
Page 1 of 99
Date / Year-Month-Day Document No BLUETOOTH™

Documentation 2003-07-25 BIP_SP_D10_r01

Prepared e-mail address N.B.

Bluetooth SIG
Imaging Working Group

Bt-imaging-feedback@bluetooth.org Confidential

BASIC IMAGING PROFILE
Interoperability Specification

Abstract:
This profile defines the requirements necessary
for Bluetooth™ devices to support the Basic
Imaging Profile usage models. The requirements
are expressed by defining the features, functions,
and underlying profiles which are required for
interoperability among Bluetooth devices in the
Basic Imaging Profile usage models.

 30 July 2003 1

<Title Of Document> Page 2 of 99
Confidential Bluetooth SIG, Inc.

Special Interest Group (SIG)

The following companies are represented in the Bluetooth Special Interest
Group:

3Com Corporation
Ericsson Mobile Communications AB
IBM Corporation.
Intel Corporation.
Agere Systems, Inc
Microsoft Corporation.
Motorola Inc.
Nokia Corporation
Toshiba Corporation.

Revision History

Revision Date Comments

0.5 26-Sep-2000 Major document structure enhancement
0.7 27-Jan-2001 Features finalization
0.9 18-May-2001 Functions finalization
0.95 25-Sep-2001 Feedback from prototypes implementation and testing

included
1.0 Draft 05-Feb-2002 Feedback from first open interoperability testing event

and correction of remaining typos
1.0 Final 15-Nov-2002 Final draft
1.0 Final_a 25-Jul-2003 Further changes after BQRB review

Contributors

 Tatsuo Arai Casio Computer

 Ryohei Yamamoto Casio Computer

 Maria Rang Ericsson

 Erwin Weinans Ericsson
 Marcel Wong Ericsson

 Hiroshi Tanaka Fujifilm

 Mikio Watanabe Fujifilm

 Paolo Fontani HP

 Holt Mebane HP

 Franc Camara Microsoft

Introduction 30 July 2003 2

<Title Of Document> Page 3 of 99
Confidential Bluetooth SIG, Inc.

 Karl Heubaum Microsoft

 Stephane Bouet Nokia Mobile Phones

 Martin Roter Nokia Mobile Phones

 Takayasu Sanada Toshiba

 Yosuke Tajika Toshiba

 Patric Olsson (curretly connectBlue AB)

Prototyping and Profile Validation
Akane Yokota Canon

Kenichi Fujii Canon

Kazuaki Abe Casio Computer

Matsunaga Kazuhisa Casio Computer

Akinori Yoshioka Fujifilm software

Takuya Kawamura Toshiba

DISCLAIMER AND COPYRIGHT NOTICE

The copyright in these publications is owned by the Promoter Members of Bluetooth
SIG, Inc. (“Bluetooth SIG”). Use of these publications and any related intellectual
property (collectively, the “Publication”), is governed by the Promoters Membership
Agreement among the Promoter Members and Bluetooth SIG (the “Promoters
Agreement”), certain membership agreements between Bluetooth SIG and its Adopter
and Associate Members (the “Membership Agreements”) and the Bluetooth
Specification Early Adopters Agreements (1.2 Early Adopters Agreements) among
Early Adopter members of the unincorporated Bluetooth special interest group and the
Promoter Members (the “Early Adopters Agreement”). Certain rights and obligations
of the Promoter Members under the Early Adopters Agreements have been assigned to
Bluetooth SIG by the Promoter Members.

Use of the Publication by anyone who is not a member of Bluetooth SIG or a party to
an Early Adopters Agreement (each such person or party, a “Member”), is prohibited.
The legal rights and obligations of each Member are governed by their applicable
Membership Agreement, Early Adopters Agreement or Promoters Agreement. No
license, express or implied, by estoppel or otherwise, to any intellectual property
rights are granted herein.

Any use of the Publication not in compliance with the terms of the applicable
Membership Agreement, Early Adopters Agreement or Promoters Agreement is
prohibited and any such prohibited use may result in termination of the applicable
Membership Agreement or Early Adopters Agreement and other liability permitted

Introduction 30 July 2003 3

<Title Of Document> Page 4 of 99
Confidential Bluetooth SIG, Inc.

by the applicable agreement or by applicable law to Bluetooth SIG or any of its
members for patent, copyright and/or trademark infringement.

THE PUBLICATION IS PROVIDED “AS IS” WITH NO WARRANTIES
WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY,
NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE,
SATISFACTORY QUALITY, OR REASONABLE SKILL OR CARE, OR ANY
WARRANTY ARISING OUT OF ANY COURSE OF DEALING, USAGE,
TRADE PRACTICE, PROPOSAL, SPECIFICATION OR SAMPLE.

