
Standard ECMA-235
March 1996

S t a n d a r d i z i n g   I n f o r m a t i o n   a n d   C o m m u n i c a t i o n   S ys t e m s

Phone:  +41 22  849.60.00 -  Fax:  +41 22  849.60.01 -  URL:  h t tp : / /www.ecma.ch -  In ternet :  he lpdesk@ecma.ch

The ECMA GSS-API
Mechanism





Standard ECMA-235
March 1996

S t a n d a r d i z i n g   I n f o r m a t i o n   a n d   C o m m u n i c a t i o n   S ys t e m s

Phone:  +41 22  849.60.00 -  Fax:  +41 22  849.60.01 -  URL:  h t tp : / /www.ecma.ch -  In ternet :  he lpdesk@ecma.ch

Gino Lauri - ECMA-235.DOC - 20/03/96 11:50

The ECMA GSS-API
Mechanism





Brief History

ECMA, ISO and ITU-T are working on standards for distributed applications in an open system environment. Security in
general and authentication and distributed access control in particular are major concerns in information processing.

In July 1988, ECMA TR/46, "Security in Open Systems - A Security Framework", was published. In December 1989, based on
the concepts of this framework, ECMA-138, "Security in Open Systems - Data Elements and Service Definitions", was
produced. It defines a set of Security Services for use in the Application Layer of the ISO OSI Reference Model.

In December 1994, the first edition of Standard ECMA-219 was published. Based on this earlier work, it describes a model for
distributed authentication and access control in which a trusted third party, the Authentication and Privilege Attribute
Application (APA-Application) and related key distribution functions are used to authenticate human and software entities,
provide them with the privileges they need for access control purposes and provide the means of protection of these privileges
in interchange.

Over this period also, the Internet Engineering Task Force (IETF) and other de facto and de jure standards organisations have
been developing a standard general interface through which a security infrastructure such as that described in [ECMA-219] can
be exercised by application clients and servers. It has been designed so that callers do not need to know the details of the
underlying infrastructure, or even whether it is provided by [ECMA-219] services or other infrastructure designs. This interface
is the Generic Security Services Application Programming Interface, or GSS-API ([GSS-API]).

This ECMA standard follows on from [ECMA-219], showing how the security services described there can be used underneath
the GSS-API by application clients and servers. It describes the interface calls supported, the success and error responses that
can be returned, and the format and content of the data tokens exchanged between the client and the server.

In order to implement Privilege Attribute based access control features for distributed open applications using the GSS-API,
this Standard also defines support functions that have to be used in addition to the standard GSS-API function set.

[KRB5GSS] and [SPKM] also define ways of supporting the GSS-API, and some of the data constructs defined there are also
used here.

The Standard is based on the practical experience of ECMA member Companies. It is oriented towards urgent and well
understood needs.

This ECMA Standard has been adopted by the ECMA General Assembly in March 1996.





-  i  -

Table of contents

1 Introduction 1

1.1 Scope 1

1.2 Field of application 1

1.3 Requirements to be satisfied 1

1.4 Conformance 1

1.5 Overview and document structure 2

2 References 2

2.1 Normative references 2

2.2 Informative references 3

3 Definitions 3

3.1 Imported definitions 3

3.2 New Definitions 3

3.2.1 Security Context 3

3.2.2 Generic Security Mechanism 3

3.2.3 Security Mechanism Options 4

3.2.4 Primary Principal Identifier (PPID) 4

3.3 Acronyms 4

4 Token formats 4

4.1 Token framings 4

4.2 InitialContextToken format 5

4.3 TargetResultToken 8

4.4 ErrorToken 8

4.5 Per Message Tokens 9

4.5.1 MICToken 10

4.5.2 WrapToken 11

4.6 ContextDeleteToken 11

5 Key distribution and PAC protection options 12

5.1 PAC protection  options 12

5.2 Key Distribution schemes 12

5.2.1 Basic symmetric key distribution scheme 12

5.2.2 Symmetric key distribution scheme with symmetric KD-Servers 12

5.2.3 Symmetric key distribution scheme with asymmetric KD-Servers 12

5.2.4 Asymmetric initiator / symmetric target key distribution scheme 13

5.2.5 Symmetric initiator / asymmetric target key distribution scheme 13

5.2.6 Full public key distribution scheme 13

5.3 Key distribution data elements 13

5.3.1 KD-Scheme independent data elements 13

5.3.2 Key distribution scheme OBJECT IDENTIFIERs 14

5.3.3 Hybrid inter-domain key distribution scheme data elements 15



-  i i  -

5.3.4 Key establishment data elements 16

5.3.5 Kerberos Data elements 17

5.3.6 Profiling of KD-schemes 17

5.3.6.1 Profile of Ticket (symmIntradomain and symmInterdomain) 18

5.3.6.2 Profile of PublicTicket (hybridInterdomain) 19

5.3.6.3 Profile of SPKM_REQ (asymmInitToSymmTarget, symmInitToAsymmTarget, asymmetric) 20

5.4 Returned Key Scheme Information 20

6 Algorithm use within ECMA mechanism 21

7 Identifiers for ECMA mechanism choices 23

7.1 Architectural mechanism identifiers 23

8 Errors 24

8.1 Minor Status Codes 24

8.1.1 Non ECMA-specific codes 24

8.1.2 ECMA-specific codes 25

8.2 Quality of protection 27

9 Support functions 27

9.1 Attribute handling support functions 27

9.1.1 GSS_Set_cred_attributes 28

9.1.2 GSS_Get_sec_attributes 29

9.1.3 GSS_Get_received_creds 30

9.2 Control and support functions for context acceptors 30

9.2.1 GSS_Set_cred_controls call 32

9.2.2 GSS_Get_sec_controls 32

9.2.3 GSS_Compound_creds call 33

9.3 Attribute specifications 34

9.3.1 Privilege attributes 34

9.3.1.1 Access Identity 34

9.3.1.2 Group 34

9.3.1.3 Primary group 34

9.3.1.4 Role attribute 34

9.3.2 Attribute set reference 35

9.3.2.1 Role name 35

9.3.3 Miscellaneous attributes 35

9.3.3.1 Audit Identity 35

9.3.3.2 Issuer domain name 35

9.3.3.3 Validity periods 35

9.3.3.4 Optional restrictions 35

9.3.3.5 Mandatory restrictions 35

9.3.4 Qualifier attributes 36

9.3.4.1 Acceptor name 36

9.3.4.2 Application trust group 36



-  i i i  -

9.4 C Bindings 36

9.4.1 Data types and calling conventions 36

9.4.1.1 Identifier 36

9.4.1.2 Identifier set 37

9.4.1.3 Time periods 37

9.4.1.4 time period list 37

9.4.1.5 Security attributes 38

9.4.1.6 Security Attribute Sets 38

9.4.1.7 Credentials List 38

9.4.1.8 Acceptor Control 38

9.4.1.9 Acceptor Control Set 39

9.4.2 gss_set_cred_attributes 39

9.4.3 gss_get_sec_attributes 39

9.4.4 gss_get_received_creds 39

9.4.5 gss_set_cred_controls 39

9.4.6 gss_get_sec_controls 40

9.4.7 gss_compound_cred 40

10 Relationship to other standards 40

Annex A - Formal ASN.1 definitions of data types defined in this standard 43

Annex B - Definitions of [Kerberos] data types 51

Annex C - Definitions of [SPKM] data types 55

Annex D - Mappings of Minor Status Returns onto [ECMA-219] error values 61

Annex E - Imported Types 63





1 Introduction
1.1 Scope

Standard ECMA-219 defines services, data elements and operations for authentication, Privilege Attribute and key
distribution applications (the APA-Application).

Following on from [ECMA-219], this Standard ECMA-235defines the syntax of the tokens that enable distributed
applications implementing the APA-Application and related data elements specified in Standard ECMA-219 to
interwork. The tokens defined in this Standard are :

• Tokens for Security Association establishment

• An error token for communicating a failure to establish a Security Association

• Tokens for message protection

• A token for Security Association deletion

In order to provide a basic set of implementation options, this Standard also defines some key distribution schemes
based on symmetric and asymmetric cryptographic technologies. These include specification of the encryption
algorithms and methods to be used.

The tokens are intended for use through the Generic Security Service API (GSS-API) as defined in [GSS-API]. This
Standard defines minor status returns that are returned by the GSS-API when a GSS-API conformant
implementation is used to generate and validate the tokens.

In order to implement Privilege Attribute based access control features for distributed open applications using the
GSS-API, this Standard also defines support functions that have to be used in addition to the standard GSS-API
function set.

1.2 Field of application
The field of application of this ECMA Standard is the design, implementation and interworking of security modules
that make use of the APA-Application as defined in [ECMA-219]. They define an implementation of the "ECMA
GSS-API mechanism".

1.3 Requirements to be satisfied
Requirements for secure distributed environments have led to specifications of security services such as [ECMA-
219], [Kerberos] and [SPKM]. Each of these defines what is known in [GSS-API] as a "security mechanism".

The [ECMA-219] mechanism defines security services and data elements required to secure distributed
applications. However, in order to achieve interworking between normal application servers using these security
services , the syntax of the security tokens to be exchanged between the application servers themselves needs to be
defined.

[GSS-API] specifies an interface that is independent of the underlying supporting security mechanism, but through
which mechanism-specific security tokens can be exchanged. The GSS-API is intended to be used by implementors
of distributed secured applications.

The GSS-API provides functions to implement identity based access control policies, but it does not provide
support functions to handle in a generic way Privilege Attributes for access control purposes. Neither does it
provide for the control of delegation. This standard therefore specifies such support functions.

1.4 Conformance
There are a number of types of conformance to this Standard as follows :

Type 1 Support functions conformance

The implementation shall be conformant to [GSS-API], with the addition of the ECMA mechanism support
functions defined in clause 9. Any minor status returns must be from the set defined in clause 8. This type of
conformance is in support of application portability, and does not demand that the underlying GSS-API mechanism
is the ECMA one.

Type 2 Security Association level context token conformance



-  2 -

The implementation shall support at least one mechanism option of the ECMA mechanism Security Association
establishment, deletion, and error tokens defined in clause 4.1 to 4.4 and 4.6 Any minor status returns must be from
the set defined in clause 8. This type of conformance is in support of interoperability, and does not require support
for the GSS-API.

Type 3 Message level token conformance

The implementation shall be Type 2 conformant, and also provide an implementation of the ECMA mechanism
message protection tokens defined in clause 4.5 Any minor status returns must be from the set defined in clause 8.

Type 4 Full ECMA GSS-API mechanism conformance

This is achieved if both Type 1 and Type 3 conformance are achieved

1.5 Overview and document structure
The standard described in [ECMA-219] defines specific service interfaces to security services supporting the
provision of authentication, key establishment, data integrity, data confidentiality and access control information.
Although the scope of that standard does not encompass the specification of how to establish Security Associations
with productive application servers, it does assume and describe a model for these exchanges. The combined model
and standard is defined as the ECMA mechanism. This document describes how the generic ECMA mechanism is to
be exercised through the GSS-API to form the ECMA GSS-API Mechanism. Contents of specific clauses are:

Clauses 2 and 3: These contain the usual references and definitions respectively.

Clause 4: Describes the token formats exchanged between GSS-API peers using the ECMA GSS-API
mechanism.

Clause 5: Defines specific key distribution schemes within the framework laid down in [ECMA-219].
It gives detailed syntax and semantics for these schemes.

Clause 6: Describes the use of cryptographic algorithms in the ECMA GSS-API mechanism.

Clause 7: Describes the ways in which OBJECT IDENTIFIERS are used to nominate particular
specific ECMA GSS-API mechanism types, including the choice of cryptographic
algorithms themselves.

Clause 8: Describes the GSS-API minor status codes that can be returned by the ECMA GSS-API
mechanism. See also annex E.

Clause 9: Defines additional GSS-API support functions needed to enable PAC attribute and control
information to be set and exploited by GSS-API callers. It also defines some specific
attribute types.

Clause 10: Explains the relationship between this standard and other standards.

Annex A: Contains normative formal ASN.1 definitions of ASN.1 defined in this standard.

Annex B: Contains normative formal ASN.1 definitions of ASN.1 also used in [SPKM].

Annex C: Contains normative formal ASN.1 definitions of ASN.1 also used in [Kerberos].

Annex D: Maps the minor status codes given in clause 8 onto the relevant error values defined in
[ECMA-219].

Annex E: Expands the imported ASN.1 constructs (for information purposes).

2 References
2.1 Normative references

ECMA-219 ECMA-219, Authentication and Privilege Attribute Application with related key
distribution functions

GSS-API 1. Internet RFC 1508 Generic Security Service API (J. Linn, September 1993)

2. X/Open P308 Generic Security Service API (GSS-API) Base

3. Internet RFC 1509 "Generic Security Service API: C-Bindings"



-  3 -

Kerberos Internet RFC 1510 The Kerberos Network Authentication Service (V5) (J. Kohl and C.
Neumann, September 1993)

ISO 10745 ISO 10745, Upper Layers Security Model

ISO/IEC 9594-2 ISO/IEC 9594-2, Information Processing Systems - Open Systems Interconnection - The
Directory - Part 2: Information Framework (X.501)

ISO/IEC 9594-8 ISO/IEC 9594-8, Information Processing Systems - Open Systems Interconnection - The
Directory - Part 8: Authentication Framework (X.509)

2.2 Informative references
KERB5GSS draft-ietf-cat-kerb5gss-03 The Kerberos Version 5 GSS-API Mechanism (J. Linn,

September 1995)

SPKM draft-ietf-cat-spkmgss-04: The Simple Public-Key GSS-API Mechanism (C. Adams, May
1995)

SNEGO draft-ietf-cat-snego-00 Simple GSS-API Negotiation Mechanism (Eric Baize and Denis
Pinkas, July 1995)

3 Definitions
3.1 Imported definitions

The following terms are used with the meaning defined in [ECMA-219] :

access identity
attribute set reference
Audit Identity
basic key
delegate
dialogue key
External Control Value
Privilege Attribute Certificate
target
Target AEF
target key block

The following terms are used with the meaning defined in [GSS-API]

acceptor
initiator
channel bindings
context acceptor
context Initiator
credentials
GSS-API token
mechanism type
quality of  protection

The following terms are used with the meaning defined in [ISO 10745]:

Security Association

3.2 New Definitions
3.2.1 Security Context

Security information that represents, or will represent a Security Association to an initiator or acceptor  that has
formed, or is attempting to form such an association.

3.2.2 Generic Security Mechanism

A generic security mechanism identifies a class of support functions, data structures and protocols from which
specific security mechanism options can be derived.



-  4 -

3.2.3 Security Mechanism Options

A security mechanism option identifies for a generic security mechanism, a specific choice of support functions,
data structures and protocols required to an initiator and an acceptor in order to establish and use security
contexts

3.2.4 Primary Principal Identifier (PPID)

An arbitrary identifier of the original source of a request for a PAC. It is a specific example of a value used in the
"primary principal qualification" protection method. The PPID is used to prevent a PAC from being stolen or
delegated. See [ECMA-219] for an explanation of the protection method.

3.3 Acronyms

ACI Access Control Information

AEF Access Enforcement Function

CA Certification Authority

DES Data Encryption Standard

ECV External Control Value

GSS-API Generic Security Service Application Program Interface

KD- Key Distribution (server)

PAC Privilege Attribute Certificate

PPID Primary Principal Identifier

RSA Rivest Shamir Adleman

SA Security Association

SPKM Simple Public Key Mechanism

4 Token formats
This clause describes protocol-visible characteristics of the GSS-API as implemented above the ECMA mechanism.
Succeeding sub-clauses define the syntax of tokens exchanged between GSS-API peers for Security Association
management.

4.1 Token framings
Following [GSS-API], tokens are enclosed within framing as follows:

Token ::=

[APPLICATION 0] IMPLICIT SEQUENCE {

thisMech MechType, -- the OBJECT IDENTIFIER specified below

innerContextTokenANY DEFINED BY thisMech }

The ECMA mechanism type is identified by an OBJECT IDENTIFIER with value:

235{ generic-ecma-mech (y) (z) }

Where:

generic-ecma-mech ::=

{ iso(1) identified-organisation(3) icd-ecma(0012) standard(0) ecma-gss-api (235)

generic-ecma-mech (4)}

See clause 7 for the values of y and z that have been defined in this Standard.



-  5 -

The above GSS-API framing shall be applied to all tokens emitted by the ECMA GSS-API mechanism, including
context-establishment tokens, per-message tokens, and context-deletion token.

