Standard ECMA-167

C A 2nd Edition - December 1994

Standardizing Information and Communication Systems

Volume and File Structure for
Write-Once and Rewritable
Media using Non-Sequential
Recording for Information
Interchange

Phone: +41 22 849.60.00 - Fax: +41 22 849.60.01 - URL: http://www.ecma.ch - Internet: helpdesk@ecma.ch

Standard ECMA-167

2nd Edition - December 1994

ECMA

Standardizing Information and Communication Systems

Volume and File Structure for
Write-Once and Rewritable
Media using Non-Sequential
Recording for Information
Interchange

Part 1 - General

Part 2 - Volume and boot block recognition
Part 3 - Volume structure

Part 4 - File structure

Part 5 - Record structure

Phone: +41 22 849.60.00 - Fax: +41 22 849.60.01 - URL: http://www.ecma.ch - Internet: helpdesk@ecma.ch
MB- ECMA-167.DOC - 09.02.96 14,52

Brief History

This ECMA Standard is &olume andfile structurestandardfor interchangingfiles and as such, it is peer to existing
volume and file structure standards such as ECMAa@ECMA-119. It isratherdifferent from those standards in at least
two importantways. Firstly, it offers much more functionality, mainlpecause ofiser needs for increasetharacter set
supportand for more powerful filesystemfeatures. Secondly, it acknowledgébe separate concerns of bootivglume
structureandfile systemstructure. Rathethanbundling these different functions togethttis ECMA Standardarefully
segregates these functions into separate padslescribes in detalhow thoseparts fit together. It i€xpectedhat future
volume and file structure standards will fit into this framework, rather than building other distinct and incompatible format:

This ECMA Standaratonsists of fiveParts published in one VolumBart 1 - General - sgifies references, definitions,
notations and basic structures used in the other four Parts. Péotuine andboot blockrecognition - specifies formats and
systemrequirements for recognisingpe volume structures on a mediuamd booting from a mediumPart 3 -Volume
structure -specifies how to record various volume-related entities such as volumes, voluareddetscal volumes.Part 4 -
File structure - specifies how to recadd interpret files, both fildata andile attributes,andfile hierarchies within logical
volumes. Part 5 - Record structure - specifies how to record and interpret file data encoded as records.

This ECMA Standard has been adopted by the ECMA General Assembly of December 1994.

Table of Contents

Page

Part 1 - General

1 Scope
2 Parts references

3 Conformance

3.1 Conformance of a medium
3.2 Conformance of an information processing system

4 References

5 Definitions

5.1 application

5.2 byte

5.3 descriptor

5.4 file

5.5 implementation
5.6 originating system
5.7 receiving system
5.8 record

5.9 sector

5.10 standard for recording
5.11 user

5.12 volume

5.13 volume set

6 Notation
6.1 Numerical notation

6.1.1 Decimal notation
6.1.2 Hexadecimal notation

6.2 Bit fields

6.3 Descriptor formats
6.4 Character strings
6.5 Arithmetic notation
6.6 Schema

6.7 Other notations

~No oo ogrtor oo 01 Ol (62162 6 [N S S A R T T S - - Y w ww w w w

7 Basic types
7.1 Numerical values

7.1.1 8-bit unsigned numerical values
7.1.2 8-bit signed numerical values
7.1.3 16-bit unsigned numerical values
7.1.4 16-bit signed numerical values
7.1.5 32-bit unsigned numerical values
7.1.6 32-bit signed numerical values
7.1.7 64-bit unsigned numerical values

7.2 Character sets and coding

O 00 00 0000 000~N N N

7.2.1 Character set specification

7.2.2 CSO character
7.2.3 CS1 character
7.2.4 CS2 character
7.2.5 CS3 character
7.2.6 CS4 character
7.2.7 CS5 character
7.2.8 CS6 character
7.2.9 CS7 character

7.2.10 CS8 character set
7.2.11 List of character sets
7.2.12 Fixed-length character fields

7.3 Timestamp

7.3.1 Type and Time Zone

7.3.2 Year

7.3.3 Month

7.3.4 Day

7.3.5 Hour

7.3.6 Minute

7.3.7 Second

7.3.8 Centiseconds

7.3.9 Hundreds of Microseconds

7.3.10 Microseconds
7.4 Entity identifier

7.4.1 Flags
7.4.2 ldentifier
7.4.3 ldentifier Suffix

set
set
set
set
set
set
set
set

Part 2 - Volume and Boot Block Recognition

Section 1 - General
1 Scope
2 Parts references

3 Part interface

3.1 Input
3.2 Output

4 Conformance

5 Definitions
5.1 extent

6 Notation

7 Basic types

Section 2 - Requirements for the medium for volume and boot block recognition

8 Volume recognition

8.1 Arrangement of data on a volume

8.1.1 Sector numbers

10
10
10
10
11
11
11
11
11
11
12

12

12
12
13
13
13
13
13
13
13
13

13

13
14
14

17

17

17

17

17
17

17

17
17

17

17

18

18
18
18

8.2 Volume recognition space
8.3 Volume recognition area

8.3.1 Volume recognition sequence
8.4 Recording of descriptors

9 Volume recognition structures
9.1 Volume Structure Descriptor

1.1 Structure Type

1.2 Standard ldentifier
1.3 Structure Version
1.4 Structure Data

9.2 Beginning Extended Area Descriptor

9.
9.
9.
9.

2.1 Structure Type

2.2 Standard ldentifier
2.3 Structure Version
2.4 Structure Data

9.3 Terminating Extended Area Descriptor

9.
9.
9.
9.

9.3.1 Structure Type
9.3.2 Standard ldentifier
9.3.3 Structure Version
9.3.4 Structure Data

9.4 Boot Descriptor

9.4.1 Structure Type

9.4.2 Standard ldentifier
9.4.3 Structure Version
9.4.4 Reserved

9.4.5 Architecture Type
9.4.6 Boot ldentifier

9.4.7 Boot Extent Location
9.4.8 Boot Extent Length
9.4.9 Load Address
9.4.10 Start Address
9.4.11 Descriptor Creation Date and Time
9.4.12 Flags

9.4.13 Reserved

9.4.14 Boot Use

10 Levels of medium interchange

10.1 Level 1
10.2 Level 2

Section 3 - Requirements for systems for volume and boot block recognition

11 Requirements for the description of systems

12 Requirements for an originating system

12.1 General
12.2 Optional access by user

12.2.1 Descriptors

13 Requirements for a receiving system

13.1 General
13.2 Optional access by user

18
18

18
19

19
19

19
19
19
19

20
20
20
20

20
20
20
20

20

21
21
21
21
21
21
21
21
21
22

22
22
22

22

22
22

23

23

23

23
23

23

23

23

19

20

22

-jv -

13.2.1 Descriptors

Part 3 - Volume structure
Section 1 - General

1 Scope
2 Parts references

3 Part interface

3.1 Input
3.2 Output

4 Conformance

5 Definitions

5.1 anchor point

5.2 Cyclic Redundancy Check (CRC)
5.3 extent

5.4 logical block

5.5 logical sector

5.6 logical volume

5.7 partition

6 Notation

7 Basic types
7.1 Extent Descriptor

7.1.1 Extent Length (RBP 0)
7.1.2 Extent Location (RBP 4)

7.2 Descriptor tag

7.2.1 Tag ldentifier (RBP 0)

7.2.2 Descriptor Version (RBP 2)
7.2.3 Tag Checksum (RBP 4)
7.2.4Reserved (RBP 5)

7.2.5 Tag Serial Number (RBP 6)
7.2.6 Descriptor CRC (RBP 8)

7.2.7 Descriptor CRC Length (RBP 10)
7.2.8 Tag Location (RBP 12)

Section 2 - Requirements for the medium for volume structure

8 Volume structure
8.1 Arrangement of information on a volume

8.1.1 Sector numbers
8.1.2Logical sector
8.1.3 Logical sector numbers

8.2 Volume space
8.3 Volume descriptors
8.4 Volume Descriptor Sequence

8.4.1 Contents of a Volume Descriptor Sequence
8.4.2 Recording of the Volume Descriptor Sequence

23

27

27

27

27

27
27

28

28

28
28
28
28
28
28
28

28

28
28

29
29

29

29
30
30
30
30
30
30
30

31

31
31

31
31
31

31
31
32

32
32

8.4.3 Prevailing descriptors
8.4.4Recording of descriptors

8.5 Allocation of the volume space
8.6 Volume set

8.7 Partition

8.8 Logical volume

8.8.1 Logical blocks
8.8.2 Logical volume integrity

9 Volume recognition structures
9.1 NSR Descriptor

9.1.1 Structure Type (BP 0)
9.1.2 Standard Identifier (BP 1)
9.1.3 Structure Version (BP 6)
9.1.4 Reserved (BP 7)

9.1.5 Structure Data (BP 8)

10 Volume data structures
10.1 Primary Volume Descriptor

10.1.1 Descriptor Tag (BP 0)

10.1.2 Volume Descriptor Sequence Number (BP 16)
10.1.3 Primary Volume Descriptor Number (BP 20)
10.1.4 Volume Identifier (BP 24)

10.1.5 Volume Sequence Number (BP 56)

10.1.6 Maximum Volume Sequence Number (BP 58)
10.1.7 Interchange Level (BP 60)

10.1.8 Maximum Interchange Level (BP 62)

10.1.9 Character Set List (BP 64)

10.1.10 Maximum Character Set List (BP 68)
10.1.11 Volume Set Identifier (BP 72)

10.1.12 Descriptor Character Set (BP 200)

10.1.13 Explanatory Character Set (BP 264)
10.1.14 Volume Abstract (BP 328)

10.1.15 Volume Copyright Notice (BP 336)

10.1.16 Application Identifier (BP 344)

10.1.17 Recording Date and Time (BP 376)

10.1.18 Implementation Identifier (BP 388)

10.1.19 Implementation Use (BP 420)

10.1.20 Predecessor Volume Descriptor Sequence Location (BP 484)
10.1.21 Flags (BP 488)

10.1.22 Reserved (BP 490)

10.2 Anchor Volume Descriptor Pointer
10.2.1 Descriptor Tag (BP 0)
10.2.2 Main Volume Descriptor Sequence Extent (BP 16)
10.2.3 Reserve Volume Descriptor Sequence Extent (BP 24)
10.2.4 Reserved (BP 32)

10.3 Volume Descriptor Pointer
10.3.1 Descriptor Tag (BP 0)
10.3.2 Volume Descriptor Sequence Number (BP 16)
10.3.3 Next Volume Descriptor Sequence Extent (BP 20)
10.3.4 Reserved (BP 28)

10.4 Implementation Use Volume Descriptor

10.4.1 Descriptor Tag (BP 0)

33
33

34

34
34

35
35

36
36

36
36
36
36
36

36
36

37
37
37
37
37
37
37
37
38
38
38
38
38
38
38
38
38
38
39
39
39
39

39

39
39
39
40

40

40
40
40
40

40
40

10.4.2 Volume Descriptor Sequence Number (BP 16)
10.4.3 Implementation Identifier (BP 20)
10.4.4 Implementation Use (BP 52)

10.5 Partition Descriptor

10.5.1 Descriptor Tag (BP 0)

10.5.2 Volume Descriptor Sequence Number (BP 16)
10.5.3 Partition Flags (BP 20)

10.5.4 Partition Number (BP 22)

10.5.5 Partition Contents (BP 24)

10.5.6 Partition Contents Use (BP 56)
10.5.7 Access Type (BP 184)

10.5.8 Partition Starting Location (BP 188)
10.5.9 Partition Length (BP 192)

10.5.10 Implementation Identifier (BP 196)
10.5.11 Implementation Use (BP 228)
10.5.12Reserved (BP 356)

10.6 Logical Volume Descriptor

10.6.1 Descriptor Tag (BP 0)

10.6.2 Volume Descriptor Sequence Number (BP 16)
10.6.3 Descriptor Character Set (BP 20)
10.6.4Logical Volume ldentifier (BP 84)

10.6.5 Logical Block Size (BP 212)

10.6.6Domain Identifier (BP 216)

10.6.7 Logical Volume Contents Use (BP 248)
10.6.8 Map Table Length (=MT_L) (BP 264)

10.6.9 Number of Partition Maps (=N_PM) (BP 268)
10.6.10 Implementation Identifier (BP 272)

10.6.11 Implementation Use (BP 304)

10.6.12 Integrity Sequence Extent (BP 432)
10.6.13 Partition Maps (BP 440)

10.7 Partition maps

10.7.1 Generic partition map
10.7.2 Partition Map Type (RBP 0)
10.7.3 Type 1 Partition Map
10.7.4 Type 2 Partition Map

10.8 Unallocated Space Descriptor

10.8.1 Descriptor Tag (BP 0)
10.8.2 Volume Descriptor Sequence Number (BP 16)

10.8.3 Number of Allocation Descriptors (=N_AD) (BP 20)

10.8.4 Allocation Descriptors (BP 24)
10.9 Terminating Descriptor

10.9.1 Descriptor Tag (BP 0)
10.9.2 Reserved (BP 16)

10.10 Logical Volume Integrity Descriptor

10.10.1 Descriptor Tag (BP 0)

10.10.2 Recording Date (BP 16)

10.10.3 Integrity Type (BP 28)

10.10.4 Next Integrity Extent (BP 32)

10.10.5 Logical Volume Contents Use (BP 40)
10.10.6 Number of Partitions (=N_P) (BP 72)
10.10.7Length of Implementation Use (=L_IU) (BP 76)
10.10.8 Free Space Table (BP 80)

10.10.9 Size Table (BP N xR+80)

40
41
41

41

41
41

41
41
41

42
42

42
42

42

42
42

43

43
43
43
43
43
43
43
43
43
44
44
44
44

44

44
44
45
45

46

46
46
46
46

46

46
46

47

47
47
47
47
47
47
47
47
48

10.10.10 Implementation Use (BP Nx&+80)

11 Levels of medium interchange
11.1 Level 1

11.2 Level 2
11.3 Level 3

Section 3 - Requirements for systems for volume structure

12 Requirements for the description of systems

13 Requirements for an originating system

13.1 General
13.2 Mandatory access by user

13.2.1 Descriptors
13.3 Optional access by user

13.3.1 Descriptors
13.3.2 Multivolume volume sets

14 Requirements for a receiving system

14.1 General
14.2 Mandatory access by user

14.2.1 Descriptors

Part 4 - File structure

Section 1 - General
1 Scope
2 Parts references

3 Part interface

3.1 Input
3.2 Output

4 Conformance

5 Definitions

5.1 extent

5.2 file set

5.3 Group ID

5.4 logical block
5.5 logical volume
5.6 partition

5.7 User ID

6 Notation

7 Basic types
7.1 Recorded address

7.1.1 Logical Block Number (RBP 0)
7.1.2 Partition Reference Number (RBP 4)

- Vil -

48

48

48
48
48

49

49

49

49
49

49
50

50
50

50

50
51

51

53

55

55

55

55

55
56

56

56

56
56
56
56
56
56
56

56

56
57

57
57

- viii -

7.2 Descriptor Tag

7.2.1 Tag ldentifier (RBP 0)

7.2.2 Descriptor Version (RBP 2)
7.2.3 Tag Checksum (RBP 4)
7.2.4Reserved (RBP 5)

7.2.5 Tag Serial Number (RBP 6)
7.2.6 Descriptor CRC (RBP 8)

7.2.7 Descriptor CRC Length (RBP 10)
7.2.8 Tag Location (RBP 12)

Section 2 - Requirements for the medium for file structure

8 File structure

8.1 Volume set
8.2 Arrangement of information on a volume set
8.3 Arrangement of information on a logical volume

8.3.1 File Set Descriptor Sequence

8.4 Arrangement of information on a partition
8.5 File set
8.6 Directories

8.6.1 Order of directory descriptors
8.6.2 Directory hierarchy size restrictions

8.7 Pathname
8.7.1 Resolved pathname
8.8 Files

8.8.1 Attributes of a file
8.8.2 Data space of a file

8.9 Record structure
8.10 Information Control Block (ICB)

8.10.1 ICB hierarchy
9 Extended attributes

10 Partition space management
10.1 Space sets

11 Partition integrity

12 Allocation descriptors
12.1 Description of Files

13 Recording of descriptors

14 File Data Structures
14.1 File Set Descriptor

14.1.1 Descriptor Tag (BP 0)

14.1.2 Recording Date and Time (BP 16)
14.1.3 Interchange Level (BP 28)

14.1.4 Maximum Interchange Level (BP 30)
14.1.5 Character Set List (BP 32)

14.1.6 Maximum Character Set List (BP 36)
14.1.7 File Set Number (BP 40)

14.1.8 File Set Descriptor Number (BP 44)

57

57
58
58
58
58
58
58
59

60

60

60
60
60

60

60
61
61

62
62

62
62
63

63
64

64
64

65

65

67
67

67

68
68

69

69
69

70
70
70
70
70
70
71
71

14.1.9 Logical Volume ldentifier Character Set (BP 48)
14.1.10 Logical Volume Identifier (BP 112)

14.1.11 File Set Character Set (BP 240)

14.1.12 File Set Identifier (BP 304)

14.1.13 Copyright File Identifier (BP 336)

14.1.14 Abstract File Identifier (BP 368)

14.1.15 Root Directory ICB (BP 400)

14.1.16 Domain ldentifier (BP 416)

14.1.17 Next Extent (BP 448)

14.1.18 Reserved (BP 464)

14.2 Terminating Descriptor

14.2.1 Descriptor Tag (BP 0)
14.2.2 Reserved (BP 16)

14.3 Partition Header Descriptor

14.3.1 Unallocated Space Table (RBP 0)
14.3.2 Unallocated Space Bitmap (RBP 8)
14.3.3 Partition Integrity Table (RBP 16)
14.3.4Freed Space Table (RBP 24)
14.3.5 Freed Space Bitmap (RBP 32)
14.3.6 Reserved (RBP 40)

14.4 File Identifier Descriptor

14.4.1 Descriptor Tag (RBP 0)

14.4.2 File Version Number (RBP 16)

14.4.3 File Characteristics (RBP 18)

14.4.4 Length of File Identifier (=L_FI) (RBP 19)
14.4.5 ICB (RBP 20)

14.4.6 Length of Implementation Use (=L_IU) (RBP 36)
14.4.7 Implementation Use (RBP 38)

14.4.8 File Identifier (RBP [L_IU+38])

14.4.9 Padding (RBP [L_FI+L_lU+38])

14.5 Allocation Extent Descriptor

14.5.1 Descriptor Tag (BP 0)
14.5.2 Previous Allocation Extent Location (BP 16)
14.5.3 Length of Allocation Descriptors (=L_AD) (BP 20)

14.6 ICB Tag

14.6.1 Prior Recorded Number of Direct Entries (RBP 0)
14.6.2 Strategy Type (RBP 4)

14.6.3 Strategy Parameter (RBP 6)

14.6.4 Maximum Number of Entries (RBP 8)

14.6.5 Reserved (RBP 10)

14.6.6 File Type (RBP 11)

14.6.7 Parent ICB Location (RBP 12)

14.6.8 Flags (RBP 18)

14.7 Indirect Entry

14.7.1 Descriptor Tag (BP 0)
14.7.2ICB Tag (BP 16)
14.7.3Indirect ICB (BP 36)

14.8 Terminal Entry

14.8.1 Descriptor Tag (BP 0)
14.8.2 ICB Tag (BP 16)

14.9 File Entry

71
71
71
71
71
71
71
71
72
72

72

72
72

72

72
72
72
72
73
73

73

73
73
73
74
74
74
74
74
75

75

75
75
75

75

75
75
76
76
76
76
77
77

78

78
78
78

78

78
78

78

14.9.1 Descriptor Tag (BP 0)

14.9.2 ICB Tag (BP 16)

14.9.3 Uid (BP 36)

14.9.4 Gid (BP 40)

14.9.5 Permissions (BP 44)

14.9.6 File Link Count (BP 48)

14.9.7 Record Format (BP 50)

14.9.8 Record Display Attributes (BP 51)

14.9.9 Record Length (BP 52)

14.9.10 Information Length (BP 56)

14.9.11 Logical Blocks Recorded (BP 64)
14.9.12 Access Time (BP 72)

14.9.13 Modification Time (BP 84)

14.9.14 Attribute Time (BP 96)

14.9.15 Checkpoint (BP 108)

14.9.16 Extended Attribute ICB (BP 112)
14.9.17 Implementation Identifier (BP 128)
14.9.18 Unique Id (BP 160)

14.9.19 Length of Extended Attributes (=L_EA) (BP 168)
14.9.20 Length of Allocation Descriptors (=L_AD) (BP 172)
14.9.21 Extended Attributes (BP 176)

14.9.22 Allocation Descriptors (BP [L_EA+176])

14.10 Extended Attributes

14.10.1 Extended Attribute Header Descriptor
14.10.2 Generic format

14.10.3 Character Set Information

14.10.4 Alternate Permissions

14.10.5 File Times Extended Attribute

14.10.6 Information Times Extended Attribute
14.10.7 Device Specification

14.10.8 Implementation Use Extended Attribute
14.10.9 Application Use Extended Attribute

14.11 Unallocated Space Entry

14.11.1 Descriptor Tag (BP 0)

14.11.2 ICB Tag (BP 16)

14.11.3 Length of Allocation Descriptors (=L_AD) (BP 36)
14.11.4 Allocation Descriptors (BP 40)

14.12 Space Bitmap Descriptor

14.12.1 Descriptor Tag (BP 0)

14.12.2 Number of Bits (=N_BT) (BP 16)
14.12.3 Number of Bytes (=N_B) (BP 20)
14.12.4 Bitmap (BP 24)

14.13 Partition Integrity Entry

14.13.1 Descriptor Tag (BP 0)

14.13.2 ICB Tag (BP 16)

14.13.3 Recording Time (BP 36)

14.13.4 Integrity Type (BP 48)

14.13.5 Reserved (BP 49)

14.13.6 Implementation Identifier (BP 224)
14.13.7 Implementation Use (BP 256)

14.14 Allocation descriptors

14.14.1 Short Allocation Descriptor
14.14.2 Long Allocation Descriptor

79
79
79
79
79
81
81
81
82
82
82
82
82
82
82
83
83
83
83
83
83
83

83

83
84
84
85
88
89
90
91
92

93

93
93
93
93

93

93
93
93
94

94

94
94
94
94
94
94
94

95

95
95

- Xi -

14.14.3 Extended Allocation Descriptor
14.15 Logical Volume Header Descriptor

14.15.1 Unique Id (RBP 0)
14.15.2 Reserved (RBP 8)

14.16 Pathname
14.16.1 Path Component

15 Levels of medium interchange

15.1 Level 1
15.2 Level 2
15.3 Level 3

Section 3 - Requirements for systems for file structure
16 Requirements for the description of systems

17 Requirements for an originating system
17.1 General
17.2 Mandatory access by user

17.2.1 Files
17.2.2 File set
17.2.3 Descriptors
17.3 Optional access by user
17.3.1 Records
17.3.2 File types
17.3.3 Permissions
17.4 Restrictions
17.4.1 Multivolume volume sets
17.4.2 Record length
17.4.3 File Times
17.4.4 Information Times
17.4.5 Alternate Permissions

18 Requirements for a receiving system

18.1 General
18.2 Files

18.2.1 File types
18.2.2 Permissions

18.3 Mandatory access by user
18.3.1 Descriptors
18.4 Restrictions

18.4.1 Record length

18.4.2 File Times

18.4.3 Information Times
18.4.4 Alternate Permissions

Annex A - ICB Strategies
Part 5 - Record Structures

Section 1 - General

96
96

97
97

97
97

98

98
99
99

100

100

100

100
100

100
100
100

101

101
102
102

102

102
102
102
102
102

102

102
103

103
103

103
103
103

103
103
103
102

105

111

- Xii -

1 Scope
2 Parts references

3 Part interface

3.1 Input
3.2 Output

4 Normative Reference
5 Conformance

6 Definitions
6.1 Data space of a file

7 Notation

8 Basic types
8.1 16-bit unsigned numerical values (MSB)

Section 2 - Requirements for the medium for record structure

9 Record structure

9.1 Relationship to a file
9.2 Record type

9.2.1 Padded fixed-length records
9.2.2 Fixed-length records

9.2.3 Variable-length records
9.2.4 Stream-print records

9.2.5 Stream-LF records

9.2.6 Stream-CR records

9.2.7 Stream-CRLF records

9.2.8 Stream-LFCR records

9.3 Record display attributes

9.3.1 LF-CR display attribute
9.3.2 First byte position display attribute
9.3.3 Implied display attribute

Section 3 - Requirements for systems for record structure
10 Requirements for the description of systems

11 Requirements for an originating system
11.1 General

11.1.1 Files
11.1.2 Record length

12 Requirements for a receiving system
12.1 General

12.1.1 Files
12.1.2 Record length

111

111

111

111
111

111

111

111
111

112

112
112

113

113

113
113

113
113
114
115
116
116
116
116

117

117
117
117

118

118

118
118

118
118

118
118

118
118

Standard ECMA - 167

Volume and File Structure of Write-Once and Rewritable Media
using Non-Sequential Recording for Information Interchange

Part 1: General

1

3.1

3.2

Scope

This ECMA Standardpecifies a formaandassociated systenequirements for volumandboot blockrecognition,
volume structure, file structurandrecord structure fothe interchange of information on media between users of
information processing systems.

The media shall be recorded as if the recording of sectors may be done in any order.
Note 1

The medium is not restricted to being of only one type; the type of medium may be either write once, or read only
rewritable, or a combination of these types.

This ECMA Standard consists of the following five Parts:
Part 1: General

Part 2: Volume and Boot Block Recognition

Part 3: Volume Structure

Part 4: File Structure

Part 5: Record Structure

Annex A - ICB Strategies, is part of Part 4.

Part 1 specifies references, definitions, notation and basic structures that apply to the other four Parts.

Parts references

The first digit of areferencewithin this ECMA Standarditentifies thePart, e.g. 2/3efers to clause 5 iRart 2, and
figure 4/3 refers to figure 3 in Part 4.

Conformance
Conformance of a medium

A medium shall be itonformance withthis ECMA Standard when @onforms to a standarfdr recording(see
1/5.10) and information recorded on sectors of the medium conform to the specifications of Part 1 and one or rr
of Parts 2, 3, 4 and 5. #tatement of conformanaall identify thesectors othe medium on which information

is recorded according to thepecifications ofthis ECMA Standard, and the Parts and lneels of medium
interchange (see 2/10, 3/11, and 4/15) to which the contents of those sectors of the medium conform.

Conformance of an information processing system

An information processingystemshall be inconformance witlihis ECMA Standard if itneetsthe requirements
specified in Part 1 and one or more of Parts 2, 3, 4 and 5 either doigaratingsystem (se@/12, 3/13, 4/17 and
5/11) or for a receiving system (s€L3, 3/14, 4/18 an®/12) or for bothtypes of system. Astatement of

conformanceshallidentify the Parts, and thevels of the requirementsr each of thos®arts, which can be met
by the system.

References

ECMA-6 7-Bit Coded Character Set (1991)

ECMA-35 Code Extension Techniques (1994)

ECMA-48 Control Functions for Coded Character Sets (1991)

ECMA-94 8-Bit Single-Byte Coded Graphic Character Sets - Latin Alphabets No. 1 to No. 4 (1986)

ECMA-107 Volume and File Structure of Flexible Disk Cartridges for Information Interchange (1995)
ECMA-119 Volume and File Structure of CDROM for Information Interchange (1987)

5

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

5.10

ECMA-168 VolumeandFile Structure for Read-Onlgnd Write-Once Compact Disk Media for Information

Interchange (1994)

Definitions
For the purpose of this ECMA Standard, the following definitions apply.

application

A program thaprocessethe contents of a filendmay also process selectatribute data relating to tHée or
to the volume(s) on which the file is recorded.

byte

A string of eight binary digiteperated upon asumit. If the standardor recording(seel/5.10)specifiesthat the
container fortthe recording of &yte hasmorethaneight bits, in this ECMA Standardkyte shall berecorded in
the least significant eight bits of the container with the remaining bits of the container set to ZERO.
descriptor

A structure containing descriptive information about a volume or a file.

file

A collection of information.

implementation

A set of processes which enable information processingystem to behave as amiginating system, or as a
receiving system, or as both types of system.

originating system

An information processingystemwhich can create aet of files on a volume set fahe purpose of data
interchange with another system.

receiving system

An information processingystemwhich can read aet of files from a volume set whidiasbeen created by
another system for the purpose of data interchange.

record
A sequence of bytes treated as a unit of information.

sector

The datafield of the smallest addressaljpart of the mediunthat can beaccessed independently other
addressable parts of the medium.

standard for recording

A standard thaspecifiesthe recording methodnd theaddressing method fahe information recorded on a
medium. The specifications of the standard for recording that are relevant for this ECMA Standard are:

— aunique address for each sector;

the length of each sector;
— the means for determining whether a sector is read-only, write-once, or rewritable;

- for media where sectors may only be recorded once, a means for detecting whether eduiissectt been
recorded,;

— whether sectors may require preprocessing prior to recording.

The standardor recording used in conjunction withis ECMA Standard isubject toagreemenbetween the
originator and recipient of the medium.

511 user

A person or other entity (for example, an applicatithrgt causeghe invocation of theervices provided by an
implementation.

5.12 volume
A sector address space as specified in the relevant standard for recording.
Note 2

A medium usually has a single set of sector addresses, and is therefore a single volume. A medium may he
separate set of addresses for each side of the medium, and is therefore two volumes.

5.13 volume set
A collection of one or more volumes with identical volume set identification.

6 Notation
The following notation is used in this ECMA Standard:

6.1 Numerical notation
6.1.1 Decimal notation
Numbers in decimal notation are represented by decimal digits.

6.1.2 Hexadecimal notation
Numbers in hexadecimal notatiane represented assaquence of one or more hexadecimal digits prefixed by
H#”:
hexadecimal digit 0123456789 ABCDEF
decimal value 0123456 7 8 9 101112131415

6.2 Bit fields

Certainfields containing an integral value, or parts figflds containing an integral value, are intended to be
interpreted as an array of bits. This array of bits shall be referred to as a bit field.

Bit positions within am bit field are numbered sudhat theleast significant bit is numbered&hd the most
significant bit is numbered-1.
6.3 Descriptor formats

Descriptor formats shall kepecified by a figure specifyirtipe location, length, namend contents of each field.
The interpretation of each field shall be given in the prose associated with the figure.

Byte position | Length in bytes Name Contents

0 4 Data Length (=D_L) Uint32 (1/7.1.5)
4 32 Application Identifier | regid (1/7.4)

36 4 Reserved #00 bytes

40 2 Type Intl6 (7.1.4) =57
42 D L Implementation Use bytes

[D_L+42] * Padding #00 bytes

Figure 1 - Example descriptor format
The descriptor specified by figure 1/1 has six fields:

— The Data Lengtlield shall be a 32-bit unsigned integeccorded according to 1/7.1.5 lagte positions 0 to 3
of the descriptor. The value of this field may be referred to as D_L.

