
BLUETOOTH DOCUMENTATION

Basic Imaging Profile Page 1 of 22

IMPLEMENTATION GUIDELINES

BASIC IMAGING PROFILE

Abstract

This document is designed to facilitate the task of
implementing the Basic Imaging Profile. It provides
recommendations and examples that complement the
Basic Imaging Profile specification. It is presented in a
Q&A format.

BLUETOOTH DOCUMENTATION

Basic Imaging Profile Page 2 of 22

Revision History

Revision Date Comments

0.01 1/10/2001 First draft
0.1 4/10/2001 Fujifilm and Toshiba comments included
0.2 12/10/2001 Nokia and Canon comments included
0.4 19/10/2001 Improvements of the BPP related Q&As
0.5 2/11/2001 Changes in the structure of the document

0.6 7/11/2001 Editorial clean-up
0.95 21/12/2001 Version sent to BARB for review
1.0 4/2/2002 Comments from BARB + learning of the Kobe interoperability

session added.

Contributors

Contributor Company

Kenichi Fujii Canon
Yasuo Fukuda Canon
Akane Yokota Canon
Kazuaki Abe Casio Computer

Ryohei Yamamoto Casio Computer
Hiroshi Tanaka Fujifilm
Akinori Yoshioka Fujifilm
Karl Heubaum Motorola
Stephane Bouet (owner) Nokia

Martin Roter Nokia
Yosuke Tajika Toshiba
Takuya Kawamura Toshiba

BLUETOOTH DOCUMENTATION

Basic Imaging Profile Page 3 of 22

Role of the Basic Imaging Profile

Q1. Bluetooth 1.1 already includes a File Transfer Profile specification. Why should I implement
the Basic Imaging Profile specification? ___4

Implementation Requirements

Q2. I already implemented one of the profiles based on the Generic Object Exchange Profile in my
product. Can I easily upgrade it to support the Basic Imaging Profile as well? _______________ 4

Q3. What is the minimum set of features for a device to qualify as Basic Imaging Profile device?__5
Q4. What are the minimum requirements for the OBEX stack implementation? _______________6

Q5. What are the minimal requirements for my image encoder/decoder? ______________________7

Basic Imaging Profile and Basic Printing Profile

Q6. Both the Basic Imaging Profile and the Basic Printing Profile propose mechanisms for image
printing. Which profile should I use? ___8

Q7. I already implemented the Basic Printing Profile. Can I easily add support for image printing
according to the Basic Imaging Profile (or vice-versa)? ______________________________________8

Security in Basic Imaging

Q8. How is security handled in the Basic Imaging Profile? ________________________________14

Q9. Is there a concept of content protection in the Basic Imaging Profile? ____________________14

Implementation details

Q10. What is the role of the ServiceID SDP attribute? How is it used in the profile?__________14
Q11. How do I discover/identify a device supporting the Basic Imaging Profile? _____________15

Q12. Why is the Image Push feature divided into four sub features in the Imaging Responder
service record?___16
Q13. How should I use the friendly-name attribute in the Image Properties object? ___________16

Q14. How is the name attribute used to identify image attachments? _______________________17

Q15. How is the Name header used in a PutImage operation? _____________________________17
Q16. What is the recommended usage of the OBEX Abort command? ______________________18

Q17. My implementation cannot handle big data files. I need to negotiate the size of image files in
addition to format and pixel size. Is this possible with the Basic Imaging Profile?_______________ 18
Q18. Should the Imaging Thumbnail format always be listed as available format in an Image-
Properties object? __20

Q19. Can a very simple Image Pull Initiator skip the GetImageProperties function? __________20

Q20. What is an empty Image Descriptor?___21

Q21. Can a Remote Display Responder accommodate a Remote Display Initiator that is not
supporting the ‘Select’ command ? __21

BLUETOOTH DOCUMENTATION

Basic Imaging Profile Page 4 of 22

Q1. Bluetooth 1.1 already includes a File Transfer Profile
specification. Why should I implement the Basic Imaging
Profile specification?

The Basic Imaging Profile’s primary objective is to enable image format negotiation.
It is especially useful when an image exchange involves one or more limited devices
(typically embedded devices) that can process only selected image formats. By
insuring that images are delivered or retrieved in a format that is usable by the
destination, the profile guarantees application level interoperability. In addition, the
Basic Imaging Profile provides basic remote control capabilities that are not available
in the File Transfer Profile.

When an image exchange involves only high-end devices – devices like PCs for
which image formats are of no concern and that do not utilise remote control
functions – image files can be treated just like any other file, and therefore can be
exchanged using the File Transfer Profile. It is important to note, however, that high-
end devices that intend to exchange images with limited devices would have to
support the Basic Imaging Profile.