The innerContextToken field of context establishment tokens for the ECMA GSS-API mechanism will consist of an
ECMA token (InitialContextToken, TargetResultToken, ErrorToken) containing a token identifier (tokenId) field
having the value 01 00 (hex) for InitialContextToken, 02 00 (hex) for TargetResultToken, and 03 00 (hex) for
ErrorToken. These are defined to be:

InitialContextToken sent by the initiator to a target, to start the process of establishing a Security
Association. Returned by the GSS_Init_sec_context call.

TargetResultToken sent to the initiator by the target following receipt of an InitialContext Token. Returned
by the GSS_Accept_sec_context call.

ErrorToken sent by target on detection of an error during Security Association establishment.
Returned by either the GSS_Init_sec_context call or the GSS_Accept_sec_context call.

The innerContextToken field of per-message tokens for the ECMA GSS-API mechanism will consist of an ECMA
token (MICToken, WrapToken) containing a tokenId field having the value 01 01 (hex) for MICToken, and 02 01
(hex) for WrapToken. These are defined to be:

MICToken sent either by the initiator or the target to verify the integrity of the user data sent
separately. Returned by GSS_GetMIC.

WrapToken sent either by the initiator or the target. Encapsulates the input user data (optionally
encrypted) along with integrity check values. Returned by GSS_Wrap.

The innerContextToken field of context-deletion token for the ECMA GSS-API mechanism will consist of an
ECMA token (ContextDeleteToken) containing a tokenId field having the value 03 01 (hex). This is defined to be:

ContextDeleteToken sent either by the initiator, or the target to release a Security Association. Returned by
GSS_Delete_sec_context.

4.2 InitialContextToken format
This construct provides for the carrying of the following Security Association information:

• replay protection,

• keying information for establishing both the key for protecting the exchange of context tokens, including this
one, and keys for later use in protecting user data exchanges,

• access control information (ACI) used to determine what access is to be granted by the target to the initiator of
the Security Association,

• information to control the applicability of the ACI (e.g. whether delegation is permissible, or identifying for
which targets the access rights are valid),

• information to protect the ACI from being tampered with or stolen,

• accountability information for use in audit trails.

InitialContextToken ::=  SEQUENCE {

ictContents [0] ICTContents,

ictSeal [1] Seal -- Imported from [ECMA-219] (see annex E)

}

ictContents

Body of the initial context token

ictSeal

Seal of ictContents computed with the integrity dialogue key. Only the sealValue field of the Seal data structure is
present. The cryptographic algorithms that apply are specified by integDKUseInfo in the dialogueKeyBlock field of
the initial context token.



-  6 -

ICTContents ::= SEQUENCE {

tokenId [0] INTEGER, -- shall contain X'0100'

SAId [1] OCTET STRING,

targetAEFPart [2] TargetAEFPart,

targetAEFPartSeal [3] Seal, -- Imported from [ECMA-219] (see annex E)

contextFlags [4] BIT STRING{

delegation (0),

mutual-auth (1),

replay-detect (2),

sequence (3),

conf-avail (4),

integ-avail (5)

}

utcTime [5] UTCTime OPTIONAL,

 usec [6] INTEGER OPTIONAL,

seq-number [7] INTEGER OPTIONAL,

initiatorAddress [8] HostAddress OPTIONAL, -- imported from [Kerberos]

targetAddress [9] HostAddress OPTIONAL

-- used as channel bindings }

tokenId

Identifies the initial-context token. Its value is 01 00 (hex)

SAId

A  random number for identifying the Security Association being formed; it is one which (with high probability) has
not been used previously. This random number is generated by the initiator ECMA GSS-API implementation and
processed by the target GSS-API implementation as follows :

• If no targetResultToken is expected, the SAId value is taken to be the identifier of the Security Association
being established (if this is unacceptable to the target, then an error token with etContents value of
gss_ecma_s_sg_sa_already_established must be generated).

• If a targetResultToken is expected, the target generates its random number and concatenates it to the end on the
initiator’s random number. The concatenated value is then taken to be the identifier of the Security Association
being established.

targetAEFPart

Part of the initial-context token to be passed to the target access enforcement function.

targetAEFPartSeal

Seal of the targetAEFPart computed with the basic key. Only the sealValue field of the Seal data structure is
present. The cryptographic algorithms that apply are specified by algorithm profile in the ECMA mechanism option
(see clauses 6 and 7).

contextFlags

Combination of flags that indicates context-level functions requested by the GSS-API initiator implementation.

delegation when set to 0, indicates that the initiator explicitly forbids delegation of the PAC in the
targetAEFPart.

mutual-auth indicates that mutual authentication is requested.



-  7 -

replay-detect indicates that replay detection features are requested to be applied to messages transferred on the
established Security Association.

sequence indicates that sequencing features are requested to be enforced for messages transferred on the
established Security Association.

conf-avail indicates that a confidentiality service is available on the initiator side for the established Security
Association.

integ-avail indicates that an integrity service is available on the initiator side for the established Security
Association.

utcTime

The initiator’s UTC time.

usec

Microsecond part of the initiator’s time stamp. This field, along with utcTime, is used to specify a precise time
stamp

seq-number

When present, specifies the initiator’s initial sequence number. Otherwise, the default value of 0 is to be used as an
initial sequence number.

initiatorAddress

Initiator’s network address part of the channel bindings. This field is only present when channel bindings are
transmitted by the GSS-API caller to the ECMA GSS-API implementation.

targetAddress

Target’s network address part of the channel bindings. This field is only present when channel bindings are
transmitted by the GSS-API caller to the ECMA GSS-API implementation.

TargetAEFPart ::= SEQUENCE {

pacAndCVs [0] SEQUENCE OF CertandECV OPTIONAL,

targetKeyBlock [1] TargetKeyBlock, -- see clause 5 for schemes supported

dialogueKeyBlock [2] DialogueKeyBlock, -- Imported from [ECMA-219] (see annex E)

targetIdentity [3] Identifier, -- Imported from [ECMA-219] (see annex E)

flags [4] BIT STRING{

delegation (0)

}

}

NOTE 1
ECMA validity philosophy is that individual inner certificates have validity of their own, and that it is not sensible
to have an overall separately specified validity period for the whole context.

NOTE 2
ECMA does not permit the target to opt for a shorter validity time than that specified by the initiator. If it wants to
cut off the context earlier it just does it, returning an appropriate error.

pacAndCVs

The ACI to be used for this Security Association. This field is not present when the association does not require any
ACI. This field can contain several PACs in delegation schemes where the Security Association requires not only
the initiator PAC to be present, but also delegate PACs.

targetKeyBlock

The targetKeyBlock carrying the basic key to be used for the Security Association being established.



-  8 -

dialogueKeyBlock

A dialogue key block used by the Target AEF along with the basic key to establish an integrity dialogue key and a
confidentiality dialogue key for per-message protection over the Security Association being established.

targetIdentity

The identity of the intended target of the Security Association. Used by the Target AEF to validate the PAC. Can
also be used by the Target AEF to help protect the delivery of dialogue keys.

flags

flags required by the Target AEF for its validation process. Only contains a delegation flag, the value of which is the
same as the value of delegation flag in contextFlag field of ictContents. When the flag is set, all ECVs sent in
pacAndCVs are made available to the target. Other bits are reserved for future use.

4.3 TargetResultToken
This token is returned by the acceptor if the mutual-req flag is set in the InitialContext Token. It serves to
authenticate the acceptor to the initiator, since only the genuine acceptor could derive the integrity dialogue key
needed to seal the TargetResultToken.

TargetResultToken ::=  SEQUENCE {

trtContents [0] TRTContents,

trtSeal [1] Seal }

TRTContents ::= SEQUENCE {

tokenId [0] INTEGER, -- shall contain X'0200'

SAId [1] OCTET STRING,

utcTime [5] UTCTime OPTIONAL,

 usec [6] INTEGER OPTIONAL,

seq-number [7] INTEGER OPTIONAL

 }

NOTE
There is no field for returning certification data here. This is because any such data that may be required is
assumed to be returned at the conclusion of  mechanism negotiation.

trtContents

This contains only administrative fields, identifying the token type, the context and providing exchange integrity.

seq-number

When present, specifies the acceptor's initial sequence number, otherwise, the default value of 0 is to be used as
an initial sequence number.

The other administrative fields are as described in clause 4.2.

trtSeal

Seal of trtContents computed with the integrity dialogue key. Only the sealValue field of the Seal data structure is
present. The cryptographic algorithms that apply are specified by integDKUseInfo in the dialogueKeyBlock field of
the initial context token.

4.4 ErrorToken

ErrorToken ::=  {

tokenType [0] OCTET STRING VALUE X'0400',

etContents [1] ErrorArgument,

}



-  9 -

etContents

Contains the reason for the creation of the error token. The different reasons are given as minor status return values.
Clause 8 describes these in more detail, and annex D maps them onto the error returns of [ECMA-219].

ErrorArgument ::= ENUMERATED {

gss_ecma_s_sg_server_sec_assoc_open (1),

gss_ecma_s_sg_ incomp_cert_syntax (2),

gss_ecma_s_sg_ bad_cert_attributes (3),

gss_ecma_s_sg_ inval_time_for_attrib (4),

gss_ecma_s_sg_ pac_restrictions_prob (5),

gss_ecma_s_sg_ issuer_problem (6),

gss_ecma_s_sg_ cert_time_too_early (7),

gss_ecma_s_sg_ cert_time_expired (8),

gss_ecma_s_sg_ invalid_cert_prot (9),

gss_ecma_s_sg_ revoked_cert (10),

gss_ecma_s_sg_ key_constr_not_supp (11),

gss_ecma_s_sg_ init_kd_server_ unknown (12),

gss_ecma_s_sg_init_unknown (13),

gss_ecma_s_sg_alg_problem_in_dialogue_key_block (14),

gss_ecma_s_sg_no_basic_key_for_dialogue_key_block (15),

gss_ecma_s_sg_key_distrib_prob (16),

gss_ecma_s_sg_invalid_user_cert_in_key_block (17),

gss_ecma_s_sg_unspecified (18),

gss_ecma_s_sg_invalid_token_format (19)

}

4.5 Per Message Tokens
The syntax of the Per Message Token has the same general structure for both MIC and Wrap tokens:

PMToken ::=  SEQUENCE {

pmtContents [0] PMTContents,

pmtSeal [1] Seal

}

PMTContents ::= SEQUENCE {

tokenId [0] INTEGER,

SAId [1] OCTET STRING,

seq-number [2] INTEGER OPTIONAL,

userData [3] CHOICE {

plaintext BIT STRING,

ciphertext OCTET STRING

} OPTIONAL,

directionIndicator [4] BOOLEAN OPTIONAL

 }



-  10 -

pmtContents

tokenId

Identifies the type of per message token.

SAId

See clause 4.2 for a description of this field.

seq-number

This field must be present if replay detection or message sequencing have been specified as being required at
Security Association initiation time. The field contains a message sequence number whose value is
incremented by one for each message in a given direction, as specified by directionIndicator. The first
message sent by the initiator following the InitialContextToken shall have the message sequence number
specified in that token, or if this is missing, the value 0. The first message returned by the acceptor shall have
the message sequence number specified in the TargetReplyToken if present, or failing this, the value 0.

The receiver of the token will verify the sequence number field by comparing the sequence number with the
expected sequence number and the direction indicator with the expected direction indicator. If the sequence
number in the token is higher than the expected number, then the expected sequence number is adjusted and
GSS_S_GAP_TOKEN is returned. If the token sequence number is lower than the expected number, then the
expected sequence number is not adjusted and GSS_S_DUPLICATE_TOKEN or GSS_S_OLD_TOKEN is
returned, whichever is appropriate. If the direction indicator is wrong, then the expected sequence number is
not adjusted and GSS_S_UNSEQ_TOKEN is returned

userData

See specific token type narratives below.

directionIndicator

Present if seq-number is specified. FALSE indicates that the sender is the context initiator, TRUE that the
sender is the target.

pmtSeal

See specific token type narratives below.

4.5.1 MICToken

Use of the GSS_Get_MIC() call yields a per-message token, separate from the user data being protected, which
can be used to verify the integrity of that data as received. The token and the data may be sent separately by the
sending application and it is the receiving application's responsibility to associate the received data with the
received token. The syntax of the token is:

MICToken  ::=   PMToken

The overall structure and field contents of the token are described in clause 4.5. Fields specific to the MICToken
are:

tokenId

Shall contain 01 01 (hex) to identify the token as a MICToken

userData

Not present for MIC Tokens.

pmtSeal

Computed over a DER encoding of pmtContents, but as if the data to be protected were present as plaintext in the
userData field. The result binds the data to the entire plaintext header, so as to minimize the possibility of
malicious splicing.



-  11 -

4.5.2 WrapToken

Use of the GSS_Wrap() call yields a token which encapsulates the input user data (optionally encrypted) along
with associated integrity check values. The token emitted by GSS_Wrap() consists of an integrity header
followed by a body portion that contains either the plaintext data (if conf_alg = NULL) or encrypted data. The
syntax of the token is:

WrapToken  ::=   PMToken

The overall structure and field contents of the token are described in clause 4.5. Fields specific to the WrapToken
are:

tokenId

Shall contain 02 01 (hex) to identify the token as a WrapToken

userData

Present either in plain text form (the choice is plaintext), or encrypted (choice ciphertext). If the data is
encrypted, the encryption is performed using the Confidentiality Dialogue Key, and as in [Kerberos], an 8-byte
random confounder is first prepended to the data to compensate for the fact that an IV of zero is used for
encryption.

wtSeal

The Checksum is calculated over the DER encoding of the pmtContents field, including the userData. However if
the userData field is to be encrypted, the seal value is computed prior to the encryption.

4.6 ContextDeleteToken
The ContextDeleteToken is issued by either the context initiator or the target to indicate to the other party that the
context is to be deleted.

ContextDeleteToken ::=  SEQUENCE {

cdtContents [0] CDTContents,

cdtSeal [1] Seal -- seal over cdtContents, encrypted

-- under the Integrity Dialogue Key

-- contains only the sealValue field

}

CDTContents ::= SEQUENCE {

tokenType [0] OCTET STRING VALUE X'0301',

SAId [1] OCTET STRING,

utcTime [2] UTCTime OPTIONAL,

 usec [3] INTEGER OPTIONAL,

seq-number [4] INTEGER OPTIONAL

 }

cdtContents

This contains only administrative fields, identifying the token type, the context and providing exchange integrity.

seq-number

When present, this field contains a value one greater than that of the seq-number field of the last token issued
from this issuer.

The other administrative fields are as described in clause 4.2.



-  12 -

cdtSeal

See clause 4.2 for a general description of the use of this construct.

5 Key distribution and PAC protection options
5.1 PAC protection  options

[ECMA-219] specifies a framework for key distribution, but does not specify any specific key distribution schemes.
It also leaves open the choice of how to protect the PAC for the distribution of privileges. The PAC choices that are
relevant in this context  are:

• Sealed PAC for PACs protected with symmetric cryptographic algorithms

• Signed PAC for PACs protected with asymmetric cryptographic algorithms.

In clause 7 these are combined with key distribution options to form specific mechanism options that can be
specified at the GSS-API.

5.2 Key Distribution schemes
The ECMA security mechanism defines a basic set of key distribution schemes and associated data elements as
described below. Note that the GetKI and ProcessKI operations identified in these descriptions are fully specified in
[ECMA-219]. The TargetKeyBlock construct including its kdSchemeOID field are also specified in [ECMA-219]
but are repeated in clause 5.3.1 for ease of reference.

The key distribution schemes below depend upon the existence of long term cryptographic keys which can be held
by Target AEFs and KD-servers. The ECMA GSS-API allows for these keys to be either symmetric or asymmetric .
Long term symmetric keys of Target AEFs are always shared between the AEF and its KD-Server. In the case where
the long term keys are asymmetric we speak of the KD-server’s private key, or the Target AEF's private key.

Initiators may also possess symmetric or asymmetric keys.  In the case where an initiator possesses a  symmetric key
this will have been established as a result of an earlier authentication, and it is shared with a KD-Server.

NOTE
Details of how authentication was performed is out of scope of this standard. However [ECMA-219] describes
authentication methods and service interfaces consistent with this standard.

5.2.1 Basic symmetric key distribution scheme

For this scheme, the KD-Scheme name is : symmIntradomain

In this scheme, the initiator and the Target AEF each share different secret keys with the same KD-Server.

