

Scatternet - Part 1
Baseband vs. Host Stack Implementation

White paper

Ericsson Technology Licensing
June 2004

Page 2 (13)

Contents

1. ..Abstract 3

2. .. Introduction 4

3. Scatternet user case 5

4. Interoperability issues 9

5.Architectural considerations 11

6. ... Conclusion 13

Page 3 (13)

1. Abstract

When two or more independent, non-synchronized Bluetooth piconets overlap, a
scatternet is formed in a seamless, ad-hoc fashion allowing inter-piconet
communication. While the Bluetooth specification stipulates the use of time-division
multiplexing (TDM) for enabling concurrent participation by a device in multiple piconets,
it leaves the choice of actual mechanisms and algorithms for achieving this functionality
open to developers. Some implementation proposals suggest that the host stack handle
the complex inter-piconet communication of a scatternet. On the surface this may
appear to be a simple and clean solution, but what dangers, if any, does this entail?

The purpose of this white paper is to illustrate the risks associated with solutions that
pass scatternet communication operation on to the host stack. By doing so, this paper
further intends to show why scatternet functionality is best implemented in the Bluetooth
Control layers only, below the HCI interface.

Page 4 (13)

2. Introduction

As with piconets, where multiple Bluetooth devices are able to connect with each other
in an ad-hoc manner, so too can multiple piconets join together to form a larger network
known as a scatternet. Bluetooth devices must have point-to-multipoint capability in
order to engage in scatternet communication, and several piconets can be connected to
each other through one scatternet. Furthermore, a single Bluetooth device may
participate as a slave in several piconets, but can only be a master in one piconet.

Figure 2.1: Example Bluetooth topology

Figure 2.1 shows an example of a scatternet consisting of three separate piconets, P1,
P2 and P3. Each piconet is controlled by a separate master (devices A, C and E) and
contains one or more slaves. Note how device C, which connects P1 and P2, is a slave in
one piconet (P1) and a master in the other (P2).

Giving rise to new complications
Realizing true scatternet functionality introduces complications concerning
interoperability and timing that in fact can jeopardize a product’s ability to remain fully
compatible with the Bluetooth standard. In the following chapters we will examine these
issues as illustrated through a common user scenario, as well as question the viability of
relying on the host stack rather than the baseband for dealing with them.

The aim of this analysis is to demonstrate that solutions where scatternet
communication operation is passed on to the host stack may be likened to icebergs —
seemingly harmless on the surface, but indeed quite treacherous due to perils hidden in
the depths below. The only way to navigate safely through these dangers is to avoid
them altogether, i.e. by steering clear of solutions that support scatternet by allowing the
host stack to control scatternet communication.

Page 5 (13)

3. Scatternet user case

An example user case demonstrating the need for a clean, high quality implementation
of scatternet is shown in Figure 3.1. Here we see a user synchronizing calendars
between a phone and a notebook PC while at the same time carrying on a phone
conversation using a Bluetooth headset. In this scenario the mobile phone functions as
both a master (towards the headset) and a slave (towards the computer). In order for this
to work, regardless of data speed, an effective scatternet implementation is required.

Figure 3.1: Example scatternet user case

Complex scenario
In the user case example above, the notebook PC could alternatively be a PDA. In either
case, this is a complex situation where two applications that are intended for two
different logical links are running concurrently. One involves data transmission and the
other a voice link. Here we are immediately confronted with some difficult timing issues
that arise because, in addition to the critical timing of the SCO-link where the phone is a
master to the headset, there is also an ACL-link where the phone is a slave to the PC or
PDA.

Page 6 (13)

Limitations on phone as slave
To evaluate this user case, one must first look at what transpires when the mobile phone
operates in active mode and sniff mode respectively. At first glance, the most logical
choice for the phone to operate in while performing calendar synchronization with the
computer is active mode. This means that there is an active link over which data is
exchanged during scheduled periods of time.

Figure 3.2: Packets and timing between scatternet connections in active mode

As illustrated in Figure 3.2, the voice link between the mobile phone and the headset is
an SCO connection, meaning that the scheduled packets between the mobile phone
and the headset are fixed in time. Due to potential clock drift overlap between the two
master clocks, a phenomenon explained in the next section, the mobile phone only has
time to communicate with the computer when there are at least two open slots between
the phone and the headset.

When the phone (slave) attempts calendar synchronization in active mode, it must wait
for acknowledgement from the computer (master) confirming receipt of a sent data
packet (packet A). When acknowledgement is not received, the phone gets caught up in
a loop of resending the same packet during every available communication window
between the slave and the master.

Page 7 (13)

Figure 3.3: Packets and timing between scatternet connections in sniff mode

In sniff mode, shown in Figure 3.3, the computer sends out data while the phone
performs regular checks to see whether or not there is anything being sent to it. When
the answer to this question is yes, acknowledgement is duly received and the exchange
of data (packets A, B, C, etc.) takes place.