Each Member hereby acknowledges that products equipped with the Bluetooth™
wireless technology ("Bluetooth™ Products") may be subject to various regulatory
controls under the laws and regulations of various governments worldwide. Such
laws and regulatory controls may govern, among other things, the combination,
operation, use, implementation and distribution of Bluetooth™ Products. Examples of
such laws and regulatory controls include, but are not limited to, airline regulatory
controls, telecommunications regulations, technology transfer controls and health and
safety regulations. Each Member is solely responsible for the compliance by their
Bluetooth™ Products with any such laws and regulations and for obtaining any and all
required authorizations, permits, or licenses for their Bluetooth™ Products related to
such regulations within the applicable jurisdictions. Each Member acknowledges that
nothing in the Publication provides any information or assistance in connection with
securing such compliance, authorizations or licenses. NOTHING IN THE
PUBLICATION CREATES ANY WARRANTIES, EITHER EXPRESS OR
IMPLIED, REGARDING SUCH LAWS OR REGULATIONS.

ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY
INTELLECTUAL PROPERTY RIGHTS OR FOR NONCOMPLIANCE WITH
LAWS, RELATING TO USE OF THE PUBLICATION IS EXPRESSLY
DISCLAIMED. BY USE OF THE PUBLICATION, EACH MEMBER
EXPRESSLY WAIVES ANY CLAIM AGAINST BLUETOOTH SIG AND ITS
PROMOTER MEMBERS RELATED TO USE OF THE PUBLICATION.

Bluetooth SIG reserve the right to adopt any changes or alterations to the Publication
as it deems necessary or appropriate and to adopt a process for adding new
Bluetooth™ profiles after the release of the Publication.

Introduction 30 July 2003 4

<Title Of Document> Page 5 of 99
Confidential Bluetooth SIG, Inc.

Contents

1 INTRODUCTION...8
1.1 PROFILE DEPENDENCIES...8
1.2 BLUETOOTH OBEX-RELATED SPECIFICATIONS...8
1.3 SYMBOLS AND CONVENTIONS..9

1.3.1 Requirement Status Symbols..9
1.3.2 Signaling Diagram Conventions..11

2 PROFILE OVERVIEW..12
2.1 PROTOCOL STACK ..12
2.2 CONFIGURATIONS AND ROLES ...13
2.3 USER REQUIREMENTS AND SCENARIOS..13
2.4 PROFILE FUNDAMENTALS ..14
2.5 CONFORMANCE ..14

3 USER INTERFACE ASPECTS...15
3.1 MODE SELECTION ..15
3.2 FEATURES ..15
3.3 EXAMPLE FEATURE SEQUENCES ..16

3.3.1 Example Image Push Sequence ...17
3.3.2 Example Image Pull Sequence...17
3.3.3 Example Advanced Image Printing Sequence ...18
3.3.4 Example Automatic Archive Sequence ..18
3.3.5 Example Remote Camera Sequence ..19
3.3.6 Example Remote Display Sequence...19

4 APPLICATION LAYER ..21
4.1 IMAGING DEVICES CLASSIFICATION...21
4.2 IMAGING FEATURES OVERVIEW...22
4.3 IMAGING FEATURES ...23

4.3.1 Image Push Feature ..23
4.3.2 Image Pull Feature..25
4.3.3 Advanced Image Printing Feature...26
4.3.4 Automatic Archive Feature..29
4.3.5 Remote Camera Feature..32
4.3.6 Remote Display Feature ..33

4.4 IMAGING PROFILE FORMATS, OBJECTS, AND PARAMETERS ...35
4.4.1 Storage Formats Support...35
4.4.2 Imaging File Formats Support ..36
4.4.3 Imaging Thumbnail ...36
4.4.4 Imaging Handles ...37
4.4.5 Imaging Attachments ...37
4.4.6 XML Headers and Objects ..37
4.4.7 Imaging Descriptors ..49

4.5 IMAGING FUNCTIONS ...55
4.5.1 GetCapabilities Function ..55
4.5.2 PutImage Function ..56
4.5.3 PutLinkedThumbnail Function ..57
4.5.4 PutLinkedAttachment...57
4.5.5 RemoteDisplay Function ...58
4.5.6 GetImagesList Function ..59
4.5.7 GetImageProperties Function ...62
4.5.8 GetImage Function..62
4.5.9 GetLinkedThumbnail Function..63

Introduction 30 July 2003 5

<Title Of Document> Page 6 of 99
Confidential Bluetooth SIG, Inc.

