
Copyright  1991–1993 RSA Laboratories, a division of RSA Data Security, Inc. License to copy
this document is granted provided that it is identified as "RSA Data Security, Inc. Public-Key
Cryptography Standards (PKCS)" in all material mentioning or referencing this document.
003-903022-150-000-000

PKCS #7: Cryptographic Message Syntax
Standard

An RSA Laboratories Technical Note
Version 1.5
Revised November 1, 1993*

1. Scope

This standard describes a general syntax for data that may have cryptography
applied to it, such as digital signatures and digital envelopes. The syntax admits
recursion, so that, for example, one envelope can be nested inside another, or one
party can sign some previously enveloped digital data. It also allows arbitrary
attributes, such as signing time, to be authenticated along with the content of a
message, and provides for other attributes such as countersignatures to be
associated with a signature. A degenerate case of the syntax provides a means for
disseminating certificates and certificate-revocation lists.

This standard is compatible with Privacy-Enhanced Mail (PEM) in that signed-
data and signed-and-enveloped-data content, constructed in a PEM-compatible
mode, can be converted into PEM messages without any cryptographic
operations. PEM messages can similarly be converted into the signed-data and
signed-and-enveloped data content types.

This standard can support a variety of architectures for certificate-based key
management, such as the one proposed for Privacy-Enhanced Mail in RFC 1422.
Architectural decisions such as what certificate issuers are considered "top-level,"
what entities certificate issuers are authorized to certify, what distinguished
names are considered acceptable, and what policies certificate issuers must
follow (such as signing only with secure hardware, or requiring entities to
present specific forms of identification) are left outside the standard.

*Supersedes June 3, 1991 version, which was also published as NIST/OSI Implementors' Workshop
document SEC-SIG-91-22. PKCS documents are available by electronic mail to <pkcs@rsa.com>.

Page 2 ERROR! NO TEXT OF SPECIFIED STYLE IN DOCUMENT.

The values produced according to this standard are intended to be BER-encoded,
which means that the values would typically be represented as octet strings.
While many systems are capable of transmitting arbitrary octet strings reliably, it
is well known that many electronic-mail systems are not. This standard does not
address mechanisms for encoding octet strings as (say) strings of ASCII
characters or other techniques for enabling reliable transmission by re-encoding
the octet string. RFC 1421 suggests one possible solution to this problem.

2. References

FIPS PUB 46–1 National Bureau of Standards. FIPS PUB 46–1: Data Encryption Standard. January
1988.

PKCS #1 RSA Laboratories. PKCS #1: RSA Encryption Standard. Version 1.5, November
1993.

PKCS #6 RSA Laboratories. PKCS #6: Extended-Certificate Syntax Standard. Version 1.5,
November 1993.

PKCS #9 RSA Laboratories. PKCS #9: Selected Attribute Types. Version 1.1, November 1993.

RFC 1421 J. Linn. RFC 1421: Privacy Enhancement for Internet Electronic Mail: Part I: Message
Encryption and Authentication Procedures. February 1993.

RFC 1422 S. Kent. RFC 1422: Privacy Enhancement for Internet Electronic Mail: Part II:
Certificate-Based Key Management. February 1993.

RFC 1423 D. Balenson. RFC 1423: Privacy Enhancement for Internet Electronic Mail: Part III:
Algorithms, Modes, and Identifiers. February 1993.

RFC 1424 B. Kaliski. RFC 1424: Privacy Enhancement for Internet Electronic Mail: Part IV: Key
Certification and Related Services. February 1993.

RFC 1319 B. Kaliski. RFC 1319: The MD2 Message-Digest Algorithm. April 1992.

RFC 1321 R. Rivest. RFC 1321: The MD5 Message-Digest Algorithm. April 1992.

X.208 CCITT. Recommendation X.208: Specification of Abstract Syntax Notation One
(ASN.1). 1988.

X.209 CCITT. Recommendation X.209: Specification of Basic Encoding Rules for Abstract
Syntax Notation One (ASN.1). 1988.

X.500 CCITT. Recommendation X.500: The Directory—Overview of Concepts, Models and
Services. 1988.

X.501 CCITT. Recommendation X.501: The Directory—Models. 1988.

X.509 CCITT. Recommendation X.509: The Directory—Authentication Framework. 1988.

3. DEFINITIONS Page 3

[NIST91] NIST. Special Publication 500-202: Stable Implementation Agreements for Open
Systems Interconnection Protocols. Version 5, Edition 1, Part 12. December 1991.

[RSA78] R.L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital
signatures and public-key cryptosystems. Communications of the ACM, 21(2):120–
126, February 1978.

3. Definitions

For the purposes of this standard, the following definitions apply.

AlgorithmIdentifier: A type that identifies an algorithm (by object
identifier) and associated parameters. This type is defined in X.509.

ASN.1: Abstract Syntax Notation One, as defined in X.208.

Attribute: A type that contains an attribute type (specified by object identifier)
and one or more attribute values. This type is defined in X.501.

BER: Basic Encoding Rules, as defined in X.209.

Certificate: A type that binds an entity's distinguished name to a public key
with a digital signature. This type is defined in X.509. This type also contains the
distinguished name of the certificate issuer (the signer), an issuer-specific serial
number, the issuer's signature algorithm identifier, and a validity period.

CertificateSerialNumber: A type that uniquely identifies a certificate (and
thereby an entity and a public key) among those signed by a particular certificate
issuer. This type is defined in X.509.

CertificateRevocationList: A type that contains information about
certificates whose validity an issuer has prematurely revoked. The information
consists of an issuer name, the time of issue, the next scheduled time of issue, and
a list of certificate serial numbers and their associated revocation times. The CRL
is signed by the issuer. The type intended by this standard is the one defined
RFC 1422.

DER: Distinguished Encoding Rules for ASN.1, as defined in X.509, Section 8.7.

DES: Data Encryption Standard, as defined in FIPS PUB 46-1.

desCBC: The object identifier for DES in cipher-block chaining (CBC) mode, as
defined in [NIST91].

Page 4 ERROR! NO TEXT OF SPECIFIED STYLE IN DOCUMENT.

ExtendedCertificate: A type that consists of an X.509 public-key certificate
and a set of attributes, collectively signed by the issuer of the X.509 public-key
certificate. This type is defined in PKCS #6.

