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Chapter 1

Introduction

Contents

1.1 Why is encryption important? . . . . . . . . . . . . . . . . . . . . . . 11

1.2 Why fast cryptography? . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3 How to make cryptographic systems faster? . . . . . . . . . . . . . . 12

1.4 Goal of this paper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.1 Why is encryption important?

Nowadays, electronic communication is being widely used. There are many commercial applications
that require security, but the distributed architecture of communication networks allows many
attacks against private communications. In a first approximation, we can classify these attacks
regarding four non-disjoint security categories.

• Authentification: an attacker can pretend to be someone else in order to get private
information. Therefore, in a secure communication, the two parties may want to be sure of
the identity of their interlocutor.

• Integrity: it is often wanted to check if a message has been modified by an unauthorized
third party.

• Privacy: a message can contain some private information which must not be read by an
unauthorized person.

• Non-repudiation: if we want a message to have a juridic value, for example to be an
evidence in a trial, the author of the message must not be able to repudiate the content of
this message.

Cryptography offers many algorithms and protocols to satisfy these criteria. For example, data
encryption protects the privacy of many commercial transactions either on the Internet or on bank
terminals. Cryptography can be seen as a tree whose roots are the mathematical algorithms,
whose trunk is the concrete implementation of mathematical descriptions, whose branches are the
protocols which use the implementations, and whose leaves are the cryptographic applications.

11



12 CHAPTER 1. INTRODUCTION

1.2 Why fast cryptography?

In the case of Internet banking, SSL servers are often overloaded with many simultaneous requests.
Instead of developing the hardware, it is always possible to look for faster algorithms in order to
speed up encryption and decryption stages. In the bank terminal case, smart cards only have light
embedded systems and must be cheap but also secure. It is necessary to develop fast cryptographic
algorithms in order to fit the poor calculation capabilities of such embedded systems. In general,
it is always wanted to keep the hardware cheap and the system fast and secure. But there is an a
priori contradiction between speed and security: the main security parameter of a cryptosystem
is the length of the key. This key is used to encrypt and/or decrypt messages; the longer it is,
the more secure is the communication. However, increasing the length of the key can drastically
slow down encryption and decryption stages. That is why we have to investigate solutions allowing
us to improve the security without slowing down the system or requiring expensive hardware. If
we achieve the creation of a fast cryptosystem, we can use keys long enough to make the system
resistant against the current attacks running on the fastest computers.

1.3 How to make cryptographic systems faster?

We can investigate three directions in order to speed up a cryptographic system.

• Developing the hardware: it is possible to embed cryptographic devices with fast arith-
metic units or co-processors which consequently speed-up the cryptographic computations.

• Optimizing the software: the compilator can be optimized in order to speed-up the
programs.

• Finding new mathematical solutions: the algorithms themselves can be modified in
order to achieve a better computation speed.

While developing a cryptographic system, all of these three solutions are practically taken into
account. But in this paper, we will only describe mathematical solutions enhancing algorithms
which are already widely used.

1.4 Goal of this paper

In this paper, we will show a comprehensive description of fast algorithms based on the de facto
standard RSA, namely:

• RSA using the Chinese remainder theorem: using a modulus like N = PQ, where P
and Q are primes, it is possible to speed up the decryption stage.

• Rebalanced RSA: under some conditions, the secret key d can be chosen so that the
decryption becomes much faster, at the expense of the encryption [Wie90].

• Multi-Prime RSA: this is the extension of RSA using the Chinese remainder theorem with
a modulus N = PQR [CHLS97].
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• Multi-Power RSA: this cryptosystem is currently being developed and offers interesting
properties [Tak98].

• Batch RSA: batching several decryptions allows an overall speed-up, sparing a lot of re-
sources [Fia89].
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Chapter 2

Basic mathematic algorithms

Contents

2.1 Asymptotic behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Arithmetic of integers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Modular arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 Architecture of smart cards . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5 Analysis organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.1 Asymptotic behavior

2.1.1 Analyzing an algorithm

The main security parameter of current cryptographic algorithms is the key length. A big key
will ensure a high level of security but the operations will also take a long time and consume a
lot of memory. Currently, the recommended key length for the big standard cryptosystem RSA
is 1024 bits. This key length is believed to be secure regarding the current computing abilities
of our computers. But this length will probably be sooner or later too short. That is the reason
why we should not analyze algorithms with a fixed key length; we rather evaluate speed and
memory requirements depending on the key length, so that our results won’t be out of date if the
recommended key length becomes larger.

2.1.2 Defining the speed of an algorithm

We must choose the critical operation as criteria to estimate the speed of an algorithm: it could
be for example the comparison operation (that is the case for sorting algorithms). But we are
dealing with integer arithmetic and the critical operation is the multiplication. However, we
cannot compare two multiplications of integers whose bit lengths are different; we will have to
go deeper into the level of complexity and consider atomic operations of multiplications. These
atomic operations are called single-precision operations. They will be our criteria to estimate
the speed of cryptographic algorithms.

15
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2.1.3 o-notation

We will often use the o-notation in order to evaluate the speed of a given algorithm. The mathe-
matical definition of the o-notation is as follows:

f = o (g)⇔ f(x)
g(x)

→ 0, x→ +∞

The number of single-precision operations, which depends on the bit length of the key, is typically
a polynomial function: P (n) =

∑k
i=0 ai ∗ni. If the key length is long enough, the smallest degrees

are negligible; we only need the greatest degrees, for example nk and nk−1. Then we can write:

P (n) = ak ∗ nk + ak−1 ∗ nk−1 + o
(
nk−1

)
The o-notation shows us which terms have been neglected.

2.2 Arithmetic of integers

2.2.1 Basic operations

Among the operations of the instruction set of a processor, we have several basic operations at our
disposal, like logical operations, reading or writing memory, evaluating conditions or jumping in the
program. However, none of these allow to directly compute complex operations like multiplying two
n-bit integers. Multiplication or division of such integers are called multiple-precision operations.
The instruction set only provides bitwise arithmetic operations, which are called single-precision
operations. However, we can design complex programs from all these basic instructions.

2.2.2 Radix representation

Positive integers can be represented in many ways [MOV97, p. 592]. The most common repre-
sentation is called base 10: an integer is represented by series of digits from 0 to 9. For example,
a = 123 means a = 1 ∗ 102 + 2 ∗ 101 + 3 ∗ 100. By extension, it is also possible to represent an
integer using base b: a = ak ∗ bk + ak−1 ∗ bk−1 + . . . + a0 ∗ b0. Given an integer a and a basis
b, this representation always exists and is unique. As computers only work with 0 and 1, base 2
(commonly called binary representation) is extensively used. We will use the following notation:

a = (111011)2 = 25 + 24 + 23 + 0 ∗ 22 + 21 + 20

2.2.3 Multiple-precision addition and subtraction

Algorithms 1 and 2 perform additions [MOV97, p. 594] and subtractions [MOV97, p. 595] on two
integers x and y having the same number of base b digits. If the integers have different lengths,
the smaller of the two integers is padded with zeros on the left to achieve the same length.

The operations at step 2b and 2b are respectively called single-precision addition and sub-
traction. In order to perform a multiple-precision addition or subtraction on base b integers whose
length is n, we respectively need n single-precision additions or subtractions.
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Algorithm 1: Multiple-precision addition

Unit: +;
Input: two positive integers x and y represented in base b, having n base b digits;
Output: x + y = (wn . . . w0)b;

1. c← 0;
2. for i from 0 to n− 1 do

(a) wi ← (xi + yi + c) mod b;
(b) if (xi + yi + c) < b then c← 0;
(c) else c← 1;

3. wn ← c;
4. return((wn . . . w0)b);

Algorithm 2: Multiple-precision subtraction

Unit: −;
Input: two positive integers x and y represented in base b, having n base b digits;
Output: x− y = (wn−1 . . . w0)b;

1. c← 0;
2. for i from 0 to (n− 1) do

(a) wi ← (xi + yi + c) mod b;
(b) if (xi − yi + c) ≤ 0 then c← 0;
(c) else c← −1;

3. return((wn−1 . . . w0)b);
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2.2.4 Multiple-precision multiplication

As input we have two positive integers x = (xn−1 . . . x0)b and y = (yt−1 . . . y0)b represented in base
b. The product x ∗ y has at most (n + t) base b digits. Algorithm 3 is a direct implementation of
the standard pencil-and-paper method. See [MOV97, p. 595] for further information.

Algorithm 3: Multiple-precision multiplication

Unit: ∗;
Input: two positive integers x and y represented in base b, having respectively n and t base b
digits;
Output: x ∗ y = (wn+t−1 . . . w0)b;

1. for i from 0 to (n + t− 1) do wi ← 0;
2. for i from 0 to (t− 1) do

(a) c← 0;
(b) for j from 0 to (n− 1) do

i. (uv)b ← wi+j + xj ∗ yi + c;
ii. wi+j ← v;
iii. c← u;

(c) wi+n ← u;
3. return((wn+t−1 . . . w0)b);

If xj and yi are two base b digits, the product xj ∗ yi is called single-precision multiplication
and its result can be written as (uv)b. Algorithm 3 performs n ∗ t single-precision multiplications
[MOV97, p. 596]. But what we are interested in is modular multiplication, because most of
cryptosystems are based on finite groups arithmetic.

2.2.5 Multiple-precision division

In order to introduce modular arithmetic, we must be able to perform multiple-precision divisions.
The division algorithm 4 takes as input two integers x = (xn−1 . . . x0)b and y = (yt−1 . . . y0)b

where n ≥ t ≥ 1 and yt−1 6= 0, then it computes the quotient q = (qn−t . . . q0)b and the remainder
r = (rt−1 . . . r0)b such that x = q ∗ y + r and 0 ≤ r < y (see [MOV97, p. 598]).

Algorithm 4 requires about (n − t)(t + 2) single-precision multiplications (see [MOV97, p.
599]).

2.3 Modular arithmetic

2.3.1 Modular reduction

Most of cryptosystems are based on finite group arithmetic; for example Z/NZ. Each element x of
this group can be seen as the representatives of the equivalent class {x ≡ y : y = x + k ∗N, k ∈ Z}.
We typically choose the representatives in the set {0, . . . , N − 1}. Then we can define the modulo
operator as follows:

x = r mod N ⇔ ∃q ∈ Z, x = r + q ∗N
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Algorithm 4: Multiple-precision division

Unit: /;
Input: x = (xn−1 . . . x0)b and y = (yt−1 . . . y0)b, having n ≥ t ≥ 1 and yt−1 6= 0;
Output: q = (qn−t . . . q0)2 and r = (rt−1 . . . r0)2 verifying x = q ∗ y + r and 0 ≤ r < y;

1. for i from 0 to (n− t) do qi ← 0;
2. while (x ≥ y ∗ bn−t) do qn−t ← qn−t + 1; x← x− y ∗ bn−t;
3. for i from (n− 1) down to t do

(a) if (xi = yt−1) then qi−t ← b− 1;
(b) else qi−t ← b(xi ∗ b + xi−1)/yt−1c;
(c) while

(
qi−t(yt−1 ∗ b + yt−2 > xi ∗ b2 + xi−1 ∗ b + xi−2

)
do qi−t ← qi−t − 1;

(d) x← x− qi−t ∗ y ∗ bi−t;
(e) if (x < 0) then x← x + y ∗ bi−t; qi−t ← qi−t − 1;

4. r ← x;
5. return(q, r);

Given an integer x, if we want to find its representative, we just have to compute the remainder
of the division x/N . This remainder verifies x = q ∗N + r, r ∈ {0, . . . , N − 1}; it also means that
x = r mod N

2.3.2 Modular addition and subtraction

Let x = (xn−1 . . . x0)b and y = (yn−1 . . . y0)b be to integers verifying x < N and y < N . Then
x+y < 2N ; if x+y ≥ N the result of the modular addition modulo N will be x+y−N computed
with the multiple-precision addition algorithm. Otherwise the result is simply x+y computed with
the multiple-precision addition algorithm [MOV97, p. 600].

Algorithm 5: Modular addition

Unit: + mod N ;
Input: x, y and N ;
Output: z = x + y mod N ;

1. compute z = x + y using the multiple-precision addition
2. if (z ≤ N) then z ← z −N
3. return(z)

Having the condition x ≥ y, x−y is always smaller than N , the modular subtraction can be
computed directly with the multiple-precision subtraction; if x < y then the result of the modular
subtraction is x + N − y using the multiple-precision subtraction [MOV97, p. 600].
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Algorithm 6: Modular subtraction

Unit: − mod N ;
Input: x, y and N ;
Output: z = x− y mod N ;

1. if (x ≤ y) then z ← x− y using the multiple-precision subtraction
2. if (x < y) then z ← x + N − y using the multiple-precision subtraction
3. return(z)

2.3.3 Modular multiplication

Instead of simply computing x ∗ y, we need the remainder of the division of x ∗ y by N because we
work in the finite group Z/NZ. As input we have two binary integers x and y and a modulus N
and we want to compute x ∗ y mod N [MOV97, p. 600].

Algorithm 7: Modular multiplication

Unit: ∗ mod N ;
Input: x, y and N ;
Output: x ∗ y mod N ;

1. compute x ∗ y using the multiple-precision multiplication
2. compute r, remainder when x ∗ y is divided by N
3. return(r)

Assuming that the length of x and y is n, the multiple-precision multiplication x∗y requires
n2 single-precision multiplications whereas the multiple-precision division requires n(n + 2) single-
precision multiplications. We have a total of 2n2 +2n single-precision multiplications for the whole
modular multiplication algorithm.

2.3.4 Inversion

Inversion can be computed thanks to extended Euclide algorithm [MOV97, p. 608], which not only
computes the greatest common divisor of two integers x and y, but also the two unique integers a
and b such that gcd(x, y) = a ∗ x + b ∗ y.