4.5.10 GetLinkedAttachment Function ...63
4.5.11 DeleteImage Function ...64
4.5.12 StartPrint Function..65
4.5.13 GetPartialImage Function...65
4.5.14 StartArchive Function..67
4.5.15 GetStatus Function ..67
4.5.16 GetMonitoringImage Function..68

5 OBEX ...70
5.1 OBEX OPERATIONS USED ...70
5.2 OBEX HEADERS ..70

5.2.1 Application Parameters Header ..71
5.2.2 User-Defined Headers...71
5.2.3 OBEX Headers in Multi-Packet Responses ...71

5.3 OBEX ERROR CODES ..74
5.4 INITIALIZING OBEX...75
5.5 ESTABLISHING AN OBEX SESSION...76

5.5.1 Primary and Secondary Sessions...76
5.5.2 Primary Session Establishment ...76
5.5.3 Secondary Session Establishment..76

5.6 DISCONNECTING...77
6 SERVICE DISCOVERY ..79

6.1 SERVICE DISCOVERY SERVICE RECORDS ...79
6.1.1 Imaging Responder Service ...79
6.1.2 Referenced Objects Service ...82
6.1.3 Archived Objects Service...83

6.2 SERVICE DISCOVERY PROCEDURE..83
7 MANAGEMENT ENTITY PROCEDURES ..85

7.1 INITIALIZATION ..85
8 ANNEX A: TYPICAL MESSAGE SEQUENCE CHARTS..86

8.1 IMAGE PUSH FEATURE ...86
8.2 IMAGE PULL FEATURE ...87
8.3 ADVANCED IMAGE PRINTING FEATURE...88
8.4 AUTOMATIC ARCHIVE FEATURE ...89
8.5 REMOTE CAMERA FEATURE...90
8.6 REMOTE DISPLAY..91

9 ANNEX B: IMPLEMENTATION GUIDELINES FOR DCF DEVICES................................92

10 ANNEX C: SYNOPSIS OF THE OBEX FRAME STRUCTURES IN THE BASIC
IMAGING PROFILE, PHASE 1 ...94

11 ANNEX D: REFERENCES..97
11.1 NORMATIVE REFERENCES ..97

12 ANNEX E: ACRONYMS AND ABBREVIATIONS ...99

Introduction 30 July 2003 6

<Title Of Document> Page 7 of 99
Confidential Bluetooth SIG, Inc.

 Foreword

The File Transfer Profile defines a mechanism enabling Bluetooth devices to
exchange files in a generic fashion. The foundation of the Basic Imaging
Profile is a series of constructs that enable Bluetooth devices to negotiate the
size and encoding of imaging data to be exchanged. Given the variety of
image formats currently in use, it is impossible – without using a negotiation
mechanism – to guarantee that images transferred via Bluetooth (even when
correctly received) can actually be used by a receiving device.

Interoperability cannot be guaranteed unless all Bluetooth imaging devices
support at least one common image format. Therefore, this profile requires
that all Bluetooth imaging devices be capable of receiving JPEG thumbnail
images and/or providing JPEG thumbnail versions of their stored images
(either by performing format conversions or by using a thumbnail image
created when the image is stored). Built on this negotiation mechanism and
required imaging format are six features, ranging from very basic image
transfer to remote control operations, that enable the usage scenarios
described in the Bluetooth Imaging Market Requirements Document.

Introduction 30 July 2003 7

<Title Of Document> Page 8 of 99
Confidential Bluetooth SIG, Inc.

1 Introduction

1.1 Profile Dependencies

In the figure below, the Bluetooth profile structure and the dependencies of the
profiles are depicted. A profile is dependent upon another profile if it re-uses
parts of that profile by implicitly or explicitly referencing it. Dependency is
illustrated in the figure: a profile has dependencies on the profile(s) in which it
is contained – directly or indirectly. For example, the Basic Imaging profile is
dependent on the Generic Object Exchange, Serial Port, and Generic Access
profiles.

Generic Access Profile

Service Discovery
Appl. Profile

TCS-BIN-based Profiles

Cordless
Telephony Profile

Intercom Profile

Serial Port Profile

Dial-up Networking
Profile

Fax Profile

Generic Object Exchange
Profile

Headset Profile

LAN Access Profile

File Transfer
Profile

Object Push Profile

Synchronization
Profile

Basic Imaging
Profile

1.2 Bluetooth OBEX-Related Specifications

The Bluetooth Specification includes six separate specifications for OBEX and
applications using OBEX:

1. Bluetooth IrDA Interoperability Specification [7]

� Defines how applications can function over both Bluetooth and IrDA.

� Specifies how OBEX is mapped over RFCOMM and TCP.