To establish a basic key between an initiator and a Target AEF, the initiator KD-Server returns, as a result of a
GetKI operation, a targetKeyBlock containing a basic key encrypted under the Target AEF's long term secret
key. On receipt of the targetKeyBlock, the Target AEF can extract the basic key directly from it.

5.2.2 Symmetric key distribution scheme with symmetric KD-Servers

For this scheme, the KD-Scheme name is :  symmInterdomain

In this scheme, the initiator shares a key with a KD-Server that is different from the KD-Server with which the
Target AEF shares its long term key. In addition, the KD-Servers share another long term secret key with each
other.

To establish a basic key between an initiator and a Target AEF, the initiator KD-Server returns, as a result of a
GetKI operation, a targetKeyBlock containing a basic key encrypted under the long term secret key shared
between the two KD-Servers. On receipt of the targetKeyBlock, the Target AEF transmits it to its own KD-
Server, using ProcessKI, and gets back the basic key re-encrypted under the long term secret key it shares with its
KD-Server.

5.2.3 Symmetric key distribution scheme with asymmetric KD-Servers

For this scheme, KD-Scheme name is : hybridInterdomain

In this scheme, the initiator shares a key with a KD-Server that is different from the KD-Server with which the
Target AEF shares its long term key. In addition, each KD-Server possesses a private/public key pair.



-  13 -

To establish a basic key between an initiator and a Target AEF, the initiator KD-Server returns, as a result of a
GetKI operation, a targetKeyBlock containing a basic key encrypted under a temporary key and the temporary
key encrypted under the Target AEF KD-Server’s public key. The targetKeyBlock is also signed using the
initiator KD-Server's private key.

On receipt of the targetKeyBlock, the Target AEF transmits it to its KD-Server, using ProcessKI, and gets it back
with the basic key re-encrypted under the long term secret key it shares with its KD-Server.

5.2.4 Asymmetric initiator / symmetric target key distribution scheme

For this scheme, KD-Scheme name is : asymmInitToSymmTarget

In this scheme, the initiator does not use a KD-Server, but possesses a private/public key pair. The Target AEF
shares a long term secret key with a KD-Server which possesses a private/public key pair.

To establish a basic key between an initiator and a Target AEF, the initiator constructs a targetKeyBlock
containing a basic key encrypted with a the Target AEF KD-Server’s public key. The targetKeyBlock is signed
using the initiator’s private key.

On receipt of the targetKeyBlock, the Target AEF transmits it to its KD-Server, using ProcessKI, and gets it back
with the basic key re-encrypted under the long term secret key it shares with its KD-Server.

5.2.5 Symmetric initiator / asymmetric target key distribution scheme

For this scheme, KD-Scheme name is :  symmInitToAsymmTarget

In this scheme, the Target AEF does not use a KD-Server, but possesses a private/public key pair. The initiator
uses a KD-Server that has a private/public key pair, and shares a secret key with it.

To establish a basic key with a Target AEF, the initiator KD-Server returns, as a result of a GetKI operation, a
targetKeyBlock containing a basic key encrypted with the Target AEF’s public key. The targetKeyBlock is
signed with the initiator KD-Server’s private key.

On receipt of the targetKeyBlock, the Target AEF directly establishes a basic key from it.

5.2.6 Full public key distribution scheme

For this scheme, KD-Scheme name is :  asymmetric

In this scheme, neither the initiator nor the Target AEF uses a KD-Server. Both the initiator and the Target AEF
possesses a private/public key pair.

To establish a basic key with a Target AEF, the initiator constructs a targetKeyBlock containing a basic key
encrypted under the Target AEF’s public key. The targetKeyBlock is signed with the initiator’s private key.

On receipt of the targetKeyBlock, the Target AEF directly establishes a basic key from it.

5.3 Key distribution data elements
In this clause we define the data elements for each of the key distribution schemes described above.

All of the key distribution schemes use the TargetKeyBlock data element defined in [ECMA-219]. The
TargetKeyBlock is sent as a part of  the initial context token. For clarity the TargetKeyBlock definition is repeated
here. Data elements that are the same as those used in [Kerberos] are defined in annex B. Data elements that are the
same as those used in [SPKM] are defined in annex C.

5.3.1 KD-Scheme independent data elements

TargetKeyBlock ::= SEQUENCE {

initiatorKDSname [0] identifier OPTIONAL

kdSchemeOID [2] OBJECT IDENTIFIER,

targetKDSpart [3] ANY OPTIONAL,

-- depending on kdSchemeOID

targetPart [4] ANY OPTIONAL}

-- depending on kdSchemeOID



-  14 -

The following table shows the different syntaxes used for targetKDSpart and targetPart for the six defined KD-
schemes. “Missing” in the tables means that the relevant construct is not supplied.

KD-Scheme name kdSchemeOID targetKDSpart targetPart

symmIntradomain {kd-schemes 1} Missing Ticket

symmInterdomain {kd-schemes 2} Ticket Missing

hybridInterdomain {kd-schemes 3} PublicTicket Missing

asymmInitToSymmTarget {kd-schemes 4} SPKM_REQ Missing

symmInitToAsymmTarget {kd-schemes 5} SPKM_REQ Missing

asymmetric {kd-schemes 6} Missing SPKM_REQ

Table 1 - Key Distribution Scheme OBJECT IDENTIFIERs

The syntax of PublicTicket is given in clause 5.3.3, and the syntax of Ticket is given in annex B. The syntax of
SPKM_REQ is given in annex C.

We now define the new ASN.1 OBJECT IDENTIFIERs and token construct data types required for these KD-
schemes. Note that the ECMA GSS-API mechanism heavily re-uses existing data structures defined in [SPKM]
and [Kerberos] as well as those defined in [ECMA-219].

5.3.2 Key distribution scheme OBJECT IDENTIFIERs

The OBJECT IDENTIFIERs that are for use in the kdSchemeOID field of TargetKeyBlock are formally
derived from the kd-schemes OBJECT IDENTIFIER imported from [ECMA-219] as follows:

symmIntradomain OBJECT IDENTIFIER ::= {kd-schemes 1}

symmInterdomain OBJECT IDENTIFIER ::= {kd-schemes 2}

hybridInterdomain OBJECT IDENTIFIER ::= {kd-schemes 3}

asymmInitToSymmTarget OBJECT IDENTIFIER ::= {kd-schemes 4}

symmInitToAsymmTarget OBJECT IDENTIFIER ::= {kd-schemes 5}

asymmetric OBJECT IDENTIFIER ::= {kd-schemes 6}

For ease of reference, the construction of the kd-schemes OBJECT IDENTIFIER is given in annex E

The SPKM_REQ construct used in schemes 4, 5 and 6 requires a sequence of key establishment algorithm
identifier values to be inserted into the key_estb_set field. The OBJECT IDENTIFIER below is defined as the
(single) key establishment "algorithm" for the ECMA mechanism:

gss-key-estb-alg AlgorithmIdentifier ::= {kd-schemes, NULL }

kd-schemes

This OBJECT IDENTIFIER is the top of the arc of key distribution scheme OBJECT IDENTIFIERs defined in
this Standard. It is defined in [ECMA-219].

symmIntradomain

This OBJECT IDENTIFIER indicates the basic symmetric scheme described in clause 5.2.1. As indicated in the
third column of table 1, the targetKDSpart of the TargetKeyBlock is not supplied and the targetPart contains a
Kerberos Ticket (see [Kerberos] and annex B). The profile of the ticket that is supported this scheme can be
found in table 2.

symmInterdomain

This OBJECT IDENTIFIER indicates the symmetric interdomain scheme described in clause 5.2.2. As indicated
in the fourth column of table 1, the targetPart of the TargetKeyBlock is not supplied and the targetKDSpart
contains a Kerberos Ticket. The profile of the ticket that is supported in this scheme can be found in table 2.



-  15 -

hybridInterdomain

This OBJECT IDENTIFIER indicates the hybrid scheme described in clause 5.2.3. The targetKDSpart contains a
PublicTicket (defined in clause 5.3.3). The targetPart field is not supplied. The PublicTicket contains a Kerberos
Ticket. The profile supported in this scheme can be found in table 3.

asymmInitToSymmTarget

This OBJECT IDENTIFIER indicates the scheme described in clause 5.2.4. The targetKDSPart contains an
SPKM_REQ (defined in annex C) whilst the targetPart is empty. The profile of SPKM_REQ that is supported in
this scheme is given in table 4.

symmInitToAsymmTarget

This OBJECT IDENTIFIER indicates the scheme described clause 5.2.5. The targetPart contains an
SPKM_REQ (defined in annex C) whilst the targetKDSpart is empty. The profile of SPKM_REQ that is
supported in this scheme is given in table 4.

asymmetric

This OBJECT IDENTIFIER indicates the scheme described in clause 5.2.6. The targetKDSpart is not supplied
and the targetPart contains an SPKM_REQ. The syntax of SPKM_REQ  is given in annex C. The profile of
SPKM_REQ that is supported in this scheme is given in table 4.

gss-key-estb-alg

This AlgorithmIdentifier identifies the key establishment algorithm value to be used within the key_estb_set field
of an SPKM_REQ data element as the one defined by ECMA.

This algorithm is used to establish a symmetric key for use by both the initiator and the target AEF as part of the
context establishment. The corresponding key_estb_req field of the SPKM_REQ will be a BIT STRING the
content of which is a DER encoding of the KeyEstablishmentData element defined later.

5.3.3 Hybrid inter-domain key distribution scheme data elements

PublicTicket ::= SEQUENCE{

krb5Ticket [0] Ticket, -- see annex B

publicKeyBlock [1] PublicKeyBlock}

krb5Ticket

The Kerberos Ticket which contains the basic key. The encrypted part of this ticket is symmetrically encrypted
using the key found within the encryptedPlainKey field of the KeyEstablishmentData in the PublicKeyBlock.

publicKeyBlock

Contains the key used to protect the krb5Ticket encrypted using the public key of the recipient and signed by the
encryptor (i.e. the context initiator's KD-Server).

PublicKeyBlock ::= SEQUENCE{

signedPKBPart[0] SignedPKBPart,

signature [1] Signature OPTIONAL,

-- imported from [ECMA-219], see also annex E

certificate [2] Certificate OPTIONAL}

-- imported from [ISO/IEC 9594-8], see also annex E

signedPKBPart

The part of the publicKeyBlock which is signed.

signature
• Contains the signature calculated by the issuingKDS on the signedPKBPart field.



-  16 -

certificate
• If present, contains the public key certificate of the issuing KD-Server.

SignedPKBPart ::= SEQUENCE{

keyEstablishmentData [0] KeyEstablishmentData,

encryptionMethod [1] AlgorithmIdentifier OPTIONAL,

issuingKDS [2] Identifier,

uniqueNumber [3] UniqueNumber,

validityTime [4] TimePeriods,

-- UniqueNumber and TimePeriods are

-- imported from [ECMA-219], see also annex E

creationTime [5] UTCTime}

keyEstablishmentData

Contains the KeyEstablishementData (defined in clause 5.3.4), i.e. the actual encrypted temporary key.

encryptionMethod

Indicates the algorithm used to encrypt the encryptedKey.

issuingKDS

Name of the KD-Server who produced the PublicTicket.

uniqueNumber

Value which prevents replay of the PublicTicket.

validityTime

Specifies the times for which the PublicTicket is valid.

creationTime

Contains the time at which the PublicTicket was created.

5.3.4 Key establishment data elements

The key establishment data structure represents an encrypted symmetric key along with the name of the target for
which the key is encrypted. For security reasons, before encryption, the plain key is concatenated with the result
of a hash function applied to the plain key itself, along with the issuer KD-Server name.

KeyEstablishmentData ::= SEQUENCE {

encryptedPlainKey [0] BIT STRING, -- encrypted PlainKey

targetName [1] Identifier OPTIONAL,

nameHashingAlg [2] AlgorithmIdentifier OPTIONAL}

encryptedPlainKey

Contains the encrypted key. The BIT STRING contains the result of encrypting a PlainKey structure.

targetName

If present, contains the name of the target application. This is necessary for some of the ECMA KD-schemes.

nameHashingAlg

Specifies the algorithm which is used to calculate the hashedName field of the PlainKey.



-  17 -

PlainKey ::= SEQUENCE {

plainKey [0] BIT STRING, -- The cleartext key

hashedName [1] BIT STRING}

plainKey

Contains the actual bits of the plaintext key which is to be established.

hashedName

A hash of the name of the encrypting KD-Server calculated using the plainkey and KD-Server name as input
(within the HashedNameInput structure). The algorithm identified in nameHashingAlg is used to calculate this
value.

HashedNameInput ::= SEQUENCE {

hniPlainKey [0] BIT STRING, -- the same value as plainKey

hniIssuingKDS [1] Identifier}

hniPlainKey
hniIssuingKDS

Used as input to a hashing algorithm as a general means of preventing ciphertext stealing attacks.

5.3.5 Kerberos Data elements

The full ASN.1 for the Kerberos elements used by the ECMA GSS-API mechanism is given in annex B. This
clause specifies the specific contents of the Kerberos Ticket's authorization_data field required by the ECMA
GSS-API mechanism.

Essentially this construct contains the PPID of the context initiator, as formally defined below.

ECMA-AUTHORISATION-DATA-TYPE ::= INTEGER { ECMA-ADATA (65) }

ECMA-AUTHORISATION-DATA ::= SEQUENCE {

ecma-ad-type [0] ENUMERATED { ppidType (0)},

ecma-ad-value [1] CHOICE { ppidValue [0] SecurityAttribute}}

-- only one choice for now

ppidType

Indicates the type of the ECMA authorisation data which is included in the Ticket (always zero).

ppidValue

This value is used in the ppQualification PAC protection method as defined in [ECMA-219]

5.3.6 Profiling of KD-schemes

The following tables provide profiling information for the data elements defined above and in annexes B and C.
The tables indicate which optional fields must be present for each of the KD-Schemes and indicate the values
which are required to be present in all fields.



-  18 -

5.3.6.1 Profile of Ticket (symmIntradomain and symmInterdomain)

Ticket symmIntradomain symmInterdomain

tkt-vno 5

realm ticket issuer's domain name in Kerberos realm name form

sname target application name including the realm of the target

- EncTicketPart encrypted with long term
key of target AEF

encrypted with symmetric key shared
between KD-Servers

  -- flags only bits 6, 10 and 11 can be meaningful in the context of the ECMA
mechanism, the rest are ignored

  -- key the basic key

  -- crealm initiator domain name in Kerberos realm name form

  -- cname principal name of the initiator (in the case of delegation the cname will
be that of the delegate)

  -- transited not used

-- authtime the time at which the initiator was authenticated

  -- starttime not used

  -- endtime the time at which the ticket becomes invalid

  -- renew-till not used

  -- caddr not used

  -- authorization-data contains the PPID corresponding to cname

Table 2 - Kerberos ticket fields supported



-  19 -

5.3.6.2 Profile of PublicTicket (hybridInterdomain)

PublicTicket hybridInterdomain

krb5Ticket

- tkt-vno 5

- realm initiator domain name in Kerberos realm name form

- sname target application name including the realm of the target

-- EncTicketPart encrypted with temporary key (which is in turn encrypted within the
keyEstablishmentData field)

--- flags only bits 6, 10 and 11 can be meaningful in the context of the ECMA
mechanism, the rest are ignored

--- key the basic key

--- crealm initiator domain name in Kerberos realm name form

--- cname principal name of the initiator (in the case of delegation the cname
will be that of the delegate)

--- transited not used

--- authtime the time at which the initiator was authenticated

--- starttime not used

--- endtime the time at which the ticket becomes invalid

--- renew-till not used

--- caddr not used

--- authorization-data contains the PPID corresponding to cname

publicKeyBlock

 - signedPKBPart

  -- encryptedKey KeyEstablishmentData structure

  -- encryptionMethod gss-estb-alg

  -- issuingKDS X.500 name of initiator’s KDS (the signer)

  -- uniqueNumber creation time of publicKeyBlock plus a random bit string

  -- validityTime only one period allowed

  -- creationTime creation time of publicKeyBlock

 - signature contains all the signing information as well as the actual signature
bits

 - certificate optional

Table 3 - PublicTicket fields supported



-  20 -

5.3.6.3 Profile of SPKM_REQ (asymmInitToSymmTarget, symmInitToAsymmTarget, asymmetric)

SPKM_REQ asymmInitTo-
SymmTarget

symmInitTo-
AsymmTarget

asymmetric

requestToken

 - tok_id not used - fixed value of ‘0’

 - context_id not used - fixed value of bit string containing one zero bit

 - pvno not used - fixed value of bit string containing one zero bit

 - timestamp creation time of SPKM_REQ - required

 - randSrc random bit string

 - targ_name X.500 Name of KD-
Server of target

X.500 Name of
target AEF

X.500 Name of target
AEF

 - src_name X.500 Name of
initiator

X.500 Name of
initiator’s KD-Server

X.500 Name of initiator

 - req_data

  -- channelId not used - octet string of length one value ‘00’H

  -- seq_number missing

  -- options not used - all bits set to zero

  -- conf_alg not used - use NULL CHOICE

  -- intg_alg not used - use a SEQUENCE OF with zero elements

 - validity mandatory

 - key_estb_set only one element supplied containing ecma-gss-key-estb-alg

- key_estb_req contains
KeyEstablishment-
Data with
targetApplication
field supplied

contains KeyEstablishmentData with
targetApplication field missing

 - key_src_bind missing

req_integrity sig_integ mandatory

certif_data only userCertificate
field supported

only userCertificate
field supported

only userCertificate field
supported

auth_data missing missing missing

Table 4 - SPKM_REQ fields supported

5.4 Returned Key Scheme Information
This clause defines the helpful information that may be returned from an acceptor for each specific ECMA key
distribution scheme. The information is expected to be sent from the acceptor to the initiator during mechanism
negotiation in order to support the scheme used by the mechanism option being selected.