Inversion is then simply computed with extended Euclidean algorithm as follows: if we want
to find the inverse of x modulo N (assuming that gcd(x,N) = 1) then we compute XGCD(x,N)
and get 1 = a ∗ x + b ∗ N . Modulo N this expression becomes a ∗ x = 1 mod N ; in other words
a = x−1 mod N .
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Algorithm 8: Binary extended gcd algorithm

Unit: XGCD;
Input: x and y, positive integers;
Output: gcd(x, y) and two integers a and b such that gcd(x, y) = a ∗ x + b ∗ y;

1. g ← 1;
2. while x and y are even do

(a) x← x/2;
(b) y ← y/2;
(c) g ← 2g;

3. u← x; v ← y;
4. A← 1; B ← 0; C ← 0; D ← 1;
5. while u is even do

(a) u← u/2;
(b) if A = B = 0 mod 2 then A← A/2; B ← B/2;
(c) else A← (A + y)/2; B ← (B − x)/2;

6. while v is even do
(a) v ← v/2;
(b) if C = D = 0 mod 2 then C ← C/2; D ← D/2;
(c) else C ← (C + y)/2; D ← (D − x)/2;

7. if (u ≥ v) then u← u− v; A← A− C;B ← B −D;
8. else v ← v − u; C ← C −A; D ← D −B;
9. if u = 0 return(C,D,g ∗ v) else goto 5;

Algorithm 9: Modular inversion

Unit: −1 mod N ;
Input: x ∈ Z/nZ and N ;
Output: z = x−1 mod N ;

1. compute a and b such that 1 = a ∗ x + b ∗N using extended Euclidean algorithm
2. set z ← a
3. return(z)



22 CHAPTER 2. BASIC MATHEMATIC ALGORITHMS

2.4 Architecture of smart cards

2.4.1 General architecture

The main application of efficient cryptography algorithms is the smart card technology, because
computation and storage resources are limited. We have to be aware of the specific architecture of
these systems in order to develop applications that will fit the resources and to predict how they
will interact with the system.

2.4.2 Main components of a smart card

The previous picture shows us the different components that are to be found in a typical smart
card architecture. Here is a more complete description of each component:

• Central Processing Unit:
The central processing unit (CPU) is a 8 or 16 bit controller. Typical CPU are for example
Motorola 6805 or Intel 8051. The programming of CPU is done in assembler language.

• Read-Only Memory:
The read-only memory (ROM) is non-volatile memory; it is written once and permanently
with a photographic mask. It contains the operating system (OS), the transmission protocol
and commands, the security algorithms and several applications. Typical values for the
read-only memory of smart cards are 8-16 kBytes, and at most 48 kBytes.

• Random Access Memory:
The random-access memory is a volatile memory, it means that all data get lost when the
power supply is switched off. Therefore it is used as a buffer for storing transmission data
and as a very fast access memory for workspace. Reading and writing a byte takes only a
few microseconds. It is very fast but much more expensive than ROM. Typical values for its
size are 128-256 Bytes and at most 3 kBytes.

• EEPROM:
The EEPROM is a non-volatile programmable memory; if the power supply is turned off, the
data will not get lost and besides it allows about 100,000 update (i.e. erase/write) cycles.
However writing into EEPROM is about 1,000 times slower than writing into RAM. This
kind of memory is used in order to store the secret key and the cryptographic parameters.
Typical EEPROM sizes are 2-8 kBytes, and at most 12 kBytes.
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• Arithmetic Unit:
It is the cryptographic co-processor, which computes the integer arithmetic (addition, multi-
plication, modular exponentiation). The transfer speed between the AU and memory is not
negligible. The development cost is very expensive.

2.5 Analysis organization

In the following, we will analyze some fast variants of RSA in terms of speed and memory consump-
tion. First, we will write the algorithm using some basic operations like modular multiplications,
modular additions, but also basic looping and conditional statements. Then we will eventually give
mathematical justifications. At the end, we will estimate the speed and the memory requirements.

2.5.1 Speed estimation

Giving some hints about the estimation, we will typically write the estimation as a polynomial
function depending on some parameters such as the bit length of some input values, using the
o-notation described in §2.1.3. We will use the following costs for our estimations:

• Addition or subtraction of two n-bit integers: n

• Multiplication of two n-bit integers: n2

• Division, where the bit length of the dividend is n and the bit length of the divisor is t:
(n− t) ∗ (t + 2)

• Modular reduction of a t-bit integer modulo a n bit integer: equivalent to a division

• Modular addition or subtraction of two n-bit integers: 2n

• Modular multiplication of two n-bit integers: 2n2 + 2n

• Inversion of n-bit integers: equivalent to 20 modular multiplications

2.5.2 Memory consumption

We will differentiate System parameters and Accumulators. System parameters of high-level
algorithms are usually stored in EEPROM memory as they are secret parameters, whereas system
parameters of subroutines should not be taken into account for memory consumption estimation
because they have already been defined in the calling routine. Accumulators are dynamically
stored in RAM, and they strongly depend on the implementation. We will give here an upper
bound of accumulators requirements, assuming that the accumulator memory is only freed when
the subroutine ends (and not dynamically).
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Chapter 3

Classic RSA

RSA is the standard asymmetric encryption algorithm. It was developed by Ron Rivest, Adi
Shamir and Leonard Adleman in 1978 ([RSA78]). Since then, many companies adopted it, so
that it is now a de facto cryptography standard. In this chapter, we will see the main properties
of RSA. The security of RSA is based on factoring integers; currently composite integers longer
than 1024 bits are secure against fast factoring algorithms. The exponentiation is the critical
operation of RSA and it is important to develop a fast exponentiation algorithm, as shown in the
following. Then we describe a fast variant using the Chinese remainder theorem, which can make
an RSA decryption 4 times faster.
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3.1 Basic RSA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Fast Exponentiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Chinese Remainder Theorem . . . . . . . . . . . . . . . . . . . . . . . 28

3.4 Garner’s algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.5 Faster implementation of RSA . . . . . . . . . . . . . . . . . . . . . . 32

3.1 Basic RSA

In the following, we describe the algorithms of RSA cryptosystems, namely the key generation,
encryption and decryption. The RSA permutation described in [RSA78] is the first candidate
trapdoor function for cryptography, i.e. a function which is easy to compute but hard to invert,
unless we know some trapdoor information.

3.1.1 Key generation, encryption and decryption stages

• Key generation:
The algorithm takes a security parameter n, which is the bit length of the modulus. Typically,
n = 1024 bits is chosen. It next picks two primes P and Q whose bit length is n/2 and
multiplies them to get the modulus N = PQ. It then pick some relatively small value e
which is prime to φ(N) = (P − 1)(Q − 1). A typical value is e = 65537. The two integers

25
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〈N, e〉 are the public key. To generate the secret key, the algorithm computes the inverse of
e modulo φ(N): d = e−1 mod φ(N).

• Encryption:
The message to be encrypted must be first converted to an integer M ∈ Z/NZ. There
are standard algorithms to perform this operation, for example in the PKCS#1 standard.
Having the plaintext M , the ciphertext is simply computed as C = Me mod N . Hence, the
public key consists of 〈N, e〉.

• Decryption:
The secret key is simply the secret exponent d. Knowing d and the ciphertext C, we can
have the plaintext back if we compute Cd modulo N :

Cd = Med mod N

We know that ed = 1 mod φ(N), in other words, there is an integer k such that ed =
1 + k ∗ φ(N).

Cd = M1+k∗φ(N) mod N

= M ∗ (Mφ(N))k mod N

Besides Fermat’s little theorem shows us that Mφ(N) = 1 mod N . Finally:

Cd = M mod N

3.1.2 Size of the exponents, security and speed

The encryption stage is relatively fast because e can be chosen to be small. It is not possible
to choose d small otherwise RSA would not be secure ([BG00]), but it is often wanted to have
a fast decryption or signature stage, for example in smart cards, because we cannot embed fast
processors in cheap smart cards. Therefore, some faster decryption algorithms will be described in
this paper.

3.2 Fast Exponentiation

3.2.1 Description of the left-to-right exponentiation algorithm

This fast exponentiation method (see also [MOV97, p. 615]) is based on the binary representation
of the exponent and allows to compute an exponentiation with few multiplications and square
computations. We take the basis M , the exponent e and the modulus N as input, and the result
of the exponentiation C = Me mod N as output. Besides, we have the binary representation of
e =

∑k−1
i=0 ei ∗ 2i, where ei is either 0 or 1. We can now transform the exponent to the following

expression:

Me = M
∑k−1

i=0 ei∗2i

=
k−1∏
i=0

Mei∗2i
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Using this relationship, we recursively compute the result: first we can initialize it with 1. Then
we go through the binary representation of the exponent. If the digit at position i is 1, we multiply
the result with M2i

(i.e. M squared i times). But it can be faster: we initialize the result with 1
and go through the binary representation of the exponent from the left (i.e. the most significant
bit). At each step we square the result and multiply it with M if the current digit is 1. Doing
this, if the digit at position i is 1, at the end we will have multiplied the result with M2i

. We
summarize the algorithm as follows:

Algorithm 10: Left-to-right exponentiation algorithm

Unit: xy mod N ;
Input: M , e = (ek−1 . . . e0)2, N ;
Output: C = Me mod N ;

1. C ← 1;
2. for i from (k − 1) down to 0 do

(a) C ← C ∗ C mod N ;
(b) if (ei = 1) then C ← C ∗M mod N ;

3. return(C);

3.2.2 Correctness of the left-to-right exponentiation algorithm

We will prove by induction that the algorithm works. Let’s assume that at step i, we have
Ci =

∏k−1
j=i Mej∗2j−i

mod N . At the next step, we must perform a square computation and a
multiplication if ei−1 = 1. Therefore,

Ci−1 = Mei−1 ∗ C2
i mod N

= Mei−1 ∗

k−1∏
j=i

Mej∗2j−i

2

mod N

= Mei−1 ∗
k−1∏
j=i

Mej∗2j−i+1
mod N

= Mei−1 ∗
k−1∏
j=i

Mej∗2j+(i−1)
mod N

=
k−1∏

j=i−1

Mej∗2j+(i−1)
mod N

At the beginning of the loop, at step k − 1, the assumption is is true because C = Mek−1 mod N .
By induction, the assumption is true until i = 0. And for i = 0, we get:

C =
k−1∏
j=0

Mej∗2j

mod N
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3.2.3 Performance analysis of the left-to-right exponentiation algorithm

• Notations:
k is the bit length of the exponent e and n the bit length of the modulus N

• Cost estimation:
At step i of the main loop, we perform one squaring, and one multiplication if the binary ei

digit of the exponent equals 1. This happens with the probability 1/2, therefore we have:

– 1/2 multiplication at each step of the loop on average (step 2b)

– 1 square computation at each step of the loop (step 2a), except at the beginning of the
algorithm, where C = 1.

We have k iterations for the main loop and 3k/2− 1 multiplications in total.
Asymptotic behavior: (3k − 2)(n2 + n) and 3n3 + n2 + o(n2) if k = n

• Memory cost:

– System parameters
Register names Bits Number of registers

C,M,N n 3
e k 1

Subtotal 3n + k bits

– Total memory cost: 3n + k bits and 4n bits if k = n

3.3 Chinese Remainder Theorem

3.3.1 Description of the Chinese remainder theorem

The Chinese remainder theorem allow us to decrease the computation time of a classical RSA
decryption. More generally, the Chinese remainder theorem establishes a bijection between Z/mZ
and the cartesian product

k∏
i=0

Z/miZ

assuming that m =
∏k

i=0 mi and that the mi don’t have any common divider (see [Buc01, §2.15]).
For example, there is an isomorphism between Z/nZ and Z/pZ×Z/qZ, assuming that p and q are
primes and n = pq. In other words, we can compute in Z/pZ and Z/qZ instead of Z/nZ. Assuming
that the bit length of both p and q is the half of the bit length of n, the cost of a multiplication
can be theoretically divided by two. It is quite simple to compute the image of a given a, but if
the system a = ai mod mi is given, the reciprocal computation of a is not trivial. The goal of the
Chinese remainder theorem is to give us the unique solution of this system.

We want to solve the following system:
a = a1 mod m1

...
a = ak mod mk
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Hence we take the residues a1, . . . , ak and the moduli m1, . . . ,mk as input and compute a, the
solution of the system.

Algorithm 11: Chinese remainder theorem

Unit: CRT;
Input: a1, . . . , ak,m1, . . . ,mk;
Output: a verifying a = ai mod mi for i = 1 to k;

1. a← 0;
2. m← m1;
3. for i from 2 to k do

(a) m← m ∗mi;
4. for i from 1 to k do

(a) Mi ← m/mi;
(b) yi ←M−1

i mod mi;
(c) G← yi ∗Mi mod m;
(d) G← G ∗ ai mod m;
(e) a← a + G mod m;

5. return(a);

3.3.2 Correctness of the theorem

We are looking for an a such that a = ai mod mi for i = 1 to k. Let’s prove that a =
∑k

i=0 ai∗Mi∗yi

is a solution of the system.
Mi =

∏k
j=0,j 6=i mj and Mj = 0 mod mi if j 6= i. That is why

a = ai ∗Mi ∗ yi mod mi

But we have chosen yi such that yi = M−1
i mod mi; in other words yi ∗Mi = 1 mod mi. At last,

we get for i = 1 to k:
a = ai mod mi

3.3.3 Performance analysis of the Chinese remainder theorem algorithm

• Notations:
n is the bit length of m =

∏k
i=0 mi and we assume that the bit length of each of the mi is

n/k.

• Cost Estimation:
At step 3a, we compute m =

∏k
i=0 mi and we have to perform (k − 1) multiplications in Z

of n/k-bit integers. In total it costs (k − 1)n2/k2.
The division at step 4a is a simple division in Z. The bit length of m and mi are respectively
n and n/k; therefore each division costs (n2 + 2kn)(k − 1)/k2. We have in total k divisions
and the cost of step 4a is (n2 + 2kn)(k − 1)/k.
At step 4b we compute each time an inversion modulo mi. It is equivalent to twenty multi-
plications of n/k-bit integers and it is done k times: 40(n2/k + n)



30 CHAPTER 3. CLASSIC RSA

At steps 4c and 4d we compute a multiplication of n-bit integers and it is done k time. In
total, it costs 4k(n2 + n).
Asymptotic behavior: n2

(
4k + 1 + 40/k − 1/k2

)
+ o(n2)

• Memory Cost:

– System parameters
Register names Bits Number of registers

ai n/k k
mi n/k k

a n 1
Subtotal 3n bits

– Accumulators
Register names Bits Number of registers

m,G n 2
Mi n/k k
yi n/k k

Subtotal 4n bits

– Total memory cost: 7n bits

3.3.4 Special case: Chinese remainder theorem for N = PQ

This is a special case of the Chinese remainder theorem when the modulus is the product of two
primes: N = PQ. We want to compute M such that M = MP mod P and M = MQ mod Q.

