two arguments, and the result of applying ToNumber to this valusasingi)
when considered as a relation, where the pai) (s considered to be in the relation if and only if
applying the function ta andy and then applying ToNumber to the result produces a negative value, this
relation is a partial order; and (c) when considered as a different relation, where tRgypasr (
considered to be in the relation if and only if applying the functionatedy and then applying ToNumber
to the result produces a zero value (of either sign), this relation is an equivalence reldhisncontext,
the phrasex compares less that meansapplying Result(2) ta andy and then applying ToNumber to
the result produces a negative value

4. Return this object.

When the SortCompare operatoris called with two argunxeantsly, the following steps are taken:

If x andy are bothundefined, return+0.
If X is undefined, return 1.

If y isundefined, return—1.

If the argumentomparefrwas not provided in the call sort , go to step 7.
Callcomparefrwith arguments andy.
Return Result(5).

Call ToStringx).

Call ToStringy).

9. If Result(7) < Result(8), returf.

10. If Result(7) > Result(8), return 1.

11. Returnt+O0.

ONoOA~®WNE

Note that, becausendefined always compared greater than any other value, undefined and nonexistent
property values always sort to the end of the result. It is implementation-dependent whether or not such
properties will exist or not at the end of the array when the sort is concluded.

Note that thesort function is intentionally generic; it does not require thathts value be an Array
object. Therefore it can be transferred to other kinds of objects for use as a method. Wheghar the
function can be applied successfully to a host object is implementation dependent .

Properties of Array Instances
Array instances inherit properties from the Array prototype object and also have the following properties.

[([Put]](P, V)

Array objects use a variation of the [[Put]] method used for other native ECMAScript objects (section
8.6.2.2).

AssumeA is an Array object anB is a string.
When the [[Put]] method d4 is called with property and valueV, the following steps are taken:

Call the [[CanPut]] method & with name P.

If Result(1) is false, return.

If A doesn’'t have a property with nafRego to step 7.

If P is"length" , go to step 12.

Set the value of properBof Ato V.

Go to step 8.

Create a property with narReset its value t& and give it empty attributes.

If P is not an array index, return.

If A itself has a property (not an inherited property) nafherngth” , andToUint32P) is less than the
value of thdength property ofA, then return.

©CoNoGOhr~wWNE

- 69 -

10. Change (or set) the value of thegth property ofA to ToUint32f)+1.

11. Return.

12. Compute ToUint32().

13. For every integét that is less than the value of leegth property ofA but not less than Result(12), if
Aitself has a property (not an inherited property) named ToStjirnhen delete that property.

14. Set the value of proper@yof A to Result(12).

15. Return.

15.4.5.2 length

The length property of this Array object is always numerically greater than the name of every property
whose name is an array index.

Thelength property has the attributes { DontEnum, DontDelete }.
15.5 String Objects

15.5.1 The String Constructor Called as a Function
WhenString is called as a function rather than as a constructor, it performs a type conversion.

15.5.1.1 String(value)

Returns a string value (not a String object) computed by ToString(value).
15.5.1.2 String()

Returns the empty strirg .

15.5.2 The String Constructor
WhenString is called as part of @ew expression, it is a constructor: it initializes the newly created object.

15.5.2.1 new String(value)

The [[Prototype]] property of the newly constructed object is set to the original String prototype object, th
one that is the initial value &tring.prototype (15.5.3.1)

The [[Class]] property of the newly constructed object is s&tiing™
The [[Value]] property of the newly constructed object is set to ToString(value).

15.5.2.2 new String()
The [[Prototype]] property of the newly constructed object is set to the original String prototype object, th
one that is the initial value &tring.prototype (15.5.3.1)
The [[Class]] property of the newly constructed object is s&btiing"
The [[Value]] property of the newly constructed object is set to the empty string.

15.5.3 Properties of the String Constructor
The value of the internal [[Prototype]] property of the String constructor is the Function prototype object.
Besides the internal [[Call]] and [[Construct]] properties andeghgth property, the String constructor has the
following properties:
15.5.3.1 String.prototype
The initial value ofString.prototype is the built-in String prototype object (15.5.4).

This property shall have the attributes { DontEnum, DontDelete, ReadOnly }.

15.5.3.2 String.fromCharCode(char0O, charl, . . .)

Returns a string value containing as many characters asthe number of arguments. Each argument specifie:
character of the resulting string, with the first argument specifying the first character, and so on, from left
right. An argument is converted to a character by applying the operation ToUint16 (section 9.7) and regardi
the resulting 16-bit integer as the Unicode encoding of a character. If no arguments are supplied, the resu
the empty string.

15.5.4

15.5.4.1

15.5.4.2

- 70 -

Properties of the String Prototype Object
The String prototype object is itself a String object (its [[Classpteing”) whose value is an empty string.

The value of the internal [[Prototype]] property of the String prototype object is the Object prototype object
(15.2.3.1).

In following descriptions of functions that are properties of the String prototype object, the phrase “this String
object” refers to the object that is ttheés value for the invocation of the function; it is an errothis does

not refer to an object for which the value of the internal [[Class]] propet§tigmg” . Also, the phrase “this

string value” refers to the string value represented by this String object, that is, the value of the internal [[Value]]
property of this String object.

String.prototype.constructor
The initial value ofString.prototype.constructor is the built-inString constructor.

String.prototype.toString()

Returns this string value. (Note that, for a String objecttdBéring method happens to return the same
thing as thevalueOf method.)

ThetoString function is not generic; it generates a runtime error ithitls value is not a String object.
Therefore it cannot be transferred to other kinds of objects for use as a method.

15,5,4,3 String.prototype.valueOf()

Returns this string value.

The valueOf function is not generic; it generates a runtime error ifhits value is not a String object.
Therefore it cannot be transferred to other kinds of objects for use as a method.

15.5.4.4 String.prototype.charAt(pos)

Returns a string containing the character at posi@sin this string. If there is no character at that position,
the result is the empty string. The result is a string value, not a String object.

If posis a value of Number type that is an integer, then the resxitlwdrAt(po9 is equal to the result of
x.substring(pos postl) .

When thecharAt method is called with one argumgts the following steps are taken:

Call ToString, giving it théhis value as its argument.

Call Tolntegergos.

Compute the number of characters in Result(1).

If Result(2) is less than 0 or is not less than Result(3), return the empty string.

Return a string of length 1, containing one character from Result(1), hamely the character at position
Result(2), where the first (leftmost) character in Result(1) is considered to be at position 0, the next one at
position 1, and so on.

agrwNE

Note that thecharAt function is intentionally generic; it does not require thathts value be a String
object. Therefore it can be transferred to other kinds of objects for use as a method.

15.5.4.5 String.prototype.charCodeAt(pos)

Returns a number (a nonnegative integer less tHamepresenting the Unicode encoding of the character at
positionposin this string. If there is no character at that position, the resNdNs

When thecharCodeAt method is called with one argumgts the following steps are taken:

Call ToString, giving it théhis value as its argument.

Call Tolntegergos.

Compute the number of characters in Result(1).

If Result(2) is less than 0 or is not less than Result(3), rifaikh

Return a value of Number type, of positive sign, whose magnitude is the Unicode encoding of one
character from Result(1), namely the character at position Result(2), where the first (leftmost) character in
Result(1) is considered to be at position 0, the next one at position 1, and so on.

aprLNE

- 71 -

Note that thecharCodeAt function is intentionally generic; it does not require thathts value be a
String object. Therefore it can be transferred to other kinds of objects for use as a method.

15.5.4.6 String.prototype.indexOf(searchString, position)

If the given searchString appears as a substring of the result of converting this object to a string, at one
more positions that are at or to the right of the specified position, then the index of the leftmost such positi
is returned; otherwisel is returned. If position is undefined or not supplied, 0 is assumed, so as to search &
of the string.

When theindexOf method is called with two argumergsarchStringand position the following steps are
taken:

Call ToString, giving it théhis value as its argument.

Call ToStringgearchStriny

Call Tolntegerfosition. (If positionis undefined or not supplied, this step produces the value
Compute the number of characters in Result(1).

Compute min(max(Result(3), 0), Result(4)).

Compute the number of characters in the string that is Result(2).

Compute the smallest possible integaot smaller than Result(5) such tkaResult(6) is not greater than
Result(4), and for all nonnegative integghsss than Result(6), the character at positigrof Result(1) is
the same as the character at positiohResult(2); but if there is no such integgethen compute the value
-1.

8. Return Result(7).

Note that thendexOf function is intentionally generic; it does not require thathts value be a String
object. Therefore it can be transferred to other kinds of objects for use as a method.

Nouokrwhr

15.5.4.7 String.prototype.lastindexOf(searchString, position)

If the given searchString appears as a substring of the result of converting this object to a string, at one
more positions that are at or to the left of the specified position, then the index of the rightmost such positi
is returned; otherwisel is returned. If position is undefined or not supplied, the length of this string value is
assumed, so as to search all of the string.

When thdastindexOf method is called with two argumersisarchStringandposition the following steps
are taken:

Call ToString, giving it th¢his value as its argument.

Call ToStringgearchString

Call ToNumbergosition). (If positionis undefined or not supplied, this step produces the valad!).

If Result(3) ifNaN, use+oo; otherwise, call Tolnteger(Result(3)).

Compute the number of characters in Result(1).

Compute min(max(Result(4), 0), Result(5)).

Compute the number of characters in the string that is Result(2).

