ommon Language
frastructure (CLI)

Introduction and
Class Library Factorization

Hewlett-Packa
Inte

Microso

Outline

\What is the CLI?

Factoring the Base Class Libraries
Categories

Packages by Category

Questions and Answers

Overview of the CLI

#* A file format

A common type system

#* An extensible metadata system
An intermediate language

Access to the underlying platform
A factored base class library

File Format

Based on COFF

Uses existing extension mechanism

Code represented as MSIL instructions
Metadata stored in read-only area

EAT / IAT for access to platform only

Methods include a descriptive header
Stack frame size
Types of local variables and parameters
Pinned variable information
Exception handler table

Common Type System

Spans large number of languages
Object-oriented in flavor

#* Supports procedural and functional
o8 languages, too

#* Includes value types (“structs™),
pointers, and by-reference values

~ #*Subset for wide reach
1 Common Language Specification (CLS)

Metadata System

?ﬁ' # Self-description for assemblies (components)
L Includes referenced assemblies
Allows crypto-strong names
: Records version information
4 Security boundary
#* Self-description for types

Name and defining assembly

Member information (fields, methods, etc.)
1-* # Extensible through custom attributes

Stored In file along with code

'h

Intermediate Language

Simple stack machine model

#* Typeless opcodes (add, NOt add.int32)

Signed and unsigned via opcode, not type
Rich set of conversion operations

#* \erifiable subset

#* Talil calls, virtual dispatch, call via function pointer,
exception handling (two-pass)

Typed variable argument lists, dynamically typed

pointers
- # Objects, vectors, and strings are built-in
%; | As are 32- and 64-Dbit integers and floats, and 32/64-bit
% agnostic integers

Access to Platform

Metadata describes managed and
unmanaged interface

Marshaling is automatic for many types
Custom marshaling can be specified

#* Platform-specific transformations are
possible (ANSI <-> Unicode, etc.)

Platform-specific calling conventions
can be specified

Factored Class Library

Designed for cross-language use
Adheres to the CLS rules

Factored to allow minimal footprint and
minimal hardware requirements

#* Intended to be platform-neutral

#* Three layers: kernel, basic language,
additional functionality

i * Methodology and details follow....

Outline

\What is the CLI?

Factoring the Base Class Libraries
Categories

Packages by Category

Questions and Answers

Goals

Factored Class Library
Size constraints (RAM, ROM, Flash)
Computational constraints (FPU, 64bit support)
Feature requirements

#* Factored Execution Environment
Minimal base is always present
File format independent of factorization
Library factorization is the driver

Standardization allows ...

... vendors to specify what’s available
... developers to specify requirements

Methodology

Define Kernel
Fixes file format
Minimal functionality and hardware
Hand-picked classes and methods

Define Basic Language
Minimal hardware support required

Most common language features
Features required for C# with minimal hardware support

Depends on classes defined in Kernel

Package each advanced function separately
Implemented a la cart by runtime vendors
Required a la cart by developers

.+ # Defining a Package
~. & = Choose the classes

?i A class can only be in one package
: Minimize and specify dependencies on packages
q Base class in package or one it depends on
' =% Basic Language depends on the Kernel
1, package
#* All other packages depend on both Kernel
and Basic Language

Compute the missing methods

%; Check it makes sense, new dependencies

Interfaces may be in another package
Methods will exist, just can’t cast to interface

* CH

Requires Kernel, Basic Language, and
Extended Numerics

#* ECMAScript
Requires above plus Reflection

#* SO C++

Requires Kernel, Basic Language,
Extended Numerics, and NonCLS

»+ * Scenario-based System Design

Scenario Required
Packages
Minimal Kernel ‘
% C# Program Kernel, BaS|C | .Net Execution
Ex: Connected C# Kernel’ BaS|C C#Program Execunon
Application Language,
Common DT, 4}‘.##}1
Networklng Example: Connected C# App
Ex: Connected Kernel, Basic {P e #}1#}1{?#}1#}1#}1
hﬂ XML C# Language’ Example: Advanced C# App
i Application Common DT,
Advanced DT,
Networking, XML,
O, Collections

Outline

\What is the CLI?