Algorithm 12: Chinese remainder theorem with N=PQ

Unit: CRT PQ;
Input: MP ,MQ, P, Q, N ;
Output: M ;

1. y ← Q−1 mod P ;
2. M ← y ∗Q mod N ;
3. M ←M ∗MP mod N ;
4. y ← P−1 mod Q;
5. G← y ∗ P mod N ;
6. G← G ∗MQ mod N ;
7. M ←M + G;
8. return(M);

We have to compute two inverses of n/2-bit integers at steps 1 and 4 and four multiplications
of n-bit integers at steps 2, 3, 5 and 6. Each inversion is equivalent to 20 multiplications of n/2-
bit integers; we finally get a complexity of 28n2 + o(n2) and a memory utilization of 4n (system
parameters) + 3n/2 (accumulators).
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3.4 Garner’s algorithm

3.4.1 Description of Garner’s algorithm

The classical utilization of the Chinese remainder theorem in cryptography only requires a modulus
N product of two primes P and Q. It is possible to eliminate the computation of the two inverses
thanks to Garner’s algorithm. This enhancement costs however more memory for the system
parameters. Like in the previous algorithm, we want to find M such that M = MP mod P and
M = MQ mod Q. We have the same input parameters except (P inv Q) = P−1 mod Q which is
a specific precomputed parameter which allows us to avoid computing any inversion. See [MOV97,
p. 612] for a more general description.

Algorithm 13: Garner’s algorithm for CRT

Unit: GARNER;
Input: MP ,MQ, P, Q, (P inv Q), N ;
Output: M ;

1. V ←MQ −MP mod Q;
2. V ← V ∗ (P inv Q) mod Q;
3. M ← V ∗ P mod N ;
4. M ←M + MP mod N ;
5. return(M);

3.4.2 Correctness of Garner’s algorithm

We want to compute M such that M = MP mod P and M = MQ mod Q. We have precomputed
(P inv Q) = P−1 mod Q. Let’s prove that

M = MP + V ∗ P mod N

where V = (P inv Q) ∗ (MQ −MP ) mod Q.
Obviously M = MP mod P . And:

P ∗ V = P ∗ (P inv Q) ∗ (MQ −MP ) mod Q

= MQ −MP mod Q

Finally:

M = MP + MQ −MP mod Q

= MQ mod Q

3.4.3 Performance analysis

• Notations:
n is the bit length of N and we assume that the bit length of P and Q is n/2
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• Cost Estimation:
We have 1 multiplication of n/2-bit integers for the computation of V at step 2 and 1
multiplication of n-bit integers for the computation of M at step 3.
Asymptotic behavior: 5n2/2 + o(n2)

• Memory Cost:

– System parameters
Register names Bits Number of registers

N,M n 2
MP ,MQ, P, Q n/2 4

(P inv Q) n/2 1
Subtotal 9n/2 bits

– Accumulator
Register names Bits Number of registers

V n/2 1
Subtotal n/2 bits

– Total memory cost: 5n bits

3.4.4 Comparison with standard CRT algorithm

• Cost Estimation:
Speed Estimated speed-up

Chinese remainder theorem 28n2 + o(n2) 1.0
Garner’s algorithm 5n2/2 + o(n2) 11.2

• Memory:
Total Memory System Parameters Accumulators

Chinese remainder theorem 11n/2 bits 4n bits 3n/2 bits
Garner’s algorithm 5n bits 9n/2 bits n/2 bits

Compared to the classical Chinese remainder theorem, Garner’s algorithm is much faster at the
expense of system parameters memory. For a modulus of 1024 bits, we require 4608 bits instead
of 4096 bits for system parameters, but it is about 11 times faster. Besides we don’t need any
modular inversion implementation, hence saving development costs and ROM memory.

3.5 Faster implementation of RSA

We show an optimization of RSA using the Chinese remainder theorem and the fast exponentiation
algorithm. The two inverses that are normally needed for the Chinese remainder theorem are
reduced in one inversion, which is precomputed. For a small loss in terms of memory, we manage
to speed up the RSA decryption by four.

3.5.1 Key generation, encryption and decryption stages

• Key generation:
The key generation is the same as in standard RSA: we have as input a security parameter n,
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we choose two primes whose bit length is n/2 and multiply them to get the modulus N . Then
we pick some integer e such that φ(N) and e are relatively prime. We finally compute d such
that ed = 1 mod φ(N) and then reduce it modulo (P − 1) and (Q− 1). We also pre-compute
(P inv Q) = P−1 mod Q: all these values are fixed and needed for each decryption. The
two integers 〈N, e〉 are the public key and 〈P,Q, dP , dQ, (P inv Q)〉 is the secret key. Please
see §3.1 for more information.

• Encryption:
The message to be encrypted must be first converted to an integer M ∈ Z/NZ. There are
standard algorithms, for example in the PKCS#1 standard ([Lab02]). Having the plaintext
M , the ciphertext is simply computed as C = Me mod N .

• Decryption:
Instead of directly computing M = Cd mod N , the decryption algorithm evaluates MP =
CdP

P mod P and MQ = C
dQ

Q mod Q where CP = C mod P , dP = d mod P − 1 and CQ =
C mod Q, dQ = d mod Q − 1. It is then possible to recover the plaintext M thanks to the
Chinese remainder theorem. This method is faster because it computes two exponentiations
of n/2-bit integers instead of one exponentiation of n-bit integers. Thus we can theoretically
speed up the decryption by four.

3.5.2 Description of the decryption stage

We take the ciphertext C, the modulus and its factorization N = PQ and the reduced exponents
dP = d mod P − 1 and dQ = d mod Q − 1 where d is the secret exponent. (P inv Q) is a
precomputed parameter for Garner’s algorithm. Please see §3.4 for further explanations about
Garner’s algorithm. We want to recover the plaintext M such that Me = C mod N .

Algorithm 14: RSA using CRT

Unit: RSA CRT;
Input: C,N, dP , dQ, P, Q, (P inv Q);
Output: M ;

1. CP ← C mod P ;
2. CQ ← C mod Q;
3. MP ← CdP

P mod P ;
4. MQ ← C

dQ

Q mod Q;
5. M ← GARNER(MP ,MQ, P, Q, (P inv Q), N);
6. return(M);

Steps 1 and 2 are the reduction steps; steps 3 and 4 the exponentiation steps and step 5 the
Chinese remainder theorem step using Garner’s algorithm.

3.5.3 Correctness of the decryption algorithm

Given the standard RSA parameters (C: encrypted message, N : modulus, d: secret key, e: public
key), we want to make use of the known factorization N = PQ. If we have computed MP =
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Cd mod P and MQ = Cd mod Q, and we can recover M thanks to the Chinese remainder theorem.
First, MP = Cd mod P = Cd

P mod P , where CP = C mod P .
Besides, dP = d mod P − 1: there is an integer k such that d = dP + k(P − 1). We can now write:

MP = Cd
P mod P

= C
dP +k(P−1)
P mod P

= CdP

P ∗
(
CP−1

P

)k
mod P

Fermat’s little theorem shows us that aφ(n) = 1 mod n if gcd(a, n) = 1. In our case, P is a prime:
φ(P ) = P − 1 and gcd(CP , P ) = 1. That is why CP−1

P = 1 mod P . Finally:

MP = CdP

P mod P

Of course, We can do the same modulo Q:

MQ = C
dQ

Q mod Q

Given MP and MQ, we are now able to recover M thanks to Garner’s algorithm.

3.5.4 Performance analysis

The critical part of the algorithm is the two exponentiations at step 3 and 4. However, we compute
here with moduli whose size is half of the initial modulus size. Thus, we can achieve a speed-up of
factor 4.

• Notations:
n is the bit length of N and We assume that the bit length of P and Q is n/2.

• Cost Estimation:
We perform two modular reductions of n-bit integers modulo n/2-bit integers. A modular
reduction being equivalent to a division means we have here an asymptotic cost of n2/2 +
o(n2).
In the exponentiation steps 3 and 4, we compute two exponentiations of n/2-bit integers;
each of these steps costs 3n3/8 + n2/4 + o(n2). Please see §3.1 for more information about
the asymptotic behavior of exponentiation.
The recovering using Garner’s algorithm at step 5 costs 5n2/2 + o(n2). Please see §3.4 for
further information about Garner’s algorithm.
Asymptotic behavior: 3n3/4 + 7n2/2 + o(n2)

• Memory Cost:

– System parameters
Register names Bits Number of registers

C,M,N n 3
dP , dQ, P, Q n/2 4
(P inv Q) n/2 1

Subtotal 11n/2 bits
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– Accumulators
Register names Bits Number of registers

CP , CQ,MP ,MQ n/2 4
GARNER n/2 1

Subtotal 5n/2 bits

– Total memory cost: 8n bits

3.5.5 Comparison with basic RSA

• Cost Estimation:
Speed Speed-up for n=1024 bits

RSA without CRT 3n3 + n2 + o(n2) 1.0
RSA with CRT 3n3/4 + 7n2/2 + o(n2) 3.98

• Memory:
Total Memory System Parameters Accumulators

RSA without CRT 4n bits 4n bits 0 bit
n=1024 bits 4096 bits 4096 bits 0 bits

RSA with CRT 8n bits 11n/2 bits 5n/2 bits
n=1024 bits 8192 bits 5632 bits 2560 bits

RSA decryption is about 4 times faster with the Chinese remainder theorem. However this en-
hancement costs memory: the total memory cost is twice as large. For a modulus whose bit length
is 1024, we only need 4096 bits without Chinese remainder theorem for storing system parameters,
whereas here we need 5632 bits plus some extra RAM memory for accumulators. Even if this solu-
tion is significantly faster, we will have to think how to correctly develop a smart card architecture
that fit these algorithms well: the RAM and EEPROM requirements are higher in this version.
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Chapter 4

Rebalanced RSA

A fast decryption or signing stage is often wanted: typically, SSL servers (performing RSA
decryption) are overloaded whereas SSL browsers (performing RSA encryption) have idle cycles.
Therefore a fast decryption stage would speed up the whole process, even if it is at the expense of
the encryption stage. This is exactly the main idea of a rebalanced RSA algorithm, where the
work is shifted to the encrypter whereas the decryption is much faster. Instead of choosing a
small secret exponent d, what is known to be insecure as soon as d < N0.292 ([BG00], [Wie90]),
we can pick d such that d mod P − 1 and d mod Q− 1 are small. These values are practically
used to get the plain text M back; the smaller they are, the faster the exponentiation stage will
be. See [Wie90] for more information about rebalanced RSA.

Contents

4.1 Key generation, encryption and decryption stages . . . . . . . . . . 37

4.2 Performances of encryption and decryption stages . . . . . . . . . . 39

4.3 Comparison with other variants of RSA . . . . . . . . . . . . . . . . . 40

4.1 Key generation, encryption and decryption stages

4.1.1 Key generation

The algorithm takes two security parameters as input: n (typically 1024) and k (typically 160)
where k < n/2. It next picks two primes P and Q verifying gcd(P − 1, Q − 1) = 2 and whose
bit length is n/2. The modulus N is N = PQ. It then randomly picks two k-bit values dP and
dQ such that gcd(dP, P − 1) = 1, gcd(dQ,Q − 1) = 1 and dP = dQ mod 2. The secret exponent
d must verify: d = dP mod P − 1 and d = dQ mod Q − 1. We cannot directly compute d with
the Chinese remainder theorem because P − 1 and Q − 1 are not relatively prime (they are both
even!). But we chose them such that gcd(P − 1, Q− 1) = 2, therefore:

gcd(
P − 1

2
,
Q− 1

2
) = 1

37
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We also know that dP = dQ mod 2; let a = dP mod 2. Thanks to the Chinese remainder theorem,
we can now compute a value d′ verifying:

d′ =
dP − a

2
mod

P − 1
2

d′ =
dQ− a

2
mod

Q− 1
2

In other words, there exist two integers k1 and k2 such that:

d′ =
dP − a

2
+ k1 ∗

P − 1
2

d′ =
dQ− a

2
+ k2 ∗

Q− 1
2

Let d = 2d′ + a. d verifies:

d = (dP − a) + k1 ∗ (P − 1) + a

d = (dQ− a) + k2 ∗ (Q− 1) + a

Modulo P − 1 and Q− 1, we get:

d = dP mod P − 1
d = dQ mod Q− 1

To compute the public exponent e, we just have to compute the inverse of d modulo φ(N) =
(P − 1)(Q − 1). This is allowed because gcd(dP, P − 1) = gcd(dQ,Q − 1) = 1. Therefore,
gcd(d, P − 1) = gcd(d, Q− 1) = 1. And finally gcd(d, (P − 1)(Q− 1)) = 1. We have no control over
e which is of the order of N . The encryption won’t be as fast as in standard RSA but we manage
to increase the speed of the decryption stage.

Algorithm 15: Rebalanced RSA: key generation

Unit: KEY;
Input: n, k;
Output: P,Q, e, d;

1. Pick primes P and Q whose bit length is n/2 and verifying gcd(P − 1, Q− 1) = 2
2. Pick dP and dQ such that:

(a) the bit length of dP and dQ is k
(b) gcd(dP, P − 1) = gcd(dQ,Q− 1) = 1
(c) dP = dQ = a mod 2

3. compute d′ such that:
(a) d′ = (dP − a)/2 mod (P − 1)/2
(b) d′ = (dQ− a)/2 mod (Q− 1)/2

4. compute d = 2d′ + a
5. compute e = d−1 mod (P − 1)(Q− 1)
6. return(P,Q, dP, dQ, e, d)
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4.1.2 Encryption

This is exactly the same as in standard RSA, except that e is much larger. The public key is
〈N, e〉. Please note that Microsoft Internet Explorer does not accept this method because it does
not accept public exponents e larger than 32 bits.

4.1.3 Decryption

The private key is 〈P,Q, dP, dQ〉. One can decrypt a ciphertext C by computing MP = CdP mod P
and MQ = CdQ mod Q. Using the Chinese remainder theorem, we are then able to recover the
plaintext M , verifying M = MP mod P and M = MQ mod Q.

4.2 Performances of encryption and decryption stages

Regarding the implementation of both of encryption and decryption stages, rebalanced RSA is ex-
actly the same as standard RSA. We just used a trick in order to reduce the size of the exponents
in the exponentiation steps in the decryption stage. However, the asymptotic behavior of the en-
cryption step is relatively bad and there is no possible improvement: we perform an exponentiation
of n-bit integers, which costs 3n3 + 3n2. Let’s consider the decryption stage:

• Notations:
n is the bit length of N , k is the bit length of dP and dQ and, as usual, we assume that the
bit length of P and Q is n/2.

