
Common Language

Infrastructure (CLI)

Introduction and

Class Library Factorization

Hewlett-Packard

Intel

Microsoft

Outline

What is the CLI?

Factoring the Base Class Libraries

Categories

Packages by Category

Questions and Answers

Overview of the CLI

A file format

A common type system

An extensible metadata system

An intermediate language

Access to the underlying platform

A factored base class library

File Format

 Based on COFF

 Uses existing extension mechanism

 Code represented as MSIL instructions

 Metadata stored in read-only area

 EAT / IAT for access to platform only

 Methods include a descriptive header
 Stack frame size

 Types of local variables and parameters

 Pinned variable information

 Exception handler table

Common Type System

Spans large number of languages

Object-oriented in flavor

Supports procedural and functional
languages, too

 Includes value types (“structs”),
pointers, and by-reference values

Subset for wide reach

Common Language Specification (CLS)

Metadata System

 Self-description for assemblies (components)
 Includes referenced assemblies

 Allows crypto-strong names

 Records version information

 Security boundary

 Self-description for types
 Name and defining assembly

 Member information (fields, methods, etc.)

 Extensible through custom attributes

 Stored in file along with code

Intermediate Language

 Simple stack machine model

 Typeless opcodes (add, not add.int32)
 Signed and unsigned via opcode, not type

 Rich set of conversion operations

 Verifiable subset

 Tail calls, virtual dispatch, call via function pointer,
exception handling (two-pass)

 Typed variable argument lists, dynamically typed
pointers

 Objects, vectors, and strings are built-in
 As are 32- and 64-bit integers and floats, and 32/64-bit

agnostic integers

Access to Platform

Metadata describes managed and
unmanaged interface

Marshaling is automatic for many types

Custom marshaling can be specified

Platform-specific transformations are
possible (ANSI <-> Unicode, etc.)

Platform-specific calling conventions
can be specified

Factored Class Library

Designed for cross-language use

Adheres to the CLS rules

Factored to allow minimal footprint and
minimal hardware requirements

 Intended to be platform-neutral

Three layers: kernel, basic language,
additional functionality

Methodology and details follow….

Outline

What is the CLI?

Factoring the Base Class Libraries

Categories

Packages by Category

Questions and Answers

Goals

 Factored Class Library
 Size constraints (RAM, ROM, Flash)

 Computational constraints (FPU, 64bit support)

 Feature requirements

 Factored Execution Environment
 Minimal base is always present

 File format independent of factorization

 Library factorization is the driver

 Standardization allows …
 … vendors to specify what’s available

 … developers to specify requirements

Methodology
 Define Kernel

 Fixes file format

 Minimal functionality and hardware

 Hand-picked classes and methods

 Define Basic Language
 Minimal hardware support required

 Most common language features
 Features required for C# with minimal hardware support

 Depends on classes defined in Kernel

 Package each advanced function separately
 Implemented a la cart by runtime vendors

 Required a la cart by developers

Defining a Package
 Choose the classes

 A class can only be in one package

 Minimize and specify dependencies on packages

 Base class in package or one it depends on

 Basic Language depends on the Kernel
package

 All other packages depend on both Kernel
and Basic Language

 Compute the missing methods
 Check it makes sense, new dependencies

 Interfaces may be in another package
 Methods will exist, just can’t cast to interface

Languages and Packages

C#

Requires Kernel, Basic Language, and
Extended Numerics

ECMAScript

Requires above plus Reflection

 ISO C++

Requires Kernel, Basic Language,
Extended Numerics, and NonCLS

Scenario-based System Design

Scenario Required

Packages

Minimal Kernel

C# Program Kernel, Basic

Language

Ex: Connected C#

Application

Kernel, Basic

Language,

Common DT,

Networking

Ex: Connected

XML C#

Application

Kernel, Basic

Language,

Common DT,

Advanced DT,

Networking, XML,

IO, Collections

Core Execution
Engine

Base Language

XML Standard IO

Networking
Common Data

Types

Advanced Data
Types

Collections

Core Execution

Engine

Core Execution
Engine

Core Execution

Engine

Base Language

Base Language
Common Data

Types
Networking

Minimal .Net Execution

Example: Advanced C# App

Example: Connected C# App

C# Program Execution

Outline

What is the CLI?