-  21 -

The information is returned in the form of a SEQUENCE OF Directory attributes, so that in cases where the
information is missing, it can potentially be retrieved from a Directory.

The specific attribute types returned depends on the key distribution scheme that will be used between the actual
context initiator and acceptor concerned. The attribute types that are returned for each of the six key distribution
schemes are shown below:

SCHEME SYNTAX SEMANTICS

symmIntradomainInfo NULL no information returned

symmInterdomainInfo NULL no information returned

hybridInterdomainInfo SEQUENCE
OF Certificate

containing  target’s KD-Server Certificate and related
Certificates

asymmInitToSymmTargetInfo SEQUENCE
OF Certificate

containing  target’s KD-Server Certificate and related
Certificates

symmInitToAsymmTargetInfo SEQUENCE
OF Certificate

containing  target AEF’s Certificate and related
Certificates

asymmetricInfo SEQUENCE
OF Certificate

containing  target AEF’s Certificate and related
Certificates

6 Algorithm use within ECMA mechanism
Cryptographic and hashing algorithms are used for various purposes within the ECMA GSS-API mechanism. This
clause categorises these algorithms according to usage so that context initiators and acceptors can more easily
determine if they have the cryptographic support required to allow inter-operation. The categorisation is then refined
into cryptographic profiles that can be incorporated into specific mechanism identifiers for the purpose of mechanism
negotiation. This is done in clause 7.

Table 5 summarises the different uses to which algorithms are put within the ECMA GSS-API mechanism.



-  22 -

Use
Reference

Description of use Type of Algorithm

1 PAC protection using seal OWF + symmetric integrity

2 PAC protection using signature OWF + asymmetric signature

3 basic key usage symmetric confidentiality and integrity

4 integrity dialogue key derivation OWF

5 integrity dialogue key usage symmetric integrity

6 CA public keys OWF + asymmetric signature

7 encryption of security data using shared
long term symmetric key

symmetric confidentiality.

8 name hash to prevent ciphertext stealing OWF

9 asymmetric basic key distribution asymmetric encryption and OWF +
signature

10 ECMA key estab. within SPKM_REQ (fixed value for ECMA)

11 confidentiality dialogue key derivation OWF

12 confidentiality dialogue key use (on user
data)

symmetric confidentiality

Table 5 - Summary of algorithm uses:

The algorithms can now be further categorised into broader classes as follows:
Class 1: symmetric for security of mechanism: Uses 1, 3, 5, 7
Class 2: all OWFs: Uses 1, 2, 4, 6, 8, 11
Class 3: internal mechanism asymmetric, encrypting: Use 9
Class 4: internal mechanism asymmetric, non-encrypting: Use 2
Class 5: CA's asymmetric non-encrypting: Use 6
Class 6: User data confidentiality, symmetric: Use  12

Use 10 is a fixed value for ECMA, and does not contribute to mechanism use options. The fixed value for this has
already been defined in clause 5.3.2.

Based on these classes, the following cryptographic algorithm usage profiles are defined. Other profiles are possible
and can be defined as required. Note that symmetric algorithm key sizes are included in this profiling, thus DES/64
indicates DES with a 64 bit key.

Profile 1:

Full

Profile 2:

No user data
Confidentiality

Profile 3:

Exportable

Profile 4:

No Asymm
Encryption

      Profile 5:

      Defaulted

Class 1 DES/64 DES/64 RC4/128 DES/64 separately agreed default

Class 2 MD5 MD5 MD5 MD5 separately agreed default

Class 3 RSA RSA RSA Not supported separately agreed default

Classes 4
and 5

RSA RSA RSA DSS/*** separately agreed default

Class 6 DES/64 None RC4/40 DES/64 separately agreed default

Table 6 - Algorithm profiles



-  23 -

Where:

• Profile 1 provides full security, using standard cryptographic algorithms with commonly accepted key sizes.

• Profile 2 is the same but without supporting any confidentiality of user data.

• Profile 3 is designed to be exportable under many countries' legislations,

• Profile 4 provides security at the same level of quality as Profile 1 but uses the Digital Signature Standard instead
of RSA. In this scheme only symmetric key distribution is possible, of the key distribution methods described in
clause 5.

• Profile 5 uses algorithms identified by a separately specified default. It is intended for use by organisations who
wish to use their own proprietary or government algorithms by separate agreement or negotiation.

Clause 7 shows how these algorithm profiles can be used to extend the architectural key distribution schemes to form
negotiable ECMA mechanism choices.

7 Identifiers for ECMA mechanism choices
Preceding clauses have separately defined the alternatives allowed by the generic ECMA mechanism in terms of PAC
protection, key distribution schemes and the use of cryptographic and hash algorithms within the data elements.

This clause brings these together by defining the specific ECMA mechanism identifiers which correspond to each
combination of the available options under these headings. These specific mechanism identifiers are intended to be
negotiable using a generic GSS-API negotiation scheme.

7.1 Architectural mechanism identifiers
The approach is first to combine the PAC protection options (sealed or signed) in a simple way with key distribution
schemes to form broad architectural mechanism options, as follows:

Architectural
Mechanism
Number

Description of
Architecture Option

PAC
prot'n

Key Distribution
Scheme(s)

1 Full Symmetric Cryptography Sealed symmIntradomain;
symmInterdomain

2 Symmetric key distribution Signed symmIntradomain;
symmInterdomain

3 Symmetric initiator and target;
Asymmetric KD-Servers;

Signed symmIntradomain;
hybridInterdomain

4 Asymmetric initiator ;
Symmetric target;
Asymmetric KD-Server for
target;

Signed asymmInitTo
SymmTarget

5 Symmetric Initiator with
Asymmetric KD-Server, and
Asymmetric Target

Signed symmInitTo
AsymmTarget

6 Asymmetric Initiator and
Target

Signed asymmetric

Table 7 - ECMA Architecture Mechanism Options

Each of the ECMA architecture mechanism options described above represents a combination of one of these PAC
protection options and a key distribution scheme. The six key distribution schemes are defined in clause 5.2.



-  24 -

Generic GSS-API mechanism negotiation will be carried out on the basis of the generic ECMA mechanism
OBJECT IDENTIFIER concatenated with an architectural mechanism number from table 7, and an algorithm
profile reference number from clause 6. Thus the form of a negotiable ECMA mechanism is:

generic_ecma_mechanism Y Z

↑ ↑
Architectural
Option
number

Algorithm
Profile
number

Thus an ECMA mechanism using a fully symmetric key distribution scheme and an exportable cryptographic
algorithm profile would have an OBJECT IDENTIFIER of:

{ generic_ecma_mech  (2)  (3) }

An ECMA mechanism using a fully asymmetric initiator and target architectural scheme, and an algorithm profile
not supporting user data confidentiality would have an OBJECT IDENTIFIER of:

{ generic-ecma-mech  (6)  (2) }

Not all combinations of key distribution scheme and algorithm profile are meaningful, but meaningful ones are
intended to be negotiable using a generic GSS-API negotiation scheme such as [SNEGO].

8 Errors
The errors defined here are the minor_status codes that can be returned from the ECMA mechanism. Some values are
newly defined in this standard, but the majority have their origin in [ECMA-219]. For the new codes, the mapping to
the errors defined in [ECMA-219] is also given.

8.1 Minor Status Codes
Different implementations of the ECMA Mechanism can return different minor_status representations for the same
error. This section defines (recommends) common symbolic names for the minor status codes identified for the
ECMA Mechanism without assigning an actual representation to the values at the API level. These definitions
enable independent implementors to enhance portability across different implementations of the ECMA Mechanism
(as they do not influence the “logic” behaviour of the caller). The actual conversion of minor_status indicators to
text representations is, as normal, done using gss_display_status(). Any implementation must be capable of mapping
these symbolic names to and from the actual values (INTEGER or other) used to represent the minor_status codes
specified here.

In order to give the minor_status code semantics as precisely as possible, annex D gives the mapping between
minor_status codes and internal errors from the ECMA Mechanism’s arguments and results where they apply.

8.1.1 Non ECMA-specific codes

GSS related codes:

GSS_ECMA_S_G_VALIDATE_FAILED

Validation error

GSS_ECMA_S_G_BUFFER_ALLOC

Couldn’t allocate gss_buffer_t data

GSS_ECMA_S_G_BAD_MSG_CTX

Message Context Invalid

GSS_ECMA_S_G_WRONG_SIZE

Buffer is wrong size



-  25 -

GSS_ECMA_S_G_BAD_USAGE

Credential usage type is unknown

GSS_ECMA_S_G_UNAVAIL_QOP

Unavailable quality of protection specified

Implementation related codes:

GSS_ECMA_S_G_MEMORY_ALLOC

Couldn’t perform requested memory allocation

8.1.2 ECMA-specific codes

Minor_status codes resulting from errors specified in this ECMA Standard:

GSS_ECMA_S_SG_SA_INCOMPLETE

Attempt to use incomplete Security Association

GSS_ECMA_S_SG_INVALID_TOKEN_DATA

Data is improperly formatted: cannot encode into token

GSS_ECMA_S_SG_INVALID_TOKEN_FORMAT

Received token is improperly formatted: cannot decode

GSS_ECMA_S_SG_SA_DELETED

Security Association deleted at peer’s request

GSS_ECMA_S_SG_BAD_DELETE_TOKEN_RECD

Invalid delete token received: context not deleted

GSS_ECMA_S_SG_INVALID_SAID

The SAId between the initiator and acceptor is already in use

GSS_ECMA_S_SG_INVALID_TARGET_AEF_PROT

The validation of the Seal on the Target AEF part of the token failed

GSS_ECMA_S_SG_TOKEN_TIME_NOT_YET_VALID

The time given in the Token has not yet been reached by the acceptor

GSS_ECMA_S_SG_TOKEN_TOO_OLD

The time given in the Token is too old for the acceptor

GSS_ECMA_S_SG_BAD_CONTEXT_FLAGS

The context flags are not supported by the acceptor

GSS_ECMA_S_SG_INVALID_CHANNEL_BINDINGS

The channel bindings in the token are not valid

GSS_ECMA_S_SG_BAD_KD_SCHEME

The KD scheme in the target key block is not supported by the acceptor

GSS_ECMA_S_SG_INVALID_TARGET_ID

The target ID in the targetAEFpart in the token is not known by the receiving AEF



-  26 -

Minor_status codes resulting from error specified in [ECMA-219]:

GSS_ECMA_S_SG_SERVER_SA_ALREADY_ESTABLISHED

Security Association to be opened with a security server is already open

GSS_ECMA_S_SG_INCOMP_CERT_SYNTAX

Invalid Certificate: incompatible syntax version of cert, or cert specific, contents

GSS_ECMA_S_SG_BAD_CERT_ATTRIBUTES

Invalid Certificate Specific contents: unacceptable security attributes for authentication, access control or
protection

GSS_ECMA_S_SG_INVAL_TIME_FOR_ATTRIB

Invalid Certificate Specific contents: current time outside specified timeperiods in PAC

GSS_ECMA_S_SG_PAC_RESTRICTIONS_PROB

Invalid Certificate Specific contents: invalid mandatory restriction in PAC

GSS_ECMA_S_SG_ISSUER_PROBLEM

Invalid Certificate: not issued by a trusted authority

GSS_ECMA_S_SG_CERT_TIME_TOO_EARLY

Invalid Certificate: not yet reached validity period

GSS_ECMA_S_SG_CERT_TIME_EXPIRED

Invalid Certificate: validity period expired

GSS_ECMA_S_SG_INVALID_CERT_PROT

Invalid Certificate: invalid or wrong protection mechanism

GSS_ECMA_S_SG_REVOKED_CERT

Invalid Certificate: the certificate has been revoked

GSS_ECMA_S_SG_KEY_CONSTR_NOT_SUPP

No requested key construction data types supported by the KD-Server

GSS_ECMA_S_SG_INIT_KD_SERVER_UNKNOWN

Unknown initiator KD-Server at the target or target KD-Server

GSS_ECMA_S_SG_INIT_UNKNOWN

Unknown initiator at the target or target KD-Server

GSS_ECMA_S_SG_INSUFF_AUTHORISATION

Insufficient authorisation: access control failure for operation

GSS_ECMA_S_SG_ALG_PROBLEM_IN_DIALOGUE_KEY_BLOCK

Invalid Dialogue Key Block: Algorithm(s) not supported

GSS_ECMA_S_SG_NO_BASIC_KEY_FOR_DIALOGUE_KEY_BLOCK

Invalid Dialogue Key Block: no Basic Key to derive Dialogue Key Block from

GSS_ECMA_S_SG_KEY_DISTRIB_PROB

Invalid target key block: bad KD scheme or Key Info for KD-Server or target”

GSS_ECMA_S_SG_INVALID_USER_CERT_IN_KEY_BLOCK

Invalid Key Block: invalid user certificate



-  27 -

GSS_ECMA_S_SG_OPERATION_NOT_SUPP

Operation not supported by initiator or target Security Server

GSS_ECMA_S_SG_SEC_ASSOC_ID_FAILURE

Unknown Security Association identifier specified for Security Server or target

GSS_ECMA_S_SG_UNACCEPTABLE_ACT_REQ

Requirements specified for an ACT are unacceptable to PA-Server

GSS_ECMA_S_SG_UNSPECIFIED

Unknown or not released reason for the error

8.2 Quality of protection
The specification of quality of protection on a per message basis is not supported by the ECMA mechanism. Quality
of protection is determined by the contents of the DialogueKeyBlock in the TargetAEFPart of the
InitialContextToken.

9 Support functions
So that its users can gain full benefit from its facilities, the ECMA mechanism requires support functions to make PAC
attributes available to the GSS-API application (attribute handling support functions), and to set and get control
information relating to the validity and type of acceptor of a  security context (acceptor control and support functions).

The functions required are defined below.

9.1 Attribute handling support functions
Three attribute handling support functions are defined :

GSS_Set_cred_attributes: To enable a GSS-API context initiator to specify PAC privilege and miscellaneous
attributes to be included in the caller credentials in order to become part of a security context. Miscellaneous
attributes include issuer domain name and validity time periods.

GSS_Get_sec_attributes: To extract PAC information, either from a GSS-API context, or from a credential handle.
Both Privilege Attributes and miscellaneous attributes can be retrieved from the PAC. The function can be invoked
either by a context initiator or by a context acceptor.

GSS_Get_received_creds: To extract credential handles from a GSS-API context (established with
GSS_Accept_sec_context function). This is only applicable when traced or composite delegation is involved (see
clause 9.2 for a definition of these forms), and can only be invoked by a context acceptor. A call to
GSS_Get_received_creds is an intermediary step for an acceptor, before extracting each delegate's PAC information
with a call to GSS_Get_sec_attributes.

