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1. Abstract 
 
 
When two or more independent, non-synchronized Bluetooth piconets overlap, a 
scatternet is formed in a seamless, ad-hoc fashion allowing inter-piconet 
communication. While the Bluetooth specification stipulates the use of time-division 
multiplexing (TDM) for enabling concurrent participation by a device in multiple piconets, 
it leaves the choice of actual mechanisms and algorithms for achieving this functionality 
open to developers. Some implementation proposals suggest that the host stack handle 
the complex inter-piconet communication of a scatternet. On the surface this may 
appear to be a simple and clean solution, but what dangers, if any, does this entail?  
 
The purpose of this white paper is to illustrate the risks associated with solutions that 
pass scatternet communication operation on to the host stack. By doing so, this paper 
further intends to show why scatternet functionality is best implemented in the Bluetooth 
Control layers only, below the HCI interface. 
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2. Introduction 
 
 
As with piconets, where multiple Bluetooth devices are able to connect with each other 
in an ad-hoc manner, so too can multiple piconets join together to form a larger network 
known as a scatternet. Bluetooth devices must have point-to-multipoint capability in 
order to engage in scatternet communication, and several piconets can be connected to 
each other through one scatternet. Furthermore, a single Bluetooth device may 
participate as a slave in several piconets, but can only be a master in one piconet. 
 
 

 
 

Figure 2.1: Example Bluetooth topology 
 
 
Figure 2.1 shows an example of a scatternet consisting of three separate piconets, P1, 
P2 and P3. Each piconet is controlled by a separate master (devices A, C and E) and 
contains one or more slaves. Note how device C, which connects P1 and P2, is a slave in 
one piconet (P1) and a master in the other (P2). 

 
Giving rise to new complications 
Realizing true scatternet functionality introduces complications concerning 
interoperability and timing that in fact can jeopardize a product’s ability to remain fully 
compatible with the Bluetooth standard. In the following chapters we will examine these 
issues as illustrated through a common user scenario, as well as question the viability of 
relying on the host stack rather than the baseband for dealing with them.  
 
The aim of this analysis is to demonstrate that solutions where scatternet 
communication operation is passed on to the host stack may be likened to icebergs — 
seemingly harmless on the surface, but indeed quite treacherous due to perils hidden in 
the depths below. The only way to navigate safely through these dangers is to avoid 
them altogether, i.e. by steering clear of solutions that support scatternet by allowing the 
host stack to control scatternet communication.
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3. Scatternet user case 
 
 
An example user case demonstrating the need for a clean, high quality implementation 
of scatternet is shown in Figure 3.1. Here we see a user synchronizing calendars 
between a phone and a notebook PC while at the same time carrying on a phone 
conversation using a Bluetooth headset. In this scenario the mobile phone functions as 
both a master (towards the headset) and a slave (towards the computer). In order for this 
to work, regardless of data speed, an effective scatternet implementation is required. 
 
 

 
 

Figure 3.1: Example scatternet user case 
 

 
 
Complex scenario 
In the user case example above, the notebook PC could alternatively be a PDA. In either 
case, this is a complex situation where two applications that are intended for two 
different logical links are running concurrently. One involves data transmission and the 
other a voice link. Here we are immediately confronted with some difficult timing issues 
that arise because, in addition to the critical timing of the SCO-link where the phone is a 
master to the headset, there is also an ACL-link where the phone is a slave to the PC or 
PDA.  
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Limitations on phone as slave 
To evaluate this user case, one must first look at what transpires when the mobile phone 
operates in active mode and sniff mode respectively. At first glance, the most logical 
choice for the phone to operate in while performing calendar synchronization with the 
computer is active mode. This means that there is an active link over which data is 
exchanged during scheduled periods of time.  
 

 
 

Figure 3.2: Packets and timing between scatternet connections in active mode 
 
 
 
As illustrated in Figure 3.2, the voice link between the mobile phone and the headset is 
an SCO connection, meaning that the scheduled packets between the mobile phone 
and the headset are fixed in time. Due to potential clock drift overlap between the two 
master clocks, a phenomenon explained in the next section, the mobile phone only has 
time to communicate with the computer when there are at least two open slots between 
the phone and the headset.   
 
When the phone (slave) attempts calendar synchronization in active mode, it must wait 
for acknowledgement from the computer (master) confirming receipt of a sent data 
packet (packet A). When acknowledgement is not received, the phone gets caught up in 
a loop of resending the same packet during every available communication window 
between the slave and the master. 
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Figure 3.3: Packets and timing between scatternet connections in sniff mode 
 
 
 
In sniff mode, shown in Figure 3.3, the computer sends out data while the phone 
performs regular checks to see whether or not there is anything being sent to it. When 
the answer to this question is yes, acknowledgement is duly received and the exchange 
of data (packets A, B, C, etc.) takes place.  
 