6.4

6.5

6.6

— The Application Identifier fieldshall be a 32 bytéeld specifying an identification of an application recorded
according to 1/7.4 in byte positions 4 to 35 of the descriptor.

— The Reserved fieldshall be 4bytes,each with thevalue #00, recorded ibyte positions 36 to 39 of the
descriptor.

— The Type field shall be the number 57 as a 16-bit signed integer recorded according to 1bgtedasitions
40 to 41 of the descriptor.

— The Implementation Use field shall Be L bytesrecorded irbyte positions 42 to (D_L+41), where D_L is the
value recorded ithe Data Lengtliield of this descriptor. Asymboliclength referred to in a descriptor shall
either be definedvithin that descriptor or be described the interpretation of théeld it is usedin. The
specification of the interpretatidor this field might statehat the interpretation dhosebytes isnot specified
by this ECMA Standard, or could specify some specific interpretation for those bytes.

— The Paddindield shall be a variable length field, as indicated by the asterisk “¥ytafs,each with avalue
of #00. The specification of the interpretation for the field shall specify the length of the field.

Character strings

A value for a sequence bfjtes may be specified bycuoted sequence of charactescoded according to the
InternationalReference Version of ECMA-6. For example, “Shesipdll represent thieytes#53, #68, #65, #65,
#70.

Arithmetic notation
The notatiorip(x) shall mean the integer partxof

The notatiorrem(a,b)shall meara—bxip(a /b), wherea andb are integers.

Schema

The notationspecified bythis clause, hereafter referred to as schema, spetifiedormat of a structure, or
sequence of structures, by construction. White spageiisportant. A structure shall besaquence oferms. A
term shall be either a name enclosedbyor a structure definition enclosed fy. A termmay be given aame
label by preceding the term with [label]. A term may be suffixed by one of the repetition operators in figure
1/2.

Operator Interpretation
n+m nto moccurrences inclusive
n+ N or more occurrences
n noccurrences exactly

Figure 2 - Repetition operators
The expressioterm1l jterm2 means eitheéerml orterm2 shall appear at this place in the sequence.
Names shall be resolved in one of the following three ways:
— the name is that of a descriptor or term defined in this ECMA Standard
— the name has been defined in this structure definition using the [] notation
— the name will be defined in the prose associated with the structure definition

If a term is followed by a clause enclosed i i€ shall refer toonly thoseobjects specified bthe term for which
the clause is true.

These operators shall be applied in increasing order of precedence Witbpgheator having lowest precedence:

| repetition operator [] X

As an example, the schema shown in figure 4p@cifiesthat the ternSet means zero or more Groups, where a
Group is a sequence ofvo or more Group Headerdpllowed by aGroup Element, which is one of three
alternatives (one awo Type-1Descriptors, or a singl@ype-2 Descriptor whoskength is even, or one or more
Type-3 Descriptors), followed by one or more Group Trailers.
[SetK
[GroupK
<Group Header> 2+
[Group Element]{
<Type-1 Descriptor> 1+2
| <Type-2 Descriptor>(descriptor length is even)
| <Type-3 Descriptor> 1+
}
<Group Trailer> 1+
} 0+

Figure 3 - Example schema

6.7 Other notations

Various other notations used in this ECMA Standard are specified in figure 1/4.

Notation Interpretation
BP Byte position within a descriptor, starting with O
RBP Relative byte position within a descriptor, starting with P
ZERO A single bit with the value 0
ONE A single bit with the value 1

Figure 4 - Other notations

7

Basic types
The following basic types are used in this ECMA Standard.
7.1 Numerical values
The recording format of a numerical value represented in binary notationnblyinumber shall bdenoted by a
type name ofnt norUint nwhere
— ndenotes the number of bits used in the binary number
— Uint denotes an unsigned integer X, in the rangex& 2n, represented as a binary number
- Int denotes a signed integerin the range-2"1 < x < 2"-1 represented by a two's complement number
A numericalvalue shall berecorded in a field of a structure specifiedthis ECMA Standard irone of the
following formats. The applicable format shall be specified in the description of the structure.
7.1.1 8-bit unsigned numerical values

A Uint8 value shall be recorded as an 8-bit unsigned number in a one-byte field.

7.1.2

7.1.3

7.1.4

7.1.5

7.1.6

7.1.7

7.2

8-bit signed numerical values
An Int8 value shall be recorded as a two's complement number in a one-byte field.

16-bit unsigned numerical values

A Uintl6é value, represented by the hexadecimal representation #wxyz, shall be recorted-bytefield as
H#yz HWX.

Note 3

For examplethe decimal number 4 660 has #1234 as its hexadecimal representation and shall be recorded as
#34 #12.

16-bit signed numerical values

An Intl6 value, represented in two's complement fornth®y hexadecimal representatigwxyz, shall be
recorded in a two-byte field as #yz #wx.

Note 4

For example, the decimal number -30 875 has #8765 as its hexadecimal representation and shall be recorded
as #65 #87.

32-bit unsigned numerical values

A Uint32 value, represented by the hexadecimal representésionwxyz,shall berecorded in gour-byte

field as #yz #wx #uv #st.

Note 5

For examplethe decimal number 305 419 896 has #12345678 as its hexadecimal representation and shall be
recorded as #78 #56 #34 #12.

32-bit signed numerical values

An Int32 value, represented in two's complement form by the hexadecimal represefgatiovxyz,shall be
recorded in a four-byte field as #yz #wx #uv #st.

Note 6

For examplethe decimal number -559 038 737 has #DEADBEEF as its hexadecimal representation and shall
be recorded as #EF #BE #AD #DE.

64-bit unsigned numerical values

A Uinté4 value, represented by the hexadecimal representétlomopqrstuvwxyzshall berecorded in an
eight-byte field as #yz #wx #uv #st #qr #op #mn #KkI.

Note 7

For examplethe decimal number 12 345 678 987 654 321 012 has #AB54A9A10A23D374 as its hexadecimal
representation and shall be recorded as #74 #D3 #23 #0A #A1 #A9 #54 #AB.

Character sets and coding

Except as specified ithis clause, the characters in the descripgpscified bythis ECMA Standard shall be
coded according to ECMA-6.

Certainfields specifyingcharacter strings shall be designated as containing eittistriag (1/7.2.12) or d-
characters. Thepecification ofthe d-characterallowed in these fieldand themethod of recording shall be
specified by a charspec, defined in 1/7.2.1. The set of allowed characters shall be referred to as d-characters.

Note 8

Support for a variety of character sets is a requirement for this ECMA Standard. Ideallythédebeonly one
character standard used. In practice, several standards, including ECMA-6, ECMA-35, ECMA-94, Lati
Alphabet No. 1 and ISO/IEC 10646-1 are used. This ECMA Standard accommodates current practice
specifying several character sets and providing a mechanism for specifying other character sets.

As an example, CS2 (see 1/7.2.4) uses ECMA-6 as the base character set but restricts fields containing chara
to a widely usable subset of this character set.
7.2.1 Character set specification

The set of charactelowed incertain descriptofields shall bespecified by acharspec , which shall be
recorded in the format shown in figure 1/5.

RBP Length Name Contents
0 1 Character Sefype uint8 (1/7.1.1)
1 63 Character Set Information bytes

Figure 5 -charspec format

7.2.1.1 Character Set Type (RBP 0)
This field shall specify the allowed characters by identifying a set of characters shown in figure 1/6.

Type Allowed characters

The CSO coded character set (1/7.2.2)
The CS1 coded character set (1/7.2.3)
The CS2 coded character set (1/7.2.4)
The CS3 coded character set (1/7.2.5)
The CS4 coded character set (1/7.2.6)
The CS5 coded character set (1/7.2.7)
The CS6 coded character set (1/7.2.8)
The CS7 coded character set (1/7.2.9)
The CS8 coded character set (1/7.2.1Q).

© 0 N o o B~ W N O

-255 Reserved for future standardisation.

Figure 6 - Sets of allowed characters
Note 9
Briefly, these character sets are:

CS00O by agreement
CS10 the whole or any subset of the graphic characters specified by ECMA-6

CS20 a highly portable set of 38 graphic charactevhich includethe characters in ECMA-119 file
identifiers associated with a directory hierarchy identified by an ECMA-119 Primary Volume Descriptor

CS30 the 63 graphic characters of the portable ISO/IEC 9945-1 file name set
CS40 the 95 graphic characters of the International Reference Version of ECMA-6
CS50 the 191 graphic characters of ECMA-94, Latin Alphabet No. 1

7.2.1.2

7.2.2

7.2.3

7.2.4

7.2.5

- 10 -

CS60 a set of graphic characters that may be identified by ECMA-35 and ECMA-48
CS70 a set of graphic characters that may be identified by ECMA-35 and ECMA-48 and, optionally, code
extension characters using ECMA-35 and ECMA-48

CS8[a set of 53 graphic characters that are highly portable to most personal computers

Character Set Information (RBP 1)

Except where specified ithe following specifications otharacter sets C3rough CS8, the contents of
this field shall be set to all #00 bytes.

Note 10

The Character Set Types CS0, CS1, CS6 and CS7 require the use of the Character Set Information field to
specify a set of graphic characters. CS1 restricts the set of graphic characters to those specified by ISO/IEC
10646-1. CS0, CS6 and C7 are not restricted to any particular set of graphic charactemloBStode

extension characters (see 1/7.2.9.1) to be used in a descriptor field. The same set of graphic characters may
be specified by using the CS0, CS1, CS6 or CS7 Character Set Types. The order of specifying the escape
sequences and control sequences in a Character Set Information field is not specified by this ECMA
Standard. For example, in specifying a charadet, the escape sequence identifying the G1 character set

may be recorded before the escape sequence specifying the GO character set. Character Set Information
fields with different byte sequences may actually be identifying the same set of graphic characters.

CSO0 character set
The CSO character set and its d-characters shalllfject toagreemenbetweerthe originator andecipient of

the medium.

An identification of the character setay be given irthe Character Set Information field. Such identification
shall be recorded contiguously from the start of the field and any unused bytes shall be set to #00.

CS1 character set
The CS1 d-characters shall be the graphic characters of the charactgpesdfied bythe Character Set

Information field.

The Character Set Informatidield shall specify one or more escape sequences, control sequences or both
escape sequences and control sequences to be used in an 8-bit environment according to &CNSIAR-

48 thatdesignateandimplicitly invoke graphic charactegets specified in ISO/IEC 10646 Thesesequences

shall be recorded contiguously from the start of the field and any unused bytes shall be set to #00.

CS2 character set

The CS2 d-characters shall be the 38 charactgyesitions 02/14, 03/00 to 03/09, 04/01 to 05/49¢ 05/15
of the International Reference Version of ECMAThe Character Set Informatidield shall beset toall #00
bytes.

Note 11
These characters are: FULL STOP, DIGITs, LATIN CAPITAL LETTERs and LOW LINE.

CS3 character set

The CS3 d-characters shall be the 65 charactepssitions 02/13 to 02/14, 03/00 to 03/09, 04/01 to 05/10,
05/15, and)6/01 to 07/10 of the InternationBeference Version of ECMA-@.he Character Set Information
field shall be set to all #00 bytes.

Note 12

These characters are: HYPHEN-MINUS, FULL STOP, DIGITs, LATIN CAPITAL LETTERs, LATIN SMALL
LETTERs and LOW LINE.

7.2.6

7.2.7

7.2.8

7.2.9

7.2.9.1

7.2.10

7.2.11

- 11 -

CS4 character set

The CS4 d-characters shall be the 95 charactemositions 02/00 to 07/14 of the Internatioreference
Version of ECMA-6. The Character Set Information field shall be set to all #00 bytes.

CS5 character set

The CS5 d-characters shall be the 191 charactgrgsitions 02/00 to 07/14nd10/00 to 15/15 of ECMA-94,
Latin Alphabet No. 1. The Character Set Information field shall be set to all #00 bytes.

CS6 character set

The CS6 d-characters shall be the graphic characters of the charactgpesdfied bythe Character Set
Information field.

The Character Set Informatidield shall specify one or more escape sequences, control sequences or bott
escape sequencasd control sequences according to ECMA-88d ECMA-48 that designateand implicitly
invoke the graphic charactesets to be used in an 8-bit environment according to ECMA-35 or ISO/IEC
10646-1. Theseequenceshall berecorded contiguously frotihe start of thdield andany unusedbytesshall

be set to #00.

CS7 character set
The CS7 d-characters shall be the graphic characters of the chaetstepecified byhe Character Set
Information field and code extension characters (see 1/7.2.9.1).

The Character Set Informatidield shall specify one or more escape sequences, control sequences or bott
escape sequencasd control sequences according to ECMA-&5d ECMA-48 that designateand implicitly
invoke the graphic character sets to bged in an 8-bit environment according to ECMA-35 or ISO/IEC
10646-1. Theseequenceshall berecorded contiguously frotihe start of thdield andany unusedbytesshall

be set to #00.

Code extension characters

A descriptor field whicthasbeen assigned twontain d-characterspecified bythe CS7 Character Set may
include one or more of thfellowing, referred to asodeextension characters, to allow alternative character
sets to be recorded in the descriptor field.

— Escape sequences according to ECMA-35 or ISO/IEC 10646-1.

— Shift functions according to ECMA-35.

— Control functions according to ECMA-48 or ISO/IEC 10646-1.
CS8 character set

The CS8 d-characters shall be the 53 charactepssitions 02/01, 02/03 to 02/09, 02/13 to 02/14, 03/00 to
03/09, 04/00 to 05/10, 05/14 to 06/00, 07Hrid 07/13 to 07/14 of the International Reference Version of
ECMA-6.

Note 13

These characters are: EXCLAMATION MARK, NUMBER SIGN, DOLLAR SIGN, PERCENT SIGN
AMPERSAND, APOSTROPHE, LEFT PARENTHESIS, RIGHT PARENTHESIS, HYPHEN-NAUIUS,
STOP, DIGITs, LATIN CAPITAL LETTERs, CIRCUMFLEX ACCENIW LINE, GRAVE ACCENTLEFT
CURLY BRACKET, RIGHT CURLY BRACKET, TILDE.

List of character sets

A list of Character SeTypes (se€l/7.2.1.1) shall beecorded as &Jint32 (1/7.1.5) where the bifor a
Character Set Type shall be ONE if that Character Set Type belongs to the list and ZERO otherwise.

7.2.12

7.3

7.3.1

7.3.2

- 12 -

The bitfor Character Setype C$ shall berecorded in bin of theUint32 (1/7.1.5). Bits 9-3larereserved
for future standardisation and shall be set to ZERO.

Fixed-length character fields

A dstring of lengthn is a field ofn byteswhere d-characters (1/7.2) are recorded. The numhsited used
to record the characters shall be recordedWist®8 (1/7.1.1) inbyten, wheren is the length of the field. The
characters shall be recordst@rting with the firsbyte of the field,and any remainingbyte positions after the
characters up until byte-1 inclusive shall be set to #00.

Unless otherwise specifieddatring shall not be all #00 bytes.

Timestamp

Atimestamp shall specify a date and time recorded in the format shown in figure 1/7. If all fields are 0, it shall
mean that the date and time are not specified.

RBP Length Name Contents
0 2 Type and Time Zone uintl6 (1/7.1.3)
2 2 Year Intl6 (1/7.1.4)
4 1 Month Uint8 (1/7.1.1)
5 1 Day Uint8 (1/7.1.1)
6 1 Hour uint8 (1/7.1.1)
7 1 Minute uint8 (1/7.1.1)
8 1 Second uint8 (1/7.1.1)
9 1 Centiseconds uint8 (1/7.1.1)
10 1 Hundreds of Microseconds Uint8 (1/7.1.1)
11 1 Microseconds uint8 (1/7.1.1)

Figure 7 -timestamp format

Type and Time Zone (RBP 0)

The most significant 4 bits dhis field, interpreted as a 4-bit number, shagkcifythe interpretation of the
timestamp as shown in figure 1/8. The least significant 12 bits, interpreted as a signed 12-bit number in
two’s complement form, shall be interpreted as follows:

— If the value is inthe range % 440 to 1 440 inclusivehen thevalue specifieshe offset, inminutes, of the
date and time of the day from Coordinated Universal Time.

— If the value is-2 047, then no such value is specified.

Type Interpretation
0 Thetimestamp specifies Coordinated Universal Time.
1 Thetimestamp specifies local time.
2 The interpretation of thémestamp is subject toagreementbetween the
originator and recipient of the medium.
3-15 Reserved for future standardisation.

Figure 8 -timestamp interpretation

Year (RBP 2)

This field shall specify the year as a number in the range 1 to 9999.

7.3.3

7.3.4

7.3.5

7.3.6

7.3.7

7.3.8

7.3.9

7.3.10

- 13 -

Month (RBP 4)

This field shall specify the month of the year as a number in the range 1 to 12.
Day (RBP 5)

This field shall specify the day of the month as a number in the range 1 to 31.
Hour (RBP 6)

This field shall specify the hour of the day as a number in the range 0 to 23.
Minute (RBP 7)

This field shall specify the minute of the hour as a number in the range 0 to 59.

Second (RBP 8)

If the value of the Type field is 2, then this field shall specify the second of the minute as a number in the rar
0 to 60. Otherwise, this field shall specify the second of the minute as a number in the range 0 to 59.

Centiseconds (RBP 9)
This field shall specify the hundredths of the second as a number in the range 0 to 99.

Hundreds of Microseconds (RBP 10)
This field shall specify the hundreds of microseconds as a number in the range 0 to 99.

Microseconds (RBP 11)
This field shall specify the microseconds as a number in the range 0 to 99.

7.4 Entity identifier
A regid specifies an entity identificatioand shall berecorded in the format shown in figure 1/9. The
identification in a regid pertains to certain information; this information shall be calledtbpe otheregid
Thescope of aegid consists othefield in whichtheregid is recordedandany informationspecified by the
description of that field to be part of the scope the regid.

RBP Length Name Contents
0 1 Flags Uint8 (1/7.1.1)
1 23 Identifier bytes
24 8 Identifier Suffix bytes

Figure 9 -regid format

7.4.1 Flags (RBP 0)
This field shall specify certain characteristics oftbgid as shown in figure 1/10.

Bit Interpretation

0 Dirty: If an implementation modifies the information on the medium within the scope oétjiis
suchthat theidentification specified byhisregid might not be valid, then thisit shall beset to
ONE, otherwise it shall be set to ZERO.

1 Protected: Ithis bit is ONE,then thecontents of thigegid shall not be modified; ithis bit is
ZERO, then the contents of thisgid may be modified (see 3/13.1 and 4/17.2.3).

2-7 shall be reserved for future standardisation and all bits shall be set to ZERO.

Figure 10 - Characteristics ofregid

7.4.2

7.4.3

- 14 -

Identifier (RBP 1)

If the first byte ofthis field contains #2Bthen thisfield contains an identifiespecified by ECMA-168 othis
ECMA Standard. If the firdbyte ofthis field contains #2Dthen thisfield contains an identifiethat shall not

be registered. If the firddyte ofthis field is neither #2Dnor #2B, then thisfield shall specify an identifier
which may be registered according to ISO/IE8800. An identifier shall be sequence of at most 23 octets, at
least one of whiclshall be nonzero; thesetetsshall berecorded in ascending order as the least significant 8
bits of bytes 0 through 22 of this field respectively. Any unused bytes shall be set to #00.

The interpretation of the content of the Identifier field shall be specified in the description of the descriptor field
in which theregid is recorded.

If this field contains all #00 bytes, then this field does not specify an identifier.
Note 14

The values #2B and #2D do not represent characters. However, for most coded character s#is usiog
recorded in one byte to represent a character, such as ECMA-6, the value #2B corresgefidmtbthe

value #2D corresponds to-".

Identifier Suffix (RBP 24)
This field shall specify further identification in a manner not specified by this ECMA Standard.

- 15 -

Standard ECMA - 167

Volume and File Structure of Write-Once and Rewritable Media
using Non-Sequential Recording for Information Interchange

Part 2 : Volume and Boot Block Recognition

- 16 -

- 17 -

Section 1 - General

3.1

3.2

5.1

Scope

Part 2 specifies a format and associated system requirements for volume and boot block recognition by specifying
— volume recognition;

— boot descriptors intended for use to bring a system to a known state;

— levels of medium interchange;

- requirements fothe processes whichre providedwithin information processingystems, to enable information
to be interchanged between different systems; for this purpose, Part 2 specifies the functions to be provided wi
systems which are intended to originate or receive media which conform to Part 2.

Parts references
See 1/2.

Part interface
This clause specifies the interface of Part 2 to other standards or Parts.

Input
Part 2 requires the specification of the following by another standard or Part.

— A standard for recording (see 1/5.10).
— The address of the initial sector in the volume (see 2/8.1.1).
— A volume recognition space (see 2/8.2).

Output

Part 2 specifies the following which may be used by other standards or Parts.

- identification of certain standards (see 2/9.1.2) used to record information in the volume.
- information that may be used to bring a system to a known state.

Conformance
See 1/3.

Definitions
In addition to the definitions of Part 1 (see 1/5), the following definition applies for Part 2.

extent

A set of sectorghe sector numbers of which form a continuous ascending sequeme@ddress, or location, of
an extent is the number of the first sector in the sequence.

Notation
The notation of Part 1 (see 1/6) applies to Part 2.

Basic types
The basic types of Part 1 (see 1/7) apply to Part 2.

- 18 -

Section 2 - Requirements for the medium for volume and boot block recognition

8 Volume recognition
8.1 Arrangement of data on a volume
8.1.1 Sector numbers

Eachsector of a volume shall be identified by a unigeetor number. Sector numbestsall beconsecutive
integers assigned in an ascending sequenc#henorder of ascending physical address of vibleime as
specified inthe relevant standarfdr recording(seel/5.10). Sector number ghall be assigned to the initial
sector of the volume as specified in 2/3.1.

8.2 Volume recognition space

A volume recognition spacghall be acontiguous sequence of sectdrle bytes inthe volume recognitiorspace

shall be numbered witbonsecutiventegers assigned in ascending sequefbe. numbering shall staftom 0

which shall be assigned to the fitstte of the firstsector ofthe volume recognition spac&he numbering shall

continue through successive bytes of that sector and then through successive bytes of each successive sector, if any
of the volume recognition space.

8.3 Volume recognition area

A volume recognitiorarea shall be recorded in tkielume recognition space. A volume recognitemea shall
consist of a volume recognition sequence @&&3.1) recorded iltonsecutively numbered sectatarting with

the firstbyte ofthe firstsectorthat begins aftebyte number 32 767 of theolume recognition spac®art 2does

not specify the interpretation of the information recorded in the volume recognition space other thaolumntbe
recognition area of the volume recognition space.

8.3.1 Volume recognition sequence

A volume recognition sequenahall consist of a consecutively recorded sequence of one or more Volume
Structure Descriptors (see 2/9.1) recorded according to the schema shown in figure 2/1.

EachVolume Structure Descriptehall specify astandard oclause whichshall specifythe interpretation of
the contents of the descriptor and the value @ke figure 2/1).

The first Volume Structure Descriptor tife sequencehall berecorded beginning at the first byte of the first
sector ofthe volume recognitiorarea in which it is recorded. Eashccessive Volum8tructure Descriptor of
the sequencashall berecorded beginning at the fisyte ofthe sector with the next highesector numbethan
that of the last sector constituting the previous Volume Structure Descriptor of the sequence.

Note 1

The volume recognition sequence is terminated by the first seloich is not a valid descriptor, rather than
by an explicit descriptor. This sector might be an unrecorded or blank sector.

[volume recognition sequence]{
<CD-ROM Volume Descriptor Set>0+1
[Extended Area]{
<Beginning Extended Area Descriptor> 1+
{ <Volume Structure Descriptor> | <Boot Descriptor> } n+
<Terminating Extended Area Descriptor> 1+
} 0+
}

Figure 1 - Volume recognition sequence schema

- 19 -

8.3.1.1 CD-ROM Volume Descriptor Set

8.4

A CD-ROM Volume Descriptor Sethall be aset of consecutively recorded VolurBéructure Descriptors
whoseStandard Identifiefields shall not contaifBEAOL1” and shall be interpreteatccording to ECMA-
119.

Recording of descriptors

All the descriptors in Part 2 shall becorded sthat thefirst byte ofthe descriptocoincides withthe first byte of
a sector. All space, if any, aftdre lastbyte ofthe descriptor up to the end of thectorcontaining the ladbyte of
the descriptor is reserved for future standardisation and shall be recorded as all #00 bytes.

Volume recognition structures

9.1

9.1.1

9.1.2

9.1.3

9.1.4

9.2

Volume Structure Descriptor
The Volume Structure Descriptor shall be recorded in the format shown in figure 2/2.

BP Length Name Contents
0 1 Structure Type uint8 (1/7.1.1)
1 5 Standard Identifier bytes
6 1 Structure Version uint8 (1/7.1.1)
7 2041 Structure Data bytes

Figure 2 - Generic Volume Structure Descriptor format

Structure Type (BP 0)

The number in thisield shall specifythe type ofthe Volume Structure Descriptofhe interpretation of the
number shall be specified by the Standard or clause identified in the Standard Identifier field.

Standard ldentifier (BP 1)
This field shall specify the interpretation of the Volume Structure Descriptor as shown in figure 2/3.

Identifier Interpretation
“BEAOY1” According to 2/9.2.
“BOOT2” According to 2/9.4.
“CD001” According to ECMA-119.
“Cbwo02” According to ECMA-168.
“NSR02” According to 3/9.1 of this ECMA Standard.
“TEAQL” According to 2/9.3.

Figure 3 - Volume Structure Descriptor interpretation
All other values are reserved for future standardisation.

Structure Version (BP 6)

The number in thi§ield shall specifythe version othe Volume Structure Descriptolhe interpretation of the
number shall be specified by the Standard or clause identified in the Standard Identifier field.

Structure Data (BP 7)
The interpretation of thifield shall bespecified bythe Standard oclause identified in the Standard Identifier
field.

Beginning Extended Area Descriptor

The Beginning Extended Area Descriptor shall be recorded in the format shown in figure 2/4.

- 20 -

BP Length Name Contents
0 1 Structure Type uint8 (1/7.1.1)=0
1 5 Standard Identifier bytes = “BEA01”
6 1 Structure Version uint8 (1/7.1.1)=1
7 2041 Structure Data #00 bytes

Figure 4 - Beginning Extended Area Descriptor format

9.2.1 Structure Type (BP 0)
This field shall specify 0.

9.2.2 Standard Identifier (BP 1)
This field shall specify “BEAO1".

9.2.3 Structure Version (BP 6)
This field shall specify the version of this descriptor. The value 1 shall indicate the structure of Part 2.

9.2.4 Structure Data (BP 7)
This field shall be reserved for future standardisation and all bytes shall be set to #00.

9.3 Terminating Extended Area Descriptor
The Terminating Extended Area Descriptor shall be recorded in the format shown in figure 2/5.
BP Length Name Contents
0 1 Structure Type uint8 (1/7.1.1)=0
1 5 Standard Identifier bytes = “TEA01”
6 1 Structure Version uint8 (1/7.1.1)=1
7 2041 Structure Data #00 bytes

Figure 5 - Terminating Extended Area Descriptor format

9.3.1 Structure Type (BP 0)
This field shall specify 0.

9.3.2 Standard Identifier (BP 1)
This field shall specify “TEA01".

9.3.3 Structure Version (BP 6)
This field shall specify the version of this descriptor. The value 1 shall indicate the structure of Part 2.

9.3.4 Structure Data (BP 7)
This field shall be reserved for future standardisation and all bytes shall be set to #00.

9.4 Boot Descriptor
The Boot Descriptor shall be recorded in the format shown in figure 2/6.

9.4.1

9.4.2

9.4.3

9.4.4

9.4.5

9.4.6

9.4.7

9.4.8

9.4.9

- 21 -

BP Length Name Contents
0 1 Structure Type uint8 (1/7.1.1)=0
1 5 Standard Identifier bytes = “BOOT2"
6 1 Structure Version uint8 (1/7.1.1)=1
7 1 Reserved #00 byte
8 32 ArchitectureType regid (1/7.4)
40 32 Boot Identifier regid (1/7.4)
72 4 Boot Extent Location uint32 (1/7.1.5)
76 4 Boot Extent Length Uint32 (1/7.1.5)
80 8 Load Address uinté4 (1/7.1.7)
88 8 Start Address uinté4 (1/7.1.7)
96 12 Descriptor Creation Date and Time timestamp (1/7.3)
108 2 Flags uintle (1/7.1.3)
110 32 Reserved #00 bytes
142 1906 Boot Use bytes

Figure 6 - Boot Descriptor format
Structure Type (BP 0)
This field shall specify 0.
Standard Identifier (BP 1)
This field shall specify “BOOT2".
Structure Version (BP 6)
This field shall specify the version of this descriptor. The value 1 shall indicate the structure of Part 2.
Reserved (BP 7)
This field shall be reserved for future standardisation and shall be set to #00.
Architecture Type (BP 8)

This field shall specify an identification of aystemwhich canrecogniseandact upon the contents of tiB®ot
Identifier field. If this field contains all #00 bytes, no such system is identified.

Boot Identifier (BP 40)

This field shall specify an identification of an implementation which can recognisact upon the contents of
the Boot Extent LocationBoot Extent LengthLoad AddressStart Addressaind Boot Usefields. If thisfield
contains all #00 bytes, no such implementation is identified.

Boot Extent Location (BP 72)

This field shall specifythe address of an extent of thelume containingbootinformation. If theBoot Extent
Length field contains 0, then no boot extent is specified and this field shall contain 0.

Note 2

If no boot extent is specified, the information needed to boot might be recorded in the Boot Use field.
Boot Extent Length (BP 76)

This field shall specify the length, in bytes, of the extent identified by the Boot Extent Location field.
Load Address (BP 80)

This field shall specifythe memory address at whithe information in the exterspecified bythe Boot Extent
field should be copied.

- 22 .

9.4.10 Start Address (BP 88)
This field shall specify the memory address to which control should tbensferred after the information
specified by the Boot Extent field has been copied into memory.
9.4.11 Descriptor Creation Date and Time (BP 96)
This field shall specify the date and time of the day at which the information in this descriptor was recorded.
9.4.12 Flags (BP 108)
This field shall specify certain characteristics of the Boot Descriptor as shown in figure 2/7.
Bit Interpretation
0 Erase: For anoot Descriptor with the same contents of the Architeciiyge and Boot Identifier
fields as thiBoot Descriptorandrecorded in any lower numbered sectorthefvolume recognition
sequencehan thesectorsthat thisBoot Descriptor is recordeth: if set to ZEROgshall mean tha}
this Boot Descriptor overrides any su@oot Descriptor; if set to ONEshall mean thaany such
Boot Descriptor (including this Boot Descriptor) shall be ignored.
1-15 Shall be reserved for future standardisation and all bits shall be set to ZERO.
Figure 7 - Boot Descriptor characteristics
9.4.13 Reserved (BP 110)
This field shall be reserved for future standardisation and all bytes shall be set to #00.
9.4.14 Boot Use (BP 142)

This field shall be reserved for implementation use, and its contents are not specified by Part 2.

