
Copyright 1991–1993 RSA Laboratories, a division of RSA Data Security, Inc. License to copy
this document is granted provided that it is identified as "RSA Data Security, Inc. Public-Key
Cryptography Standards (PKCS)" in all material mentioning or referencing this document.
003-903016-110-000-000

An Overview of the PKCS Standards

An RSA Laboratories Technical Note
Burton S. Kaliski Jr.
Revised November 1, 1993*

Abstract. This note gives an overview of the PKCS family of standards for public-key cryptography. These
standards cover RSA encryption, Diffie-Hellman key agreement, password-based encryption, extended-
certificate syntax, cryptographic message syntax, private-key information syntax, and certification request
syntax, as well as selected attributes. The note gives the motivation for the standards and discusses their
relationship to other standards or agreements on public-key cryptography.

1. Introduction

As public-key cryptography begins to see wide application and acceptance one
thing is increasingly clear: If it is going to be as effective as the underlying
technology allows it to be, there must be interoperable standards. Even though
vendors may agree on the basic public-key techniques, compatibility between
implementations is by no means guaranteed. Interoperability requires strict
adherence to an agreed-upon standard format for transferred data. The
standards described here provide such a basis for interoperability.

We call the standards described here "Public-Key Cryptography Standards," or
"PKCS" for short. The standards consist of a number of components, called PKCS
#1, #3, #5, #6, #7, #8, #9 and #10.1

The standards presented here evolved from the following broad design goals:

1. To maintain compatibility with PEM (the Internet Privacy-
Enhanced Mail protocols, described in RFCs 1421–1424) wherever
possible, at least to the extent of being able to share certificates and

*Supersedes June 3, 1991 version, which was also published as NIST/OSI Implementors' Workshop
document SEC-SIG-91-16. PKCS documents are available by electronic mail to <pkcs@rsa.com>.

1PKCS #2 and #4 are no longer active; both have been incorporated into the current PKCS #1.

Page 2 ERROR! NO TEXT OF SPECIFIED STYLE IN DOCUMENT.

to translate encrypted and/or signed messages back and forth
between PEM and PKCS.

2. To extend beyond PEM in being able to handle arbitrary binary
data (not just ASCII data), to handle a richer set of attributes in
(extended) certificates, to handle Diffie-Hellman key agreement
[DH76], and to handle a richer set of features in digitally signed
and enveloped data.

3. To describe a standard suitable for incorporation in future Open
Systems Interconnection (OSI, described in X.200) standards. The
standards here are based on the use of OSI standard ASN.1
(Abstract Syntax Notation One, described in X.208) and BER (Basic
Encoding Rules, described in X.209) to describe and represent data.

PKCS describes the syntax for messages in an abstract manner, and gives
complete details about algorithms. However, it does not specify how messages
are to be represented, though BER is the logical choice. Thus PKCS
implementations are free to exchange messages in any manner, depending on
character set, record size constraints, and the like, as long as the abstract meaning
of the messages can be preserved from sender to recipient.

The PKCS standards are offered by RSA Laboratories to developers of computer
systems employing public-key technology. It is RSA Laboratories' intention to
improve and refine the standards in conjunction with computer system
developers, with the goal of producing standards that most if not all developers
adopt.

The role of RSA Laboratories in the standards-making process is five-fold:

1. Publish carefully written documents describing the standards.

2. Retain sole decision-making authority on what each standard is.
This includes arbitrary object identifier choices, etc.

3. Solicit opinions and advice from developers on useful or necessary
changes and extensions.

4. Publish revised standards when appropriate.

5. Provide implementation guides and/or reference implementations.

Thus the standards-making process is not the usual committee-oriented method.

This note is divided into seven sections including this one. Section 2 gives some
terminology. Section 3 addresses the question, "What needs to be standardized?"

2. BACKGROUND INFORMATION Page 3

Section 4 summarizes the PKCS family and Section 5 compares PKCS with other
standards. Section 6 presents some open issues and Section 7 concludes the note.

2. Background information

This section gives the basic background information necessary to understand the
terminology in this note. The background information covers three areas: public-
key cryptography, secret-key cryptography, and message-digest algorithms. For
a more comprehensive background, the reader is referred to any of several nice
survey articles [Riv90][Dif88][DH79].

2.1 Public-key cryptography

Public-key cryptography is the technology first identified by Diffie and Hellman
[DH76] in which encryption and decryption involve different keys. The two keys
are the public key and the private key, and either can encrypt or decrypt data. A
user gives his or her public key to other users, keeping the private key to himself
or herself. Data encrypted with a public key can be decrypted only with the
corresponding private key, and vice versa.

A public-key algorithm is an algorithm for encrypting or decrypting data with a
public or private key. A private key is typically used to encrypt a message digest
(see Section 2.3); in such an application, the public-key algorithm is called a
message-digest encryption algorithm. A public key is typically used to encrypt a
content-encryption key (see Section 2.2); in such an application, the public-key
algorithm is called a key-encryption algorithm.

A signature algorithm is an algorithm that transforms a message of any length
under a private key to a signature in such a way that it is computationally
infeasible to find two messages with the same signature, to find a message with a
given, predetermined signature, or to find the signature of a given message
without knowledge of the private key. Typically, a signature algorithm is
implemented by computing a message digest on the message (see Section 2.3),
then encrypting the message digest with the private key.

RSA is a public-key algorithm invented by Rivest, Shamir, and Adleman [RSA78]
involving exponentiation modulo the product of two large prime numbers. The
difficulty of breaking RSA is generally considered to be equal to the difficulty of
factoring integers that are the product of two large prime numbers of
approximately equal size.

Key agreement is a method whereby two parties, without prior arrangements,
exchange messages in such a way that they agree upon a secret key that is known

Page 4 ERROR! NO TEXT OF SPECIFIED STYLE IN DOCUMENT.

only to them. Key agreement can be achieved with a public-key algorithm, or
with other methods. A key-agreement algorithm is an algorithm for achieving key
agreement.

Diffie-Hellman is a key-agreement algorithm invented by Diffie and Hellman
[DH76] involving exponentiation modulo a large prime number. The difficulty of
breaking Diffie-Hellman is generally considered to be equal to the difficulty of
computing discrete logarithms modulo a large prime number.

