time this offered adequate scalability. Unfortunately, the designers of TCP/IP could not have predicted that their protocol would eventually sustain a global network of information, commerce, and entertainment. Over twenty years ago, IP Version 4 (IPv4) offered an addressing strategy that, although scalable for a time, resulted in an inefficient allocation of addresses. The Class A and B addresses make up 75 percent of the IPv4 address space, however fewer than 17,000 organizations can be assigned a Class A or B network number. Class C network addresses are far more numerous than Class A and Class B addresses, although they account for only 12.5 percent of the possible four billion IP addresses. Unfortunately, Class C addresses are limited to 254 usable hosts. This does not meet the needs of larger organizations that cannot acquire a Class A or B address. Even if there were more Class A, B, and C addresses, too many network addresses would cause Internet routers to come to a stop under the burden of the enormous size of routing tables required to store the routes to reach each of the networks. As early as 1992, the Internet Engineering Task Force (IETF) identified the following two specific concerns: Over the past two decades, numerous extensions to IPv4 have been developed. These extensions are specifically designed to improve the efficiency with which the 32-bit address space can be used. Two of the more important of these are subnet masks and classless interdomain routing (CIDR), which are discussed in more detail in later lessons. Meanwhile, an even more extendible and scalable version of IP, IP Version 6 (IPv6), has been defined and developed. IPv6 uses 128 bits rather than the 32 bits currently used in IPv4. IPv6 uses hexadecimal numbers to represent the 128 bits. IPv6 provides 640 sextrillion addresses. This version of IP should provide enough addresses for future communication needs. Figure shows IPv4 addresses which are 32 bits long, written in decimal form, and separated by periods. IPv6 addresses are 128 bits long, written in hexadecimal form, and separated by colons. IPv6 fields are 16 bits long. To make the addresses easier to read, leading zeros can be omitted from each field. The field :0003: is written :3:. IPv6 shorthand representation of the 128 bits uses eight 16-bit numbers, shown as four hexadecimal digits. After years of planning and development, IPv6 is slowly being implemented in select networks. Eventually, IPv6 may replace IPv4 as the dominant Internet protocol. Web Links IPv4 vs. IPv6 http://www.comp.lancs.ac.uk/computing/ users/sschmid/Spie/ node5.html
Content 9.3 Obtaining an IP address 9.3.1 Obtaining an Internet address A network host needs to obtain a globally unique address in order to function on the Internet. The physical or MAC address that a host has is only locally significant, identifying the host within the local area network. Since this is a Layer 2 address, the router does not use it to forward outside the LAN. IP addresses are the most commonly used addresses for Internet communications. This protocol is a hierarchical addressing scheme that allows individual addresses to be associated together and treated as groups. These groups of addresses allow efficient transfer of data across the Internet. Network administrators use two methods to assign IP addresses. These methods are static and dynamic. Later in this lesson, static addressing and three variations of dynamic addressing will be covered. Regardless of which addressing scheme is chosen, no two interfaces can have the same IP address. Two hosts that have the same IP address could create a conflict that might cause both of the hosts involved not to operate properly. As shown in Figure , the hosts have a physical address by having a network interface card that allows connection to the physical medium. Web Links Getting an Internet Name and Address http://iishelp.web.cern.ch/IISHelp/ iis/htm/core/ iinmadd.htm
Content 9.3 Obtaining an IP address 9.3.2 Static assignment of an IP address Static assignment works best on small, infrequently changing networks. The system administrator manually assigns and tracks IP addresses for each computer, printer, or server on the intranet. Good recordkeeping is critical to prevent problems which occur with duplicate IP addresses. This is possible only when there are a small number of devices to track. Servers should be assigned a static IP address so workstations and other devices will always know how to access needed services. Consider how difficult it would be to phone a business that changed its phone number every day. Other devices that should be assigned static IP addresses are network printers, application servers, and routers. Web Links IP Addresses http://www.microsoft.com/windows2000/
en/server/help/default.asp?url=/windows2000/
en/server/help/ip_addresses.htm
Content 9.3 Obtaining an IP address 9.3.3 RARP IP address assignment Reverse Address Resolution Protocol (RARP) associates a known MAC addresses with an IP addresses. This association allows network devices to encapsulate data before sending the data out on the network. A network device, such as a diskless workstation, might know its MAC address but not its IP address. RARP allows the device to make a request to learn its IP address. Devices using RARP require that a RARP server be present on the network to answer RARP requests. Consider an example where a source device wants to send data to another device. In this example, the source device knows its own MAC address but is unable to locate its own IP address in the ARP table. The source device must include both its MAC address and IP address in order for the destination device to retrieve data, pass it to higher layers of the OSI model, and respond to the originating device. Therefore, the source initiates a process called a RARP request. This request helps the source device detect its own IP address. RARP requests are broadcast onto the LAN and are responded to by the RARP server which is usually a router. RARP uses the same packet format as ARP. However, in a RARP request, the MAC headers and "operation code" are different from an ARP request. The RARP packet format contains places for MAC addresses of both the destination and source devices. The source IP address field is empty. The broadcast goes to all devices on the network. Therefore, the destination MAC address will be set to all binary 1s. Workstations running RARP have codes in ROM that direct them to start the RARP process. A step-by-step layout of the RARP process is illustrated in Figures through . Web Links Reverse Address Resolution Protocol http://searchnetworking.techtarget.com/ sDefinition/0,,sid7_ gci214257,00.html
Content 9.3 Obtaining an IP address 9.3.4 BOOTP IP address assignment The bootstrap protocol (BOOTP) operates in a client-server environment and only requires a single packet exchange to obtain IP information. However, unlike RARP, BOOTP packets can include the IP address, as well as the address of a router, the address of a server, and vendor-specific information. One problem with BOOTP, however, is that it was not designed to provide dynamic address assignment. With BOOTP, a network administrator creates a configuration file that specifies the parameters for each device. The administrator must add hosts and maintain the BOOTP database. Even though the addresses are dynamically assigned, there is still a one to one relationship between the number of IP addresses and the number of hosts. This means that for every