Note 3

The Boot Descriptor is designed alow a generic boot program. Such a boot prograould scan foBoot
Descriptors with a matching Architecture Tyfwhich might represent combinations of processor type and
memory management), and after examining the Boot Identifiéech might encodthe operating system type

and options, present the user with a choice of operating systems to boot. As Part 2 cannot mandate any specific
implementation behaviour, the recommended interpretation of the Boot Descriptor, that is, read an extent of
sectors from the volume into memory at a specified location and then transfer execution to another specified
location, is optional.

10 Levels of medium interchange

Part

2 specifies two levels ofmedium interchange. Thievel of a volumeshall be thatevel specifyingthe most

restrictions required to record the volume according to the specifications of Part 2.

10.1 Level 1

At level 1, the following restriction shall apply:

The Boot Identifier field of aBoot Descriptor shall be different from tliBoot Identifier field ofall otherBoot
Descriptors having identical contents of the Architecture Type field.

10.2 Level 2

At level 2, no restrictions shall apply.

- 23 -

Section 3 - Requirements for systems for volume and boot block recognition

11 Requirements for the description of systems

Part 2 specifiesthat certain information shall beommunicated between aserand an implementation. Each
implementation thatonforms toPart 2 shall have a descriptitimat identifies the means by which the user may
supply or obtain such information.

Note 4

The specifics of the description and the means referred to atibweary from implementation to implementation.
For example, an implementation might supper® interfaces: a preferred, convenient interface which might vet
user input, and a deprecated low level interface which allows any input specified by Part 2.

12 Requirements for an originating system
12.1 General

The implementation shall beapable of recording Beginning Extended Area Descriptord Terminating
Extended Area Descriptors as specified in Part 2 on a volume.

12.2 Optional access by user
12.2.1 Descriptors

If the implementation iapable of recording a Volume Structure Descriptor wiité value “CD001” or
“CDWO02” or “NSR02” in the Standard Identifier field, the implementation shall record the descriptor
according to the Standard or 2/9.1.2.

13 Requirements for a receiving system
13.1 General
The implementation shall beapable ofinterpreting Beginning Extended Area Descriptarsed Terminating
Extended Area Descriptors as specified in Part 2 on a volume.
13.2 Optional access by user
13.2.1 Descriptors

If the implementation igapable ofinterpreting aVolume Structure Descriptor witthe value “CD001” or
“CDWO02” or “NSR02” in the Standard Identifier field, the implementation shall interpret the descriptor
according to the Standard or 2/9.1.2.

- 24 -

- 25 -

Standard ECMA - 167

Volume and File Structure of Write-Once and Rewritable Media
using Non-Sequential Recording for Information Interchange

Part 3 : Volume structure

- 26 -

- 27 -

Section 1 - General

3.1

3.2

Scope

Part 3 specifies a format and associated system requirements for volume structure by specifying:

the attributes of a volume and the descriptors recorded on it;

the relationship among volumes of a volume set;

the attributes of a partition of a volume;

the attributes of a logical volume and the descriptors recorded on it;
levels of medium interchange;

requirements fothe processes whichre providedwithin information processingystems, to enable information
to be interchangebtletween different systems; finis purpose, it specifiethe functions to b@rovided within
systems which are intended to originate or receive media which conform to Part 3.

Parts references
See 1/2.

Part interface

This clause specifies the interface of Part 3 to other standards or Parts.

Input

Part 3 requires the specification of the following by another standard or Part.
— A standard for recording (see 1/5.10).

— The size of a logical sector (see 3/8.1.2) of a volume.

— If the volume is recorded according Rart 2, avolume recognition sequence specifiedHart 2 shall contain
the descriptor described in 3/9.1 recorded at least once.

- If the volume is recorded according Rart 2, thevolume recognition space (s@é8.2) shall be the entire
volume.

— If the volume is recorded according to Part 2, the initial sector in the volume (see 2/3.1) shall besthetdirst

of the volume.
- Information to be recorded in the Partition Contents Use field of a Partition Descriptor (see 3/10.5.6).

- Information to be recorded in tHengical Volume ContentdJsefield of a Logical Volume Descriptofsee
3/10.6.7).

Output
Part 3 specifies the following which may be used by other standards or Parts.

— Volume sets of one or more volumes (see 3/8.6).

— A volume space for a volume (see 3/8.2).

— Logical sectors of a fixed size for a volume (see 3/8.1.2).

- Partitions (see 3/8.7).

— Logical volumes composed of partitions (see 3/8.8).

— Numeric identification of the partitions within a logical volume (see 3/8.8).
— Logical blocks of a fixed size for a logical volume.

— The logical block size for a logical volume.

— Attributes of a volume.

- 28 -

- Attributes of a logical volume.
— Attributes of a partition.
— An indication that a volume may have been recorded to this Part (see 3/9.1).

Conformance
See 1/3.

Definitions
In addition to the definitions of Part 1 (see 1/5), the following definitions apply for Part 3.

5.1 anchor point

One of a specified set of logical sector numbers at which descripbatsidentify an extent of a Volume
Descriptor Sequence, may be recorded.

5.2 Cyclic Redundancy Check (CRC)
A method for computing a signature of a sequence of bytes.

5.3 extent

A set of logical sectors whose logical seatombers (se&/8.1.3) form a continuous ascending sequence. The
address, or location, of an extent is the first logical sector number in that sequence.

5.4 logical block
The unit of allocation of a logical volume.

5.5 logical sector
The unit of allocation of a volume.

5.6 logical volume
A nonempty set of partitions.

5.7 partition
An extent of logical sectors within a volume.

Notation
The notation of Part 1 (see 1/6) applies to Part 3.

Basic types
In addition to the basic types of Part 1 (see 1/7), the following basic types apply for Part 3.

7.1 Extent Descriptor
An Extent Descriptor, hereafter designateexent_ad, shall be recorded in the format shown in figure 3/1.

RBP Length Name Contents
0 4 Extent Length uUint32 (1/7.1.5)
4 4 Extent Location Uint32 (1/7.1.5)

Figure 1 -extent_ad format

7.1.1

7.1.2

7.2

7.2.1

- 29 -

Extent Length (RBP 0)

This field shall indicate the length of the extent,hiytes,identified by the Extentocation field. The length
shall belessthan 20. Unless otherwise specifiethe length shall be an integral multiple of the logadtor
size.

Extent Location (RBP 4)
This field shall specifythe location of the extent, as a logis&ctor number. Ithe extent's length is 0, no
extent is specified and this field shall contain 0.
Descriptor tag
Certain descriptorspecified inPart 3 have a 1Byte structure, otag, recorded at thetart of the descriptor.
Thetag shall be recorded with the format shown in figure 3/2.
Note 1

There are two main motivations for using a generic tag structure. The first is that most descriptors need to han
common issues of CRCs and format versions. The second motivation is to support recovery after the mediurn
been damaged or corrupted in some (unspecified) way.tiéttag described here, structures are self identifying
and can be verified with very little context.

RBP Length Name Contents
0 2 Tag Identifier uintl6 (1/7.1.3)
2 2 Descriptor Version uintl6 (1/7.1.3)=2
4 1 Tag Checksum uint8 (1/7.1.1)
5 1 Reserved #00 byte
6 2 Tag Serial Number uintl6 (1/7.1.3)
8 2 Descriptor CRC uintl6 (1/7.1.3)
10 2 Descriptor CRC Length uintl6 (1/7.1.3)
12 4 Tag Location Uint32 (1/7.1.5)

Figure 2 -tag format

Tag Identifier (RBP 0)

This field shall specify an identification of the descripttype. Type Oshall specify that theformat of this
descriptor is nospecified byPart 3.Types1-7 and 9 arespecified as shown in figure 3/Bype 8 is specified
identically in Part 3 and Part lypes256-265 arespecified inPart 4. All othertypesarereserved for future
standardisation. The descriptor types specified by Part 3 are shown in figure 3/3.

Type Interpretation

Primary Volume Descriptor (3/10.1)

Anchor Volume Descriptor Pointer (3/10.2)
Volume Descriptor Pointer (3/10.3)
Implementation Use Volume Descriptor (3/10.4)
Partition Descriptor (3/10.5)

Logical Volume Descriptor (3/10.6)

Unallocated Space Descriptor (3/10.8)
Terminating Descriptor (3/10.9 and 4/14.2)
Logical Volume Integrity Descriptor (3/10.10)

© 00 N O 0o~ WDN

Figure 3 - Descriptor interpretation

7.2.2

7.2.3

7.2.4

7.2.5

7.2.6

7.2.7

7.2.8

- 30 -

Descriptor Version (RBP 2)

This field shall specify the version of this descriptor. The value 2 shall indicate the structure of Part 3.
Tag Checksum (RBP 4)

This field shall specify the sum modulo 256 of bytes 0-3 and 5-15 tdghe

Reserved (RBP 5)

This field shall be reserved for future standardisation and shall be set to 0.

Tag Serial Number (RBP 6)

This field shall specify anidentification of a set of descriptors. If theeld contains O,then no such
identification is specified.

Note 2

This field can be used to distinguish between groups of descrifftorsexample,when reusing rewritable

media, an implementation might choose a different serial number from the previowbarsaitialising a

volume. Thus, a disaster recovery mechanism can avoid recovering prior and unintended data. The only
alternative to this scheme would be to force volume initialisation to clear the volume.

Descriptor CRC (RBP 8)

This field shall specifythe CRC of thébytes ofthe descriptor starting at the filgyte after the descriptor tag.
The number obytesshall bespecified bythe DescriptolCRC Length fieldThe CRCshall be 16 bits long and
be generated by the CRC-ITU-T polynomial (see ITU-T V.41):

x16 412 4 ¥5 4+ 1

Note 3

As an example, the CRC of the three bytes #70 #6A #77 is #3299. Implementations can avoid calculating the
CRC by setting the Descriptor CRC Length to 0, as then the Descriptor CRC shall be 0.

Descriptor CRC Length (RBP 10)

This field specifies how many bytes were used in calculating the Descriptor CRC.

Tag Location (RBP 12)

This field shall specify the number of the logical sector containing the first byte of the descriptor.
Note 1

The location of the tag may appear to be redundant but its primary purpose is to make it extremely likely that
if the first 16 bytes of a logical sector or logical block is a consistent descriptor tag, then it is a descriptor tag.

- 31 -

Section 2 - Requirements for the medium for volume structure

8 Volume structure
8.1 Arrangement of information on a volume
8.1.1 Sector numbers

Eachsector of a volume shall be identified by a unigeetor number. Sector numbestsall beconsecutive
integers assigned in an ascending sequenc#henorder of ascending physical address of ibleime as
specified inthe relevant standarfdr recording(seel/5.10). Sector nhumber €hall be assigned to trsector
having the lowest physical address of the volume.

8.1.2 Logical sector

The sectors of a volumshall be organised into logicaéctors of equdength. The length of a logicalector
shall be referred to as the logicactor sizeand shall be an integratultiple of 512bytes.The logicalsector
size shall be noessthan thesize of the smallestector of thevolume.Each logicalsectorshall begin in a
different sectorstarting with thesectorhaving the next highesector numbethan that of thdast sector
constituting theprevious, if any, logical sector tfie volume.The firstbyte of alogical sectoishall be the first
byte of the sector in which it begins, and if the size ofgbitor is smallethan thelogical sector sizehen the
logical sector shall comprise a sequence of constituent sectors with consecutive ascending sector numbers.

8.1.3 Logical sector numbers

Each logical sector of a volume shall be identified by a unique logical sector number. Logical sector numb
shall be consecutive integers assigned in ascending sequence, in the order of ascending sector numbers
volume. Logical sector numberdhall be assigned to the logicactor beginning in sector number 0. The
largest logical sector number of a volume shall be greater than 256.

8.1.3.1 Recording of logical sectors

Any unrecorded constituent sector of a logical seshaill be interpreted as containing all #§@es.Within
the sectorcontaining the ladbyte of alogical sector, the interpretation of abytesafterthat lastbyte is not
specified by this Part.

A logical sector is unrecorded the standardor recording allows detectiothat a sector has been
unrecorded and all of the logical sector's constituent seatersnrecorded. A logicakector should either be
completely recorded or unrecorded.

8.2 Volume space

The information on avolume shall berecorded in the set of albgical sectors in a volumé&his setshall be
referred to as theolume space ahevolume.The bytes inthe volume space shall be numbered witinsecutive
integers assigned in ascending sequataeing with 0. Let be the number dfytes in dogical sectorthenbyte
b of the volume space is bytem(b,s)of logical sector ip(b/s)

8.3 Volume descriptors

Characteristics of theolumeshall bespecified by volume descriptors recorded in Volume Descriptor Sequences
as described in 3/8.4.2.

A volume descriptor shall be one of the following types:

— Primary Volume Descriptor (see 3/10.1)

— Implementation Use Volume Descriptor (see 3/10.4)
— Partition Descriptor (see 3/10.5)

— Logical Volume Descriptor (see 3/10.6)

— Unallocated Space Descriptor (see 3/10.8)

-32 -

8.4 Volume Descriptor Sequence
8.4.1 Contents of a Volume Descriptor Sequence

A Volume Descriptor Sequence shall contain one or more Primary Volume Descriptors. A Primary Volume
Descriptor shall identify the volume and the volume set to which it belongs, the sequence nuheeslome

within thevolume set, attributes of thelume,and the character saised in recordinghe contents of certain
fields within the Primary Volume DescriptdEach Primarywolume Descriptoshall have an assigned Primary
Volume Descriptor Number. Only one prevailing Primary Volume Descrifsee 3/8.4.3) of aVolume
Descriptor Sequence shall have a Primary Volume Descriptor Number of 0.

A Volume Descriptor Sequencghall contain zero or more Implementation Usalume Descriptors. An
ImplementationUse Volume Descriptorshall identify an implementatiomnd contain informatiorior that
implementation's use.

A Volume Descriptor Sequenahall contain zero or more Partition Descriptors. A Partition Descritai
specify apartition, attributes of the partitioend an identification of the partition, referred to as the partition
number.

A Volume Descriptor Sequenchall contain zero or moreogical Volume Descriptors. A Logical Volume
Descriptor shalkpecify anidentification of the logical/olume, the logicalblock size ofthe logicalvolume,
identification of the partitions comprising the logical volume and attributes of the logical volume.

A Volume Descriptor Sequencghall contain zero or mordnallocated Space Descriptors. An Unallocated
Space Descriptor shallentify volume space available falocating to partitions ofor recordingthe Volume
Descriptor Sequences of the volume.

Eachvolume descriptoshall have an assignatblume Descriptor Sequence NumbAil volume descriptors
with identical Volume Descriptor Sequence Numbers shall have identical contents.

Note 5

Typically, an originating system will chosenaw Volume DescriptoBequence Number by adding 1 to the
largest such number seen when scanning the Volume Descriptor Sequence.

8.4.2 Recording of the Volume Descriptor Sequence

A Volume Descriptor Sequencaall berecorded as a sequence of extents of logical sectattseinolume
space. Any trailing sectors (see figure 3/4) shall be available for the recording of descriptors.

An extent of a Volume Descriptor Sequence shall be recorded according to the schema shown in figure 3/4.

[Volume Descriptor Sequence extent]{
<volume descriptor>0+
[Terminator]{
<Volume Descriptor Pointer>
| <Terminating Descriptor>
| <unrecorded logical sector>
} <trailing logical sector>0+

Figure 4 - Volume Descriptor Sequence schema

An extent of a Volume Descriptor Sequerst®ll be identified by an Anchdfolume Descriptor Pointefsee
3/10.2) recorded atvo or more anchor pointésee3/8.4.2.1). Each, if anygsubsequent extent ithhe VVolume
Descriptor Sequencghall be identified by &olume Descriptor Pointer recorded time previous extent of the
sequence.

An Anchor Volume Descriptor Pointer shalkentify the MainVolume Descriptor Sequenemdmay identify a
Reserve Volume Descriptor Sequence (38e4.2.2). All Volume DescriptoBequences specified ynchor
Volume Descriptor Pointers shall be equivalent (see 3/8.4.2.3).

8.4.2.1

8.4.2.2

8.4.2.3

8.4.3

8.4.4

- 33 -

Anchor points

Letk beip(n/59), wheren is the largest logicadector number ithe volume spaceAnchor points shall be at
two or more of théollowing logical sector number256,n-256,n and all thenonzero integral multiples of
k not greater than.

Note 6

The value 59 washosen as a number near 64 thasunlikely to be periodievith respect tdhe geometry
of the underlying medium.

Reserve Volume Descriptor Sequence Set

A Reserve Volume Descriptor Sequence may be recorded on a volume. A Reserve Volume Descrip
Sequence, if anyshall be identified by an Anchovolume Descriptor Pointer. If any Anch&folume
Descriptor Pointer of theolume identifies a Reserve Volume Descriptor Sequéehea, all AnchoNolume
Descriptor Pointers of theolume shall identify a Reserve Volume Descriptor Sequencehdf Reserve
Volume Descriptor Sequence is identifiedsiitall specify a VolumeDescriptor Sequence equivalent to the
Main Volume Descriptor Sequence ($#8.4.2.3). There shall be no logicgctor which belongs to both an
extent of the Main Volume Descriptor Sequence and an extent of the Reserve Volume Descriptor Sequenc

Equivalent Volume Descriptor Sequences

The equivalence of two VolumBescriptor Sequenceshall be determined by calculating a canonfoain

for each ofthe Volume Descriptor Sequencead if both the canonicdiorms are identical, then the two
Volume Descriptor Sequences specify equivalent sets of volume descriptors. The canonical form of a Volu
Descriptor Sequence shall be constructed by performing the following steps in sequence:

— discard any Volume Descriptor Pointers
— discard all but one descriptor for each Volume Descriptor Sequence Number

— set the Tag Checksum, Descriptor CRC, Descri@®C Length, and Tad.ocation fields of the
Descriptor Tag field in each descriptor to O

— sort the remaining descriptors as byte sequences

— catenate the descriptors in sorted order

Prevailing descriptors

Within each of the following classes of descriptors:

Primary Volume Descriptors, each of whicas thesame contents of the correspondir@ume Identifier,
Volume Set Identifier and Descriptor Character Set fields

Partition Descriptors with identical Partition Numbers

Logical Volume Descriptors, each of whitlas thesame contents of the correspondlmggical Volume
Identifier and Descriptor Character Set fields

Unallocated Space Descriptors

the one with the highe&tolume Descriptor Sequence Numiséiall be usedThis instance shall be referred to
as the prevailing instance.

Recording of descriptors

All the descriptors irPart 3whoseformat is specifiedvith Byte Positions (BPxhall berecorded sdhat the
first byte of the descriptor coincides with the first byte of a logical sector.

The descriptors ifPart 3 whosdormat is specifiedvith RelativeByte Positions (RBP) have nestrictions on
where they may be recordedthin a logical sector, excepthat theirlocation within a descriptor shall be
specified in the description of the applicable descriptor.

8.5

8.6

8.7

8.8

- 34 -

When the descriptodescribed in Part 3 arecorded in a logical sectall space, if any, after the end of the
last descriptor up to the end of the logiseattor is reserved for future standardisation and sha#idoneded as
all #00 bytes.

Note 7
Most of the descriptors specified in Part 3 have a length of 512 bytes.

Allocation of the volume space

The logicalsector isthe unit ofallocation forthe volume space. Volume space may be allocatethforecording

of Volume Descriptor Sequences, Amchor Volume Descriptor Pointers, oray be allocated tpartitions. This
allocation shall be done from the unallocated volume space which shall be specified as extents of logical sectors by
the prevailing instance of the Unallocated Space Descriptor (see 3/10.8).

Volume Descriptor Sequencaad Anchoolume Descriptor Pointerghall not berecorded in volume spatkat
has been allocated to a partition.

Note 8

Implementations should not assume that the sum of the allocated logical sectors and the unallocated logical
sectors in a volume equals the size of the volume spacts ofthe volume space might be unallocated for
several reasons, including media defects or for use by processes external to Part 3.

Volume set

A volume setshall consist of one or more volumbaving avolume set identification common #l volumes in
the volume set.The volumes in a volume sethall be numbered witltonsecutiveintegers assigned in an
ascending sequence starting from 1. This number shall be the assigned volume sequence number of the volume.

Each prevailing Primaryolume Descriptor recorded on a volum@ntains avzolume set identification consisting
of the contents of the Volume Set Identifier and Descriptor Character Set figlwlapge identification consisting
of the contents of the Volume Identifiand Descriptor Character Set fieldmdspecifieswhether thatolume set
identification is common to each volumetbévolume set. Exactly one tifie volume set identifications specified
on a volumeshall be marked as beirgpmmon to each volume ofie volume set (se®/10.1.21). Thesame
volume identification shall not be specified by more than one volume of a volume set.

Partition

A partition is an extent of aolume and shall bdadentified by a Partition Number in thenge 0 to 65 535
inclusive. The information aboutpartition shall beecorded in a Partition Descriptor. The prevailing instance of
the Partition Descriptor with specificPartition Numbeshall specifywhether volume spadeasbeen allocated to
the partition and may specify an identification of the partition's contents.

Note 9

Partitions may overlap. This allows media to be initialised with several predefined partition definitions of varying
sizes and locations. A user can then simply select a set of nonoverlapping partitions to use. In general, it is
inadvisable to use file systems on overlapping partitions.

Logical volume

A Logical Volume Descriptor specifies a logical volume identification, the logical block size of the logical volume,
and anordered list of partitions comprising the logicallume. The partitions of a logical volume may be on
different volumes of a volume set.

The partitions in a logicalolumeshall be numbered witbonsecutiveéntegers assigned in an ascendseguence
starting from 0. This number shall be the assigned partition reference nuamgershall be the numeric
identification referred to in 3/3.2.

8.8.1

8.8.2

- 35 -

A logical volume shall bedescribed byhe prevailing instance of laogical Volume Descriptor recorded on the
volume with the highest volume sequence number in a volume setL&gichl Volume Descriptor recorded on a
volume set contains a logical volume identification consisting of the contentslaigieal Volume Identifier and
Descriptor Character Set fielddlore thanone logical volume may be recorded on a volume set. Logical Volume
Descriptors forall the logical volumes in a volume sehall berecorded in thevolumewith the highestolume
sequence number.

Note 10

A logical volume provides a segmented address space that can span multiple partitions and volumes of a voli
set. As a consequence of this, a logical volume may only belong to one volume set.

Logical blocks

The logicalsectors of gartition in a logicalvolumeshall be organised into logichlocks ofequal length. The
length of a logicablock shall be referred to as the logitabck sizeand shall be an integratultiple of 512
bytesnot lessthan thesize of the logicakector of thevolume. The logicalblock size ofeach partition of a
logical volume shall be the same.

Each logicalblock shall begin in a different logicaector,and shall start with théogical sectothaving the
next higherogical sector numbethan that of the last logical sector constitutthg previous, if any, logical
block ofthe partition. The firsbyte of a logical bloclshall be the firsbyte of the logicakector in which it
begins,and if the logical sector size is smallkan thelogical block sizethen thelogical blockshall comprise
a sequence of constituent logical sectors with consecutive ascending logical sector niitthiarshe logical
sectorcontaining the lasbyte of alogical block,the interpretation of anyytes after that last byte is not
specified by this Part.

Each logicalblock of apartition shall be identified by a unique logiddbck number. Logicablock numbers
shall be consecutive integers assigned in ascending sequence. The logical block containing logical sector O ¢
have a logical block number of 0.

Logical volume integrity

Logical volumeintegrity describeghe status of the information recorded on a logicéime. This status shall
be specified by a Logical Volume Integrity Descriptor (see 3/10.10).

The Logical Volume Integrity Descriptors for a logical volusigall berecorded in a Logical Volume Integrity
Sequence whickhall berecorded as a sequence of extente first extent shall bspecified bythe prevailing
Logical Volume Descriptor fothe logicalvolume. Succeeding extents, if arshall bespecified by a Logical
Volume Integrity Descriptor. Processing of an extent of Logical Volume Integrity Descriptalisbe as if the
descriptors were processeddrder of ascending order of theiddresseandprocessing waterminated by an
unrecorded logical sector, or a Terminating Descriptor (see 3/10.9) or after a despepifying a subsequent
extent. After processingll such extents, the lakbgical Volume Integrity Descriptor processsidall beused
and shall be referred to as the prevailing Logical Volume Integrity Descriptor.

The status of a logicalolume shall bespecified bythe prevailingLogical Volume Integrity Descriptor as
follows:

— An Open Integrity Descriptor shall lbecorded before angata is recorded in the logical voluramce the
last Close Integrity Descriptor, if any, was recorded

- A Close Integrity Descriptor may be recorded only atterdata recorded on the logic@lume is in some
consistent form not specified by this Part

- 36 -

9 Volume recognition structures

9.1

9.1.1

9.1.2

9.1.3

9.1.4

9.1.5

10
10.1

NSR Descriptor
The NSR Descriptor shall be recorded in the format shown in figure 3/5.

Note 11
This descriptor only indicates that a volume may have been recorded to Part 3; in particular, see 3/3.1 and 3/3.2.

BP Length Name Contents
0 1 Structure Type uint8 (1/7.1.1)=0
1 5 Standard Identifier bytes = “NSR02”
6 1 Structure Version uint8 (1/7.1.1)=1
7 1 Reserved #00 byte
8 2040 Structure Data #00 bytes

Figure 5 - NSR Descriptor format
Structure Type (BP 0)
This field shall specify 0.
Standard ldentifier (BP 1)
This field shall specify “NSR02”.
Structure Version (BP 6)

This field shall specify the version of this descriptor. The value 1 shall indicate the structure of Part 3.

Reserved (BP 7)
This field shall be reserved for future standardisation and shall be set to 0.

Structure Data (BP 8)
This field shall be reserved for future standardisation and all bytes shall be set to #00.

Volume data structures

Primary Volume Descriptor

The PrimaryWolume Descriptoshallidentify a volumeand certairattributes othatvolume. Itshall berecorded
in the format shown in figure 3/6.

10.1.1

10.1.2

10.1.3

10.1.4

10.1.5

10.1.6

10.1.7

10.1.8

- 37 -

BP Length Name Contents
0 16 Descriptor Tag tag (3/7.2) (Tag=1)
16 4 Volume Descriptor Sequence Number Uint32 (1/7.1.5)
20 4 Primary Volume Descriptor Number | Uint32 (1/7.1.5)
24 32 Volume ldentifier dstring 1/7.2.12)
56 2 Volume Sequence Number uintl6 (1/7.1.3)
58 2 Maximum Volume Sequence Number Uintlé (1/7.1.3)
60 2 Interchange Level uintl6 (1/7.1.3)
62 2 Maximum Interchange Level uintl6 (1/7.1.3)
64 4 Character Set List Uint32 (1/7.1.5)
68 4 Maximum Character Set List Uint32 (1/7.1.5)
72 128 Volume Set Identifier dstring (1/7.2.12)
200 64 Descriptor Character Set charspec (1/7.2.1)
264 64 Explanatory Character Set charspec (1/7.2.1)
328 8 Volume Abstract extent _ad (3/7.1)
336 8 Volume Copyright Notice extent _ad (3/7.1)
344 32 Application Identifier regid (1/7.4)
376 12 Recording Date and Time timestamp (1/7.3)
388 32 Implementation Identifier regid (1/7.4)
420 64 Implementation Use bytes
484 4 Predecessor Volume Descriptor Uint32 (1/7.1.5)

Sequence Location

488 2 Flags uintl6 (1/7.1.3)
490 22 Reserved #00 bytes

Figure 6 - Primary Volume Descriptor format

Descriptor Tag (BP 0)
The Tag Identifier field of theag (3/7.2) for this descriptor shall contain 1.

Volume Descriptor Sequence Number (BP 16)
This field shall specify the Volume Descriptor Sequence Number for this descriptor.

Primary Volume Descriptor Number (BP 20)
This field shall specify the assigned Primary Volume Descriptor Number for this Primary Volume Descriptor.

Volume ldentifier (BP 24)
This field shall specify an identification of the volume.

Volume Sequence Number (BP 56)
This field shall specify the ordinal number of the volume in the volume set of which the volume is a member.

Maximum Volume Sequence Number (BP 58)

This field shall specifythe ordinal number of theolume in thevolume setwith the largest assigneslume
sequence number dhe time this descriptor was recorded. If tHisld contains 0, there is no such
identification.

Interchange Level (BP 60)

This field shall specify the currentlevel of mediuminterchange (3/11) of theolume described byhis
descriptor.

Maximum Interchange Level (BP 62)

This field shall specify the maximum valughat may be specified fothe Interchangd.evel field of this
descriptor.

10.1.

10.1.

10.1.

10.1.

10.1.

10.1.

10.1.

10.1.

10.1.

10.1.

9

10

11

12

13

14

15

16

17

18

- 38 -

Character Set List (BP 64)

This field shall identify the character setspecified by any field, whoseontents arespecified to be a
charspec (1/7.2.1), of any descriptmspecified inPart 3 andrecorded on thesolume described byhis
descriptor.

Maximum Character Set List (BP 68)

The Character Set Lidield in this descriptor shall napecify acharacter set(seel/7.2.11) notpecified by
the Maximum Character Set List field.

Note 12

The Interchange Level, Maximum Interchange Level, Character Set List and Maximum Character Set List
fields permit an implementation to:

— determine whether it can process all of the information on the volume.

— restrict the recording of information on the volume so that the volume does not exceed the level given in the
Maximum Interchange Level field.

— restrict the recording of information on the volume so that all character sets recorded belong to the
Maximum Character Set List field.

This allows a user to create a volume that can be processed when it is returned to the user.
Volume Set Identifier (BP 72)
This field shall specify an identification of the volume set of which the volume is a member.

Descriptor Character Set (BP 200)

This field shall specify the d-characters (1/7.2)lowed inthe Volume Identifierand Volume Set Identifier
fields.

Explanatory Character Set (BP 264)

This field shall specify how to interpret the contents of tlelume Abstractand Volume Copyright Notice
extents.

Volume Abstract (BP 328)

This field shall specify an extent of logical sectors containing an abstoathis volume. If the extent's length
is 0, no abstract is specified.

Volume Copyright Notice (BP 336)

This field shall specify an extent of logical sectors containingpayright notice fothis volume. If the extent's
length is 0, no copyright notice is specified.

Application Identifier (BP 344)

This field shall specify anidentification of an application. If thiield containsall #00 bytes,then nosuch
application is identified.

Recording Date and Time (BP 376)

This field shall indicate the date and time of the day at which this descriptor was recorded.

Implementation Identifier (BP 388)

This field shall specify an identification of an implementation which can recognisact upon the contents of

the Implementation Use field. If this field contains all #00 bytes, then no such implementation is identified. The
scope ofthis regid includes the contents of atlescriptors, othethan ImplementationUse Volume
Descriptors, in the Volume Descriptor Sequence in which the Primary Volume Descriptor is recorded.