A security attribute at the extended GSS-API interface is defined as:

SecAttribute ::= {

attributeType OBJECT IDENTIFIER,

definingAuthority OCTET STRING OPTIONAL,

securityValue OCTET STRING }

NOTE
This is a simplified form of the full SecurityAttribute syntax defined in [ECMA-219], and repeated in annex E.

attributeType

Defines the type of the attribute. Attributes of the same type have the same semantics.

definingAuthority

The authority responsible for the definition of the semantic of the value of the security attribute.



-  28 -

securityValue

The value of the security attribute. Its syntax is determined by the attribute type.

9.1.1 GSS_Set_cred_attributes

Input :

– cred_handle OCTET STRING,

– required_attributes SET OF SecAttribute,

– new_cred_req BOOLEAN

– commit_cred_req BOOLEAN

Output :

– output_cred_handle OCTET STRING

Return major_status code:

– GSS_S_COMPLETE indicates that the nominated attributes are permitted to the
caller and have been set.

– GSS_S_CREDENTIALS_EXPIRED indicates that the specified credentials have expired.

– GSS_S_DEFECTIVE_CREDENTIAL indicates that defective credentials have been detected.

– GSS_S_FAILURE indicates a failure, unspecified at the GSS-API level.

– GSS_S_UNAUTHORIZED indicates that the function, or an argument of the function was
not authorised.

– GSS_S_UNAVAILABLE indicates that the operation is not supported.

This function enables a caller to request a set of privileges and miscellaneous attributes, optionally replacing
existing credentials or creating a new set. The effect of this interface is not cumulative, the requested attributes
replace any existing attributes in the credentials claimed.

Parameters for GSS_Set_cred_attributes:

cred_handle

Handle for credentials claimed, cred_handle refers to an authenticated principal. Supply NULL to use default
credentials.

required_attributes

A set of required privilege and miscellaneous attributes. NULL specifies default attributes to be requested.
Otherwise, only the privilege and miscellaneous attributes specified will be present.

If a specified attribute is provided with a NULL value field, the value allocated to the attribute will be the default
for the specified attribute available to the authenticated principal according to the prevailing security policy.
Otherwise the value specified will be that present. If a value specified clashes with policy, an error is returned.

If a role name is specified as a single attribute required, and policy permits the principal to use it, it will be used
as an attribute set reference to select a set of attributes and acceptor controls according to policy.

If a role name is specified along with other required attributes, and policy permits the principal to use the role
name, the attributes potentially available for the authenticated principal are taken from a set compounded of the
principal's authorised attributes, and the attributes associated with the role name.

new_cred_req

TRUE for a new credentials set, FALSE replaces the original.

commit_cred_req

TRUE for immediate attribute acquisition, FALSE for deferred attribute acquisition.



-  29 -

output_cred_handle

The credentials handle for the changed or new credentials.

GSS_Set_cred_attributes produces a modified version of the input credentials (cred_handle). The original
credentials are changed if new_cred_req is FALSE, otherwise the output_cred_handle references a new, and
different, copy of the original input credentials (which remain untouched). GSS_Release_cred can be used when
the caller is finished with any new credentials created by this  function.

9.1.2 GSS_Get_sec_attributes

Input :

– cred_handle OCTET STRING,

– context_handle INTEGER,

– attribute_types_required SET OF OBJECT IDENTIFIER

Output :

– priv_attributes SET OF SecAttribute

– misc_attributes SET OF SecAttribute

Return major_status code :

– GSS_S_COMPLETE indicates that retrieval of attributes is supported and that all,
some, or none of the requested attribute types have been
returned.

– GSS_S_CONTEXT_EXPIRED indicates that the specified security context has expired.

– GSS_S_CREDENTIALS_EXPIRED indicates that the specified credentials have expired.

– GSS_S_DEFECTIVE_CREDENTIAL indicates that defective credentials have been detected.

– GSS_S_FAILURE indicates a failure, unspecified at the GSS-API level.

– GSS_S_UNAVAILABLE indicates that the operation is not supported.

This function can be used by context initiators and context acceptors to query attributes in credentials or security
contexts.  If the credentials or security context represents a delegation chain and contains multiple PACs,
attributes are retrieved only from the first of them. If the attribute_types_required parameter is not supplied, then
all attribute types from the PAC are returned. This option could allow clients of this interface to query all
attributes and pass Privilege Attributes to a separate authorisation service to make a decision. To obtain PAC
attributes from intermediate PACs in a delegation chain, the caller should first call GSS_Get_delegate_creds (see
clause 9.1.3).

Parameters for GSS_Get_sec_attributes:

cred_handle

Handle to credentials, cred_handle refers to an authenticated principal. Supply NULL to use default
credentials, or a context handle. Note that NULL, without a context handle, is only used for obtaining the
caller's own attributes.

context_handle

GSS-API security context handle, context_handle refers to a context that is part of an established Security
Association. Context_handle is ignored if a non-NULL cred_handle is presented. (Note: it is typically only
necessary to use a context_handle parameter rather than cred_handle for the case when a security context is
emitted by gss_accept_sec_context, but not with an accompanying set of delegated credentials).

attribute_types_required

A set of security attribute types. If the default (NULL) is specified, then all miscellaneous and Privilege
Attributes are returned.



-  30 -

This standard does not specify which attributes must be supported, but annex B defines some common security
attributes that are appropriate.

priv_attributes

A set of Privilege Attributes. Response is conditional on the "attribute_types_required" input.

misc_attributes

A set of miscellaneous attributes. Response is conditional on the "attribute_types_required" input.

9.1.3 GSS_Get_received_creds

Input :

– context_handle INTEGER,

Output :

– received_creds SEQUENCE OF OCTET STRING

Return major_status code :

– GSS_S_COMPLETE indicates that the requested delegate credentials were retrieved.

– GSS_S_CONTEXT_EXPIRED indicates that the specified security context has expired.

– GSS_S_FAILURE indicates a failure, unspecified at the GSS-API level.

– GSS_S_UNAUTHORIZED indicates that the function, or an argument of the function was
not authorised.

– GSS_S_UNAVAILABLE indicates that the operation is not supported.

This function supports the retrieval of all credentials received by an acceptor. It is intended for context acceptors
that require not only the initiator's credentials, but also delegates' credentials, to apply their local security policy.
A typical example is the retrieval of delegate credentials to subsequently obtain delegate Privilege Attributes
(using GSS_Get_sec_attributes) for use in authorisation decisions.

Parameters for GSS_Get_received_creds:

context_handle

GSS-API security context handle, context_handle refers to a security context that is part of an established
association. A default context is assumed if no context_handle is supplied..

received-creds

Contains an ordered list of credentials for the original initiator and for each of the intermediate delegates (if
any) between the original initiator and this context acceptor, the first of these being the credentials of the
original initiator, and the last being of the immediately preceding delegate. It is expected that the normal use
for such credentials would merely be inspection via GSS_Get_sec_attributes as most known mechanisms
would not permit such delegate credentials to be directly used for initiating further security contexts. Note that
it is the caller's responsibility to free any received credentials returned from gss_get_received_creds via
gss_release_cred.

9.2 Control and support functions for context acceptors
These functions enable a GSS-API context initiator to impose constraints on the security context to be established
via GSS_Init_sec_context function, and enable a GSS-API context acceptor to retrieve the control information that
applies to a security context established using the GSS_Accept_sec_context function, and build credentials from
others..

Three support functions for context acceptor control are defined:

GSS_Set_cred_controls function: To enable a GSS-API context initiator to specify delegate/target controls to be
included in the caller's credentials in order to be part of a security context. The controls determine the context
acceptors with which valid Security Associations can be established using the associated credentials, and whether
they can act only as delegates, only as targets or as delegate/targets. Restrictions over the operations that are
authorised under the context can also be specified.



-  31 -

GSS_Get_sec_controls function: To enable a GSS-API context initiator or a GSS-API context acceptor to extract
acceptor control information either from a credential handle or from a security context.

GSS_Compound_creds function: To enable a delegate (which is acting as a GSS-API acceptor for a context
initiator, and as a GSS-API context initiator for another acceptor) to build new credentials made from the received
credentials and its own credentials.

AcceptorControl ::= SEQUENCE {

targetOnly SEQUENCE OF SecAttribute OPTIONAL,

delegateOnly SEQUENCE OF SecAttribute OPTIONAL,

delegateTarget SEQUENCE OF SecAttribute OPTIONAL,

delegationMode DelegationMode OPTIONAL,

}

DelegationMode  := ENUMERATED {

default (0),

simple (1),

traced (2),

composite (3) }

targetOnly
delegateOnly
DelegateTarget

Specifies one or several qualifier attributes describing the targets, delegates or delegate/targets for which controls
are to apply.

• the targetOnly specifies that the qualifier(s) are identifying one or more targets, none of which may use the
credentials as a delegate.

• the delegateOnly choice specifies that the qualifier(s) are identifying one or more delegates, none of which
should use the PAC Privilege Attributes in the credentials when authorising access to their own protected
resources, but which may use the received credentials as a delegate.

NOTE
Only the acceptor system's AEF can prevent an acceptor permitting access based on attributes not intended for it.
However it is not in the interests of an acceptor or its AEF to permit access to resources under their control on the
basis of attributes that are explicitly stated as not being appropriate.

• the delegateTarget choice specifies that the qualifier is identifying one or more delegate/targets  any of which
can use the received credentials as a delegate and can also use the PAC Privilege Attributes in the credentials
when authorising access to its own protected resources.

delegationMode

Indicates the mode of delegation required. A full description of delegation modes is given in [ECMA-219].

Currently three delegation modes and one default are specified:

• default: whatever mode of delegation has been set as default (this may be no delegation) is required.

• simple: only the original initiator's credentials are presented to an acceptor. Credentials of intermediate delegates
are not used..

• traced: the credentials of the original initiator and of all the intermediate delegates are presented to an acceptor.

• composite: only the credentials of the original initiator and the credentials of the immediate caller are presented
to an acceptor.

• exotic: the credentials to be delegated are randomly selected according to the moon position and the temperature
of the room.



-  32 -

9.2.1 GSS_Set_cred_controls call

Input :

– cred_handle OCTET STRING,

– required_acceptor_control AcceptorControl,

– replace_old_controls BOOLEAN

– new_cred_req BOOLEAN

– commit_cred_req BOOLEAN

Output :

– output_cred_handle OCTET STRING

Return major_status code:

– GSS_S_COMPLETE indicates that the controls have been set.

– GSS_S_CREDENTIALS_EXPIRED indicates that the specified credentials have expired.

– GSS_S_DEFECTIVE_CREDENTIAL indicates that defective credentials have been detected.

– GSS_S_FAILURE indicates a failure, unspecified at the GSS-API level.

– GSS_S_UNAUTHORIZED indicates that the function, or an argument of the function was
not authorised.

– GSS_S_UNAVAILABLE indicates that the operation is not supported.

This function supports requests to set context acceptor controls, optionally replacing existing credentials controls
or creating a new set of credentials with new controls. The effect of this interface is either cumulative or not
depending on the value of the replace_old_controls parameter.

Parameters for GSS_Set_cred_controls:

cred_handle

Handle for credentials claimed, it refers to an authenticated principal. Supply NULL to use default credentials.

required_acceptor_control

The control settings required.

replace_old_controls

TRUE to replace acceptor controls existing in original credentials. FALSE to specify additional controls.

new_cred_req

TRUE for a new credentials set, FALSE to modify the original.

commit_cred_req

TRUE for immediate action, FALSE for deferred action.

output_cred_handle

GSS_Set_cred_controls produces a modified version of the input credentials (cred_handle). The original
credentials are directly changed if duplicate_cred_req is FALSE, otherwise the output_cred_handle references a
new, and potentially different, copy of the original input credentials (which remain untouched). gss_release_cred
can be used when the caller is finished with any new credentials created by this  function.

9.2.2 GSS_Get_sec_controls

Input :

– cred_handle OCTET STRING,

– context_handle INTEGER,



-  33 -

Output :

– acceptor_controls SET OF AcceptorControl,

Return major_status code :

– GSS_S_COMPLETE indicates that the acceptor control information has been
returned

– GSS_S_CREDENTIALS_EXPIRED indicates that the specified credentials have expired.

– GSS_S_DEFECTIVE_CREDENTIAL indicates that defective credentials have been detected.

– GSS_S_FAILURE indicates a failure, unspecified at the GSS-API level.

– GSS_S_UNAVAILABLE indicates that the operation is not supported.

This function enables a caller to enquire the current value of the acceptor controls in the specified credentials or
context.

This function can be used by context initiators and context acceptors to query acceptor controls in credentials or
security contexts..

Parameters for GSS_Get_sec_controls:

cred_handle

Handle to credentials. It refers to an authenticated principal. Supply NULL to use default credentials, or a context
handle.

context_handle

GSS-API security context handle, context_handle refers to a security context that is part of an established
association. Context_handle is ignored if a non-NULL cred_handle is presented. (Note: it is typically only
necessary to use a context_handle parameter rather than cred_handle for the case when a security context is
emitted by gss_accept_sec_context, but not with an accompanying set of delegated credentials).

acceptor_controls

A set of acceptor controls. Acceptor controls are described in clause 9.2.1.

9.2.3 GSS_Compound_creds call

Input :

– delegated_cred_handle OCTET STRING

– cred_handle OCTET STRING,

Output :

– cred_handle_new OCTET STRING

Return major_status code :

– GSS_S_COMPLETE indicates that the credentials were successfully compounded

– GSS_S_CREDENTIALS_EXPIRED indicates that one or more of the specified credentials have
expired.

– GSS_S_DEFECTIVE_CREDENTIAL indicates that defective credentials have been detected.

– GSS_S_FAILURE indicates a failure, unspecified at the GSS-API level.

– GSS_S_UNAVAILABLE indicates that the operation is not supported.

Parameters for gss_compound_cred:

delegated_cred_handle

A handle to the credentials being delegated, it refers to one or several authenticated principals.



-  34 -

cred_handle

A handle to claimed credentials of the caller, cred_handle refers to an authenticated principal.

cred_handle_new

A handle to the compounded set of credentials.

9.3 Attribute specifications
For attributes that appear in the PAC with the syntax SecurityAttribute, the syntaxes of their securityValue fields are
defined below.

9.3.1 Privilege attributes

Privileges are defined under the OBJECT IDENTIFIER:

privilege-attribute OBJECT IDENTIFIER ::= { iso(1) identified-organisation(3) icd-ecma(012) technical-

report(1) security-in-open-systems(046) privilege-attribute(4) }

9.3.1.1 Access Identity

The access identity represents the principal’s identity to be used for access control purposes.

The type of this attribute is { privilege-attribute 2 }

Its syntax in the PAC is SecurityAttribute, with a securityValue syntax of Identifier.

When it is returned by a GSS_Get_sec_attributes call, or set by a GSS_Set_cred_attributes call, the
security_value field of the gss_sec_attr structure in gss_sec_attr_set contains a pointer to the gss_id structure
(defined in clause 9.4)

9.3.1.2 Group

A group represents a characteristic common to several principals. A security context may contain more than
one group for a given principal. The group attribute may therefore contain more than one group.

The type of this attribute is { privilege-attribute 4 }

Its syntax in the PAC is SecurityAttribute, with a securityValue syntax of SEQUENCE OF Identifier.

When it is returned by a GSS_Get_sec_attributes call, or set by a GSS_Set_cred_attributes call, the
security_value field of the gss_sec_attr structure in gss_sec_attr_set contains a pointer to the gss_id_set
structure (defined in clause 9.4)

9.3.1.3 Primary group

The primary group represents a unique group to which a principal belongs. A security context must not contain
more than one primary group for a given principal.

The type of this attribute is { privilege-attribute 3 }

Its syntax in the PAC is SecurityAttribute, with a securityValue syntax of Identifier.

When it is returned by a GSS_Get_sec_attributes call, or set by a GSS_Set_cred_attributes call, the
security_value field of the gss_sec_attr structure in gss_sec_attr_set contains a pointer to the gss_id structure
(defined in clause 9.4.1)

9.3.1.4 Role attribute

The role attribute represents the principal’s role. There may be a one to one mapping between a role name and
a role attribute.

The type of this attribute is { privilege-attribute 1 }

Its syntax in the PAC is SecurityAttribute, with a securityValue syntax of Identifier.

When it is returned by a GSS_Get_sec_attributes call, or set by a GSS_Set_cred_attributes call, the
security_value field of the gss_sec_attr structure in gss_sec_attr_set contains a pointer to the gss_id structure
(defined in clause 9.4)



-  35 -

9.3.2 Attribute set reference

9.3.2.1 Role name

The role name is an attribute set reference used only as input parameter to a GSS_Set_cred_attributes call to
select a set of security attributes for credentials. It does not appear in the PAC.