Compute the largest possible integerot larger than Result(6) such thatResult(7) is not greater than
Result(5), and for all nonnegative integelsss than Result(7), the character at positigrof Result(1) is
the same as the character at positiohResult(2); but if there is no such integethen compute the value
-1.

9. Return Result(8).

Note that thdastindexOf function is intentionally generic; it does not require thathits value be a
String object. Therefore it can be transferred to other kinds of objects for use as a method.

©ONo~wWNE

15.5.4.8 String.prototype.split(separator)

Returns an Array object into which substrings of the result of converting this object to a string have be
stored. The substrings are determined by searching from left to right for occurrences of the given separa
these occurrences are not part of any substring in the returned array, but serve to divide up this string va
The separator may be a string of any length.

As a special case, if the separator is the empty string, the string is split up into individual characters; the len
of the result array equals the length of the string, and each substring contains one character.

If the separator is not supplied, then the result array contains just one string, which is the string.

- 72 -

When thesplit method is called with one argumeseiparator the following steps are taken:

1. Call ToString, giving it théhis value as its argument.

2. Create a new Array object of len@ittand call itA.

3. If separatoris not supplied, call the [[Put]] method &fwith O and Result(1) as arguments, and then

returnA.

Call ToString¢eparatoy.

Compute the number of characters in Result(1).

Compute the number of characters in the string that is Result(4).

Letp beO.

If Result(6) is zero (the separator string is empty), go to step 17.

Compute the smallest possible integenot smaller tharp such thatk+Result(6) is not greater than

Result(5), and for all nonnegative integglsss than Result(6), the character at positigrof Result(1) is

the same as the character at positiohResult(2); but if there is no such integgethen go to step 14.

10. Compute a string value equal to the substring of Result(1), consisting of the characters at positions
throughk-1, inclusive.

11. Call the [[Put]] method oA with A.length and Result(10) as arguments.

12. Letp bek+Result(6).

13. Go to step 9.

14. Compute a string value equal to the substring of Result(1), consisting of the characters frompptosition
the end of Result(1).

15. Call the [[Put]] method oA with A.length and Result(14) as arguments.

16. Returm.

17.1If p equals Result(5), retufn

18. Compute a string value equal to the substring of Result(1), consisting of the single character gp.position

19. Call the [[Put]] method ok with A.length and Result(18) as arguments.

20. Increase by 1.

21. Go to step 17.

©o~No O A

Note that thesplit function is intentionally generic; it does not require thattits value be a String
object. Therefore it can be transferred to other kinds of objects for use as a method.

15.5.4.9 String.prototype.substring(start)

Returns a substring of the result of converting this object to a string, starting from character stasttéomd
running to the end of the string. The result is a string value, not a String object.

If the argument is NaN or negative, it is replaced with zero; if the argument is larger than the length of the
string, it is replaced with the length of the string.

When thesubstring method is called with one argumestért, the following steps are taken:

Call ToString, giving it th¢his value as its argument.

Call Tolntegemtart).

Compute the number of characters in Result(1).

Compute min(max(Result(2), 0), Result(3)).

Return a string whose length is the difference between Result(3) and Result(4), containing characters from
Result(1), namely the characters with indices Result(4) through Reslit{8)ascending order.

arwbhpE

15.5.4.10 String.prototype.substring(start, end)

Returns a substring of the result of converting this object to a string, starting from character gptasitaor
running to character positi@ndof the string. The result is a string value, not a String object.

If either argument is NaN or negative, it is replaced with zero; if either argument is larger than the length of
the string, it is replaced with the length of the string.

If startis larger tharend they are swapped.
When thesubstring method is called with two argumerstsirt andend the following steps are taken:

1. Call ToString, giving it théhis value as its argument.
2. Call Tolntegestart).
3. Call Tolntegerénd.

- 73 -

Compute the number of characters in Result(1).

Compute min(max(Result(2), 0), Result(4)).

Compute min(max(Result(3), 0), Result(4)).

Compute min(Result(5), Result(6)).

Compute max(Result(5), Result(6)).

Return a string whose length is the difference between Result(8) and Result(7), containing characters fi
Result(1), namely the characters with indices Result(7) through Reslijt{B)ascending order.

©CoNo O~

Note that thesubstring ~ function is intentionally generic; it does not require thathits value be a String
object. Therefore it can be transferred to other kinds of objects for use as a method.

15.5.4.11 String.prototype.toLowerCase
Returns a string equal in length to the length of the result of converting this object to a string. The result is
string value, not a String object.

Every character of the result is equal to the corresponding character of the string, unless that character h
Unicode 2.0 lowercase equivalent, in which case the lowercase equivalent is used instead. (The canon
Unicode 2.0 case mapping shall be used, which does not depend on implementation or locale.)

Note that theoLowerCase function is intentionally generic; it does not require thathts value be a
String object. Therefore it can be transferred to other kinds of objects for use as a method.

15.5.4.12 String.prototype.toUpperCase

Returns a string equal in length to the length of the result of converting this object to a string. The result is
string value, not a String object.

Every character of the result is equal to the corresponding character of the string, unless that character h
Unicode 2.0 uppercase equivalent, in which case the uppercase equivalent is used instead. (The canol
Unicode 2.0 case mapping shall be used, which does not depend on implementation or locale.)

Note that theaoUpperCase function is intentionally generic; it does not require thathits value be a
String object. Therefore it can be transferred to other kinds of objects for use as a method.

15.5.5 Properties of String Instances

String instances inherit properties from the String prototype object and also have a [[Value]] property and
length property.

The [[Value]] property is the string value represented by this String object.
15.5.5.1 length
The number of characters in the String value represented by this String object.

Once a String object is created, this property is unchanging. It has the attributes { DontEnum, DontDele
ReadOnly }.

15.6 Boolean Objects
15.6.1 The Boolean Constructor Called as a Function
WhenBoolean is called as a function rather than as a constructor, it performs a type conversion.
15.6.1.1 Boolean(value)
Returns a boolean value (not a Boolean object) computed by ToBoolean(value).
15.6.1.2 Boolean()
Returndalse

15.6.2 The Boolean Constructor
WhenBoolean is called as part of mew expression, it is a constructor: it initializes the newly created object.

15.6.2.1 new Boolean(value)

The [[Prototype]] property of the newly constructed object is set to the original Boolean prototype object, tt
one that is the initial value &oolean.prototype (15.6.3.1)

- 74 -

The [[Class]] property of the newly constructed Boolean object is §Bbtean”
The [[Value]] property of the newly constructed Boolean object is set to ToBoolean(value).

15.6.2.2 new Boolean()

The [[Prototype]] property of the newly constructed object is set to the original Boolean prototype object, the
one that is the initial value &oolean.prototype (15.6.3.1)

The [[Class]] property of the newly constructed Boolean object is $Bbt@ean”
The [[Value]] property of the newly constructed Boolean object is Jatde
15.6.3 Properties of the Boolean Constructor
The value of the internal [[Prototype]] property of the Boolean constructor is the Function prototype object.

Besides the internal [[Call]] and [[Construct]] properties andghgth property, the Boolean constructor has
the following property:

15.6.3.1 Boolean.prototype
The initial value oBoolean.prototype is the built-in Boolean prototype object (15.6.4).

This property shall have the attributes { DontEnum, DontDelete, ReadOnly }.

15.6.4 Properties of the Boolean Prototype Object
The Boolean prototype object is itself a Boolean object (its [[Clas¥faslean”) whose value ifalse

The value of the internal [[Prototype]] property of the Boolean prototype object is the Object prototype object
(15.2.3.1).

In following descriptions of functions that are properties of the Boolean prototype object, the phrase “this
Boolean object” refers to the object that is this value for the invocation of the function; it is an error if

this does not refer to an object for which the value of the internal [[Class]] propéBgatean” . Also, the

phrase “this boolean value” refers to the boolean value represented by this Boolean object, that is, the value of
the internal [[Value]] property of this Boolean object.

15.6.4.1 Boolean.prototype.constructor
The initial value oBoolean.prototype.constructor is the built-inBoolean constructor.

15.6.4.2 Boolean.prototype.toString()

If this boolean value igue, then the strindtrue” is returned. Otherwise, this boolean value musials
and the stringfalse" s returned.

ThetoString function is not generic; it generates a runtime error thitss value is not a Boolean object.
Therefore it cannot be transferred to other kinds of objects for use as a method.

15.6.4.3 Boolean.prototype.valueOf()
Returns this boolean value.

ThevalueOf function is not generic; it generates a runtime error ihis value is not a Boolean object.
Therefore it cannot be transferred to other kinds of objects for use as a method.

15.6.5 Properties of Boolean Instances
Boolean instances have no special properties beyond those inherited from the Boolean prototype object.
15.7 Number Objects
15.7.1 The Number Constructor Called as a Function
WhenNumber is called as a function rather than as a constructor, it performs a type conversion.
15.7.1.1 Number(value)
Returns a humber value (not a Number object) computed by ToNumber(value).
15.7.1.2 Number()
Returns+O0.

15.7.2

15.7.2.1

15.7.2.2

15.7.3

15.7.3.1

15.7.3.2

15.7.3.3

15.7.3.4

15.7.3.5

15.7.3.6

15.7.4

- 75 -

The Number Constructor
WhenNumber is called as part of mew expression, it is a constructor: it initializes the newly created object.

new Number(value)

The [[Prototype]] property of the newly constructed object is set to the original Number prototype object, th
one that is the initial value dfumber.prototype (0).