Q2. I already implemented one of the profiles based on the
Generic Object Exchange Profile in my product. Can I
easily upgrade it to support the Basic Imaging Profile as
well?

In principle, it’s relatively simple for a device that already supports one of the Generic
Object Exchange-based profiles to support the Basic Imaging Profile as well. Indeed,
the Basic Imaging profile utilises the same protocol stack as the other Generic
Object Exchange-based profiles, thus limiting the extra development work required.

It should be noted, however, that the Basic Imaging Profile places additional
constraints on the OBEX implementation compared to the requirements detailed in
the Generic Object Exchange Profile (see question 4). This is the result of a difficult
trade-off between protocol flexibility and interoperability obligations, given that OBEX
in itself does not provide sufficient interoperability guarantees.

Therefore, the answer to this question requires an understanding of the work
required to adapt the OBEX stack to the Basic Imaging Profile. If the adaptations are
easy – which we expect to be true in the majority of cases – the rest of the effort is
limited: introduction of a few additional OBEX headers, user interface modification,
and application layer development. If, however, the additional requirements placed
on the OBEX implementation are difficult to fulfill with the OBEX stack in use, the
implementer is faced with the possibility of integrating a new OBEX stack.

BLUETOOTH DOCUMENTATION

Basic Imaging Profile Page 5 of 22

Q3. What is the minimum set of features for a device to
qualify as Basic Imaging Profile device?

To qualify as a Basic Imaging Profile compliant device, the capabilities described as
mandatory in the profile specification must be supported. Mandatory capabilities are
present at several levels, including features, functions, image formats, and image
sizes, making a simple, concise answer to this question difficult. The exact set of
features a device must support depends on the nature of the device and its usage
model. To illustrate the process of customising – in this case, sizing down – a Basic
Imaging Profile implementation, we propose an example “James Bond watch” with a
built-in camera capable of capturing quarter VGA size images and sending them to
another Bluetooth device.

All Basic Imaging Profile compliant devices have a common base called the Generic
Imaging capability. Generic Imaging is the ability to either push or pull images (see
section 4.1 of the profile specification). No matter how small you want your
implementation to be, you must support at least either the Image Push feature or the
Image Pull feature. In addition to this Generic Imaging capability, the profile defines a
collection of more advanced capabilities that enable limited remote control over
another imaging device. Those advanced capabilities are optional and, in the case of
our watch, unnecessary.

Each Basic Imaging Profile feature is comprised of a set of functions that perform
individual tasks related to that feature. Some functions are mandatory and some are
optional. In the case of our watch, the only feature that will be supported is Image
Push, which has only two mandatory functions: PutImage and PutLinkedThumbnail
(see section 4.3.1). The Image Push feature defines two optional functions:
GetCapabilities and PutLinkedAttachment. Omitting these optional functions limits
the capabilities of the watch; in particular, omitting the GetCapabilities function
means the watch will not detect a possible absence of support for quarter VGA size
images on the receiving device, which in turn implies the watch may make one or
more attempts to push images that the receiving device cannot use before eventually
falling back to the mandatory Imaging Thumbnail format (see question 5).

The structure of the Basic Imaging Profile functions is fixed and mandatory (see the
introductory portion of section 4.5), meaning that none of the OBEX fields described
in Table 4-21 through Table 4-39 can be omitted. In other words, it is not possible to
size down the implementation by dropping OBEX fields. The content of many fields,
can, however, be sized down. In the case of our watch, the PutImage function uses
Connection ID and Type OBEX headers for which no optimisation is possible. The
Name header uses a Unicode string that can be shortened, although more
descriptive names are obviously better. Considerable optimisation can be done in
the Img-Description header, which carries an Image Descriptor describing the image
being pushed. The Image Descriptor includes two required attributes (“encoding” and
“pixel”) and three optional attributes (“size”, “maxsize”, and “transformation”).
Implementers should carefully consider the trade-off between smaller code and
reduced capabilities before deciding to omit an optional attribute.

BLUETOOTH DOCUMENTATION

Basic Imaging Profile Page 6 of 22

As a side note, it is interesting to note that the choice of supported XML attributes
will also affect how extensive the implementation will have to be in terms of XML
encoding and parsing capabilities. This is especially evident for the larger XML DTDs
like the Imaging Capabilities and Image Properties objects. If only the mandatory
attributes are supported, the need for a full featured XML encoder/parser will be
reduced, thus making it possible to adopt an implementation strategy based on pre-
coded strings.

The PutLinkedThumbnail function cannot be sized down, since none of the OBEX
headers it uses have customisable content.