� Defines the application profiles using OBEX over Bluetooth.
2. Bluetooth Generic Object Exchange Profile Specification [9]

Introduction 30 July 2003 8

<Title Of Document> Page 9 of 99
Confidential Bluetooth SIG, Inc.

� Generic interoperability specification for the application profiles using
OBEX.

� Defines the interoperability requirements of the lower protocol layers (e.g.,
Baseband and LMP) for the application profiles.

3. Bluetooth Synchronization Profile Specification [13]

� Application profile for synchronization applications.

� Defines the interoperability requirements for applications within the
Synchronization Profile.

� Does not define the requirements for the Baseband, LMP, L2CAP, or
RFCOMM layers.

4. Bluetooth File Transfer Profile Specification [11]

� Application profile for file transfer applications.

� Defines the interoperability requirements for applications within the File
Transfer Profile.

� Does not define the requirements for the Baseband, LMP, L2CAP, or
RFCOMM layers.

5. Bluetooth Object Push Profile Specification [12]

� Application profile for object push applications.

� Defines the interoperability requirements for applications within the Object
Push Profile.

� Does not define the requirements for the Baseband, LMP, L2CAP, or
RFCOMM layers.

6. Bluetooth Basic Imaging Profile (this specification)

� Application profile for transfer of still images.

� Defines the interoperability requirements for applications within the Basic
Imaging Profile.

� Does not define the requirements for the Baseband, LMP, L2CAP, or
RFCOMM layers.

1.3 Symbols and Conventions
1.3.1 Requirement Status Symbols

In this document (especially in the features and functions tables in Section
4.3), the following symbols are used:

"M" for mandatory to support (used for capabilities that shall be used in the
profile)

"O" for optional to support (used for capabilities that can be used in the profile)

Introduction 30 July 2003 9

<Title Of Document> Page 10 of 99
Confidential Bluetooth SIG, Inc.

"C" for conditional support (used for capabilities that shall be used in case a
certain other capability is supported)

"X" for excluded (used for capabilities that may be supported by the device but
shall never be used in the profile)

"N/A" for not applicable (in the given context it is impossible to use this
capability)

Some excluded capabilities are capabilities that, according to the relevant
Bluetooth specification, are mandatory to support. These are capabilities that
may, however, degrade the operation of devices following this profile.
Therefore these features shall not be activated in the context of an OBEX
session within this profile.

In this specification, the word ‘shall’ or ‘must’ is used for mandatory
requirements, the word ‘should’ is used to express recommendations and the
word ‘may’ is used for options.

The conformance requirements of a profile relate to the conformance
requirements in the base standards in the following ways:

� Unconditional mandatory requirements in a base standard shall remain
mandatory in the profile. (Base standard requirements to support a certain
procedure do not mean it has to be used in a profile.)

� Unconditional options in a base standard may remain options or may be
changed within the profile to become: mandatory, conditional, out of scope
(unused), or prohibited.

� If conditional requirements in a base standard can be fully evaluated in the
context of the profile, they become unconditional mandatory, unconditional
options, out of scope, or prohibited. Otherwise, conditional requirements
remain conditional, possibly with evaluated conditions.

Introduction 30 July 2003 10

<Title Of Document> Page 11 of 99
Confidential Bluetooth SIG, Inc.

1.3.2 Signaling Diagram Conventions

A B

Optional procedure initiated by either A or B

Mandatory procedure initiated by either A or B

Mandatory procedure initiated by A

Optional signal sent by B

Mandatory signal sent by A

Figure 1-1: Signaling Diagram Conventions

In the figure above, the following cases are shown:

A thin arrow represents a signal or individual message. When dotted, the
representation indicates that the signal or message is optional. The arrow
points from the issuer of the signal/message to its destination.

A procedure (i.e. a set of messages) is represented with a wide arrow that
points from the initiator of the procedure toward the responder. If both sides
can initiate the procedure, the wide arrow is double-headed. A dotted
representation indicates that the procedure is optional.

Introduction 30 July 2003 11

<Title Of Document> Page 12 of 99
Confidential Bluetooth SIG, Inc.

2 Profile Overview

2.1 Protocol Stack
The figure below shows the protocols and entities used in this profile.

Baseband

LMP L2CAP

RFCOMM

Imaging Application

Client Device

SDPME

Imaging Initiator Imaging Responder

OBEX

Baseband

LMP L2CAP

RFCOMM

Imaging Application

Server Device

SDP ME

OBEX

Figure 2-1: Protocol Model

The Baseband [1], LMP [2], and L2CAP [3] are the OSI layer 1 and 2
Bluetooth protocols. RFCOMM [4] is the Bluetooth adaptation of GSM TS
07.10 [5]. SDP is the Bluetooth Service Discovery Protocol [6]. OBEX [7] is the
Bluetooth adaptation of IrOBEX [8].