-39 -

10.1.19 Implementation Use (BP 420)
This field shall be reserved for implementation use. Its content is not specified by this Standard.
10.1.20 Predecessor Volume Descriptor Sequence Location (BP 484)
This field shall specify the address of the extent of logieators in whiclthe immediately preceding extent of
the Volume Descriptor Sequence thie volume is recorded. Ithis field contains 0, ishall mean that neuch
extent is identified.
Note 13
This is intended for use in disaster recovery.
10.1.21 Flags (BP 488)
This field shall specify certain characteristics of this Primary Volume Descriptor as shown in figure 3/7.
Bit Interpretation
0 Volume Set Identification: If set to ZERGhall mean that thgolume set identification irthis
descriptor need not be common amatigrolumes inthe volume sethat thisvolume belongs to; |
set to ONE, shall mean that the volume set identificatiothig descriptor icommon among al
volumes in the volume set that this volume belongs to.
1-15 Shall be reserved for future standardisation and all bits shall be set to ZERO.
Figure 7 - Primary Volume Descriptor characteristics
10.1.22 Reserved (BP 490)

This field shall be reserved for future standardisation and all bytes shall be set to #00.

10.2 Anchor Volume Descriptor Pointer

The AnchorVolume Descriptor Pointeshall specify anextent of the Mainand Reserve Volume Descriptor
Sequences recorded on the volume. It shall be recorded in the format shown in figure 3/8.

BP Length Name Contents
0 16 Descriptor Tag tag (3/7.2) (Tag=2)
16 8 Main Volume Descriptor Sequence Extent extent_ ad (3/7.1)
24 8 Reserve Volume Descriptor Sequence Extent extent ad (3/7.1)
32 480 Reserved #00 bytes
Figure 8 - Anchor Volume Descriptor Pointer format
10.2.1 Descriptor Tag (BP 0)
The Tag Identifier field of theag (3/7.2) for this descriptor shall contain 2.
10.2.2 Main Volume Descriptor Sequence Extent (BP 16)
This field shall specify an extent of the Main Volume Descriptor Sequence.
Note 14
The extent specifies allocation rather than recording; that is, space that may be available for recording rathe
than what is actually recorded. The extent need not be completely recorded.
10.2.3 Reserve Volume Descriptor Sequence Extent (BP 24)

This field shall specify anextent of theReserve Volume Descriptor Sequencethé extent's length is 0, no
such extent is specified.

- 40 -

Note 15

The extent specifies allocation rather than recording; that is, space that may be available for recording rather
than what is actually recorded. The extent need not be completely recorded.

10.2.4 Reserved (BP 32)
This field shall be reserved for future standardisation and all bytes shall be set to #00.
10.3 Volume Descriptor Pointer

TheVolume Descriptor Pointeshall specify an extent of a Volume Descriptor Sequence recordéreaolume.
It shall be recorded in the format shown in figure 3/9.

BP Length Name Contents
0 16 Descriptor Tag tag (3/7.2) (Tag=3)
16 4 Volume Descriptor Sequence Number Uint32 (1/7.1.5)
20 8 Next Volume Descriptor Sequence Extent extent _ad (3/7.1)
28 484 Reserved #00 bytes

Figure 9 - Volume Descriptor Pointer format
10.3.1 Descriptor Tag (BP 0)
The Tag Identifier field of theag (3/7.2) for this descriptor shall contain 3.
10.3.2 Volume Descriptor Sequence Number (BP 16)
This field shall specify the Volume Descriptor Sequence Number for this descriptor.
10.3.3 Next Volume Descriptor Sequence Extent (BP 20)

This field shall specifythe next extent in th#olume Descriptor Sequence.tlfe extent's length is 0, no such
extent is specified.

Note 16

The extent specifies allocation rather than recording; that is, space that may be available for recording rather
than what is actually recorded. The extent need not be completely recorded.

10.3.4 Reserved (BP 28)
This field shall be reserved for future standardisation and all bytes shall be set to #00.
10.4 Implementation Use Volume Descriptor

The Implementatiotdse Volume Descriptoshall identify an implementation whicbanrecogniseandact upon
the contents of this descriptor's Implementation Use field. It shall be recorded in the format shown in figure 3/10.

BP Length Name Contents
0 16 Descriptor Tag tag (3/7.2) (Tag=4)
16 4 Volume Descriptor Sequence Number Uint32 (1/7.1.5)
20 32 Implementation Identifier regid (1/7.4)
52 460 Implementation Use bytes

Figure 10 - Implementation Use Volume Descriptor format
10.4.1 Descriptor Tag (BP 0)
The Tag Identifier field of theag (3/7.2) for this descriptor shall contain 4.
10.4.2 Volume Descriptor Sequence Number (BP 16)

This field shall specify the Volume Descriptor Sequence Number for this descriptor.

- 41 -

10.4.3 Implementation Identifier (BP 20)

This field shall specify an identification of an implementation which can recognisact upon the contents of
the Implementation Use field. If this field contains all #00 bytes, then no such implementation is identified.

10.4.4 Implementation Use (BP 52)
This field shall be reserved for implementation use. Its content is not specified by this ECMA Standard.
10.5 Partition Descriptor

The Partition Descriptoshall specify the sizeand location of a partitiorand shall beecorded in the format
shown in figure 3/11.

BP Length Name Contents
0 16 Descriptor Tag tag (3/7.2 (Tag=5)
16 4 Volume Descriptor Sequence Number Uint32 (1/7.1.5)
20 2 Partition Flags uintl6 (1/7.1.3)
22 2 Partition Number uintle (1/7.1.3)
24 32 Partition Contents regid (1/7.4)
56 128 Partition Contents Use bytes
184 4 Access Type Uint32 (1/7.1.5)
188 4 Partition Starting Location Uint32 (1/7.1.5)
192 4 Partition Length Uint32 (1/7.1.5)
196 32 Implementation Identifier regid (1/7.4)
228 128 Implementation Use bytes
356 156 Reserved #00 bytes

Figure 11 - Partition Descriptor format
10.5.1 Descriptor Tag (BP 0)
The Tag Identifier field of theag (3/7.2) for this descriptor shall contain 5.
10.5.2 Volume Descriptor Sequence Number (BP 16)
This field shall specify the Volume Descriptor Sequence Number for this descriptor.
10.5.3 Partition Flags (BP 20)

This field shall specify certain characteristics of the partition as shown in figure 3/12.

Bit Interpretation

0 Allocation: If set to ZEROshall mean thavolume spacéhas notbeen allocated fothis
partition; If set to ONE, shall mean that volume space has been allocated for this partifion.

1-15 Shall be reserved for future standardisation and all bits shall be set to ZERO.

Figure 12 - Partition characteristics
10.5.4 Partition Number (BP 22)
This field shall specify the numeric identifier for the partition.
Note 17
The Partition Number may be 0.
10.5.5 Partition Contents (BP 24)

This field shall specify anidentification of how tointerpret the contents of the partition. The identifications
specified by Part 3 are given in figure 3/13. Other identifications shall be specified according to 1/7.4.

- 42 -

Contents Interpretation
“+FDCO01" As if it were a volume recorded according to ECMA-107.
“+CD001” As if it were a volume recorded according to ECMA-119.

“+CDWO02” As if it were a volume recorded according to ECMA-168.
“+NSR02" According to Part 4 of this ECMA Standard.

Figure 13 - Partition content interpretation

10.5.6 Partition Contents Use (BP 56)
This field shall specifyinformation required fothe interpretation of the information recorded on the partition
identified by this PartitiorDescriptor. The contents difis field shall bespecified bythe relevant standard for
the interpretation of the information recorded on the partition.
10.5.7 Access Type (BP 184)
This field shall specifythe access methods which are permitted on the logietbrs othe partitiondescribed
by this Partition Descriptor. The access types are given in figure 3/14.
Type Interpretation
0 The type of access is not specified by this field.
1 Read onlythere shall be no restriction on reading logisattors; logical sectols
shall not be recorded.
2 Write once: therehall be no restriction on reading logisactors; logical sectols
shall only be recorded once.
3 Rewritable: thereshall be no restriction on reading logicactors; logical sectols
may require preprocessing before recording.
4 Overwritable: there shall be no restriction on reading or recording logical sectérs.
5 and above Reserved for future standardisation.
Figure 14 - Access interpretation
10.5.8 Partition Starting Location (BP 188)
This field shall specify the logical sector number at which the partition begins.
10.5.9 Partition Length (BP 192)
This field shall specify the number of logical sectors which comprise the partition.
10.5.10 Implementation ldentifier (BP 196)
This field shall specify an identification of an implementation which can recognisact upon the contents of
the Implementation Use field. If this field contains all #00 bytes, then no such implementation is identified.
Notel8
The scope of thisegid does not include the contents of the partition.
10.5.11 Implementation Use (BP 228)
This field shall be reserved for implementation use and its contents are not specified by this ECMA Standard.
10.5.12 Reserved (BP 356)

This field shall be reserved for future standardisation and all bytes shall be set to #00.

10.6

10.6.1

10.6.2

10.6.3

10.6.4

10.6.5

10.6.6

10.6.7

10.6.8

10.6.9

- 43 -

Logical Volume Descriptor

The Logical Volume Descriptor shall be recorded in the format shown in figure 3/15.

BP Length Name Contents
0 16 Descriptor Tag tag (3/7.2) (Tag=6)
16 4 Volume Descriptor Sequence NumberUint32 (1/7.1.5)
20 64 Descriptor Character Set charspec (1/7.2.1)
84 128 Logical Volume Identifier dstring (1/7.2.12)
212 4 Logical Block Size Uint32 (1/7.1.5)
216 32 Domain Identifier regid (1/7.4)
248 16 Logical Volume Contents Use bytes
264 4 Map Table Length (=MT_L) Uint32 (1/7.1.5)
268 4 Number of Partition Maps (=N_PM) | Uint32 (1/7.1.5)
272 32 Implementation Identifier regid (1/7.4)
304 128 Implementation Use bytes
432 8 Integrity Sequence Extent extent _ad (3/7.1)
440 MT_L Partition Maps bytes

Figure 15 - Logical Volume Descriptor format
Descriptor Tag (BP 0)
The Tag Identifier field of theag (3/7.2) for this descriptor shall contain 6.
Volume Descriptor Sequence Number (BP 16)
This field shall specify the Volume Descriptor Sequence Number for this descriptor.
Descriptor Character Set (BP 20)
This field shall specify the d-characters (1/7.2) allowed in the Logical Volume Identifier field.
Logical Volume Identifier (BP 84)
This field shall specify an identification of the logical volume.
Logical Block Size (BP 212)
This field shall specify the size of a logical block in bytes.
Domain Ildentifier (BP 216)

This field shall specify an identification of a domain which shall specify rules amsthef,andrestrictions on,
certainfields in descriptors subject tlgreemenbetweenthe originator andecipient of the medium. If this
field contains all #00 bytes, then no such domain is identified. The scope refgiildis (1/7.4) shall include all
information recorded in the logicablume described byhis descriptorand shallinclude thescope of the
Implementation Identifier field.

Logical Volume Contents Use (BP 248)

This field shall specifyinformation required fothe interpretation of the information recorded on the logical
volume identified by thisLogical Volume DescriptorThe contents of thidield shall bespecified by the
relevant standard for the interpretation of the information recorded on the logical volume.

Map Table Length (=MT_L) (BP 264)
This field shall specify the length of the Partition Maps field in bytes.
Number of Partition Maps (=N_PM) (BP 268)

This field shall specify the number of Partition Maps recorded in the Partition Maps field.

10.6.10

10.6.11

10.6.12

10.6.13

10.7
10.7.1

10.7.2

- 44 -

Implementation Identifier (BP 272)
This field shall specify an identification of an implementation which can recognisact upon the contents of
the Implementation Use field. If this field contains all #00 bytes, then no such implementation is identified.

The scope of thieegid includes the contents of any Partition Descriptors identified by Type 1 Partition Maps
recorded in the Partition Maps field.

Implementation Use (BP 304)

This field shall be reserved for implementation use and its contents are not specified by this ECMA Standard.

Integrity Sequence Extent (BP 432)

This field shall specify the first extent of the Logical Volume Integrity Sequdieextent shall be within the
volume in whichthis descriptor igecorded. If N_PM is Othen theextent's lengthmay be 0. Ifthe extent's
length is 0, then no such extent is specified.

Partition Maps (BP 440)

This field shall containN_PM Partition Maps recordembntiguouslystarting at the firsbyte of the field. The
Partition Mapsmay be of different types'he length of the Partition Maps shall rextceed MT_Lbytes and
any unused bytes shall be set to #00.

As specified by 3/8.4.4, the remainder of the last logieator comprisinghe Logical Volume Descriptoshall
be recorded with #00 bytes.

Partition maps

Generic partition map
A partition map shall be recorded in the format shown in figure 3/16.

RBP Length Name Contents
0 1 Partition Map Type uint8 (1/7.1.1)
1 1 Partition Map Length (= PM_L)| Uint8 (1/7.1.1)
2 PM_L-2 Partition Mapping bytes

Figure 16 - Generic partition map format

Partition Map Type (RBP 0)
The number in this field shall specify the type of the partition map. The types are given in figure 3/17.

Type Interpretation

0 Shall mean that the type of the partition map is not specified by this field.

1 Shall mean that the partition map is a Type 1 Partition Map (see 3/10.7.2).
2 Shall mean that the partition map is a Type 2 Partition Map (see 3/10.7.3).
3-255 Reserved for future standardisation.

Figure 17 - Partition maps

10.7.2.1 Partition Map Length (= PM_L) (RBP 1)

This field shall specify the length, inbytes, ofthis partition map, including the Partition Majype and
Partition Map Length fields.

- 45 -

10.7.2.2 Partition Mapping (RBP 2)

The interpretation of thifield shall bespecified bythe standard oclause identified irthe Partition Map
Type field, or shall be subject to agreement between the originator and recipient of the medium if the num|
in the Partition Map Type field is 0.

10.7.3 Type 1 Partition Map

This maptype identifies a partition on &olume inthe volume set on whickhe logicalvolume is recorded. It
shall be recorded in the format shown in figure 3/18.

RBP Length Name Contents
0 1 Partition Map Type uint8 (1/7.1.1)=1
1 1 Partition Map Length uint8 (1/7.1.1)=6
2 2 Volume Sequence Number Uintl6 (1/7.1.3)
4 2 Partition Number uintle (1/7.1.3)

Figure 18 - Type 1 Partition Map format

10.7.3.1 Partition Map Type (RBP 0)
This field shall specify 1.

10.7.3.2 Partition Map Length (RBP 1)
This field shall specify 6.

10.7.3.3 Volume Sequence Number (RBP 2)
This field specifiesthe volume, inthe volume set on whiclthis logicalvolume is recorded, whose volume
sequence number is identical to the contents of this field.
10.7.3.4 Partition Number (RBP 4)
This field specifiesthe partition, of thesolume specified byhe Volume Sequence Number field, identified
by the Partition DescriptawhosePartition Number field is identical the contents of the Partitiddumber
field.
10.7.4 Type 2 Partition Map
This maptypeidentifies a partition in anannersubject toagreemenbetweenthe originator andecipient of
the medium.
It shall be recorded in the format shown in figure 3/19.
Note 19

Type 2 maps allow partitions to h@entified in an implementation specificay that is outside the scope of
Part 3. This allows partitions recorded in a manner not specified by Part 3, such as a local disk pattition
might locally be referred to a8dev/dsk/ipi0d2p4” or ‘a:” or “NODE::DEVICE:” |, to be part of a
logical volume. Type 2 maps may present problems when interchanging media.

RBP Length Name Contents
0 1 Partition Map Type uint8 (1/7.1.1)=2
1 1 Partition Map Length uint8 (1/7.1.1) = 64
2 62 Partition Identifier bytes

Figure 19 - Type 2 Partition Map format

10.7.4.1 Partition Map Type (RBP 0)
This field shall specify 2.

- 46 -

10.7.4.2 Partition Map Length (RBP 1)
This field shall specify 64.
10.7.4.3 Partition Identifier (RBP 2)

This field shall specify anidentification of the partition in anannersubject toagreemenbetween the
originator and recipient of the medium.

10.8 Unallocated Space Descriptor

The Unallocatedspace Descriptoshall specify extentsthat areunallocated. It shall beecorded in the format
shown in figure 3/20.

BP Length Name Contents
0 16 Descriptor Tag tag (3/7.2) (Tag=7)
16 4 Volume Descriptor Sequence Number Uint32 (1/7.1.5)
20 4 Number of Allocation Descriptors (=N_AD) Uint32 (1/7.1.5)
24 N_ADx8 | Allocation Descriptor s extent _ad (3/7.1)

Figure 20 - Unallocated Space Descriptor format

10.8.1 Descriptor Tag (BP 0)

The Tag Identifier field of théag (3/7.2) for this descriptor shall contain 7.
10.8.2 Volume Descriptor Sequence Number (BP 16)

This field shall specify the Volume Descriptor Sequence Number for this descriptor.
10.8.3 Number of Allocation Descriptors (=N_AD) (BP 20)

This field shall specify the number of allocation descriptors recorded in this descriptor.
10.8.4 Allocation Descriptors (BP 24)

This field shall contain N_ADextent_ad (3/7.1) descriptors. The Extent Lendiblds in these descriptors
shall be an integral multiple of the logical sector size.

Note 20

As specified by 3/8.4.4, the remainder of the last logical sector comprising the Unallocated Space Descriptor
is recorded with #00 bytes.

10.9 Terminating Descriptor

A TerminatingDescriptor may be recorded terminate avolume Descriptor Sequence (s&8.4.2). It shall be
recorded in the format shown in figure 3/21.

BP Length Name Contents
0 16 Descriptor Tag tag (3/7.2) (Tag=8)
16 496 Reserved #00 bytes

Figure 21 - Terminating Descriptor format
10.9.1 Descriptor Tag (BP 0)
The Tag Identifier field of theag (3/7.2) for this descriptor shall contain 8.

10.9.2 Reserved (BP 16)

This field shall be reserved for future standardisation and all bytes shall be set to #00.

- 47 -

10.10 Logical Volume Integrity Descriptor

The Logical Volume Integrity Descriptoshall specify the integrity status of a logicalolume and shall be
recorded in the format shown in figure 3/22. In the following description, the term “the associated logical volum
shall refer to the logicavolume described byhe Logical Volume Descriptor specifyinthe Logical Volume
Integrity Sequence in which this descriptor is recorded.

BP Length Name Contents
0 16 Descriptor Tag tag (3/7.2) (Tag=9)
16 12 Recording Date and Time timestamp (1/7.3)
28 4 Integrity Type uUint32 (1/7.1.5)
32 8 Next Integrity Extent extent_ad (3/7.1)
40 32 Logical Volume Contents Use bytes
72 4 Number of Partitions (=N_P) Uint32 (1/7.1.5)
76 4 Length of Implementation Use (=L_IU) Uint32 (1/7.1.5)
80 N_Px4 Free Space Table Uint32 (1/7.1.5)
N_Px4+80 N_Px4 Size Table Uint32 (1/7.1.5)
N_Px8+80 | L_IU Implementation Use bytes

Figure 22 - Logical Volume Integrity format
10.10.1 Descriptor Tag (BP 0)
The Tag Identifier field of theag (3/7.2) for this descriptor shall contain 9.

10.10.2 Recording Date and Time (BP 16)
This field shall specify the date and time of the day at which this descriptor was recorded.

10.10.3 Integrity Type (BP 28)
This field shall specify the type of Integrity Descriptor. The types are shown in figure 3/23.

Type Interpretation

0 Shall mean that the descriptor is an Open Integrity Descriptor
1 Shall mean that the descriptor is a Close Integrity Descripfor
2-255 Reserved for future standardisation

Figure 23 - Logical Volume Integrity type

10.10.4 Next Integrity Extent (BP 32)

This field shall specify the next extent of the Logical Volume Integrity Sequdiesextent shall be within the
volume in which this descriptor is recorded within. If the extent’s length is 0, no such extent is specified.

10.10.5 Logical Volume Contents Use (BP 40)

This field shall specify information required fointerpretation of the information recorded on tmssociated
logical volume. The contents of this fiedthall bespecified bythe relevant standard ftine interpretation of the
information recorded on the associated logical volume.

10.10.6 Number of Partitions (=N_P) (BP 72)

This field shall specify the number of partitions in the associated logical volume.
10.10.7 Length of Implementation Use (=L_IU) (BP 76)

This field shall specify the length, in bytes, of the Implementation Use field.

10.10.8 Free Space Table (BP 80)

This field shall contain N_P values, each recordedWistd2 , recorded contiguoushtarting at the firsbyte
of the field. Thdth value specifies the amount of available space, in logical blocks, on the papéified by

- 48 -

theith entry in the Partition Mapield in the associated Logical volumBescriptor. A value of #FFFFFFFF
shall mean that the amount of available space is not specified.

10.10.9 Size Table (BP N_#+80)

This field shall contain N_P values, each recordedWistd82 , recorded contiguoushktarting at the firsbyte
of the field. Theith value specifieshe size, in logicablocks, ofthe partitionspecified bytheith entry in the
Partition Maps field irthe associated Logical volumBescriptor. A value of #FFFFFFFhall mean that the
size is not specified.

10.10.10 Implementation Use (BP N_¥8+80)

If L_IU is greaterthan 0, thidield shall specify anidentification of an implementation, recorded asegid
(1/7.4) in the first 3dytes ofthis field, which canrecogniseandact upon the remainder of tHigld, which
shall bereserved for implementation us@d itscontents are napecified bythis ECMA. Thescope ofthis
regid shall be the contents of this descriptor, the contents dcigbeciated Logical volumBescriptor, and
the contents of the associated logical volume.

11 Levels of medium interchange

Part 3specifiesthreelevels of mediuminterchange. Théevel of a volumeshall be thatevel specifyingthe most
restrictions required to record the volume according to the specifications of Part 3.

In the following level specificationdy is the largest logical sector number of a volume.
11.1 Levell
At level 1, the following restrictions shall apply:
— an Anchor Volume Descriptor Pointer shall be recorded at logical sector 256 and at logical s266r N

— the Volume Descriptor Sequences specified byatiehorVolume Descriptor Pointer recorded at logical sector
256 and logical sector#256 shall be recorded in a single extent

— a Logical Volume Descriptor shall contain only Type 1 Partition Maps

— the partitionsspecified in any Logical Volume Descriptor, catenated togethéndir recorded ordershall
form a single extent

— there shall be exactly one Primary Volume Descriptor in the Main Volume Descriptor Sequence
— there shall be at most one Implementation Use Volume Descriptor in the Main Volume Descriptor Sequence

— there shall be amost one Partition Descriptor with any given Partition Number in Mzén Volume
Descriptor Sequence

— avolume set shall consist of only one volume.

Note 21

This interchange level provides a simple volume structure.
11.2 Level 2

At level 2, the following restriction shall apply:

— avolume set shall consist of only one volume.

11.3 Level 3
At Level 3, no restrictions shall apply.

- 49 -

Section 3 - Requirements for systems for volume structure

12 Requirements for the description of systems

Part 3specifiesthat certain information shall beommunicated between aserand an implementation. Each
implementation thatonforms toPart 3 shall have a descriptitimat identifies the means by which the user may
supply or obtain such information.

Note 22

The specifics of the description and the means referred to atibweary from implementation to implementation.
For example, an implementation might supper® interfaces: a preferred, convenient interface which might vet
user input, and a deprecated low level interface which allows any input specified by Part 3.

13 Requirements for an originating system
13.1 General

The implementation shall lmpable of recordingll descriptors specified i8/10 on avolume set according to
one of the medium interchange levels specified in 3/11.

The implementation shall not change the Maximum Interchaeygel field nor the Maximum Character Seist
field in a Primary Volume Descriptor except when directed to do so by the user.

The implementation shall beapable of recording a list of character gsse1/7.2.11) in which the bit for
Character Set Type CS2 shall be set to ONE.

If the user specifies a volume without specifyingthich Primary Volume Descriptor to uséhen the
implementation shall use the Primary Volume Descriptor having Primary Volume Descriptor Number 0.

The implementation may only alter the Dirty or Protected bits ofegig (1/7.4) field of a descript@specified
by Part 3 when directed to do so by the user.

If any information in thescope of aegid (1/7.4) is modified and the implementation cannemnsurethat the
information recorded within thecope othatregid still conforms tahe agreement implied by the identification
in that regid , then, wherdirected to do so by the user, the implementation slealthe Dirty bit of the Flags
field of thatregid to ONE and should not alter the Identifier field of tiesgid

13.2 Mandatory access by user
13.2.1 Descriptors

The implementation shabllow the user tosupply the information that is to beecorded in each of the
following descriptor fields, and shall supply the information for a field if the user does not supply it.

Primary Volume Descriptor

— Primary Volume Descriptor Number
— Volume Identifier

- Volume Sequence Number

— Maximum Volume Sequence Number
- Maximum Interchange Level

— Maximum Character Set List

- Volume Set Identifier

— Descriptor Character Set

13.3

- 50 -

Partition Descriptor

- Partition Number

— Partition Contents

— Access Type

— Partition Starting Location
- Partition Length

Logical Volume Descriptor

— Descriptor Character Set
- Logical Volume Identifier
- Logical Block Size

— Number of Partition Maps
— Partition Maps

Optional access by user

If the implementation permits the userdopply the information that is to beecorded in the extents, if any,
specified bythe Volume Copyright Noticeand Volume Abstract fields in a Primary Volume Descriptor, the
implementation shall record such information as supplied by the user.

13.3.1 Descriptors

If the implementation permits the usersigpplythe information that is to bescorded in any of théollowing
descriptor fields, the implementation shall record such information as supplied by thendsenallsupply the
information for a field if the user does not supply it.

Primary Volume Descriptor

— Character Set List
— Explanatory Character Set
— Application Identifier

Logical Volume Descriptor

— Domain ldentifier

13.3.2 Multivolume volume sets

14
14.1

The implementation shall not be required to record information owdlbenes of a volume séhat havebeen
assigned a sequence numbewhere 1< n < m, after any informatiomasbeen recorded otine volume of the
volume set that has been assigned sequence namber

The implementation shall not be required to record information ondiuene of a volume sdhat hasbeen
assigned sequence numimerl if there is sufficienspace to recorthe information on theolumethat has
been assigned a sequence numberhere 1< n<m.

Requirements for a receiving system
General

The implementation shall kmpable ofnterpreting alldescriptors as specified Bi10 on avolume set according
to one of the medium interchange levels specified in Part 3.

If the user specifies a volume without specifyingthich Primary Volume Descriptor to uséhen the
implementation shall use the Primary Volume Descriptor having Primary Volume Descriptor Number 0.

-51 -

14.2 Mandatory access by user
14.2.1 Descriptors

The implementation shall make available to the user the informttainis recorded in the extent, if any,
specified by the Volume Copyright Notice and Volume Abstract fields in a Primary Volume Descriptor.

The implementation shadlllow the user taaccesghe information that isecorded in each of thillowing
descriptor fields

Primary Volume Descriptor

— Volume Identifier

- Volume Sequence Number

- Maximum Volume Sequence Number
- Interchange Level

— Maximum Interchange Level

— Maximum Character Set List

— Volume Set Identifier

— Descriptor Character Set

— Explanatory Character Set

Partition Descriptor

Partition Number
Partition Contents
Access Type

Partition Starting Location
Partition Length

Logical Volume Descriptor

— Logical Volume Identifier
— Domain ldentifier

-52 -

-53 -

Standard ECMA - 167

Volume and File Structure of Write-Once and Rewritable Media
using Non-Sequential Recording for Information Interchange

Part 4 : File structure

-54 -

- 55 -

Section 1 - General

3.1

Scope

Part 4 specifies a format and associated system requirements for file structure by specifying:

— the placement of files;

— the attributes of the files;

— the relationship among files of a logical volume;

— levels of medium interchange;

— requirements fothe processes whichreprovidedwithin information processingystems, to enable information
to be interchangebtletween different systems; finis purpose, it specifiethe functions to b@rovided within
systems which are intended to originate or receive media which conform to Part 4.

Parts references
See 1/2.

Part interface

This clause specifies the interface of Part 4 to other standards or Parts.

Input

Part 4 requires the specification of the following by another standard or Part.

Volume sets of one or more volumes.

A means for assigning volume sequence numbers (see 4/8.1).

Logical volumes composed of partitions.

Numeric identification of the partitions within a logical volume.

If the volume is recorded according to Part 3, the partitions shall be numbered according to 3/8.8.
Identification of a logical volume on which one or more file sets may be recorded.

Division of the partitions for a logical volume into fixed size logical blocks.

Numeric identification of the logical blocks within a partition.

The size of a logical block for a logical volume. This shall be an integral multiple of 512.

A means for detecting if a logical block is unrecorded.

If the volume is recorded according Rart 3, a logicablock shall be unrecorded dll of thelogical sectors
comprising that logical block are unrecorded. A logicdblock should either becompletely recorded or
unrecorded.

A means for identifying the first extent of the File Set Descriptor Sequence (see 4/8.3.1) of a logical volume;

If the volume is recorded according Rart 3, the extent in which the first File S¥scriptor Sequence of the
logical volume is recordedshall be identified by a long_ad (4/14.14r2corded in the_ogical Volume
ContentdUsefield (see3/10.6.7) of the Logical Volume Descriptor describihg logicalvolume in which the
File Set Descriptors are recorded.

A means for specifying the Logical Volume Header Descriptor (see 4/14.15) of a logical volume

If the volume is recorded according Rart 3, theLogical Volume Header descriptshall berecorded in the
Logical Volume ContenttJsefield (see3/10.10.5) of the prevailingogical Volume Integrity Descriptor for
the logical volume.

3.2

5.1

5.2

5.3

54

5.5

5.6

5.7

- 56 -

— A means for identifying the following for each partition of the logical volume on which a file set is recorded:

* Unallocated Space Table and Unallocated Bit Map (see 4/10)
» Freed Space Table and Freed Bit Map (see 4/10)
» Partition Integrity Table (see 4/11)

If the volume is recorded according Rart 3, the Partition Contentdse field (see3/10.5.6) of the Partition
Descriptor (see3/10.5) describing the partition shall kecorded as a Partition Header Descrifsme4/14.3).
Such a Partition Descriptor shall have “+NSR02” recorded in the Partition Contents field.

Output

Part 4 specifies the following which may be used by other standards or Parts.

Data space of a file (see 4/8.8.2).
Attributes of a file.

Attributes of a directory.
Attributes of a directory hierarchy.

Conformance
See 1/3.

Definitions
In addition to the definitions of Part 1 (see 1/5), the following definitions apply for Part 4.

extent

A set of logical blocks, the logical block numbers of which form a continuous ascending segjheragdress, or
location, of an extent is the number of the first logical block in the sequence.

file set
A collection of files and directories.

group 1D
An identification of a group of users.

logical block
The unit of allocation of a logical volume.

logical volume
A nonempty set of partitions over which one or more file sets are recorded.

partition
An extent of logical blocks within a volume.

user ID
An identification of a user.