• Cost Estimation:
The decryption stage is the same as in RSA with CRT but we have managed to reduce
the size of the secret exponent, therefore the exponentiations steps are faster. The two
reductions cost n2/2 + o(n2). Then we want to perform two exponentiations of n/2-bit
basis, n/2-bit moduli and k-bit exponents. Therefore we have an asymptotic behavior of:
(3k/2−1)n2+o(n2). Please see §3.2 for further explanations about exponentiations. Garner’s
step costs 5n2/2 + o(n2). See §3.4 for more information about Garner’s algorithm.
Asymptotic behavior: n2(3k/2 + 2) + o(n2)

• Memory Cost:

– System parameters:
Register names Bits Number of registers

C,M,N n 3
dP , dQ k 2

P,Q, (P inv Q) n/2 3
Subtotal 9n/2 + 2k bits

– Accumulators:
Register names Bits Number of registers

CP , CQ n/2 2
MP ,MQ n/2 2

GARNER n/2 1
Subtotal 5n/2 bits

– Total memory cost: 7n + 2k bits
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4.3 Comparison with other variants of RSA

• Cost Estimation of the encryption stage:
Speed Speed-up for k = 160, n = 1024

Classic RSA (3k − 2) ∗ n2 + o(n2) 1.0
Rebalanced RSA 3n3 + n2 0.16

• Cost Estimation of the decryption stage:
Speed Speed-up for k = 160, n = 1024

RSA without CRT 3n3 + n2 1.0
RSA with CRT 3n3/4 + 7n2/2 + o(n2) 3.98
Rebalanced RSA n2(3k/2 + 2) + o(n2) 12.70

• Memory:
Total Memory System Parameters Accumulators

RSA without CRT 4n bits 4n bits 0 bit
n=1024 bits 4096 bits 4096 bits 0 bits

RSA with CRT 8n bits 11n/2 bits 5n/2 bits
n=1024 bits 8192 bits 5632 bits 2560 bits

Rebalanced RSA 7n + 2k bits 9n/2 + 2k bits 5n/2 bits
n=1024 bits 7200 bits 4640 bits 2560 bits

Compared to RSA with the Chinese remainder theorem decryption, we have a speed-up
factor of about n/2k. Typical values for n and k are 1024 and 160; we hence get a theoretical
speed-up of 3.2. However, the encryption stage is a lot slower because e is of the order of N : the
speed-up factor is here about k/n (with the typical values of n and k we get a theoretical speed-up
factor of 0.16; it means that rebalanced RSA encryption is 6.4 times slower than a normal RSA
encryption).
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Multi-Prime RSA

The decryption speed of RSA can be increased thanks to the Chinese remainder theorem.
Instead of a modulus such as N = PQ, we can use more primes; for example N = PQR
([CHLS97]). However, with a bit length of 1024, it is not secure anymore to use a decomposition
of more than three primes, because 256-bit factors would be within the range of RSA-512
factoring project [CDL+00], using Elliptic Curve Method (ECM, see [SSW93]).
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5.1 Garner’s algorithm extension when N = PQR

5.1.1 Description of Garner’s algorithm

Garner’s algorithm is an optimized version of the Chinese remainder theorem, which allows us to
speed up the computations while consuming a little bit more memory. No inverses are computed. It
has already been described for a modulus product of two primes; let’s consider the case of a modulus
product of three primes. Algorithm 16 takes MP , MQ, MR, P , Q, R and N , where N = PQR, as
input . We have also two extra input parameters, namely (PQ inv R) and (P inv Q), verifying
(PQ inv R) = (PQ)−1 mod R and (P inv Q) = P−1 mod Q. We compute M such that:

 M = MP mod P
M = MQ mod Q
M = MR mod R

41
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Algorithm 16: Garner’s algorithm for N = PQR

Unit: GARNER PQR;
Input: MP ,MQ,MR, P, Q, R,N, (PQ inv R), (P inv Q);
Output: M verifying M = MP mod P , M = MQ mod Q and M = MR mod R;

1. V ←MQ −MP mod Q;
2. V ← V ∗ (P inv Q) mod Q;
3. MPQ ← V ∗ P mod PQ;
4. MPQ ←MPQ + MP mod PQ;
5. V ←MR −MPQ mod R;
6. V ← V ∗ (PQ inv R) mod R;
7. M ← V ∗ P mod N ;
8. M ←M ∗Q mod N ;
9. M ←MPQ + M mod N ;

10. return(M);

5.1.2 Correctness of Garner’s algorithm

We want to compute M such that M = MP mod P , M = MQ mod Q and M = MR mod R. We
have precomputed (P inv Q) = P−1 mod Q and (PQ inv R) = (PQ)−1 mod R. M verifies:

M = MPQ + P ∗Q ∗ (MR −MPQ) ∗ (PQ inv R) mod N

Let’s take this equation modulo R:
We know that P ∗Q ∗ (PQ inv R) = 1 mod R. We get:

M = MPQ + (P ∗Q ∗ (PQ inv R)) ∗ (MR −MPQ) mod R

M = MPQ + MR −MPQ mod R

And finally M = MR mod R
Let’s take the equation modulo Q:

M = MPQ + Q ∗ (P ∗ (PQ inv R)) ∗ (MR −MPQ) mod Q

M = MPQ mod Q

Besides MPQ = MP + (P ∗ (P inv Q)) ∗ (MQ −MP ) mod PQ.
We also know that P ∗ (P inv Q) = 1 mod Q. Modulo Q, we get now:

MPQ = MP + MQ −MP mod Q

And finally M = MQ mod Q.
Let’s take the equation modulo P :

M = MPQ + P ∗ (Q ∗ (PQ inv R)) ∗ (MR −MPQ) mod P

M = MPQ mod P

And MPQ = MP + P ∗ (P inv Q) ∗ (MQ −MP ) mod PQ. Modulo P we get:

MPQ = MP mod P

Finally M = MP mod P
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5.1.3 Performances of Garner’s algorithm

• Notations:
Let n be the bit length of N ; we assume that the bit length of P , Q and R is n/3

• Cost Estimation:

– 2 multiplication of n/3-bit integers at steps 2 and 6

– 1 multiplication of 2n/3-bit integers at step 3

– 2 multiplication of n-bit integers at steps 7 and 8

Asymptotic behavior: 16n2/3 + o(n2)

• Memory Cost:

– System Parameters
Register names Bits Number of registers

N,M n 2
MP ,MQ,MR n/3 3

P,Q,R n/3 3
(P inv Q), (PQ inv R) n/3 2

Subtotal 14n/3 bits

– Accumulators
Register names Bits Number of registers

V n/3 1
MPQ 2n/3 1

Subtotal n bits

– Total memory cost: 17n/3 bits

5.2 Multi-Prime RSA modulo N = PQR

Multi-Prime RSA with three primes N = PQR offers performances that are comparable to a
classic elliptic curve based cryptosystem. The encryption stage is exactly the same as in classic
RSA encryption schemes and the decryption stage is faster. For few modifications, we can obtain
an efficient and secure cryptosystem. See [CHLS97] for more information about Multi-Prime RSA.

5.2.1 Description of the Multi-Prime RSA cryptosystem

• Key generation:
The key generation is the same as in classic RSA schemes but with three primes instead of
two: we have as input a security parameter n, we choose three primes P , Q and R whose bit
length is n/3 and multiply them to get the modulus N = PQR. Then we pick some integer e
such that φ(N) = (P−1)(Q−1)(R−1) and e are relatively prime. We finally compute d such
that ed = 1 mod φ(N) and dP = d mod P − 1, dQ = d mod Q − 1 and dR = d mod R − 1.
We also pre-compute (PQ inv R) = (PQ)−1 mod R and (P inv Q) = P−1 mod Q. The
two integers 〈N, e〉 are the public key and 〈P,Q,R, dP, dQ, dR, (PQ inv R), (P inv Q)〉 is
the secret key. Please see §3.1 for more information about standard RSA.
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• Encryption:
The encryption stage is the same as in classic RSA encryption schemes.

• Decryption:
The principle is basically the same as in RSA using the Chinese remainder theorem described
in §3.5, unless the composite modulus N has 3 prime factors N = PQR. Then we can
compute in Z/PZ, Z/QZ and Z/RZ instead of Z/NZ and then get the plaintext back thanks
to Chinese remainder theorem. This is faster because the bit length of integers we are
working with is shorter, therefore we need less operations to compute multiplications and
exponentiations. We need to compute 3 exponentiations of n/3-bit integers, hence we can
expect decryptions to be 9 times faster than RSA decryptions without Chinese remainder
theorem.

5.2.2 Description of the decryption stage

Algorithm 17 performs a decryption, using a composite modulus N = PQR. We have the classic
input parameters: ciphertext C, modulus N , but also its prime factors P , Q and R. Instead of
storing the n-bit private key d in EEPROM memory, we store dP = d mod P−1, dQ = d mod Q−1
and dR = d mod R−1: these n/3-bit integers don’t require more memory while avoiding reductions.
As extra input parameters, we need (PQ inv R) = (PQ)−1 mod R and (P inv Q) = P−1 mod Q
for Garner’s algorithm.

Algorithm 17: Multi-Prime RSA decryption with N = PQR

Unit: RSA PQR;
Input: C,N, P, Q, R, dP , dQ, dR, (PQ inv R), (P inv Q);
Output: M ;

1. CP ← C mod P ;
2. CQ ← C mod Q;
3. CR ← C mod R;
4. MP ← CdP

P mod P ;
5. MQ ← C

dQ

Q mod Q;
6. MR ← CdR

R mod R;
7. M ← GARNER PQR (MP ,MQ,MR, P, Q, R, (P inv Q), (PQ inv R), N)
8. return(M);

5.2.3 Performances of the Multi-Prime RSA decryption algorithm

The critical part of the algorithm is the exponentiation step, where three exponentiations of n/3-bit
integers are computed; the reduction step is negligible. We are computing with n/3-bit integers,
therefore the exponentiation stage is nine times faster than in the classical RSA decryption algo-
rithm without the Chinese remainder theorem.

• Notations:
n is the bit length of N and we assume that the bit length of P , Q and R is n/3.



5.2. MULTI-PRIME RSA MODULO N = PQR 45

• Cost Estimation:
At the reduction stage, we compute 3 reductions of a n-bit integer with n/3-bit moduli,
which costs 2n2/3 + o(n2). At the exponentiation stage, we compute 3 exponentiations of
n/3-bit integers at step 4, 5 and 6, which costs n3/3 + n2/3. At Garner’s stage, we compute
some auxiliary multiplications, which cost 16n2/3 + o(n2) (see §5.1.3)
Asymptotic behavior: n3/3 + 19n2/3 + o(n2)

• Memory Cost:

– System Parameters
Register names Bits Number of registers

C,N,M n 3
dP , dQ, dR n/3 3

P,Q,R n/3 3
(P inv Q), (PQ inv R) n/3 2

Subtotal 17n/3 bits

– Accumulators
Register names Bits Number of registers

CP , CQ, CR n/3 3
MP ,MQ,MR n/3 3

GARNER n 1
Subtotal 3n bits

– Total memory cost: 26n/3 bits

5.2.4 Comparison with standard RSA decryption algorithms

We will here compare a Multi-Prime RSA decryption and classic RSA decryptions with and without
the Chinese remainder theorem, using a bit length n = 1024 bits for the public modulus N . RSA
Multi-Prime is about 8.8 times faster than RSA without Chinese remainder theorem and 2.2 times
faster than RSA with Chinese remainder theorem, while only consuming a little bit more memory.

• Cost Estimation:
Speed Speed-up for n=1024 bits

RSA without CRT 3n3 + n2 1.0
RSA with CRT 3n3/4 + n2/2 + o(n2) 3.98

RSA modulo PQR n3/3 + 19n2/3 + o(n2) 8.84

• Memory:
Total Memory System Parameters Accumulators

RSA without CRT 4n bits 4n bits 0 bit
n=1024 bits 4096 bits 4096 bits 0 bits

RSA with CRT 8n bits 11n/2 bits 5n/2 bits
n=1024 bits 8192 bits 5632 bits 2560 bits

RSA modulo PQR 17n/3 bits 3n bits 26n/3 bits
n=1024 bits 8875 bits 5803 bits 3072 bits
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5.3 General Garner’s algorithm

Although a factorization of more than three prime would not be secure with modulus whose bit
length is only 1024, the recommended key length for RSA may be longer in the future, allowing
factorizations of b primes. In the following, we describe Garner’s algorithm in the general case,
having a modulus N =

∏b
i=1 Pi.

5.3.1 Description of Garner’s algorithm with N =
∏b

i=1 Pi

Algorithm 19 takes the modulus N and its prime factors P1, . . . , Pb, and the residues M1, . . . ,Mb

as input. We also have b− 1 more system parameters, namely A2, . . . , Ab computed as it follows:

Algorithm 18: Garner’s algorithm pre-computations

Unit: MULTI GARNER;
Input: P1, . . . , Pb;
Output: A2, . . . , Ab;

1. for i from 2 to b do
(a) Ai ← 1;
(b) for j from 1 to (i− 1) do

i. U ← P−1
j mod Pi;

ii. Ai ← U ∗Ai;
2. return(A2, . . . , Ab);

We want to compute M such that Mi = M mod Pi for all i from 1 to b. See [MOV97, p.
612] for more information.

Algorithm 19: Garner’s algorithm with N =
∏b

i=1 Pi

Unit: MULTI GARNER;
Input: M1, . . . ,Mb, P1, . . . , Pb, N, A2, . . . , Ab;
Output: M ;

1. U ←M1;
2. M ← U ;
3. P ← P1;
4. for i from 2 to b do

(a) U ← (Mi −M) ∗ Ci mod Pi;
(b) M ←M + U ∗ P ;
(c) P ← P ∗ Pi;

5. return(M);
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5.3.2 Efficiency of Garner’s algorithm

• Notations:
n is the bit length of N and we assume that the bit length of Pi is n/b.

• Cost Estimation:
We compute a modular multiplication of n/b-bit integers and two multiplications in Z at
each step of the loop.
Asymptotic behavior: n2 ∗ 2 ∗

(
b− 1 + 1/b− 1/b2

)
+ o(n2)

• Memory Cost:

– System Parameters
Register names Bits Number of registers

N,M n 2
M1, . . . ,Mb n/b b
P1, . . . , Pb n/b b
A2, . . . , Ab n b− 1

Subtotal (b + 3)n bits

– Accumulators
Register names Bits Number of registers

U n/b 1
P n 1

Subtotal n(1 + 1/b) bits

– Total memory cost: n(b + 4 + 1/b) bits

5.4 Multi-Prime RSA modulo N =
∏b

i=1 Pi

Currently, the recommended key length is 1024 bits. But in the future, we can expect it to be
longer. Then it will be possible to have a modulus with more than three prime factors.