MD2: RSA Data Security, Inc.'s MD2 message-digest algorithm, as defined in
RFC 1319.

md2: The object identifier for MD2, as defined in RFC 1319.

MD5: RSA Data Security, Inc.'s MD5 message-digest algorithm, as defined in
RFC 1321.

md5: The object identifier for MD5, as defined in RFC 1321.

Name: A type that uniquely identifies or "distinguishes" objects in an X.500
directory. This type is defined in X.501. In an X.509 certificate, the type identifies
the certificate issuer and the entity whose public key is certified.

PEM: Internet Privacy-Enhanced Mail, as defined in RFCs 1421–1424.

RSA: The RSA public-key cryptosystem, as defined in [RSA78].

rsaEncryption: The object identifier for RSA encryption, as defined in PKCS
#1.

4. Symbols and abbreviations

No symbols or abbreviations are defined in this standard.

5. General overview

The following nine sections specify useful types, general syntax, six content
types, and object identifiers.

The syntax is general enough to support many different content types. This
standard defines six: data, signed data, enveloped data, signed-and-enveloped
data, digested data, and encrypted data. Other content types may be added in
the future. The use of content types defined outside this standard is possible, but
is subject to bilateral agreement between parties exchanging content.

This standard exports one type, ContentInfo, as well as the various object
identifiers.

6. USEFUL TYPES Page 5

There are two classes of content types: base and enhanced. Content types in the
base class contain "just data," with no cryptographic enhancements. Presently,
one content type is in this class, the data content type. Content types in the
enhanced class contain content of some type (possibly encrypted), and other
cryptographic enhancements. For example, enveloped-data content can contain
(encrypted) signed-data content, which can contain data content. The four non-
data content types fall into the enhanced class. The content types in the enhanced
class thus employ encapsulation, giving rise to the terms "outer" content (the one
containing the enhancements) and "inner" content (the one being enhanced).

The standard is designed such that the enhanced content types can be prepared
in a single pass using indefinite-length BER encoding, and processed in a single
pass in any BER encoding. Single-pass operation is especially helpful if content is
stored on tapes, or is "piped" from another process. One of the drawbacks of
single-pass operation, however, is that it is difficult to output a DER encoding in
a single pass, since the lengths of the various components may not be known in
advance. Since DER encoding is required by the signed-data, signed-and-
enveloped data, and digested-data content types, an extra pass may be necessary
when a content type other than data is the inner content of one of those content
types.

6. Useful types

This section defines types that are useful in at least two places in the standard.

6.1 CertificateRevocationLists

The CertificateRevocationLists type gives a set of certificate-revocation
lists. It is intended that the set contain information sufficient to determine
whether the certificates with which the set is associated are "hot listed," but there
may be more certificate-revocation lists than necessary, or there may be fewer
than necessary.

CertificateRevocationLists ::=
SET OF CertificateRevocationList

6.2 ContentEncryptionAlgorithmIdentifier

The ContentEncryptionAlgorithmIdentifier type identifies a content-
encryption algorithm such as DES. A content-encryption algorithm supports
encryption and decryption operations. The encryption operation maps an octet
string (the message) to another octet string (the ciphertext) under control of a

Page 6 ERROR! NO TEXT OF SPECIFIED STYLE IN DOCUMENT.

content-encryption key. The decryption operation is the inverse of the encryption
operation. Context determines which operation is intended.

ContentEncryptionAlgorithmIdentifier ::=
AlgorithmIdentifier

6.3 DigestAlgorithmIdentifier

The DigestAlgorithmIdentifier type identifies a message-digest
algorithm. Examples include MD2 and MD5. A message-digest algorithm maps
an octet string (the message) to another octet string (the message digest).

DigestAlgorithmIdentifier ::= AlgorithmIdentifier

6.4 DigestEncryptionAlgorithmIdentifier

The DigestEncryptionAlgorithmIdentifier type identifies a digest-
encryption algorithm under which a message digest can be encrypted. One
example is PKCS #1's rsaEncryption. A digest-encryption algorithm supports
encryption and decryption operations. The encryption operation maps an octet
string (the message digest) to another octet string (the encrypted message digest)
under control of a digest-encryption key. The decryption operation is the inverse
of the encryption operation. Context determines which operation is intended.

DigestEncryptionAlgorithmIdentifier ::=
AlgorithmIdentifier

6.5 ExtendedCertificateOrCertificate

The ExtendedCertificateOrCertificate type gives either a PKCS #6
extended certificate or an X.509 certificate. This type follows the syntax
recommended in Section 6 of PKCS #6:

ExtendedCertificateOrCertificate ::= CHOICE {
certificate Certificate, -- X.509
extendedCertificate [0] IMPLICIT ExtendedCertificate

}

6.6 ExtendedCertificatesAndCertificates

The ExtendedCertificatesAndCertificates type gives a set of extended
certificates and X.509 certificates. It is intended that the set be sufficient to
contain chains from a recognized "root" or "top-level certification authority" to all

6. USEFUL TYPES Page 7

of the signers with which the set is associated, but there may be more certificates
than necessary, or there may be fewer than necessary.

ExtendedCertificatesAndCertificates ::=
SET OF ExtendedCertificateOrCertificate

Note. The precise meaning of a "chain" is outside the scope of this standard.
Some applications of this standard may impose upper limits on the length of a
chain; others may enforce certain relationships between the subjects and issuers
of certificates in a chain. An example of such relationships has been proposed for
Privacy-Enhanced Mail in RFC 1422.

6.7 IssuerAndSerialNumber

The IssuerAndSerialNumber type identifies a certificate (and thereby an
entity and a public key) by the distinguished name of the certificate issuer and an
issuer-specific certificate serial number.

IssuerAndSerialNumber ::= SEQUENCE {
issuer Name,
serialNumber CertificateSerialNumber }

6.8 KeyEncryptionAlgorithmIdentifier

The KeyEncryptionAlgorithmIdentifier type identifies a key-encryption
algorithm under which a content-encryption key can be encrypted. One example
is PKCS #1's rsaEncryption. A key-encryption algorithm supports encryption
and decryption operations. The encryption operation maps an octet string (the
key) to another octet string (the encrypted key) under control of a key-encryption
key. The decryption operation is the inverse of the encryption operation. Context
determines which operation is intended.