Notation
The notation of Part 1 (see 1/7) applies to Part 4.

Basic types
In addition to the basic types of Part 1 (see 1/7), the following basic types apply for Part 4.

-57 -

7.1 Recorded address

A logical block address may be specified bykaraddr recorded in the format shown in figure 4/1.

RBP Length Name Contents
0 4 Logical Block Number Uint32 (1/7.1.5)
4 2 Partition Reference Number | Uintl6 (1/7.1.3)

Figure 1 -lIb_addr format
7.1.1 Logical Block Number (RBP 0)

This field specifies the logicablock number relative to the start of the partition identified by the Partition
Reference Number field. The value 0 shall refer to the first logical block in the partition.

7.1.2 Partition Reference Number (RBP 4)
This field contains the numeric identification of a partition within a logical volume (see 4/3.1).
7.2 Descriptor Tag

Certain descriptorspecified inPart 4 have a 1Byte structure, ortag, at the start of the descriptor with the
format given in figure 4/2.

Note 1

There are two main motivations for using a general tag structure. The first is that most descriptors need a gene
way to handle issues of CRCs and format versions. The second motivation is to support recovery after the mec
has been damaged or corrupted in some (unspecifiey) Withthe tag described here, structures are self
identifying and can be verified with very little context.

RBP Length Name Contents
0 2 Tag Identifier uintl6 (1/7.1.3)
2 2 Descriptor Version uintl6 (1/7.1.3)
4 1 Tag Checksum uint8 (1/7.1.1)
5 1 Reserved #00 byte
6 2 Tag Serial Number uintl6 (1/7.1.3)
8 2 Descriptor CRC uintl6 (1/7.1.3)
10 2 Descriptor CRC Length uintl6 (1/7.1.3)
12 4 Tag Location Uint32 (1/7.1.5)

Figure 2 -tag format

7.2.1 Tag ldentifier (RBP 0)

This field shall specify an identification of the descripttype. Type Oshall specify that theformat of this
descriptor is nospecified byPart 4. Types1-7 and 9 arespecified inPart 3.Type 8 is specifieddentically in

Part 3 and Part Alypes256-265 arespecified inPart 4. All othettypesarereserved for futuretandardisation.
The descriptor types specified by Part 4 are shown in figure 4/3.

- 58 -

Type Interpretation

8 Terminating Descriptor (3/10.9 and 4/14.2)
256 File Set Descriptor (4/14.1)

257 File Identifier Descriptor (4/14.4)

258 Allocation Extent Descriptor (4/14.5)

259 Indirect Entry (4/14.7)

260 Terminal Entry (4/14.8)

261 File Entry (4/14.9)

262 Extended Attribute Header Descriptor (4/14.10{1)
263 Unallocated Space Entry (4/14.11)
264 Space Bitmap Descriptor (4/14.12)
265 Partition Integrity Entry (4/14.13)

Figure 3 - Descriptor interpretation
7.2.2 Descriptor Version (RBP 2)

This field shall specify the version of this descriptor. The value 2 shall indicate the structure of Part 4.
7.2.3 Tag Checksum (RBP 4)

This field shall specify the sum modulo 256 of bytes 0-3 and 5-15 tdghe
7.2.4 Reserved (RBP 5)

This field shall be reserved for future standardisation and shall be set to #00.

7.2.5 Tag Serial Number (RBP 6)

This field shall specify anidentification of a set of descriptors. If theeld contains O,then no such
identification is specified.

Note 2

This field can be used to distinguish between groups of descriftorsexample,when reusing rewritable
media, an implementation might choose a different serial number from the previowbarseaitialising a
volume. Thus, a disaster recovery mechanism can avoid recovering prior and unintended data. The only
alternative to this scheme would be to force volume initialisation to clear the volume.
7.2.6 Descriptor CRC (RBP 8)

This field shall specifythe CRC of thébytes ofthe descriptor starting at the filgyte after the descriptor tag.
The number obytesshall bespecified bythe DescriptolCRC Length fieldThe CRCshall be 16 bits long and
be generated by the CRC-ITU-T polynomial (see ITU-T V.41):

X16+X12+X5+ 1
Note 3

As an example, the CRC of the three bytes #70 #6A #77 is #3299. Implementations can avoid calculating the
CRC by setting the Descriptor CRC Length to 0, as then the Descriptor CRC shall be 0.

7.2.7 Descriptor CRC Length (RBP 10)
This field specifies how many bytes were used in calculating the Descriptor CRC.

- 59 -

7.2.8 Tag Location (RBP 12)
This field shall specify the number of the logicadlock, within the partition the descriptor is recorded on,

containing the first byte of the descriptor.
Note 4

The location of the tag may appear to be redundant but its primary purpose is to make it extremely likely tt
if the first 16 bytes of a logical sector or logical block is a consistent descriptor tag, then it is a descriptor tag

- 60 -

Section 2 - Requirements for the medium for file structure

8 File structure

8.1 Volume set
Each volume in a volume set shall have an assigned volume sequence number as specified in 4/3.1.

8.2 Arrangement of information on a volume set

A logical volumeand itsrelated file setshall berecorded on a volume set. Identificationtioé logicalvolumes
(see4d/3.1) andrelated File Set Descriptors fatl the logical volumes in a volume sehall berecorded in the
volume with the highest volume sequence number in the volume set.

8.3 Arrangement of information on a logical volume

Part 4 takes a logicablume to be a set gfartitions on one or monolumes.Each partition shall beonsidered
as an extent of logicddlocks,and shalhave an identification as specifiedtire input parameters fétart 4 (see
4/3.1). An address within a logicablumehastwo parts; ongartidentifies a partition within the logicablume
and the other part specifies a logical block number relative to the start of that partition.

8.3.1 File Set Descriptor Sequence

A File Set Descriptor Sequence shall be recorded as a sequence ofweitteémta logicalvolume. Anextent of
the File Set Descriptor Sequence shall be recorded according to the schema shown in figure 4/4.
[File Set Descriptor Sequence extent){
<File Set Descriptor>0+
[Terminator]{
<File Set Descriptor>
| <Terminating Descriptor>
| <unrecorded logical block>
} <trailing logical block>0+
} 0+

Figure 4 - File set descriptor sequence schema

The first extent of thesequenceshall be identified by the input parametésee4/3.1) of Part 4. Each, dny,
subsequent extent of the sequence shall be identified by the Next Extent field of a File Set Descriptor. An extent
of thesequenceshall be terminated by either an unrecorded lodittadk (see4/3.1), a Terminatindescriptor
(see 4/14.2), or by a File Set Descriptor whose Next Extent field identifies a subsequent extent of the sequence.

All File Set Descriptorshall have an assigndde set descriptor number. All File Set Descriptors with
identical file set descriptor numbers shall have identical contents.

All file sets shall have an assigned file set number. Of the File Set Descriptors of a File Set Descriptor Sequence
with identical file set numberghe one with the highefite set descriptor numbeshall be usedThis instance
shall be referred to as the prevailing instance.

One of the File Set Descriptors of a File Set Descriptor Sequence shall have a file set number of 0.

A File Set Descriptoshall specify a fileset identification. No prevailing instance of a File Set Descrigtail
specify the same file set identification as any other prevailing instance of a File Set Descriptor.

8.4 Arrangement of information on a partition

A means for identifying the location of tfi@lowing for eachpartition of the logical’olume onwhich a file set is
recorded shall be specified by the input parameters (see 4/3.1) of Part 4.

— Unallocated Space Table and Unallocated Bit Map (see 4/10)

-61 -

— Freed Space Table and Freed Bit Map (see 4/10)
— Partition Integrity Table (see 4/11)

8.5 File set

A file setshall be identified by a Fil&et Descriptor which identifies the root oflmectory hierarchysee4/8.6)
describing a set of files and certain attributes of the file set. A prevailing File Set Descriptor specifies

— the name of the logical volume it is recorded on

— the set of charactemlowed incertainfields of descriptors associated witte file set identified by thé-ile
Set Descriptor

— an identification of the root of the directory hierarchy describing the fildsedile set identified bythe File
Set Descriptor

— copyright and abstract information for the file set.

8.6 Directories

A directory contains zero or more file or directory identifications. A directory hierarchy shall be a set of directorie
descended from a single root directory.

A directoryshall contain &et of directory descriptors, each of which identifiggagentdirectory or a component
file or a component subdirectory. A directory descrigtat identifies a parendlirectory or a component file or
subdirectory by specifyinthe address of an ICBee4/8.10.1) forthat component shall beecorded as a File
Identifier Descriptor (sed/14.4). A directory descriptahat identifies a component file or subdirectory of the
directory by specifyinghe pathname of the actufile or directoryshall be referred to as an aliasd shall be
recorded as a File Identifier Descriptor specifying a file whose type is a symbolic link (see 4/14.6.6).

A directory identifyinganotherdirectory by othethan analias shall be called a pareatitectory ofthe identified
directory. The identifiedlirectoryshall be called aubdirectory othe parendirectory. Different directories may
have the same paredirectory. A directoryshall haveonly oneparentdirectory. Theparentdirectory ofthe root
directory shall be the root directory.

Eachdirectory descriptor shadipecifythe name of a componefile or the name of a componesubdirectory, or
identify the parentirectory ofthe directory. Théength, in bytes, afhe name of a componefile or subdirectory
shall be greatethan 0. Eacldirectory descriptoshall contain an indication of whether the identif@nponent
is a directory. When the descriptor identifies an aliais, indication is contained in thdirectory descriptor for
the file or directory identified by the pathname specified by the alias.

A directory shall be recorded according to the schema shown in figure 4/5.

{
} O+

<File Identifier Descriptor>

Figure 5 - Directory schema
For the descriptors in a directory

— there shall not be morthan one descriptor with the same File Identifisee4/14.4.8) andFile Version
Number (see 4/14.4.2).

— adescriptor identifying a directory shall have a File Version Number of 1.
— there shall be exactly one File Identifier Descriptor identifying the parent directory (see 4/14.4.3).
— the descriptors shall be ordered according to 4/8.6.1 and 4/14.6.8.

A File Entry specifying a file in which a directory is recordgthll not specify a&Character Set Information
Extended Attribute.

- 62 -

Note5

The character set specifying the d-charac{@r§.2) used irthe directory descriptors is specified in the File Set
Descriptor for the directory hierarchy of which the directory is a member.
8.6.1 Order of directory descriptors
If the directory descriptors of a directoaye sorted according tBart 4,they shall be ordered by thellowing
criteria in descending order of significance:

1. In ascending order according to the relatigkie of File Identifier, where File Identifieshall bevalued as
follows:

- If the File Identifiers being compared have the same vala# byte positions, the File Identifiers shall be
equal in value.

- If the File Identifiers being compared do not contain the same number of byte positions, the File Identifiers
shall be treated as they are of equal length by padding the shorter File Identifier onrigfe with #00

bytes. After anysuch padding, the File Identifiers shall be compameelbyte at atime, in ascendingpyte
position orderuntil a byteposition is foundthat doesnot contain the samealue in both File Identifiers.

The File Identifier with the greatdayte value, comparing values tie bytes asunsigned integers, shall be
considered greater.

2. In descending order according to the relative value of File Version Number.
Note 6
Sorting applies to files and aliases having been marked as deleted in the File Characteristics fietdefhe
is independent of theharspec (1/7.2.1) applying to the directory because the File Identifiers are sorted as if
they were binary values.
8.6.2 Directory hierarchy size restrictions
The sum of the number of directoriasd the number dfiles described bythe directories of airectory
hierarchy shall be less thaf?2
8.7 Pathname
A pathnamemay be used to specify a file or directory igme. The length, ibytes, ofthis pathname shall be
greater than 0. The pathname shall consist of a sequence of one or more path components (see 4/14.16) as follows!

— Unless otherwise specified, a componshiall be interpreted relative to thdirectory specified by its
predecessorThe predecessor ofhe initial component shall be thdirectory in whichthe pathname is
described.

— The final component shall specify either a directory, or a file, or an alias vasiclves teither a directory or
file.

— Each other component shall specify either a directory or an alias which resolves to a directory.

8.7.1 Resolved pathname

Within a directory hierarchy,every pathnamespecifying a file or directoryhas anequivalent resolved
pathname. A resolved pathname is a pathname where

— the first component is a Path Component with a Component Type of 2.
— each other component is a Path Component with a Component Type of 5 and is not an alias.

The length of a resolved pathname shall be the sum of the following:

- the value of the Component Identifier Length field for each component;
— the number of components

8.8

8.8.1

- 63 -

Note 7

The resolved pathname is mainly used in 4/15. Note that the length defined here corresponds to that ¢
theoretical pathname, rather than a pathname that an implementation might use. In particular, it assumes tf
the component separator is one byte long, which is typically true but is false for certain character sets.

Note that the length of the resolved pathname does not provide for the length of the file memdien
associated with the final component of the pathname.

Files

A file shall bedescribed by a File Entrfgee4/14.9) which shall specifthe attributes of thélle and thelocation
of the file's recorded data. The data of a file shall be recorded in either of the following:

— An ordered sequence of extents of logiaiakcks (seeshort_ad (4/14.14.1), long_ad (4/14.14.@8hdext_ad
(4/14.14.3). The extentaay be recorded or unrecordeahdallocated or unallocated. The extentsspécified
as long_ad (4/14.14.2) or ext_ad (4/14.14n%)y be located on differepartitions whichmay be on different
volumes.

— The Allocation Descriptors field of a File Entry.
Except where specified iRart 4, neither the interpretation of the information ifleanor the structure of the
information in a file is specified by Part 4.

Attributes of a file

The File Entryspecifiesthe attributes of a fileSSome ofthe attributes shall be recorded in fieldstle File
Entry itself; the remaindeshall berecorded as extended attributes. Extended attrilsitalt berecorded in
extended attributes spaces as describef9n The attributes of éile specified bythis Part arerecorded in
extended attributegnd in the following fields of a Fil&ntry and of thdcbtag (4/14.6) recorded as the
contents of the ICB Tag field of the File Entry.

ichtag

Strategy Type
Strategy Parameter
File Type

- Flags

File Entry

- Uid

- Gid

— Permissions

— File Link Count

- RecordFormat

— Record Display Attributes
- RecordLength

- Information Length

- Logical Blocks Recorded
— Access Date and Time

— Modification Date and Time
— Attribute Date and Time
— Checkpoint

- Implementation Identifier

Note 8

The information in the File Identifier Descriptor (see 4/14.4.3) fditeapertains only to the identification of
the file and is not considered an attribute of the file.

8.8.2

8.9

8.10

- 64 -

Data space of a file
The data space of a file shall be the following:

- If thefile is recorded athe contents of an ordersdquence of extents of logidabcks,these extents shall
be the datspace ofthe file. Thebytes in the datapaceshall be numbered witlbonsecutive integers
assigned in an ascending sequeiit® numbering shall staftom 0 whichshall be assigned to the first
byte of the first logical block of the first extent, if any, of the data space.

— If the file is recorded in the Allocation Descriptors field of a File Entry, the numbmnte$ specified by the
Length of Allocation Descriptors field adhe File Entry starting with the firdbyte of the Allocation
Descriptors field othe File Entry shall be the daspace othe file. Thebytes in the datapaceshall be
numbered withconsecutiventegers assigned in an ascending sequéltoe.numbering shall staftom 0
which shall be assigned to the first byte, if any, of the data space.

The number obytes in the datapace of a fileshall be referred to as the information length of filee(see
4/14.9.10).

Note 9

Some record formats (see 4/14.9.7) specify records of sequences of characters delimited by a specific character
sequence. If detection of these delimiter sequences requires knowledge of the character set encoding, such as
would bethe case if code extension characters (see 1/7.2.9.1) are used, then a Character Set Information
extended attribute should be recorded.

Record structure

The information in a file may be organised as a set of records according to 4/14.9.7. The structure and attributes of
these records are specified in Part 5. For the purposes of Part 5, the data space of a file is specified by 4/8.8.2 and

if the Character Set Information extended attributesgscified forthe file, then that extended attribute
specifies how the bytes of the file shall be interpreted as characters,

if the Character Set Information extended attribute isspetified forthe file, then each byte of thile shall

be interpreted as a single character, angyta containing #0A shall be &INE FEED character, dyte
containing#0B shall be aVERTICAL TABULATION character, ayte containing #0C shall be BORM
FEED characterand abyte containing #0D shall be @ARRIAGE RETURN character. These interpretations
shall only apply forthe purposes opartitioning the file's contents into recor@s)d need notapply to the
contents of those records.

Note 10

Some record formats (see Part 5) specify records delimited by a specific character sewquence.

Information Control Block (ICB)

Each recorded instance ofile shall bedescribed by an entry in an Information ConBtilck (ICB). The set of
entries describing the recorded instances filkashall bedescribed by entries in one or more ICBs. TH&f&s
shall form an ICB hierarchy as described in 4/8.10.1.

An ICB shall be ssequence of ICB entries recorded in an extent of loioaks. The address or location of an
ICB shall be the address of the extent. An entry of the sequence shall be one of the following:

a direct entry, describing a recorded occurrence of a file or a set of extents

an Indirect Entry (4/14.7), describing another ICB

a Terminal Entry (4/14.8), indicating that there are no more entries recorded after this entry
an unrecorded logical block, indicating that there are no more entries recorded after this entry

Each entry, other than an unrecorded logical block entry, shall specify:

The maximum number of entries that may be recorded in the ICB in which the entry is recorded.
The number of direct entries recorded in the ICB hierarchy prior to recording the entry.

9

8.10.1

- 65 -

An ICB entry shall not be recorded until all entries in that ICB with lower addresses have been recorded.

Note 11

Recording an indirect entry does not imply that the ICB specified by that indirect entry is necessarily complete
recorded.

The ICB may specifythe strategy for building an ICB hierarcligee4/14.6.2). Annex 4/Aspecifiescertain
strategies; other strategipsay be subject tagreemenbetweenthe originator andecipient of the mediunfsee
annex 4/A).

Note 12

Part 4 requires a data structure that describes sequences of bytes recorded in a volume. This can be use
record a user'dile, the contents of a directory or various system data. Some media, sucheasnce optical
disks, cannot rerecord a sector once it has been written, and thus Part 4 requires a data structure that c
describe successive versions of regions of bytes recorded in a volume. Note that this structure is efficient
rewritable media by simply making the ICB a single direct entry. Alternatively, the same struadtomes
rewritable media to support a history of all versions of a file.

Whereas there is a single algorithm for traversing an ICB hierarchy, there are many algorithms or strategies f
building these hierarchies.

ICB hierarchy

An ICB hierarchy shall be a set of ICBs descended from a root ICBrobh¢CB shall be the only ICB at level
0 of an ICB hierarchy. An ICB identifyingnothedCB by an indirect entrghall be called a pareiEB of the
identified ICB. The parerlCB shall be atevel m of thelCB hierarchyand theidentified ICBshall be atevel
m+1 of the ICB hierarchy.

Different ICBs may have the same parent ICB.

Extended attributes

An extended attribute shafipecify an attribute type, an attribuseibtype,and may specifyattribute specific
information. Extended attributes aassociated with a file. Athe extended attributessociated with a filshall be
recorded in one or more extended attributes spaces associatdtiavfile. The term “instances of aextended
attribute” shall refer tall extended attributes recorded in the extended attritapiase ofthe file with identical
contents of their Attribute Type and Attribute Subtype fields (see 4/14.10.2).

An attribute type shall be an integer x where 0<22,

An attribute subtype shall be an integewhere 0< x < 28,

The attribute types are divided into three classes as follows:

Attribute types 1, 3, 5, 612, 2 048, and 65 536 aregistered according to ISO/IEC 13880d arerecorded as
specified in4/14.10. Attributetypes 2, 4, 7, 8, 9, 18nd 11 areegistered according to ISO/IEC 13880d shall

not be recorded in the extended attribugpace of a file. Attributéypes 13 to D47 inclusive areeserved for

reserved for registration according to ISO/IEC 13800. Attrilbype O is reserved fduture standardisation by
ISO/IEC 13800.

Attribute types 2049 to 65 535 inclusive shall be registered according to ISO/IEC 1380&careed according
to 4/14.10.2 and are reserved for implementation use according to ISO/IEC 13800.

Attribute types 6537 andaboveshall be registered according to ISO/IEC 13800, ramerded according to
4/14.10.2 and are reserved for application use according to ISO/IEC 13800.

There shall be

zero or one instance of each attribute with type 1, 3, 5, 6 or 12.

- 66 -

— zero instances of each attribute with type 0, 2, 4, 7, 8, 9, 10 and 11.
— zero or more instances of each attribute with type 2 048 or 65 536.

— zero or more instances of each attribute wifie 13 to 2047 inclusive, 2 049 to 65 535 inclusive or grélader
65 536 as specified by the registration according to ISO/IEC 13800.

The interpretation of attribute specific fields for each attribute with type
— 2048: is specified by theegid (1/7.4) recorded in the Implementation Identifier field of the attribute.
— 65 536: is specified by thegid (1/7.4) recorded in the Application Identifier field of the attribute.

— 13 to 2 047 inclusive or 2 049 through 65 535 inclusive or grélager 65 536: ispecified bythe registration
according to ISO/IEC 13800 of the attribute type and subtype.

If allowed bythe registration of the attributgpe, multiple instances of an extended attribute mextce identical;
they may have different attribute specific information.

An extended attributes space of a file is one of the following:

— The Extended Attributes field of the file's File Entry.
— Afile described by an ICB identified in the file's File Entry.

In each case, an extended attributes space shall be recorded according to the schema shown in figure 4/6.

<Extended Attribute Header Descriptor>
<Extended Attribute> 0+

Figure 6 - Extended attributes space schema

Extended attributes shall becorded contiguously ithree nonoverlapping areas within an extended attritsjtese
as follows:

— The first area, starting with the firfiiyte after the Extended Attributeleader Descriptor, is reserved for the
recording of attributes defined in clauses 4/14.10.3 to 4/14.10.7.

— The seondarea, starting at byte of the extended attributepace specified in the Extended Attribliteader
descriptor, is reserved for the recording of attribute types 2 048 to 65 535 (see 4/14.10.8).

— The third area, starting atlayte ofthe extended attributespace specified ithe Extended Attributédeader
descriptor, is reserved for the recording of attribute types 65 536 and above (see 4/14.10.9).

The following extended attributes are defined in 4/14.10:
— Character Set Information
- File Times

- File Creation Date and Time, File Deletion Date and Time, File Effective Date and Time, File Last Backup Date
and Time

— Information Times

- Information Creation Datand Time,Information Last Modification Datand Time,Information Expiration
Date and Time, Information Effective Date and Time

— Alternate Permissions
— DeviceSpecification
— Application Use

- Implementation Use

- 67 -

Note 13

There need not be any extended attributes assocwitada file. The multiple occurrences of attributes of types

2 048 and 65 536, if any, are intended to be distinguished by the contents of their Implementation Identifier ¢
Application Identifier fields respectively. Such occurrences might have differing contents in some attribute spec
fields, such as the Implementation Use or Application Use fields.

10 Partition space management

A partition hastwo types of spacmanaged by Part 4pace ready for allocation (unallocated space),spadethat
may require preparatiomeforeallocation (freed space). In both caseartition space is specified by a space set
which specifies a collection of logical blocksthe partition. Aspace seshall berecorded as either@pace Table or
as a Space Bitmap as specified in 4/10.1.

The Unallocate®pace Set of partition is aspace set. If a logicddlock is inthe UnallocateSpace Set, it may be
allocated for recording.

The FreedSpace Set of partition is aspace set. If a logicéllock is inthe Freed Space Set, it may be allocated for
recording but may require preparation before recording as specified by the standard for recording.

The Unallocated and Freed Space Sets shall be identified by the Partition Header Descriptor (4/14.3).
10.1 Space sets

A space set shall be recorded as either a Space Table or as a Space Bitmap.

A Space Tableshall berecorded as an ICB hierarchy consisting of indirect en&itunallocated spacentries
(see 4/14.11). The logical blocks in the spacasetll thdogical blockswhich belong tahe extents specified by
the last Space Entry in the Space Table.

A Space Bitmaghall berecorded as a Space Bitmap Descriptor which includes a sequenbésfecorded in a
single extent, where is the number of logicdllocks inthe partition. Thesalue of bit sis recorded at bitem(s8)
of byteip(s/8), where byte 0 is the first byte of the extent. The space set consditogfcal blockss suchthat bit
sis ONE.

Note 14

It is preferable that the Standard support just one type of spaceHsetever, it is anticipated that the
unallocated partition space will be updated faihften, and that the unallocated partition spaedl get
fragmented. Bitmaps handle the latter case efficiently but are too expensive for the former eaide-amnce
media. In this case, we need the equivalent of anW@Bh essentially records many instances of an arbitrary
sequence of bytes. In fact, a Space Table is simply amvithiBlirect entries specialised for recording extents of
space. It is expected, but not required, that rewritable media will use space bitmaps and write-once media will t
space tables.

Rewritable media may also require a second space set for logical hdikls mayneed to be preconditioned
before recording. Some rewritable magneto-optic technology requires sectors be cleared before recording and
freed space lisallows this clearing to be done asynchronously \ifita freeing of that space. Clearing large
numbers of sectors at one time may also allow use of special hardware features such as cteackgeaone
operation. For rewritable medi¢hat requires no special preprocessing for rewriting sectors, likédy that the
freed space map will be empty.

11 Partition integrity

Partition integrity specifies the status of the information recorded on the madiishall be recorded as a Partition
Integrity Table specified by the Partition Header Descriptor (see 4/14.3). This is an ICB consisting of Indirect Entri
and Partition Integrity Entries (see 4/14.13) as follows:

12

12.1

- 68 -

— An Open Integrity Entry shall beecorded before anglata is recorded in the partition since the I@kise
Integrity Entry, if any, was recorded.

— A Close Integrity Entry may be recorded only atifruser data haseen completely recordeshd the descriptors
recorded on the partition conform to Part 4.

— A Stable Integrity Entrymay be recorded aftall descriptors recorded on the partiticonform toPart 4.
However,the data in files with a 0, 5, 6, 7 or 9time FileType field (see4/14.6.6) of the File Entry describing
the file need not have been recorded.

Note 15

The partition integrity entries provide a standard, portable and conveniapfor implementations to indicate that

a modified partition has had both its data and control structures properly updated. Because of optical media's large
size and relativelglowaccess, it is particularly important to avoid unnecessary consistency checks over a partition
or volume.

As an example, consider a partition mounted as asfigem on a computer. When the fissite request for that

partition is issued, an Open Integrity Entry is recorded prior to performingviite request. Whethe partition is
unmounted, a Close Integrity Entry is recorded after any queuite requestdave been performed. Periodically,

Stable Integrity Entries may be recorded after bringing up to date the data structures specified in Part 4. Finally,
systems, such as file servers, that keep file systems mounted for long periods of tiish tordinimise the risk of

a system failure and the use of lengthy recovery procedures, might adopt heuristics such as recording a Close
Integrity Entry periodically or after some delay after the last write request.

Allocation descriptors

Allocation descriptors (see 4/14.14) specify the location, length, and type of an extent. The extent’s type is one of

- recorded data,
— allocated and unrecorded space,
— space neither allocated nor recorded.

The contents of an unallocated or unrecorded extent shall be interpret#dt@8 bytesAllocation refers to the
reservation of one or more extents ¢orrent or future use, guaranteeing its availabitityrecordingand making it
unavailable for any other purpose.

A sequence of allocation descriptors shall be recorded contiguously within a field or an extent.
A field or an extent of a sequence of allocation descriptors shall be terminated by one of

— the end of the field,

— an allocation descriptor whose Extent Length field is O,

— an allocation descriptor identifying a continuation extent in which the recording cketheence of allocation
descriptors is continued. The continuation extent shall be recorded according to the schema shown in figure 4/7.

[Extent of Allocation Descriptors){
<Allocation Extent Descriptor>
<allocation descriptor> 1+

Figure 7 - Continuation extent schema

Allocation descriptors have an associated Information Length, whitfe iamount of information, ibytes, in the
extent. The Extended Allocation Descriptoreat ad (4/14.14.3) specifiesthe Information Length as a field; for
all other allocation descriptors, the Information Length shall be the same as the length of the extent.

Description of Files

The sequence of the allocation descriptors describing the extents of a file shall be recordedBedy féllewed
by a File Tail according to the schema shown in figure 4/8.

13

14
14.1

- 69 -

[File Body]{
<allocation descriptor>(extent length is a multiple of LBS) 0+
<allocation descriptor> 0+1

}
[File Tail]{

<allocation descriptor>(unrecorded and allocated) O+
}

Figure 8 - File extents schema

LBS denoteghe logicalblock size. The type ofallocation descriptor shall t&pecified bythe Flagsfield in the
ICB Tag field (see 4/14.6.8).

Note 16

A sparsefile, such as a large filevith data recordednly at the beginning and the end of the file, might be
recorded as two allocated and recorded extents separated by an unallocated and unrecorded extent.

Recording of descriptors

All the descriptors in Part 4 whose format is specified with Byte Positionss{izifl)berecorded sthat thefirst byte

of the descriptor coincides with the first byte of a logical block. All the descriptors in Radséformat is specified
with Byte Positions (BP), except fahe Space Bitmap Descriptoshall have a length no largdran thesize of a
logical block.

The descriptors ifPart 4 whoséormat is specifiedvith RelativeByte Positions (RBP) have nmestrictions on where
they may be recordedithin a logicalblock, excepthat theirlocation within a descriptor shall epecified in the
description of the applicable descriptor.

When the descriptordescribed inPart 4 areecorded in a logical bloclgll space, if any, after the end of the last
descriptor up to the end of the logid¢abck is reserved for futurstandardisation and shall becorded asll #00
bytes.

File Data Structures
File Set Descriptor

The File Set Descriptahall identify a set of filesand directoriesand shall beecorded in the format shown in
figure 4/9.

- 70 -

BP Length Name Contents
0 16 Descriptor Tag tag (4/7.2)(Tag=256)
16 12 Recording Date and Time timestamp (1/7.3)
28 2 Interchange Level uintl6 (1/7.1.3)
30 2 Maximum Interchange Level uintl6 (1/7.1.3)
32 4 Character Set List uint32 (1/7.1.5)
36 4 Maximum Character Set List uint32 (1/7.1.5)
40 4 File Set Number uint32 (1/7.1.5)
44 4 File Set Descriptor Number uint32 (1/7.1.5)
48 64 Logical Volume Identifier Character Set charspec (1/7.2.1)
112 128 Logical Volume ldentifier dstring (1/7.2.12)
240 64 File Set Character Set charspec (1/7.2.1)
304 32 File Set Identifier dstring (1/7.2.12)
336 32 Copyright File Identifier dstring (1/7.2.12)
368 32 Abstract File Identifier dstring (1/7.2.12)
400 16 Root Directory ICB long_ad (4/14.14.2)
416 32 Domain Identifier regid (1/7.4)
448 16 Next Extent long_ad (4/14.14.2)
464 48 Reserved #00 bytes

Figure 9 - File Set Descriptor format

14.1.1 Descriptor Tag (BP 0)
The Tag Identifier field of theag (4/7.2) for this descriptor shall contain 256.

14.1.2 Recording Date and Time (BP 16)
This field shall specify the date and time of the day at which this descriptor was recorded.