5.4.1 Description of the RSA Multi-Prime cryptosystem

• Key generation:
The key generation is the same as in classic RSA schemes but with b primes instead of
two: we have as input a security parameter n, we choose b primes P , Q and R whose bit
length is n/b and multiply them to get the modulus N . Then we pick some integer e such
that φ(N) =

∏b
i=1(Pi − 1) and e are relatively prime. We finally compute d such that

ed = 1 mod φ(N) and di = d mod Pi − 1. We also pre-compute A2, . . . , Ab with algorithm
18. The two integers 〈N, e〉 are the public key and 〈P1, . . . , Pb, d1, . . . , db, A2, . . . , Ab〉 is the
secret key. Please see §3.1 for more information about standard RSA.

• Encryption:
The encryption stage is the same as in classic RSA encryption schemes.

• Decryption:
The principle is basically the same as in RSA using the Chinese remainder theorem described
in §3.5, unless that the composite modulus N has b prime factors N =

∏b
i=1 Pi. We need
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to compute b exponentiations of n/b-bit integers, hence we can expect decryptions to be b2

times faster than RSA decryptions without Chinese remainder theorem.

5.4.2 Description of the decryption stage

Algorithm 20 performs a decryption, using a composite modulus N =
∏b

i=1 Pi. We have the classic
input parameters: ciphertext C, modulus N , but also its prime factors Pi, the secret exponents di

and Garner’s pre-computed parameters Ai.

Algorithm 20: Multi-prime RSA decryption with N =
∏b

i=1 Pi

Unit: RSA PQR;
Input: C,N, P1, . . . , Pb, d1, . . . , db, A2, . . . , Ab;
Output: M ;

1. for i from 1 to b do
(a) Ci ← C mod Pi;
(b) Mi ← Cdi

i mod Pi;
2. M ← GARNER GEN (M1, . . . ,Mb, P1, . . . , Pb, N, A2, . . . , Ab)
3. return(M);

5.4.3 Performances of RSA Multi-Prime decryption algorithm

The critical part of the algorithm is the exponentiation step, where b exponentiations of n/b-bit
integers are computed. We can expect a speed-up of b2 over a RSA decryption without the Chinese
remainder theorem.

• Notations:
n is the bit length of N and we assume that the bit length of Pi is n/b.

• Cost Estimation:
At the reduction stage, b reductions of a n-bit integer by n/b-bit moduli are computed, which
costs:

n2(1− 1/b) + o(n2)

At the exponentiation stage, we compute b exponentiations of n/b-bit integers, which costs:

3 ∗ n3/b2 + n2/b + o(n2)

At Garner’s stage (see §5.3), we compute some auxiliary multiplications, which costs:

n2 ∗ 2 ∗
(
b− 1 + 1/b− 1/b2

)
+ o(n2)

Asymptotic behavior: 3n3/b2 + n2 ∗
(
2b− 1 + 2/b− 2/b2

)
+ o(n2)

• Memory Cost:
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– System Parameters
Register names Bits Number of registers

C,N,M n 3
d1, . . . , db n/b b
P1, . . . , Pb n/b b
A2, . . . , Ab n b− 1

Subtotal n(b + 4) bits

– Accumulators
Register names Bits Number of registers

C1, . . . , Cb n/b b
M1, . . . ,Mb n/b b
GARNER n(1 + 1/b) 1

Subtotal n(3 + 1/b) bits

– Total memory cost: n(b + 7 + 1/b) bits
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Chapter 6

Multi-Power RSA

In this variant of Multi-Factor RSA, we use a modulus such as N = P bQ ([Tak98]). If the bit
length of N is 1024, b must be smaller or equal to 2 (i.e. N = P 2Q at most), otherwise the
factors would be within the range of elliptic curve factoring methods. This cryptosystem has
however interesting properties: it is not only fast but it also spares memory compared to other
Multi-Factor cryptosystems. In this paper, we describe an improved version which does not
require any inversion implementation.
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6.1 Hensel lifting

6.1.1 Basic idea of Hensel lifting

Using a modulus like N = P 2Q with the classical Chinese remainder theorem, performing a
RSA decryption would be slower than when using a modulus like N = PQ. While computing in
Z/P 2Z, we are dealing with 2n/3-bit integers; in Z/QZ, integers have a bit length of n/3. Using
the standard fast exponentiation algorithm, the asymptotic behavior would be n3 + o(n3) instead
of 3n3/4 for RSA using Chinese remainder theorem. But we can take advantage of the P -adic
representation of the message instead in order to compute MP such that CP = Me

P mod P 2, where
CP = C mod P 2. This method is known as Hensel lifting and allows us to design a cryptosystem
faster than Multi-Prime RSA while consuming less memory.

51
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6.1.2 Mathematical justification

Let’s write the P -adic representation of the plaintext MP modulo P 2:

MP = K0 + P ∗K1 mod P 2

If we now compute CP = Me
P , we get:

CP = (K0 + P ∗K1)e mod P 2

=
e∑

i=0

(e
i
)
∗Ki

0 ∗ P e−i ∗Ke−i
1 mod P 2

All the terms with a power of P greater than 2 are equal to zero because of the reduction modulo
P 2.

CP = Ke
0 + e ∗ P ∗Ke−1

0 ∗K1 mod P 2

Let’s take this equation modulo P : if i 6= e, the term of the sum is equal to zero modulo P :

CP = Ke
0 mod P

Like in classic RSA, instead of directly using the private key d where ed = 1 mod (P − 1)(Q− 1),
we can first reduce it modulo (P − 1): dP = d mod P − 1. For further explanations, please see
§3.5.3. We are now able to compute K0:

K0 = CdP
P mod P

We have now:
C −Ke

0 = e ∗ P ∗Ke−1
0 ∗K1 mod P 2

Let A = C −Ke
0 mod P 2, we also have A = e ∗ P ∗Ke−1

0 ∗K1 mod P 2. In other words there is an
integer k such that:

A = e ∗ P ∗Ke−1
0 ∗K1 + k ∗ P 2

Therefore, A is divisible by P . We define A1 as it follows: A = A1 ∗ P , with 0 ≤ A1 < P . Then
we also know that:

A1 = e ∗Ke−1
0 ∗K1 mod P

And finally:
K1 = A1 ∗

(
e ∗Ke−1

0

)−1
mod P

We can then recover the message modulo P 2: MP = K0 + P ∗K1 mod P 2.

6.1.3 Description of Hensel lifting

As input we take the ciphertext CP = C mod P 2, the secret key dP = d mod P − 1 and the factor
P of the modulus N . The output is the plaintext MP = M mod P 2. The trick is to compute in
Z/PZ instead of Z/P 2Z, and then recover the plaintext in Z/P 2Z.

Algorithm 21 shows an implementation of Hensel lifting. We first compute K0, the lowest
digit in the P-adic representation of the message reduced modulo P 2, MP . This is done at step
2. At step 4, we compute A = C − Ke

0 mod P 2. Then we perform a simple division in Z at
step 5 in order to get A1 such that A = A1 ∗ P . K1 is computed at step 9 with the formula
K1 = A1 ∗

(
Ke−1

0 ∗ e
)−1

mod P and finally MP equals K0 + P ∗K1 mod P 2.
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Algorithm 21: Hensel Lifting

Unit: HENSEL;
Input: CP , dP , P ;
Output: MP ;

1. P 2 ← P ∗ P ;
2. K0 ← CdP

P mod P ;
3. A← −Ke

0 mod P 2;
4. A← A + C mod P 2;
5. A← A/P ;
6. K1 ← Ke−1

0 mod P ;
7. K1 ← K1 ∗ e mod P ;
8. K1 ← (K1)−1 mod P ;
9. K1 ← K1 ∗A mod P ;

10. MP ← P ∗K1 mod P 2;
11. MP ←MP + K0 mod P 2;
12. return(MP );

6.1.4 Performances of Hensel lifting

The critical part is the exponentiation at step 2. There are also exponentiations at step 3 and 6,
but if the public exponent e is kept small (for example 216 − 1 or even 3), the extra computations
are negligible. For security issues and more information about RSA decryption using a modulus
P bQ, please refer to [Tak98].

• Notations:
n is the bit length of the public modulus N = P 2Q and k the bit length of the public exponent
e. We assume that the bit length of P is n/3.

• Cost Estimation:
The exponentiation at step 2 is the critical part of the algorithm. We perform here an
exponentiation of n/3-bit integers, which costs n3/9 + n2/9 + o(n2).
There are two more exponentiations at step 3 and step 6. At step 3, the basis is a 2n/3-bit
integer whereas at step 6 the basis is a n/3-bit integer. However, the exponent can be kept
small in both of them so that the computational costs are cheap, namely:

– 4/9(3k − 2)n2 + o(n2) for the first exponentiation at step 3

– 1/9(3k − 2)n2 + o(n2) for the second exponentiation at step 6

If k is for example 16 or even 2, they are negligible compared to the exponentiation at step
2.
At step 5, we perform a division in Z; the bit length of A is 2n/3 and the bit length of P is
n/3, therefore it costs n2/9+o(n2). The inversion at step 8 is equivalent to 20 multiplications
of n/3-bit integers. There are also some multiplications at intermediary steps.
Asymptotic behavior: n3/9 + n2 (5k/3 + 53/9) + o(n2)

• Memory Cost:
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– System Parameters
Register names Bits Number of registers

dP, P n/3 2
MP , CP 2n/3 2
Subtotal 2n bits

– Accumulators
Register names Bits Number of registers

P 2 2n/3 1
A 2n/3 1

K0,K1 n/3 2
Subtotal 2n bits

– Total memory cost: 4n bits

6.2 Improving Hensel lifting

6.2.1 Inconvenient of the previous algorithm

In the previous version of Hensel lifting, there are several points which can be slightly improved. We
can first avoid the inversion at step 8; on the one hand, the algorithm will be faster and on the other
hand, we can spare ROM memory and development time since we do not need any implementation
of modular inversion. Besides, it is possible to avoid the computation of the exponentiation at step
6. We want to compute K1 = A1 ∗ e−1 ∗K1−e

0 mod P ; assuming that (e inv P ) = e−1 mod P has
been precomputed, we still need K1−e

0 mod P , but it is possible to transform this expression:

K1−e
0 = K0 ∗ (Ke

0)−1 mod P

= CdP
P ∗ (CP )−1 mod P

= CdP−1
P mod P

But we also need CdP
P mod P , therefore we can first perform the exponentiation CdP−1

P mod P and
then simply multiply the result with CP in order to get CdP

P mod P . We can have both expressions
for the cost of a single exponentiation.

6.2.2 Description of the improved Hensel lifting algorithm

The inputs and outputs of the algorithm are the same as in the previous version, except the extra
input (e inv P ) = e−1 mod P .

Algorithm 22 is a possible implementation of this new version of Hensel lifting. At step
2 we perform the exponentiation we need in order to get both of K0 and K1 ∗ P , as explained
above. Then we compute K0 with a single multiplication at the following step 3. We know that
K1∗P = (C −Ke

0)∗e−1∗CdP−1
P mod P 2. Since we already know e−1 mod P 2 and CdP−1

P mod P 2,
we only need to compute C −Ke

0 mod P 2 to finally get K1.
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Algorithm 22: Improved Hensel Lifting

Unit: I HENSEL;
Input: CP , dP , P, (e inv P );
Output: MP ;

1. P 2 ← P ∗ P ;
2. MP ← CdP−1

P mod P ;
3. K0 ←MP ∗ CP mod P ;
4. A← −Ke

0 mod P 2;
5. A← A + C mod P 2;
6. MP ←MP ∗A mod P 2;
7. MP ←MP ∗ (e inv P ) mod P 2;
8. MP ←MP + K0 mod P 2;
9. return(MP );

6.2.3 Performance analysis of improved Hensel lifting

• Notations:
n is the bit length of the public modulus N = P 2Q and k the bit length of the public exponent
e. We assume that the bit length of P is n/3.

• Cost Estimation:
The exponentiation at step 2 deals with n/3-bit integers and costs n3/9 + n2/9. The second
exponentiation at step 4 can be very cheap if e is small; its basis is a 2n/3-bit integer: it
costs 4/9(3k − 2)n2 + o(n2). There are some multiplications at intermediary steps, but we
don’t need to compute any inverse this time.
Asymptotic behavior: n3/9 + n2 (4k/3 + 20/9) + o(n2)

• Memory Cost:

– System Parameters
Register names Bits Number of registers

dP, P n/3 2
MP , CP 2n/3 2

(e inv P ) n/3 1
Subtotal 7n/3 bits

– Accumulators
Register names Bits Number of registers

P 2 2n/3 1
K0 n/3 1

Subtotal n bits
– Total memory cost: 10n/3 bits

6.2.4 Comparison of the two versions

We can see in the following table that the improved version of Hensel lifting is slightly faster while
consuming less memory. However, it requires an additional system parameter, (e inv P ), which
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is stored in EEPROM for the case of smart cards. But the main interest of the improved version
is that we don’t need any implementation of the modular inversion.

• Cost Estimation:
Speed Speed-up for n = 1024, k = 16

Normal version n3/9 + n2 (5k/3 + 53/9) + o(n2) 1.0
Improved version n3/9 + n2 (4k/3 + 20/9) + o(n2) 1.07

• Memory:
Total Memory System Parameters Accumulators

Normal version 4n bits 2n bits 2n bits
n = 1024 4096 bits 2048 bits 2048 bits

Improved version 10n/3 bits 7n/3 bits n bits
n = 1024 3414 bits 2390 bits 1024 bits

6.3 Multi-Power RSA modulo N = P 2Q

6.3.1 Algorithm

• Key generation:
We have as input a security parameter n, we choose two primes P and Q whose bit length is
n/3 and compute the modulus N = P 2Q. Then we pick some integer e like in standard RSA
and compute d such that ed = 1 mod (P −1)(Q−1). Finally, we compute dP = d mod P −1
and dQ = d mod Q− 1. We also pre-compute (P 2 inv Q) and (e inv P ).
The two integers 〈N, e〉 are the public key and

〈
dP, dQ, P,Q, (P 2 inv Q), (e inv P )

〉
is the

secret key. Please see §3.1 for more information about classic RSA.

• Encryption:
The encryption stage is the same as in classic RSA.