Factoring the Base Class Libraries

Categories

Packages by Category

Questions and Answers

Categories of Packages

 Classes grouped into packages

 Packages grouped into five categories
 For ease of discussion only

Core Execution
Engine

Dev elopment
Time Classes

Base Language

GlobalizationAdv anced XML RemotingAsy nch Support XML

Standard IO NetworkingSecurity Threading

Serialization
Regular

Expressions
Extended
Numerics

Common Data
Types

Adv anced Data
Types

Collections

Non-CLS
Support

Ref lectionUnmanagedHostingGC

EE Functionality

Not In Buckets

High Level Programming

Common Programming Utilities

Abstract OS Interfaces

Miscellaneous

High Level Programming

Abstract OS Interfaces

Common Programming Utilities

EE Functionality

The Five Categories (1 – 3)

 Abstract OS Interface

 Platform-independent operating system

functionality

 Common Programming Library

 Classes that support common programming

patterns

 High-Level Programming

 Programming patterns for the 2000s: XML, remote

objects, asynchronous computing

The Five Categories (4 – 5)

EE Functionality

Revealing underlying operations to

programming languages

Miscellaneous

Kernel, Basic Language, and support for

developers

Outline

What is the CLI?

Factoring the Base Class Libraries

Categories

Packages by Category

Questions and Answers

Abstract OS Interface

183 Classes and interfaces

 Networking (60)
 System.Net.*

 Security (60)
 System.IsolatedStorage, System.Security, …

 Standard I/O (32)
 System.Console, System.IO, System.Text, …

 Threading (31)
 System.Threading, …

Common Programming Lib.
118 Classes and interfaces

 Common Data Types (5)
 System.DateTime, System.Text.StringBuilder, etc.

 Advanced Data Types (11)
 System.BitConverter, System.URI, …

 Collections (27)
 System.Collections

 Extended Numerics (6)
 System.Decimal, System.Double, etc.

 Regular Expressions (8)
 System.Text.RegularExpressions.*

 Serialization (61)
 System.Runtime.Serialization.*, etc.

High-Level Programming

188 Classes and interfaces

 Asynchronous Programming (2)
 System.AsyncCallback, System.IAsyncResult

 Globalization (39)
 System.Globalization.*, System.Resources.*, etc.

 Remoting (88)
 System.Runtime.Remoting.*

 XML (54)
 System.Xml.* (parsing and generation)

 Advanced XML (5)
 System.Xml.Xsl.*, System.Xml.XPath.*

EE Functionality

96 Classes and interfaces

 GC (2)
 System.WeakReference,

System.WeakReferenceException

 Hosting (3)
 System.OperatingSystem, etc.

 NonCLS (3)
 System.ArgIterator, etc.

 Reflection (62)
 System.Reflection.*, etc.

 Unmanaged (26)
 System.Runtime.InteropServices, etc.

Miscellaneous

107 Classes and interfaces

 Kernel (66)

 1, 2, and 4 byte integers, arrays, string, object, etc.

 Basic Language Support (17)

 System.EventHandler, System.IFormattable,

System.Type, etc.

 Development Time (24)

 System.Diagnostics.*,

System.Runtime.CompilerServices.*

Outline

What is the CLI?

Factoring the Base Class Libraries

Categories

Packages by Category

Questions and Answers

	Slide 1: Common Language Infrastructure (CLI)
	Slide 2: Outline
	Slide 3: Overview of the CLI
	Slide 4: File Format
	Slide 5: Common Type System
	Slide 6: Metadata System
	Slide 7: Intermediate Language
	Slide 8: Access to Platform
	Slide 9: Factored Class Library
	Slide 10: Outline
	Slide 11: Goals
	Slide 12: Methodology
	Slide 13: Defining a Package
	Slide 14: Languages and Packages
	Slide 15: Scenario-based System Design
	Slide 16: Outline
	Slide 17: Categories of Packages
	Slide 18: The Five Categories (1 – 3)
	Slide 19: The Five Categories (4 – 5)
	Slide 20: Outline
	Slide 21: Abstract OS Interface
	Slide 22: Common Programming Lib.
	Slide 23: High-Level Programming
	Slide 24: EE Functionality
	Slide 25: Miscellaneous
	Slide 26: Outline

