
Copyright   1991–1993 RSA Laboratories, a division of RSA Data Security, Inc. License to copy
this document is granted provided that it is identified as "RSA Data Security, Inc. Public-Key
Cryptography Standards (PKCS)" in all material mentioning or referencing this document.
003-903021-150-000-000

PKCS #6: Extended-Certificate Syntax Standard

An RSA Laboratories Technical Note
Version 1.5
Revised November 1, 1993*

1. Scope

This standard describes a syntax for extended certificates. An extended certificate
consists of an X.509 public-key certificate and a set of attributes, collectively
signed by the issuer of the X.509 public-key certificate. Thus the attributes and
the enclosed X.509 public-key certificate can be verified with a single public-key
operation, and an ordinary X.509 certificate can be extracted if needed, e.g., for
Privacy-Enhanced Mail (PEM).

The intention of including a set of attributes is to extend the certification process
beyond just the public key to certify other information about a given entity, such
as electronic-mail address. A non-exhaustive list of attributes is given in PKCS
#9.

The preliminary intended application of this standard is in PKCS #7
cryptographic messages, but it is expected that other applications will be
developed.

2. References

PKCS #1 RSA Laboratories. PKCS #1: RSA Encryption Standard. Version 1.5, November
1993,

PKCS #7 RSA Laboratories. PKCS #7: Cryptographic Message Syntax Standard. Version 1.5,
November 1993.

PKCS #9 RSA Laboratories. PKCS #9: Selected Attribute Types. Version 1.1, November 1993.

                                                

*Supersedes June 3, 1991 version, which was also published as NIST/OSI Implementors' Workshop
document SEC-SIG-91-21. PKCS documents are available by electronic mail to <pkcs@rsa.com>.



Page 2 ERROR! NO TEXT OF SPECIFIED STYLE IN DOCUMENT.

RFC 1422 S. Kent. RFC 1422: Privacy Enhancement for Internet Electronic Mail: Part II:
Certificate-Based Key Management. February 1993.

X.208 CCITT. Recommendation X.208: Specification of Abstract Syntax Notation One
(ASN.1). 1988.

X.209 CCITT. Recommendation X.209: Specification of Basic Encoding Rules for Abstract
Syntax Notation One (ASN.1). 1988.

X.500 CCITT. Recommendation X.500: The Directory—Overview of Concepts, Models and
Services. 1988.

X.501 CCITT. Recommendation X.501: The Directory—Models. 1988.

X.509 CCITT. Recommendation X.509: The Directory—Authentication Framework. 1988.

3. Definitions

For the purposes of this standard, the following definitions apply.

AlgorithmIdentifier: A type that identifies an algorithm (by object
identifier) and any associated parameters. This type is defined in X.509.

Attribute: A type that contains an attribute type (specified by object identifier)
and one or more attribute values. This type is defined in X.501.

ASN.1: Abstract Syntax Notation One, as defined in X.208.

BER: Basic Encoding Rules, as defined in X.209.

Certificate: A type that binds an entity's distinguished name to a public key
with a digital signature. This type is defined in X.509. This type also contains the
distinguished name of the certificate issuer (the signer), an issuer-specific serial
number, the issuer's signature algorithm identifier, and a validity period.
Appendix A gives more information.

DER: Distinguished Encoding Rules for ASN.1, as defined in X.509, Section 8.7.

Name: A type that uniquely identifies or "distinguishes" objects in a X.500
directory. This type is defined in X.501. In an X.509 certificate, the type identifies
the certificate issuer and the entity whose public key is certified.

PEM: Internet Privacy-Enhanced Mail, as defined in RFC 1422 and related
documents.



4. SYMBOLS AND ABBREVIATIONS Page 3

4. Symbols and abbreviations

No symbols or abbreviations are defined in this standard.

5. General overview

The next section specifies extended-certificate syntax. An appendix reviews the
meaning of X.509 certificates.

This standard exports one type, ExtendedCertificate.

6. Extended-certificate syntax

This section gives the syntax for extended certificates.

An extended certificate consists of three parts: "extended-certificate information,"
a signature algorithm identifier, and a digital signature on the extended-
certificate information. The extended-certificate information consists of an X.509
certificate (already signed by an issuer) and a set of attributes providing other
information about the entity whose public key is certified in the X.509 certificate.
The issuer that signs the extended certificate is the same as the one that signs the
X.509 certificate.

The process by which an extended certificate is constructed involves the
following steps:

1. An ExtendedCertificateInfo value containing an X.509
certificate and a set of attributes is constructed by a certificate
issuer.

2. The ExtendedCertificateInfo value is signed with the
certificate issuer's private key.

3. The ExtendedCertificateInfo value, a signature algorithm
identifier, and the certificate issuer's signature are collected
together into an ExtendedCertificate value, defined below.

This section is divided into two parts. The first part describes the extended-
certificate-information type ExtendedCertificateInfo, and the second part
describes the top-level type ExtendedCertificate.