The [[Class]] property of the newly constructed object is s&tltonber” .
The [[Value]] property of the newly constructed object is set to ToNumber(value).

new Number()

The [[Prototype]] property of the newly constructed object is set to the original Number prototype object, tt
one that is the initial value dfumber.prototype (15.7.3.1)

The [[Class]] property of the newly constructed object is s&Nltanber" .
The [[Value]] property of the newly constructed object is setxo

Properties of the Number Constructor
The value of the internal [[Prototype]] property of the Number constructor is the Function prototype object.

Besides the internal [[Call]] and [[Construct]] properties andéhgth property, the Number constructor has
the following property:

Number.prototype
The initial value oNumber.prototype is the built-in Number prototype object (15.7.4).
This property shall have the attributes { DontEnum, DontDelete, ReadOnly }.

Number.MAX_VALUE

The value ofNumber.MIN_VALUE is the largest positive finite value of the number type, which is
approximatelyl.7976931348623157e308

This property shall have the attributes { DontEnum, DontDelete, ReadOnly }.

Number.MIN_VALUE

The value ofNumber.MIN_VALUE is the smallest positive nonzero value of the number type, which is
approximatelyse-324 .

This property shall have the attributes { DontEnum, DontDelete, ReadOnly }.

Number.NaN
The value oNumber.NaN is NaN.

This property shall have the attributes { DontEnum, DontDelete, ReadOnly }.
Number.NEGATIVE_INFINITY

The value oNumber.NEGATIVE_INFINITY is—oo.

This property shall have the attributes { DontEnum, DontDelete, ReadOnly }.

Number.POSITIVE_INFINITY
The value oNumber.POSITIVE_INFINITY is +oo,

This property shall have the attributes { DontEnum, DontDelete, ReadOnly }.

Properties of the Number Prototype Object
The Number prototype object is itself a Number object (its [[Clas8Nusnber”) whose value is0.

The value of the internal [[Prototype]] property of the Number prototype object is the Object prototype obje
(15.2.3.2).

In following descriptions of functions that are properties of the Number prototype object, the phrase “thi
Number object” refers to the object that is this value for the invocation of the function; it is an error if

- 76 -

this does not refer to an object for which the value of the internal [[Class]] propé&Nwursber” . Also, the
phrase “this number value” refers to the number value represented by this Number object, that is, the value of the

internal [[Value]] property of this Number object.

15.7.4.1

15.7.4.2

15.7.4.3

15.7.5

Number.prototype.constructor
The initial value oNumber.prototype.constructor is the built-inNumber constructor.

Number.prototype.toString(radix)
If the radix is the number 10 or not supplied, then this number value is given as an argument to the ToString
operator; the resulting string value is returned.

If the radix is supplied and is an integer from 2 to 36, but not 10, the result is a string, the choice of which is
implementation dependent.

ThetoString function is not generic; it generates a runtime error thits value is not a Number object.

Therefore it cannot be transferred to other kinds of objects for use as a method.
Number.prototype.valueOf()

Returns this number value.

ThevalueOf function is not generic; it generates a runtime error ifhits value is not a Number object.
Therefore it cannot be transferred to other kinds of objects for use as a method.

Properties of Number Instances

Number instances have no special properties beyond those inherited from the Number prototype object.

15.8 The Math Object
The Math object is merely a single object that has some named properties, some of which are functions.

The value of the internal [[Prototype]] property of the Math object is the Object prototype object (15.2.3.1).

The Math object does not have a [[Construct]] property; it is not possible to use the Math object as a constructor
with thenew operator.

The Math object does not have a [[Call]] property; it is not possible to invoke the Math object as a function.

Recall that, in this specification, the phrase “the number valué fas a technical meaning defined in section8.5.

15.8.1
15.8.1.1

15.8.1.2

15.8.1.3

15.8.1.4

Value Properties of the Math Object

E
The number value fore, the base of the natural logarithms, which is approximately
2.7182818284590452354

This property shall have the attributes { DontEnum, DontDelete, ReadOnly }.

LN10
The number value for the natural logarithm of 10, which is approxim2t882585092994046

This property shall have the attributes { DontEnum, DontDelete, ReadOnly }.

LN2
The number value for the natural logarithm of 2, which is approximété831471805599453

This property shall have the attributes { DontEnum, DontDelete, ReadOnly }.

LOG2E

The number value for the base-2 logarithne,dhe base of the natural logarithms; this value is approximately
1.4426950408889634 . (Note that the value dflath.LOG2E is approximately the reciprocal of the value
of Math.LN2)

This property shall have the attributes { DontEnum, DontDelete, ReadOnly }.

15.8.1.5

15.8.1.6

15.8.1.7

15.8.1.8

15.8.2

15.8.2.1

15.8.2.2

15.8.2.3

- 77 -

LOG10E

The number value for the base-2 logarithne,ahe base of the natural logarithms; this value is approximately
0.4342944819032518 . (Note that the value dflath.LOG2E is approximately the reciprocal of the value
of Math.LN2 .)

This property shall have the attributes { DontEnum, DontDelete, ReadOnly }.

Pl

The number value for, the ratio of the circumference of a circle to its diameter, which is approximately
3.14159265358979323846

This property shall have the attributes { DontEnum, DontDelete, ReadOnly }.

SQRT1_2
The number value for the square root of 1/2, which is approxim@téd71067811865476 . (Note that
the value oMath.SQRT1_2 is approximately the reciprocal of the valueMath.SQRT2 .)

This property shall have the attributes { DontEnum, DontDelete, ReadOnly }.

SQRT2
The number value for the square root of 2, which is approximaiéi2135623730951

This property shall have the attributes { DontEnum, DontDelete, ReadOnly }.

Function Properties of the Math Object

Every function listed in this section applies the ToNumber operator to each of its arguments (in left-to-right ord
if there is more than one) and then performs a computation on the resulting number value(s).

The behavior of the functionscos , asin , atan , atan2 , cos, exp, log , pow, sin , andsqrt is not
precisely specified here. They are intended to compute approximations to the results of familiar mathemati
functions, but some latitude is allowed in the choice of approximation algorithms. The general intent is that
implementor should be able to use the same mathematical library for ECMAScript on a given hardware platfo
that is available to C programmers on that platform. Nevertheless, this specification recommends (though it d
not require) the approximation algorithms for IEEE 754 arithmetic contairfelbm , the freely distributable
mathematical library [XXXREF]. This specification also requires specific results for certain argument values th
represent boundary cases of interest.

abs(x)
Returns the absolute value of its argument; in general, the result has the same magnitude as the argumer
has positive sign.

¢ If the argument idNaN, the result igNaN.
« If the argument is-0, the result isrO0.
¢ If the argument is, the result isroo.

acos(x)

Returns an implementation-dependent approximation to the arc cosine of the argument. The result is expres
in radians and ranges fromf to +t

o If the argument ifNaN, the result isNaN.

< If the argument is greater thanthe result idNaN.
e If the argument is less thah , the result isNaN.
« If the argument is exactly, the result is-0.

asin(x)
Returns an implementation-dependent approximation to the arc sine of the argument. The result is expresse
radians and ranges fromm/2 to Hv2.

¢ If the argument idNaN, the result idNaN.
e If the argument is greater thanthe result isNaN.
e If the argument is less thah , the result idNaN.

- 78 -

¢ If the argument ig-0, the result is-0.
« If the argument is-0, the result is-0.

15.8.2.4 atan(x)

Returns an implementation-dependent approximation to the arc tangent of the argument. The result is
expressed in radians and ranges fran? to +v2.

» If the argument idNaN, the result idNaN.

» If the argument is-0, the result is+0.

» If the argument is-0, the result is-0.

« If the argument is-o, the result is an implementation-dependent approximatiorn/éh +
» If the argument is-oo, the result is an implementation-dependent approximatier/g

15.8.2.5 atan2(y, x)
Returns an implementation-dependent approximation to the arc tangent of the guoti@itthe arguments
y andx, where the signs of the arguments are used to determine the quadrant of the result. Note that it is
intentional and traditional for the two-argument arc tangent function that the argumentyndmdufst and
the argument namedbe second. The result is expressed in radians and rangesritomit.

« If either argument idlaN, the result isNaN.

e If y>0 andx is +0, the result is an implementation-dependent approximatiormia. +

» If y>0 andx is -0, the result is an implementation-dependent approximatiorruad. +

e If y is+0andx>0, the result is-0.

e If y is+0andx is+0, the result is-0.

» If y is+0andx is -0, the result is an implementation-dependent approximatiormto +

« If y is+0andx<0, the result is an implementation-dependent approximationto +

* If y is—0andx>0, the result is-0.

» If y is—0andx is +0, the result is-0.

» If y is—0andx is -0, the result is an implementation-dependent approximatioctito

» If y is—0andx<0, the result is an implementation-dependent approximatiefto

e If y<O andx is +0, the result is an implementation-dependent approximaticitia.

» If y<O andx is-0, the result is an implementation-dependent approximatiofia.

» If y>0 andy is finite andx is +o, the result is-0.

¢ If y>0 andy is finite andx is —o, the result if an implementation-dependent approximationmto +
e If y<O andy is finite andx is +o0, the result is-0.

e If y<O andy is finite andx is -, the result is an implementation-dependent approximaticttito
e If y is+o0 andx is finite, the result is an implementation-dependent approximatiom#td. +
e If y is—o0 andx is finite, the result is an implementation-dependent approximatiemi®.

e If y is+o0 andx is +oo, the result is an implementation-dependent approximatiormitd. +

e If y is+o0 andx is—oo, the result is an implementation-dependent approximation 184 +3
e If y is—o0 andx is +oo, the result is an implementation-dependent approximatioritd.

e If y is—o0 andx is —oo, the result is an implementation-dependent approximatiorBie4.