2.2 Secret-key cryptography

Secret-key cryptography is the technology in which encryption and decryption
involve the same key, a secret key. Pairs of users share a secret key, keeping the
key to themselves. Data encrypted with a secret key can be decrypted only with
the same secret key.

A secret-key algorithm is an algorithm for encrypting or decrypting data with a
secret key. A secret key is typically used to encrypt the content of a message; in
such an application, the key is called a content-encryption key and the secret-key
algorithm is called a content-encryption algorithm.

A password-based encryption algorithm is a secret-key algorithm in which the key is
derived from a user-supplied password.

The Data Encryption Standard (DES) is the standard federal secret-key algorithm,
described in FIPS PUB 46–1. Cipher-Block Chaining (CBC) is a mode of DES,
described in FIPS PUB 81.

2.3 Message-digest algorithms

A message-digest algorithm is a method of reducing a message of any length to a
string of a fixed length, called the message digest, in such a way that it is
computationally infeasible to find a collision (two messages with the same
message digest) or to find a message with a given, predetermined message
digest.

MD2 and MD5 are message-digest algorithms invented by RSA Laboratories,
and are described in RFCs 1319 and 1321. Each inputs an arbitrary message and
outputs a 128-bit message digest.

3. WHAT NEEDS TO BE STANDARDIZED? Page 5

3. What needs to be standardized?

This section addresses the question, "What needs to be standardized?" To answer
the question, we describe four applications of public-key cryptography: digital
signature, digital enveloping, digital certification, and key agreement, looking at
what aspects are suitable for standardization. Our emphasis is on those
applications relevant to PKCS; there are certainly other applications, such as
interactive authentication, that could be standardized.

The discussion of what needs to be standardized assumes two independent
levels of abstraction. The first level is message syntax, and the second level is
specific algorithms. The intention is that message syntax and specific algorithms
should be orthogonal. For example, a standard for the syntax of digitally signed
messages should be able to work with any public-key algorithm, not just RSA;
and a standard for RSA should be applicable to many different message syntax
standards.

The description of the four applications involves the usual cryptographic players
Alice and Bob.

3.1 Digital signature

Digital signature is an application in which a signer, say "Alice," "signs" a
message m in such a way that anyone can "verify" that the message was signed
by no one other than Alice, and consequently that the message has not been
modified since she signed it.

The typical implementation of digital signature involves a message-digest
algorithm and a public-key algorithm for encrypting the message digest (i.e., a
message-digest encryption algorithm):

• Alice reduces the message m to a message digest d with a message-
digest algorithm; then she encrypts the message digest d with her
private key, obtaining an encrypted message digest σ. She sends
the message m and the encrypted message digest σ to Bob; the two
parts together form the digitally signed message.

• Bob decrypts the encrypted message digest σ with Alice's public
key, obtaining the message digest d; then he reduces the message m
to a comparative message digest d' and compares it to the message
digest d. If the two are the same, he accepts the message.

Notice that Bob's work does not involve any information specific to him. Indeed,
anyone can verify at any time that the message was signed by Alice, without

Page 6 ERROR! NO TEXT OF SPECIFIED STYLE IN DOCUMENT.

access to any secret information. This application assumes that Bob knows Alice's
public key; methods of developing trust in users' public keys are covered by the
digital certificate application (Section 3.3).

Digital signature has three aspects that are suitable for standardization: an
algorithm-independent syntax for digitally signed messages, specific message-
digest algorithms, and specific public-key (message-digest encryption)
algorithms.

Alice may also need a way to store her private key securely. One way to do this
is to encrypt a message containing private-key information with a secret key
derived from a password that Alice supplies. Aspects suitable for
standardization here include an algorithm-independent syntax for encrypted
private-key information, private-key syntax for specific public-key algorithms,
and specific password-based encryption algorithms.

3.2 Digital enveloping

Digital enveloping is an application in which someone "seals" a message m in
such a way that no one other than the intended recipient, say "Bob," can "open"
the sealed message.

The typical implementation of digital enveloping involves a secret-key algorithm
for encrypting the message (i.e., a content-encryption algorithm) and a public-
key algorithm for encrypting the secret key (i.e., a key-encryption algorithm):

• Alice encrypts the message m with a randomly generated secret key
k, obtaining an encrypted message c; then she encrypts the secret
key k with Bob's public key, obtaining an encrypted secret key ε.
She sends the encrypted message c and the encrypted secret key ε
to Bob; the two parts together form the digitally enveloped
message.

• Bob decrypts the encrypted secret key ε with his private key,
obtaining the secret key k; then he decrypts the encrypted message
c with the secret key k, obtaining the message m.

Notice that Alice's work does not involve any information specific to her. Indeed,
anyone can seal a message at any time for Bob, without access to any secret
information. This application assumes that Alice knows Bob's public key;
methods of developing trust in users' public keys are covered by the digital
certificate application.

Digital enveloping has three aspects that are suitable for standardization: an
algorithm-independent syntax for digitally enveloped messages, specific secret-

3. WHAT NEEDS TO BE STANDARDIZED? Page 7

key (content-encryption) algorithms, and specific public-key (key-encryption)
algorithms.

Bob may need a way to store his private key securely, leading to similar aspects
for standardization as those for digital signatures.

3.3 Digital certification

Digital certification is an application in which a certification authority "signs" a
special message m containing the name of some user, say "Alice," and her public
key in such a way that anyone can "verify" that the message was signed by no
one other than the certification authority and thereby develop trust in Alice's
public key.

The typical implementation of digital certification involves a signature algorithm
for signing the special message. (A signature algorithm is chosen here, rather
than a message-digest algorithm followed by a message-digest encryption
algorithm, as in the digital signature application, because X.509 certificates only
use a signature algorithm.)

• Alice sends a "certification request" containing her name and her
public key to a certification authority.

• The certification authority forms a special message m from Alice's
request and signs the special message m under its private key,
obtaining a signature σ. The certification authority returns the
message m and the signature σ to Alice; the two parts together form
a certificate.

• Alice sends the certificate to Bob to convey trust in her public key.