Page 4 ERROR! NO TEXT OF SPECIFIED STYLE IN DOCUMENT.

Notes.

1. In applications where an extended certificate or an X.509 certificate
can be processed, the following syntax is recommended (but not
required):

ExtendedCertificateOrCertificate ::= CHOICE {
certificate Certificate, -- X.509
extendedCertificate [0] IMPLICIT ExtendedCertificate

}

The certificate alternative has the same BER encoding as an
ordinary X.509 certificate, and the values resulting from the two
alternatives can be distinguished because of the context-specific tag
0 on the extendedCertificate alternative.

2. There are at least four reasons that extended certificates are built on
top of X.509 certificates, rather than in place of them:

• changes to X.509 certificate syntax are easily followed

• an X.509 certificate can be extracted for compatibility
with other standards (e.g., Privacy-Enhanced Mail, or
X.509 itself)

• both the X.509 certificate and the extended certificate
can be verified with a single public-key operation,
since they are signed together by the same certificate
issuer

• there is little redundancy—having an extended
certificate in place of an X.509 certificate would
require that the extended certificate contain much of
the information already in the X.509 certificates, such
as issuer and subject names

6.1 ExtendedCertificateInfo

Extended-certificate information shall have ASN.1 type
ExtendedCertificateInfo:

ExtendedCertificateInfo ::= SEQUENCE {
version Version,
certificate Certificate,
attributes Attributes }



6. EXTENDED-CERTIFICATE SYNTAX Page 5

Version ::= INTEGER

Attributes ::= SET OF Attribute

The fields of type ExtendedCertificateInfo have the following meanings:

• version is the version number, for compatibility with future
revisions of this standard. It shall be 0 for this version of the
standard.

• certificate is an X.509 certificate.

• attributes is a set of attributes. These attributes are additional
information about the subject of the certificate. Some attribute types
that might be useful here are defined in PKCS #9.

6.2 ExtendedCertificate

An extended certificate shall have ASN.1 type ExtendedCertificate:

ExtendedCertificate ::= SEQUENCE {
extendedCertificateInfo ExtendedCertificateInfo,
signatureAlgorithm SignatureAlgorithmIdentifier,
signature Signature }

SignatureAlgorithmIdentifier ::= AlgorithmIdentifier

Signature ::= BIT STRING

The fields of type ExtendedCertificate have the following meanings:

• extendedCertificateInfo is the "extended-certificate
information." It is the value being signed.

• signatureAlgorithm identifies the signature algorithm (and any
associated parameters) under which the extended-certificate
information is signed. Examples include PKCS #1's
md2WithRSAEncryption and md5WithRSAEncryption.

• signature is the result of signing the extended-certificate
information with the certificate issuer's private key.

The signature process consists of two steps:

1. The value of the extendedCertificateInfo field is DER
encoded, yielding an octet string.



Page 6 ERROR! NO TEXT OF SPECIFIED STYLE IN DOCUMENT.

2. The result of step 1 is signed with the certificate issuer's private key
under the specified signature algorithm, yielding a bit string, the
signature.

Note. The syntax for ExtendedCertificate could equivalently be written
with the X.509 SIGNED macro:

ExtendedCertificate ::= SIGNED ExtendedCertificateInfo



APPENDIX A. X.509 PUBLIC-KEY CERTIFICATES Page 7

Appendix A. X.509 public-key certificates

Public-key certificates such as X.509 certificates determine the skeletal structure
of trust within a distributed public-key cryptosystem. By signing a certificate, a
certificate issuer binds together an entity's public key with the entity's name and
other information. By verifying the signature on the certificate, someone who
trusts the certificate issuer can develop trust in the entity's public key.

Because certificates are the most important part of an interoperable public-key
standard, PKCS has adopted the use of X.509 certificates. This approach
maintains compatibility with other users of the X.509 standard–in particular,
with Internet Privacy-Enhanced Mail.

This appendix describes the syntax of X.509 certificates, for reference purposes.
To be precise, it describes the modified syntax given in RFC 1422, which has
worked its way back to the 1988 X.509 standard.

An X.509 certificate consists of three parts: "certificate information," a signature
algorithm identifier, and a digital signature on the certificate information. The
certificate information consists of an entity's distinguished name, the entity's
public key, the distinguished name of the certificate issuer, an issuer-specific
serial number, a signature algorithm identifier, and a validity period.

The process by which the certificate is constructed involves the following steps:

1. A CertificateInfo value containing certificate information is
constructed by the certificate issuer.

2. The CertificateInfo value is signed with the certificate issuer's
private key.

3. The CertificateInfo value, a signature algorithm identifier,
and the certificate issuer's signature are collected together into a
Certificate value, defined below.

The following discussion is divided into two parts. The first part describes the
certificate-information type CertificateInfo, and the second part describes
the top-level type Certificate.

