Content Overview Shared Ethernet works extremely well under ideal conditions. When the number of devices trying to access the network is low, the number of collisions stays well within acceptable limits. However, when the number of users on the network increases, the increased number of collisions can cause intolerably bad performance. Bridging was developed to help ease performance problems that arose from increased collisions. Switching evolved from bridging to become the key technology in modern Ethernet LANs. Collisions and broadcasts are expected events in modern networking. They are, in fact, engineered into the design of Ethernet and higher layer technologies. However, when collisions and broadcasts occur in numbers that are above the optimum, network performance suffers. The concept of collision domains and broadcast domains is concerned with the ways that networks can be designed to limit the negative effects of collisions and broadcasts. This module explores the effects of collisions and broadcasts on network traffic and then describes how bridges and routers are used to segment networks for improved performance. Students completing this module should be able to:
Content 8.1 Ethernet Switching 8.1.1 Layer 2 bridging As more nodes are added to an Ethernet physical segment, contention for the media increases. Ethernet is a shared media, which means only one node can transmit data at a time. The addition of more nodes increases the demands on the available bandwidth and places additional loads on the media. By increasing the number of nodes on a single segment, the probability of collisions increases, resulting in more retransmissions. A solution to the problem is to break the large segment into parts and separate it into isolated collision domains. To accomplish this a bridge keeps a table of MAC addresses and the associated ports. The bridge then forwards or discards frames based on the table entries. The following steps illustrate the operation of a bridge: These are the steps that a bridge uses to forward and discard frames that are received on any of its ports.
Web Links Bridging Basics http://www.cisco.com/univercd/cc/td/doc/cisintwk/ ito_doc/bridging.htm
Content 8.1 Ethernet Switching 8.1.2 Layer 2 switching Generally, a bridge has only two ports and divides a collision domain into two parts. All decisions made by a bridge are based on MAC or Layer 2 addressing and do not affect the logical or Layer 3 addressing. Thus, a bridge will divide a collision domain but has no effect on a logical or broadcast domain. No matter how many bridges are in a network, unless there is a device such as a router that works on Layer 3 addressing, the entire network will share the same logical broadcast address space. A bridge will create more collision domains but will not add broadcast domains. A switch is essentially a fast, multi-port bridge, which can contain dozens of ports. Rather than creating two collision domains, each port creates its own collision domain. In a network of twenty nodes, twenty collision domains exist if each node is plugged into its own switch port. If an uplink port is included, one switch creates twenty-one single-node collision domains. A switch dynamically builds and maintains a Content-Addressable Memory (CAM) table, holding all of the necessary MAC information for each port. Web Links Bridging and Switching Basics http://www.ctr.columbia.edu/~dimitri/teaching/ E6761/Lecture7/ switching_bridging.pdf
Content 8.1 Ethernet Switching 8.1.3 Switch operation A switch is simply a bridge with many ports. When only one node is connected to a switch port, the collision domain on the shared media contains only two nodes. The two nodes in this small segment, or collision domain, consist of the switch port and the host connected to it. These small physical segments are called microsegments. Another capability emerges when only two nodes are connected. In a network that uses twisted-pair cabling, one pair is used to carry the transmitted signal from one node to the other node. A separate pair is used for the return or received signal. It is possible for signals to pass through both pairs simultaneously. The capability of communication in both directions at once is known as full duplex. Most switches are capable of supporting full duplex, as