• Bob verifies the signature σ under the certification authority's
public key. If the signature verifies, he accepts Alice's public key.

As with an ordinary digital signature, anyone can verify at any time that the
certificate was signed by the certification authority, without access to any secret
information.

This application assumes that Bob knows the certification authority's public key.
Bob can develop trust in the certification authority's public key recursively, if he
has a certificate containing the certification authority's public key signed by a
superior certification authority whom he already trusts. In this sense, a certificate
is a stepping stone in digital trust. Ultimately, one need only trust the public keys
of a small number of top-level certification authorities. Through a chain of
certificates, trust in a large number of users' signatures can then be established.

Page 8 ERROR! NO TEXT OF SPECIFIED STYLE IN DOCUMENT.

A broader application of digital certification includes not only Alice's name and
public key but also other information about Alice in the special message m. Such
a message, together with a signature, forms what PKCS terms an extended
certificate. Extended certificates are more than stepping stones in digital trust.
They enable the certification authority not only to give Bob a means of trusting
Alice's public key, but also that other information. The other information may
include, for example, Alice's electronic-mail address, her authorization to sign
documents of a given value, or her authorization to sign other certificates.

A certificate-revocation list (CRL) is another type of special message together
with a signature. The special message for a CRL contains a list of revoked
certificates, where the certificates are typically referenced indirectly by a serial
number. A CRL enables the certification authority to "void" its signatures on
Alice's certificate or extended certificates, as might be required when Alice's
name changes or her private key is compromised.

Digital certification has six aspects that are suitable for standardization: an
algorithm-independent syntax for certification requests, an algorithm-
independent syntax for certificates, an algorithm-independent syntax for
extended certificates, an algorithm-independent syntax for CRLs, public-key
syntax for specific public-key algorithms, and specific signature algorithms.

3.4 Key agreement

Key agreement is an application in which Alice and Bob, without prior
arrangements, exchange messages in such a way that they agree upon a secret
key that is known only to them. The secret key can then be used, for example, to
encrypt further communication between Alice and Bob.

The typical implementation of key agreement involves a two-phased key-
agreement algorithm:

• Alice sends a message to Bob initiating the key-agreement protocol.

• Alice and Bob independently perform a first phase of some key-
agreement algorithm, and send the result of that phase to one
another.

• Alice and Bob independently perform a second phase of the key-
agreement algorithm, after which they arrive at a common agreed-
upon secret key.

Key agreement has two aspects that are suitable for standardization: an
algorithm-independent syntax for key-agreement messages, and specific key-
agreement algorithms.

4. THE PKCS STANDARDS Page 9

3.5 Summary of useful standards

The foregoing discussion shows that following standards are useful in
implementing digital signature, digital enveloping, digital certification, and key
agreement:

1. Algorithm-independent syntax: digitally signed messages; digitally
enveloped messages; certification requests; certificates; extended
certificates; certificate-revocation lists; encrypted private-key
information; key-agreement messages.

2. Algorithm-specific syntax: public keys; private keys.

3. Algorithms: message digest; secret-key encryption; public-key
encryption; signature; password-based encryption; key agreement.

4. The PKCS standards

This section describes the members of the PKCS family. The descriptions of the
members are largely taken from the PKCS documents themselves. Table 1
summarizes the correspondence between the PKCS standards and the syntax
and algorithms suitable for standardization discussed in Section 3. When no
PKCS is marked, the most applicable external works are listed.

PKCS leaves ample room for future expansion. Most objects defined by PKCS
carry version numbers to allow backward compatibility in future revisions.
Several of the objects also have space for arbitrary "attributes" that carry
additional information not directly addressed by PKCS.

4.1 PKCS #1: RSA Encryption Standard

PKCS #1 describes a method, called rsaEncryption, for encrypting data using
the RSA public-key cryptosystem. Its intended use is in the construction of
digital signatures and digital envelopes, as described in PKCS #7:

• For digital signatures, the content to be signed is first reduced to a
message digest with a message-digest algorithm (such as MD5),
and then an octet string containing the message digest is encrypted
with the RSA private key of the signer of the content. The content
and the encrypted message digest are represented together
according to the syntax in PKCS #7 to yield a digital signature. This
application is compatible with Privacy-Enhanced Mail (PEM)
methods.

Page 10 ERROR! NO TEXT OF SPECIFIED STYLE IN DOCUMENT.

PKCS #
Standard 1 3 5 6 7 8 9 10 External work

Algorithm-independent syntax:
digitally signed messages x x

digitally enveloped messages x
certification requests x x

certificates X.509, RFC 1422
extended certificates x x

certificate-revocation lists X.509, RFC 1422
 encrypted private-key info. x x

key agreement messages [ISO90a], [ISO90b]
Algorithm-specific syntax:

public keys: RSA x
private keys: RSA x

Algorithms:
message digest: MD2, 5 RFCs 1319, 1321

secret-key encryption: DES RFC 1423, [NIST92a]
public-key encryption: RSA x

signature: MD2, 4, 5 w/RSA x
password-based encryption x

key agreement: D-H x

Table 1. Correspondence between aspects suitable for standardization and PKCS.

• For digital envelopes, the content to be enveloped is first encrypted
under a content-encryption key with a content-encryption
algorithm (such as DES), and then the content-encryption key is
encrypted with the RSA public key(s) of the recipient(s) of the
content. The encrypted content and the encrypted content-
encryption key are represented together according to the syntax in
PKCS #7 to yield a digital envelope. This application is compatible
with PEM methods.

PKCS #1 also describes a syntax for RSA public keys and private keys. The
public-key syntax would be used in certificates; the private-key syntax would be
used typically in encrypted private keys (PKCS #8). The public-key syntax is
identical to that in both X.509 and PEM. Thus X.509/PEM RSA keys can be used
in PKCS #1.

PKCS #1 also defines three signature algorithms, called
md2WithRSAEncryption, md4WithRSAEncryption, and
md5WithRSAEncryption, for use in signing X.509/PEM certificates and

4. THE PKCS STANDARDS Page 11

certificate-revocation lists, PKCS #6 extended certificates, and other objects
employing digital signatures such as X.400 message tokens.