14.1.3 Interchange Level (BP 28)

This field shall specify the currentlevel of mediuminterchange (4/15) of théile set described byhis
descriptor.

14.1.4 Maximum Interchange Level (BP 30)

This field shall specify the maximum valughat may be specified fothe Interchangd.evel field of this
descriptor.

14.1.5 Character Set List (BP 32)

This field shall identify the character setspecified by any field, whoseontents arespecified to be a
charspec (1/7.2.1), of any descriptaspecified inPart 4 andrecorded in thdile set described byhis
descriptor.

14.1.7 Maximum Character Set List (BP 36)
The Character Set List field in this descriptor shall not specify a character siétq{2e#1) nospecified by the
Maximum Character Set List field.
Note 17

The Interchange Level, Maximum Interchange Level, Character Set List and Maximum Character Set List
fields permit an implementation to:

— determine whether it can process all of the information in the file set
— restrict the recording of information in the file set so that the file set does not exceed the level given in the
Maximum Interchange Level field

14.1.7

14.1.8

14.1.9

14.1.10

14.1.11

14.1.12

14.1.13

14.1.14

14.1.15

14.1.16

- 71 -

— restrict the recording of information in the file set so that all character sets recorded belong to the
Maximum Character Set List field.

This allows a user to create a file set that can be processed when it is returned to the user.

File Set Number (BP 40)
This field shall specify the assigned file set number for this descriptor.

File Set Descriptor Number (BP 44)
This field shall specify the assigned file set descriptor number for this descriptor.

Logical Volume Identifier Character Set (BP 48)
This field shall specify the d-characters (1/7.2) allowed in the Logical Volume Identifier field.

If the volume is recorded according Rart 3, the contents of thiield shall be identical to the contents of the
Descriptor Character Set field of the Logical Volume Descriptor describing the logical volume on wHilgh the
set described by this File Set Descriptor is recorded.

Logical Volume Identifier (BP 112)
This field shall specify an identification of the logical volume on which the file set is recorded.

If the volume is recorded according Rart 3, the contents of thiigld shall be identical to the contents of the
Logical Volume Identifier field othe Logical Volume Descriptor describirthe logicalvolume onwhich the
file set described by this File Set Descriptor is recorded.

File Set Character Set (BP 240)

This field shall specify the d-characters (1/7.2) allowed in cefiglifs of descriptors specified Bart 4 which
have been specified as containing d-characters.

Note 18

Part 4 does not specify the relationship between the contents of the File Set Character Set field and the Log
Volume ldentifier Character Set fields or the relationship of those fields to any other fields specified by Part
or by another standard.

File Set Identifier (BP 304)

This field shall specify an identification of the file set described by this File Set Descriptor.

Copyright File Identifier (BP 336)

This field shall identify a file in the rootdirectory containing a copyright statemefdr the information
recorded in the file set identified by this File Set Descriptor. Ifitié containsall #00bytes,then no suclfiile
is identified.

Abstract File Identifier (BP 368)

This field shall identify a file in the root directory containing an abstract for the information recordediia the
set identified by this File Set Descriptor. If the field contains all #00 bytes, then no such file is identified.

Root Directory ICB (BP 400)

This field shall specify the location of an ICB describing the dir@tctory ofthe directory hierarchy associated
with the file set identified by this File Set Descriptor. If the extent's length is 0, no such ICB is specified.

Domain Identifier (BP 416)

This field shall specify an identification of a domain which shall specify rules amsthef,andrestrictions on,
certainfields in descriptors subject tlgreemenbetweenthe originator andecipient of the medium. If this
field contains all #00 bytes, then no such domain is identified. The scope refgiildis (1/7.4) shall include all
information recorded in the file set described by this descriptor.

- 72 -

14.1.17 Next Extent (BP 448)

This field shall specifythe next extent where File Set Descriptoray be recorded. the extent's length is 0,
no such extent is specified.

14.1.18 Reserved (BP 464)

This field shall be reserved for future standardisation and all bytes shall be set to #00.

14.2 Terminating Descriptor

A TerminatingDescriptor may be recorded terminate an extent of a File Set Descrifeguence (se#8.3.1).
It shall be recorded in the format shown in figure 4/10.

BP Length Name Contents
0 16 Descriptor Tag tag (3/7.2) (Tag=8)
16 496 Reserved #00 bytes

Figure 10 - Terminating Descriptor format
14.2.1 Descriptor Tag (BP 0)
The Tag Identifier field of theag (3/7.2) for this descriptor shall contain 8.

14.2.2 Reserved (BP 16)
This field shall be reserved for future standardisation and all bytes shall be set to #00.

14.3 Partition Header Descriptor

The Partition Header Descriptehall specifythe UnallocatedSpace Setthe FreedSpace Setand the Partition
Integrity Table. As specified in 4/3.1, it shall be recorded with the format shown in figure 4/11.

RBP Length Name Contents
0 8 Unallocated Space Table short_ad (4/14.14.1)
8 8 Unallocated Space Bitmap short_ad (4/14.14.1)
16 8 Partition Integrity Table short_ad (4/14.14.1)
24 8 Freed Space Table short_ad (4/14.14.1)
32 8 Freed Space Bitmap short_ad (4/14.14.1)
40 88 Reserved #00 bytes

Figure 11 - Partition Header Descriptor format

14.3.1 Unallocated Space Table (RBP 0)
This field shall specify the Unallocat&pace Table fothis partition(see4/10). If the extent's length is 0, then
no Unallocated Space Table is specified.

14.3.2 Unallocated Space Bitmap (RBP 8)
This field shall identify the extent in which the Unallocat&®pace Bitmap fothis partition (see4/10) is
recorded. If the extent's length is 0, then no Unallocated Space Bitmap is specified.

14.3.3 Partition Integrity Table (RBP 16)
This field shall specifythe Partition Integrity Tabléor this partition(see4/11). If the extent's length is then
no Partition Integrity Table is specified.

14.3.4 Freed Space Table (RBP 24)

This field shall specifythe FreedSpace Table fothis partition(see4/10). If the extent's length is hen no
Freed Space Table is specified.

- 73 -

14.3.5 Freed Space Bitmap (RBP 32)

This field shallidentify the extent in which the Fre&pace Bitmap fothis partition(see4/10) is recorded. If
the extent's length is 0, then no Freed Space Bitmap is specified.

14.3.6 Reserved (RBP 40)

This field shall be reserved for future standardisation and all bytes shall be set to #00.

14.4 File ldentifier Descriptor
A File Identifier Descriptor shall be recorded in the format shown in figure 4/12.

RBP Length Name Contents
0 16 Descriptor Tag tag (4/7.2)(Tag=257)
16 2 File Version Number uintl6 (1/7.1.3)
18 1 File Characteristics uint8 (1/7.1.1)
19 1 Length of File Identifier (=L_FI) uint8 (1/7.1.1)
20 16 ICB long_ad (4/14.14.2)
36 2 Length of Implementation Use (=L_IU)| Uintl6 (1/7.1.3)
38 L IU Implementation Use bytes
[L_1U+38] L_FI File Identifier d-characters (1/7.2)
[L_FI+L_1U+38] | * Padding bytes

Figure 12 - File Identifier Descriptor format
14.4.1 Descriptor Tag (RBP 0)
The Tag Identifier field of theag (4/7.2) for this descriptor shall contain 257.

14.4.2 File Version Number (RBP 16)

This field shall specify the file version number of the file specified by the File Identifier field as a number in th
range 1 to 32 767 inclusive. The numbers 32 768 to 65 535 inclusive are reserved for future standardisation.

14.4.3 File Characteristics (RBP 18)
This field shall specify certain characteristics of the file as shown in figure 4/13.

- 74 -

Bit

Interpretation

4-7

Existence: If set to ZERGhall mean that thexistence of théile shall be made known to the user;
If set to ONE, shall mean that the existence of the file need not be made known to the user.

Directory: If set to ZEROshall mean that théle is not a directorysee4/14.6.6); If set to ONE]
shall mean that the file is a directory.

Note 1 - If the file is a symbolic link (see 4/14.6.6), the Directory bit is set to 0.

Deleted: If set to ONEshall mean this File IdentifieDescriptor identifies a filehat hasbeen
deleted; If set to ZERGshall mean that thiBile Identifier Descriptor identifies a filthat has no
been deleted.

Note 2 - The Deleted bétlows afile to be deleted from a directory by ombwriting the logical
block (s) containing the File Identifier Descriptor. Note that even if the Deleted bit is set to DNE,
all the descriptor's fields still need to be valid.

Parent: If set to ONEshall mean that the ICBeld of this descriptoidentifies thelCB associate(
with the file in which is recorded the paretitectory ofthe directorythat thisdescriptor is recordefl
in; If set to ZEROshall mean that thkCB field identifiesthe ICB associated wittthe file specified
by this descriptor

Shall be reserved for future standardisation and all bits shall be set to ZERO.

14.4.4

14.4.5

14.4.6

14.4.7

14.4.8

Figure 13 - File characteristics

If the Parent bit is set to ONE, then the Directory bit shall be set to ONE.

Length of File Identifier (=L_FI) (RBP 19)

This field shall specify the length, inbytes, ofthe File Identifier field. If the Parent bit of thEile
Characteristics field is set to ONE, the length of the File Identifier field shall be O.

ICB (RBP 20)

This field shall specifythe address of an ICB describing the file. If Delete bit ofthe File Characteristics
field of the File Identifier Descriptor is set to ONE, @B field maycontain all #0(bytes, inwhich case no
ICB is specified.

Length of Implementation Use (=L_IU) (RBP 36)

This field shall specifythe length, irbytes, ofthe Implementation Use fieltl. 1U shall be an integral multiple
of 4.

Implementation Use (RBP 38)

If L_IU is greaterthan O, thidield shall specify anidentification of an implementation, recorded asgid
(1/7.4) in the first 3dytes ofthis field, which canrecogniseandact upon the remainder of thigld, which
shall bereserved for implementation uaed itscontents are napecified bythis ECMA Standard. Thecope
of this regid includes the contents of this descriptor.

Note 21

The scope of theegid does not include the file; thus file-specific information recorded in this field may
become out of date when the file is modified, particularly if multiple File Identifier Descriptors refer to the file.

File Identifier (RBP [L_IU+38])
This field shall specify an identification for the file described by the ICB identified in the ICB field.

- 75 -

14.4.9 Padding (RBP [L_FI+L_1U+38])
This field shall be &« ip((L_FI+L_1U+ 38+3)/4) — (L_FI+L U+ 38) bytes long and shall contain all #00 bytes.
14.5 Allocation Extent Descriptor

The Allocation Extent Descriptor shall be recorded in the format shown in figure 4/14.

BP Length Name Contents
0 16 Descriptor Tag tag (4/7.2)(Tag=258)
16 4 Previous Allocation Extent Location Uint32 (1/7.1.5)
20 4 Length of Allocation Descriptors (=L_AD)| Uint32 (1/7.1.5)

Figure 14 - Allocation Extent Descriptor format
14.5.1 Descriptor Tag (BP 0)
The Tag Identifier field of theag (4/7.2) for this descriptor shall contain 258.
14.5.2 Previous Allocation Extent Location (BP 16)

This field shall specifythe address, within the partition the descriptor is recorded on, pfeki@us allocation
extent. If the extent's length is 0, the previous allocation extent is not specified.

14.5.3 Length of Allocation Descriptors (=L_AD) (BP 20)
This field specifies the length, in bytes, of the allocation descriptors recorded after this descriptor.
14.6 ICB Tag

All the entries in an ICB shall havecmmmon format; dag (4/7.2),followed by anicbtag as shown in
figure 4/15, followed by a part that is unique to each type of entry and is described in the definition of that entry.

RBP Length Name Contents
0 4 Prior Recorded Number of Direct Entrie¢s Uint32 (1/7.1.5)
4 2 Strategy Type uintle (1/7.1.3)
6 2 Strategy Parameter bytes
8 2 Maximum Number of Entries uintl6 (1/7.1.3)
10 1 Reserved #00 byte
11 1 File Type uint8 (1/7.1.1)
12 6 Parent ICB Location Ib_addr (4/7.1)
18 2 Flags uintl6 (1/7.1.3)

Figure 15 -icbtag format
14.6.1 Prior Recorded Number of Direct Entries (RBP 0)
This field specifies the number of Direct Entries recorded in this ICB hierarchy prior to this entry.
14.6.2 Strategy Type (RBP 4)

This field shall specify the strategy for building the ICB hierarchy of which the ICB is a member. The strategi
are specified by a number as shown in figure 4/16.

-76 -

Type Interpretation

0 The strategy is not specified by this clause.

1 The strategy is specified in 4/A.2.

2 The strategy is specified in 4/A.3.

3 The strategy is specified in 4/A.4.

4 The strategy is specified in 4/A.5.

5-4095 Reserved for future standardisation.

4 096-65535| The interpretation of the strateghall besubject toagreemenbetween
the originator and recipient of the medium.

Figure 16 - ICB strategies
14.6.3 Strategy Parameter (RBP 6)
This field shall be interpreted according to the strategy specified by the Strategy Type field.

14.6.4 Maximum Number of Entries (RBP 8)

This field specifies the maximum number of entries, including both diretindirect, thaimay be recorded in
this ICB. This field shall be greater than 0.

14.6.5 Reserved (RBP 10)
This field shall be reserved for future standardisation and shall be set to 0.

14.6.6 File Type (RBP 11)
This field shall specify the type of the file as shown in figure 4/17.

Type Interpretation

Shall mean that the interpretation of the file is not specified by this field
Shall mean that this is an Unallocated Space Entry (see 4/14.11)

Shall mean that this is a Partition Integrity Entry (see 4/14.13)

Shall mean that this is an Indirect Entry (see 4/14.7)

Shall mean that the file is a directory (see 4/8.6)

g b~ W N+ O

Shall mean that théle shall be interpreted as a sequence of bgash of whichmay be
randomly accessed

Shall mean that the file is a block special device file as specified by ISO/IEC 9945-1
Shall mean that the file is a character special device file as specified by ISO/IEC 9945{1
Shall mean that the file is for recording Extended Attributes as described in 4/9
Shall mean that the file is a FIFO file as specified by ISO/IEC 9945-1

10 Shall mean that théle shall be interpreted according to t8elSSOCKfile type identified
by ISO/IEC 9945-1

11 Shall mean that this is a Terminal Entry (see 4/14.8)

© 00 N O

12 Shall mean that thi#le is a symbolic link and that itsontent is a pathnan{eee4/8.7) for a
file or directory

13-255 Reserved for future standardisation

Figure 17 - File Types

- 77 -

The interpretation of the content fifes of File Types Oand 5 shall besubject toagreementbetween the
originator and recipient of the medium.

14.6.7

Parent ICB Location (RBP 12)

This field shall specifythe location of the ICB which contains an indirectry specifyingthe ICB that this
descriptor is recorded in. If this field contains 0, no such ICB is specified.

14.6.8

Flags (RBP 18)

This field shall specify recording information about the file as shown in figure 4/18.

Bit

Interpretation

0-2

© 00 N O

10
11

12

13-15

Shall be interpreted as a 3-bit unsigned binary numifetlass. The value Oshall mean that Sho
Allocation Descriptors (4/14.14.1are used. Thevalue 1 shall mean thatLong Allocation
Descriptors (4/14.14.23re used. Thealue 2shall mean thaExtended Allocation Descriptol
(4/14.14.3) are used. Tvalue 3 shall mean that ttide shall be treated as thoughhiad exactly
one allocation descriptor describing an extent which starts with thebfitstof the Allocation
Descriptors fieldand has a length, ibytes, recorded ithe Length of Allocation Descriptofgeld.

The values of 4-7 are reserved for future standardisation.

If the file is not adirectory, this bit shall baeserved for futurstandardisation anset to ZERO. If
thefile is a directory and thibit is set to ONE, theirectoryshall besorted according to 4/8.6.1.
the file is a directory and thiit is set to ZEROthe directory need not be sorted according
4/8.6.1.

Non-relocatable: If set to ZER@hall mean that there are mestrictions on howhe allocation
descriptors specifyinthefile's datamay be modified; If set t©ONE, the allocation descriptors sh
not be modified sucthat either theaddress of an extent of the file is changedhat therecorded
length of an extent is reduced.

Archive: This bit shall beset to ONE when the file is created or is writt€his bit shall beset to
ZERO in an implementation-dependent manner.

Setuid: This bit shall be interpreted as $1¢SUID bit as specified in ISO/IEC 9945-1.
Setgid: This bit shall be interpreted as $1¢SGID bit as specified in ISO/IEC 9945-1.
Sticky: This bit shall be interpreted as elSVTX bit as specified in ISO/IEC 9945-1.

Contiguous: If set to ZER@hen an extent of a file need not begirha first logicalblock after the
last logical block othe preceding extent of the file; If set to ONEen each extent of file shall
begin at the first logical block after the last logical block of the preceding extent of the file.

System: This bit shall be reserved for implementation use.

Transformed: If set to ZERO, shall mean that the recdogiex$ ofthe dataspace ofthe file are
those supplied by the user. If set to ONEall mean that thbytessupplied by the user haween
transformed in a manner not specified by this ECMA Standard prior to recording.

Multi-versions: If thefile is not adirectory,this bit shall beeserved for futurstandardisation an
shall beset to ZERO. If thdile is a directory and thbit is set to ZEROthen notwo File Identifier
Descriptors recorded in thdirectory shall have the same contentstioéir File Identifier fields. If
the file is a directoryand thebit is set to ONEthen theremay be two ormore File Identifier
Descriptors recorded in the directory with identical contents of their File Identifier fields.

Shall be reserved for future standardisation and all bits shall be set to ZERO.

—

to

=

Figure 18 - File characteristics

- 78 -

14.7 Indirect Entry
An Indirect Entry shall be recorded in the format shown in figure 4/19.

BP Length Name Contents
0 16 Descriptor Tag tag (4/7.2) (Tag=259)
16 20 ICB Tag icbtag (4/14.6) (Type=3)
36 16 Indirect ICB long_ad (4/14.14.2)

Figure 19 - Indirect Entry format
14.7.1 Descriptor Tag (BP 0)
The Tag Identifier field of theag (4/7.2) for this descriptor shall contain 259.

14.7.2 ICB Tag (BP 16)
The File Type field of thicbtag (4/14.6) for this descriptor shall contain 3.

14.7.3 Indirect ICB (BP 36)
This field shall specify the address of another ICB.

14.8 Terminal Entry
A Terminal Entry shall be recorded in the format shown in figure 4/20.

BP Length Name Contents
0 16 Descriptor Tag tag (4/7.2) (Tag=260)
16 20 ICB Tag icbtag (4/14.6) (Type=11)

Figure 20 - Terminal Entry format
14.8.1 Descriptor Tag (BP 0)
The Tag Identifier field of theag (4/7.2) for this descriptor shall contain 260.

14.8.2 ICB Tag (BP 16)
The File Type field of thicbtag (4/14.6) for this descriptor shall contain 11.

14.9 File Entry

The File Entry is a direct entry recorded in an ICB in the format shown in figure 4/21 faiypéde Oand4-10 as
specified in 4/14.6.6.

- 79 -

BP Length Name Contents
0 16 Descriptor Tag tag (4/7.2)(Tag=261)
16 20 ICB Tag icbhtag (4/14.6)
36 4 Uid Uint32 (1/7.1.5)
40 4 Gid Uint32 (1/7.1.5)
44 4 Permissions Uint32 (1/7.1.5)
48 2 File Link Count uintl6 (1/7.1.3)
50 1 RecordFormat uint8 (1/7.1.1)
51 1 Record Display Attributes uint8 (1/7.1.1)
52 4 Record_ength Uint32 (1/7.1.5)
56 8 Information Length uinté4 (1/7.1.7)
64 8 Logical Blocks Recorded uinté4 (1/7.1.7)
72 12 Access Date and Time timestamp (1/7.3)
84 12 Modification Date and Time timestamp (1/7.3)
96 12 Attribute Date and Time timestamp (1/7.3)
108 4 Checkpoint Uint32 (1/7.1.5)
112 16 Extended Attribute ICB long_ad (4/14.14.2)
128 32 Implementation Identifier regid (1/7.4)
160 8 Unique Id uinté4 (1/7.1.7)
168 4 Length of Extended Attributes (=L_EA) Uint32 (1/7.1.5)
172 4 Length of Allocation Descriptors (=L_AD) | Uint32 (1/7.1.5)
176 L EA Extended Attribute s bytes
[L_EA+176] L_AD Allocation descriptors bytes

14.9.1

14.9.2

14.9.3

14.9.4

14.9.5

Descriptor Tag (BP 0)

Figure 21 - File Entry format

The Tag Identifier field of theag (4/7.2) for this descriptor shall contain 261.

ICB Tag (BP 16)

The File Type field of thé&btag
Uid (BP 36)

This field shall specify the user ID of the owner of the file.

Note 22

(4/14.6) for this descriptor shall be recorded as specified in 4/14.6.6.

Originating systems that do not support the notion of usemiilgprobably use an arbitrary user IPand
group ID). For various historical reasons, it is recommended such systems do not choose 0 for these IDs.

Gid (BP 40)

This field shall specify the group ID of the owner of the file.

Permissions (BP 44)

This field shall specify the access allowed to the current file for certain classes of users as follows:
— If the user's user ID is the same as the Uid field, then bits 10-14 shall apply.

— Otherwise, if the user's group ID is the same as the Gid field, then bits 5-9 shall apply.

— Otherwise, bits 0-4 shall apply.

The allowed access is shown in figure 4/22.

-80 -

Bit Interpretation

0 Other: If set t&ZERO, shall mean that theser maynot executethe file; If set to ONEshall mean
that the user may execute the file.

1 Other: If set to ZERO, shall mean that the user may not write the file; If set tosDAIEmean tha}
the user may write the file.

2 Other: If set tZERO, shall mean that theser may not read the file; If set to ON#Ball mean tha}
the user may read the file.

3 Other: If set ttZERO, shall mean that theser may not change any attributes of the file; If sgt to
ONE, shall mean that the user may change attributes of the file.

4 Other: If set ttZERO, shall mean that thaser may not deletine file; If set to ONEshall mean
that the user may delete the file.

5 Group: If set to ZERGshall mean that theser maynot executethe file; If set to ONEshall mean
that the user may execute the file.

6 Group: If set to ZERGshall mean that the user may not write the file; If set to Gi¥@&ll mean
that the user may write the file.

7 Group: If set to ZERO, shall mean that the usaynot read the file; If set to ONEhall mean tha}
the user may read the file.

8 Group: If set to ZERGshall mean that theser maynot change any attributes of the file; If set] to
ONE, shall mean that the user may change attributes of the file.

9 Group: If set to ZERGshall mean that theser maynot deletethe file; If set to ONEgshall mean
that the user may delete the file.

10 Owner: If set to ZERGshall mean that theser may noéxecutethe file; If set to ONEshall mean
that the user may execute the file.

11 Owner: If set to ZERGshall mean that theser maynot write the file; If set to ONEshall mean
that the user may write the file.

12 Owner: If set to ZERO, shall mean that the user may not read the file; If set to ONE, shalianhpan
the user may read the file.

13 Owner: If set to ZERGshall mean that the user magt change any attributes of the file; If sefjto

ONE, shall mean that the user may change attributes of the file.

14 Owner: If set to ZERGshall mean that theser maynot deletethe file; If set to ONEshall mean
that the user may delete the file.

15-31 Reserved: Shall be set to ZERO.

Figure 22 - Allowed access
Note 23

File access schemes are subject to agreement between the originator and recipient of the medium as the
meanings of both user IDs and group IDs are implementation dependent; indeed, the permisditen and
access models of the receiving and originating systems may be incompatible.

The gquestion ohow tointerpret permissions on systems whichr support user IDs and group IDs is
outside the scope of Part Blowever, if a system ustse Uid, Gid andPermissions fields, it is recommended
that such systems use and set all tiiseener, group, other) sets of permissions. It is also recommehded
the Uid, Gid and Permissions fields be mapped to the appropriate fields in the implementation.

-81 -

14.9.6 File Link Count (BP 48)
This field shall specify the number of File Identifier Descriptors identifying this ICB.
Note 24

Implementations should not blindly copy the contents of this field from the source FilevBetrgopying a
directory hierarchy onto a volume. This field should only be incremented as links are made.

14.9.7 Record Format (BP 50)
This field shall specify a number identifying the format of the information in the file as shown in figure 4/23.

Number Interpretation
0 Shall mean that the structure of the information recorded in the file is not specified by this field.
1 Shall mean that the information in the file is a sequence of padded fixed-length records (see 5/9.2
2 Shall mean that the information in the file is a sequence of fixed-length records (see 5/9.2.2).
3 Shall mean that the information in the file is a sequence of variable-length-8 records (see 5/9.2.3.1
4 Shall mean that the information in the file is a sequence of variable-length-16 records (see 5/9.2.3
5 Shall mean that the information in thHige is a sequence of variable-length-16-M38cords (see

5/9.2.3.3).

6 Shall mean that the information in the file is a sequence of variable-length-32 records (see 5/9.2.3
7 Shall mean that the information in the file is a sequence of stream-print records (see 5/9.2.4).
8 Shall mean that the information in the file is a sequence of stream-LF records (see 5/9.2.5).
9 Shall mean that the information in the file is a sequence of stream-CR records (see 5/9.2.6).
10 Shall mean that the information in the file is a sequence of stream-CRLF records (see 5/9.2.7).
11 Shall mean that the information in the file is a sequence of stream-LFCR records (see 5/9.2.8).
12-255 | Reserved for future standardisation.

Figure 23 - Information format

If the File Type field otheICB Tagfield contains 1, 2, 3, 4, 8, 11 or 18e RecordFormat fieldshall contain
0.

14.9.8 Record Display Attributes (BP 51)
This field shall specify certain intended display attributes of the records in a file as shown in figure 4/24.

Attributes Interpretation
0 Shall mean that the manner of display of a record is not specified by this field.
1 Shall mean that each record shall be displayed on a character-imaging device according to 5/9.3.1.
2 Shall mean that each record shall be displayed on a character-imaging device according to 5/9.3.2.
3 Shall mean that each record shall be displayed on a character-imaging device according to /9.3.3.
4-255 Reserved for future standardisation.

Figure 24 - Record display characteristics

-82 -

14.9.9 Record Length (BP 52)
If the RecordFormat field containshe number 0O, the interpretation of tRecordLength field issubject to
agreement between the originator and recipient of the medium.

If the RecordFormat field contains either 1 or the RecordLength fieldshall specifythe length, in bytes, of
each record in the file.

If the RecordFormat field contains a numbertime range 3-11 inclusive, thiRecordLength fieldshall specify
the maximum length, in bytes, of a record that may be recorded in the file.
14.9.10 Information Length (BP 56)

The file size in bytes. This shall be equal to the sum of the Information Lengths of the allocation descriptors for
the body of the file (see 4/8.8.2 and 4/12).

Note 25

This is not necessarily the number of recorded bytes. There may be unrecorded extents or there may be
ext_ad (4/14.14.3) allocation descriptors.

14.9.11 Logical Blocks Recorded (BP 64)
The number of recorded logichlocks specified bythe allocation descriptorfr the body of the file (see
4/12.1).

14.9.12 Access Date and Time (BP 72)

This field shall specify the most recent date and time of the day of file creation @coesd tohefile prior to
recording this File Entry. This date and time shall not be earlier than the File CreatieamD&tenespecified
in the File Times Extended Attribute, if any.

Note 26

This departs a little from the interpretation in ISO/IEC 9945-1 in that read accesses since this File Entry was
recorded are ignored. This is intended to reduce updates on write-once media.

14.9.13 Moaodification Date and Time (BP 84)

This field shall specifythe most recent dasnd time of theday of file creation or write access tbe file. This
dateand time shall not be earligvan theFile Creation Datend Timespecified inthe File Times Extended
Attribute, if any.

14.9.14 Attribute Date and Time (BP 96)

This field shallspecifythe most recent datnd time of theday of file creation or modification of the attributes
of the file. This dateand time shall not be earlighan theFile Creation Dateand Timespecified inthe File
Times Extended Attribute, if any.

14.9.15 Checkpoint (BP 108)

This field shall contain 1 fathe first instance of file and shall be incremented by 1 when directed to do so by
the user. Part doesnot specifyany relationshifbetweenthe Checkpoinfield and theFile Version Number
field of the directory descriptor identifying the file.

Note 27

This fieldallowsthe user to label sequences of instances of avitle a monotonic increasing numeric tag. It
has an interpretation similar to that of the File Version Number but is not part of the file's identification and
need not have the same value as the File Version Number. The motivation is that thd offlen have no
control overwhen animplementation will flush dile to disk (and thus creating anew instance). In this
situation, the user may simply increment the Checkpoint field when it is appropriate.

14.9.16

14.9.17

14.9.18

14.9.19

14.9.20

14.9.21

14.9.22

-83 -

Extended Attribute ICB (BP 112)

This field shall specifythe ICB describing the extended attribute file tioe file. If the extent's length is 0, no
such ICB is specified.

Implementation Identifier (BP 128)

This field shall specify an identification of an implementation which can recognisact upon the contents of
the ImplementatiotJsefield, if any, of the allocation descriptofsr this File Entry. If thisfield contains all
#00 bytes,then no such implementation is identified. T8w®pe of thigegid includes the contents of the
descriptors that specify the contents and attributes of the file described by this descriptor.

Unique Id (BP 160)

This field shall specify anumeric identifier forthis file. All File Entries with the same contents tbis field
shall describe the same file or directory.

Length of Extended Attributes (=L_EA) (BP 168)

This field shall specify the length, in bytes, of the Extended Attributes field. lshai be an integral multiple
of 4.

Length of Allocation Descriptors (=L_AD) (BP 172)

This field shall specify the length, in bytes, of the Allocation Descriptors field.

Extended Attributes (BP 176)

This field shall contain an extended attributes space4&e The recorded extended attribusésill occupy at
most L_EA bytes and any unused bytes shall be set to #00.

Allocation Descriptors (BP [L_EA+176])

This field shall be asequence of allocation descriptors recorded as specifiddlihl. Any such allocation
descriptor which is specified as unrecorget! unallocated (sed/14.14.1.1) shall have its Extehbcation
field set to 0.

14.10 Extended Attributes

In this clause, the term “current file ” shall refer to the file that the extended attribute is associated with.

14.10.1

Extended Attribute Header Descriptor
The Extended Attribute Header Descriptor shall be recorded in the format shown in figure 4/25.

