extraordinary growth of the Web is the ease with which it allows access to information. A Web browser is a client-server application, which means that it requires both a client and a server component in order to function. A Web browser presents data in multimedia formats on Web pages that use text, graphics, sound, and video. The Web pages are created with a format language called Hypertext Markup Language (HTML). HTML directs a Web browser on a particular Web page to produce the appearance of the page in a specific manner. In addition, HTML specifies locations for the placement of text, files, and objects that are to be transferred from the Web server to the Web browser. Hyperlinks make the World Wide Web easy to navigate. A hyperlink is an object, word, phrase, or picture, on a Web page. When that hyperlink is clicked, it directs the browser to a new Web page. The Web page contains, often hidden within its HTML description, an address location known as a Uniform Resource Locator (URL). In the URL http://www.cisco.com/edu/, the "http://" tells the browser which protocol to use. The second part, "www", is the hostname or name of a specific machine with a specific IP address. The last part, /education identifies the specific folder location on the server that contains the default web page. A Web browser usually opens to a starting or "home" page. The URL of the home page has already been stored in the configuration area of the Web browser and can be changed at any time. From the starting page, click on one of the Web page hyperlinks, or type a URL in the address bar of the browser. The Web browser examines the protocol to determine if it needs to open another program, and then determines the IP address of the Web server using DNS. Then the transport layer, network layer, data link layer, and physical layer work together to initiate a session with the Web server. The data that is transferred to the HTTP server contains the folder name of the Web page location. The data can also contain a specific file name for an HTML page. If no name is given, then the default name as specified in the configuration on the server is used. The server responds to the request by sending to the Web client all of the text, audio, video, and graphic files specified in the HTML instructions. The client browser reassembles all the files to create a view of the Web page, and then terminates the session. If another page that is located on the same or a different server is clicked, the whole process begins again. Lab Activity Lab Exercise: Protocol Inspector, TCP and HTTP This lab is to use Protocol Inspector, or equivalent software, to view dynamic Transmission Control Protocol (TCP) operations. The operation that will be specifically looked at is HTTP during web page access. Web Links Hypertext Transfer Protocol http://searchnetworking.techtarget.com/ search/1,293876,sid7,00.html? query=Hypertext+Transfer+Protocol&ctype= ALL
Content 11.2 The Application Layer 11.2.5 SMTP Email servers communicate with each other using the Simple Mail Transfer Protocol (SMTP) to send and receive mail. The SMTP protocol transports email messages in ASCII format using TCP. When a mail server receives a message destined for a local client, it stores that message and waits for the client to collect the mail. There are several ways for mail clients to collect their mail. They can use programs that access the mail server files directly or collect their mail using one of many network protocols. The most popular mail client protocols are POP3 and IMAP4, which both use TCP to transport data. Even though mail clients use these special protocols to collect mail, they almost always use SMTP to send mail. Since two different protocols, and possibly two different servers, are used to send and receive mail, it is possible that mail clients can perform one task and not the other. Therefore, it is usually a good idea to troubleshoot e-mail sending problems separately from e-mail receiving problems. When checking the configuration of a mail client, verify that the SMTP and POP or IMAP settings are correctly configured. A good way to test if a mail server is reachable is to Telnet to the SMTP port (25) or to the POP3 port (110). The following command format is used at the Windows command line to test the ability to reach the SMTP service on the mail server at IP address 192.168.10.5: C:\>telnet 192.168.10.5 25 The SMTP protocol does not offer much in the way of security and does not require any authentication. Administrators often do not allow hosts that are not part of their network to use their SMTP server to send or relay mail. This is to prevent unauthorized users from using their servers as mail relays. Web Links SMTP http://searchwebservices.techtarget.com/ sDefinition/0,,sid26_ gci214219,00.html
Content 11.2 The Application Layer 11.2.6 SNMP The Simple Network Management Protocol (SNMP) is an application layer protocol that facilitates the exchange of management information between network devices. SNMP enables network administrators to manage network performance, find and solve network problems, and plan for network growth. SNMP uses UDP as its transport layer protocol. An SNMP managed network consists of the following three key components: Web Links Simple Network Management Protocol http://searchnetworking.techtarget.com/ sDefinition/ 0,,sid7_ gci214221,00.html
Content 11.2 The Application Layer 11.2.7 Telnet Telnet client software provides the ability to login to a remote Internet host that is running a Telnet server application and then to execute commands from the command line. A Telnet client is referred to as a local host. Telnet server, which uses special software called a daemon, is referred to as a remote host. To make a connection from a Telnet client, the connection option must be selected. A dialog box typically prompts for a host name and terminal type. The host name is the IP address or DNS name of the remote computer. The terminal type describes the type of terminal emulation that the Telnet client should perform. The Telnet operation uses none of the processing power from the transmitting computer. Instead, it transmits the keystrokes to the remote host and sends the resulting screen output back to the local monitor. All processing and storage take place on the remote computer. Telnet works at the application layer of the TCP/IP model. Therefore, Telnet works at the top three layers of the OSI