4.2 PKCS #3: Diffie-Hellman Key Agreement Standard

PKCS #3 describes a method for implementing Diffie-Hellman key agreement,
whereby two parties, without any prior arrangements, can agree upon a secret
key that is known only to them (and, in particular, is not known to an
eavesdropper listening to the dialogue by which the parties agree on the key).
This secret key can then be used, for example, to encrypt further communications
between the parties.

The intended application of PKCS #3 is in protocols for establishing secure
connections, such as those proposed for OSI's transport and the network layers
[ISO90a][ISO90b].

4.3 PKCS #5: Password-Based Encryption Standard

PKCS #5 describes a method for encrypting an octet string with a secret key
derived from a password. The result of the method is an octet string. Although
PKCS #5 can be used to encrypt arbitrary octet strings, its intended primary
application to public-key cryptography is for encrypting private keys when
transferring them from one computer system to another, as described in PKCS
#8.

PKCS #5 defines two key-encryption algorithms: pbeWithMD2AndDES-CBC and
pbeWithMD5AndDES-CBC. The algorithms employ DES secret-key encryption in
cipher-block chaining mode, where the secret key is derived from a password
with the MD2 or MD5 message-digest algorithm.

4.4 PKCS #6: Extended-Certificate Syntax Standard

PKCS #6 describes a syntax for extended certificates. An extended certificate
consists of an X.509 public-key certificate and a set of attributes, collectively
signed by the issuer of the X.509 public-key certificate. Thus the attributes and
the enclosed X.509 public-key certificate can be verified with a single public-key
operation, and an ordinary X.509 certificate can be extracted if needed, e.g., for
Privacy-Enhanced Mail.

The intention of including a set of attributes is to extend the certification process
beyond just the public key to include other information about a given entity,
such as electronic-mail address. A non-exhaustive list of attributes is given in
PKCS #9.

Page 12 ERROR! NO TEXT OF SPECIFIED STYLE IN DOCUMENT.

The preliminary intended application of PKCS #6 is in the cryptographic-
enhancement syntax standard (PKCS #7), but it is expected that other
applications will be developed.

4.5 PKCS #7: Cryptographic Message Syntax Standard

PKCS #7 describes a general syntax for data that may have cryptography applied
to it, such as digital signatures and digital envelopes. The syntax admits
recursion, so that, for example, one envelope can be nested inside another, or one
party can sign some previously enveloped digital data. It also allows arbitrary
attributes, such as signing time, to be authenticated along with the content of a
message, and provides for other attributes such as countersignatures to be
associated with a signature. A degenerate case of the syntax provides a means for
disseminating certificates and certificate-revocation lists.

PKCS #7 is compatible with Privacy-Enhanced Mail (PEM) in that signed-data
and signed-and-enveloped-data content, constructed in a PEM-compatible mode,
can be converted into PEM messages without any cryptographic operations.
PEM messages can similarly be converted into the signed-data and signed-and-
enveloped data content types.

PKCS #7 can support a variety of architectures for certificate-based key
management, such as the one described for Privacy-Enhanced Mail in RFC 1422.
Architectural decisions such as what certificate issuers are considered "top-level,"
what entities certificate issuers are authorized to certify, what distinguished
names are considered acceptable, and what policies certificate issuers must
follow (such as signing with secure hardware, or requiring entities to present
specific forms of identification) are left outside PKCS #7. Dissemination of "hot
lists" of invalid certificates (certificate-revocation lists) is also left outside.

The values produced according to PKCS #7 are intended to be BER-encoded,
which means that the values would typically be represented as octet strings.
While many systems are capable of transmitting arbitrary octet strings reliably, it
is well known that many electronic-mail systems are not. PKCS #7 does not
address mechanisms for encoding octet strings as (say) strings of ASCII
characters or other techniques for enabling reliable transmission by re-encoding
the octet string. RFC 1421 suggests one possible solution to this problem.

4.6 PKCS #8: Private-Key Information Syntax Standard

PKCS #8 describes a syntax for private-key information. Private-key information
includes a private key for some public-key algorithm and a set of attributes.
PKCS #8 also describes a syntax for encrypted private keys. A password-based

4. THE PKCS STANDARDS Page 13

encryption algorithm (e.g., one of those described in PKCS #5) could be used to
encrypt the private-key information.

The intention of including a set of attributes is to provide a simple way for a user
to establish trust in information such as a distinguished name or a top-level
certification authority's public key. While such trust could also be established
with a digital signature, encryption with a secret key known only to the user is
just as effective and possibly easier to implement. A non-exhaustive list of
attributes is given in PKCS #9.

4.7 PKCS #9: Selected Attribute Types

PKCS #9 defines selected attribute types for use in PKCS #6 extended certificates,
PKCS #7 digitally signed messages, and PKCS #8 private-key information.

4.8 PKCS #10: Certification Request Syntax Standard

PKCS #10 describes a syntax for certification requests. A certification request
consists of a distinguished name, a public key, and optionally a set of attributes,
collectively signed by the entity requesting certification. Certification requests
are sent to a certification authority, who transforms the request to an X.509
public-key certificate, or a PKCS #6 extended certificate. (In what form the
certification authority returns the newly signed certificate is outside the scope of
PKCS #10. A PKCS #7 message is one possibility.)

The intention of including a set of attributes is twofold: to provide other
information about a given entity, such as the postal address to which the signed
certificate should be returned if electronic mail is not available, or a "challenge
password" by which the entity may later request certificate revocation; and to
provide attributes for a PKCS #6 extended certificate. A non-exhaustive list of
attributes is given in PKCS #9.

Certification authorities may also require non-electronic forms of request and
may return non-electronic replies. It is expected that descriptions of such forms,
which are outside the scope of PKCS #10, will be available from the certification
authority.

The preliminary intended application of PKCS #10 is to support PKCS #7
cryptographic messages, but is expected that other applications will be
developed.

Page 14 ERROR! NO TEXT OF SPECIFIED STYLE IN DOCUMENT.

5. Compatibility with other work

This section describes the compatibility of the PKCS standards with other
standards or agreements on public-key cryptography. For simplicity, we refer to
the various works involving public-key cryptography as "standards," without
regard to their formal approval by a standards-making body.