Factoring the Base Class Libraries
Categories

Packages by Category

Questions and Answers

. o
.+ # Categories of Packages
'55;. # Classes grouped into packages

% # Packages grouped into five categories
For ease of discussion only

- Miscellaneous

High Level Programming) l
Abstract OS Interfaces & l

L
5

EE Functionality S Sl

The Five Categories (1 — 3)

Abstract OS Interface

Platform-independent operating system
functionality

Common Programming Library

Classes that support common programming
patterns

#* High-Level Programming

5 Programming patterns for the 2000s: XML, remote
%; ; objects, asynchronous computing

The Five Categories (4 — 5)

EE Functionality
Revealing underlying operations to
programming languages
Miscellaneous

Kernel, Basic Language, and support
developers

Outline

\What is the CLI?

Factoring the Base Class Libraries
Categories

Packages by Category

Questions and Answers

Abstract OS Interface

183 Classes and interfaces
Networking (60)
System.Net.*
#* Security (60)
System.lsolatedStorage, System.Security, ...
#* Standard 1/0O (32)
System.Console, System.lO, System.Text, ...
Threading (31)
System.Threading, ...

% Common Programming Lib.

118 Classes and interfaces

Common Data Types (5)

ﬁ*
@ q
t : System.DateTime, System.Text.StringBuilder, etc.

#* Advanced Data Types (11)
System.BitConverter, System.URI, ...
= = Collections (27)
System.Collections
Extended Numerics (6)
System.Decimal, System.Double, etc.
» % Reqgular Expressions (8)
%; System.Text.RegularExpressions.*
" = Serialization (61)
System.Runtime.Serialization.*, etc.

High-Level Programming

188 Classes and interfaces

Asynchronous Programming (2)
System.AsyncCallback, System.lAsyncResult

#* Globalization (39)
System.Globalization.*, System.Resources.*, etc.

Remoting (88)
System.Runtime.Remoting.*

XML (54)
System.Xml.* (parsing and generation)

Advanced XML (5)
System.Xml.Xsl.*, System.Xml.XPath.*

EE Functionality

96 Classes and interfaces
#* GC (2)

System.WeakReference,
System.WeakReferenceException

#* Hosting (3)
System.OperatingSystem, etc.

NonCLS (3)
System.Arglterator, etc.

#* Reflection (62)
System.Reflection.*, etc.

Unmanaged (26)
System.Runtime.InteropServices, etc.

Miscellaneous

107 Classes and interfaces

#* Kernel (66)
1, 2, and 4 byte integers, arrays, string, object, etc.

Basic Language Support (17)
System.EventHandler, System.IFormattable,
System.Type, etc.

Development Time (24)

System.Diagnostics.*,
System.Runtime.CompilerServices.*

Outline

\What is the CLI?

Factoring the Base Class Libraries
Categories

Packages by Category

Questions and Answers

	Slide 1: Common Language Infrastructure (CLI)
	Slide 2: Outline
	Slide 3: Overview of the CLI
	Slide 4: File Format
	Slide 5: Common Type System
	Slide 6: Metadata System
	Slide 7: Intermediate Language
	Slide 8: Access to Platform
	Slide 9: Factored Class Library
	Slide 10: Outline
	Slide 11: Goals
	Slide 12: Methodology
	Slide 13: Defining a Package
	Slide 14: Languages and Packages
	Slide 15: Scenario-based System Design
	Slide 16: Outline
	Slide 17: Categories of Packages
	Slide 18: The Five Categories (1 – 3)
	Slide 19: The Five Categories (4 – 5)
	Slide 20: Outline
	Slide 21: Abstract OS Interface
	Slide 22: Common Programming Lib.
	Slide 23: High-Level Programming
	Slide 24: EE Functionality
	Slide 25: Miscellaneous
	Slide 26: Outline