Because of the above-described restrictions that are placed on the phone when 
operating as a slave in active mode, it is clear that calendar synchronization between the 
mobile phone and the computer can only be handled through implementation of 
scatternet using sniff mode.  
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Adjusting for clock drift 
“Since the clocks of two masters of different piconets are not synchronized, a slave 
device participating in two piconets shall maintain two offsets that, added to its own 
native clock, create the two master clocks. Since the two master clocks drift 
independently, the slave must regularly update the offsets in order to keep 
synchronization to both masters.”1 
 
 

 
 

Figure 3.4: Clock drift overlap between the two master clocks 
 
 
By observing snapshots of our user case scatternet communication taken at three 
different times (Periods A, B and C), we can see in Figure 3.4 how clock drift overlap 
between the phone call and calendar synchronization occurs over a period of time. In 
order for the phone and headset to maintain the necessary timing demands for a good 
audio link over Bluetooth, clock drift of the calendar synchronization link must not be 
allowed to interfere with the fixed and scheduled SCO-link slots as it does in Period C.  
 
As a slave to the computer, the mobile phone must immediately adjust for the clock drift 
in the computer. In order for the phone to be able to do this, its host stack must pause 
the SCO-link with the headset to perform un-sniff followed by a sniff function towards 
the computer. Thereafter, the SCO-link can be re-established with the headset. 
Alternatively, the phone could renegotiate the link with the headset rather than with the 
computer, though in the either case this activity will be heard as a slight ‘click’ in the 
headset every time that it occurs. 
 
The choice of which link to prioritize and which to renegotiate could actually differ from 
one scatternet implementation to another, but the important thing to remember here is 
that conflicts resulting from clock drift overlap are unavoidable. In a real user situation 
this type of pause-and-renegotiate activity is likely to occur fairly frequently, perhaps as 
often as two to three times per minute, which makes this a relatively challenging issue 
when attempting to pass scatternet communication operation to the host stack.  

                                                 
1 Bluetooth Specification 1.2, Core System Package: Controller Volume, Baseband Specification, Chapter 8.6.6.1 Inter-Piconet 
Communications 
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4. Interoperability issues 
 
 
The complexity of the user scenario introduced in the previous chapter stems in part 
from a primary issue with scatternet communication, i.e. that there are more than two 
master devices involved in the inter-piconet communication relationships. As described 
above, this means that there are two independent piconet clocks with different clock 
drifts, causing the piconets to overlap.  Specifically, this problem becomes apparent 
because the host stack may know the sniff interval, but it does not know the sniff offset, 
and thus cannot know when to adjust for sniff window overlaps between the two master 
clocks.   
 
The baseband, on the other hand, is fully aware of exactly when the two master clocks 
overlap. This is because all scatternet scheduling is handled below the HCI level by 
various components of the baseband, something that is discussed in more detail in the 
next chapter. 
 
Possible work-around 
In theory, there is a simple work-around to the problem of the host stack not having 
enough information to be able to perform scatternet operations. All that is required is to 
implement a number of manufacturer specific HCI commands that would enable the 
host stack to retrieve necessary timing information from the baseband controller. 
Indeed, it is this possibility that makes scatternet implementations via the host stack so 
tempting. 
 
In practice, however, this is may prove to be more difficult than believed. Retrieving the 
necessary information is one matter, but now even the timing of the communication 
between the host stack and baseband comes into question. As we are talking about 
SCO links, the host stack scatternet implementation would have to be very fast. In fact, 
every time clock drift overlap occurs the host stack only has approximately 3-4 ms to 
receive the information over the HCI and to make the necessary adjustments. Anything 
longer than that would result in a much more noticeable disturbance in the voice link 
than just a slight click. To accomplish this, even the physical HCI transport between the 
host stack and the baseband would therefore also have to be exceptionally fast.  
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Interoperability breakdown   
The greatest risk when passing the scatternet communication operation to the host 
stack, however, is the inherent breakdown of interoperability that this entails. 
Interoperability is, of course, one of the cornerstones of the Bluetooth Specification. and 
it is held in the highest regard by the Bluetooth SIG:  
 
“The Bluetooth specification enables inter-operability between independent Bluetooth 
systems by defining the protocol messages exchanged between equivalent layers, and 
also interoperability between independent Bluetooth sub-systems by defining a common 
interface between Bluetooth controllers and Bluetooth hosts.” 2 
 
By design, the Bluetooth Specification permits the seamless use of a Bluetooth host 
stack from one manufacturer together with a Bluetooth baseband from another, without 
having to worry about interoperability. The baseband and the host stack are two of the 
sub-systems referred to in the Bluetooth Specification.  
 
With the work-around describe above, interoperability between these two independent 
sub-systems is suddenly put at risk. Introducing special commands from the host stack 
towards the baseband would lockout the sub-system interoperability and prevent the 
use of independent sub-systems. In short, the baseband and host stack would need to 
be delivered together. This would be the only way to ensure that both sides use and 
understand the same manufacturer specific HCI commands needed to get important 
clock drift information up into the host stack so that a scatternet operation can be 
achieved. 
 
Taking this somewhat easier road to scatternet via the higher levels may seem enticing 
on the surface, but it would in effect completely compromise sub-system interoperability 
by making the baseband and host stack dependent upon each other.  