Compatibility has many meanings. For instance, a standard A may be considered
compatible with another standard B if standard A provides algorithms that
standard B can use. Or, standard A may generate data that standard B can
process directly. We choose the definition that standard A is compatible with
standard B if standard A provides something useful to standard B, where the
usefulness may be contingent on a change in representation, and possibly on
omission of information. Cryptographic operations are not allowed in the change
of representation.

We say standard A is "outbound" compatible with standard B if implementations
of standard A produce something useful to implementations of standard B, but
not necessarily vice versa, and we say standard A is "inbound" compatible with
standard B if implementations of standard B produce something useful to
implementations of standard A, but not necessarily vice versa.

We address compatibility with seven related works:

1. Privacy-Enhanced Mail, as defined in RFCs 1421–1424.

2. Directory Services—Authentication Framework, as defined in
CCITT Recommendation X.509.

3. Message Handling Systems, as defined in CCITT Recommendation
X.400.

4. Draft network-layer and transport-layer security protocols
[ISO90a][ISO90b].

5. NIST's proposed Digital Signature Standard and Secure Hash
Standard, as defined in [NIST92] and FIPS PUB 180.

6. ISO/IEC 9796: Digital Signature Scheme Giving Message Recovery.

7. ANSI X9.30 and .31 (draft): Public-key cryptography with
irreversible and reversible algorithms.

5. COMPATIBILITY WITH OTHER WORK Page 15

5.1 Privacy-Enhanced Mail

PKCS is inbound compatible with Privacy-Enhanced Mail, as defined in RFCs
1421–1424. With suitable restrictions, PKCS is outbound compatible as well.

5.1.1 Primary compatibilities

A privacy-enhanced message generated according the Privacy-Enhanced Mail
RFCs can be converted to a form that can be processed by implementations of
PKCS #7 without any cryptographic operations. The conversion process is "flat"
in the sense that the encapsulated text of the privacy-enhanced message becomes
the "inner" content of the PKCS #7 data. If the encapsulated text happens to
contain privacy-enhanced messages, those messages are not interpreted in the
conversion process.

Data with certain PKCS #7 cryptographic enhancements can be converted to a
form that can be processed by implementations of the Privacy-Enhanced Mail
RFCs.

Privacy-Enhanced Mail can effectively be viewed as a set of encoding rules,
analogous to the Basic Encoding Rules for ASN.1, for PKCS #7 data with these
restrictions. Conversion from PKCS #7 to PEM may involve omission of
attributes from PKCS #6 extended certificates, which is acceptable since the
attributes are not essential to PEM.

5.1.2 Further compatibilities

RSA encryption in PKCS #1, in block types 01 and 02, is the same as in PEM, as
defined RFC 1423.

Certificates in PEM are one of the alternatives of PKCS #7's
ExtendedCertificateOrCertificate type. (See the next section for more
details.) The md2WithRSAEncryption and md5WithRSAEncryption
signature algorithms in PKCS #1 are the same as PEM's message and certificate
signature algorithms.

Certificate revocation lists (CRLs) in PEM are in PKCS #7's
CertificateRevocationLists type.

5.2 Directory Services—Authentication Framework (X.509)

PKCS is compatible with Directory Services—Authentication Framework, as
defined in CCITT Recommendation X.509.

Page 16 ERROR! NO TEXT OF SPECIFIED STYLE IN DOCUMENT.

5.2.1 Primary compatibilities

A certificate generated according to X.509 can be converted to a form that can be
used in implementations of PKCS #7. The conversion involves the type
ExtendedCertificateOrCertificate, which has two alternatives, an X.509
certificate and a PKCS #6 extended certificate.

An extended certificate generated according to PKCS #6 can be converted to a
form that can be used in implementations of X.509, since an extended certificate
contains an X.509 certificate. The conversion involves the omission of extended
attributes.

5.2.2 Further compatibilities

RSA private-key encryption in PKCS #1 is the same, in block type 00, as RSA
private-key encryption in X.509.

The signature process for X.509 certificates is the same as the signature process
for PKCS #6 extended certificates. That is, both use X.509's SIGNED macro (or an
equivalent form), so both can use any signature algorithm consistent with the
SIGNED macro.

The md2WithRSAEncryption and md5WithRSAEncryption signature
algorithms in PKCS #1 are consistent with the SIGNED macro, in that they input
an octet string and output a bit string. Thus, they can be used in signing X.509
certificates, or any other quantity signed in the authentication framework or in
other uses of the SIGNED macro (e.g., in X.411 security—see Section 5.3.2).

RSA public-key syntax in X.509 Annex C is the same as RSA public-key syntax in
PKCS #1.

5.2.3 Incompatibilities

RSA encryption in PKCS #1 is different than RSA encryption in X.509, in that the
latter does not specify any method of padding the quantity input to encryption.

The rsaEncryption algorithm is inconsistent with X.509's SIGNED and
ENCRYPTED macros, in that it outputs an octet string, not a bit string.

The pbeWithMD2AndDES-CBC and pbeWithMD5AndDES-CBC password-based
encryption algorithms in PKCS #6 are inconsistent with X.509's ENCRYPTED
macro, in that they output an octet string, not a bit string. (However, it is not
difficult to convert from one form to another.)

5. COMPATIBILITY WITH OTHER WORK Page 17

A certificate revocation list (CRL) generated according to X.509 is not compatible
with Privacy-Enhanced Mail, as defined in RFCs 1421–1424, and hence is not
compatible with PKCS #7. (Corrections to X.509 RFCs are being considered.)

The syntax for encrypted private-key information in PKCS #8 does not use
X.509's ENCRYPTED macro, or an equivalent form. (The encrypted private key is
represented as an octet string, not as a bit string, as the ENCRYPTED macro
assumes.) Thus, encryption algorithms consistent with X.509's ENCRYPTED
macro are not useful in PKCS #8.

5.3 Message Handling Systems (X.400)

PKCS is outbound compatible with Message Handling Systems, as defined in
CCITT Recommendation X.400, under suitable restrictions, and with the
appropriate unauthenticated attributes. (This does not mean that PKCS provides
sufficient information to build an X.400 message, just that X.400-compatible
cryptographic enhancements can be computed.) PKCS is not inbound compatible
with X.400.