• Decryption:
There is a priori no advantages in computing with a modulus N = P 2Q because the bit length
of P 2 is 2n/3. With a standard exponentiation method, it is slower than the cryptosystem
proposed in §3.5. But we can rather compute MP = Cd

P mod P 2, where CP = C mod P 2

and MP = M mod P 2 using Hensel lifting. It allows us to compute an exponentiation of a
2n/3-bit integer for about the cost of an exponentiation of a n/3-bit integer. We can finally
recover the plain text thanks to the Chinese remainder theorem. This method performs a
RSA decryption for the cost of two exponentiations of n/3-bit integers and some auxiliary and
relatively cheap operations. Therefore we can expect this algorithm to be about 27/2 = 13.5
faster than a simple RSA decryption.

6.3.2 Description the decryption stage

The principles of RSA with a modulus N = P 2Q and RSA using the Chinese remainder theorem
are basically the same. We just have to compute the exponentiation modulo P 2 with Hensel
lifting instead of the classic fast exponentiation method. For further explanations, please see
§3.5.3 (RSA using Chinese remainder theorem) and §6.1.2 (Hensel lifting). Algorithm 23 shows an
implementation of RSA using a modulus such as N = P 2Q.
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Algorithm 23: RSA decryption modulo N = P 2Q

Unit: RSA P2Q;
Input: C,N, P, Q, dP , dQ, (P 2 inv Q), (e inv P );
Output: M ;

1. P 2 ← P ∗ P ;
2. CP ← C mod P 2;
3. CQ ← C mod Q;
4. MP ← I HENSEL(CP , dP , P, (e inv P ));
5. MQ ← C

dQ

Q mod Q;
6. V ←MQ −MP mod Q;
7. V ← V ∗ (P 2 inv Q) mod Q;
8. M ← V ∗ P 2 mod N ;
9. M ←M + MP mod N ;

10. return(M);

6.3.3 Performances of the decryption stage

The critical parts of the algorithm are the Hensel lifting at step 4 and the exponentiation at step
5. However, here we compute with moduli whose size is a third of the initial modulus size. Thus,
we can achieve a theoretical factor 13.5 speed-up.

• Notations:

– n: bit length of N

– We assume that the bit length of P and Q is n/3

• Cost Estimation:
We first compute a multiplication in Z and two reductions of a n-bit integer by a 2n/3-bit
and a n/3-bit modulus.
Hensel lifting at step 4 costs n3/9 + n2 (4k/3 + 20/9) + o(n2), whereas the exponentiation at
step 5 costs n3/9 + n2/9.
At Garner’s step, we compute 1 multiplication of n/3-bit integers and 1 multiplication of
n-bit integers.
Asymptotic behavior: 2n3/9 + n2 (4k/3 + 6) + o(n2)

• Memory Cost:

– System Parameters
Register names Bits Number of registers

C,M,N n 3
dP, dQ n/3 2

P,Q n/3 2
(P 2 inv Q), (e inv P ) n/3 2

Subtotal 5n bits
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– Accumulators
Register names Bits Number of registers

P 2 2n/3 1
V n/3 1

CP ,MP 2n/3 2
CQ,MQ n/3 2

HENSEL n/3 1
Subtotal 10n/3 bits

– Total memory cost: 25n/3 bits

6.3.4 Comparison with classic RSA

While consuming about as much memory as RSA using the Chinese remainder theorem, RSA
modulo N = P 2Q is about 3 times faster (and 12 times faster than RSA without Chinese remainder
theorem). Implemented in a smart card, compared to RSA using Chinese remainder theorem, RSA
modulo N = P 2Q would require less EEPROM memory for system parameters, but more RAM
memory for accumulators.

• Cost Estimation:
Speed Speed-up for n=1024, k=16

RSA without CRT 3n3 + n2 1.0
RSA with CRT 3n3/4 + 7n2/2 + o(n2) 3.98

RSA modulo PQR n3/3 + 19n2/3 + o(n2) 8.84
RSA modulo P 2Q 2n3/9 + n2 (4k/3 + 6) + o(n2) 12.06

• Memory:
Total Memory System Parameters Accumulators

RSA without CRT 4n bits 4n bits 0 bit
n=1024 bits 4096 bits 4096 bits 0 bits

RSA with CRT 8n bits 11n/2 bits 5n/2 bits
n=1024 bits 8192 bits 5632 bits 2560 bits

RSA modulo PQR 26n/3 bits 17n/3 bits 3n bits
n=1024 bits 8875 bits 5083 bits 3072 bits

RSA modulo P 2Q 25n/3 bits 5n bits 10n/3 bits
n=1024 bits 8534 bits 5120 bits 3414 bits

6.4 Successive Hensel liftings

Although we are now limited to b = 2 in N = P bQ, it is possible that a bit length greater than 1024
will be recommended in the future, allowing greater values for b. In the following, we introduce
the general case with successive Hensel liftings.

6.4.1 Main idea

Having M mod P , we are able to recover M mod P 2 thanks to Hensel lifting. But we can keep on
executing the algorithm in a loop to recover the message modulo a greater power of P . After each
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loop, we get M mod P i, starting from i = 1, until i = b. At the end, we get M mod P b.
We assume that we have MP,i, the plaintext modulo P i; we show that we can recover it modulo
P i+1. Let’s write the P i-adic representation of MP,i+1, the plaintext modulo P i+1:

MP,i+1 = K0 + K1 ∗ P i mod P i+1

We can write CP,i+1, the ciphertext modulo P i+1 as it follows:

CP,i+1 = Me
P,i+1 mod P i+1

=
(
K0 + K1 ∗ P i

)e
mod P i+1

=
e∑

j=0

(
e
j

)
∗Kj

0 ∗ P i∗(e−j) ∗Ke−j
1 mod P i+1

The reduction modulo P i+1 ensures that for j < e− 1, the terms of the sum are equal to zero. At
the end, we only have:

CP,i+1 = Ke
0 + e ∗Ke−1

0 ∗ P i ∗K1 mod P i+1

But K0 = CP,i+1 mod P i = MP,i:

CP,i+1 = Me
P,i + e ∗Me−1

P,i ∗ P i ∗K1 mod P i+1

There is an integer k such that:

CP,i+1 −Me
P,i = e ∗Me−1

P,i ∗ P i ∗K1 + k ∗ P i+1

We divide the equation above by P i and compute it modulo P :

CP,i+1 −Me
P,i

P i
= e ∗Me−1

P,i ∗K1 mod P

Then:

K1 =
CP,i+1 −Me

P,i

P i
∗
(
e ∗Me−1

P,i

)−1

mod P

And finally,
MP,i+1 = MP,i + K1 ∗ P i mod P i+1

6.4.2 Description of successive Hensel lifting

Algorithm 24 is the general version of algorithm 22, which does not compute any inversion. It
takes the ciphertext CP = Me mod P b, the private key dP = d mod P −1 and P , where N = P bQ.
It computes the plaintext MP = Cd mod P b, using the same tricks as in algorithm 22, namely:

• We pre-compute (e inv P ) = e−1 mod P

• We first compute K = CdP−1
P mod P , then MP = K ∗CP mod P and we can make use of K

in order to compute the successive K1:

K1 =
CP,i+1 −Me

P,i

P i
∗ (e inv P ) ∗M1−e

P,i mod P

=
CP,i+1 −Me

P,i

P i
∗ (e inv P ) ∗ CdP−1

P mod P

=
CP,i+1 −Me

P,i

P i
∗ (e inv P ) ∗K mod P
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Hence we compute the following expression MP,i+1 = MP,i + E mod P i+1 where:

E =
(
CP,i+1 −Me

P,i

)
(e inv P ) ∗K mod P i+1

Algorithm 24: Successive Hensel liftings

Unit: HENSEL GEN;
Input: CP , dP , P, (e inv P );
Output: MP ;

1. K ← CdP−1
P mod P ;

2. MP ← K ∗ CP mod P ;
3. Ppower ← P ;
4. for i from 1 to (b− 1) do

(a) Ppower ← Ppower ∗ P ;
(b) F ←Me

P mod Ppower;
(c) E ← CP − F mod Ppower;
(d) E ← E ∗K mod Ppower;
(e) E ← E ∗ (e inv P ) mod Ppower;
(f) MP ←MP + E mod Ppower;

5. return(MP );

6.4.3 Performance analysis of successive Hensel liftings

• Notations:
n is the bit length of the public modulus N = P bQ and k the bit length of the public exponent
e. We assume that the bit length of P and Q is n/(b + 1).

• Cost Estimation:
The exponentiation at step 1 deals with n/(b+1)-bit integers and costs 3n3/(b+1)3+n2/(b+
1)2 + o(n2). The second exponentiation at step 4b can be kept relatively cheap if e is small;
its basis is a (i + 1) ∗ n/(b + 1)-bit integer and it costs:

(3k − 2)n2(i + 1)2/(b + 1)2 + o(n2)

For the whole loop, we have the following cost:

(3k − 2)n2/(b + 1)2
b−1∑
i=1

(i + 1)2 + o(n2)

and
b−1∑
i=1

(i + 1)2 = b3/3 + b2/2 + b/6− 1

There are also some multiplications at intermediary steps.
Asymptotic behavior:

3n3

(b + 1)3
+

n2

(b + 1)2
∗
(
5b3/3 + 2b2 − 2b/3 + k ∗

(
b3 + 3b2/2 + b/2− 3

))
+ o(n2)
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• Memory Cost:

– System Parameters
Register names Bits Number of registers

dP, P n/(b + 1) 2
MP , CP bn/(b + 1) 2

(e inv P ) n/(b + 1) 1
Subtotal (2b + 3)n/(b + 1) bits

– Accumulators
Register names Bits Number of registers
Ppower,K, F,E bn/(b + 1) 4

Subtotal 4bn/(b + 1) bits

– Total memory cost: (6b + 3)n/(b + 1) bits

6.5 Multi-Power RSA modulo N = P bQ

6.5.1 Algorithm

• Key generation:
We have as input a security parameter n, we choose two primes P and Q whose bit length
is n/(b + 1) and compute the modulus N = P bQ. Then we pick some integer e like in
standard RSA and compute d such that ed = 1 mod (P − 1)(Q − 1). Finally, we compute
dP = d mod P −1 and dQ = d mod Q−1. We also pre-compute (P 2 inv Q) and (e inv P ).
The two integers 〈N, e〉 are the public key and

〈
dP, dQ, P,Q, (P 2 inv Q), (e inv P )

〉
is the

secret key. Please see §3.1 for more information about classic RSA.

• Encryption:
The encryption stage is the same as in classic RSA.

• Decryption:
We compute MP = Cd

P mod P b, where CP = C mod P b and MP = M mod P b using Hensel
lifting. It allows us to perform an exponentiation of a bn/(b + 1)-bit integer for about the
cost of an exponentiation of a n/(b+1)-bit integer and some extra operations. We can finally
recover the plain text thanks to the Chinese remainder theorem. This method performs a
RSA decryption for about the cost of two exponentiations of n/(b + 1)-bit integers and some
auxiliary operations. Therefore we can expect this algorithm to be about (b + 1)3/2 faster
than a simple RSA decryption. This is however a first approximation; in fact, the auxiliary
operations are not so cheap when b grows up. We also compute MQ = Cd

Q mod Q and get
the plaintext with Garner’s algorithm.

6.5.2 Description of the decryption stage

Algorithm 25 generalizes the decryption algorithm to the case N = P bQ. The principle is the same
as when N = P 2Q: first we compute the exponentiation modulo Q and get the plaintext modulo
Q, then recover the plaintext modulo P 2 thanks to Hensel lifting and finally get the plaintext back
with Garner’s algorithm.
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Algorithm 25: RSA decryption modulo N = P bQ

Unit: RSA PbQ;
Input: C,N, P, Q, dP , dQ, (P b inv Q), (e inv P );
Output: M ;

1. Pb← P ;
2. for i from 2 to b do Pb← Pb ∗ P ;
3. CP ← C mod Pb;
4. CQ ← C mod Q;
5. MP ← HENSEL GEN(CP , dP , P, (e inv P ));
6. MQ ← C

dQ

Q mod Q;
7. V ←MQ −MP mod Q;
8. V ← V ∗ (P b inv Q) mod Q;
9. M ← V ∗ Pb mod N ;

10. M ←M + MP mod N ;
11. return(M);

6.5.3 Performances of the decryption stage

The critical parts of the algorithm are the Hensel lifting at step 5 and the exponentiation at step
6. However, we here compute with moduli which are much smaller than the initial modulus. Thus,
we can expect a theoretical speed-up of about (b + 1)3/2.

• Notations: n is bit length of N and we assume that the bit length of P and Q is n/(b + 1)

• Cost Estimation:
Each reduction at steps 3 and 3 costs n2 ∗ b/(b + 1) + o(n2). Hensel lifting at step 5 costs:

3n3

(b + 1)3
+

n2

(b + 1)2
∗
(
5b3/3 + 2b2 − 2b/3 + k ∗

(
b3 + 3b2/2 + b/2− 3

))
+ o(n2)

whereas the exponentiation at step 6 costs 3n3/(b + 1)3 + n2/(b + 1).
At Garner’s step, we compute 1 multiplication of n/(b + 1)-bit integers and 1 multiplication
of n-bit integers.
Asymptotic behavior:

6n3

(b + 1)3
+

n2

(b + 1)2
∗
(
8b3/3 + 5b213b/3 + 3 + k ∗

(
b3 + 3b2/2 + b/2− 3

))
+ o(n2)

• Memory Cost:

– System Parameters
Register names Bits Number of registers

C,M,N n 3
dP, dQ n/(b + 1) 2

P,Q n/(b + 1) 2
(P 2 inv Q), (e inv P ) n/(b + 1) 2

Subtotal n (3 + 6b/(b + 1)) bits
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– Accumulators
Register names Bits Number of registers

Pb bn/(b + 1) 1
V n/(b + 1) 1

CP ,MP bn/(b + 1) 2
CQ,MQ n/(b + 1) 2

HENSEL 4bn/(b + 1) 1
Subtotal (7b + 3)n/(b + 1) bits

– Total memory cost: n (3 + (13b + 3)/(b + 1)) bits
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Chapter 7

Batch RSA

A complete different approach consists of grouping different decryptions under certain conditions.
For example, a SSL server performs a lot of consecutive RSA decryptions and can be quickly
overloaded. But if it waits for more than one RSA decryption request and performs one big
computation for all decryptions, it can spare a lot of running time capacity [Fia89], being able to
perform more SSL handshakes.

Contents
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7.1 Main idea

Notation

We will use the notation M = C1/e mod N , which is equivalent to M = Cd, where d = e−1 mod
φ(N).