To sum up, in the case of a watch whose role is to send quarter VGA size images,
the minimal implementation will support only the simplest embodiment of the Image
Push feature, using only the PutImage and PutLinkedThumbnail functions and the
smallest possible Image Descriptor (most likely a pre-coded descriptor). This
process can be repeated to narrow down the set of features, functions, and OBEX
header contents required for other implementations.

Q4. What are the minimum requirements for the OBEX
stack implementation?

Two of the still image working group’s major goals had a direct impact on the Basic
Imaging Profile’s use of OBEX:

1. Keep the implementation as light weight as possible.

2. Minimise the chances of interoperability problems.

To keep implementations compact and robust in the face of interoperability hazards,
the profile imposes additional constraints on the OBEX stack. Implementers who
plan to use a commercial OBEX stack in their profile implementation should insure
that stack meets the following requirements:

• The profile mandates the order in which OBEX headers are delivered. No
variation in this order (on a command to command, state to state, or any other
basis) is allowed see the first paragraph of section 4.5 in the profile specification).

• The profile defines OBEX response codes and error conditions in greater detail
than the OBEX specification. If, for example, the OBEX stack in use offers
automated error handling, it must not interfere with or defeat the profile’s error
mechanisms (see section 5.3 in the profile).

BLUETOOTH DOCUMENTATION

Basic Imaging Profile Page 7 of 22

• The profile defines the timing when headers should be sent in case of multi-
packets Put or Get responses (see section 5.2.3 in the profile).

• The OBEX stack must gracefully ignore unsupported headers. This is a
prerequisite for compatibility with future versions of the Basic Imaging Profile,
which may introduce new features and functions that use new OBEX headers.
Note that this behaviour also applies to the profile implementation’s XML parser,
since it may encounter unrecognised elements and attributes introduced in future
versions of the profile (see section 5.2 in the profile).

Q5. What are the minimal requirements for my image
encoder/decoder?

All Basic Imaging Profile implementations must support the following JPEG-based
Imaging Thumbnail format as specified in section 4.4.3 of the profile specification:

• JPEG baseline-compliant

• sRGB as default colour space

• Pixel size: 160x120

• Sampling: YCC422

• One marker segment for each DHT and DQT

• Typical Huffman table

• DCF thumbnail file as file format

The profile cannot guarantee interoperability for the other image encodings it
supports: other (non-thumbnail) JPEG variants, BMP, WBMP, PNG, GIF, and
JPEG2000. These encodings all offer various options, parameters, and file formats,
and it’s possible that a decoder incorporated into a Basic Imaging Profile
implementation could be presented with an image it cannot process because that
image utilises options and parameters or a file format the decoder doesn’t
understand. The working group decided to adopt this approach rather than mandate
a specific set of options and parameters and a file format for each encoding
because:

1. There is already a very large collection of image files spread all over the planet,
and mandating specific options, parameters, and file formats would inevitably
(and unreasonably) exclude a significant portion of that collection.

2. Image encoders and decoders are often implemented in hardware, so mandating
options and parameters could limit the adoption of the profile if it forced
manufacturers to make hardware changes.

BLUETOOTH DOCUMENTATION

Basic Imaging Profile Page 8 of 22

Fortunately, in most cases there exist defacto option, parameter, and file format
standards for each image encoding supported by the Basic Imaging Profile;
implementations should follow those defacto standards to insure maximum
interoperability. The one exception is JPEG2000, since it’s relatively new and as of
this writing ISO discussions on establishing profiles for different JPEG2000 usage
models are still in progress. The working group expects, however, that at the very
least a defacto JPEG2000 standard will emerge as this encoding technology is more
widely adopted.

Q6. Both the Basic Imaging Profile and the Basic Printing
Profile propose mechanisms for image printing. Which
profile should I use?

The Basic Imaging and Basic Printing Profiles propose different printing mechanisms
because they originated in different markets. The Basic Imaging Profile originated in
the digital still camera and dedicated photo printer markets, where the Digital Print
Order Format (DPOF) was already established. The Basic Printing Profile originated
in the mainstream printer market, so it mandates a page description language
(XHTML-Print) and an image encoding standard (JPEG). The still image and printing
working groups recognised that interoperability across the profiles is important, so
each profile defines a simple baseline printing mechanism that’s very similar to its
counterpart, making it easy to add support for one profile once the other is
implemented (see the following question for details).

Which printing mechanism to use as the “native” mechanism is left to the
implementer’s discretion. The still image working group expects that cameras will
adopt the Basic Imaging Profile’s mechanism because they are based on a
technology that’s already widely implemented in those devices – DPOF. Printers that
support both photo and document printing will most likely support both the Basic
Imaging Profile and the Basic Printing Profile, although there may be some photo-
printing devices that support only the Basic Imaging Profile. Full blown
implementations of both profiles in a single device appears unlikely in the short to
medium term.