5.3.1 Primary compatibilities

Data with certain PKCS #7 cryptographic enhancements and appropriate
unauthenticated attributes can be converted into a form that can be processed by
implementations of the X.400 security services. The restrictions on the
cryptographic enhancements include the following:

• the "outer" content type must be signedData

• the "inner" content type must be data

The reason that the "outer" content type must be signedData is that the "inner"
content must be presented in the clear, since encrypted content in PKCS #7 is
different than encrypted content in X.400. The latter encrypts a complete BER
encoding, and the former encrypts only the contents octets.

Compatibility with X.400 is achieved by placing an X.411 message token among
the unauthenticated attributes for the signer of the PKCS #7 data. Computing the
X.411 message token involves another private-key operation with the signer's
private key in addition to the one for computing the signer's encrypted message
digest already required by PKCS #7, so X.400 compatibility is not efficient.

Page 18 ERROR! NO TEXT OF SPECIFIED STYLE IN DOCUMENT.

5.3.2 Further compatibilities

Since the md2WithRSAEncryption and md5WithRSAEncryption signature
algorithms in PKCS #1 are consistent with the SIGNED and SIGNATURE macros,
as discussed in Section 5.2.2, those algorithms can be used in computing these
X.411 quantities: content-integrity check; message origin-authentication check;
and asymmetric token.

5.4 Draft network-layer and transport-layer security protocols

PKCS is compatible with the draft standards for security in the network and
transport layer [ISO90a][ISO90b]. Specifically, the dhKeyAgreement algorithm
in PKCS #3 can be used in either of those draft standards.

5.5 DSS and SHS

PKCS is partially compatible with NIST's proposed Digital Signature Standard
(DSS). PKCS #6 extended certificates may be signed with DSS, but since DSS
signatures do not include a PKCS #7 DigestInfo value, they are not compatible
with PKCS #7.

PKCS is compatible with the Secure Hash Standard (SHS), which can be used as
a message-digest algorithm in PKCS #7.

5.6 ISO/IEC 9796

PKCS is only partially compatible with the ISO/IEC standard digital signature
scheme giving message recovery. PKCS #6 extended certificates and PKCS #7
signed-data content may be signed according to ISO/IEC 9796. However, PKCS
#1 is not compatible, as the RSA encryption block format in PKCS #1 is different
than the format specified by ISO/IEC 9796.

5.7 ANSI X9.30 and .31

PKCS is partially compatible with the draft X9.30 and .31 for public-key
cryptography with irreversible and reversible algorithms. Specifically, signatures
in X9.31-1 are based on DSS and those in X9.30-1 are based on ISO/IEC 9796,
each of which is partially compatible with PKCS. It remains to be seen whether
X9.30 and .31's key management will be compatible with PKCS digital envelopes.

Certification requests in the draft X9.31-3 are similar to those in the new PKCS
#10, but not compatible. (Later versions may well be compatible.)

6. OPEN ISSUES Page 19

6. Open issues

While PKCS provides a basis for interoperability between implementations of
public-key cryptography, some issues relevant to the meaningful interaction of
implementations remain open. Two implementations of PKCS may be able to
complete the four applications in Section 3 successfully, but may have difficulty
agreeing on the meaning of that success without further agreement on certain
issues: names and the certification hierarchy. Furthermore, some issues are
explicitly left outside of the scope of PKCS, such as security conditions on the
choice of key.

This section summarizes the open issues in naming, the certification hierarchy,
and security conditions.

6.1 Naming

Naming of entities is a complicated issue. In adopting X.509 certificates for
compatibility with PEM, PKCS also adopts X.500 distinguished names, and
inherits their complexity. Basically, an X.500 distinguished name defines a "path"
through an X.500 directory tree from the root of the tree to an object of interest.
Given that PKCS, like PEM, is being developed in advance of widespread
deployment of X.500 directories, it is not clear what most objects' (i.e., Alice's or
Bob's) distinguished names are. Some effort is underway to establish conventions
for naming (see RFC 1255, X.521, or RFC 1422), and implementors of PKCS
should anticipate these conventions when constructing names. However, there is
no guarantee that an entity's name chosen today will be the same as the one
assigned by an X.500 directory administrator in the future. Consequently,
certificates constructed today may not necessarily be meaningful to X.500
implementations in the future.

(An example of an X.500 directory name is presented in the guide to ASN.1 and
BER [Kal93].)

Some of the open issues in naming include:

• maximum length of the name in terms of number of arcs (relative
distinguished names) in the path

• constraints on the relative distinguished names (specifically, the
maximum number of "attribute-value assertions" in an arc, the
allowed set of attributes, and upper limits on the lengths of values)

• conventions for names of particular types of object, e.g.,
organizations, residential persons, organizational persons, etc.

Page 20 ERROR! NO TEXT OF SPECIFIED STYLE IN DOCUMENT.

• character-set concerns, such as which extensions to the T.61
character set are accepted, and when to choose, for example, T.61 as
opposed to the 16-bit Universal Character Set

RSA Laboratories intends to monitor conventions for naming and to report any
progress in appendices to future releases of PKCS.

6.2 Certification

Another complicated issue is the meaning of certification: specifically, who is
trusted to issue certificates, and to whom. Syntactically, any entity can sign a
certificate as issuer with any entity as subject. Practically speaking, one would
like to have some manner of filtering out certificates whose issuer-to-subject
relationship is questionable. For instance, one would probably question a
certificate issued by one company to employees of another company. One would
also like to bound the length of certificate chains so that the chains can be found
and represented easily. As with names, some work is underway to establish
conventions for certification (see RFC 1422).

Open issues here include:

• what level of trust in the subject's identity is implied by a certificate

• the correspondence between the directory tree and issuer-to-subject
relationships

• which entities can act as top-level certification authorities, having
their public keys widely known

• the maximum length of a certificate chain

Some of the certification issues can be resolved with PKCS #6 extended
certificates. For instance, one could define an extended-certificate attribute that
indicates the authority of a certificate's subject to issue other certificates. Another
attribute could indicate to what extent the subject can delegate authority. Such
techniques are employed in the Electronic Document Authorization architecture
[Fis90], but would require further study before being included in PKCS.