Because of the above-described restrictions that are placed on the phone when
operating as a slave in active mode, it is clear that calendar synchronization between the
mobile phone and the computer can only be handled through implementation of
scatternet using sniff mode.

Page 8 (13)

Adjusting for clock drift
“Since the clocks of two masters of different piconets are not synchronized, a slave
device participating in two piconets shall maintain two offsets that, added to its own
native clock, create the two master clocks. Since the two master clocks drift
independently, the slave must regularly update the offsets in order to keep
synchronization to both masters.”1

Figure 3.4: Clock drift overlap between the two master clocks

By observing snapshots of our user case scatternet communication taken at three
different times (Periods A, B and C), we can see in Figure 3.4 how clock drift overlap
between the phone call and calendar synchronization occurs over a period of time. In
order for the phone and headset to maintain the necessary timing demands for a good
audio link over Bluetooth, clock drift of the calendar synchronization link must not be
allowed to interfere with the fixed and scheduled SCO-link slots as it does in Period C.

As a slave to the computer, the mobile phone must immediately adjust for the clock drift
in the computer. In order for the phone to be able to do this, its host stack must pause
the SCO-link with the headset to perform un-sniff followed by a sniff function towards
the computer. Thereafter, the SCO-link can be re-established with the headset.
Alternatively, the phone could renegotiate the link with the headset rather than with the
computer, though in the either case this activity will be heard as a slight ‘click’ in the
headset every time that it occurs.

The choice of which link to prioritize and which to renegotiate could actually differ from
one scatternet implementation to another, but the important thing to remember here is
that conflicts resulting from clock drift overlap are unavoidable. In a real user situation
this type of pause-and-renegotiate activity is likely to occur fairly frequently, perhaps as
often as two to three times per minute, which makes this a relatively challenging issue
when attempting to pass scatternet communication operation to the host stack.

1 Bluetooth Specification 1.2, Core System Package: Controller Volume, Baseband Specification, Chapter 8.6.6.1 Inter-Piconet
Communications

Page 9 (13)

4. Interoperability issues

The complexity of the user scenario introduced in the previous chapter stems in part
from a primary issue with scatternet communication, i.e. that there are more than two
master devices involved in the inter-piconet communication relationships. As described
above, this means that there are two independent piconet clocks with different clock
drifts, causing the piconets to overlap. Specifically, this problem becomes apparent
because the host stack may know the sniff interval, but it does not know the sniff offset,
and thus cannot know when to adjust for sniff window overlaps between the two master
clocks.

The baseband, on the other hand, is fully aware of exactly when the two master clocks
overlap. This is because all scatternet scheduling is handled below the HCI level by
various components of the baseband, something that is discussed in more detail in the
next chapter.

Possible work-around
In theory, there is a simple work-around to the problem of the host stack not having
enough information to be able to perform scatternet operations. All that is required is to
implement a number of manufacturer specific HCI commands that would enable the
host stack to retrieve necessary timing information from the baseband controller.
Indeed, it is this possibility that makes scatternet implementations via the host stack so
tempting.

In practice, however, this is may prove to be more difficult than believed. Retrieving the
necessary information is one matter, but now even the timing of the communication
between the host stack and baseband comes into question. As we are talking about
SCO links, the host stack scatternet implementation would have to be very fast. In fact,
every time clock drift overlap occurs the host stack only has approximately 3-4 ms to
receive the information over the HCI and to make the necessary adjustments. Anything
longer than that would result in a much more noticeable disturbance in the voice link
than just a slight click. To accomplish this, even the physical HCI transport between the
host stack and the baseband would therefore also have to be exceptionally fast.

Page 10 (13)

Interoperability breakdown
The greatest risk when passing the scatternet communication operation to the host
stack, however, is the inherent breakdown of interoperability that this entails.
Interoperability is, of course, one of the cornerstones of the Bluetooth Specification. and
it is held in the highest regard by the Bluetooth SIG:

“The Bluetooth specification enables inter-operability between independent Bluetooth
systems by defining the protocol messages exchanged between equivalent layers, and
also interoperability between independent Bluetooth sub-systems by defining a common
interface between Bluetooth controllers and Bluetooth hosts.” 2

By design, the Bluetooth Specification permits the seamless use of a Bluetooth host
stack from one manufacturer together with a Bluetooth baseband from another, without
having to worry about interoperability. The baseband and the host stack are two of the
sub-systems referred to in the Bluetooth Specification.

With the work-around describe above, interoperability between these two independent
sub-systems is suddenly put at risk. Introducing special commands from the host stack
towards the baseband would lockout the sub-system interoperability and prevent the
use of independent sub-systems. In short, the baseband and host stack would need to
be delivered together. This would be the only way to ensure that both sides use and
understand the same manufacturer specific HCI commands needed to get important
clock drift information up into the host stack so that a scatternet operation can be
achieved.

Taking this somewhat easier road to scatternet via the higher levels may seem enticing
on the surface, but it would in effect completely compromise sub-system interoperability
by making the baseband and host stack dependent upon each other.