15.8.2.6 ceil(x)

Returns the smallest (closest to0) number value that is not less than the argument and is equal to a
mathematical integer. If the argument is already an integer, the result is the argument itself.

e If the argument idNaN, the result isNaN.

e If the argument ig-0, the result is-0.

« If the argument is-0, the result is-0.

« If the argument ig-c0, the result ig-co.

« If the argument is-e, the result is-co.

« If the argument is less th@nbut greater tharl , the result is-0.

The value oMath.ceil(x) is the same as the value-bfath.floor(-x)

- 79 -

15.8.2.7 cos(x)

Returns an implementation-dependent approximation to the cosine of the argument. The argument is expre:
in radians.

» If the argument idNaN, the result ifNaN.
» If the argument is-0, the result id.

» If the argument is-0, the result i4.

» If the argument is-o, the result ifNaN.

» If the argument is-o0, the result iNaN.

15.8.2.8 exp(x)

Returns an implementation-dependent approximation to the exponential function of the arguaieet(to
the power of the argument, wheres the base of the natural logarithms).

¢ If the argument idNaN, the result igNaN.
« If the argument ig0, the result id.

¢ If the argument is0, the result 4.

¢ If the argument is-, the result isreo.

» If the argument is-o, the result is0.

15.8.2.9 floor(x)

Returns the greatest (closest#®) number value that is not greater than the argument and is equal to &
mathematical integer. If the argument is already an integer, the result is the argument itself.

o If the argument ifNaN, the result isNaN.

e If the argument ig-0, the result is0.

e If the argument is-0, the result is-0.

e If the argument ig-o, the result is-co.

e If the argument is-e0, the result is-.

« If the argument is greater th@rbut less thad, the result is0.

The value oMath.floor(x) is the same as the value-bfath.ceil(-x)

15.8.2.10 log(x)
Returns an implementation-dependent approximation to natural logarithm of the argument.

« If the argument idNaN, the result idNaN.

e If the argument is less th&n the result igNaN.
« If the argument i0 or =0, the result is-co.

e If the argument i4, the result is-0.

e If the argument ig-oo, the result isreo.

15.8.2.11 max(x, y)
Returns the larger of the two arguments.

« If either argument idaN, the result isNaN.
« If x>y, the result ix.

o If y>x, the result iy.

e If x is+0andy is +0, the result is+0.

e If x is+0 andy is -0, the result is-0.

» If x is—0andy is +0, the result is-0.

* If x is—0andy is -0, the result is-0.

15.8.2.12 min(x, y)
Returns the smaller of the two arguments.
« If either argument idlaN, the result igNaN.

e If x<y, the result ix.
e |If y<x, the result iy.

15.8.2.13

15.8.2.14

15.8.2.15

- 80 -

e If x is+0 andy is +0, the result is-0.
e If x is+0 andy is -0, the result is-0.
e If x is—0 andy is +0, the result is-0.
e If x is—0 andy is -0, the result is-0.

pow(X, y)
Returns an implementation-dependent approximation to the result of raigirthe powey .

» If y isNaN, the result isNaN.

o If yis+0, the resultid, even ifx is NaN.

» Ify is—0, the result id, even ifx is NaN.

« If x isNaN andy is nonzero, the result iéaN.

e Ifabs(x)>1 andy is+o, the result is-o.

e Ifabs(x)>1 andy is—-m, the result is-0.

e Ifabs(x)==1 andy is+o, the result iNaN.

e Ifabs(x)==1 andy is—o, the result iNaN.

e If abs(x)<1 andy is+o, the result is0.

e If abs(x)<1 andy is—-o, the result is-co.

e If x is+o0 andy>0 , the result is-.

e If x is+o0 andy<0 , the result is-0.

e If x is—e0 andy>0 andy is an odd integer, the result-is.

e If x is—0 andy>0 andy is not an odd integer, the results.
e If x is—0 andy<0 andy is an odd integer, the result46.

e If x is—e0 andy<0 andy is not an odd integer, the result-a.
o If x is+0andy>0 , the result is-0.

e If x is+0 andy<0 , the result is-co.

« If xis-0andy>0 andy is an odd integer, the result6.

* If x is-0andy>0 andy is not an odd integer, the result-a.
« If x is-0andy<0 andy is an odd integer, the result-is.

* If x is-0andy<0 andy is not an odd integer, the result®.
« If x<0 andx is finite andy is finite andy is not an integer, the resultN&N.

random()

Returns a number value with positive sign, greater than or equal to O but less than 1, chosen randomly or
pseudorandomly with approximately uniform distribution over that range, using an implementation-dependent
algorithm or strategy. This function takes no arguments.

round(x)
Returns the number value that is closest to the argument and is equal to a mathematical integer. If two integer
number values are equally close to the argument, then the result is the number value that is+etoskthio
argument is already an integer, the result is the argument itself.

« If the argument ifNaN, the result isNaN.

» If the argument is-0, the result is-0.

» If the argument is-0, the result is-0.

» If the argument is-eo, the result is-co.

» If the argument is-eo, the result is-co.

» If the argument is greater th@rbut less than.5 , the result is-0.

» If the argument is less th@nbut greater than or equal 4.5 , the result is-0.

Note thatMath.round(3.5) returns4, butMath.round(-3.5) returns-3 .

The value oMath.round(x) is the same as the valueMéth.floor(x+0.5) , except wherx is -0 or
is less than0 but greater than or equal t0.5 ; for these caseMath.round(x) returns—0, but
Math.floor(x+0.5) returns+0.

15.8.2.1

15.8.2.1

15.8.2.1

15.9 D
15.9.1

15.9.1.1

15.9.1.2

-81 -

6 sin(x)
Returns an implementation-dependent approximation to the sine of the argument. The argument is expres
in radians.
» If the argument idNaN, the result ifNaN.
» If the argument is-0, the result is-0.
» If the argument is-0, the result is-0.
» If the argument is-o0 or —o, the result isNaN.
7 sqrt(x)
Returns an implementation-dependent approximation to the square root of the argument.
¢ If the argument idNaN, the result igNaN.
¢ If the argument less thdh the result igNaN.
« If the argument ig0, the result is0.
¢ If the argument is-0, the result is-0.
¢ If the argument is-o, the result isreo.
8 tan(x)

Returns an implementation-dependent approximation to the tangent of the argument. The argument
expressed in radians.

« If the argument idNaN, the result igNaN.

« If the argument ig-0, the result is+0.

« If the argument is-0, the result is-0.

e If the argument ig-o or —oo, the result idNaN.

ate Objects

Overview of Date Objects and Definitions of Internal Operators

A Date object contains a number indicating a particular instant in time to within a millisecond. The number me
also beNaN, indicating that the Date object does not represent a specific instant of time.

The following sections define a number of functions for operating on time values. Note that, in every case, if a
argument to such a functionN&N, the result will beNaN.

Time Range

Time is measured in ECMAScript in milliseconds since 01 January, 1970 UTC. Leap seconds are ignored
is assumed that there are exactly 86,400,000 milliseconds per day. ECMAScript number values can repre:
all integers from iMin = —-9,007,199,254,740,991 to iMax = 9,007,199,254,740,991; this range suffices t
measure times to millisecond precision for any instant that is within approximately 285,616 years, eith
forward or backward, from 01 January, 1970 UTC.

The actual range of times supported by ECMAScript Date objects is slightly smaller: exactly —100,000,0(
days to 100,000,000 days measured relative to midnight at the beginning of 01 January, 1970 UTC. This gi
a range of 8,640,000,000,000,000 milliseconds to either side of 01 January, 1970 UTC. This span ea:
covers all of recorded human history and a fair amount of unrecorded human history.

The exact moment of midnight at the beginning of 01 January, 1970 UTC is represented by th@ value

Day Number and Time within Day
A given time valud belongs to day number

Day(t) = floor(t / msPerDay)

where the number of milliseconds per day is

msPerDay = 86400000

The remainder is called the time within the day:

15.9.1.3

15.9.1.4

-82 -

TimeWithinDay(t) =t modulo msPerDay
Year Number

ECMAScript uses an extrapolated Gregorian system to map a day number to a year number and to determine
the month and date within that year. In this system, leap years are precisely those which are (divisible by 4)
and ((not divisible by 100) or (divisible by 400)). The number of days in year nynib#rerefore defined by

DaysInYeary) = 365 if y modulo 4} 0
= 366 if (y modulo 4) = 0 and (y modulo 108)0
= 365 if (y modulo 100) = 0 and (y modulo 4060
= 366 if (y modulo 400) =0

Of course all non-leap years have 365 days with the usual number of days per month and leap years have an
extra day in February. The day number of the first day of yeagiven by:
DayFromYear(y) = 36[y—1970) + floor((y-1969)/4)- floor((y—1901)/100) + floor((y1601)/400)

The time value of the start of a year is:

TimeFromYearg)= msPerDajpDayFromYeary)

A time value determines a year by:

YearFromTimet) = the largest integer(closest to positive infinity) such that TimeFromYgagt

The leap-year function is 1 for a time within a leap year and otherwise is zero:

InLeapYean) =0 if DaysInYear(YearFromTim&j = 365
=1 if DaysInYear(YearFromTin{§) = 366