KeyEncryptionAlgorithmIdentifier ::=
AlgorithmIdentifier

6.9 Version

The Version type gives a syntax version number, for compatibility with future
revisions of this standard.

Version ::= INTEGER

Page 8 ERROR! NO TEXT OF SPECIFIED STYLE IN DOCUMENT.

7. General syntax

The general syntax for content exchanged between entities according to this
standard associates a content type with content. The syntax shall have ASN.1
type ContentInfo:

ContentInfo ::= SEQUENCE {
contentType ContentType,
content

[0] EXPLICIT ANY DEFINED BY contentType OPTIONAL }

ContentType ::= OBJECT IDENTIFIER

The fields of type ContentInfo have the following meanings:

• contentType indicates the type of content. It is an object
identifier, which means it is a unique string of integers assigned by
the authority that defines the content type. This standard defines
six content types (see Section 14): data, signedData,
envelopedData, signedAndEnvelopedData, digestedData,
and encryptedData.

• content is the content. The field is optional, and if the field is not
present, its intended value must be supplied by other means. Its
type is defined along with the object identifier for contentType.

Notes.

1. The methods below assume that the type of content can be
determined uniquely by contentType, so the type defined along
with the object identifier should not be a CHOICE type.

2. When a ContentInfo value is the inner content of signed-data,
signed-and-enveloped-data, or digested-data content, a message-
digest algorithm is applied to the contents octets of the DER
encoding of the content field. When a ContentInfo value is the
inner content of enveloped-data or signed-and-enveloped-data
content, a content-encryption algorithm is applied to the contents
octets of a definite-length BER encoding of the content field.

3. The optional omission of the content field makes it possible to
construct "external signatures," for example, without modification
to or replication of the content to which the signatures apply. In the
case of external signatures, the content being signed would be

8. DATA CONTENT TYPE Page 9

omitted from the "inner" encapsulated ContentInfo value
included in the signed-data content type.

8. Data content type

The data content type is just an octet string. It shall have ASN.1 type Data:

Data ::= OCTET STRING

The data content type is intended to refer to arbitrary octet strings, such as ASCII
text files; the interpretation is left to the application. Such strings need not have
any internal structure (although they may; they could even be DER encodings).

9. Signed-data content type

The signed-data content type consists of content of any type and encrypted
message digests of the content for zero or more signers. The encrypted digest for
a signer is a "digital signature" on the content for that signer. Any type of content
can be signed by any number of signers in parallel. Furthermore, the syntax has a
degenerate case in which there are no signers on the content. The degenerate case
provides a means for disseminating certificates and certificate-revocation lists.

It is expected that the typical application of the signed-data content type will be
to represent one signer's digital signature on content of the data content type.
Another typical application will be to disseminate certificates and certificate-
revocation lists.

The process by which signed data is constructed involves the following steps:

1. For each signer, a message digest is computed on the content with a
signer-specific message-digest algorithm. (If two signers employ
the same message-digest algorithm, then the message digest need
be computed for only one of them.) If the signer is authenticating
any information other than the content (see Section 9.2), the
message digest of the content and the other information are
digested with the signer's message digest algorithm, and the result
becomes the "message digest."

2. For each signer, the message digest and associated information are
encrypted with the signer's private key.

3. For each signer, the encrypted message digest and other signer-
specific information are collected into a SignerInfo value,

Page 10 ERROR! NO TEXT OF SPECIFIED STYLE IN DOCUMENT.

defined in Section 9.2. Certificates and certificate-revocation lists for
each signer, and those not corresponding to any signer, are
collected in this step.

4. The message-digest algorithms for all the signers and the
SignerInfo values for all the signers are collected together with
the content into a SignedData value, defined in Section 9.1.

A recipient verifies the signatures by decrypting the encrypted message digest
for each signer with the signer's public key, then comparing the recovered
message digest to an independently computed message digest. The signer's
public key is either contained in a certificate included in the signer information,
or is referenced by an issuer distinguished name and an issuer-specific serial
number that uniquely identify the certificate for the public key.

This section is divided into five parts. The first part describes the top-level type
SignedData, the second part describes the per-signer information type
SignerInfo, and the third and fourth parts describe the message-digesting and
digest-encryption processes. The fifth part summarizes compatibility with
Privacy-Enhanced Mail.

9.1 SignedData type

The signed-data content type shall have ASN.1 type SignedData:

SignedData ::= SEQUENCE {
version Version,
digestAlgorithms DigestAlgorithmIdentifiers,
contentInfo ContentInfo,
certificates

[0] IMPLICIT ExtendedCertificatesAndCertificates
OPTIONAL,

crls
[1] IMPLICIT CertificateRevocationLists OPTIONAL,

signerInfos SignerInfos }

DigestAlgorithmIdentifiers ::=
SET OF DigestAlgorithmIdentifier

SignerInfos ::= SET OF SignerInfo

The fields of type SignedData have the following meanings:

• version is the syntax version number. It shall be 1 for this version
of the standard.

9. SIGNED-DATA CONTENT TYPE Page 11

• digestAlgorithms is a collection of message-digest algorithm
identifiers. There may be any number of elements in the collection,
including zero. Each element identifies the message-digest
algorithm (and any associated parameters) under which the content
is digested for a some signer. The collection is intended to list the
message-digest algorithms employed by all of the signers, in any
order, to facilitate one-pass signature verification. The message-
digesting process is described in Section 9.3.

• contentInfo is the content that is signed. It can have any of the
defined content types.

• certificates is a set of PKCS #6 extended certificates and X.509
certificates. It is intended that the set be sufficient to contain chains
from a recognized "root" or "top-level certification authority" to all
of the signers in the signerInfos field. There may be more
certificates than necessary, and there may be certificates sufficient
to contain chains from two or more independent top-level
certification authorities. There may also be fewer certificates than
necessary, if it is expected that those verifying the signatures have
an alternate means of obtaining necessary certificates (e.g., from a
previous set of certificates).

• crls is a set of certificate-revocation lists. It is intended that the set
contain information sufficient to determine whether or not the
certificates in the certificates field are "hot listed," but such
correspondence is not necessary. There may be more certificate-
revocation lists than necessary, and there may also be fewer
certificate-revocation lists than necessary.

• signerInfos is a collection of per-signer information. There may
be any number of elements in the collection, including zero.

Notes.

