PKCS #8: Private-Key Information Syntax Standard

An RSA Laboratories Technical Note Version 1.2 Revised November 1, 1993*

1. Scope

This standard describes a syntax for private-key information. Private-key information includes a private key for some public-key algorithm and a set of attributes. The standard also describes a syntax for encrypted private keys. A password-based encryption algorithm (e.g., one of those described in PKCS #5) could be used to encrypt the private-key information.

The intention of including a set of attributes is to provide a simple way for a user to establish trust in information such as a distinguished name or a top-level certification authority's public key. While such trust could also be established with a digital signature, encryption with a secret key known only to the user is just as effective and possibly easier to implement. A non-exhaustive list of attributes is given in PKCS #9.

2. References

PKCS #1	RSA Laboratories. <i>PKCS #1: RSA Encryption Standard.</i> Version 1.5, November 1993.
PKCS #5	RSA Laboratories. <i>PKCS #5: Password-Based Encryption Standard.</i> Version 1.5, November 1993.
PKCS #9	RSA Laboratories. <i>PKCS #9: Selected Attribute Types.</i> Version 1.1, November 1993.

^{*}Supersedes June 3, 1991 version, which was also published as NIST/OSI Implementors' Workshop document SEC-SIG-91-23. PKCS documents are available by electronic mail to cpkcs@rsa.com>.

Copyright © 1991–1993 RSA Laboratories, a division of RSA Data Security, Inc. License to copy this document is granted provided that it is identified as "RSA Data Security, Inc. Public-Key Cryptography Standards (PKCS)" in all material mentioning or referencing this document.

Page 2	ERROR! NO TEXT OF SPECIFIED STYLE IN DOCUMENT.
X.208	CCITT. Recommendation X.208: Specification of Abstract Syntax Notation One (ASN.1). 1988.
X.209	CCITT. Recommendation X.209: Specification of Basic Encoding Rules for Abstract Syntax Notation One (ASN.1). 1988.
X.501	CCITT. Recommendation X.501: The Directory–Models. 1988.
X.509	CCITT. Recommendation X.509: The Directory–Authentication Framework. 1988.

3. Definitions

For the purposes of this standard, the following definitions apply.

AlgorithmIdentifier: A type that identifies an algorithm (by object identifier) and any associated parameters. This type is defined in X.509.

ASN.1: Abstract Syntax Notation One, as defined in X.208.

Attribute: A type that contains an attribute type (specified by object identifier) and one or more attribute values. This type is defined in X.501.

BER: Basic Encoding Rules, as defined in X.209.

4. Symbols and abbreviations

No symbols or abbreviations are defined in this standard.

5. General overview

The next two sections specify private-key information syntax and encrypted private-key information syntax.

This standard exports two types: PrivateKeyInfo (Section 6) and EncryptedPrivateKeyInfo (Section 7).

6. Private-key information syntax

This section gives the syntax for private-key information.

Private-key information shall have ASN.1 type PrivateKeyInfo:

```
PrivateKeyInfo ::= SEQUENCE {
  version Version,
  privateKeyAlgorithm PrivateKeyAlgorithmIdentifier,
  privateKey PrivateKey,
  attributes [0] IMPLICIT Attributes OPTIONAL }

Version ::= INTEGER

PrivateKeyAlgorithmIdentifier ::= AlgorithmIdentifier

PrivateKey:= OCTET STRING

Attributes ::= SET OF Attribute
```

The fields of type PrivateKeyInfo have the following meanings:

- ### version is the syntax version number, for compatibility with future revisions of this standard. It shall be 0 for this version of the standard.
- ### privateKeyAlgorithm identifies the private-key algorithm. One example of a private-key algorithm is PKCS #1's rsaEncryption.
- ### privateKey is an octet string whose contents are the value of the private key. The interpretation of the contents is defined in the registration of the private-key algorithm. For an RSA private key, for example, the contents are a BER encoding of a value of type RSAPrivateKey.
- ### attributes is a set of attributes. These are the extended information that is encrypted along with the private-key information.

7. Encrypted private-key information syntax

This section gives the syntax for encrypted private-key information.

Encrypted private-key information shall have ASN.1 type EncryptedPrivateKeyInfo:

```
EncryptedPrivateKeyInfo ::= SEQUENCE {
  encryptionAlgorithm EncryptionAlgorithmIdentifier,
  encryptedData EncryptedData }
EncryptionAlgorithmIdentifier ::= AlgorithmIdentifier
EncryptedData ::= OCTET STRING
```

The fields of type EncryptedPrivateKeyInfo have the following meanings:

- ### encryptionAlgorithm identifies the algorithm under which the private-key information is encrypted. Two examples are PKCS #5's pbeWithMD2AndDES-CBC and pbeWithMD5AndDES-CBC.
- ### encryptedData is the result of encrypting the private-key information.

The encryption process involves the following two steps:

- 1. The private-key information is BER encoded, yielding an octet string.
- 2. The result of step 1 is encrypted with the secret key to give an octet string, the result of the encryption process.

REVISION HISTORY Page 5

Revision history

Version 1.0

Version 1.0 was distributed to participants in RSA Data Security, Inc.'s Public-Key Cryptography Standards meetings in February and March 1991.

Version 1.1

Version 1.1 is part of the June 3, 1991 initial public release of PKCS. Version 1.1 was published as NIST/OSI Implementors' Workshop document SEC-SIG-91-23.

Version 1.2

Version 1.2 incorporates several editorial changes, including updates to the references and the addition of a revision history.

Author's address

RSA Laboratories 100 Marine Parkway Redwood City, CA 94065 USA (415) 595-7703 (415) 595-4126 (fax)

pkcs-editor@rsa.com