Q7. I already implemented the Basic Printing Profile. Can I
easily add support for image printing according to the
Basic Imaging Profile (or vice-versa)?

The printing mechanisms proposed by the Basic Printing and Basic Imaging Profiles
are slightly different (see the previous question). Both profiles, however, include a

BLUETOOTH DOCUMENTATION

Basic Imaging Profile Page 9 of 22

baseline version of their optimal printing mechanism that enables images to be
pushed and printed one-by-one; these baseline print mechanisms are sufficiently
similar that it’s easy for one device to support both, providing some interoperability
between the profiles. Note, however, that these simplified print mechanisms do not
provide user feedback or control, and the resulting output is entirely determined by
the printer.

Two scenarios are of particular interest: 1) a Basic Print Profile printer that can
accept Basic Image Profile Image Push requests, and 2) a Basic Imaging Profile
client that can generate Basic Print Profile simple push requests.

Scenario 1

Figure 1: Scenario 1. A Basic Printing Profile printer with the ability to receive Basic Imaging Profile
Image Push requests advertises this capability via a Basic Imaging Profile Service Discovery record
and acts as an Image Push server for the digital still camera.

Scenario 2

Figure 2: Scenario 2. A Basic Imaging Profile camera has implemented the additional capabilities
needed to issue a Basic Printing Profile simple push and uses a Basic Printing Profile printe r as its
server.

BPP

BIP

BPP

+ α α

Acts as Basic Imaging Profile
Image Push server

Acts as Basic Printing Profile
simple push client

Exposes two Service
Discovery records

BLUETOOTH DOCUMENTATION

Basic Imaging Profile Page 10 of 22

Comparison of Basic Imaging Profile Image Push and Basic Printing Profile
simple push

First it should be pointed out that the two print mechanisms use different OBEX
sessions (also called channels). In the Basic Printing Profile, simple push operations
are carried out in a job channel session that is initiated by an OBEX Connect request
with the DirectPrinting UUID (see the Bluetooth Assigned Numbers Document for the
value) in the Target header. In the Basic Imaging Profile, an Image Push operation is
initiated by sending an OBEX Connect request with the Basic Imaging Image Push
UUID (see the Basic Imaging Profile specification for the value) in the Target header.

In both profiles, the printer can describe its capabilities to the device performing the
push operation. The methods used by the two profiles are slightly different. The
Basic Imaging Profile represents this information as an XML string called the
Imaging Capabilities object, which is retrieved via the GetCapabilities function. The
Basic Printing Profile represents this information in a SOAP encoded
GetPrinterAttributes response message.

The Basic Imaging Profile’s GetCapabilities request is formatted as follows:
Fields Opcode Get
 Packet Length Length of the packet
Headers ConnectionID Connection identifier
 Type x-bt/img-capabilities

The GetCapabilities response is formatted as follows:
Fields Response Code Success or error code
 Packet Length Length of the packet
Headers Body/EndOfBody Imaging Capabilities object

The Basic Printing Profile’s GetPrinterAttributes request is formatted as follows:

Fields Opcode Get
 Packet Length Length of the packet
Headers ConnectionID Connection identifier
 Type x-obex/bt-SOAP
 Body header GetPrinterAttributes SOAP request

The GetPrinterAttributes response command is formatted as follows:
Fields Opcode Get
 Packet Length Length of the packet
Headers Body header GetPrinterAttributes SOAP response

The push commands used to send imaging data across are also slightly different, as
detailed in the following tables (the differences are highlighted in grey):

In the Basic Imaging Profile, the PutImage request is formatted as follows:
Fields Opcode Put
 Packet Length Length of the packet
Headers ConnectionID Connection identifier
 Type x-bt/img-img
 Name Image name

BLUETOOTH DOCUMENTATION

Basic Imaging Profile Page 11 of 22

 Img-Description Image descriptor
 Body/EndOfBody Image file

The PutImage response is formatted as follows:
Fields Response Code Success or Partial Content or error

code
 Packet Length Length of the packet
Headers Img-Handle Image handle

In the Basic Printing Profile, the equivalent operation is an OBEX Put operation
formatted as follows:

Fields Opcode Put
 Packet Length Length of the packet
Headers ConnectionID Connection identifier
 Type MIME media type of object
 Name Image name
 Body/EndOfBody Image file

And the associated response is:
Fields Response Code Success or Forbidden
 Packet Length Length of the packet

Realisation of Scenario 1

In this scenario the printer assumes the burden of supporting a second profile.

BLUETOOTH DOCUMENTATION

Basic Imaging Profile Page 12 of 22

- The printer must expose the following Service Discovery record:

- The printer must accept an OBEX Connect request with the UUID for the Basic
Imaging Image Push service in the Target header.

- The printer must handle a GetCapabilities request.