                                                 
2 Bluetooth Specification 1.2, Architecture & Terminology Overview, Chapter 2 Core System Architecture 
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5. Architectural considerations 
 
 
Sub-system interoperability is unquestionably a major consideration when deciding 
upon an approach to a scatternet implementation, as is the overall intention of the 
Bluetooth Specification. With the latest release of the specification, Bluetooth 1.2, the 
Bluetooth SIG has made one of its most important contributions in the way of clarity. As 
a result of the Bluetooth SIG’s efforts, the specification has now reached a very stable 
and clear status.  
 
Among other improvements, the Bluetooth 1.2 Specification features an extremely well 
described architecture overview, with excellent core system architecture descriptions 
that explain the intentions and purposes of the various architectural blocks. The 
following excerpts from the specification illustrate these intentions as well as the clarity 
with which the Bluetooth SIG has addressed key elements of the core system 
architecture: 
 
  
Device manager 
“The device manager is the functional block in the baseband [and] is responsible for all 
operation of the Bluetooth system that is not directly related to data transport, such as 
inquiring for the presence of other nearby Bluetooth devices, connecting to other 
Bluetooth devices, or making the local Bluetooth device discoverable or connectable by 
other devices.”3 
 
 
Link Manager 
“The link manager is responsible for the creation, modification and release of logical 
links, as well as the update of parameters related to physical links between devices. The 
LM protocol allows the creation of new logical links and logical transports between 
devices when required.”4 
 
 
Baseband Resource Manager 
“The baseband resource manager is responsible for all access to the radio medium. It 
has two main functions: a scheduler that grants time on the physical channels and to 
negotiate access contacts. The access contact and scheduling function must take 
account of any behavior that requires use of the Bluetooth radio. In some cases the 
scheduling of a logical link results in changing to a different physical channel from the 
one that was previously used. This may be due to involvement in scatternet. When 
physical channels are not time slot aligned, then the resource manager also accounts for 
the realignment time between slots on the original physical channel and slots on the new 
physical channel.”5 
 
 

                                                 
3 Bluetooth Specification 1.2, Architecture & Terminology Overview, Chapter 2.1.3 Device Manager 
4 Bluetooth Specification 1.2, Architecture & Terminology Overview, Chapter 2.1.4 Link Manager 
5 Bluetooth Specification 1.2, Architecture & Terminology Overview, Chapter 2.1.5 Baseband Resource Manager 
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Clear intentions   
As described above, the Device Manager of the baseband is responsible for inquiring 
after and connecting with other Bluetooth devices within the network. It is also 
responsible for handling multiple applications and must make decisions that directly 
affect the behavior of these applications. Therefore, in order to fulfill its tasks, it is 
imperative that the Device Manager is fully aware of the existence of a scatternet. 
 
The Baseband Resource Manager, which makes sure that the radio communicates with 
only one entity at a time, together with the Link Manager, are both involved in various 
scheduling tasks between the different piconets. For this reason both of these must 
work very closely in unison.  
 
Clearly the descriptions provided in the specification imply that scatternet is handled at 
the most fundamental level, with these blocks carrying much of the responsibility. In 
Chapter 3 we saw how the mobile phone in our user case needed to adjust for clock 
drift due to the overlap that can occur over time. Naturally, this requires an awareness of 
clock drift that is only available at the lower levels, in the Bluetooth baseband. And with 
the type of descriptions like those from the Architecture & Terminology Overview 
included above, the Bluetooth Specification 1.2 describes how functionality for 
controlling links is intended for the baseband, while the host software stack is better 
suited for controlling the flow of applications and their usage of the links. To move link 
control away from the baseband and up into the host stack would only serve to blur the 
intended division of responsibility. 
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6. Conclusion 
 
 
As we have shown through our analysis, interoperability between independent Bluetooth 
sub-systems simply cannot be upheld when control of scatternet communication 
operation is handed over to the higher levels, i.e. the host stack. With such solutions, all 
Bluetooth entities immediately become dependent upon one another. This in turn 
defeats one of the primary goals of Bluetooth — to facilitate seamless, ad hoc wireless 
networks between Bluetooth devices originating from any manufacturer.  
 
It is also clear that the authors of the Bluetooth 1.2 Specification are intent on making 
sure that developers focus on maintaining good link quality even in situations like the 
example user case above. Scenarios like these, where users expect multiple, concurrent 
applications not only to function but to function well, require close-knit cooperation at 
the most fundamental levels. This is evident through the clean-cut descriptions and 
explanations of the core system architecture formulated by the Bluetooth SIG.  
 
The quality of the scatternet links is directly related to how well the scatternet 
implementation is able to deal with critical timing issues such as clock drift overlap. In 
this regard, the baseband, with its built-in timing and scheduling capabilities, holds a 
significant advantage over the host stack and thus provides higher link quality. 
 
In light of these considerations, the only way to ensure that scatternet implementations 
remain true to the Bluetooth ideal is by implementing them below the HCI level, in the 
core Bluetooth control layers.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The Bluetooth wordmark and logos are trademarks owned by the Bluetooth SIG, Inc., and are used 
by Ericsson Technology Licensing under license. 