The type of this attribute is { privilege-attribute 17 }

For this attribute, the security_value field of the gss_sec_attr structure in gss_sec_attr_set contains a pointer to
the gss_id structure (defined in clause 9.4)

9.3.3 Miscellaneous attributes

Miscellaneous attributes are defined under the OBJECT IDENTIFIER:

misc-attribute OBJECT IDENTIFIER ::= { iso(1) identified-organisation(3) icd-ecma(012) technical-report(1)

security-in-open-systems(046) misc-attribute(3) }

9.3.3.1 Audit Identity

The access identity represents the principal’s identity to be used for audit purposes.

The type of this attribute is { misc-attribute 2 }

Its syntax in the PAC is SecurityAttribute, with a securityValue syntax of Identifier.

When it is returned by a GSS_Get_sec_attributes call, or set by a GSS_Set_cred_attributes call, the
security_value field of the gss_sec_attr structure in gss_sec_attr_set contains a pointer to the gss_id structure
(defined in clause 9.4)

9.3.3.2 Issuer domain name

The issuer domain name represents the name of the domain which issued the principal PAC. It is carried in the
PAC in the issuerDomain field. It cannot be set by a call to GSS_Set_cred_attributes.

The type of this attribute is { misc-attribute 10 }

When it is returned by a GSS_Get_sec_attributes call, the security_value field of the gss_sec_attr structure in
gss_sec_attr_set contains a pointer to the gss_id structure (defined in clause 9.4)

9.3.3.3 Validity periods

The validity periods represent the time periods within which the principal PAC is valid. It is carried in the
PAC in the validity and timePeriods fields.

The type of this attribute is { misc-attribute 11 }

When it is returned by a GSS_Get_sec_attributes call, or set by a GSS_Set_cred_attributes call, the
security_value field of the gss_sec_attr structure in gss_sec_attr_set contains a pointer to the gss_period_list
structure (defined in clause 9.4).

9.3.3.4 Optional restrictions

The optional restrictions represent restrictions that apply to the security context. The context may be accepted,
even if the application is unable to understand the optional restrictions. Optional restrictions are carried in the
PAC in the restrictions field.

The type of this attribute is { misc-attribute 12 }

When it is returned by a GSS_Get_sec_attributes call, or set by a GSS_Set_cred_attributes call, the
security_value field of the gss_sec_attr structure in gss_sec_attr_set contains a pointer to the gss_id structure
(defined in clause 9.4).

9.3.3.5 Mandatory restrictions

The mandatory restrictions represent restrictions that apply to the security context. The context must not be
accepted if the application is unable to understand the mandatory restrictions. Optional restrictions are carried
in the PAC in the restrictions field.

The type of this attribute is { misc-attribute 13 }



-  36 -

When it is returned by a GSS_Get_sec_attributes call, or set by a GSS_Set_cred_attributes call, the
security_value field of the gss_sec_attr structure in gss_sec_attr_set contains a pointer to the gss_id structure
(defined in clause 9.4).

9.3.4 Qualifier attributes

Qualifier attributes are defined under the OBJECT IDENTIFIER:

qualifier-attribute OBJECT IDENTIFIER ::= { iso(1) identified-organisation(3) icd-ecma(012) technical-

report(1) security-in-open-systems(046) qualifier-attribute(5) }

9.3.4.1 Acceptor name

An acceptor name represents the name of an application that can potentially accept the security context either
as a target only, or a delegate target, or delegate only. Acceptor names are carried in the PAC as protection
methods. More than one name can be present.

The type of this attribute is { qualifier-attribute 1 }

When it is returned by a GSS_Get_sec_controls call, or set by a GSS_Set_cred_controls call, the
security_value field of the gss_sec_attr structure in gss_control_set contains a pointer to the gss_id_set
structure (defined in clause 9.4).

9.3.4.2 Application trust group

An application trust group represents a group of acceptors defined by the security administrator that mutually
trust each other not to spoof each others’ identity. An application trust group can potentially accept the
security context either as a target only, or a delegate target, or delegate only. Application trust groups are
carried in the PAC as protection methods. More than one may be present.

The type of this attribute is { qualifier-attribute 2 }

When it is returned by a GSS_Get_sec_controls call, or set by a GSS_Set_cred_controls call, the
security_value field of the gss_sec_attr structure in gss_control_set contains a pointer to the gss_id_set
structure (defined in clause 9.4)

9.4 C Bindings
This section specifies C language bindings for the GSS-API ECMA mechanism support functions.

9.4.1 Data types and calling conventions

The following data types :

• OM_uint32,

• gss_buffer_t,

• gss_OID,

• gss_OID_set,

• gss_cred_id_t,

• gss_ctx_id_t,

are defined in [GSS-API], along with the calling conventions.

9.4.1.1 Identifier

Identifiers have the following data structure:

typedef struct {

gss_type_en id_type

gss_value id_value;

} gss_id;

Where id_type identifies the syntax within the Identifier type:



-  37 -

typedef enum {

gss_oid_t, /* for OID */

gss_integer, /* for Integer */

gss_string, /* for character string */

gss_uuid, /* for DCE UUID */

gss_buffer_t; /* for gss_buffer */

} gss_type_en;

And where id_value is the actual value of the data of type Identifier:

struct union {

gss_OID OID;

OM_uint32* integer;

char* string;

uuid_t* uuid;

gss_buffer_t buffer;

} gss_value;

9.4.1.2 Identifier set

Identifier sets have the following data structure:

typedef struct gss_id_set_desc {

OM_uint32 id_count;

gss_id* ids;

} gss_id_set;

The id_count field contains the number of Identifiers in the set.

9.4.1.3 Time periods

A time period has the following structure:

typedef struct gss_time_period_desc {

time_t start_time; /* NULL for unconstrained start time */

time_t end_time; /* NULL for unconstrained end time */

} gss_time_period;

9.4.1.4 time period list

Time period lists have the following data structure:

typedef struct gss_period_list _desc{

OM_uint32 period_count;

gss_time_period* periods;

} gss_period_list;

The period_count field contains the number of time periods in the list.



-  38 -

9.4.1.5 Security attributes

Security attributes (see clause 9.1) have the following data structure:

typedef struct gss_sec_attr_desc {

gss_OID attribute_type;

gss_buffer_t defining_authority;

/* specify GSS_C_NO_BUFFER when non present */

gss_buffer_t security_value;

} gss_sec_attr;

Correspondence between the security_value field and the actual syntax of the security attribute is defined
along with each specific attribute_type.

9.4.1.6 Security Attribute Sets

A set of security attributes has the following structure:

typedef struct gss_sec_attr_set_desc{

OM_uint32 attribute_count;

gss_sec_attr* attributes;

} gss_sec_attr_set;

The attribute_count field contains the number of security attributes in the set.

9.4.1.7 Credentials List

A list of credentials has the following structure:

typedef struct {

OM_uint32 cred_count;

gss_cred_id_t* cred_list;

} gss_cred_list;

The cred_count field contains the number of credentials in the list.

9.4.1.8 Acceptor Control

Acceptor control has the following structure:

typedef struct gss_acceptor_control_desc {

gss_sec_attr target_only;

/* specify GSS_C_NULL_SEC_ATTR when non present */

gss_sec_attr delegate_only;

/* specify GSS_C_NULL_SEC_ATTR when non present */

gss_sec_attr delagate_target;

/* specify GSS_C_NULL_SEC_ATTR when non present */

OM_uint32 delegation_mode;

/* specify NULL when non present */

} gss_acceptor_control;



-  39 -

9.4.1.9 Acceptor Control Set

A set of Acceptor Control has the following structure :

typedef struct gss_control_set_desc{

OM_uint32 control_count;

gss_acceptor_control* acceptor_controls;

} gss_control_set;

The control_count field contains the number of acceptor controls in the set.

9.4.2 gss_set_cred_attributes

/* set attributes values in credentials */

OM_uint32 gss_set_cred _attributes (

gss_cred_id_t cred_handle, /* IN */

gss_sec_attr_set required_attributes, /* IN */

OM_uint32 new_cred_req, /* IN*/

OM_uint32 commit_cred_req, /* IN*/

OM_uint32* minor_status, /* OUT*/

gss_cred_id_t* output_cred_handle); /* OUT */

9.4.3 gss_get_sec_attributes

/* get attributes associated with credentials or security context */

OM_uint32 gss_get_sec_attributes (

gss_cred_id_t cred_handle, /* IN */

gss_ctx_id_t context_handle, /* IN */

gss_OID_set attribute_types_required, /* IN */

OM_uint32* minor_status, /* OUT*/

gss_sec_attr_set** priv_attributes, /* OUT*/

gss_sec_attr_set** misc_attributes); /* OUT*/

9.4.4 gss_get_received_creds

/* get received credentials associated with a security context */

OM_uint32 gss_get_received_creds (

gss_ctx_id_t context_handle, /* IN */

OM_uint32* minor_status, /* OUT*/

gss_cred_list** received_creds); /* OUT*/

9.4.5 gss_set_cred_controls

/* Set acceptor controls in credentials for context establishmentt */



-  40 -

OM_uint32 gss_set_cred_controls (

gss_cred_id_t cred_handle, /* IN */

gss_ control_set required_control, /* IN */

OM_uint32 replace_old_controls, /* IN */

OM_uint32 new_cred_req, /* IN */

OM_uint32 commit_cred_req, /* IN */

OM_uint32* minor_status, /* OUT*/

gss_cred_id_t* output_cred_handle); /* OUT*/

9.4.6 gss_get_sec_controls

/* set context acceptor controls on credentials */

OM_uint32 gss_get_sec_controls (

gss_cred_id_t cred_handle, /* IN */

gss_ctx_id_t context_handle, /* IN */

OM_uint32* minor_status, /* OUT*/

gss_control_set* acceptor_controls); /* OUT*/

9.4.7 gss_compound_cred

/* compound credentials for delegation */

OM_uint32 gss_compound_cred (

gss_cred_id_t delegated_cred_handle, /* IN */

gss_cred_id_t cred_handle, /* IN */

OM_uint32* minor_status, /* OUT*/

gss_cred_id_t cred_handle_new); /* OUT*/

10 Relationship to other standards
This standard further develops the work done in [ECMA-219], defining a security mechanism that supports the GSS-
API [GSS-API]. The relationship to ECMA-219 is:

• development of this Standard has resulted in minor corrections to ECMA-219,

• the syntax of the PAC and related data (in support of PAC protection mechanisms), is as defined in ECMA-219,

• the key package syntax is built upon the basic syntax given in ECMA-219, in the manner specified there,

• the attribute structure returned across the interface by the support functions defined in clause 9 is a simplified
profile of the structure of the ECMA-219 Security Attribute. This makes the functions more suitable for use by
callers of other GSS-API mechanisms.

Other standards related work on similar mechanisms ([KRB5GSS], [SPKM]) has resulted in definitions of GSS-API
tokens for those mechanisms. The token formats specified here, have been designed for best fit with the equivalent
definitions from these other specifications. In particular:

• the symmetric key distribution schemes make use of Kerberos Tickets (see [Kerberos] and annex B), to which
ECMA PAC control information (specifically the PPID) has been added in the authorisation data,

• the asymmetric key distribution schemes make use of Simple Public Key Mechanism  tickets, see [SPKM],



-  41 -

• Security Association identifiers and other token protection data have been specified in the same manner as in
[SPKM] (called context identifiers there),

The structure of public key certificates, algorithm identifiers and distinguished names used in this Standard conform to
[ISO/IEC 9594-8].



-  42 -



-  43 -

Annex A

(Normative)

Formal ASN.1 definitions of data types defined in this standard

This annex contains formal definitions of the ASN.1 data types that are newly defined in this standard.

Ecma-gss-api-types { iso(1) identified-organisation(3) icdecma(0012) standard(0)

ecma-gss-api(235) ecma-gss-api-types (1)

DEFINITIONS ::=

BEGIN

-- exports everything

IMPORTS

kd-schemes

FROM UsefulDefinitions { iso(1) identified-organisation(3) icd-ecma(0012) standard(0)

apa(219) modules(1) usefulDefinitions(1) }

Identifier, Signature, Seal, SecurityAttribute, UniqueNumber, TimePeriods, CertAndECV,

TargetKeyBlock, DialogueKeyBlock

FROM SecurityInformationObjects {iso (1) identified-organisation(3)

icd-ecma(0012) standard(0) apa(219) modules(1)

securityInformationObjects(3) }

Certificate, CertificateList, AlgorithmIdentifier, Certificates

FROM AuthenticationFramework {joint-iso-ccitt(2) ds(5) module(1)

authenticationFramework(7) }

HostAddress, HostAddressList, Ticket

FROM Ecma-kerberos-types { iso(1) identified-organisation(3)

icd-ecma(0012) standard(0) ecma-gss-api(235) ecma-kerberos-types (2)

SPKM_REQ

FROM Ecma-spkm-types { iso(1) identified-organisation(3) icdecma(0012)

standard(0) ecma-gss-api(235) ecma-spkm-types (3)

NOTE
strictly speaking SPKM_REQ does not need to be imported since it is not used explicitly in the syntax given below.
However it is one of the possible ANY choices in the TargetKeyBlock construct.



-  44 -

-- OBJECT IDENTIFIERS

generic-ecma-mech OBJECT IDENTIFIER ::=

{ iso(1) identified-organisation(3) icd-ecma(0012) standard(0) ecma_gss_api (235)

generic-ecma-mech (4)}

misc-attribute OBJECT IDENTIFIER ::= { iso(1) identified-organisation(3) icd-ecma(012) technical-

report(1) security-in-open-systems(046) misc-attribute(3) }

privilege-attribute OBJECT IDENTIFIER ::= { iso(1) identified-organisation(3) icd-ecma(012) technical-

report(1) security-in-open-systems(046) privilege-attribute(4) }

qualifier-attribute OBJECT IDENTIFIER ::= { iso(1) identified-organisation(3) icd-ecma(012) technical-

report(1) security-in-open-systems(046) qualifier-attribute(5) }

-- Key Scheme Object Identifiers

symmIntradomain OBJECT IDENTIFIER ::= {kd-schemes 1}

symmInterdomain OBJECT IDENTIFIER ::= {kd-schemes 2}

hybridInterdomain OBJECT IDENTIFIER ::= {kd-schemes 3}

asymmInitToSymmTarget OBJECT IDENTIFIER ::= {kd-schemes 4}

symmInitToAsymmTarget OBJECT IDENTIFIER ::= {kd-schemes 5}

asymmetric OBJECT IDENTIFIER ::= {kd-schemes 6}

-- Object Identifier for insertion in SPKM construct

gss-key-estb-alg AlgorithmIdentifier ::= {kd-schemes, NULL }

-- privilege attribute Object Identifiers

role-type OBJECT IDENTIFIER ::= {privilege-attribute 1 }

access-identity-type OBJECT IDENTIFIER ::= {privilege-attribute 2 }

primary-group-type OBJECT IDENTIFIER ::= {privilege-attribute 3 }

group-type OBJECT IDENTIFIER ::= {privilege-attribute 4 }

role-name-type OBJECT IDENTIFIER ::= {privilege-attribute 17 }

-- miscellaneous attribute Object Identifiers

acceptor-name-type OBJECT IDENTIFIER ::= {miscellaneous-attribute 1 }

audit-identity-type OBJECT IDENTIFIER ::= {miscellaneous-attribute 2 }

issuer-domain-name-type OBJECT IDENTIFIER ::= {miscellaneous-attribute 10 }

validity-periods-type OBJECT IDENTIFIER ::= {miscellaneous-attribute 11 }

optional-restrictions-type OBJECT IDENTIFIER ::= {miscellaneous-attribute 12 }

mandatory-restrictions-type OBJECT IDENTIFIER ::= {miscellaneous-attribute 13 }



-  45 -

-- qualifier attribute Object Identifiers

acceptor-name-type OBJECT IDENTIFIER ::= {qualifier-attribute 1 }

application-trust-group-type OBJECT IDENTIFIER ::= {qualifier-attribute 2 }

-- data types

AcceptorControl ::= SEQUENCE {

targetOnly SEQUENCE OF SecAttribute OPTIONAL,

delegateOnly SEQUENCE OF SecAttribute OPTIONAL,

delegateTarget SEQUENCE OF SecAttribute OPTIONAL,

delegationMode DelegationMode OPTIONAL,

}

CDTContents ::= SEQUENCE {

tokenType [0] OCTET STRING VALUE X'0301',

SAId [1] OCTET STRING,

utcTime [2] UTCTime OPTIONAL,

 usec [3] INTEGER OPTIONAL,

seq-number [4] INTEGER OPTIONAL

 }

ContextDeleteToken ::=  SEQUENCE {

cdtContents [0] CDTContents,

cdtSeal [1] Seal -- seal over cdtContents, encrypted

-- under the Integrity Dialogue Key

-- contains only the sealValue field

}

DelegationMode  := ENUMERATED {

default (0),

simple (1),

traced (2),

composite (3) }

ECMA-AUTHORISATION-DATA-TYPE ::= INTEGER { ECMA-ADATA (65) }

ECMA-AUTHORISATION-DATA ::= SEQUENCE {

ecma-ad-type [0] ENUMERATED { ppidType (0)},

ecma-ad-value [1] CHOICE { ppidValue [0] SecurityAttribute}}

-- only one choice for now

EcmaMechSpecInfo ::= SEQUENCE OF Attribute



-  46 -

ErrorArgument ::= ENUMERATED {

gss_ecma_s_sg_server_sec_assoc_open (1),

gss_ecma_s_sg_ incomp_cert_syntax (2),

gss_ecma_s_sg_ bad_cert_attributes (3),

gss_ecma_s_sg_ inval_time_for_attrib (4),

gss_ecma_s_sg_ pac_restrictions_prob (5),

gss_ecma_s_sg_ issuer_problem (6),

gss_ecma_s_sg_ cert_time_too_early (7),

gss_ecma_s_sg_ cert_time_expired (8),

gss_ecma_s_sg_ invalid_cert_prot (9),

gss_ecma_s_sg_ revoked_cert (10),

gss_ecma_s_sg_ key_constr_not_supp (11),

gss_ecma_s_sg_ init_kd_server_ unknown (12),

gss_ecma_s_sg_init_unknown (13),

gss_ecma_s_sg_alg_problem_in_dialogue_key_block (14),

gss_ecma_s_sg_no_basic_key_for_dialogue_key_block (15),

gss_ecma_s_sg_key_distrib_prob (16),

gss_ecma_s_sg_invalid_user_cert_in_key_block (17),

gss_ecma_s_sg_unspecified (18),

gss_ecma_s_sg_invalid_token_format (19)