A.1 CertificateInfo

Certificate information has ASN.1 type CertificateInfo:

CertificateInfo ::= SEQUENCE {
version [0] Version DEFAULT v1988,



Page 8 ERROR! NO TEXT OF SPECIFIED STYLE IN DOCUMENT.

serialNumber CertificateSerialNumber,
signature AlgorithmIdentifier,
issuer Name,
validity Validity,
subject Name,
subjectPublicKeyInfo SubjectPublicKeyInfo }

Version ::= INTEGER { v1988(0) }

CertificateSerialNumber ::= INTEGER

Validity ::= SEQUENCE {
notBefore UTCTime,
notAfter UTCTime }

SubjectPublicKeyInfo ::= SEQUENCE {
algorithm AlgorithmIdentifier,
subjectPublicKey BIT STRING }

AlgorithmIdentifier ::= SEQUENCE {
algorithm OBJECT IDENTIFIER,
parameters ANY DEFINED BY ALGORITHM OPTIONAL }

The fields of type CertificateInfo have the following meanings:

• version is the version number, for compatibility with future
revisions of X.509. Its default value is v1988, to which the
Version type assigns the integer 0. The [0] tag on version  is an
explicit tag. This is the default for tags not marked EXPLICIT or
IMPLICIT in the ASN.1 module that defines the Certificate
type.

• serialNumber is the issuer-specific serial number of the
certificate. Every certificate for a particular issuer must have a
different serial number.

• signature identifies the issuer's signature algorithm (and any
associated parameters).1

• issuer is the distinguished name of the certificate issuer.

• validity is the validity period for the certificate. The validity
period specifies the points in time between which the certificate is
considered valid.

                                                

1The field name signature seems somewhat of a misnomer, and signatureAlgorithm would be more
appropriate, but this is the way X.509 does it.



APPENDIX A. X.509 PUBLIC-KEY CERTIFICATES Page 9

• subject is the distinguished name of the certificate subject (the
entity whose public key is certified).

• subjectPublicKeyInfo contains information about the public
key being certified. The information identifies the entity's public-
key algorithm (and any associated parameters); examples of public-
key algorithms include X.509's rsa and PKCS #1's
rsaEncryption. The information also includes a bit-string
representation of the entity's public key. For both public-key
algorithms just mentioned, the bit string contains the BER encoding
of a value of X.509/PKCS #1 type RSAPublicKey.

A.2 Certificate

An X.509 certificate has ASN.1 type Certificate:

Certificate ::= SEQUENCE {
certificateInfo CertificateInfo,
signatureAlgorithm AlgorithmIdentifier,
signature BIT STRING }

The fields of type Certificate have the following meanings:

• certificateInfo is the "certificate information." It is the value
being signed.

• signatureAlgorithm identifies the signature algorithm (and any
associated parameters) under which the certificate information is
signed. Examples include PKCS #1's  md2WithRSAEncryption
and md5ithRSAEncryption. The value of this field should be the
same as the value of the signature field of the certificate
information.

• signature is the result of signing the certificate information with
the  certificate issuer's private key.

The signature process consists of two steps, as in Section 6.2:

1. The value of the certificateInfo field is DER encoded,
yielding an octet string.

2. The result of step 1 is signed with the certificate issuer's private key
under the specified signature algorithm, yielding a bit string, the
signature.



Page 10 ERROR! NO TEXT OF SPECIFIED STYLE IN DOCUMENT.

Note. The syntax for Certificate is usually written with the X.509 SIGNED
macro.

Certificate ::= SIGNED SEQUENCE {
version [0] Version DEFAULT v1988,
serialNumber CertificateSerialNumber,
signature AlgorithmIdentifier,
issuer Name,
validity Validity,
subject Name,
subjectPublicKeyInfo SubjectPublicKeyInfo }

The SIGNED macro has been expanded in this discussion for simplicity.



REVISION HISTORY Page 11

Revision history

Versions 1.0–1.3

Versions 1.0–1.3 were distributed to participants in RSA Data Security, Inc.'s
Public-Key Cryptography Standards meetings in February and March 1991.

Version 1.4

Version 1.4 is part of the June 3, 1991 initial public release of PKCS. Version 1.4
was published as NIST/OSI Implementors' Workshop document SEC-SIG-91-21.

Version 1.5

Version 1.5 incorporates several editorial changes, including updates to the
references and the addition of a revision history.

Author's address

RSA Laboratories (415) 595-7703
100 Marine Parkway (415) 595-4126 (fax)
Redwood City, CA  94065  USA pkcs-editor@rsa.com


	PKCS #6: Extended-Certificate Syntax Standard
	1. Scope
	2. References
	3. Definitions
	4. Symbols and abbreviations
	5. General overview
	6. Extended-certificate syntax
	
	Notes.

	6.1 ExtendedCertificateInfo
	6.2 ExtendedCertificate

	Appendix A. X.509 public-key certificates
	A.1 CertificateInfo
	A.2 Certificate

	Revision history
	Versions 1.0–1.3
	Version 1.4
	Version 1.5

	Author's address