7.1.1 Batching two RSA decryptions

Assuming that we have two messages to encrypt M1 and M2 respectively with the public keys
〈N, 3〉 and 〈N, 5〉, Fiat showed that it is possible to decrypt the ciphertexts C1 = M3

1 mod N and
C2 = M5

2 mod N for approximately the price of a single RSA decryption [BS02, p. 3].

65
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Let A =
(
C5

1 ∗ C3
2

)1/15, then we can compute:

A10

C3
1 ∗ C2

2

=
C

10/3
1 ∗ C2

2

C3
1 ∗ C2

2

= M1 = C
1/3
1

A6

C2
1 ∗ C2

=
C2

1 ∗ C
6/5
2

C2
1 ∗ C2

= M2 = C
1/5
2

For the cost of a single 15th-root computation (which is equivalent to a single RSA decryption),
we can compute two RSA decryptions. However, the public exponents e1 and e2 (here 5 and 3)
have to be chosen small because the auxiliary exponentiations must be cheap.

7.1.2 General case: batching p RSA decryptions

We can generalize this batching algorithm: assuming that we have p pairwise relatively prime
exponents ei sharing the same modulus N and p ciphertexts Ci respectively encrypted with the
exponents ei, we want to batch the necessary computations to get the plaintexts Mi = C1/ei mod
N . We first set:

e =
p∏

i=1

ei

and

A0 =
p∏

i=1

C
e/ei

i mod N

Then we compute A = A
1/e
0 mod N . Each plaintext Mi can be recovered with the following

formula:
Mi =

Aαi

C
(αi−1)/ei

i ∗
∏p

j=1,j 6=i C
αi/ej

j

mod N

with αi = 1 mod ei and αi = 0 mod ej for j 6= i. Algorithm 26 shows an implementation of Batch
RSA.

7.1.3 Correctness of Batch RSA

We have the conditions αi = 1 mod ei and αi = 0 mod ej ; in other words, there are integers ki

and ki,j such that:
αi = 1 + ki ∗ ei

αi = ki,j ∗ ej

Applying this result to the formula, we get:

Aαi

C
(αi−1)/ei

i ∗
∏p

j=1,j 6=i C
αi/ej

j

=
Aαi

Cki
i ∗

∏p
j=1,j 6=i C

ki,j

j

mod N

Besides,

Aαi =

 p∏
j=1

C
1/ej

j

αi

mod N
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Algorithm 26: Batch RSA

Unit: BATCH RSA;
Input: C1, ..., Cp, e1, ...ep, d1, ..., dp, N ;
Output: M1, . . . ,Mp verifying Ci = Mei

i mod N ;

1. e← e1; d← d1; A← 1;
2. for i from 2 to p

(a) e← e ∗ ei; d← d ∗ di;
3. for i from 1 to p

(a) E ← e/ei;
(b) F ← E−1 mod ei;
(c) ai ← E ∗ F mod N ;
(d) F ← Cei

i mod N ;
(e) A← A ∗ F mod N ;

4. A← Ad mod N ;
5. for i from 1 to p

(a) Mi ← Aai mod N ;
(b) F ← ai − 1 mod N ;
(c) F ← F/ei;
(d) T ← CF

i mod N ;
(e) for j from 1 to p, j 6= i

i. E ← ai/ej ;
ii. F ← CE

j mod N ;
iii. T ← T ∗ F mod N ;

(f) T ← T−1 mod N ;
(g) Mi ←Mi ∗ T mod N ;

6. return(M1, . . . ,Mp);
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Aαi = C
αi/ei

i ∗
p∏

j=1,j 6=i

C
αi/ej

j mod N

Using once again the conditions of αi, we get αi/ei = 1/ei + ki and αi/ej = ki,j Therefore:

Aαi = C
1/ei

i ∗ Cki
i

p∏
j=1,j 6=i

C
ki,j

j mod N

Finally:
Aαi

C
(αi−1)/ei

i ∗
∏p

j=1,j 6=i C
αi/ej

j

=
C

1/ei

i ∗ Cki
i

∏p
j=1,j 6=i C

ki,j

j

Cki
i ∗

∏p
j=1,j 6=i C

ki,j

j

mod N

Aαi

C
(αi−1)/ei

i ∗
∏p

j=1,j 6=i C
αi/ej

j

= Mi mod N

7.1.4 Performance analysis of batch RSA

• Notations:
n is the bit length of the public modulus N , p the number of batched decryptions and k the
bit length of the bigger of ei.

• Cost Estimation: Because k and p are very small compared to n, we can ignore many
operations in the speed estimation: if the speed cost of a given operation does not involve at
least n2, we neglect it.

– In the first loop at step 2, 2(p−1) multiplications in Z are computed: it costs 2(p−1)n2.
– The exponent at step 3d is ei; its bit length is k therefore this exponentiation costs

(3k−2)n2+o(n2). The inversion at step 3b is computed modulo ei, hence it is equivalent
to 20 multiplications of k-bit integers: we can neglect this operation since it does not
involve n2. We have also two multiplication of n-bit integers. The whole loop at step 3
costs p(2 + 3k)n2 + o(n2).

– At step 4, the exponent has a bit length of n, therefore the exponentiation costs 3n3 +
n2 + o(n2).

– The exponent at step 5a is
∏p

j=1 ej/ei ∗ F , where F = E−1
i mod ei; its bit length is

p ∗ k, therefore the exponentiation at step 5a costs (3p ∗ k − 2)n2 + p(n2). Both of the
exponentiations at steps 5d and 5(e)ii cost (3(p− 1)k − 2)n2 + o(n2). We have also an
inversion at step 5f which is equivalent to 20 multiplications of n-bit integers and costs
40n2 + o(n2).

Asymptotic behavior: 3n3 + n2
(
42p− 1 + k ∗

(
3p3 + 3p

))
+ o(n2)

• Memory Cost:

– System Parameters
Register names Bits Number of registers

Ci n p
ei k p
di n p
N n 1

Mi n p

Subtotal n(3p + 1) + pk bits
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– Accumulators
Register names Bits Number of registers

e p ∗ k 1
ai p ∗ k p
E (p− 1) ∗ k 1

F, T n 2
Subtotal 2n + k

(
p2 + 2p− 1

)
bits

– Total memory cost: n(3p + 3) + k
(
p2 + 3p− 1

)
bits

7.1.5 Comparison with classic RSA

Here we will compare the number of multiplications of n bit integers for batch RSA and p classic
RSA decryptions, using a bit length k = 16 for public exponents ei.

• Cost Estimation:
p=2 p=4 p=8

RSA without CRT 6n3 + 2n2 12n3 + 4n2 24n3 + 8n2

Speed-up for n=1024 1.0 1.0 1.0
RSA with CRT 3n3/2 + 7n2 3n3 + 14n2 6n3 + 28n2

Speed-up for n=1024 3.98 3.98 3.98
Batch RSA 3n3 + 563n2 3n3 + 3431n2 3n3 + 25295n2

Speed-up for n=1024 1.69 1.89 0.87

• Memory:
Total Memory System Parameters Accumulators

RSA without CRT 3n bits 3n bits
n=1024 3072 bits 3072 bits

RSA with CRT 8n bits 11n/2 bits 5n/2 bits
n=1024 8192 bits 5632 bits 2560 bits

Batch RSA (p=2) 7n + 96 bits 5n + 32 bits 2n + 64 bits
n=1024 , k=16 9360 bits 7200 bits 2160 bits

Batch RSA (p=4) 11n + 256 bits 9n + 64 bits 2n + 192 bits
n=1024 , k=16 15792 bits 13376 bits 2416 bits

Batch RSA (p=8) 19n + 768 bits 17n + 128 bits 2n + 640 bits
n=1024 , k=16 29040 bits 25728 bits 3312 bits

We see here that batch RSA has no advantages over RSA using the Chinese remainder
theorem with a bit length of 1024. Besides the memory requirements are very high compared to p
successive RSA decryptions. However it is possible to make use of some tricks in order to speed-up
batch RSA.

7.2 How to increase efficiency?

If we want A0 =
∏p

i=1 C
e/ei

i mod N to really be the critical part of the algorithm, we have to keep
the auxiliary computations cheap. Therefore, the exponents ei have to be small. Nevertheless, it
is possible to increase the speed of many computations by using special algorithms.
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7.2.1 Chinese remainder theorem

Like in other RSA-based algorithms, one can use the Chinese remainder theorem in order to divide
by approximatively four the computations. We can implement it with Garner’s algorithm.

7.2.2 Computing multiple inverses

When we compute Mi back for i from 1 to p, we have to also compute an inverse:

Mi =
Aαi

C
(αi−1)/ei

i ∗
∏p

j=1,j 6=i C
αi/ej

j

mod N

Let Ti = C
(αi−1)/ei

i ∗
∏p

j=1,j 6=i C
αi/ej

j .
Instead of computing the T−1

i independently, we can group the computations thanks to a trick
due to Montgomery and increase the speed of batch RSA. Instead of computing p inverses, we just
compute a single inverse and 3(p− 1) multiplications.

7.2.3 Computing multiple exponentiations

In many cases, we must evaluate the product of single exponentiations, for example:

A0 =
p∏

i=1

C
e/ei

i mod N

Or:

Di = C
(αi−1)/ei

i ∗
p∏

j=1,j 6=i

C
αi/ej

j mod N

Instead of computing individually each exponentiation and then multiply them, we can group the
computations again ([MOV97, p. 618]). Although we need a pre-computation stage which has
an exponential asymptotic behavior, this is particularly cheap for the case of the Di, because the
basis stay the same, only the exponents change. Thus, we just have one pre-computation stage for
all computations of the Di.

7.3 Improving batch RSA: Montgomery’s trick

This method allows to compute n inversions for the cost of a single inversion and some auxiliary
multiplications. It is known as Montgomery’s trick.

7.3.1 Description of Montgomery’s Trick for multiple inversions

Algorithm 27 takes the integers to invert and the modulus as input, and computes the product of
the inverted integers.
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Algorithm 27: Montgomery’s Trick for inversions

Unit: MONTGOMERY;
Input: A1, . . . , Ap, N ;
Output: Z1 = A−1

1 , . . . , Zp = A−1
p mod N ;

1. X1 ← A1;
2. for i from 2 to p

(a) Xi ← Xi−1 ∗Ai mod N ;
3. Z1 ← X−1

p mod N ;
4. for i from p down to 2

(a) Zi ← Xi−1 ∗ Z1 mod N ;
(b) Z1 ← Z1 ∗Ai mod N ;

5. return(Z1, . . . , Zp)

7.3.2 Correctness of Montgomery’s Trick

The values Xi computed at step 2a are the product of the input values Aj from 1 to i:

Xi =
i∏

j=1

Aj mod N

We compute then Z1 at step 3 which is the product of all inverses:

Z1 =
p∏

j=1

A−1
j mod N

We multiply Z1 with Ai at each iteration of the loop 4. Thus, at the i-th iterations, the value of
Z1 is:

Z1,i =
i∏

j=1

A−1
j mod N

This value is multiplied with Xi−1 =
∏i−1

j=1 Aj at step 4a. Therefore, we get:

Zi =
i−1∏
j=1

Aj ∗
i∏

j=1

A−1
j mod N

Finally, Zi = A−1
i .

7.3.3 Performance analysis of Montgomery’s Trick

We just compute a single inversion at step 3 and 3(p − 1) multiplications (one multiplication pro
iteration at step 2a and two multiplications pro iteration at steps 4a and 4b. Thus we compute
an equivalent of 3(p − 1) + 20 multiplications instead of an equivalent of 20p multiplications (p
successive inversions).
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• Notations:
Let n be the bit length of N

• Cost estimation:

– p− 1 multiplications for the first loop at step 2a
– 2(p− 1) multiplications for the second loop at steps 4a and 4b
– 1 inversion (equivalent to 20 multiplications) at step 3.
– Asymptotic behavior: (6(p− 1) + 40) n2 + o(n2)

• Memory Cost:

– System Parameters
Register names Bits Number of registers

Ai n p
Zi n p

Subtotal 2pn bits
– Accumulators

Register names Bits Number of registers
Xi n p

Subtotal pn bits
– Total memory cost: 3pn bits

7.4 Improving batch RSA: Shamir’s Trick

7.4.1 Description of Shamir’s Trick for multiple exponentiations

Just like the fast exponentiation method, the fast computation of multiple exponentiation orders
the different exponents regarding their binary representation: the same two-powers are computed
in the same time. This method is known as Shamir’s Trick. As input we take p basis M1, . . . ,Mp,
p exponents e1, . . . , ep and the modulus N . The binary representation of each exponent is known:
ei = (ei,k−1 . . . ei,0)2. We compute C = Me1

1 ∗. . .∗M
ep
p faster than if we simply perform consecutive

exponentiations.

7.4.2 Explanations

At the pre-computation stage, we compute all possible products of the Mi. In fact, we establish a
bijection b defined by:

b : i = (ip−1 . . . i0)2 7−→
p−1∏
j=0

M
ij

j mod N

where ij ∈ {0, 1}.
At the evaluation stage, we proceed like in the left-to-right exponentiation method, but instead of
multiplying with a single basis M , we do have many possibilities and must must choose the right
basis. We want to compute:

C =
k∏

i=1

Mei
i mod N
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Algorithm 28: Shamir’s Trick for multiple exponentiations

Unit: SHAMIR;
Input: M1, . . . ,Mp, e1, . . . , ep, N ;
Output: C = Me1

1 ∗ . . . ∗M
ep
p ;

1. for i from 0 to (2p − 1)
(a) Gi ←M i1

1 ∗ . . . ∗M
ip
p mod N where i = (ip . . . i1)2;

2. A← 1;
3. for i from (k − 1) down to 0

(a) C ← C ∗ C mod N ;
(b) C ← C ∗Gbi

mod N where bi = (ep,i . . . e1,i)2;
4. return(C);

Let’s use the binary representation of the exponents ei:

C =
k∏

i=1

M
∑p−1

j=0 ei,j∗2j

i mod N

Now we can transform the sum inside the exponents into a product:

C =
k∏

i=1

p−1∏
j=0

M
ei,j∗2j

i mod N

And we can swap the two products:

C =
p−1∏
j=0

(
k∏

i=1

M
ei,j

i

)2j

mod N

The term inside the parenthesis is the basis we must choose at each step; this products have already
been computed in the pre-computation step. They are simply:

C =
p−1∏
j=0

b (E)2
j

mod N

where E = (e1,j . . . ek,j)2. The two-power exponentiation is simply done by successive squaring at
each step.

7.4.3 Performance analysis of Shamir’s Trick

• Notations:
Let k be the bit length of max(ei) and n the bit length of N.