Month Number

Months are identified by an integer in the range 0 to 11, inclusive. The madpimfFromTime() from a
time valuet to a month number is defined by:

MonthFromTimef) =0 if 0 < DayWithinYearf) < 31

15.9.1.5

=1 if 31 < DayWithinYear f) < 59+InLeapYeat]

=2 if 59+InLeapYeat) < DayWithinYear f) < 90+InLeapYeat]

=3 if 90+InLeapYeat) < DayWithinYear f) < 120+InLeapYeat]
=4 if 120+InLeapYeat] < DayWithinYear) < 151+InLeapYeat]
=5 if 151+InLeapYeat] < DayWithinYear) < 181+InLeapYeat]
=6 if 181+InLeapYeat] < DayWithinYear) < 212+InLeapYeat]
=7 if 212+InLeapYeat] < DayWithinYear) < 243+InLeapYeat]
=8 if 243+InLeapYeat] < DayWithinYear) < 273+InLeapYeat]
=9 if 273+InLeapYeat] < DayWithinYear {) < 304+InLeapYeat}
=10 if 304+InLeapYeat] < DayWithinYear {) < 334+InLeapYeat]
=11 if 334+InLeapYeat] < DayWithinYear f) < 365+InLeapYeat]

where

DayWithinYear()= Dayt)-DayFromYear(YearFromTim#&j

A month value of 0 specifies January; 1 specifies February; 2 specifies March; 3 specifies April; 4 specifies
May; 5 specifies June; 6 specifies July; 7 specifies August; 8 specifies September; 9 specifies October; 10
specifies November; and 11 specifies December. Note that MonthFromTime(0) = 0, corresponding to
Thursday, 01 January, 1970.

Date Number

A date number is identified by an integer in the rahdlerough 31, inclusiverhe mappindateFromTimet)
from a time value to a month number is defined by:

- 83 -

DateFromTime) = DayWithinYear{)+1 if MonthFromTime{)=0

15.9.1.6

15.9.1.7

15.9.1.8

15.9.1.9

= DayWithinYear{)—-30 if MonthFromTime{)=1
= DayWithinYear{)-58-InLeapYear) if MonthFromTime()=2
= DayWithinYear{)-89-InLeapYear) if MonthFromTime{)=3
= DayWithinYear{)-119-InLeapYear() if MonthFromTime()=4
= DayWithinYear{)—150-InLeapYear() if MonthFromTime()=5
= DayWithinYear{)—180-InLeapYear) if MonthFromTime()=6
= DayWithinYear{)-211-InLeapYear) if MonthFromTime({)=7
= DayWithinYear{)—242-InLeapYear) if MonthFromTime({)=8
= DayWithinYear{)—272-InLeapYear) if MonthFromTime({)=9
= DayWithinYear{)—303-InLeapYear) if MonthFromTime{)=10
= DayWithinYear{)—333-InLeapYear() if MonthFromTime{)=11

Week Day
The week day for a particular time vallis defined as

WeekDayf) = (Dayt) + 4) modulo 7

A weekday value of O specifies Sunday; 1 specifies Monday; 2 specifies Tuesday; 3 specifies Wednesd
4 specifies Thursday; 5 specifies Friday; and 6 specifies Saturday. Note that WeekDay(0) = 4, correspond
to Thursday, 01 January, 1970.

Local Time Zone Adjustment

An implementation of ECMAScript is expected to determine the local time zone adjustment by whateve
means are available. The local time zone adjustment is a kat@TZA measured in milliseconds which
when added to UTC represents the Iatahdardtime. Daylight saving time isot reflected byl ocalTZA.

The valud_ocalTZA does not vary with time but depends only on the geographic location.

Daylight Saving Time Adjustment

An implementation of ECMAScript is expected to determine the daylight saving time algorithm by whateve
means are available. The algorithm to determine the daylight saving time adjuBayéghtSavingTA(),
measured in milliseconds, must depend only on four things:

(2) the time since the beginning of the year

t — TimeFromYear(YearFromTimg)

(2) whethert\is in a leap year

InLeapYear)
(3) the week day of the beginning of the year

WeekDay(TimeFromYear(YearFromTintg(
and (4) the geographic location.

The implementation of ECMAScript should not try to determine whether the exact time was subject t
daylight saving time, but just whether daylight saving time would have been in effect if the current dayligt
saving time algorithm had been used at the time. This avoids complications such as taking into account
years that the USA observed daylight saving time year round.

If the underlying operating system provides functionality for determining daylight saving time, the
implementation of ECMAScript is free to map the year in question to an equivalent year (same leap-year-n
and same starting week day for the year) for which the operating system provides daylight saving tir
information. The only restriction is that all equivalent years should produce the same result.

Local Time
Conversion from UTC to local time is defined by

-84 -

LocalTimeg) =t + LocalTZA + DaylightSaving T At

Conversion from local time to UTC is defined by

UTC(t) =t — LocalTZA — DaylightSavingTAt(— LocalTZA)
Note thatUTC(LocalTime()) is not necessarily always equatito

15.9.1.10 Hours, Minutes, Second, and Milliseconds
The following functions are useful in decomposing time values:

HourFromTime{) = floor(t / msPerHour) modulo HoursPerDay
MinFromTime¢) = floor(t / msPerMinute) modulo MinutesPerHour
SecFromTimd] = floor(t / msPerSecond) modulo SecondsPerMinute
msFromTimel) =t modulo msPerSecond

where
HoursPerDay = 24
MinutesPerHour = 60
SecondsPerMinute = 60
msPerSecond = 1000
msPerMinute = msPerSeconBecondsPerMinute = 60000
msPerHour = msPerMinutMinutesPerHour = 3600000

15.9.1.11 MakeTime(hour, min, sec, ms)

The operator MakeTime calculates a number of milliseconds from its four arguments, which must be
ECMAScript number values. This operator functions as follows:

If hour is not finite omminis not finite orsecis not finite ormsis not finite, returMaN.

Call Tolntegetgour).

Call Tolntegertin).

Call Tolntegegeq.

Call Tolntegerts.

Compute Result(2y msPerHour+ Result(3)* msPerMinute+ Result(4)* msPerSecond Result(5),
performing the arithmetic according to IEEE 754 rules (that is, as if using the ECMAScript op&rators
and+).

7. Return Result(6).

15.9.1.12 MakeDay(year, month, date)

The operator MakeDay calculates a number of days from its three arguments, which must be ECMAScript
number values. This operator functions as follows:

oakwbdE

1. If yearis not finite ormonthis not finite ordateis not finite, returrNaN.

2. Call Tolntegerfear).

3. Call Tolntegerponth).

4. Call Tolntegedate.

5. Compute Result(2) + floor(Result(3)/12).

6. Compute Result(3) modulo 12.

7. Find a valuet such that YearFromTimgE=Result(5) and MonthFromTimgt=Result(6) and
DateFromTime)==1; but if this is not possible (because some argument is out of range) Nalirn

8. Compute Day(Result(7)) + Result(4].

9. Return Result(8).

15.9.1.13 MakeDate(day, time)

The operator MakeDate calculates a number of milliseconds from its two arguments, which must be
ECMAScript number values. This operator functions as follows:

- 85 -

1. If dayis not finite ortimeis not finite, returrNaN.
2. Computeday [msPerDay time
3. Return Result(2).

15.9.1.14 TimeClip(time)

15.9.2

The operator TimeClip calculates a number of milliseconds from its argument, which must be an ECMAScri|
number value. This operator functions as follows:

1. Iftimeis not finite, returNaN.

2. If abs(Result(1)) 8.64e15 (thatis, 8.64110"%), returnNaN.

3. Return an implementation dependent choice of either Tolnteger(Result(2)) or Tolnteger(ResutR)) + (
(Adding a positive zero convert§) to +0.)

The point of step 3 is that an implementation is permitted a choice of internal representations of time valu
for example as a 64-bit signed integer or as a 64-bit floating-point value. Depending on the implementatic
this internal representation may or may not distingg®hand+0.

The Date Constructor Called As a Function

WhenDate is called as a function rather than as a constructor, it returns a string representing the current ti
(UTC). Note that the function calbate (... is not equivalent to the object creation expression
new Date (...) with the same arguments.

15.9.2.1 Date(year, month, date, hours, minutes, seconds, ms)

15.9.2.2

15.9.2.3

15.9.2.4

15.9.2.5

15.9.2.6

15.9.2.7

15.9.2.8

15.9.3

15.9.3.1

The arguments are accepted but are completely ignored. A string is created and returned as if by
expressiorinew Date ()).toString()
Date(year, month, date, hours, minutes, seconds)

The arguments are accepted but are completely ignored. A string is created and returned as if by
expressior(new Date ()).toString()

Date(year, month, date, hours, minutes)

The arguments are accepted but are completely ignored. A string is created and returned as if by
expressiorinew Date ()).toString()

Date(year, month, date, hours)

The arguments are accepted but are completely ignored. A string is created and returned as if by
expressior(new Date ()).toString()

Date(year, month, day)

The arguments are accepted but are completely ignored. A string is created and returned as if by
expressiorinew Date ()).toString()

Date(year, month)

The arguments are accepted but are completely ignored. A string is created and returned as if by
expressior(new Date ()).toString()

Date(value)

The argument is accepted but is completely ignored. A string is created and returned as if by the expres:s
(new Date ()).toString()

Date()
A string is created and returned as if by the expresgenDate ().toString()
The Date Constructor
WhenDate is called as part of mew expression, it is a constructor: it initializes the newly created object.

new Date(year, month, date, hours, minutes, seconds, ms)

The [[Prototype]] property of the newly constructed object is set to the original Date prototype object, the ot
that is the initial value dDate.prototype (15.9.4.1)

The [[Class]] property of the newly constructed object is séDabe"

15.9.3.2

15.9.3.3

15.9.3.4

- 86 -

The [[Value]] property of the newly constructed object is set as follows:

Call ToNumbergean.