RBP Length Name Contents
0 16 Descriptor Tag tag (4/7.2)(Tag=262)
16 4 Implementation Attributes Location| Uint32 (1/7.1.5)
20 4 Application Attributes Location Uint32 (1/7.1.5)

Figure 25 - Extended Attribute Header Descriptor format

14.10.1.1 Descriptor Tag (RBP 0)

The Tag Identifier field of theag (4/7.2) for this descriptor shall contain 262.

14.10.1.2 Implementation Attributes Location (RBP 16)

This field shall specifythe start of the implementation use extended attributedbyie affsetfrom thestart
of an extended attributes space in which extended attributes of the current file shall be recorded.

14.10.1.3 Application Attributes Location (RBP 20)

This field shall specify the start of the applicatisse extended attributes abyde offsetfrom thestart of an
extended attributes space in which extended attributes of the current file shall be recorded.

-84 -

14.10.2 Generic format

An Extended Attribute shall beecorded in the format shown in figure 4/26. Témecification for each
extended attribute shadipecify the interpretation of the Attribut8ubtypeand Attribute Data fields of the
extended attribute.

RBP Length Name Contents
0 4 Attribute Type Uint32 (1/7.1.5)
4 1 Attribute Subtype uint8 (1/7.1.1)
5 3 Reserved #00 bytes
8 4 Attribute Length (=A_L) Uint32 (1/7.1.5)
12 A_L-12 Attribute Data bytes

Figure 26 - Generic extended attribute format

14.10.2.1 Attribute Type (RBP 0)

This field shall specify the type of the extended attribute.
14.10.2.2 Attribute Subtype (RBP 4)

This field shall specify the subtype of the extended attribute.
14.10.2.3 Reserved (RBP 5)

This field shall be reserved for future standardisation and all bytes shall be set to #00.
14.10.2.4 Attribute Length (=A_L) (RBP 8)

This field shall specify the length of the entire extended attribute.

Note 28

It is recommended that the extended attribute length be an integral multiple of 4.

14.10.2.5 Attribute Data (RBP 12)
The interpretation of this field shall depend on the value of the Attribute Type field.
Note 29

The only meaning for the Attribute Length fiédd L) isthe distance in bytes from the start of the extended
attribute to the start of the next, if any, extended attribute. The only deduction one can make is that the
amount of attribute specific data is not greater than A_L-12. It is recommended that extended attributes
with variable-sized data record the data length immediately after the Attribute Length field.

This scheme allows for arbitrary alignmenttbe attributes and their data. In particular, there may be
padding bytes between the end of the data for an attribute and the start of the next attribute.
Implementations are not required to preserve any attribute alignments.

14.10.3 Character Set Information

The Character Set Information Extended Attribute shalleoerded in the format shown in figure 4/27. The
Character Set Information Extended Attributeay be used to specifihe coded character sets used in
interpreting the contents of the current file.

-85 -

RBP Length Name Contents
0 4 Attribute Type uint32 (1/7.1.5)=1
4 1 Attribute Subtype uint8 (1/7.1.1)=1
5 3 Reserved #00 bytes
8 4 Attribute Length Uint32 (1/7.1.5)
12 4 Escape Sequences Length (=ES_L) Uint32 (1/7.1.5)
16 1 Character Set Type uint8 (1/7.1.1)
17 ES L Escape Sequences bytes

Figure 27 - Character Set Information Extended Attribute format

14.10.3.1 Attribute Type (RBP 0)

This field shall specify 1.

14.10.3.2 Attribute Subtype (RBP 4)

This field shall specify 1. All other values are reserved for future standardisation.

14.10.3.3 Reserved (RBP 5)

This field shall be reserved for future standardisation and all bytes shall be set to #00.

14.10.3.4 Attribute Length (RBP 8)
This field shall specify the length of the entire extended attribute.

Note 30

It is recommended that the extended attribute length be an integral multiple of 4.

14.10.3.5 Escape Sequences Length (=ES_L) (RBP 12)
This field shall specify the length in bytes of the Escape Sequences field.

14.10.3.6 Character Set Type (RBP 16)

This field shall specifythe character seype as specified id/7.2.1,exceptthatany informationthat would
be recorded in the Character Set Information field shall instead be recorded in the Escape Sequences fiel

14.10.3.7 Escape Sequences (RBP 17)

This field shall specify one or more escape sequences, control sequences or both escape sequences
control sequences according to ECMA-86d ECMA-48 that designateand implicitly invoke the coded
character sets to be usedinterpreting the conents of the currdite in an 8-bit environment according to
ECMA-35 or ISO/IEC 10646-1. Thesequenceshall berecorded contiguously frorthe start of thdield

and any unused bytes shall be set to #00.

14.10.4 Alternate Permissions

The Alternate Permissions extended attribspecifies fieldsthat can beused to supporthe file access
permission scheme of ECMA-119 for the current file. It shall be recorded in the format shown in figure 4/28.

Note 31

This extended attribute is an extension of the permissions field in ECMA-allévidfor the case ofvriting
information. In addition, it eliminates the inconsistencies of the specification in ECMA-119.

If the user's user ID is the same as the Owner IdentificéiBthand the user'group ID is the same as the

Group ldentification field, the user shall be treated as the owner of the file.

- 86 -

RBP Length Name Contents
0 4 Attribute Type uint32 (1/7.1.5)=3
4 1 Attribute Subtype uint8 (1/7.1.1)=1
5 3 Reserved #00 bytes
8 4 Attribute Length uUint32 (1/7.1.5)
12 2 Owner Identification uintle (1/7.1.3)
14 2 Group Identification uintle (1/7.1.3)
16 2 Permission uintl6 (1/7.1.3)

Figure 28 - Alternate Permissions Extended Attribute format

14.10.4.1 Attribute Type (RBP 0)

This field shall specify 3.
14.10.4.2 Attribute Subtype (RBP 4)

This field shall specify 1. All other values are reserved for future standardisation.
14.10.4.3 Reserved (RBP 5)

This field shall be reserved for future standardisation and all bytes shall be set to #00.
14.10.4.4 Attribute Length (RBP 8)

This field shall specify the length of the entire extended attribute.

Note 32

It is recommended that the extended attribute length be an integral multiple of 4.

14.10.4.5 Owner Identification (RBP 12)

This field shall specify as a 16-bit number an identification of twener ofthe file who is a member of the
group identified by the Group Identification field of this extended attribute.

If the number in thidield is 0,this shall indicate that there is navner identification specified fahe file.
In this case, the Group Identification field shall be set to 0.

14.10.4.6 Group ldentification (RBP 14)

This field shall specify as a 16-bit number an identification of the group of whiclowresr ofthefile is a
member.

For this numberyalues from 1 to a value subjectdgreemenbetweerthe originator andecipient of the
medium shall identify the group as belonging to the class of user referred to as System.

If the number in this field is O, this shall indicate that there is no group identification specified for the file. In
this case, the Owner Identification field shall be set to 0.

14.10.4.7 Permissions (RBP 16)

This field shall specify, forcertainclasses of users, i€ad, write,execute and delete access is allowed for
the file. The desired access shall be given if at least one of the following conditions is true:

— the user's user ID is the same as the Owner Identificigilonand the user'group ID is the same as the
Group Identification field and bits 4-7 allow the desired access,

— bits 12-15 allow the desired access,
— the user's group ID is the same as the Group ldentification field and bits 8-11 allow the desired access,

— if the user's group ID identifies a group of the System class of user and bits 0-3 allow the desired access.

The allowed access is shown in figure 4/29.

-87 -

Bit

Interpretation

10

11

12

13

14

15

If set to ZERO, shall mean thauaer who is a member of a group of Bystem class aiser may
read the file. If set to ONE, shall mean that read access is not allowed by this bit.

If set to ZERO, shall mean thauaer who is a member of a group of Bystem class aiser may
write the file. If set to ONE, shall mean that write access is not allowed by this bit.

If set to ZERO, shall mean thauaer who is a member of a group of Bystem class aiser may
execute the file. If set to ONE, shall mean that execute access is not allowed by this bit.

If set to ZERO, shall mean thauaer who is a member of a group of Bystem class aiser may
delete the file. If set to ONE, shall mean that delete access is not allowed by this bit.

If set to ZEROghall mean that thewner mayread the file. If set to ONEshall mean that rea|
access is not allowed by this bit.

If set to ZERO, shall mean that tbeiner may writehe file. If set to ONEshall mean thavrite
access is not allowed by this bit.

If set to ZEROshall mean that the owner may exectite file. If set to ONEshall mean thaf

execute access is not allowed by this bit.

If set to ZERO, shall mean that toener may deletéhe file. If set to ONEshall mean thadelete
access is not allowed by this bit.

If set to ZERO,shall mean thatiny user who has a group Hbat is thesame as thé&roup
Identification field mayread the file. If set to ONEshall mean that reaaccess is noallowed by
this bit.

If set to ZERO,shall mean thatiny user who has a group Hbat is thesame as thé&roup
Identification field may writghe file. If set to ONEshall mean thaivrite access isot allowed by
this bit.

If set to ZEROshall mean thaany user who has a group lDat is thesame as thé&roup
Identification field may execute the file. If set to ONE, shall mean that execute accesalliswet
by this bit.

If set to ZEROshall mean thaany user who has a group lDat is thesame as thé&roup
Identification field may delete the file. If set to ONE, shall miret delete access iwtallowed by
this bit.

If set to ZEROshall mean thaany user may read the file. If set to ONBall mean that rea
access is not allowed by this bit.

If set to ZEROshall mean thaany user may writ¢he file. If set to ONEshall mean thatvrite
access is not allowed by this bit.

If set to ZEROgshall mean thatiny user may executbe file. If set to ONEshall mean thal
execute access is not allowed by this bit.

If set to ZEROshall mean thaany user may deletthe file. If set to ONEshall mean thatdlelete
access is not allowed by this bit.

I

Figure 29 - Allowed access

14.10.5

- 88 -

Note 33

File access schemes are subject to agreement between the originator and recipient of the medium as the
meanings of both user IDs and group IDs are implementation dependent; indeed, the permisditen and
access models of the receiving and originating systems may be incompatible.

The question ohow tointerpret permissions on systems whichr support user IDs and group IDs is

outside the scope of Part #However, if a system uséise AlternatePermissions extended attribute, it is
recommended that such systems use and set all four (system, owner, group, other) sets of permissions. It is also
recommended that th@wner Identification, Group Identification and Permission fields be mapped to the
appropriate fields in the implementation.

File Times Extended Attribute

The File Times Extended Attribute specifies certain dates and tim#sefourrenfile and shall be recorded as
shown in figure 4/30.

RBP Length Name Contents

0 4 Attribute Type uint32 (1/7.1.5)=5
4 1 Attribute Subtype uint8 (1/7.1.1)=1
5 3 Reserved #00 bytes

8 4 Attribute Length uint32 (1/7.1.5

12 4 Data Length(=D_L) uUint32 (1/7.1.5)

16 4 File Time Existence uint32 (1/7.1.5)

20 DL File Times bytes

Figure 30 - File Times Extended Attribute format

14.10.5.1 Attribute Type (RBP 0)

This field shall specify 5.

14.10.5.2 Attribute Subtype (RBP 4)

This field shall specify 1. All other values are reserved for future standardisation.

14.10.5.3 Reserved (RBP 5)

This field shall be reserved for future standardisation and all bytes shall be set to #00.

14.10.5.4 Attribute Length (RBP 8)

This field shall specify the length of the entire extended attribute.
Note 34

It is recommended that the extended attribute length be an integral multiple of 4.

14.10.5.5 Data Length(=D_L) (RBP 12)

This field shall contain the number bfytesused to recordhe datesandtimes specified byhe File Time
Existence field.

14.10.5.6 File Time Existence (RBP 16)

This field shall specifywhich datesandtimes shall beecorded in the File Times field. A bit this field

corresponds to a particular date and time as shown in figure 4/31. If the bit is #iER@hatdateandtime

shall not be recorded. If the bit is ONE, then that date and time shall be re@&itdethtspecified in figure
4/31 are reserved for future standardisation and shall be set to ZERO.

-89 -

Bit Interpretation
0 File Creation Date and Time: the date and time of the day at which the file was created.
2 File Deletion Date and Time: the date and time oftneafter which thefile may be deleted. If thg

bit is ZERO, the file may not be deleted unless requested by the user.

3 File Effective Date and Time: the date and time of the day after which the file may be tiseditt
is ZERO, the file may be used at once.

5 File Last Backup Date and Time: the date and time of the day at which the file was last backed up.

Figure 31 - File Times
Note 35

Bits 1 and 4 are deliberately unused for compatibiliith ECMA-168 Attribute type 5 in ECMA-168 also
specifies File Last Access Date and Time and File Modification Date and Time. Those dates and times
specified in the File Entry (see 4/14.9.12 and 4/14.9.13) of Part 4.

14.10.5.7 File Times (RBP 20)

The dates antimes specified inthe File Times Existencigeld shall berecorded contiguously ithis field,
each as éimestamp (1/7.3), in ascending order of their bit positions.

14.10.6 Information Times Extended Attribute

The Information Times Extended Attribuspecifiescertain datesndtimes forthe information in the current
file and shall be recorded as shown in figure 4/32.

RBP Length Name Contents
0 4 Attribute Type uint32 (1/7.1.5)=6
4 1 Attribute Subtype uint8 (1/7.1.1)=1
5 3 Reserved #00 bytes
8 4 Attribute Length uint32 (1/7.1.5)
12 4 Data Length(=D_L) uint32 (1/7.1.5)
16 4 Information Time Existencé Uint32 (1/7.1.5)
20 DL Information Times bytes

Figure 32 - Information Times Extended Attribute format

14.10.6.1 Attribute Type (RBP 0)

This field shall specify 6.
14.10.6.2 Attribute Subtype (RBP 4)

This field shall specify 1. All other values are reserved for future standardisation.
14.10.6.3 Reserved (RBP 5)

This field shall be reserved for future standardisation and all bytes shall be set to #00.
14.10.6.4 Attribute Length (RBP 8)

This field shall specify the length of the entire extended attribute.

Note 36

It is recommended that the extended attribute length be an integral multiple of 4.

- 90 -

14.10.6.5 Data Length(=D_L) (RBP 12)

This field shall contain the number bijtesused to recorthe dates antimes specified byhe Information
Time Existence field.

14.10.6.6 Information Time Existence (RBP 16)

This field shall specifywhich datesandtimes shall beecorded in the Information Times field. A bit finis
field corresponds to a particular date and time as shown in figure 4/33. If the bit is #ieR@hatdate and
time shall not be recorded. If the bit is ONEen thatdateand time shall beecorded. Bits not specified in
figure 4/33 are reserved for future standardisation and shall be set to ZERO.

Bit Interpretation

0 Information Creation Datend Time: thedateand time of theday atwhich the information in thg
file was created.

14

1 Information Last Modification Date and Time: the date and time of the day at which the inforfation
in the file was last modified.

2 Information Expiration Datand Time: the datend time of theday after which the information i
the file may beregarded as obsolete. thie bit isZERO, the information in thdile shall not be
regarded as obsolete unless requested by the user.

3 Information Effective Date and Time: the date and time of the day after which the information} in the
file may be used. If the bit is ZERO, the information in the file may be used at once.

Figure 33 - Information Times
14.10.6.7 Information Times (RBP 20)

The dates and times specified in the Information Times Existence field shatldvded contiguously ithis
field, each as imestamp (1/7.3), in ascending order of their bit positions.

14.10.7 Device Specification

The Device Specification Extended Attributshall berecorded in the format shown in figure 4/34.sHall
specify a device subject to agreement between the originator and recipient of the medium.

RBP Length Name Contents

0 4 Attribute Type uint32 (1/7.1.5) =12
4 1 Attribute Subtype uint8 (1/7.1.1)=1

5 3 Reserved #00 bytes

8 4 Attribute Length Uint32 1/7.1.5)

12 4 Implementation Use Length (=IU_L) Uint32 (1/7.1.5)

16 4 Major Device Identification Uint32 (1/7.1.5)

20 4 Minor Device Identification Uint32 (1/7.1.5)

24 IU_L Implementation Use bytes

Figure 34 - Device Specification Extended Attribute format
14.10.7.1 Attribute Type (RBP 0)
This field shall specify 12.
14.10.7.2 Attribute Subtype (RBP 4)
This field shall specify 1. All other values are reserved for future standardisation.
14.10.7.3 Reserved (RBP 5)

This field shall be reserved for future standardisation and all bytes shall be set to #00.

-91 -

14.10.7.4 Attribute Length (RBP 8)

This field shall specify the length of the entire extended attribute.

Note 37

It is recommended that the extended attribute length be an integral multiple of 4.
14.10.7.5 Implementation Use Length (=IU_L) (RBP 12)

This field shall specify the length in bytes of the Implementation Use field.
14.10.7.6 Major Device ldentification (RBP 16)

This field may be used tspecify a deviceThe contents of thifield shall besubject toagreemenbetween
the originator and recipient of the medium.

14.10.7.7 Minor Device ldentification (RBP 20)

This field may be used tspecify a deviceThe contents of thifield shall besubject toagreemenbetween
the originator and recipient of the medium.

14.10.7.8 Implementation Use (RBP 24)

If IU_L is greaterthan O, thisfield shall specify anidentification of an implementation, recorded as a
regid (1/7.4) in the first 32ytes ofthis field, which canrecogniseandact upon the remainder of this
field, which shall bereserved for implementation usad itscontents are nogpecified bythis ECMA
Standard.

14.10.8 Implementation Use Extended Attribute

The Implementation Use Extended Attribute shall be recorded in the format shown in figure 4/35.

RBP Length Name Contents
0 4 Attribute Type Uint32 (1/7.1.5) = 2048
4 1 Attribute Subtype uint8 (1/7.1.1)=1
5 3 Reserved #00 bytes
8 4 Attribute Length Uint32 (1/7.1.5)
12 4 Implementation Use Length (=IU_L) Uint32 (1/7.1.5)
16 32 Implementation Identifier regid (1/7.4)
48 IU_L Implementation Use bytes

Figure 35 - Implementation Use Extended Attribute format

14.10.8.1 Attribute Type (RBP 0)

This field shall specify 2 048.
14.10.8.2 Attribute Subtype (RBP 4)

This field shall specify 1. All other values are reserved for future standardisation.
14.10.8.3 Reserved (RBP 5)

This field shall be reserved for future standardisation and all bytes shall be set to #00.
14.10.8.4 Attribute Length (RBP 8)

This field shall specify the length of the entire extended attribute.

Note 38

It is recommended that the extended attribute length be an integral multiple of 4.

14.10.8.5 Implementation Use Length (=IU_L) (RBP 12)
This field shall specify the length of the Implementation Use field.

14.10.8.6

14.10.8.7

-92 -

Implementation Identifier (RBP 16)

This field shall specify an identification of an implementation which can recognise and act upon the contents
of the Implementatiorise field. If this field containsall #00 bytes, then no such implementation is
identified. Thescope of thigegid includes the contents of the descripttirat specifythe contents and
attributes of the current file.

Implementation Use (RBP 48)

This field shall bereserved for implementation usehe interpretation of the contents of tffisld is not
specified by Part 4.

14.10.9 Application Use Extended Attribute
The Application Use Extended Attribute shall be recorded in the format shown in figure 4/36.

RBP Length Name Contents

0 4 Attribute Type Uint32 (1/7.1.5) = 65 536
4 1 Attribute Subtype uint8 (1/7.1.1)=1

5 3 Reserved #00 bytes

8 4 Attribute Length Uint32 (1/7.1.5)

12 4 Application Use Length(=AU_L)| Uint32 (1/7.1.5)

16 32 Application Identifier regid (1/7.4)

48 AU L Application Use bytes

14.10.9.1

14.10.9.2

14.10.9.3

14.10.9.4

14.10.9.5

14.10.9.6

14.10.9.7

Figure 36 - Application Use Extended Attribute format
Attribute Type (RBP 0)
This field shall specify 65 536.
Attribute Subtype (RBP 4)
This field shall specify 1. All other values are reserved for future standardisation.
Reserved (RBP 5)
This field shall be reserved for future standardisation and all bytes shall be set to #00.
Attribute Length (RBP 8)
This field shall specify the length of the entire extended attribute.
Note 39
It is recommended that the extended attribute length be an integral multiple of 4.
Application Use Length(=AU_L) (RBP 12)
This field shall specify the length of the Application Use field.
Application Identifier (RBP 16)

This field shall specify an identification of an application which gacogniseandact upon the contents of
the ApplicationUse field. Ifthis field containsall #00 bytes,then no such application identified. The
scope ofthisregid includes the contents of the descripttirat specifythe content@&ndattributes of the
current file.

Application Use (RBP 48)

This field shall be reserved for application use. The interpretation of the contentsfieldhis notspecified
by Part 4.

-93 -

14.11 Unallocated Space Entry

An Unallocated Space Entry is a direct entry recorded within aral@Bshall be recorded in the format shown in

figure 4/37.

Note 40

This is normally only used for write-once media.

BP Length Name Contents
0 16 Descriptor Tag tag (4/7.2) (Tag=263)
16 20 ICB Tag icbtag (4/14.6) (Type=1)
36 4 Length of Allocation Descriptors (=L_AD)| Uint32 (1/7.1.5)
40 L_AD Allocation descriptors bytes
Figure 37 - Unallocated Space Entry format
14.11.1 Descriptor Tag (BP 0)

14.11.2

14.11.3

14.11.4

The Tag Identifier field of theag (4/7.2) for this descriptor shall contain 263.

ICB Tag (BP 16)

The File Type field of thicbtag (4/14.6) for this descriptor shall contain 1.

Length of Allocation Descriptors (=L_AD) (BP 36)

This field specifies the length, tytes, ofthe Allocation Descriptors field._ AD+40 shall not be greatéhan
the size of a logical block.

Allocation Descriptors (BP 40)

This field shall contain allocation descriptors.

Thetype ofallocation descriptor shall specified bythe Flagsfield in the ICB Tagfield (see4/14.6.8). The
extent length fields of these allocation descriptors shall be an integral multiple of the logical block size.

14.12 Space Bitmap Descriptor

A Space Bitmap descriptor specifies a bit éwerylogical block in the partition and shall beecorded in the
format shown in figure 4/38.

14.12.1

14.12.2

14.12.3

BP Length Name Contents
0 16 Descriptor Tag tag (4/7.2)(Tag=264)
16 4 Number of Bits (=N_BT) | Uint32 (1/7.1.5)
20 4 Number of Bytes (=N_B) | Uint32 (1/7.1.5)
24 N_B Bitmap bytes

Figure 38 - Space Bitmap Descriptor format
Descriptor Tag (BP 0)
The Tag Identifier field of theag (4/7.2) for this descriptor shall contain 264.
Number of Bits (=N_BT) (BP 16)
This field shall specify the number of valid bits in the Bitmap field.
Number of Bytes (=N_B) (BP 20)

This field shall specifythe number obytes in the Bitmap field. The length tifis field shall not bdessthan
ip((N_BT+7)/8) bytes.

-94 -

14.12.4 Bitmap (BP 24)

This field specifies a bit for each logidabck inthe partition. The bifor logical blocks is bit rem(s8) in byte
ip(s/8), where byte 0 is the first byte in this field.

14.13 Partition Integrity Entry

A Partition Integrity Entry is a direct entry recorded in an ICB and shall be recorded in the format shown in figure

4/39.
BP Length Name Contents
0 16 Descriptor Tag tag (4/7.2) (Tag=265)
16 20 ICB Tag ichtag (4/14.6) (Type=2)
36 12 Recording Date and Time timestamp (1/7.3)
48 1 Integrity Type uint8 (1/7.1.1)
49 175 Reserved #00 bytes
224 32 Implementation Identifier| regid (1/7.4)
256 256 Implementation Use bytes

Figure 39 - Partition Integrity Entry format

14.13.1 Descriptor Tag (BP 0)

The Tag Identifier field of theag 4/7.2) for this descriptor shall contain 265.
14.13.2 ICB Tag (BP 16)

The File Type field of thicbtag (4/14.6) for this descriptor shall contain 2.
14.13.3 Recording Date and Time (BP 36)

This field shall specify the date and time of the day of recording of this Integrity Entry.
14.13.4 Integrity Type (BP 48)

This field shall specify the type of Integrity Entry. The types are shown in figure 4/40.

Type Interpretation

0 Shall mean that the entry is an Open Integrity Entry.
1 Shall mean that the entry is a Close Integrity Entry.
2 Shall mean that the entry is a Stable Integrity Entry.
3-255 Reserved for future standardisation.

Figure 40 - Integrity Entry interpretation
14.13.5 Reserved (BP 49)
This field shall be reserved for future standardisation and all bytes shall be set to #00.
14.13.6 Implementation Identifier (BP 224)

This field shall specify an identification of an implementation which can recognisact upon the contents of
the Implementation Use field. If this field contains all #00 bytes, then no such implementation is identified. The
scope othisregid includes the contents of the partition associated with this descriptor.

14.13.7 Implementation Use (BP 256)

This field shall be reserved for implementation use. Its content is not specified by this Part.

- 95 -

14.14 Allocation descriptors
14.14.1 Short Allocation Descriptor
The Short Allocation Descriptor, designatedsasrt_ad , shall berecorded in the format shown in figure

4/41.
RBP Length Name Contents
0 4 Extent Length uUint32 (1/7.1.5)
4 4 Extent Position uint32 (1/7.1.5)

Figure 41 -short_ad format

14.14.1.1 Extent Length (RBP 0)
The 30 least significant bits diis field shall be interpreted as a 30-bit unsigned binary numspecifying
the length of the extent ibytes. Unless otherwise specifiede length shall be an integral multiple of the
logical block size. The 2 most significant bitshall be interpreted as a 2-bit unsigned binary number
specifying the type of the extent as described in figure 4/42.

Value Interpretation

0 Extent recorded and allocated

1 Extent not recorded but allocated

2 Extent not recorded and not allocated
3

The extent is the next extent of allocation descriptors (see 4/12)

Figure 42 - Extent interpretation

14.14.1.2 Extent Position (RBP 4)

This field shall specifythe logicalblock number, within the partition the descriptor is recorded on, of the
extent. If the extent's length is 0, no extent is specified and this field shall contain 0.

14.14.2 Long Allocation Descriptor
The Long Allocation Descriptor, designated Ibpg _ad , shall berecorded in the format shown in figure

4/43.
RBP Length Name Contents
0 4 Extent Length Uint32 (1/7.1.5)
4 6 Extent Location Ib_addr (4/7.1)
10 6 Implementation Use bytes

Figure 43 -long_ad format

14.14.2.1 Extent Length (RBP 0)
This field shall be recorded as specified in 4/14.14.1.1.

14.14.2.2 Extent Location (RBP 4)
This field shall specify the logicalblock number of the extent. If the extent's length is 0, no extent is
specified and this field shall contain 0.

14.14.2.3 Implementation Use (RBP 10)
This field shall be reserved for implementation use. Its content is not specified by this Part.

- 96 -

Note 41

Thelong _ad (4/14.14.2) is intended for usénenthe extent's location may be on another partition (either
on this volume or another).

14.14.3 Extended Allocation Descriptor

The Extended Allocation Descriptor, designatecekly ad , shall berecorded in the format shown in figure

4/44.
RBP Length Name Contents
0 4 Extent Length uUint32 (1/7.1.5)
4 4 Recorded Length uUint32 (1/7.1.5)
8 4 Information Length uUint32 (1/7.1.5)
12 6 Extent Location Ib_addr (4/7.1)
18 2 Implementation Use bytes

Figure 44 -ext_ad format

14.14.3.1 Extent Length (RBP 0)
This field shall be recorded as specified in 4/14.14.1.1.

14.14.3.2 Recorded Length (RBP 4)

Thetwo most significant bits ofhis field arereserved for futurstandardisation and shall bet to ZERO.
The 30 least significant bits diis field shall be interpreted as a 30-bit unsigned binary numspecifying

the number obytesrecorded in the extenthis may be different fronthe number obytes specified in the
Extent Length field.

14.14.3.3 Information Length (RBP 8)

This field shall specify how manyoytes ofinformation arerecordedstarting at the firsbyte ofthe extent
identified by the Extent Location field. This may be different from the value in either the Extent fietthth
or the Recorded Length field.

14.14.3.4 Extent Location (RBP 12)

This field shall specify the logicalblock number of the extent. If the extent's length is 0, no extent is
specified and this field shall contain all #00 bytes.

14.14.3.5 Implementation Use (RBP 18)
This field shall be reserved for implementation use. Its content is not specified by Part.

Note 42

Theext_ad (4/14.14.3) is similar to théong_ad (4/14.14.2) except thathile Information Length bytes
are represented in the extent, only Recorded Length bytes have been re@dodtlkely, acompression
algorithm has been applied on the extent.) The Recorded Lahgivs implementations tcopy files(and
their extents) without knowing how or why the Recorded Length differs from the Information Length.

14.15 Logical Volume Header Descriptor

The Logical Volume Header Descriptshall specify a numeric fileanddirectory identifierand shall beecorded
with the format shown in figure 4/45 (see 4/3.1 for where this descriptor is recorded).

RBP Length Name Contents
0 8 Unique Id uinté4 (1/7.1.7)
8 24 Reserved #00 bytes

Figure 45 - Logical Volume Header Descriptor format

-97 -

14.15.1 Unique Id (RBP 0)

This field shall specify a value which is greatesn thevalue ofthe Unique Idield in any File Entry recorded
on the associated logical volume.

Note 33

The intended use of this field is to facilitate allocation of unique identifiers for files and directseies
4/14.9.18). In order to avoid having to examine every file and directory, this field should be maintained even
the rest of the volume is not conformavith thisECMA Standard. An implementation might record several

Open Integrity Descriptors consecutively just to maintain this field as a modest increment over the last val

recorded. Implementations should not assume any ordering properties for the value of this field; the val
might decrease or increase with successive descriptors. In partitidavalue in a Close Integrity Descriptor
might be less than the value in the preceding Open Integrity Descriptor.

14.15.2 Reserved (RBP 8)
This field shall be reserved for future standardisation and all bytes shall contain #00.

14.16 Pathname
14.16.1 Path Component
A Path Component shall be recorded in the format shown in figure 4/46.

RBP Length Name Contents
0 1 Component Type uint8 (1/7.1.1)
1 1 Length of Component Identifier (= L_CI) uint8 (1/7.1.1)
2 2 Component File Version Number uintle (1/7.1.3)
4 L_ClI Component Identifier d-characters (1/7.2)

Figure 46 - Path Component format

14.16.1.1 Component Type (RBP 0)

This field shall specify the component type as shown in figure 4/47.

Type Interpretation

0 Reserved for future standardisation.

1 If L_Cl is not 0, the componerspecifiesthe root of adirectory hierarchysubject toagreemen
betweenthe originator andecipient of the medium. If L_CI is @his component shakpecify the
root of a file system as specified in ISO/IEC 9945-1.

2 The component specifies the root directory ofdinectory hierarchy of whickhe predecessor of th
first component in the pathname is a member.