}

ErrorToken ::=  {

tokenType [0] OCTET STRING VALUE X'0400',

etContents [1] ErrorArgument,

}

HashedNameInput ::= SEQUENCE {

hniPlainKey [0] BIT STRING, -- the same value as plainKey

hniIssuingKDS [1] Identifier}



-  47 -

ICTContents ::= SEQUENCE {

tokenId [0] INTEGER, -- shall contain X'0100'

SAId [1] OCTET STRING,

targetAEFPart [2] TargetAEFPart,

targetAEFPartSeal [3] Seal, -- Imported from [ECMA-219] (see annex E)

contextFlags [4] BIT STRING{

delegation (0),

mutual-auth (1),

replay-detect (2),

sequence (3),

conf-avail (4),

integ-avail (5)

}

utcTime [5] UTCTime OPTIONAL,

 usec [6] INTEGER OPTIONAL,

seq-number [7] INTEGER OPTIONAL,

initiatorAddress [8] HostAddress OPTIONAL, -- imported from [Kerberos]

targetAddress [9] HostAddress OPTIONAL -- imported from [Kerberos]

-- used as channel bindings }

InitialContextToken ::=  SEQUENCE {

ictContents [0] ICTContents,

ictSeal [1] Seal -- Imported from [ECMA-219] (see annex E)

}

KeyEstablishmentData ::= SEQUENCE {

encryptedPlainKey [0] BIT STRING, -- encrypted PlainKey

targetName [1] Identifier OPTIONAL,

nameHashingAlg [2] AlgorithmIdentifier OPTIONAL}

MICToken  ::=   PMToken

PlainKey ::= SEQUENCE {

plainKey [0] BIT STRING, -- The cleartext key

hashedName [1] BIT STRING}



-  48 -

PMTContents ::= SEQUENCE {

tokenId [0] INTEGER,

SAId [1] OCTET STRING,

seq-number [2] INTEGER OPTIONAL,

userData [3] CHOICE {

plaintext BIT STRING,

ciphertext OCTET STRING

} OPTIONAL,

directionIndicator [4] BOOLEAN OPTIONAL

 }

PMToken ::=  SEQUENCE {

pmtContents [0] PMTContents,

pmtSeal [1] Seal

}

PublicKeyBlock ::= SEQUENCE{

signedPKBPart[0] SignedPKBPart,

signature [1] Signature OPTIONAL,

-- imported from [ECMA-219], see also annex E

certificate [2] Certificate OPTIONAL}

-- imported from [ISO/IEC 9594-8], see also annex E

PublicTicket ::= SEQUENCE{

krb5Ticket [0] Ticket, -- see annex B

publicKeyBlock [1] PublicKeyBlock}

SecAttribute ::= {

attributeType OBJECT IDENTIFIER,

definingAuthority OCTET STRING OPTIONAL,

securityValue OCTET STRING }

SignedPKBPart ::= SEQUENCE{

keyEstablishmentData [0] KeyEstablishmentData,

encryptionMethod [1] AlgorithmIdentifier OPTIONAL,

issuingKDS [2] Identifier,

uniqueNumber [3] UniqueNumber,

validityTime [4] TimePeriods,

-- UniqueNumber and TimePeriods are

-- imported from [ECMA-219]

creationTime [5] UTCTime}



-  49 -

TargetAEFPart ::= SEQUENCE {

pacAndCVs [0] SEQUENCE OF CertandECV OPTIONAL,

targetKeyBlock [1] TargetKeyBlock, -- see clause 5 for schemes supported

dialogueKeyBlock [2] DialogueKeyBlock, -- Imported from [ECMA-219] (see annex E)

targetIdentity [3] Identifier, -- Imported from [ECMA-219] (see annex E)

flags [4] BIT STRING{

delegation (0)

}

}

TargetKeyBlock ::= SEQUENCE {

kdSchemeOID [2] OBJECT IDENTIFIER,

targetKDSpart [3] ANY OPTIONAL,

-- depending on kdSchemeOID

targetPart [4] ANY OPTIONAL}

-- depending on kdSchemeOID

TargetResultToken ::=  SEQUENCE {

trtContents [0] TRTContents,

trtSeal [1] Seal }

Token ::=

[APPLICATION 0] IMPLICIT SEQUENCE {

thisMech MechType, -- the OBJECT IDENTIFIER specified below

innerContextTokenANY DEFINED BY thisMech }

TRTContents ::= SEQUENCE {

tokenId [0] INTEGER, -- shall contain X'0200'

SAId [1] OCTET STRING,

utcTime [5] UTCTime OPTIONAL,

 usec [6] INTEGER OPTIONAL,

seq-number [7] INTEGER OPTIONAL

 }

WrapToken  ::=   PMToken

END -- of Ecma-gss-api-types



-  50 -



-  51 -

Annex B

(Normative)

Definitions of [Kerberos] data types

This annex contains formal normative ASN.1 specifications for data types that are also defined in [Kerberos]. Where any
differences might arise, the specifications in this annex take precedence.

Ecma-kerberos-types   { iso(1) identified-organisation(3) icd-ecma(0012) standard(0)

ecma-gss-api(235) ecma-kerberos-types (2)

DEFINITIONS ::=

BEGIN

-- exports everything

IMPORTS

-- imports nothing

-- data types

AuthorizationData ::= SEQUENCE OF SEQUENCE {

ad-type [0] INTEGER,

ad-data [1] OCTET STRING}

EncryptedData ::= SEQUENCE {

etype [0] INTEGER, -- EncryptionType

kvno [1] INTEGER OPTIONAL,

cipher [2] OCTET STRING —ciphertext}

EncryptionKey ::= SEQUENCE {

keytype [0] INTEGER,

keyvalue [1] OCTET STRING}



-  52 -

EncTicketPart ::= [APPLICATION 3] SEQUENCE {

flags [0] TicketFlags,

key [1]  EncryptionKey,

crealm [2] Realm,

cname [3] PrincipalName,

transited [4] TransitedEncoding,

authtime [5] KerberosTime,

starttime [6] KerberosTime OPTIONAL,

endtime [7] KerberosTime,

renew-till [8] KerberosTime OPTIONAL,

caddr [9] HostAddresses OPTIONAL,

authorization-data [10] AuthorizationData OPTIONAL}

-- see clause 5.3.5 for the specific ECMA contents of AuthorizationData

HostAddress ::= SEQUENCE {

addr-type [0] INTEGER,

address [1] OCTET STRING}

HostAddresses ::= SEQUENCE OF SEQUENCE {

addr-type [0] INTEGER,

address [1] OCTET STRING}

KerberosTime ::= GeneralizedTime

-- Specifying UTC time zone (Z)

PrincipalName ::= SEQUENCE {

name-type [0] INTEGER,

name-string [1] SEQUENCE OF GeneralString}

Realm ::= GeneralString

Ticket ::= [APPLICATION 1] SEQUENCE {

tkt-vno [0] INTEGER,

realm [1] Realm,

sname [2] PrincipalName,

enc-part [3] EncryptedData} -- decrypts to EncTicketPart



-  53 -

TicketFlags ::= BIT STRING {

reserved (0), -- not supported in the ECMA mechanism

forwardable (1), -- not supported in the ECMA mechanism

forwarded (2), -- not supported in the ECMA mechanism

proxiable (3), -- not supported in the ECMA mechanism

proxy (4), -- not supported in the ECMA mechanism

may-postdate (5), -- not supported in the ECMA mechanism

postdated (6),

invalid (7), -- not supported in the ECMA mechanism

renewable (8), -- not supported in the ECMA mechanism

initial (9), -- not supported in the ECMA mechanism

pre-authent (10),

hw-authent (11)}

TransitedEncoding ::= SEQUENCE {

tr-type [0] INTEGER, -- must be registered

contents [1] OCTET STRING}

-- the TransitedEncoding construct is not used in the ECMA mechanism.

END -- of Ecma-kerberos-types



-  54 -



-  55 -

Annex C

(Normative)

Definitions of [SPKM] data types

This annex contains formal normative ASN.1 specifications for data types that are also defined in [SPKM]. Where any
differences might arise, the specifications in this annex take precedence.

Ecma-spkm-types   { iso(1) identified-organisation(3) icdecma(0012) standard(0)

ecma-gss-api(235) ecma-spkm-types (3)

DEFINITIONS ::=

BEGIN

-- exports everything

IMPORTS

AuthorizationData

FROM Ecma-kerberos-types   {

iso(1) identified-organisation(3) icd-ecma(0012) standard(0)

ecma-gss-api(235) ecma-kerberos-types (2)

AlgorithmIdentifier, Certificate, CertificateList, CertificatePair

FROM AuthenticationFramework {

joint-iso-ccitt ds(5) modules(1) authenticationFramework(7) }

Name

FROM InformationFramework {

joint-iso-ccitt ds(5) modules(1) informationFramework(1) }

-- data types

CertificationData ::= SEQUENCE {

certificationPath [0] CertificationPath OPTIONAL,

certificateRevocationList [1] CertificateList OPTIONAL

} -- at least one of the above shall be present



-  56 -

CertificationPath ::= SEQUENCE {

userKeyId [0] OCTET STRING OPTIONAL,

-- identifier for user's public key

userCertif [1] Certificate OPTIONAL,

-- certificate containing user's public key

verifKeyId [2] OCTET STRING OPTIONAL,

-- identifier for user's public verification key

userVerifCertif [3] Certificate OPTIONAL,

-- certificate containing user's public verification key

theCACertificates [4] SEQUENCE OF CertificatePair OPTIONAL

-- certification path from target to source

}

ChannelId ::= OCTET STRING

Conf_Algs ::= CHOICE{

SEQUENCE OF AlgorithmIdentifier,

NULL -- used when conf. is not available over context

} -- for C-ALG

Context_Data ::= SEQUENCE {

channelId ChannelId, -- channel bindings

seq_number INTEGER OPTIONAL, -- sequence number

options Options,

conf_alg Conf_Algs, -- confidentiality. algs.

intg_alg Intg_Algs -- integrity algorithm

}

ENCRYPTED MACRO ::=

BEGIN

TYPE NOTATION ::= type(ToBeEnciphered)

VALUE NOTATION::= value(VALUE BIT STRING)

END     -- of ENCRYPTED

HASHED MACRO ::=

BEGIN

TYPE  NOTATION ::= type ( ToBeHashed )

VALUE NOTATION ::= value ( VALUE OCTET STRING )

END -- hash used is the one specified for the MANDATORY I-ALG

Intg_Algs ::= SEQUENCE OF AlgorithmIdentifier  -- for I-ALG

Key_Estb_Algs ::= SEQUENCE OF AlgorithmIdentifier  -- to allow negotiation of K-ALG



-  57 -

MAC MACRO ::=

BEGIN

TYPE  NOTATION ::= type  ( ToBeMACed )

VALUE NOTATION ::= value ( VALUE

SEQUENCE{

algId AlgorithmIdentifier,

mac BIT STRING

}

)

END

Options ::= BIT STRING {

delegation_state (0),

mutual_state (1),

replay_det_state (2), -- used for replay det. during context

sequence_state (3), -- used for sequencing during context

conf_avail (4),

integ_avail (5),

target_certif_data_required (6) -- used to request targ's certif. data

}

Random_Integer ::= BIT STRING

Req_Integrity ::= CHOICE {

sig_integ [0] SIGNATURE REQ_TOKEN,

mac_integ [1] MAC REQ_TOKEN

}



-  58 -

REQ_TOKEN ::= SEQUENCE {

tok_id INTEGER, -- shall contain 0100 (hex)

context_id Random_Integer,

pvno BIT STRING, -- protocol version number

timestamp UTCTime OPTIONAL,

-- mandatory for SPKM-2

randSrc Random_Integer,

targ_name Name,

src_name Name, -- may be a value indicating "anonymous"

req_data Context_Data,

validity [0] Validity OPTIONAL,

-- validity interval for key (may be used in the

-- computation of security context lifetime)

key_estb_set [1] Key_Estb_Algs, -- specifies set of key establishment algorithms

key_estb_req BIT STRING OPTIONAL,

-- key estb. parameter corresponding to first K-ALG in set

-- (not used if initiator is unable or unwilling to

-- generate and securely transmit key material to target).

-- Established key must be sufficiently long to be used

-- with any of the offered confidentiality algorithms.

key_src_bind HASHED SEQUENCE {

src_name Name,

symm_key BIT STRING} OPTIONAL

-- used to bind the source name to the symmetric key

-- (i.e., the unprotected version of what is

-- transmitted in key_estb_req).

}

SIGNATURE MACRO ::=

BEGIN

TYPE NOTATION   ::= type (OfSignature)

VALUE NOTATION  ::= value(VALUE

SEQUENCE {

AlgorithmIdentifier,

ENCRYPTED OCTET STRING

}

)

END



-  59 -

SPKM_REQ ::= SEQUENCE {

requestToken REQ_TOKEN,

req_integrity Req_Integrity,

certif_data [2] CertificationData OPTIONAL,

auth_data [3] AuthorizationData OPTIONAL

-- see [Kerberos] for a discussion of authorization data

}

Validity ::= SEQUENCE {

notBefore UTCTime,

notAfter UTCTime }

END -- of Ecma-spkm-types



-  60 -



-  61 -

Annex D

(Normative)

Mappings of Minor Status Returns onto [ECMA-219] error values

This annex contains a table showing how the minor status returns defined in clause 8 correspond to the error values of [ECMA-
219]. Many of the minor_status codes at the API level cover more than one of the errors from the ECMA Mechanism, since any
mechanism specific operation, argument or result has a higher granularity and variety of parameters than the GSS-API.