1. The fact that the digestAlgorithms field comes before the
contentInfo field and the signerInfos field comes after it
makes it possible to process a SignedData value in a single pass.
(Single-pass processing is described in Section 5.)

2. The differences between version 1 SignedData and version 0
SignedData (defined in PKCS #7, Version 1.4) are the following:

Page 12 ERROR! NO TEXT OF SPECIFIED STYLE IN DOCUMENT.

• the digestAlgorithms and signerInfos fields
may contain zero elements in version 1, but not in
version 0

• the crls field is allowed in version 1, but not in
version 0

Except for the difference in version number, version 0
SignedData values are acceptable as version 1 values. An
implementation can therefore process SignedData values of either
version as though they were version 1 values. It is suggested that
PKCS implementations generate only version 1 SignedData
values, but be prepared to process SignedData values of either
version.

3. In the degenerate case where there are no signers on the content,
the ContentInfo value being "signed" is irrelevant. It is
recommended in that case that the content type of the
ContentInfo value being "signed" be data, and the content field
of the ContentInfo value be omitted.

9.2 SignerInfo type

Per-signer information is represented in the type SignerInfo:

SignerInfo ::= SEQUENCE {
version Version,
issuerAndSerialNumber IssuerAndSerialNumber,
digestAlgorithm DigestAlgorithmIdentifier,
authenticatedAttributes

[0] IMPLICIT Attributes OPTIONAL,
digestEncryptionAlgorithm

DigestEncryptionAlgorithmIdentifier,
encryptedDigest EncryptedDigest,
unauthenticatedAttributes

[1] IMPLICIT Attributes OPTIONAL }

EncryptedDigest ::= OCTET STRING

The fields of type SignerInfo have the following meanings:

• version is the syntax version number. It shall be 1 for this version
of the standard.

9. SIGNED-DATA CONTENT TYPE Page 13

• issuerAndSerialNumber specifies the signer's certificate (and
thereby the signer's distinguished name and public key) by issuer
distinguished name and issuer-specific serial number.

• digestAlgorithm identifies the message-digest algorithm (and
any associated parameters) under which the content and
authenticated attributes (if present) are digested. It should be
among those in the digestAlgorithms field of the superior
SignerInfo value. The message-digesting process is described in
Section 9.3.

• authenticatedAttributes is a set of attributes that are signed
(i.e., authenticated) by the signer. The field is optional, but it must
be present if the content type of the ContentInfo value being
signed is not data. If the field is present, it must contain, at a
minimum, two attributes:

1. A PKCS #9 content-type attribute having as its value
the content type of the ContentInfo value being
signed.

2. A PKCS #9 message-digest attribute, having as its
value the message digest of the content (see below).

Other attribute types that might be useful here, such as signing
time, are also defined in PKCS #9.

• digestEncryptionAlgorithm identifies the digest-encryption
algorithm (and any associated parameters) under which the
message digest and associated information are encrypted with the
signer's private key. The digest-encryption process is described in
Section 9.4.

• encryptedDigest is the result of encrypting the message digest
and associated information with the signer's private key.

• unauthenticatedAttributes is a set of attributes that are not
signed (i.e., authenticated) by the signer. The field is optional.
Attribute types that might be useful here, such as
countersignatures, are defined in PKCS #9.

Notes.

1. It is recommended in the interest of PEM compatibility that the
authenticatedAttributes field be omitted whenever the

Page 14 ERROR! NO TEXT OF SPECIFIED STYLE IN DOCUMENT.

content type of the ContentInfo value being signed is data and
there are no other authenticated attributes.

2. The difference between version 1 SignerInfo and version 0
SignerInfo (defined in PKCS #7, Version 1.4) is in the message-
digest encryption process (see Section 9.4). Only the PEM-
compatible processes are different, reflecting changes in Privacy-
Enhanced Mail signature methods. There is no difference in the
non-PEM-compatible message-digest encryption process.

It is suggested that PKCS implementations generate only version 1
SignedData values. Since the PEM signature method with which
version 0 is compatible is obsolescent, it is suggested that PKCS
implementations be prepared to receive only version 1
SignedData values.

9.3 Message-digesting process

The message-digesting process computes a message digest on either the content
being signed or the content together with the signer's authenticated attributes. In
either case, the initial input to the message-digesting process is the "value" of the
content being signed. Specifically, the initial input is the contents octets of the
DER encoding of the content field of the ContentInfo value to which the
signing process is applied. Only the contents octets of the DER encoding of that
field are digested, not the identifier octets or the length octets.

The result of the message-digesting process (which is called, informally, the
"message digest") depends on whether the authenticatedAttributes field is
present. When the field is absent, the result is just the message digest of the
content. When the field is present, however, the result is the message digest of
the complete DER encoding of the Attributes value containted in the
authenticatedAttributes field.1 Since the Attributes value, when the
field is present, must contain as attributes the content type and the message
digest of the content, those values are indirectly included in the result.

When the content being signed has content type data and the
authenticatedAttributes field is absent, then just the value of the data
(e.g., the contents of a file) is digested. This has the advantage that the length of

1For clarity: The IMPLICIT [0] tag in the authenticatedAttributes field is not part of the
Attributes value. The Attributes value's tag is SET OF, and the DER encoding of the SET OF tag,
rather than of the IMPLICIT [0] tag, is to be digested along with the length and contents octets of the
Attributes value.

9. SIGNED-DATA CONTENT TYPE Page 15

the content being signed need not be known in advance of the encryption
process. This method is compatible with Privacy-Enhanced Mail.

Although the identifier octets and the length octets are not digested, they are still
protected by other means. The length octets are protected by the nature of the
message-digest algorithm since it is by assumption computationally infeasible to
find any two distinct messages of any length that have the same message digest.
Furthermore, assuming that the content type uniquely determines the identifier
octets, the identifier octets are protected implicitly in one of two ways: either by
the inclusion of the content type in the authenticated attributes, or by the use of
the PEM-compatible alternative in Section 9.4 which implies that the content type
is data.

Note. The fact that the message digest is computed on part of a DER encoding
does not mean that DER is the required method of representing that part for data
transfer. Indeed, it is expected that some implementations of this standard may
store objects in other than their DER encodings, but such practices do not affect
message-digest computation.