- The printer must recognise the value “x-bt/img-capabilities” in the Type
header as the indication that a request comes from a Basic Imaging Profile
device. Note that there isn’t a Body header in this request.

- The printer must respond with an Imaging Capabilities object in the Body
header of the response message (instead of a SOAP response). It is
recommended that the printer use the following minimal version of the
Imaging Capabilities object:

 *

See [14] M
UUID Imaging Responder M

See [14] M
UUID L2CAP M
UUID RFCOMM M

Param #0 Channel
number

Uint8 Varies M

UUID OBEX M
Displayable
text name

String Service-provider defined (
"Printing" for instance)

See [14] O “Imaging”

See [14] M
Supported
profile

UUID Imaging Imaging

Param #0 Profile version Unit16 0x0100 See [14] 0x0100
Uint8 0x80 See [14] M 0x00

0x2000

Imaging
functions flags

Uint32 0x40000000 See [14] M

Maximum
memory
available for
image storage

Uint64 Memory in bytes See [14] M

Supported capabilities Imaging
capabilities

Supported features Imaging
features flags

Uint16 See [14] M

Service class ID list

Protocol descriptor list

Protocol ID #1

Protocol ID #2

Protocol ID #0

Service class #0

Total imaging data
capacity

Profile ID #0

Service name

Bluetooth profile

Supported functions

<DOCTYPE! Imaging-capabilities [

<!ELEMENT imaging-capabilities (image-formats*) >

<!ATTLIST imaging-capabilities

 version CDATA #FIXED “1.0” >

<!ELEMENT image-formats EMPTY>

<!ATTLIST formats
 encoding CDATA #REQUIRED

 pixel CDATA #IMPLIED

 maxsize CDATA #IMPLIED>

>

BLUETOOTH DOCUMENTATION

Basic Imaging Profile Page 13 of 22

 * Note that this step should not imply any modification to the XML encoder implementation used by
the printer. It is sufficient to have the above XML string pre-coded statically.

- The printer must handle a PutImage request.

- The printer must recognise the value “x-bt/img-img” in the Type header as
the indication that the OBEX Put request comes from a Basic Imaging
Profile device that is pushing an image.

- The printer must either process or ignore the Img-Description header. In
no case should it reject the Put request due to the presence of the Img-
Description header. It is recommended, but not mandatory, that the printer
be capable of reading the Image Descriptor to retrieve at least the
encoding of the incoming image file.

- The printer must return an Image Handle in the response message. It is
allowable to use a fixed value like “0000000”.

Realisation of Scenario 2

In this scenario the camera assumes the burden of supporting a second profile.

- The camera must issue an OBEX Connect request with the DirectPrinting UUID
in the Target header.

- The camera must issue a simple push command:

- The Type header in the PutImage command must be modified so that it
carries the MIME media type of the image instead of the Basic Imaging
Profile’s usual x-bt/img-img.

- The Img-Description header must not be used.

- The camera must accept a PutImage response without an Img-Handle
header.

Note that in Scenario 2, the camera can’t support the Basic Printing Profile’s
GetPrinterAttributes without also supporting the CreateJob command, which is part
of the Basic Printing Profile’s job-based transfer model. The camera can, however,

BLUETOOTH DOCUMENTATION

Basic Imaging Profile Page 14 of 22

obtain significant information (including the document formats supported by the
printer) from the printer’s Service Discovery record.

Q8. How is security handled in the Basic Imaging Profile?

The imaging working group did not introduce any security mechanisms beyond those
already available in the Bluetooth 1.1 specification; in particular the standard
baseband and OBEX security mechanisms (described in the Generic Access Profile
and Generic Object Exchange Profile, respectively) apply to the Basic Imaging
Profile.

Q9. Is there a concept of content protection in the Basic
Imaging Profile?

The Basic Imaging Profile does not define a content or copyright protection
mechanism, although such a mechanism could be implemented on top of the
profile’s image exchange features.

Q10. What is the role of the ServiceID SDP attribute? How
is it used in the profile?

The ServiceID attribute, as defined in the Service Discovery Protocol specification, is
a UUID that uniquely identifies the service instance described by a service record.
The need to uniquely identify a service instance emerges when a number of
applications that support the same profile coexist on one device.

More precisely, some of the Basic Imaging Profile’s features make use of two OBEX
sessions running in parallel with reversed client and server roles: the client in the first
OBEX session is the server in the second. The second session is opened as result
of a request issued within the first session and is preceded by the first session’s
server looking for channel information in the relevant service record on the client
device. Assume for a moment that there is more than one application on the client
device that can handle such a second session: this creates a problem for the server
as it tries to locate the correct service record – that is, the service record associated
with the application that requested the second session. The solution to this problem

BLUETOOTH DOCUMENTATION

Basic Imaging Profile Page 15 of 22

is a unique service record identifier, which is used as follows: when the first session’s
client issues a request for a second session, it sends the unique identifier of the
service record the server device should consult to retrieve channel information. The
server device runs a Service Discovery Protocol search for the service record with
that unique identifier in its ServiceID attribute, retrieves the channel information, and
establishes the second session.