Call ToNumberfionth.

Call ToNumberate).

Call ToNumbetgours.

Call ToNumberfinutes.

Call ToNumbergeconds

Call ToNumbertg.

If Result(1) is notNaN and 0< Tolnteger(Result(1)k 99, Result(8) is 1900+Tolnteger(Result(1));
otherwise, Result(8) is Result(1).

9. Compute MakeDay(Result(8), Result(2), Result(3)).

10. Compute MakeTime(Result(4), Result(5), Result(6), Result(7)).

11. Compute MakeDate(Result(9), Result(10)).

12. Set the [[Value]] property of the newly constructed object to TimeClip(UTC(Result(11))).

O NGO~ WNE

new Date(year, month, date, hours, minutes, seconds)

The [[Prototype]] property of the newly constructed object is set to the original Date prototype object, the one
that is the initial value dbate.prototype (15.9.4.1)

The [[Class]] property of the newly constructed object is séDabe"
The [[Value]] property of the newly constructed object is set as follows:

Call ToNumbergean.

Call ToNumberfionthy.

Call ToNumberdate.

Call ToNumbetgours.

Call ToNumbenfinutes.

Call ToNumbergeconds

If Result(1) is notNaN and 0< Tolnteger(Result(1)x 99, Result(7) is 1900+Tolnteger(Result(1));
otherwise, Result(7) is Result(1).

8. Compute MakeDay(Result(7), Result(2), Result(3)).

9. Compute MakeTime(Result(4), Result(5), Result(6), 0).

10. Compute MakeDate(Result(8), Result(9)).

11. Set the [[Value]] property of the newly constructed object to TimeClip(UTC(Result(10))).

NouokwhpE

new Date(year, month, date, hours, minutes)

The [[Prototype]] property of the newly constructed object is set to the original Date prototype object, the one
that is the initial value dDate.prototype (15.9.4.1)

The [[Class]] property of the newly constructed object is s@Dave"
The [[Value]] property of the newly constructed object is set as follows:

Call ToNumbergean.

Call ToNumberfonth.

Call ToNumberate).

Call ToNumbettours.

Call ToNumberginutes.

If Result(1) is notNaN and O0< Tolnteger(Result(1)k 99, Result(6) is 1900+Tolnteger(Result(1));
otherwise, Result(6) is Result(1).

7. Compute MakeDay(Result(6), Result(2), Result(3)).

8. Compute MakeTime(Result(4), Result(5), 0, 0).

9. Compute MakeDate(Result(7), Result(8)).

10. Set the [[Value]] property of the newly constructed object to TimeClip(UTC(Result(9))).

o grwWNE

new Date(year, month, date, hours)

The [[Prototype]] property of the newly constructed object is set to the original Date prototype object, the one
that is the initial value dbate.prototype (15.9.4.1)

-87 -

The [[Class]] property of the newly constructed object is sdD&te"
The [[Value]] property of the newly constructed object is set as follows:

Call ToNumbergean.

Call ToNumbertionth.

Call ToNumbedatd.

Call ToNumbetours.

If Result(1) is notNaN and 0< Tolnteger(Result(1)k 99, Result(5) is 1900+Tolnteger(Result(1));
otherwise, Result(5) is Result(1).

Compute MakeDay(Result(5), Result(2), Result(3)).

Compute MakeTime(Result(4), 0, 0, 0).

Compute MakeDate(Result(6), Result(7)).

Set the [[Value]] property of the newly constructed object to TimeClip(UTC(Result(8))).

ahrwdRE

©xoNo

15.9.3.5 new Date(year, month, day)
The [[Prototype]] property of the newly constructed object is set to the original Date prototype object, the ot
that is the initial value dbate.prototype (15.9.4.1)
The [[Class]] property of the newly constructed object is stDate"
The [[Value]] property of the newly constructed object is set as follows:

1. Call ToNumberfean.

2. Call ToNumberfionth.

3. Call ToNumbeate.

4. If Result(1) is notNaN and 0< Tolnteger(Result(1)k 99, Result(4) is 1900+Tolnteger(Result(1));
otherwise, Result(4) is Result(1).

5. Compute MakeDay(Result(4), Result(2), Result(3)).

6. Compute MakeDate(Result(5), 0).

7. Set the [[Value]] property of the newly constructed object to TimeClip(UTC(Result(6))).

15.9.3.6 new Date(year, month)
The behavior of the Date constructor with two arguments is implementation dependent.

15.9.3.7 new Date(value)

The [[Prototype]] property of the newly constructed object is set to the original Date prototype object, the or
that is the initial value dbate.prototype (15.9.4.1)

The [[Class]] property of the newly constructed object is stDate"

The [[Value]] property of the newly constructed object is set as follows:

1. Call ToPrimitive(value).

2. If Type(Result(1)) is String, then go to step 5.

3. LetV be ToNumber(Result(1)).

4. Set the [[Value]] property of the newly constructed object to TimeClip(V) and return.

5. Parse Result(1) as a date, in exactly the same manner as fargbe method (15.9.4.2); let V be the
time value for this date.

6. Go to step 4.

15.9.3.8 new Date()

The [[Prototype]] property of the newly constructed object is set to the original Date prototype object, the or
that is the initial value dDate.prototype (15.9.4.1)

The [[Class]] property of the newly constructed object is séDate"
The [[Value]] property of the newly constructed object is set to the current time (UTC).

15.9.4 Properties of the Date Constructor
The value of the internal [[Prototype]] property of the Date constructor is the Function prototype object.

- 88 -

Besides the internal [[Call]] and [[Construct]] properties andéhgth property (whose value i8), the Date
constructor has the following properties:

15.9.4.1 Date.prototype
The initial value oDate.prototype is the built-in Date prototype object (15.9.5).

This property shall have the attributes { DontEnum, DontDelete, ReadOnly }.

15.9.4.2 Date.parse(string)

Theparse function applies the ToString operator to its argument and interprets the resulting string as a date;
it returns a number, the UTC time value corresponding to the date. The string may be interpreted as a local
time, a UTC time, or a time in some other time zone, depending on the contents of the string.

If x is any Date object whose milliseconds amount is zero within a particular implementation of ECMAScript,
then all of the following expressions should produce the same numeric value in that implementation, if all the
properties referenced have their initial values:

x.valueOf()
Date.parse(x.toString())
Date.parse(x.toGMTString())

However, the expression
Date.parse(x.toLocaleString())

is not required to produce the same number value as the preceding three expressions and, in general, the value
produced byDate.parse is implementation dependent when given any string value that could not be
produced in that implementation by tteString ortoGMTString method.

15.9.4.3 Date.UTC(year, month, date, hours, minutes, seconds, ms)
When theUTCfunction is called with seven arguments, the following steps are taken:

Call ToNumberfear).

Call ToNumberfonth.

Call ToNumberdate).

Call ToNumbettours.

Call ToNumberfinutes.

Call ToNumbereconds

Call ToNumberts.

If Result(1) is notNaN and 0< Tolnteger(Result(1)x 99, Result(8) is 1900+Tolnteger(Result(1));
otherwise, Result(8) is Result(1).

9. Compute MakeDay(Result(8), Result(2), Result(3)).

10. Compute MakeTime(Result(4), Result(5), Result(6), Result(7)).
11. Return TimeClip(MakeDate(Result(9), Result(10))).

© NN

The UTC function differs from the Date constructor in two ways: it returns a time value as a number, rather
than creating a Date object, and it interprets the arguments in UTC rather than as local time.

15.9.4.4 Date.UTC(year, month, date, hours, minutes, seconds)
When theUTCfunction is called with six arguments, the following steps are taken:

Call ToNumbergean.

Call ToNumberfonth.

Call ToNumberdate).

Call ToNumbetgours.

Call ToNumbermfinutes.

Call ToNumbergeconds

If Result(1) is notNaN and 0< Tolnteger(Result(1)k 99, Result(7) is 1900+Tolnteger(Result(1));
otherwise, Result(7) is Result(1).

8. Compute MakeDay(Result(7), Result(2), Result(3)).

9. Compute MakeTime(Result(4), Result(5), Result(6), 0).
10. Return TimeClip(MakeDate(Result(8), Result(9))).

NogahrwbdbpE

- 89 -

The UTC function differs from the Date constructor in two ways: it returns a time value as a number, rath
than creating a Date object, and it interprets the arguments in UTC rather than as local time.

15.9.4.5 Date.UTC(year, month, date, hours, minutes)
When theUTCfunction is called with five arguments, the following steps are taken:

Call ToNumberfear).

Call ToNumberfonth.

Call ToNumbedatd.

Call ToNumbetgours.

Call ToNumberntinutes.

If Result(1) is notNaN and 0< Tolnteger(Result(1)k 99, Result(6) is 1900+Tolnteger(Result(1));
otherwise, Result(6) is Result(1).