9.4 Digest-encryption process

The input to the digest-encryption process—the value supplied to the signer's
digest-encryption algorithm—includes the result of the message-digesting
process (informally, the "message digest") and the digest algorithm identifier (or
object identifier). The result of the digest-encryption process is the encryption
with the signer's private key of the BER encoding of a value of type
DigestInfo:

DigestInfo ::= SEQUENCE {
digestAlgorithm DigestAlgorithmIdentifier,
digest Digest }

Digest ::= OCTET STRING

The fields of type DigestInfo have the following meanings:

• digestAlgorithm identifies the message-digest algorithm (and
any associated parameters) under which the content and
authenticated attributes are digested. It should be the same as the
digestAlgorithm field of the superior SignerInfo value.

• digest is the result of the message-digesting process.

Page 16 ERROR! NO TEXT OF SPECIFIED STYLE IN DOCUMENT.

Notes.

1. The only difference between the signature process defined here and
the signature algorithms defined in PKCS #1 is that signatures there
are represented as bit strings, for consistency with the X.509
SIGNED macro. Here, encrypted message digests are octet strings.

2. The input to the encryption process typically will have 30 or fewer
octets. If digestEncryptionAlgorithm is PKCS #1's
rsaEncryption, then this means that the input can be encrypted
in a single block as long as the length of the RSA modulus is at least
328 bits, which is reasonable and consistent with security
recommendations.

3. A message-digest algorithm identifier is included in the
DigestInfo value to limit the damage resulting from the
compromise of one message-digest algorithm. For instance,
suppose an adversary were able to find messages with a given
MD2 message digest. That adversary could then forge a signature
by finding a message with the same MD2 message digest as one
that a signer previously signed, and presenting the previous
signature as the signature on the new message. This attack would
succeed only if the signer previously used MD2, since the
DigestInfo value contains the message-digest algorithm. If a
signer never trusted the MD2 algorithm and always used MD5,
then the compromise of MD2 would not affect the signer. If the
DigestInfo value contained only the message digest, however,
the compromise of MD2 would affect signers that use any message-
digest algorithm.

4. There is potential for ambiguity due to the fact that the
DigestInfo value does not indicate whether the digest field
contains just the message digest of the content or the message
digest of the complete DER encoding of the
authenticatedAttributes field. In other words, it is possible
for an adversary to transform a signature on authenticated
attributes to one that appears to be just on content by changing the
content to be the DER encoding of the
authenticatedAttributes field, and then removing the
authenticatedAttributes field. (The reverse transformation is
possible, but requires that the content be the DER encoding of an
authenticated attributes value, which is unlikely.) This ambiguity is
not a new problem, nor is it a significant one, as context will
generally prevent misuse. Indeed, it is also possible for an

10. ENVELOPED-DATA CONTENT TYPE Page 17

adversary to transform a signature on a certificate or certificate-
revocation list to one that appears to be just on signed-data content.

9.5 Compatibility with Privacy-Enhanced Mail

Compatibility with the MIC-ONLY and MIC-CLEAR process types in PEM occurs
when the content type of the ContentInfo value being signed is data, there
are no authenticated attributes, the message-digest algorithm is md2 or md5, and
the digest-encryption algorithm is PKCS #1's rsaEncryption. Under all those
conditions, the encrypted message digest produced here matches the one
produced in PEM because:

1. The value input to the message-digest algorithm in PEM is the
same as in this standard when there are no authenticated attributes.
MD2 and MD5 in PEM are the same as md2 and md5.

2. The value encrypted with the signer's private key in PEM (as
specified in RFC 1423) is the same as in this standard when there
are no authenticated attributes. RSA private-key encryption in PEM
is the same as PKCS #1's rsaEncryption.

The other parts of the signed-data content type (certificates, CRLs, algorithm
identifiers, etc.) are easily translated to and from their corresponding PEM
components.

10. Enveloped-data content type

The enveloped-data content type consists of encrypted content of any type and
encrypted content-encryption keys for one or more recipients. The combination
of encrypted content and encrypted content-encryption key for a recipient is a
"digital envelope" for that recipient. Any type of content can be enveloped for
any number of recipients in parallel.

It is expected that the typical application of the enveloped-data content type will
be to represent one or more recipients' digital envelopes on content of the data,
digested-data, or signed-data content types.

The process by which enveloped data is constructed involves the following steps:

1. A content-encryption key for a particular content-encryption
algorithm is generated at random.

Page 18 ERROR! NO TEXT OF SPECIFIED STYLE IN DOCUMENT.

2. For each recipient, the content-encryption key is encrypted with the
recipient's public key.

3. For each recipient, the encrypted content-encryption key and other
recipient-specific information are collected into a RecipientInfo
value, defined in Section 10.2.

4. The content is encrypted with the content-encryption key. (Content
encryption may require that the content be padded to a multiple of
some block size; see Section 10.3 for discussion.)

5. The RecipientInfo values for all the recipients are collected
together with the encrypted content into a EnvelopedData value,
defined in Section 10.1.

A recipient opens the envelope by decrypting the one of the encrypted content-
encryption keys with the recipient's private key and decrypting the encrypted
content with the recovered content-encryption key. The recipient's private key is
referenced by an issuer distinguished name and an issuer-specific serial number
that uniquely identify the certificate for the corresponding public key.

This section is divided into four parts. The first part describes the top-level type
EnvelopedData, the second part describes the per-recipient information type
RecipientInfo, and the third and fourth parts describe the content-encryption
and key-encryption processes.

This content type is not compatible with Privacy-Enhanced Mail (although some
processes it defines are compatible with their PEM counterparts), since Privacy-
Enhanced Mail always involves digital signatures, never digital envelopes alone.

10.1 EnvelopedData type

The enveloped-data content type shall have ASN.1 type EnvelopedData:

EnvelopedData ::= SEQUENCE {
version Version,
recipientInfos RecipientInfos,
encryptedContentInfo EncryptedContentInfo }

RecipientInfos ::= SET OF RecipientInfo

EncryptedContentInfo ::= SEQUENCE {
contentType ContentType,
contentEncryptionAlgorithm

ContentEncryptionAlgorithmIdentifier,
encryptedContent

[0] IMPLICIT EncryptedContent OPTIONAL }

10. ENVELOPED-DATA CONTENT TYPE Page 19

EncryptedContent ::= OCTET STRING

The fields of type EnvelopedData have the following meanings:

• version is the syntax version number. It shall be 0 for this version
of the standard.