Note that the UUID can be freely chosen; there isn’t a specific range of UUID
associated with the ServiceID attribute.

Q11. How do I discover/identify a device supporting the
Basic Imaging Profile?

The Bluetooth baseband’s Class of Device/Service (CoD) field contains information
that can be used to screen devices for possible Basic Imaging Profile support. In
particular, the Major Service Class portion of the CoD includes Rendering, Capturing,
and Object Transfer bits. A digital still camera that supports the Basic Imaging Profile
should have the Capturing and Object Transfer bits set, while a printer that supports
the profile should have the Rendering and Object Transfer bits set. The Major Class
portion of the CoD includes an Imaging value with associated Minor Device Class
values of Display, Camera, Scanner, and Printer (note that these Minor Device Class
values can be bitwise OR’ed together). A digital still camera will probably have its
Major Class set to Imaging and its Minor Device Class set to Camera, while a printer
will probably have its Major Class set to Imaging and its Minor Device Class set to
Printer.

Testing the baseband CoD field is not guaranteed to locate all imaging devices,
however. A Bluetooth-equipped PC with a (cabled) printer, for example, could act as
a proxy for the Advanced Image Printing feature of the Basic Imaging Profile, and its
CoD bits would probably fail the screening test described above; at the other
extreme, a printer that supports only the Basic Printing Profile would pass the
screening test but obviously wouldn’t support the Basic Imaging Profile. The only
sure method to test a device for Basic Imaging Profile support is to perform a Service
Discovery Protocol inquiry, searching for the Imaging UUID in the Profile Descriptor
List (note that the Basic Imaging Profile mandates the presence of the Profile
Descriptor List attribute, which is often optional in other profiles).

BLUETOOTH DOCUMENTATION

Basic Imaging Profile Page 16 of 22

Q12. Why is the Image Push feature divided into four sub
features in the Imaging Responder service record?

The Imaging Responder service record includes a Supported Features attribute that
details the level of support for the various features provided by the Basic Imaging
Profile. While the profile defines six features (Image Push, Image Pull, Advanced
Image Printing, Automatic Archive, Remote Camera, and Remote Display), the
Supported Features attribute subdivides the Image Push feature into four sub-
features: Image Push, Image Push-Display, Image Push-Print, and Image Push-
Store. This subdivision was introduced to allow a server to advertise the outcome of
an image push operation. This notion is best illustrated by a concrete example:
imagine a multi-purpose device like a PC that has the ability to do anything with an
image, and a number of Basic Imaging Profile applications running on that device
that have different functions: Application1 is a photo album application, Application2
is print spooler, Application3 is a file manager, and Application4 is a multi-purpose
application that can display, print, or store images.

A client device that performs a Service Discovery Protocol inquiry on this multi-
purpose server device would find four service records, one for each application. By
consulting the Supported Features attribute of each service record, the client can
make an educated guess about which service record/application it should target for
an image push operation based on the desired outcome: Application1 would
advertise the Image Push-Display and Image Push-Store features, Application2
would advertise Image Push-Print, Application3 would advertise Image Push-Store,
and Application4 would advertise Image-Push.

Q13. How should I use the friendly-name attribute in the
Image Properties object?

The Basic Imaging Profile uses image handles to identify images to guarantee that
images are uniquely indexed. Image handles have the following drawbacks,
however:

1. Image handles are not user friendly.

2. Image handle uniqueness is guaranteed only for the duration of a single OBEX
session. This limitation can have confusing effects for users. If, for example, a
user pushes an image to a destination device in one OBEX session, then
attempts to pull it in a different OBEX session, there’s no guarantee the image
handle returned after the push operation in the first session will successfully pull
the same image in the later session – the image handle may have changed.

BLUETOOTH DOCUMENTATION

Basic Imaging Profile Page 17 of 22

To alleviate this drawback, the profile defines a “friendly-name” attribute in the Image
Properties object that associates a human readable name with an image. This
friendly name can be displayed to users at the man-machine interface level while
image handles are used to identify and exchange images at the profile protocol level.
Friendly names can also be used to associate images across OBEX sessions,
although friendly names are not guaranteed to be unique.

Q14. How is the name attribute used to identify image
attachments?

While the Basic Imaging Profile uses image handles to uniquely identify images, it
uses string names to identify attachments associated with images. These names
need to be unique so attachments can be uniquely identified. It is anticipated that in
some implementations, associating a unique name with an attachment may be
difficult; using the full folder/directory path as part of the name should be a workable
solution in most cases.