GSS_API parameter ECMA-219 Error
Minor Status code ABSTRACT-ERROR Parameter Name Val

GSS_ECMA_S_SG_SERVER_SA_
ALREADY_ESTABLISHED

AssocAlreadyOpen NULL n/a n/a

GSS_ECMA_S_SG_
INCOMP_CERT_SYNTAX

AUCSpecificError AUCProblem incompatible
SyntaxVersion

1

CertificateError CertificateProblem incompatible
SyntaxVersion

1

PACSpecificError PACProblem incompatible
SyntaxVersion

2

GSS_ECMA_S_SG_
BAD_CERT_ATTRIBUTES

AUCSpecificError AUCProblem invalidProtection 2

AUCSpecificError AUCProblem wrongType 3
AUCSpecificError AUCProblem authentication Level 4
AUCSpecificError AUCProblem invalidAttribute 5
PACSpecificError PACProblem historyNot Acceptable 1
PACSpecificError PACProblem invalidMisc Attributes 3
PACSpecificError PACProblem invalidPrivilegeAttribu

tes
4

PACSpecificError PACProblem invalidProtection 5
PACSpecificError PACProblem invalidTraceLink 7
PACSpecificError PACProblem wrongType 9

GSS_ECMA_S_SG_
INVAL_TIME_FOR_ATTRIB

AUCSpecificError AUCProblem invalidTime 6

PACSpecificError PACProblem invalidTime 6
GSS_ECMA_S_SG_
PAC_RESTRICTIONS_PROB

PACSpecificError PACProblem restrictionType
NotSupported

8

GSS_ECMA_S_SG_ISSUER_PROBLEM CertificateError CertificateProblem issueProblem 2
GSS_ECMA_S_SG_
CERT_TIME_TOO_EARLY

CertificateError CertificateProblem timeProblem 3

GSS_ECMA_S_SG_
CERT_TIME_EXPIRED

CertificateError CertificateProblem certificateExpire 12

GSS_ECMA_S_SG_
INVALID_CERT_PROT

CertificateError CertificateProblem invalidCheck
ValueType

4

CertificateError CertificateProblem invalidCheck
ValueTarget

5

CertificateError CertificateProblem invalidSeal 6
CertificateError CertificateProblem invalidSignature 7
CertificateError CertificateProblem invalidSymme-

tricAlgId
8

CertificateError CertificateProblem invalidAsymme-
tricAlgId

9

CertificateError CertificateProblem invalidHash AlgId 10
GSS_ECMA_S_SG_ REVOKED_CERT CertificateError CertificateProblem certificate Revoked 11
GSS_ECMA_S_SG_
KEY_CONSTR_NOT_SUPP

ConstructTypes
NotSupported

NULL n/a n/a

GSS_ECMA_S_SG_
INIT_KD_SERVER_ UNKNOWN

InitiatorKDS Unknown NULL n/a n/a

GSS_ECMA_S_SG_ INIT_UNKNOWN InitiatorUnknown NULL n/a n/a
GSS_ECMA_S_SG_
INSUFF_AUTHORISATION

Insufficient Authorisation NULL n/a n/a



-  62 -

GSS_API parameter ECMA-219 Error
Minor Status code ABSTRACT-ERROR Parameter Name Val

GSS_ECMA_S_SG_ALG_PROBLEM_
IN_ DIALOGUE_KEY_BLOCK

InvalidDialogueKeyBlock useAlgorithm
NotSupported

n/a
(ENUMERATED)

1

InvalidDialogueKeyBlock useHashAlg
NotSupported

n/a
(ENUMERATED)

2

InvalidDialogueKeyBlock derivationAlgorithmNotS
upported

n/a
(ENUMERATED)

3

GSS_ECMA_S_SG_
NO_BASIC_KEY_FOR_
DIALOGUE_KEY_BLOCK

InvalidDialogueKeyBlock noBasicKey n/a
(ENUMERATED)

4

GSS_ECMA_S_SG_
KEY_DISTRIB_PROB

InvalidKeyBlock kdScheme NotSupported n/a
(ENUMERATED)

1

InvalidKeyBlock invalidTargetPart n/a
(ENUMERATED)

2

KDScheme NotSupported NULL n/a n/a
KiType NotSupported NULL n/a n/a

GSS_ECMA_S_SG_INVALID_USER_
CERT_ IN_KEY_BLOCK

InvalidKeyBlock userCertificate Error n/a
(ENUMERATED)

3

GSS_ECMA_S_SG_
OPERATION_NOT_SUPP

Operation NotSupported NULL n/a n/a

GSS_ECMA_S_SG_
SEC_ASSOC_ID_FAILURE

Security Association
Failure

NULL n/a n/a

GSS_ECMA_S_SG_
UNACCEPTABLE_ACT_REQ

UnacceptableAttrib-
uteRequirements

unacceptable Refinement n/a
(ENUMERATED)

1

UnacceptableAttrib-
uteRequirements

unacceptable AttributeSet n/a
(ENUMERATED)

2

UnacceptableAttrib-
uteRequirements

unacceptable
AttributeValues

n/a
(ENUMERATED)

3

Unacceptable-Restriction-
Requirements

algId OBJECT IDENTIFIER n/a

Unacceptable-
TicketRequirements

unacceptable
CertificateType

n/a
(ENUMERATED)

1

Unacceptable-
TicketRequirements

unacceptable
ProtectionType

n/a
(ENUMERATED)

2

Unacceptable-
TicketRequirements

unacceptable
TargetInformation

n/a
(ENUMERATED)

3

Unacceptable-
TicketRequirements

unacceptable
CertificateControls

n/a
(ENUMERATED)

4

GSS_ECMA_S_SG_ UNSPECIFIED Unspecified NULL n/a n/a

Table 8 - Relationship between minor status returns and ECMA-219 errors



-  63 -

Annex E

(Informative)

Imported Types

This annex contains, for completeness, the relevant ASN.1 types imported from other standards.

E.1 Types imported from [ECMA-219]
The syntax below has been taken directly from [ECMA-219]. It contains the ECMA syntax elements needed to
understand this Standard, and the value of the kd-schemes OBJECT IDENTIFIER. It is provided for information
only. The definitive syntax is that in [ECMA-219]. Not all of the internal fields of all of the constructs are expanded
here. The constructs are listed in alphabetical order.

CertandECV ::= SEQUENCE {

certificate [0] GeneralisedCertificate,

ecv [1] ECV, OPTIONAL}

CertificateBody ::= CHOICE{

encryptedBody [0] BIT STRING,

normalBody [1] SEQUENCE{

commonContents [0] CommonContents,

specificContents [1] SpecificContents}}

CertificateId ::=SEQUENCE { issuerDomain [0] Identifier OPTIONAL,

issuerIdentity [1] Identifier,

serialNumber [2] INTEGER}

-- serialNumber is the same as in [ISO/IEC 9594-8]

CheckValue ::= CHOICE { signature [0] Signature,

seal [1] Seal,

unprotected [2] NULL}

CommonContents ::= SEQUENCE{

comConSyntaxVersion [0] INTEGER { version1 (1) } DEFAULT 1,

issuerDomain [1] Identifier OPTIONAL,

issuerIdentity [2] Identifier,

serialNumber [3] INTEGER, --as structured in [ISO/IEC 9594-8]

creationTime [4] UTCTime OPTIONAL,

validity [5] Validity,

algId [6] AlgorithmIdentifier,

hashAlgId [7] AlgorithmIdentifier OPTIONAL}

-- AlgorithmIdentifier is imported from [ISO/IEC 9594-8]

CValues ::= SEQUENCE OF SEQUENCE {

index [0] INTEGER,

value [1] BIT STRING}



-  64 -

DialogueKeyBlock ::= SEQUENCE {

integKeySeed [0] SeedValue,

confKeySeed [1] SeedValue,

integKeyDerivationInfo [2] KeyDerivationInfo OPTIONAL,

confKeyDerivationInfo [3] KeyDerivationInfo OPTIONAL,

integDKuseInfo [4] DKuseInfo OPTIONAL,

confDKuseInfo [5] DKuseInfo OPTIONAL }

DKuseInfo ::= SEQUENCE {

useAlgId [0] AlgorithmIdentifier,

useHashAlgId [1] AlgorithmIdentifier OPTIONAL }

ECV ::= SEQUENCE {

crypAlgIdentifier [0] AlgorithmIdentifier OPTIONAL,

-- AlgorithmIdentifier is imported from [ISO/IEC 9594-8]

cValues [1] CHOICE {

encryptedCvalueList [0] BIT STRING,

individualCvalues [1] CValues }

}

GeneralisedCertificate ::= SEQUENCE{

certificateBody [0] CertificateBody,

checkValue [1] CheckValue}

Identifier ::= CHOICE {

objectId [0] OBJECT IDENTIFIER,

directoryName [1] Name, -- imported from the Directory Standard

printableName [2] PrintableString,

octets [3] OCTET STRING,

intVal [4] INTEGER,

bits [5] BIT STRING,

pairedName [6] SEQUENCE{

printableName [0] PrintableString,

uniqueName [1] OCTET STRING}

}

KeyConstructionData ::=SEQUENCE{

constructionMethodId [0] OBJECT IDENTIFIER OPTIONAL,

methodParameters [1] MethodParameters}

KeyDerivationInfo ::= SEQUENCE {

owfId [0] AlgorithmIdentifier,

keySize [1] INTEGER }



-  65 -

PACSpecificContents ::= SEQUENCE{

pacSyntaxVersion [0] INTEGER{ version1 (1)} DEFAULT 1,

pacHistory [1] SEQUENCE OF CertificateId OPTIONAL,

protectionMethods [2] SEQUENCE OF MethodGroup OPTIONAL,

traceLink [3] SEQUENCE OF SecurityAttribute OPTIONAL,

pacType [4] ENUMERATED{ primaryPrincipal (1),

temperedSecPrincipal (2),

untemperedSecPrincipal (3)}

DEFAULT 3,

privileges [5] SEQUENCE OF PrivilegeAttribute,

restrictions [6] SEQUENCE OF Restriction OPTIONAL,

miscellaneousAtts [7] SEQUENCE OF SecurityAttribute OPTIONAL,

timePeriods [8] TimePeriods OPTIONAL}

PrivilegeAttribute ::= SecurityAttribute

PValue ::= SEQUENCE {

pv [0] BIT STRING,

algorithmIdentifier [1] AlgorithmIdentifier OPTIONAL }

-- AlgorithmIdentifier is Imported from [ISO/IEC 9594-8]; Default is MD5

Seal ::= SEQUENCE{

sealValue [0] BIT STRING,

symmetricAlgId [1] AlgorithmIdentifier OPTIONAL,

hashAlgId [2] AlgorithmIdentifier OPTIONAL,

targetName [3] Identifier OPTIONAL,

keyId [4] INTEGER OPTIONAL}

-- AlgorithmIdentifier is imported from [ISO/IEC 9594-8]

SecurityAttribute ::= SEQUENCE{

attributeType Identifier,

attributeValue SET OF SEQUENCE{

definingAuthority [0] Identifier OPTIONAL,

securityValue [1] SecurityValue} }

-- NOTE: SecurityAttribute is not tagged, for compatibility with the Directory

Standard.



-  66 -

SecurityValue ::= CHOICE{

directoryName [0] Name, -- imported from the Directory Standard

printableName [1] PrintableString,

octets [2] OCTET STRING,

intVal [3] INTEGER,

bits [4] BIT STRING,

any [5] ANY} -- defined by attributeType

SeedValue ::= SEQUENCE {

timeStamp [0] UTCTime OPTIONAL,

random [1] BIT STRING }

Signature ::= SEQUENCE{

signatureValue [0] BIT STRING,

asymmetricAlgId [1] AlgorithmIdentifier OPTIONAL,

hashAlgId [2] AlgorithmIdentifier OPTIONAL,

issuerCAName [3] Identifier OPTIONAL,

caCertInformation [4] CHOICE {

caCertSerialNumber [0] INTEGER,

certificationPath [1] CertificationPath} OPTIONAL}

SpecificContents ::= CHOICE{

auc [0] AUCSpecificContents,

pac [1] PACSpecificContents,

proxyOnlyPAC [2] PACSpecificContents,

initiatorOnlyPAC [3] PACSpecificContents,

gucType [4] GUCSpecificContents,

otherType [5] SEQUENCE {

typeId [0] OBJECT IDENTIFIER,

otherSpecificContents [1] ANY} -- defined by typeId

TargetKeyBlock ::= SEQUENCE {

initiatorKDSname [0] Identifier OPTIONAL

kdSchemeOID [2] OBJECT IDENTIFIER,

targetKDSpart [3] ANY OPTIONAL,

-- depending on kdSchemeOID

targetPart [4] ANY OPTIONAL}

-- depending on kdSchemeOID

TargetName ::= Identifier

TimePeriods ::= SEQUENCE OF SEQUENCE {

startTime [0] UTCTime OPTIONAL,

endTime [1] UTCTime OPTIONAL}



-  67 -

UniqueNumber ::= SEQUENCE{

time UTCTime,

random INTEGER OPTIONAL}

Validity ::=SEQUENCE {

notBefore UTCTime,

notAfter UTCTime} -- as in [ISO/IEC 9594-8]

E.2 Types imported from ISO Frameworks
The data types listed below have been imported from the InformationFramework ([ISO/IEC 9594-2]) and
AuthenticationFramework ([ISO/IEC 9594-8]). They are listed in alphabetical order. They are presented here for
information only. In the event of a difference from the types identified in ([ISO/IEC 9594-2] or [ISO/IEC 9594-8],
the referenced documents take precedence.

AlgorithmIdentifier ::= SEQUENCE {

algorithm OBJECT IDENTIFIER,

parameter ANY DEFINED BY algorithm OPTIONAL

}

AttributeType ::= OBJECT IDENTIFIER

AttributeValue ::= ANY

AttributeValueAssertion ::= SEQUENCE {AttributeType,AttributeValue}

Certificate ::= SIGNED SEQUENCE{

version [0] Version DEFAULT v1,

serialNumber [1] CertificateSerialNumber,

signature [2] AlgorithmIdentifier,

issuer [3] Name,

validity [4] Validity,

subject [5] Name,

subjectPublicKeyInfo [6] SubjectPublicKeyInfo,

issuerUID [7] IMPLICIT UID OPTIONAL,

subjectUID [8] IMPLICIT UID OPTIONAL

}



-  68 -

CertificateList ::= SIGNED SEQUENCE {

signature [0] AlgorithmIdentifier,

issuer [1] Name,

thisUpdate [2] UTCTime,

nextUpdate [3] UTCTime OPTIONAL,

revokedCertificates [4] SEQUENCE OF SEQUENCE {

userCertificate CertificateSerialNumber,

revocationDate UTCTime

} OPTIONAL

}

CertificatePair ::= SEQUENCE {

forward [0] Certificate OPTIONAL,

reverse [1] Certificate OPTIONAL

} -- at least one of the pair shall be present

CertificateSerialNumber ::= INTEGER

DistinguishedName ::= RDNSequence

kd-schemes OBJECT IDENTIFIER ::=

{ iso(1) identified-organisation(3) icd-ecma (0012) standard (0)

apa(219) 5 }

Name ::= CHOICE {       --only one for now

DistinguishedName

}

RDNSequence ::= SEQUENCE OF RelativeDistinguishedName

RelativeDistinguishedName ::= SET OF AttributeValueAssertion

SIGNED MACRO    ::=

BEGIN

TYPE NOTATION ::= type (ToBeSigned)

VALUE NOTATION::= value (VALUE

SEQUENCE{

ToBeSigned,

AlgorithmIdentifier, --of the algorithm used to generate the signature

ENCRYPTED OCTET STRING --where the octet string is the

--result of the hashing of the

--value of "ToBeSigned"

}

)

END -- of SIGNED



-  69 -

SubjectPublicKeyInfo ::= SEQUENCE {

algorithm AlgorithmIdentifier,

subjectPublicKey BIT STRING

}

UID ::= BIT STRING









Printed copies can be ordered from:

ECMA
114 Rue du Rhône
CH-1204 Geneva
Switzerland

Fax: +41 22  849.60.01
Internet: helpdesk@ecma.ch

Files can be downloaded from our FTP site, ftp.ecma.ch, logging in as anonymous and giving your E-mail address as
password. This Standard is available from library ECMA-ST  as a compacted, self-expanding file in MSWord 6.0 format (file
E235-DOC.EXE) as a compacted, self-expanding PostScript file (file E235-PSC.EXE) and as an Acrobat file (file ECMA-
235.PDF). File E235-EXP.TXT gives a short presentation of the Standard.

The ECMA site can be reached also via a modem. The phone number is +41 22  735.33.29, modem settings are 8/n/1. Telnet
(at ftp.ecma.ch) can also be used.

Our web site, http://www.ecma.ch, gives full information on ECMA, ECMA activities, ECMA Standards and Technical
Reports.



ECMA

114 Rue du Rhône
CH-1204 Geneva
Switzerland

This Standard ECMA-235 is available free of charge in printed form and as a file.

See inside cover page for instructions