Again, RSA Laboratories intends to monitor conventions for certification, and to
report any progress in appendices to future releases of PKCS.

6.3 Security conditions

The three algorithm standards—PKCS #1 (RSA Encryption Standard), PKCS #3
(Diffie-Hellman Key Agreement standard), and PKCS #5 (Password-Based

7. CONCLUSION Page 21

Encryption Standard)—all involve security conditions on the choice of key (or
password, in the case of PKCS #5). Such conditions may change as the state of the
art in cryptanalysis improves, and are subject to tradeoffs between performance
and security. For example, the conventional argument that the factors of the RSA
modulus should be strong primes seems no longer to hold [Riv91], which is why
PKCS neither mandates strong primes, nor discourages their use. Since security
conditions do not affect the format of transferred data, the security conditions are
left outside the scope of PKCS.

Specific open issues, left to implementors, include:

• range of lengths of RSA modulus n in PKCS #1 (for example, RFC
1423 sets the range as 508 to 1024 bits);

• conditions on RSA primes p and q, such as whether p−1 and q−1
should have large factors, and how far apart p and q should be;

• additional conditions on the RSA public exponent e and the RSA
private exponent d;

• range of lengths of the Diffie-Hellman modulus p in PKCS #3;

• conditions on the Diffie-Hellman modulus p, such as whether p−1
should have a large factor;

• conditions on the Diffie-Hellman base g, such as how large a group
it should generate (e.g., all nonzero elements modulo p);

• length of the Diffie-Hellman private value x;

• range of lengths of the password P in PKCS #5;

• structural requirements on the password P (e.g., at least one non-
alphanumeric character); and

• sources of pseudorandom bits in all the algorithm standards.

It is RSA Laboratories' intention to release "recommended practices" documents
from time to time that address security conditions such as those just listed.

7. Conclusion

The PKCS family of standards addresses the following need: an agreed-upon
standard format for transferred data based on public-key cryptography. PKCS
covers several aspects of public-key cryptography, including RSA encryption,

Page 22 ERROR! NO TEXT OF SPECIFIED STYLE IN DOCUMENT.

Diffie-Hellman key agreement, password-based encryption, extended-certificate
syntax, cryptographic-enhancement syntax, and private-key information syntax.
PKCS evolved from three broad design goals: to maintain compatibility with
Privacy-Enhanced Mail, to extend beyond PEM, and to be suitable for
incorporation in future OSI standards.

This note has summarized PKCS. It has shown that PKCS provides a basis for
interoperability in the several areas of interest, and that PKCS has a high level of
PEM compatibility, several extensions, and significant compatibility with
existing OSI standards. The note has also identified some open issues outside the
scope of PKCS. The reader is encouraged to review and implement PKCS and to
make constructive comments.

References

FIPS PUB 46–1 National Bureau of Standards. FIPS PUB 46–1: Data Encryption Standard. January
1988.

FIPS PUB 81 National Bureau of Standards. FIPS PUB 81: DES Modes of Operation. December
1980.

FIPS PUB 180 National Institute of Standards and Technology. FIPS PUB 180: Secure Hash
Standard (SHS). May 11, 1993.

ISO/IEC 9796 ISO/IEC. ISO/IEC 9796: Digital signature scheme giving message recovery. October
1991.

PKCS #1 RSA Laboratories. PKCS #1: RSA Encryption Standard. Version 1.5, November
1993.

PKCS #3 RSA Laboratories. PKCS #3: Diffie-Hellman Key-Agreement Standard. Version 1.4,
November 1993.

PKCS #5 RSA Laboratories. PKCS #5: Password-Based Encryption Standard. Version 1.5,
November 1993.

PKCS #6 RSA Laboratories. PKCS #6: Extended-Certificate Syntax Standard. Version 1.5,
November 1993.

PKCS #7 RSA Laboratories. PKCS #7: Cryptographic Message Syntax Standard. Version 1.5,
November 1993.

PKCS #8 RSA Laboratories. PKCS #8: Private-Key Information Syntax Standard. Version 1.2,
November 1993.

PKCS #9 RSA Laboratories. PKCS #9: Selected Attribute Types. Version 1.1, November 1993.

PKCS #10 RSA Laboratories. PKCS #10: Certification Request Syntax Standard. Version 1.0,
November 1993.

REFERENCES Page 23

RFC 1255 The North American Directory Forum. RFC 1255: A Naming Scheme for c=US.
September 1991. (Also published as NADF-175: A Naming Scheme for c=US. July
1991.)

RFC 1319 B. Kaliski. RFC 1319: The MD2 Message-Digest Algorithm. April 1992.

RFC 1321 R. Rivest. RFC 1321: The MD5 Message-Digest Algorithm. April 1992.

RFC 1421 J. Linn. RFC 1421: Privacy Enhancement for Internet Electronic Mail: Part I: Message
Encryption and Authentication Procedures. February 1993.

RFC 1422 S. Kent. RFC 1422: Privacy Enhancement for Internet Electronic Mail: Part II:
Certificate-Based Key Management. February 1993.

RFC 1423 D. Balenson. RFC 1423: Privacy Enhancement for Internet Electronic Mail: Part III:
Algorithms, Modes, and Identifiers. February 1993.

RFC 1424 B. Kaliski. RFC 1424: Privacy Enhancement for Internet Electronic Mail: Part IV: Key
Certification and Related Services. February 1993.

X.200 CCITT. Recommendation X.200: Reference Model of Open Systems Interconnection for
CCITT Applications. 1984.

X.208 CCITT. Recommendation X.208: Specification of Abstract Syntax Notation One
(ASN.1). 1988.

X.209 CCITT. Recommendation X.209: Specification of Basic Encoding Rules for Abstract
Syntax Notation One (ASN.1). 1988.

X.400 CCITT. Recommendation X.400: Message Handling System and Service Overview.
1988.

X.411 CCITT. Recommendation X.411: Message Handling Systems: Message Transfer System:
Abstract Service Definition and Procedures. 1988.

X.500 CCITT. Recommendation X.500: The Directory—Overview of Concepts, Models and
Services. 1988.