• recipientInfos is a collection of per-recipient information.
There must be at least one element in the collection.

• encryptedContentInfo is the encrypted content information.

The fields of type EncryptedContentInfo have the following meanings:

• contentType indicates the type of content.

• contentEncryptionAlgorithm identifies the content-
encryption algorithm (and any associated parameters) under which
the content is encrypted. The content-encryption process is
described in Section 10.3. This algorithm is the same for all
recipients.

• encryptedContent is the result of encrypting the content. The
field is optional, and if the field is not present, its intended value
must be supplied by other means.

Note. The fact that the recipientInfos field comes before the
encryptedContentInfo field makes it possible to process an
EnvelopedData value in a single pass. (Single-pass processing is described in
Section 5.)

10.2 RecipientInfo type

Per-recipient information is represented in the type RecipientInfo:

RecipientInfo ::= SEQUENCE {
version Version,
issuerAndSerialNumber IssuerAndSerialNumber,
keyEncryptionAlgorithm

KeyEncryptionAlgorithmIdentifier,
encryptedKey EncryptedKey }

EncryptedKey ::= OCTET STRING

The fields of type RecipientInfo have the following meanings:

Page 20 ERROR! NO TEXT OF SPECIFIED STYLE IN DOCUMENT.

• version is the syntax version number. It shall be 0 for this version
of the standard.

• issuerAndSerialNumber specifies the recipient's certificate (and
thereby the recipient's distinguished name and public key) by
issuer distinguished name and issuer-specific serial number.

• keyEncryptionAlgorithm identifies the key-encryption
algorithm (and any associated parameters) under which the
content-encryption key is encrypted with the recipient's public key.
The key-encryption process is described in Section 10.4.

• encryptedKey is the result of encrypting the content-encryption
key with the recipient's public key (see below).

10.3 Content-encryption process

The input to the content-encryption process is the "value" of the content being
enveloped. Specifically, the input is the contents octets of a definite-length BER
encoding of the content field of the ContentInfo value to which the
enveloping process is applied. Only the contents octets of the BER encoding are
encrypted, not the identifier octets or length octets; those other octets are not
represented at all.

When the content being enveloped has content type data, then just the value of
the data (e.g., the contents of a file) is encrypted. This has the advantage that the
length of the content being encrypted need not be known in advance of the
encryption process. This method is compatible with Privacy-Enhanced Mail.

The identifier octets and the length octets are not encrypted. The length octets
may be protected implicitly by the encryption process, depending on the
encryption algorithm. The identifier octets are not protected at all, although they
can be recovered from the content type, assuming that the content type uniquely
determines the identifier octets. Explicit protection of the identifier and length
octets requires that the signed-and-enveloped-data content type be employed, or
that the digested-data and enveloped-data content types be applied in
succession.

Notes.

1. The reason that a definite-length BER encoding is required is that
the bit indicating whether the length is definite or indefinite is not
recorded anywhere in the enveloped-data content type. Definite-

11. SIGNED-AND-ENVELOPED-DATA CONTENT TYPE Page 21

length encoding is more appropriate for simple types such as octet
strings, so definite-length encoding is chosen.

2. Some content-encryption algorithms assume the input length is a
multiple of k octets, where k > 1, and let the application define a
method for handling inputs whose lengths are not a multiple of k
octets. For such algorithms, the method shall be to pad the input at
the trailing end with k − (l mod k) octets all having value k − (l mod
k), where l is the length of the input. In other words, the input is
padded at the trailing end with one of the following strings:

01 — if l mod k = k-1
02 02 — if l mod k = k-2

⋅
⋅
⋅

k k … k k — if l mod k = 0

The padding can be removed unambiguously since all input is
padded and no padding string is a suffix of another. This padding
method is well-defined if and only if k < 256; methods for larger k
are an open issue for further study.

10.4 Key-encryption process

The input to the key-encryption process—the value supplied to the recipient's
key-encryption algorithm—is just the "value" of the content-encryption key.

11. Signed-and-enveloped-data content type

This section defines the signed-and-enveloped-data content type. For brevity,
much of this section is expressed in terms of material in Sections 9 and 10.

The signed-and-enveloped-data content type consists of encrypted content of any
type, encrypted content-encryption keys for one or more recipients, and doubly
encrypted message digests for one or more signers. The "double encryption"
consists of an encryption with a signer's private key followed by an encryption
with the content-encryption key.

The combination of encrypted content and encrypted content-encryption key for
a recipient is a "digital envelope" for that recipient. The recovered singly
encrypted message digest for a signer is a "digital signature" on the recovered

Page 22 ERROR! NO TEXT OF SPECIFIED STYLE IN DOCUMENT.

content for that signer. Any type of content can be enveloped for any number of
recipients and signed by any number of signers in parallel.

It is expected that the typical application of the signed-and-enveloped-data
content type will be to represent one signer's digital signature and one or more
recipients' digital envelopes on content of the data content type.

The process by which signed-and-enveloped data is constructed involves the
following steps:

1. A content-encryption key for a particular content-encryption
algorithm is generated at random.

2. For each recipient, the content-encryption key is encrypted with the
recipient's public key.

3. For each recipient, the encrypted content-encryption key and other
recipient-specific information are collected into a RecipientInfo
value, defined in Section 10.2.

4. For each signer, a message digest is computed on the content with a
signer-specific message-digest algorithm. (If two signers employ
the same message-digest algorithm, then the message digest need
be computed for only one of them.)

5. For each signer, the message digest and associated information are
encrypted with the signer's private key, and the result is encrypted
with the content-encryption key. (The second encryption may
require that the result of the first encryption be padded to a
multiple of some block size; see Section 10.3 for discussion.)

6. For each signer, the doubly encrypted message digest and other
signer-specific information are collected into a SignerInfo value,
defined in Section 9.2.

7. The content is encrypted with the content-encryption key. (See
Section 10.3 for discussion.)

8. The message-digest algorithms for all the signers, the SignerInfo
values for all the signers and the RecipientInfo values for all the
recipients are collected together with the encrypted content into a
SignedAndEnvelopedData value, defined in Section 11.1.