3 The component specifies the parent directory of the predecessor component.

4 The component specifies the same directory as the predecessor component.

5 The component identifies aibject,either a file or airectory or amalias, specified by a descriptd
of thedirectory identified bythe predecessor component, subht thecontents of the File Identifig
field of that directory descriptor is identical to the contents of the Component Identifier field.

6-255 Reserved for future standardisation.

= =

Figure 47 - Component interpretation

- 98 -

14.16.1.2 Length of Component Identifier (= L_CI) (RBP 1)

If the Componeniype field contains 1 or 5, thiteld shall specifythe length inbytes ofthe Component
Identifier field. If the Component Type field contains 5, L_CI shall be greater than 0. If the Compgment
field does not contain 1 or 5, this field shall contain O.

14.16.1.3 Component File Version Number (RBP 2)

This field shall specify the file version number of the component as follows.

If the number in this field is 0, then the highest file version number of any instance of the entity identified by
the Component Identifier field (see 4/8.7) is identified.

If the number in thidield is in the range 1 to 32 767 inclusive, tHisld shall specify the file version
number of the entity identified by the Component Identfiedd (see4/8.7). The numbers 32 768 to 65 535
inclusive are reserved for future standardisation.

If the entity identified by the Component Identiffexld (see4/8.7) is a directorythen thevalue ofthis field
shall be 0.

Note 44

This allows versions of files and aliases to be specified in recorded pathnames.

14.16.1.4 Component Identifier (RBP 4)

15

15.1

This field shall identify the component.

Levels of medium interchange

Part 4specifiesthreelevels of mediuminterchange. Théevel of a file setshall be thatevel specifyingthe most
restrictions required to record the file set according to the specifications of Part 4.

Level 1
At level 1, the following restrictions shall apply:
— The number in any Length of File Identifier field shall not exceed 12.

— A File Identifier (seet/14.4) for a directorghall conform tothe schema shown in figure 4/48.sAquence of
fileid-characters shall be sequence of d-characters (1/7.2) excluding SPACE, COMMA,L STOP and
REVERSE SOLIDUS characters except as part of a code extension ch@eet&f7.2.9.1).

[Directory File Identifier{

<fileid-characters>1+8

Figure 48 - Directory file identifier schema

— A File Identifier (see 4/14.4) for a non-directory file shall conform to the schema shown in figure 4/49.

- 99 -

[Nondirectory File Identifier]{
<fileid-characters>1+8

I{
<fileid-characters>1+8
<FULL STOP character>
<fileid-characters>0+3

}

I{ .
<fileid-characters>0+8
<FULL STOP character>
<fileid-characters>1+3

}

Figure 49 - Nondirectory file identifier schema
— There shall not be more than one descriptor in a directory with the same File Identifier.
— The value of the File Link Count field in a File Entry shall not exceed 8.
— No File Entries representing symbolic links shall be recorded.
— The maximum length of a resolved pathname (4/8.7.1) shall not exceed 64.
Note 45

For many systems, there are certéile identifierswhich will cause problems during interchange. For maximum
interchange, the following file identifiers should not be used

AUX CLOCK$ COM CON LP™ NUL PRN
wheren is one of the four characters DIGITs ONE to FOUR ani$ one of the three charactel8GITs ONE to
THREE.
Note 46

The restriction on the maximum size of resolved pathnames may be difficult to enforce incrementally. F
example, changing a directory 's name requires, in principle, checking all pathnames including that directory.
may be simpler to check this restriction as a separate processing step prior to interchange.

15.2 Level 2
At Level 2, the following restrictions shall apply:
— The number in any Length of File Identifier and Length of Component Identifier field shall not exceed 14.
— The maximum length of a resolved pathname (4/8.7.1) shall not exceed 1 023.
— The number in any File Link Count field in a File Entry shall not exceed 8.
Note 47
This interchange level provides compatibility with ISO/IEC 9945-1 file system restrictions.

15.3 Level 3
At Level 3, no restrictions shall apply.

- 100 -

Section 3 - Requirements for systems for file structure

16

17
17.1

17.2

Requirements for the description of systems

Part 4 specifiesthat certain information shall beommunicated between aserand an implementation. Each
implementation thatonforms toPart 4 shall have a descriptitimat identifies the means by which the user may
supply or obtain such information.

Note 48

The specifics of the description and the means referred to atibweary from implementation to implementation.
For example, an implementation might supper® interfaces: a preferred, convenient interface which might vet
user input, and a deprecated low level interface which allows any input specified by Part 4.

Requirements for an originating system
General

The implementation shall beapable of recording a set of filemnd all descriptors as specified /14, on a
volume set according to one of the medium interchange levels specified in 4/15.

The implementation shall beapable of recording a list of character gsse1/7.2.11) in which the bit for
Character Set Type CS2 shall be set to ONE.

If any information in thescope of aegid (1/7.4) is modified and the implementation cannemnsurethat the
information recorded within thecope othatregid still conforms tahe agreement implied by the identification
in thatregid , then the implementation shall set the Dirty bit of the Flags field ofegat to ONEandshould
not alter the Identifier field of thaegid (see 4/17.2.3).

If a domain is identified in a File Set Descriptond the file set identified is modifiemhd the implementation
cannot ensurghat thefile set still conforms tothe agreement implied by the domain identifier, then the
implementation shall set the Dirty bit (see 1/7.4) to ONE and may set the Domain Identifier Field to all #00 bytes.

Mandatory access by user

17.2.1 Files

The implementation shall obtain from the user the information that constitutes the set of files to be recorded.

17.2.2 File set

The implementation shadlllow the user tespecifywhich file set to use on a logicablumeand toidentify the
volumes on which the logical volume is recorded.

If the user specifies a logical volum&thout specifying which file set to uséaen the implementation shall use
the file set described by the File Set Descriptor having file set number 0.

17.2.3 Descriptors

The implementation shabllow the user tosupply the information that is to beecorded in each of the
following descriptor fields, and shall supply the information for a field if the user does not supply it.

File Set Descriptor:

- Maximum Interchange Level

— Maximum Character Set List

— File Set Number

— Logical Volume Identifier Character Set

17.3

17.3.1

— Logical Volume Identifier
— File Set Identifier
— Copyright File Identifier

File Identifier Descriptor:

— File Version Number
— File Characteristics
- File Identifier

The implementation shall natodify the information that isecorded in each of the following descriptor fields

- 101 -

except when directed to do so by the user:

— Maximum Interchange Level field of a File Set Descriptor
— Maximum Character Set List field of a File Set Descriptor
— Except as specified in 4/17.1, Dirty or Protected bits of any regid (1/7.4) field

— Contiguous bit of the Flags field of a File Entry

— Non-relocatable bit of the Flags field of a File Entry
— Existence bit of the File Characteristics field of a directory descriptor

Optional access by user

If the implementation permits the usergopplythe information that is to beecorded in any of théllowing
descriptor fields, the implementation shall record such information as supplied by thengsehall supply the

information for a field if the user does not supply it.

File Set Descriptor:

Character Set List
File Set Character Set
Abstract File ldentifier
Domain Identifier

File Entry:

Uid

Gid

Permissions

Record Format

Record Display Attributes
Record Length
Information Length
Access Date and Time
Modification Date and Time
Attribute Date and Time
Checkpoint

Extended Attribute Descriptor:

Attribute Type
Attribute Subtype
Attribute Information

Records

If the implementatiorallows the user tospecify that the informatiorconstituting a file is to be interpreted
according to 4/14.9.7, the implementation shall obtain from the uséenbth of eactrecord in thefile and

the bytes constituting the data space of the file.

17.3.2

17.3.3

17.4

17.4.1

17.4.2

17.4.3

17.4.4

17.4.5

-102 -

File types

If the implementatiorallows the user to specifthat afile is to be interpreted asee4/14.6.6) either dlock
specialdevice file as specified WsO/IEC 9945-1, or a character spedaice file as specified bBO/IEC
9945-1, or &IFO file as specified by ISO/IE@945-1, or according to the ISSOCKfile type identified by
ISO/IEC 9945-1, the implementation shall record the attributes supplied by thieugeat file and shall not
record those attributes if the user does not supply them.

Permissions
The implementation shouldrovide access to filesnd directories according to either, or both, of 4/14.9.5 or
4/14.10.4 However, aghe implementation’security schemenight be incompatible with these schemes, the
implementation is not required to provide such access.

Restrictions
Multivolume volume sets

The implementation shall not be required to record information owdlbenes of a volume s¢hat havebeen
assigned a sequence numbewhere 1< n < m, after any informatiomasbeen recorded otine volume of the
volume set that has been assigned sequence namber

The implementation shall not be required to record information orndiuene of a volume sdhat hasbeen
assigned sequence numimerl if there is sufficienspace to recorthe information on theolumethat has
been assigned a sequence numberhere 1< n<m.

Record length

The implementatiormay impose dimit on the length of arecord that may be recorded in a file. The
implementation is not required to record doyye beyondhe firstm bytes of a record, whera is thevalue of
the imposed limit. The value af shall be not less than 2 048.

File Times

If the File Times Extended Attribute is not recordeda file, then the implementation shdlkhave as if the
File Times Extended Attribute were recorded with the File Time Existence field having a value of 0.
Information Times

If the Information Times Extended Attribute is not recortteda file, then the implementation shdléhave as
if the Information Times Extended Attributgere recordedvith the Information Time Existendeld having a
value of 0.

Alternate Permissions
The implementatiommay ignore bits 0-3 of the Permissiofield of the Alternate Permissions (4/14.10.4)
extended attribute.

If requested by thewner ofthe file, the implementatiomay ignore bits 4-7 of the Alternate Permissions
(4/14.10.4) extended attribute.

18 Requirements for a receiving system

18.1

General

The implementation shall kmpable ofeading the files, and the recorded descriptors as specifidd4nfrom a
volume set that has been recorded according to one of the medium interchange levels specified in 4/15.

If the userspecifies a logicakolume without specifying which file set to usthen the implementation shall use
the file set described by the File Set Descriptor having file set number 0.

18.2

18.2.1

18.2.2

18.3

18.3.1

18.4
18.4.1

18.4.2

18.4.3

- 103 -

Files
The implementation shall make available to the user the information that constitutes the recorded files.
If the implementationallows the user tospecify that the informationconstituting a file is to be interpreted
according to 4/14.9.7, the implementation shall make available to the user the length of each recditd anthe
the display attributes of the file.

File types

If the implementatiorallows the user to specifthat afile is to be interpreted asee4/14.6.6) either dlock
specialdevice file as specified WsO/IEC 9945-1, or a character spedaice file as specified bSO/IEC
9945-1, or &IFO file as specified by ISO/IE@945-1, or according to the ISSOCKfile type identified by
ISO/IEC 9945-1, the implementation shall make available to the user the attributes of that file.
Permissions

The implementation shouldrovide access to filesnd directories according to either, or both, of 4/14.9.5 or
4/14.10.4 However, aghe implementation’security schemenight be incompatible with these schemes, the
implementation is not required to provide such access.

Mandatory access by user

The implementation shadlllow the user tosupplyinformation sufficient to enablghe implementation téocate
the files required by the user, and to locate the volumes on which these files are recorded.

Descriptors

The implementation shadlllow the user taaccesghe information that isecorded in each of thillowing
descriptor fields.

File Set Descriptor:

— Maximum Interchange Level
— Maximum Character Set List
— File Set Identifier

— Copyright File Identifier

— Domain Identifier

File Identifier Descriptor:

— File Version Number
— File Characteristics
— File Identifier

Restrictions
Record length

The implementatiormay impose dimit on the length of arecord to be made available to the user. The
implementation is not required to make available to the usebyeybeyondhe first mbytes of arecord,
wheremis the value of the imposed limit. The valueno$hall be not less than 2 048.

File Times

If the File Times Extended Attribute is not recordeda file, then the implementation shdlkhave as if the
File Times Extended Attribute were recorded with the File Time Existence field having a value of 0.

Information Times

If the Information Times Extended Attribute is not recoréteda file, then the implementation shdéhave as
if the Information Times Extended Attributgere recordedavith the Information Time Existendeld having a
value of 0.

- 104 -

18.4.4 Alternate Permissions

The implementatiormay ignore bits 0-3 of the Permissiofield of the Alternate Permissions (4/14.10.4)
extended attribute.

If requested by thewner ofthe file, the implementatiomay ignore bits 4-7 of the Alternate Permissions
(4/14.10.4) extended attribute.

Al

A.2

- 105 -

Annex A

(normative)

ICB Strategies

General

This annex specifies four strategies for constructing ICB hierarchies (see 4/8.10.1).

Strategy 1

This clause specifies a strategy where each ICB of anhi€rchy is an extent &fentries, wherd is thevalue of
the Maximum Number of Entries field of the ICB Tag field.

The root ICB of thdCB hierarchyshall contain ddirect entries, wherd is recorded as a Uint16(1/7.1.3) in the
Strategy Parameter field tie ICB Tag field (see 4/14.6.8), and= k — d indirect entries. The first indireentry
shall specifythe address, referred to asypel, address, of an extent kfdirect entries. Fon > 1, thenth indirect
entry shallspecify the address, referred to adype |, address of an extent &findirect entries, each of which
specifies a typé,_, address.

Note A.1
An example of an ICB hierarchy recorded using this strategy is shown in figure 4/A.1.

The maximum number of direct entridgat can baecorded in an ICB hierarchgpecified bythe strategy ofhis
clause, denoted byde(d, i),shall be

ndegd,) =d + k + k2 +..+ ki
ki+l—k
k-1

=d +

Note A.2

This strategy works well over a large range of ICB hierarchy sizesvbiks bestwhenthere is a single indirect
entry in the root ICB, that isyherethe actual number of recorded direct entries in an ICB hierarchy is not greater
than d+k.

- 106 -

[]
[]
[]
>
DE, A
DEy I
. I °
DE4 i .
IEl : Il e)]I .
: e
15 : | . IEx - I,
[}
[}
ECMA-94-0153-A IEk: Ii-l
Figure A.1 - Strategy 1 Example
DE1 d
[J
[]
[J
[J
DEg I
I
DEy !
|
: IE -, [~= '
I 1. 14 . IE_.
—
o
1 DEg .
: IEc - I
o= iz N
g . A
I - I N

ECMA-94-0154-A

Y

Figure A.2 - Strategy 2 Example

DE,
°
°
°
DEy
DE,
°
°
[]
DEk

A.3

A4

A.5

- 107 -

Strategy 2

This clause specifies a strategshich constructs a list of ICB hierarchibased orthe ICB hierarchies constructed
with strategy 1.

The root ICB of the ICB hierarchy shall be a master ICB.

A master ICB shall contaid direct entries, wherd is recorded as Bintl6 (1/7.1.3) in the Strategy Parameter
field of the ICB Tag field (seet/14.6.8), and = k — d indirect entries. The first indirect entry shafiecify the
address, referred to astype |, address, of an extent bfdirect entries. For ¥ n < i, thenth indirect entry shall
specify the address, referred to as a tymldress of an extent kindirect entries, each of which specifietypel

, address. Thih indirect entry shall specify another master ICB. All maki&s intheICB hierarchyshall specify
the same values férandd.

Note A.3
An example of an ICB hierarchy recorded using this strategy is shown in figure 4/A.2.
Note A.4

The number of direct entries that can be recorded in an ICB hierarchy specified by the strategy of this clause
limited only by the size of the logical volume it is recorded on.

Strategy 3

This clause specifies a strategy where each ICB®fCB hierarchy is an extent &fentries, wherd is thevalue of
the Maximum Number of Entries field of the ICB Tag field, and theréhdegels inthe ICB hierarchy.Thevalue of
h shall berecorded as a Uintl6 (1/7.1.3) in the Strategy Parameter field of to#B Tag field (seeicbtag
(4/14.6)) for each ICB of the ICB hierarchy. Each ICB at lével the ICB hierarchy shatlonsist ofk direct entries.
For 1< n < h, each ICB at levath consist ok indirect entries, each of whicpecifiesthe address, referred to las
of an ICB at leveh + 1 of the ICB hierarchy.

The maximum number of direct entridgat can baecorded in an ICB hierarchgpecified bythe strategy ofhis
clause, denoted hyde(k, h) shall be

nde(k, h) = k
Note A.5

This strategy builds an ICB a hierarchy that is a balanced tree. That is, all the entries at the bottom are dire
entries and all the others are indirect entries. An example of an ICB hierarchy recorded using this stigttegyis
in figure 4/A.3.

This strategy gives more (total) direct entries in a given ICB hierarchy than strategy 1 for a given d+i. However, tt
access time is constant and larger than the average access time for strategy 1.

Strategy 4

For this strategy, the ICB hierarchy shall consist of a single ICB having one direct entry.

Note A.6

This strategy works welbr rewritable media. The direct entoyould be overwrittereach time anewdirect entry is
required for the file described by the ICB.

- 108 -

AN

IE - |
E - T,
IE, . I
IEx : 11

Y

ECMA-94-0155-A

DE,
I_ TE, - In d
| []
! :
: - .
- - 1 & 1y, 4
50 IE, - 1h g\
: DE
IE . 1, 7 :
1E¢ : Ip 4
IE, - I, |[X
IE : b —| “|_DbE
> E, - L |7 .
: o
/153: L V7 *
g . L |7 _—
. IE, Iy I\
: DE;
E, . I, |7 : !
-
IE, - 1, N B %
IE . 1, N

Figure A.3 - Strategy 3 Example

- 109 -

Standard ECMA - 167

Volume and File Structure of Write-Once and Rewritable Media
using Non-Sequential Recording for Information Interchange

Part 5: Record structure

- 110 -

- 111 -

Section 1 - General

3.1

3.2

4

6.1

Scope

Part 5 specifies a format and associated system requirements for record structure by specifying:

— record structures intended for use witea information constituting a file is required to be interpreted as a set of
records;

— the attributes of the records of a file;

— requirements fothe processes whichre providedwithin information processingystems, to enable information
to be interchangebtletween different systems; fthis purpose it specifiethe functions to berovided within
systems which are intended to originate or receive media which conform to Part 5.

Parts references
See 1/2.

Part interface
This clause specifies the interface of Part 5 to other standards or Parts.

Input
Part 5 requires the specification of the following by another standard or Part.

— Data space of a file (see 5/6.1).

— If the records of thdile are to be interpreted according to 5/9.2.4, 5/9.2.5, 5/9.2.6, 5/9.2.7 or 5/9.2.8 or ar
intended to be displayed according to 5/9.3, specificatiohowf characters, including the LINE FEED,
VERTICAL TABULATION, FORM FEED, andCARRIAGE RETURNCcharacters, arencodedwithin the

data space of the file.
Output

Part 5 specifies the following which may be used by other standards or Parts.

- Identification and specification of record types (see 5/9.2).
- ldentification and specification of record display attributes (see 5/9.3).

Reference
ISO/IEC 1539:1991Iinformation technology Programming languages - FORTRAN

Conformance
See 1/3.

Definitions
In addition to the definitions of Part 1 (see 1/5), the following definition applies for Part 5.

Data space of a file
The set of bytes specified for a file shall be the data space of the file.

The bytes ofthe set shall be numbered wittonsecutiveintegers assigned in an ascending sequence. The
numbering shall start from 0 which shall be assigned to the first, if any, byte of the file.

- 112 -

7 Notation
The notation of Part 1 (see 1/6) applies to Part 5.

8 Basic types
In addition to the basic types of Part 1 (see 1/7), the following basic type applies to Part 5.
8.1 16-bit unsigned numerical values (MSB)

A Uintl6MSB value, represented by the hexadecimal representation #wxyz, stedbbaded in awo-byte field
as #wx #yz.

Note 1

For examplethe decimal number 4 660 has #1234 as its hexadecimal representation and shall be recorded as
#12 #34.

- 113 -

Section 2 - Requirements for the medium for record structure

9

Record structure

The information in dile may be organised as a set of records {¢88) according to Part 5. The length akaord
shall be the number diytes inthe record. A record shall becorded in a container whichall berecorded in the
data space of a file. This container shall be referred to as a Measured Data Unit (MDU) (see 5/9.1).

9.1

9.2

9.2.1

9.2.2

Relationship to a file

Each MDU shalcomprise a set of successive bytethef dataspace othefile (see5/6.1). The first oonly MDU
shall begin at the firdtyte ofthe dataspace othe file. Eachsuccessive MDWshall begin at théyte of the data
space of the file immediately following the last byte of the preceding MDU.

If there are ndytes inthe dataspace othe file,then no MDU shall beonsidered to have been recorded in the
file.

Record type

A record of a file recorded according to Part 5 shall be one of the following types:

— padded fixed-length (5/9.2.1)
- fixed-length (5/9.2.2)

— variable-length-8 (5/9.2.3.1)
— variable-length-16 (5/9.2.3.2)
— variable-length-16-MSB (5/9.2.3.3)
— variable-length-32 (5/9.2.3.4)
— stream-print (5/9.2.4)

— stream-LF (5/9.2.5)

— stream-CR (5/9.2.6)

- stream-CRLF (5/9.2.7)

— stream-LFCR (5/9.2.8)

All records in a file shall be of the same type.

Padded fixed-length records

A padded fixed-length recoghall be a record contained irfile that isassigned to contain recorttgat shall
have the same length. The minimum assigned length of a padded fixed-length record shall be 1.

An MDU containing a padded fixed-length recatolall berecorded according to the schema shown in figure
5/1.

[MDU |{
<record>
<#00 byte> 0+1

Figure 1 - Padded fixed-length record schema

The #00 byte shall be recorded only if necessary to give the MDU an even length.

Fixed-length records

A fixed-length record shall be a record contained in etffide¢ isassigned to contain recorttgat shallhave the
same length. The minimum assigned length of a fixed-length record shall be 1.

An MDU containing a fixed-length record shall be recorded according to the schema shown in figure 5/2.

9.2.3

- 114 -

[MDU K
<record>
}

Figure 2 - Fixed-length record schema

Variable-length records

A variable-length recordhall be a record contained irfile that isassigned to contain recorttsat may have
different lengths.

A variable-length record shall be one of the following types:

— variable-length-8 (5/9.2.3.1)
— variable-length-16 (5/9.2.3.2)
— variable-length-16-MSB (5/9.2.3.3)
— variable-length-32 (5/9.2.3.4)

A maximum recordength shall be assignédadr a file. The length ofiny record in théile shall notexceedhis
value. The minimum length of a variable-length record shall be 0.

The length of a variable-lengtiecord shall berecorded in a Recor@ontrol Word(RCW). The length of a
record doesiot include the size of thRCW. The interpretation of thealue of theRCW shall be as given in
figure 5/3, wheran denotes the number of bits in the RCW of a record for the file:

RCW Interpretation

2"-1 The RCW is the final RCW of the logical block in which the RCW is recorded
Oto2" -2 The RCW specifies the length of the record.

9.2.3.1

9.2.3.2

Figure 3 - RCW interpretation
Note 2

The length of the RCW is not included in the number recorded in the RCW.

Variable-length-8

An MDU containing a variable-length-8 recostiall berecorded according to the schema shown in figure
5/4 where the RCW is recorded asl#int8 (1/7.1.1).

[MDU K
<RCW>

{
<record>
} 0+1

Figure 4 - Variable-length-8 record schema
Variable-length-16

An MDU containing a variable-length-16 recashall berecorded according to the schema shown in figure
5/5 where the RCW is recorded asl#intl6 (1/7.1.3).

9.2.3.3

9.2.3.4

9.2.4

- 115 -

[MDU K
<RCW>
{
<record>
<#00 byte> 0+1
} 0+1
}

Figure 5 - Variable-length-16 record schema
The #00 byte shall be recorded only if necessary to give the MDU an even length.

Variable-length-16-MSB

An MDU containing a variable-length-16-MSB recasidall berecorded according to the schema shown in
figure 5/6 where the RCW is recorded adam16MSB (5/8.1).

[MDU K
<RCW>
{
<record>
<#00 byte> 0+1
}0+1
}

Figure 6 - Variable-length-16-MSB record schema
The #00 byte shall be recorded only if necessary to give the MDU an even length.

Note 3

The use of variable-length-16-MSB records is included only for compatikility ECMA-119. It is
recommended that variable-length-16 records be used instead.
Variable-length-32

An MDU containing a variable-length-32 recashall berecorded according to the schema shown in figure
5/7 where the RCW is recorded asl#int32 (1/7.1.5).

[MDU K
<RCW>
{
<record>
}0+1
}

Figure 7 - Variable-length-32 record schema
Stream-print records

A stream-print recorchall be a record contained infiee that isassigned to contain recortisat may have
different lengths.

A maximum recordength shall be assignddr a file assigned to contastream-print records. The length of
any record in the file shall not exceed this value. The minimum length of a stream-print record shall be 0.

The first byte of a stream-print record shall not be a #00 byte.

An MDU containing a stream-print record shall be recorded according to the schema shown in figure 5/8.

- 116 -

[MDU K
<#00 byte> 0+
{
<record> <LINE FEED character>
| <record><VERTICAL TABULATION character>
| <record><FORM FEED character>
| <record><CARRIAGE RETURN character> <LINE FEED character>
}
}

Figure 8 - Stream-print record schema
9.2.5 Stream-LF records

A stream-LF recordhall be a record contained infiee that isassigned to contain recordsat may have
different lengths.

A maximum record length shall be assigrieda file assigned to contain stream-LF recofidge length of any
record in the file shall not exceed this value. The minimum length of a stream-LF record shall be 0.

An MDU containing a stream-LF record shall be recorded according to the schema shown in figure 5/9.

[MDU |{
<record> <LINE FEED character>
}

Figure 9 - Stream-LF record schema

9.2.6 Stream-CR records

A stream-CR recorghall be a record contained infile that isassigned to contain recortisat may have
different lengths.

A maximum record length shall be assigned for a file assigned to contain stream-CR records. The length of any
record in the file shall not exceed this value. The minimum length of a stream-CR record shall be 0.

An MDU containing a stream-CR record shall be recorded according to the schema shown in figure 5/10.

[MDU |{
<record> <CARRIAGE RETURN character>
}

Figure 10 - Stream-CR record schema
9.2.7 Stream-CRLF records

A stream-CRLF recorghall be a record contained irfike that is assigned to contain recottiat may have
different lengths.

A maximum recordength shall be assignddr a file assigned to contain stream-CRLF recofde length of
any record in the file shall not exceed this value. The minimum length of a stream-CRLF record shall be 0.

An MDU containing a stream-CRLF record shall be recorded according to the schema shown in figure 5/11.

[MDU |{
<record> <CARRIAGE RETURN character> <LINE FEED character>
}

Figure 11 - Stream-CRLF record schema
9.2.8 Stream-LFCR records

A stream-LFCR recorghall be a record contained irfie that is assigned to contain recottiat may have
different lengths.

9.3

9.3.1

9.3.2

9.3.3

- 117 -

A maximum recordength shall be assignddr a file assigned to contain stream-LFCR recofd& length of
any record in the file shall not exceed this value. The minimum length of a stream-LFCR record shall be 0.

An MDU containing a stream-LFCR record shall be recorded according to the schema shown in figure 5/12.

[MDU |{
<record> <LINE FEED character> <CARRIAGE RETURN character>
}

Figure 12 - Stream-LFCR record schema

Record display attributes

This clause specifies the processing of the records in a file whearthdigplayed on a character-imagidgvice.
If the file is not recorded with any dhe recordypes (seé&/9.2) specified inPart 5, then theecords of thdile
need not be processed according to the record display attributes specified by this clause.

A file recorded with records according Rart 5 shall be assigneshe of thefollowing types of record display
attributes

LF-CR (5/9.3.1)

first byte position (5/9.3.2)
implied (5/9.3.3)

LF-CR display attribute

When displayed on a character-imagingvice,each record of théle shall bepreceded by a LINE FEED
character and followed by a CARRIAGE RETURN character.

First byte position display attribute

Whendisplayed on a&haracter-imaginglevice,the firstbyte of each record of thide shall be interpreted as
specified in ISO 1539 for vertical spacing.

Implied display attribute

Whendisplayed on aharacter-imaginglevice, each record tfie file shall be interpreted as containing the
necessary control information for the imaging device.

- 118 -

Section 3 - Requirements for systems for record structure

10 Requirements for the description of systems

Part 5 specifiesthat certain information shall beommunicated between aserand an implementation. Each
implementation thatonforms toPart 5 shall have a descriptitimat identifies the means by which the user may
supply or obtain such information.

Note 4

The specifics of the description and the means referred to atibweary from implementation to implementation.
For example, an implementation might supper® interfaces: a preferred, convenient interface which might vet
user input, and a deprecated low level interface which allows any input specified by Part 5.

11 Requirements for an originating system

111
11.1.1

11.1.2

General

Files

If the implementatiorallows the user tospecify that the informatiorconstituting a file is to be interpreted
according to a recortype specified irb/9.2, the implementation shall obtdiom the user théength of each
record in the file.

If the implementatiorallows the user tospecify that the informatiorconstituting a file is to be interpreted
according to a record display attribute specifiedbif.3, the implementation shall obtditom the user the
record display attribute for the file.

Record length

The implementatiormay impose dimit on the length of arecord that may be recorded in a file. The
implementation is not required to record doyye beyondhe firstm bytes of a record, whera is thevalue of
the imposed limit. The value af shall be not less than 2 048.

12 Requirements for a receiving system

12.1
12.1.1

12.1.2

General

Files
If the implementatiorallows the user tospecify that the informatiorconstituting a file is to be interpreted

according to a recortype specified irb/9.2, the implementation shall make available to the user the length of
each record in the file.

If the implementatiorallows the user tospecify that the informatiorconstituting a file is to be interpreted
according to a record display attribute specified/f®.3, the implementation shall make available to the user
the record display attribute for the file.

Record length

The implementatiormay impose dimit on the length of arecord to be made available to the user. The
implementation is not required to make available to the usebyeybeyondhe first mbytes of arecord,
wheremis the value of the imposed limit. The valueno$hall be not less than 2 048.

Printed copies can be ordered from:

ECMA
114 Rue du Rhobne
CH-1204 Geneva

Switzerland
Fax: +41 22 849.60.01
Internet: helpdesk@ecma.ch

Files can bedownloaded from our FTP sitép.ecma.ch,logging in asanonymousand givingyour E-mail address as
password This Standard igvailable from libraryfECMA-ST as a compacted, self-expanding file in MSW6r@ format
(file {E167-DOC.EXE)and as aompacted, self-expanding PostScript file (file E167-PSC.EXE). File E167-EXR)iN§S
a short presentation of the Standard.

The ECMA site can be reached also via a modem. The phone number is +41 22 735.33.29, modears&tmitsTelnet
(at ftp.ecma.ch) can also be used.

Our web site, http://www.ecma.ch, gives full information on ECMA, ECMA activities, ECMA StandandsTechnical
Reports.

ECMA

114 Rue du Rhéne
CH-1204 Geneva
Switzerland

Fax: +41 22 849.60.01
Internet: helpdesk@ecma.ch

This Standard ECMA-167 is available free of charge in printed form (and as a file).

See inside cover page for ordering instructions.