7. Compute MakeDay(Result(6), Result(2), Result(3)).

8. Compute MakeTime(Result(4), Result(5), 0, 0).

9. Return TimeClip(MakeDate(Result(7), Result(8))).

The UTC function differs from the Date constructor in two ways: it returns a time value as a number, rath
than creating a Date object, and it interprets the arguments in UTC rather than as local time.

15.9.4.6 Date.UTC(year, month, date, hours)
When theUTCfunction is called with four arguments, the following steps are taken:

Call ToNumbergean.

Call ToNumbertionthy.

Call ToNumbedatd.

Call ToNumbetgours.

If Result(1) is notNaN and 0< Tolnteger(Result(1)k 99, Result(5) is 1900+Tolnteger(Result(1));
otherwise, Result(5) is Result(1).

6. Compute MakeDay(Result(5), Result(2), Result(3)).

7. Compute MakeTime(Result(4), 0, 0, 0).

8. Return TimeClip(MakeDate(Result(6), Result(7))).

oggrwNE

arLdE

The UTC function differs from the Date constructor in two ways: it returns a time value as a number, rath
than creating a Date object, and it interprets the arguments in UTC rather than as local time.
15.9.4.7 Date.UTC(year, month, date)
When theUTCfunction is called with three arguments, the following steps are taken:
1. Call ToNumberfean.
2. Call ToNumberfonth.
3. Call ToNumbedate.
4. If Result(1) is notNaN and 0< Tolnteger(Result(1)k 99, Result(4) is 1900+Tolnteger(Result(1));
otherwise, Result(4) is Result(1).

5. Compute MakeDay(Result(4), Result(2), Result(3)).
6. Return TimeClip(MakeDate(Result(5), 0)).

The UTC function differs from the Date constructor in two ways: it returns a time value as a number, rath
than creating a Date object, and it interprets the arguments in UTC rather than as local time.

15.9.4.8 Date.UTC(year, month)

The behavior of th&/ TCfunction with two arguments is implementation dependent.
15.9.4.9 Date.UTC(year)

The behavior of th& TCfunction with one argument is implementation dependent.
15.9.4.10 Date.UTC()

The behavior of th&/ TCfunction with no arguments is implementation dependent.

15.9.5 Properties of the Date Prototype Object
The Date prototype object is itself a Date object (its [[Classpéte”) whose value idlaN.

15.9.5.1

15.9.5.2

15.9.5.3

15.9.5.4

15.9.5.5

15.9.5.6

15.9.5.7

15.9.5.8

15.9.5.9

159.5.1

- 90 -

The value of the internal [[Prototype]] property of the Date prototype object is the Object prototype object
(15.2.3.1).

In following descriptions of functions that are properties of the Date prototype object, the phrase “this Date
object” refers to the object that is ttheés value for the invocation of the function; it is an errothis does
not refer to an object for which the value of the internal [[Class]] propelBaie" . Also, the phrase “this time
value” refers to the number value for the time represented by this Date object, that is, the value of the internal
[[Value]] property of this Date object.

Date.prototype.constructor

The initial value oDate.prototype.constructor is the built-inDate constructor.

Date.prototype.toString()
This function returns a string value. The contents of the string are implementation dependent, but are intended
to represent the Date in a convenient, human-readable form in the current time zone.

ThetoString function is not generic; it generates a runtime error ithits value is not a Date object.

Therefore it cannot be transferred to other kinds of objects for use as a method.
Date.prototype.valueOf()

ThevalueOf function returns a number, which is this time value.

The valueOf function is not generic; it generates a runtime error ithis value is not a Date object.

Therefore it cannot be transferred to other kinds of objects for use as a method.
Date.prototype.getTime()

1. Ifthethis value is not an object whose [[Class]] propertiDate” , generate a runtime error.

2. Return this time value.

Date.prototype.getYear()

This function is specified here for backwards compatibility only. The fungRullYear is much to be

preferred for nearly all purposes, because it avoids the “year 2000 problem.”

1. Lett be this time value.
2. IftisNaN, returnNaN.
3. Return YearFromTime(LocalTintg) — 1900.

Date.prototype.getFullYear()

1. Lett be this time value.
2. IftisNaN, returnNaN.
3. Return YearFromTime(LocalTintg).

Date.prototype.getUTCFullYear()

1. Lett be this time value.
2. IftisNaN, returnNaN.
3. Return YearFromTim#(

Date.prototype.getMonth()

1. Lett be this time value.
2. IftisNaN, returnNaN.
3. Return MonthFromTime(LocalTim).

Date.prototype.getUTCMonth()

1. Lett be this time value.
2. IftisNaN, returnNaN.
3. Return MonthFromTimé

0 Date.prototype.getDate()

1. Lett be this time value.
2. IftisNaN, returnNaN.
3. Return DateFromTime(Local Tint

-91 -

15.9.5.11 Date.prototype.getUTCDate()

1. Lett be this time value.

2. Iftis NaN, returnNaN.

3. Return DateFromTimg(
15.9.5.12 Date.prototype.getDay()

1. Lett be this time value.

2. Iftis NaN, returnNaN.

3. Return WeekDay(LocalTimgyJ.
15.9.5.13 Date.prototype.getUTCDay()

1. Lett be this time value.

2. Iftis NaN, returnNaN.

3. Return WeekDay).
15.9.5.14 Date.prototype.getHours()

1. Lett be this time value.

2. Iftis NaN, returnNaN.

3. Return HourFromTime(Local Timi).
15.9.5.15 Date.prototype.getUTCHours()

1. Lett be this time value.

2. Iftis NaN, returnNaN.

3. Return HourFromTime
15.9.5.16 Date.prototype.getMinutes()

1. Lett be this time value.

2. Iftis NaN, returnNaN.

3. Return MinFromTime(LocalTim#yj.
15.9.5.17 Date.prototype.getUTCMinutes()
1. Lett be this time value.

2. Iftis NaN, returnNaN.

3. Return MinFromTime.
15.9.5.18 Date.prototype.getSeconds()

1. Lett be this time value.

2. Iftis NaN, returnNaN.

3. Return SecFromTime(LocalTimp(
15.9.5.19 Date.prototype.getUTCSeconds()
1. Lett be this time value.

2. Iftis NaN, returnNaN.

3. Return SecFromTimg(
15.9.5.20 Date.prototype.getMilliseconds()
1. Lett be this time value.

2. IftisNaN, returnNaN.

3. Return msFromTime(LocalTintg).
15.9.5.21 Date.prototype.getUTCMilliseconds()
1. Lett be this time value.
2. IftisNaN, returnNaN.
3. Return msFromTim&(
15.9.5.22 Date.prototype.getTimezoneOffset()
Returns the difference between local time and UTC time in minutes.

1. Lett be this time value.
2. IftisNaN, returnNaN.

15.9.5.23

15.9.5.24

15.9.5.25

15.9.5.26

15.9.5.27

15.9.5.28

- 92 -

3. Return{- LocalTime(f)) / msPerMinute.

Date.prototype.setTime(time)

If thethis value is not a Date object, generate a runtime error.
Call ToNumbet{me).

Call TimeClip(Result(1)).

Set the [[Value]] property of thhis value to Result(2).

Return the value of the [[Value]] property of thes value.

agrwNE

Date.prototype.setMilliseconds(ms)

Lett be the result of LocalTime(this time value).

Call ToNumbertg.

Compute MakeTime(HourFromTimg(MinFromTimef), SecFromTime], Result(2)).
Compute UTC(MakeDate(Day,(Result(3))).

Set the [[Value]] property of thhis value to TimeClip(Result(4)).

Return the value of the [[Value]] property of thes value.

oukwbhrE

Date.prototype.setUTCMilliseconds(ms)

Lett be this time value.

Call ToNumberfs.

Compute MakeTime(HourFromTinmg(MinFromTime(), SecFromTimd], Result(2)).
Compute MakeDate(Daty(Result(3)).

Set the [[Value]] property of thhis value to TimeClip(Result(4)).

Return the value of the [[Value]] property of thes value.

S e o o

Date.prototype.setSeconds(sec [, ms])
If msis not specified, this behaves amwere specified with the value getMilliseconds().

Lett be the result of LocalTime(this time value).

Call ToNumbereq.

If msis not specified, compute msFromTi)eptherwise, call ToNumbar(9.
Compute MakeTime(HourFromTimg(MinFromTime€), Result(2), Result(3)).
Compute UTC(MakeDate(Day,(Result(4))).

Set the [[Value]] property of thhis value to TimeClip(Result(5)).

Return the value of the [[Value]] property of thes value.

Nogok,rwhE

Date.prototype.setUTCSeconds(sec [, ms])
If msis not specified, this behaves asgwere specified with the value getUTCMilliseconds().

Lett be this time value.

Call ToNumbergeqg.

If msis not specified, compute msFromTimeftherwise, call ToNumbar(9.
Compute MakeTime(HourFromTintg(MinFromTime(), Result(2), Result(3)).
Compute MakeDate(Daty(Result(4)).

Set the [[Value]] property of thhis value to TimeClip(Result(5)).

Return the value of the [[Value]] property of thes value.

NookrwhrE

Date.prototype.setMinutes(min [, sec [, ms 1])
If secis not specified, this behaves asétwere specified with the value getSeconds ().

If msis not specified, this behaves amgwere specified with the value getMilliseconds().

Lett be the result of LocalTime(this time value).

Call ToNumbertin).

If secis not specified, compute SecFromTityedtherwise, call ToONumbeséq.
If msis not specified, compute msFromTi)eptherwise, call ToNumbaer(y.
Compute MakeTime(HourFromTinmg(Result(2), Result(3), Result(4)).
Compute UTC(MakeDate(Day,(Result(5))).