A recipient opens the envelope and verifies the signatures in two steps. First, the
one of the encrypted content-encryption keys is decrypted with the recipient's
private key, and the encrypted content is decrypted with the recovered content-

11. SIGNED-AND-ENVELOPED-DATA CONTENT TYPE Page 23

encryption key. Second, the doubly encrypted message digest for each signer is
decrypted with the recovered content-encryption key, the result is decrypted
with the signer's public key, and the recovered message digest is compared to an
independently computed message digest.

Recipient private keys and signer public keys are contained or referenced as
discussed in Sections 9 and 10.

This section is divided into three parts. The first part describes the top-level type
SignedAndEnvelopedData and the second part describes the digest-
encryption process. Other types and processes are the same as in Sections 9 and
10. The third part summarizes compatibility with Privacy-Enhanced Mail.

Note. The signed-and-enveloped-data content type provides cryptographic
enhancements similar to those resulting from the sequential combination of
signed-data and enveloped-data content types. However, since the signed-and-
enveloped-data content type does not have authenticated or unauthenticated
attributes, nor does it provide enveloping of signer information other than the
signature, the sequential combination of signed-data and enveloped-data content
types is generally preferable to the SignedAndEnvelopedData content type,
except when compatibility with the ENCRYPTED process type in Privacy-
Enhanced Mail in intended.

11.1 SignedAndEnvelopedData type

The signed-and-enveloped-data content type shall have ASN.1 type
SignedAndEnvelopedData:

SignedAndEnvelopedData ::= SEQUENCE {
version Version,
recipientInfos RecipientInfos,
digestAlgorithms DigestAlgorithmIdentifiers,
encryptedContentInfo EncryptedContentInfo,
certificates

[0] IMPLICIT ExtendedCertificatesAndCertificates
OPTIONAL,

crls
[1] IMPLICIT CertificateRevocationLists OPTIONAL,

signerInfos SignerInfos }

The fields of type SignedAndEnvelopedData have the following meanings:

version is the syntax version number. It shall be 1 for this version
of the standard.

Page 24 ERROR! NO TEXT OF SPECIFIED STYLE IN DOCUMENT.

recipientInfos is a collection of per-recipient information, as in
Section 10. There must be at least one element in the collection.

• digestAlgorithms is a collection of message-digest algorithm
identifiers, as in Section 9. The message-digesting process is the
same as in Section 9 in the case when there are no authenticated
attributes.

encryptedContentInfo is the encrypted content, as in Section
10. It can have any of the defined content types.

• certificates is a set of PKCS #6 extended certificates and X.509
certificates, as in Section 9.

crls is a set of certificate-revocation lists, as in Section 9.

signerInfos is a collection of per-signer information. There must
be at least one element in the collection. SignerInfo values have
the same meaning as in Section 9 with the exception of the
encryptedDigest field (see below).

Notes.

1. The fact that the recipientInfos and digestAlgorithms
fields come before the contentInfo field and the signerInfos
field comes after it makes it possible to process a
SignedAndEnvelopedData value in a single pass. (Single-pass
processing is described in Section 5.)

2. The difference between version 1 SignedAndEnvelopedData and
version 0 SignedAndEnvelopedData (defined in PKCS #7,
Version 1.4) is that the crls field is allowed in version 1, but not in
version 0. Except for the difference in version number, version 0
SignedAndEnvelopedData values are acceptable as version 1
values. An implementation can therefore process
SignedAndEnvelopedData values of either version as though
they were version 1 values. It is suggested that PKCS
implementations generate only version 1
SignedAndEnvelopedData values, but be prepared to process
SignedAndEnvelopedData values of either version.

11. SIGNED-AND-ENVELOPED-DATA CONTENT TYPE Page 25

11.2 Digest-encryption process

The input to the digest-encryption process is the same as in Section 9, but the
process itself is different. Specifically, the process involves two steps. First, the
input to the process is supplied to the signer's digest-encryption algorithm, as in
Section 9. Second, the result of the first step is encrypted with the content-
encryption key. There is no DER encoding between the two steps; the "value"
output by the first step is input directly to the second step. (See Section 10.3 for
discussion.)

This process is compatible with the ENCRYPTED process type in Privacy-
Enhanced Mail.

Note. The purpose of the second step is to prevent an adversary from recovering
the message digest of the content. Otherwise, an adversary would be able to
determine which of a list of candidate contents (e.g., "Yes" or "No") is the actual
content by comparing the their message digests to the actual message digest.

11.3 Compatibility with Privacy-Enhanced Mail

Compatibility with the ENCRYPTED process type of PEM occurs when the
content type of the ContentInfo value being signed and enveloped is data,
the message-digest algorithm is md2 or md5, the content-encryption algorithm is
DES in CBC mode, the digest-encryption algorithm is PKCS #1's
rsaEncryption, and the key-encryption algorithm is PKCS #1's
rsaEncryption. Under all those conditions, the doubly encrypted message
digest and the encrypted content encryption key match the ones produced in
PEM because of reasons similar to those given in Section 9.5, as well as the
following:

1. The value input to the content-encryption algorithm in PEM is the
same as in this standard. DES in CBC mode is the same as desCBC.

2. The value input to the key-encryption algorithm in PEM is the
same as in this standard (see Section 10.4). RSA public-key
encryption in PEM is the same as PKCS #1's rsaEncryption.

3. The double-encryption process applied to the message digest in
this standard and in PEM are the same.

The other parts of the signed-and-enveloped-data content type (certificates,
CRLs, algorithm identifiers, etc.) are easily translated to and from their
corresponding PEM components. (CRLs are carried in a separate PEM message.)

Page 26 ERROR! NO TEXT OF SPECIFIED STYLE IN DOCUMENT.

12. Digested-data content type

The digested-data content type consists of content of any type and a message
digest of the content.

It is expected that the typical application of the digested-data content type will be
to add integrity to content of the data content type, and that the result would
become the content input to the enveloped-data content type.

The process by which digested-data is constructed involves the following steps:

1. A message digest is computed on the content with a message-
digest algorithm.

2. The message-digest algorithm and the message digest are collected
together with the content into a DigestedData value.

A recipient verifies the message digest by comparing the message digest to an
independently computed message digest.

The digested-data content type shall have ASN.1 type DigestedData:

DigestedData ::= SEQUENCE {
version Version,
digestAlgorithm DigestAlgorithmIdentifier,
contentInfo ContentInfo,
digest Digest }

Digest ::= OCTET STRING

The fields of type DigestedData have the following meanings:

• version is the syntax version number. It shall be 0 for this version
of the standard.