X.509 CCITT. Recommendation X.509: The Directory—Authentication Framework. 1988.

X.521 CCITT. Recommendation X.521: The Directory—Selected Object Classes. 1988.

X9.30-1 Accredited Standards Committee X9. American National Standard X9.30-199X:
Public Key Cryptography using Irreversible Algorithms for the Financial Services
Industry: Part 1: The Digital Signature Algorithm (DSA). Draft, June 18, 1993.

X9.30-3 Accredited Standards Committee X9. American National Standard X9.30-199X:
Public Key Cryptography using Irreversible Algorithms for the Financial Services
Industry: Part 3: Certificate Management for DSA. Draft, September 27, 1993.

X9.31-1 Accredited Standards Committee X9. American National Standard X9.31-1992:
Public Key Cryptography Using Reversible Algorithms for the Financial Services
Industry: Part 1: The RSA Signature Algorithm. Draft, March 7, 1993.

Page 24 ERROR! NO TEXT OF SPECIFIED STYLE IN DOCUMENT.

[DH76] W. Diffie and M.E. Hellman. New directions in cryptography. IEEE Transactions
on Information Theory, IT-22:644–654, 1976.

[DH79] W. Diffie and M.E. Hellman. Privacy and authentication: An introduction to
cryptography. Proceedings of the IEEE, 67(3):397–427, March 1979.

[Dif88] W. Diffie. The first ten years of public-key cryptography. Proceedings of the IEEE,
76(5):560–577, May 1988.

[Fis90] A. Fischer. Electronic document authorization. In Proceedings of the 13th National
Computer Security Conference. 1990.

[ISO90a] ISO. JTC1/SC6/N6285: Draft Transport Layer Security Protocol. Draft, November
1990.

[ISO90b] ISO. JTC1/SC6/N2559: Draft Network Layer Security Protocol. Draft, September
1990.

[Kal93] Burton S. Kaliski Jr. A Layman's Guide to a Subset of ASN.1, BER, and DER. RSA
Laboratories, November 1993.

[NIST92] National Institute of Standards and Technology. Publication XX: Announcement
and Specifications for a Digital Signature Standard (DSS). August 19, 1992.

[NIST92a] National Institute for Standards and Technology. Special Publication 500-202:
Stable Implementation Agreements for Open Systems Interconnection Protocols. Part 12
(Security). December 1992.

[Riv90] Ronald L. Rivest. Cryptography. In J. van Leeuwen, editor, Handbook of Theoretical
Computer Science, volume 1, pages 719–755. Elsevier Science, 1990.

[Riv91] Ronald L. Rivest. Are "strong" primes needed for RSA? Unpublished manuscript,
May 1991.

[RSA78] R.L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital
signatures and public-key cryptosystems. Communications of the ACM, 21(2):120–
126, February 1978.

REVISION HISTORY Page 25

Revision history

June 3, 1991 version

The June 3, 1991 version is part of the initial public release of PKCS. It was
published as NIST/OSI Implementors' Workshop document SEC-SIG-91-16.

November 1, 1993 version

The November 1, 1993 version incorporates several editorial changes, including
the addition of a revision history. It is updated to be consistent with the
following versions of the PKCS documents:

PKCS #1: RSA Encryption Standard. Version 1.5, November 1993.

PKCS #3: Diffie-Hellman Key-Agreement Standard. Version 1.4, November
1993.

PKCS #5: Password-Based Encryption Standard. Version 1.5, November 1993.

PKCS #6: Extended-Certificate Syntax Standard. Version 1.5, November 1993.

PKCS #7: Cryptographic Message Syntax Standard. Version 1.5, November
1993.

PKCS #8: Private-Key Information Syntax Standard. Version 1.2, November
1993.

PKCS #9: Selected Attribute Types. Version 1.1, November 1993.

PKCS #10: Certification Request Syntax Standard. Version 1.0, November
1993.

The following substantive changes were made:

Section 5: Compatibility with NIST's proposed Digital Signature Standard
and Secure Hash Standard, ISO/IEC 9796, and ANSI X9.30 and .31
is discussed.

Author's address

Burton S. Kaliski Jr., Ph.D.
Chief Scientist

Page 26 ERROR! NO TEXT OF SPECIFIED STYLE IN DOCUMENT.

RSA Laboratories (415) 595-7703
100 Marine Parkway (415) 595-4126 (fax)
Redwood City, CA 94065 USA burt@rsa.com

	An Overview of the PKCS Standards
	1. Introduction
	2. Background information
	2.1 Public-key cryptography
	2.2 Secret-key cryptography
	2.3 Message-digest algorithms

	3. What needs to be standardized?
	3.1 Digital signature
	3.2 Digital enveloping
	3.3 Digital certification
	3.4 Key agreement
	3.5 Summary of useful standards

	4. The PKCS standards
	4.1 PKCS #1: RSA Encryption Standard
	4.2 PKCS #3: Diffie-Hellman Key Agreement Standard
	4.3 PKCS #5: Password-Based Encryption Standard
	4.4 PKCS #6: Extended-Certificate Syntax Standard
	4.5 PKCS #7: Cryptographic Message Syntax Standard
	4.6 PKCS #8: Private-Key Information Syntax Standard
	4.7 PKCS #9: Selected Attribute Types
	4.8 PKCS #10: Certification Request Syntax Standard

	5. Compatibility with other work
	5.1 Privacy-Enhanced Mail
	5.1.1 Primary compatibilities
	5.1.2 Further compatibilities

	5.2 Directory Services—Authentication Framework (X.509)
	5.2.1 Primary compatibilities
	5.2.2 Further compatibilities
	5.2.3 Incompatibilities

	5.3 Message Handling Systems (X.400)
	5.3.1 Primary compatibilities
	5.3.2 Further compatibilities

	5.4 Draft network-layer and transport-layer security protocols
	5.5 DSS and SHS
	5.6 ISO/IEC 9796
	5.7 ANSI X9.30 and .31

	6. Open issues
	6.1 Naming
	6.2 Certification
	6.3 Security conditions

	7. Conclusion
	References
	Revision history
	June 3, 1991 version
	November 1, 1993 version

	Author's address