Set the [[Value]] property of ththis value to TimeClip(Result(6)).

Return the value of the [[Value]] property of thes value.

N AWDNRE

15.9.5.29

15.9.5.30

15.9.5.31

15.9.5.32

15.9.5.383

- 903 -

Date.prototype.setUTCMinutes(min [, sec [, ms]])

If secis not specified, this behaves asétwere specified with the value getUTCSeconds ().

If msis not specified, this behaves amgwere specified with the value getUTCMilliseconds().

1. Lett be this time value.

2. Call ToNumberrin).

3. If secis not specified, compute SecFromTithedtherwise, call TONumbeséq.

4. If msis not specified, compute msFromTim)eptherwise, call ToNumber(s.

5. Compute MakeTime(HourFromTintg(Result(2), Result(3), Result(4)).

6. Compute MakeDate(Day(Result(5)).

7. Set the [[Value]] property of thhis value to TimeClip(Result(6)).

8. Return the value of the [[Value]] property of thes value.
Date.prototype.setHours(hour [, min [, sec [, ms]]])

If minis not specified, this behaves amih were specified with the value getMinutes().

If secis not specified, this behaves asétwere specified with the value getSeconds ().

If msis not specified, this behaves amgwere specified with the value getMilliseconds().
1. Lett be the result of LocalTime(this time value).

2. Call ToNumbetgour).

3. If minis not specified, compute MinFromTintg(otherwise, call ToNumbar(in).

4. If secis not specified, compute SecFromTithe¢therwise, call ToONumbeség.

5. If msis not specified, compute msFromTi)ebtherwise, call TONumbar(g.

6. Compute MakeTime(Result(2), Result(3), Result(4), Result(5)).

7. Compute UTC(MakeDate(Day(Result(6))).

8. Set the [[Value]] property of thhis value to TimeClip(Result(7)).

9. Return the value of the [[Value]] property of thes value.
Date.prototype.setUTCHours(hour [, min [, sec [, ms]]])

If minis not specified, this behaves amih were specified with the value getUTCMinutes().
If secis not specified, this behaves asetwere specified with the value getUTCSeconds ().
If msis not specified, this behaves amgwere specified with the value getUTCMilliseconds().
1. Lett be this time value.

2. Call ToNumbet{our).

3. If minis not specified, compute MinFromTintg(otherwise, call ToNumber(in).

4. If secis not specified, compute SecFromTithe¢therwise, call ToONumbes€g.

5. If msis not specified, compute msFromTi)ebtherwise, call TONumber(g.

6. Compute MakeTime(Result(2), Result(3), Result(4), Result(5)).

7. Compute MakeDate(Day(Result(6)).

8. Set the [[Value]] property of thhis value to TimeClip(Result(7)).

9. Return the value of the [[Value]] property of thes value.
Date.prototype.setDate(date)

1. Lett be the result of LocalTime(this time value).

2. Call ToNumbeats.

3. Compute MakeDay(YearFromTintg(MonthFromTimet), Result(2)).

4. Compute UTC(MakeDate(Result(3), TimeWithinD@(

5. Set the [[Value]] property of thhis value to TimeClip(Result(4)).

6. Return the value of the [[Value]] property of thes value.
Date.prototype.setUTCDate(date)

1. Lett be this time value.

2. Call ToNumbeate.

3. Compute MakeDay(YearFromTintg(MonthFromTimet), Result(2)).

4. Compute MakeDate(Result(3), TimeWithinDRy(

5. Set the [[Value]] property of thteis value to TimeClip(Result(4)).

6.

- 94 -

Return the value of the [[Value]] property of thes value.

15.9.5.34 Date.prototype.setMonth(mon [, date])
If dateis not specified, this behaves adédtewere specified with the value getDate().

15.9.5.35

15.9.5.36

15.9.5.37

15.9.5.38

NogakwdbE

Lett be the result of LocalTime(this time value).

Call ToNumbedate).

If dateis not specified, compute DateFromTimeétherwise, call TONumbedtate).
Compute MakeDay(YearFromTintg(Result(2), Result(3)).

Compute UTC(MakeDate(Result(4), TimeWithinDgy(

Set the [[Value]] property of thhis value to TimeClip(Result(5)).

Return the value of the [[Value]] property of thes value.

Date.prototype.setUTCMonth(mon [, date])
If dateis not specified, this behaves addtewere specified with the value getUTCDate().

Nogakwbdbr

Lett be this time value.

Call ToNumberdate).

If dateis not specified, compute DateFromTimgétherwise, call TONumbettate).
Compute MakeDay(YearFromTintg(Result(2), Result(3)).

Compute MakeDate(Result(4), TimeWithinD@y(

Set the [[Value]] property of thhis value to TimeClip(Result(5)).

Return the value of the [[Value]] property of thes value.

Date.prototype.setFullYear(year [, mon [, date]])
If monis not specified, this behaves amibnwere specified with the value getMonth().

If dateis not specified, this behaves addtewere specified with the value getDate().

ONoORWNE

Lett be the result of LocalTime(this time value); but if this time validail, lett be+0.
Call ToNumbergean.

If monis not specified, compute MonthFromTir)ebtherwise, call ToNumber{on.

If dateis not specified, compute DateFromTimgétherwise, call TONumbettate).
Compute MakeDay(Result(2), Result(3), Result(4)).

Compute UTC(MakeDate(Result(5), TimeWithinDghy(

Set the [[Value]] property of thhis value to TimeClip(Result(6)).

Return the value of the [[Value]] property of thes value.

Date.prototype.setUTCFullYear(year [, mon [, date])
If monis not specified, this behaves amibnwere specified with the value getUTCMonth().

If dateis not specified, this behaves addtewere specified with the value getUTCDate().

NGO~ WDNE

Lett be this time value; but if this time valueNaN, lett be+O0.

Call ToNumbergean.

If monis not specified, compute MonthFromTir)ebtherwise, call ToNumber{on.
If dateis not specified, compute DateFromTimgétherwise, call TONumbettate).
Compute MakeDay(Result(2), Result(3), Result(4)).

Compute MakeDate(Result(5), TimeWithinDy(

Set the [[Value]] property of thikis value to TimeClip(Result(6)).

Return the value of the [[Value]] property of thes value.

Date.prototype.setYear(year)

This function is specified here for backwards compatibility only. The funsgdiRullYear is much to be
preferred for nearly all purposes, because it avoids the “year 2000 problem.”

5.

1. Lett be the result of LocalTime(this time value); but if this time vali¢al, lett be+0.

2. Call ToNumbergean.

3.

4. If Result(2) is noNaN and 0<=Tolnteger(Result(2)) <=99 then Result(4) is Tolnteger(Result(2)) + 1900.

If Result(2) isNaN, set the [[Value]] property of thihis value toNaN and returrNaN.

Otherwise Result(4) is Result(2).
Compute MakeDay(Result(4), MonthFromTit)eDateFromTimet]).

15.9.5.39

15.9.5.40

15.9.5.41

- 95 -

6. Compute UTC(MakeDate(Result(5), TimeWithinDZy(
7. Setthe [[Value]] property of this value to TimeClip(Result(6)).
8. Return the value of the [[Value]] property of thes value.

Date.prototype.toLocaleString()

This function returns a string value. The contents of the string are implementation dependent, but are inten
to represent the Date in a convenient, human-readable form appropriate to the geographic or cultural locale

Date.prototype.toUTCString()

This function returns a string value. The contents of the string are implementation dependent, but are inten
to represent the Date in a convenient, human-readable form in UTC.

Date.prototype.toGMTString()

The function object that is the initial value Dhte.prototype.toGMTString is the same function
object that is the initial value dbate.prototype.toUTCString . The toGMTString property is

provided principally for compatibility with old code. It is recommended thatdab&CString property be

used in new ECMAScript code.

15.9.6 Properties of Date Instances
Date instances have no special properties beyond those inherited from the Date prototype object.
16 Errors

This specification specifies the last possible moment an error occurs. A given implementation may generate er
sooner (e.g. at compile-time). Doing so may cause differences in behavior among implementations. Notably, if runti
errors become catchable in future versions, a given error would not be catchable if an implementation generates
error at compile-time rather than runtime.

An ECMAScript compiler should detect errors at compile time in all code presented to it, even code that detail
analysis might prove to be “dead” (never executed). A programmer should not rely on the trick of placing code with
anif (false) statement, for example, to try to suppress compile-time error detection.

In general, if a compiler can prove that a construct cannot execute without error under any circumstances, then it
issue a compile-time error even though the construct might neverbe executed at all.

Printed copies can be ordered from:

ECMA
114 Rue du Rhone
CH-1204 Geneva

Switzerland
Fax: +41 22 849.60.01
Internet: helpdesk@ecma.ch

Files can be downloaded from our FTP sitp,ecma.ch, logging in asanonymous and giving your E-mail address as
password This Standard is available from libordBCMA-ST as a compacted, self-expanding file in MSWord 6.0 format (file
E262-DOC.EXE) and as an Acrobat PDF file (file E262-PDF.PDF). File E262-EXP.TXT gives a short presentation of t
Standard.

Our web site, http://www.ecma.ch, gives full information on ECMA, ECMA &, ECMA Standards and Technical
Reports.

ECMA

114 Rue du Rhbéne
CH-1204 Geneva
Switzerland

This Standard ECMA-262 is available free of charge in printed form and as a file.

See inside cover page for instructions