• Cost Estimation:

– at step 1a, there are
p

j integers i having i times the bit one in their binary representation.

Therefore the whole pre-computation stage costs
∑p

j=0

(
p

j

)
∗j = p∗2p−1 multiplications

of n-bit integers.



74 CHAPTER 7. BATCH RSA

– (k−1) square computations of n-bit integers are computed at step 3a: at the beginning,
A = 1 so we practically don’t have any squaring when i = k − 1.

– k ∗ (1− 1/2p) multiplications of n-bit integers are computed at step 3b: the probability
of having Gbi

= 1 is 1/2p. In this case, we don’t have to compute any multiplication.
Thus, we compute on average 1− 1/2p multiplications at each step of the loop.

Asymptotic behavior: p ∗ 2p ∗ n2︸ ︷︷ ︸
pre−computation

+
(
k(4− 1/2p−1)− 2

)
n2︸ ︷︷ ︸

evaluation

+o(n2)

If k = n, then we get:

p ∗ 2p ∗ n2︸ ︷︷ ︸
pre−computation

+n3 ∗
(
4− 1/2p−1

)
− 2 ∗ n2︸ ︷︷ ︸

evaluation

+o(n2)

• Memory Cost:

– System Parameters
Register names Bits Number of registers

Mi n p
ei k p

C,N n 2
Subtotal n(p + 2) + kp bits

n(2p + 2) bits if k = n

– Accumulators
Register names Bits Number of registers

Gi n 2p

Subtotal 2pn bits

– Total memory cost: n(p + 2 + 2p) + kp bits
n(2p + 2 + 2p) bits if k = n

7.5 Batch RSA using Shamir’s and Montgomery’s Tricks

7.5.1 Description of improved Batch RSA

In the first version of batch RSA, we needed to compute the following formula in order to recover
plain texts:

Mi =

(∏p
j=1 C

e/ej

j

)αi/e

C
(αi−1)/ei

i ∗
∏p

j=1,j 6=i C
αi/ej

j

mod N

We can see here that we need to compute two products of p exponentiations and 1 inversions
for each Mi. Thanks to the Shamir’s trick, we can speed-up the multiple exponentiation process
for each Mi, and, if we wait and compute all inversions in the same time, we can make use of
Montgomery’s trick to do it faster. Please note that we just need one pre-computation for the
Shamir’s trick, although this unit is called (p + 1) times, because the basis stay always the same.
This does not appear in algorithm 29 to make it easier to read.
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Algorithm 29: Improved Batch RSA

Unit: I BATCH RSA;
Input: C1, ..., Cp, e1, ...ep, d1, ..., dp, N ;
Output: M1, . . . ,Mp verifying Ci = Mei

i mod N ;

1. e← e1; d← d1;
2. for i from 2 to p

(a) e← e ∗ ei;
(b) d← d ∗ di;

3. for i from 1 to p
(a) Ei ← e/ei;

4. A← SHAMIR(C1, . . . , Cp, E1, . . . , Ep, N);
5. A← Ad mod N ;
6. for i from 1 to p

(a) F ← E−1
i mod ei;

(b) a← Ei ∗ F mod N ;
(c) Mi ← Aa mod N);
(d) gi ← a− 1 mod N ;
(e) gi ← gi/ei;
(f) for j from 1 to p

i. if j 6= i then gj ← a/ej ;
(g) Ti ← SHAMIR(C1, . . . , Cp, g1, . . . , gp, N);

7. T1, . . . , Tp ← MONTGOMERY(T1, . . . , Tp);
8. for i from 1 to p

(a) Mi ←Mi ∗ Ti mod N ;
9. return(M1, . . . ,Mp);
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7.5.2 Performance analysis of improved Batch RSA

• Notations:
n is the bit length of the public modulus N , p the number of batched decryptions and k the
bit length of the greatest ei.

• Cost Estimation:

– In the first loop at step 2b, (p− 1) multiplications in Z of n-bit integers are computed;
the operations at steps 3a and 2a can be neglected since the involved integers have a
bit length of at most p ∗ k.

– The exponents Ei have a bit length of (p − 1)k, therefore the Shamir’s trick at step 4
costs

p ∗ 2p ∗ n2︸ ︷︷ ︸
pre−computation

+
(
(p− 1)k(4− 1/2p−1)− 2

)
n2︸ ︷︷ ︸

evaluation

+o(n2)

We don’t need any further pre-computation stage when the Shamir’s trick is called
again.

– At step 5, we compute the batched decryption; this operation should be the critical one
for the whole algorithm and costs 3n3 + n2.

– The inversions E−1
i mod ei are equivalent to 20 multiplications of k-bit integers, since

these operations do not involve n2, we can neglect them.

– The bit length of F = E−1
i mod ei is k and the bit length of Ei =

∏
j = 1, j 6= ipei is

(p − 1)k. Therefore, the bit length of a = F ∗ Ei is pk and the exponentiation at step
6c costs (3pk − 2)n2 + o(n2).

– The exponents gi have a bit length of (p − 1)k and the Shamir’s trick at step 6g only
costs

(
(p− 1)k(4− 1/2p−1)− 2

)
n2 +o(n2) because we don’t need any pre-computation

stage. However, this unit is called p times. Montgomery’s trick allows us to compute
all p inversions with a cost of (6(p− 1) + 40)n2 + o(n2). In the last loop, we compute p
multiplications of n-bit integers: it costs 2pn2 + o(n2).

Asymptotic behavior:

3n3 + n2
(
32 + p (2p + 7) + k ∗

(
−4 + 1/2p−1 + p2 ∗

(
7− 1/2p−1

)))
+ o(n2)

• Memory Cost:

– System Parameters
Register names Bits Number of registers

Ci n p
ei k p
di n p
N n 1

Mi n p

Subtotal n(3p + 1) + pk bits



7.6. BATCH RSA USING THE CHINESE REMAINDER THEOREM 77

– Accumulators
Register names Bits Number of registers

e pk 1
d n 1
a pk 1

Ei (p− 1)k p
F k 1
gi pk p
Ti n p

SHAMIR n ∗ 2p 1
MONTGOMERY pn 1

Subtotal n(2p + 1 + 2p) + k(2p2 + p + 1) bits

– Total memory cost: n(5p + 2 + 2p) + k(2p2 + p + 1) bits

7.6 Batch RSA using the Chinese remainder theorem

7.6.1 Description of Batch RSA using the Chinese remainder theorem

We can also use the Chinese remainder theorem in order to speed up batch RSA: instead of
decrypting the messages modulo N , we can decrypt them modulo P and Q with algorithm 29,
assuming that N = PQ, and then recover the messages thanks to Garner’s algorithm.

Algorithm 30: Batch RSA using the Chinese remainder theorem

Unit: BATCH RSA CRT;
Input: C1, . . . , Cp, e1, . . . , ep, d1, . . . , dp, N, P, Q, (P inv Q);
Output: M1, . . . ,Mp verifying Ci = Mei

i mod N ;

1. for i from 1 to p
(a) Ci,P ← Ci mod P ;
(b) ei,P ← ei mod P − 1;
(c) di,P ← di mod P − 1;
(d) Ci,Q ← Ci mod Q;
(e) ei,Q ← ei mod Q− 1;
(f) di,Q ← di mod Q− 1;

2. M1,P , . . . ,Mp,P ← I BATCH RSA (C1,P , . . . , Cp,P , e1,P , . . . , ep,P , d1,P , . . . , dp,P , P );
3. M1,Q, . . . ,Mp,Q ← I BATCH RSA (C1,Q, . . . , Cp,Q, e1,Q, . . . , ep,Q, d1,Q, . . . , dp,Q, Q);
4. for i from 1 to p

(a) Mi ← GARNER(Mi,P ,Mi,Q, P, Q, (P inv Q), N);
5. return(M1, . . . ,Mp);

7.6.2 Performances of Batch RSA using the Chinese remainder theorem

• Notations:
Let n be the bit length of N
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• Cost estimation:

– In the first loop (step 1), we compute 6 modular reductions. The reductions of ei can be
neglected, because they cost less than n2. The other reductions cost each n2/4 + o(n2).
Therefore, the whole loop costs p ∗ n2 + o(n2).

– Step 2 and 3 both call the improved batch RSA unit with moduli whose bit length is
n/2. Therefore we have here a total cost of:

3n3/4 + n2/2
(
32 + p (2p + 7) + k ∗

(
−4 + 1/2p−1 + p2 ∗

(
7− 1/2p−1

)))
+ o(n2)

– At each of the p steps 4a, we execute Garner’s algorithm which costs 5n2/2 + o(n2).

– Asymptotic behavior:

3n3/4 + n2/2
(
32 + p (2p + 21/2) + k ∗

(
−4 + 1/2p−1 + p2 ∗

(
7− 1/2p−1

)))
+ o(n2)

• Memory Cost:

– System Parameters
Register names Bits Number of registers

Ci n p
ei k p
di n p
N n 1

Mi n p

Subtotal n(3p + 1) + pk bits

– Accumulators
Register names Bits Number of registers

Ci,P , Ci,Q n/2 2p
ei,P , ei,Q k 2p
di,P , di,Q n/2 2p

I BATCH RSA n(p + 1/2 + 2p−1) + k(2p2 + p + 1) 1
GARNER n/2 1

Subtotal n(3p + 1/2 + 2p−1) + k(2p2 + 3p + 1) bits

– Total memory cost: n(6p + 3/2 + 2p−1) + k(2p2 + 4p + 1) bits

7.7 Comparison with classic RSA

• Cost Estimation, k=16 bits:
p=2 p=4 p=8

RSA without CRT 6n3 + 6n2 12n3 + 12n2 24n3 + 24n2

Speed-up for n=1024 1.0 1.0 1.0
RSA without CRT 3n3/2 + 9n2 3n3 + 18n2 6n3 + 36n2

Speed-up for n=1024 3.98 3.98 3.98
Batch RSA 3n3/4 + 421n2/2 3n3/4 + 918n2 3n3/4 + 74081n2/16

Speed-up for n=1024 6.28 7.29 4.55

Batch RSA appears to be faster than RSA using the Chinese remainder theorem, this is
particularly clear for p = 4, but the speed-up becomes smaller when p is too big. We used
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a bit length k = 16 for the public exponents ei, but [BS02] recommends smaller values
for k, hence achieving a greater speed-up. Nevertheless, in a real situation, the decryption
device would have to wait for decryption requests, which was not taken into account in
our estimation and would generate idle cycles. The batching strategy is very important: it
appears here that batching four decryptions twice is faster than batching eight decryptions
once. Depending on the decryption requests frequency and the decryption speed, we have to
make a good batching choice.

• Memory:
Total Memory System Parameters Accumulators

RSA without CRT 4n bits 4n bits
n=1024 4096 bits 4096 bits

RSA with CRT 8n bits 11n/2 bits 5n/2 bits
n=1024 8192 bits 5632 bits 2560 bits

Batch RSA (p=2) 31n/2 + 272 bits 7n + 32 bits 17n/2 + 240 bits
n=1024 , k=16 16144 bits 7200 bits 8944 bits

Batch RSA (p=4) 67n/2 + 784 bits 13n + 64 bits 41n/2 + 720 bits
n=1024 , k=16 35088 bits 13376 bits 21712 bits

Batch RSA (p=8) 355n/2 + 2576 bits 25n + 128 bits 305n/2 + 2448 bits
n=1024 , k=16 184336 bits 25728 bits 158608 bits

Using some tricks, batching RSA decryptions can be faster than p successive RSA decryp-
tions, at the expense of memory consumption. Therefore this algorithm is well designed for
environments having a huge memory capacity, like SSL servers.

As shown in [SB01], it is possible to modify the architecture of an Apache web server in
order to make use of batch RSA, hence improving performances of SSL handshakes.
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Chapter 8

Conclusion

We compare the different decryption schemes that have been described in terms of speed and
memory. However, some algorithms have very specific application domains, therefore we must
not forget what the characteristics, downsides and applications of each algorithm are.

Contents

8.1 Speed comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

8.2 Memory comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

8.1 Speed comparisons

In the following, we compare the different algorithms of the paper, namely RSA without and
with the Chinese remainder theorem, rebalanced RSA, Multi-Prime RSA, Multi-Power RSA and
batch RSA. Please note that these algorithms have different application domains, and one must
consider the downsides of each of the algorithms. Although rebalanced RSA seems to be the
fastest algorithm, its encryption stage is much slower, therefore it is only designed for signing or
decrypting purposes. Batch RSA is not as fast as Multi-Prime and Multi-Power, but in fact, it
can be combined with these algorithms, enhancing their speed at the expense of the memory. RSA
modulo P 2Q is not only fast, but also does not have any important downside.

Speed Speed-up for n=1024
RSA without CRT 3n3 + n2 1.0

RSA with CRT 3n3/4 + 7n2/2 + o(n2) 3.98
Batch RSA, p = 4, k = 16 3n3/4 + 918n2 + o(n2) 7.29

RSA modulo PQR n3/3 + 19n2/3 + o(n2) 8.84
RSA modulo P 2Q, k = 16 2n3/9 + n2 (4k/3 + 6) + o(n2) 12.06
Rebalanced RSA, k = 160 n2(3k/2 + 2) + o(n2) 12.70

81
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8.2 Memory comparisons

Total Memory System Parameters Accumulators
RSA without CRT 4n bits 4n bits 0 bit

n=1024 bits 4096 bits 4096 bits 0 bits
RSA with CRT 8n bits 11n/2 bits 5n/2 bits

n=1024 bits 8192 bits 5632 bits 2560 bits
Rebalanced RSA 7n + 2k bits 9n/2 + 2k bits 5n/2 bits
n=1024, k=160 7200 bits 4640 bits 2560 bits

RSA modulo PQR 26n/3 bits 17n/3 bits 3n bits
n=1024 bits 8875 bits 5803 bits 3072 bits

RSA modulo P 2Q 25n/3 bits 5n bits 10n/3 bits
n=1024 bits 8534 bits 5120 bits 3414 bits

Batch RSA (p=4) 67n/2 + 784 bits 13n + 64 bits 41n/2 + 720 bits
n=1024 , k=16 35088 bits 13376 bits 21712 bits

Although the rebalanced RSA decryption scheme requires less memory than the other al-
gorithms, we must not forget that its encryption scheme is very slow. For 4 batched decryptions,
batch RSA requires about three times as much memory as the other decryption schemes. Its huge
memory requirement make it only useful in environments without memory constraints, like SSL
servers. Multi-Prime and Multi-Power RSA have about the same memory requirements, Multi-
Power RSA being slightly better.
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