• digestAlgorithm identifies the message-digest algorithm (and
any associated parameters) under which the content is digested.
(The message-digesting process is the same as in Section 9 in the
case when there are no authenticated attributes.)

• contentInfo is the content that is digested. It can have any of the
defined content types.

• digest is the result of the message-digesting process.

Note. The fact that the digestAlgorithm field comes before the contentInfo
field and the digest field comes after it makes it possible to process a

13. ENCRYPTED-DATA CONTENT TYPE Page 27

DigestedData value in a single pass. (Single-pass processing is described in
Section 5.)

13. Encrypted-data content type

The encrypted-data content type consists of encrypted content of any type.
Unlike the enveloped-data content type, the encrypted-data content type has
neither recipients nor encrypted content-encryption keys. Keys are assumed to
be managed by other means.

It is expected that the typical application of the encrypted-data content type will
be to encrypt content of the data content type for local storage, perhaps where
the encryption key is a password.

The encrypted-data content type shall have ASN.1 type EncryptedData:

EncryptedData ::= SEQUENCE {
version Version,
encryptedContentInfo EncryptedContentInfo }

The fields of type EncryptedData have the following meanings:

• version is the syntax version number. It shall be 0 for this version
of the standard.

encryptedContentInfo is the encrypted content information, as
in Section 10.

14. Object identifiers

This standard defines seven object identifiers: pkcs-7, data, signedData,
envelopedData, signedAndEnvelopedData, digestedData, and
encryptedData.

The object identifier pkcs-7 identifies this standard.

pkcs-7 OBJECT IDENTIFIER ::=
{ iso(1) member-body(2) US(840) rsadsi(113549)

pkcs(1) 7 }

The object identifiers data, signedData, envelopedData,
signedAndEnvelopedData, digestedData, and encryptedData, identify,

Page 28 ERROR! NO TEXT OF SPECIFIED STYLE IN DOCUMENT.

respectively, the data, signed-data, enveloped-data, signed-and-enveloped-data,
digested-data, and encrypted-data content types defined in Sections 8–13.

data OBJECT IDENTIFIER ::= { pkcs-7 1 }
signedData OBJECT IDENTIFIER ::= { pkcs-7 2 }
envelopedData OBJECT IDENTIFIER ::= { pkcs-7 3 }
signedAndEnvelopedData OBJECT IDENTIFIER ::=

{ pkcs-7 4 }
digestedData OBJECT IDENTIFIER ::= { pkcs-7 5 }
encryptedData OBJECT IDENTIFIER ::= { pkcs-7 6 }

These object identifiers are intended to be used in the contentType field of a
value of type ContentInfo (see Section 5). The content field of that type,
which has the content-type-specific syntax ANY DEFINED BY contentType,
would have ASN.1 type Data, SignedData, EnvelopedData,
SignedAndEnvelopedData, DigestedData, and EncryptedData,
respectively. These object identifiers are also intended to be used in a PKCS #9
content-type attribute.

REVISION HISTORY Page 29

Revision history

Versions 1.0–1.3

Versions 1.0–1.3 were distributed to participants in RSA Data Security, Inc.'s
Public-Key Cryptography Standards meetings in February and March 1991.

Version 1.4

Version 1.4 is part of the June 3, 1991 initial public release of PKCS. Version 1.4
was published as NIST/OSI Implementors' Workshop document SEC-SIG-91-22.

Version 1.5

Version 1.5 incorporates several editorial changes, including updates to the
references and the addition of a revision history. The following substantive
changes were made:

• Section 6: CertificateRevocationLists type is added.

• Section 9.1: SignedData syntax is revised. The new version allows
for the dissemination of certificate-revocation lists along with
signatures. It also allows for the dissemination of certificates and
certificate-revocation lists alone, without any signatures.

• Section 9.2: SignerInfo syntax is revised. The new version
includes a message-digest encryption process compatible with
Privacy-Enhanced Mail as specified in RFC 1423.

• Section 9.3: Meaning of "the DER encoding of the
authenticatedAttributes field" is clarified as "the DER
encoding of the Attributes value."

• Section 10.3: Padding method for content-encryption algorithms is
described.

• Section 11.1: SignedAndEnvelopedData syntax is revised. The
new version allows for the dissemination of certificate-revocation
lists.

• Section 13: Encrypted-data content type is added. This content type
consists of encrypted content of any type.

• Section 14: encryptedData object identifier is added.

Page 30 ERROR! NO TEXT OF SPECIFIED STYLE IN DOCUMENT.

Author's address

RSA Laboratories (415) 595-7703
100 Marine Parkway (415) 595-4126 (fax)
Redwood City, CA 94065 USA pkcs-editor@rsa.com

	PKCS #7: Cryptographic Message Syntax Standard
	1. Scope
	2. References
	3. Definitions
	4. Symbols and abbreviations
	5. General overview
	6. Useful types
	6.1 CertificateRevocationLists
	6.2 ContentEncryptionAlgorithmIdentifier
	6.3 DigestAlgorithmIdentifier
	6.4 DigestEncryptionAlgorithmIdentifier
	6.5 ExtendedCertificateOrCertificate
	6.6 ExtendedCertificatesAndCertificates
	6.7 IssuerAndSerialNumber
	6.8 KeyEncryptionAlgorithmIdentifier
	6.9 Version

	7. General syntax
	
	Notes.

	8. Data content type
	9. Signed-data content type
	9.1 SignedData type
	Notes.

	9.2 SignerInfo type
	Notes.

	9.3 Message-digesting process
	9.4 Digest-encryption process
	Notes.

	9.5 Compatibility with Privacy-Enhanced Mail

	10. Enveloped-data content type
	10.1 EnvelopedData type
	10.2 RecipientInfo type
	10.3 Content-encryption process
	Notes.

	10.4 Key-encryption process

	11. Signed-and-enveloped-data content type
	11.1 SignedAndEnvelopedData type
	Notes.

	11.2 Digest-encryption process
	11.3 Compatibility with Privacy-Enhanced Mail

	12. Digested-data content type
	13. Encrypted-data content type
	14. Object identifiers
	Revision history
	Versions 1.0–1.3
	Version 1.4
	Version 1.5

	Author's address