Q15. How is the Name header used in a PutImage
operation?

The Name header included in the PutImage request is designed as a mechanism for
the Initiator to propose to the Responder a human readable name for the image that
is being pushed. The name may or may not be related to the location and
designation of the image in the Initiator’s file system. The name may also be empty
(0x01 as HI, and 0x0003 as length value) in the case of very low end Initiators. It is
important to note that the name proposed by the Initiator does not necessarily
comply with the naming conventions imposed by the Responder’s file system. If the
name proposed by the Initiator is unusable by the Responder, the Responder will
have to generate its own human readable name; the Responder can completely
ignore the name proposed by the Initiator or it can modify the proposed name to
make it useable.

BLUETOOTH DOCUMENTATION

Basic Imaging Profile Page 18 of 22

Q16. What is the recommended usage of the OBEX Abort
command?

The interpretation of the OBEX Abort command is somewhat controversial. Most
existing OBEX implementations handle the Abort command in exactly the same way
as other OBEX commands. Some interpretations of the OBEX specification suggest
that the Abort command differs from other commands in that it can be issued by a
client and processed by a server at any time, regardless of the state of the current
operation; in particular, a client can send an Abort command request without waiting
for a response from the server to a previous request, violating the ping-pong nature
of the OBEX protocol.

The Basic Imaging Profile adopts the simpler interpretation – the Abort command is
only issued after receiving a response to the previous request. This is sufficient for
the Basic Imaging Profile and avoids placing additional requirements on existing
OBEX implementations. The one case where this approach can be problematic is
when a client issues an OBEX Get request associated with a GetImagesList request
and the server takes a long time processing that request – the client may wish to
abort the Get request before it receives the first response from the server. The best
implementation strategy in this case is to use a timer in the client that results in
closing the OBEX session if the server takes too much time.

Q17. My implementation cannot handle big data files. I
need to negotiate the size of image files in addition to
format and pixel size. Is this possible with the Basic
Imaging Profile?

Full blown image file size negotiation is not supported by the Basic Imaging Profile.
Such negotiation would require that a server implementation:

1. Know the size of an image file for each supported pixel size, encoding, and
format combination. This is difficult to know without actually performing image
transformation and encoding for each combination, which is computationally very
expensive.

2. Adjust compression/encoding parameters while performing format conversions
requested by a client. Most existing imaging devices operate with fixed
parameters tailored to that device.

While full file size negotiation is not supported, the Basic Imaging Profile does
include mechanisms that can be used to place an upper bound on image file sizes. A

BLUETOOTH DOCUMENTATION

Basic Imaging Profile Page 19 of 22

full description of these mechanisms requires distinguishing between image push
and image pull scenarios.

Image file size handling in Image Push operations

The issue here is to protect the receiving (server) device from large image files it
cannot process. The recommended strategy is as follows: the receiving device
should set the “maxsize” attribute of its Imaging Capabilities object to the maximum
file size it is prepared to handle. When the device performing the image push
operation retrieves the Imaging Capabilities object, it should read the “maxsize”
attribute and refrain from pushing image files that are larger than the value indicated.

There is no guarantee, however, that the device performing the image push
operation will retrieve the Imaging Capabilities object or parse and use the “maxsize”
attribute. Therefore the receiving device should also interpret the Image Descriptor
that always accompanies an image push operation, in particular its “size” attribute.
By reading the “size” attribute, the receiving device can immediately determine
whether or not it can accommodate the image file it’s about to receive. If the size is
too large, the receiving device can terminate the operation, preferably with the OBEX
“precondition failed” response code if it’s supported, otherwise “bad request”. The
device performing the image push can subsequently retrieve the Imaging
Capabilities object of the receiving device and check the “maxsize” attribute, try to
push the image again in a different format, or give up.

Image file size handling in Image Pull operations

In an Image Pull scenario, the device that is providing the images is strongly
encouraged to supply the “maxsize” attribute in the Image Properties object
associated with each image file. In this context, the “maxsize” attribute gives an
indication of what file size to expect. As previously explained, it is very difficult to
provide an exact size value without actually performing the transformation/encoding
first, so an approximate value is acceptable, provided that the approximation is an
upper bound on the file size.

Before pulling an image, the retrieving device reads the Image Properties object from
the server to make its choice of encoding and pixel size. If the retrieving device
intends to pull an image in a variant encoding, it’s encouraged to take into account
the “maxsize” attribute provided by the server. If the server does not provide a
“maxsize” attribute in the Image Properties object, the retrieving device should take
note of the OBEX Length header in the GetImage response, which indicates the total
size in bytes of the image carried in the Body header; this Length header is always
available in the first response packet, even for multi-packet responses. The retrieving
device can therefore use this information to issue an OBEX Abort if the image file is
too large.