2 Bluetooth Specification 1.2, Architecture & Terminology Overview, Chapter 2 Core System Architecture

Page 11 (13)

5. Architectural considerations

Sub-system interoperability is unquestionably a major consideration when deciding
upon an approach to a scatternet implementation, as is the overall intention of the
Bluetooth Specification. With the latest release of the specification, Bluetooth 1.2, the
Bluetooth SIG has made one of its most important contributions in the way of clarity. As
a result of the Bluetooth SIG’s efforts, the specification has now reached a very stable
and clear status.

Among other improvements, the Bluetooth 1.2 Specification features an extremely well
described architecture overview, with excellent core system architecture descriptions
that explain the intentions and purposes of the various architectural blocks. The
following excerpts from the specification illustrate these intentions as well as the clarity
with which the Bluetooth SIG has addressed key elements of the core system
architecture:

Device manager
“The device manager is the functional block in the baseband [and] is responsible for all
operation of the Bluetooth system that is not directly related to data transport, such as
inquiring for the presence of other nearby Bluetooth devices, connecting to other
Bluetooth devices, or making the local Bluetooth device discoverable or connectable by
other devices.”3

Link Manager
“The link manager is responsible for the creation, modification and release of logical
links, as well as the update of parameters related to physical links between devices. The
LM protocol allows the creation of new logical links and logical transports between
devices when required.”4

Baseband Resource Manager
“The baseband resource manager is responsible for all access to the radio medium. It
has two main functions: a scheduler that grants time on the physical channels and to
negotiate access contacts. The access contact and scheduling function must take
account of any behavior that requires use of the Bluetooth radio. In some cases the
scheduling of a logical link results in changing to a different physical channel from the
one that was previously used. This may be due to involvement in scatternet. When
physical channels are not time slot aligned, then the resource manager also accounts for
the realignment time between slots on the original physical channel and slots on the new
physical channel.”5

3 Bluetooth Specification 1.2, Architecture & Terminology Overview, Chapter 2.1.3 Device Manager
4 Bluetooth Specification 1.2, Architecture & Terminology Overview, Chapter 2.1.4 Link Manager
5 Bluetooth Specification 1.2, Architecture & Terminology Overview, Chapter 2.1.5 Baseband Resource Manager

Page 12 (13)

Clear intentions
As described above, the Device Manager of the baseband is responsible for inquiring
after and connecting with other Bluetooth devices within the network. It is also
responsible for handling multiple applications and must make decisions that directly
affect the behavior of these applications. Therefore, in order to fulfill its tasks, it is
imperative that the Device Manager is fully aware of the existence of a scatternet.

The Baseband Resource Manager, which makes sure that the radio communicates with
only one entity at a time, together with the Link Manager, are both involved in various
scheduling tasks between the different piconets. For this reason both of these must
work very closely in unison.

Clearly the descriptions provided in the specification imply that scatternet is handled at
the most fundamental level, with these blocks carrying much of the responsibility. In
Chapter 3 we saw how the mobile phone in our user case needed to adjust for clock
drift due to the overlap that can occur over time. Naturally, this requires an awareness of
clock drift that is only available at the lower levels, in the Bluetooth baseband. And with
the type of descriptions like those from the Architecture & Terminology Overview
included above, the Bluetooth Specification 1.2 describes how functionality for
controlling links is intended for the baseband, while the host software stack is better
suited for controlling the flow of applications and their usage of the links. To move link
control away from the baseband and up into the host stack would only serve to blur the
intended division of responsibility.

Page 13 (13)

6. Conclusion

As we have shown through our analysis, interoperability between independent Bluetooth
sub-systems simply cannot be upheld when control of scatternet communication
operation is handed over to the higher levels, i.e. the host stack. With such solutions, all
Bluetooth entities immediately become dependent upon one another. This in turn
defeats one of the primary goals of Bluetooth — to facilitate seamless, ad hoc wireless
networks between Bluetooth devices originating from any manufacturer.

It is also clear that the authors of the Bluetooth 1.2 Specification are intent on making
sure that developers focus on maintaining good link quality even in situations like the
example user case above. Scenarios like these, where users expect multiple, concurrent
applications not only to function but to function well, require close-knit cooperation at
the most fundamental levels. This is evident through the clean-cut descriptions and
explanations of the core system architecture formulated by the Bluetooth SIG.

The quality of the scatternet links is directly related to how well the scatternet
implementation is able to deal with critical timing issues such as clock drift overlap. In
this regard, the baseband, with its built-in timing and scheduling capabilities, holds a
significant advantage over the host stack and thus provides higher link quality.

In light of these considerations, the only way to ensure that scatternet implementations
remain true to the Bluetooth ideal is by implementing them below the HCI level, in the
core Bluetooth control layers.

The Bluetooth wordmark and logos are trademarks owned by the Bluetooth SIG, Inc., and are used
by Ericsson Technology Licensing under license.