BLUETOOTH DOCUMENTATION

Basic Imaging Profile Page 20 of 22

Q18. Should the Imaging Thumbnail format always be
listed as available format in an Image-Properties object?

Yes, the Image-Properties object must always include the Imaging Thumbnail format
as an available format. This can be formulated in several ways, however. The
Imaging Thumbnail format could be the native version of an image, in which case it
appears in the “native” XML element with “JPEG” as the “encoding” attribute and
“160*120” as the “pixel” attribute. If Imaging Thumbnail is not the native format, it
must appear in one of the “variant” elements, where it could be described as:

1. One “variant” element with a fixed “pixel” attribute (<variant encoding=”JPEG”
pixel=”160*120”), or

2. Part of a “variant” element with a ranged “pixel” attribute (for instance, <variant
encoding=”JPEG” pixel=”80*60-640*480”), or

3. A redundant “variant”, meaning that although Imaging Thumbnail support be
deduced from a ranged “variant” as indicated in 2), it can also be repeated in the
form of a variant with a fixed “pixel” attribute as in 1).

Q19. Can a very simple Image Pull Initiator skip the
GetImageProperties function?

Yes, it is possible to skip the GetImageProperties function. There are several
scenarios where this can be considered:

1. A device is only interested in retrieving images in the mandatory Imaging
Thumbnail format. Given that all the images on a Responder must be available in
Imaging Thumbnail format, there is no point in retrieving the Image-Properties
object to verify that Imaging Thumbnail is one of the supported formats.

2. The number of formats that a device can utilize is very limited. In that case, it may
be faster to attempt to retrieve images in formats the device understands (a trial
and error approach) rather than retrieve the Image-Properties object, check the
supported formats, choose one format, and retrieve an image in that format.
Obviously, a trial and error approach presents challenges at the user interface
level.

3. A device uses the Image-Handles descriptor in the GetImagesList function to
filter the list of available images by the “encoding” (and possibly by the “pixel”)
attribute, then uses the information in the Images-Listing object returned by the

BLUETOOTH DOCUMENTATION

Basic Imaging Profile Page 21 of 22

GetImagesList function to retrieve images. Note that this is subject to the
Responder’s ability to process the “encoding” and “pixel” filtering parameters,
which are optional to support (whether or not a Responder supports these
filtering parameters is indicated in the Responder’s Imaging-Capabilities object).
If the Responder supports filtering of the Images-Listing object by the “encoding”
(and possibly by the “pixel”) attribute and the device is capable of ordering the
result of such filtering, the device may want to skip the GetImageProperties
function. The device should make sure that the “encoding” and “pixel” attributes
in the Image-Descriptor supplied to a subsequent GetImage function match those
used in the Image-Handles descriptor in the GetImagesList request. Note in
particular that if the “pixel” attribute takes the form of a range, the Responder will
be free to return the image with whatever pixel size it chooses as long as it
complies with that range.

Q20. What is an empty Image Descriptor?

When requesting a native image using the GetImage function, the Image Descriptor
must be empty. The meaning of empty here is this: the Img-Description header shall
contain only the header ID for Img-Description (0x71) and the length value 0x0003
(two byte big-endian unsigned integer indicating that the length of the header is three
bytes).

Q21. Can a Remote Display Responder accommodate a
Remote Display Initiator that is not supporting the ‘Select’
command ?

Provided the PutImage function is supported by the Initiator device, the answer to
this question is yes. The PutImage function is mandatory in the Remote Display
feature. This feature can therefore not be used to implement a very simple remote
controller device that would only pilot the Responder. A Remote Display Initiator
must have the ability to actually send pictures to the Responder.

When the Initiator is not supporting the Select command and the Responder is
initially not displaying any image, although the profile gives total liberty to the
Responder implementation to choose how to handle a Next or a Select command, it
is recommended that upon reception of a Next command the Responder displays the
first image in the list that it maintains of the images received from the Initiator, and
upon reception of a Previous command the Responder displays the last image in this
same list.

BLUETOOTH DOCUMENTATION

Basic Imaging Profile Page 22 of 22

It can be expected that most implementations of a Remote Display Responder will
conserve the order of the images as received from the Remote Display Initiator (i.e.
the list of images on the Responder follows the same order as the order under which
the images were transferred from the Initiator to the Responder). Implementers of a
Remote Display Initiator should nevertheless be aware that, for the sake of flexibility,
the conservation of the order of the images is not imposed by the profile and that
therefore, depending on the usage cases, there might be Responders that choose to
rearrange the images received from the Initiator in a different order.