ME is the Management Entity which coordinates procedures during
initialization and manages the state of the link.

The RFCOMM, L2CAP, LMP, and Baseband interoperability requirements are
defined in Section 6 in [10].

Profile Overview 30 July 2003 12

<Title Of Document> Page 13 of 99
Confidential Bluetooth SIG, Inc.

2.2 Configurations and Roles

Feature Request

Feature Reponse

Imaging Initiator Imaging
Responder

Figure 2-2: The Imaging Initiator is the Initiator of a Basic Imaging Feature and the Imaging
Responder is the Responder

The following roles are defined for this profile:

Imaging Initiator: The Imaging Initiator is the device that initiates a Basic
Imaging feature. The Imaging Initiator must provide at least an object
exchange client and must comply with the interoperability requirements for the
client of the GOEP if not defined in a different way in the present profile. To
support some features, the Imaging Initiator must also provide an object
exchange server and comply with the interoperability requirements for a server
set in the GOEP. Features that require support for both the object exchange
client and object exchange server on the Imaging Initiator are indicated in
Section 4.3.

Imaging Responder: The Imaging Responder is the device that responds to
the initiation of a Basic Imaging feature by the Imaging Initiator. The Imaging
Responder must provide at least an object exchange server. The Imaging
Responder must comply with the interoperability requirements for the server of
the GOEP if not defined in a different way in the present profile. To support
some features, the Imaging Responder must also provide an object exchange
client and comply with the interoperability requirements for a client set in the
GOEP. Features that require support for both the object exchange client and
object exchange server on the Imaging Responder are indicated in Section
4.3.

There is no mandatory mapping between the Imaging Initiator/Imaging
Responder roles and baseband master/slave roles.

2.3 User Requirements and Scenarios

The scenarios covered by this profile are:

� Use of a mobile phone to send one or more images to a wristwatch.
Scenarios involving imaging devices of different natures but forming a
functionally equivalent combination are also enabled by this profile.

� Use of a mobile phone to browse and retrieve the images stored on a digital
still camera. These images may then be stored locally or forwarded to a

Profile Overview 30 July 2003 13

<Title Of Document> Page 14 of 99
Confidential Bluetooth SIG, Inc.

third party via a PLMN network. Scenarios involving imaging devices of
different natures but forming a functionally equivalent combination are also
enabled by this profile.

� Use of a PC to automatically download the content of a digital still camera
as soon as the camera comes into the vicinity of the PC. Scenarios
involving imaging devices of different natures but forming a functionally
equivalent combination are also enabled by this profile.

� Use of a printer to print one or more images sent from a digital still camera.
Scenarios involving imaging source devices of a different nature but with
equivalent functionally could also be implemented.

� Use of a mobile phone to control the shutter of a digital still camera and
immediately examine the result on the phone’s screen. In the present
scenario, any other portable imaging device could play the role of the
mobile phone.

� Use of a laptop computer to send and control the display of images by a
projector device. Scenarios involving imaging source devices of a different
nature but equivalent functionality can also be implemented. The role of the
projector could potentially be played by any device with display capability.

2.4 Profile Fundamentals

The profile fundamentals are the same as those defined in the GOEP.

This profile does not mandate that either the server or the client enter the
discoverable or connectable mode automatically even if they are able to do
so.

User interaction is always needed to trigger one of the six features defined in
Section 3.2, where “user interaction” includes both on-the-fly interaction and
use of pre-configured settings.

2.5 Conformance

If conformance to this profile is claimed, all capabilities indicated as mandatory
for this profile shall be supported in the specified manner (process
mandatory). This also applies to all optional and conditional capabilities for
which support is indicated. All mandatory capabilities and optional and
conditional capabilities for which support is indicated are subject to verification
as part of the Bluetooth Qualification program.

Profile Overview 30 July 2003 14

<Title Of Document> Page 15 of 99
Confidential Bluetooth SIG, Inc.

3 User Interface Aspects

3.1 Mode Selection

There is a mode associated with the Basic Imaging Profile. It affects how the
Imaging Responder is configured.

Bluetooth Imaging Mode enables the Imaging Responder to maintain a
connection and receive commands from Imaging Initiators. As a result of
entering Bluetooth Imaging Mode:

� Devices that wish to be discoverable for a limited period of time shall be in
limited discoverable mode and in connectable mode. It is expected that
most implementations will take this approach.

� Devices that wish to be discoverable all the time shall be in general
discoverable mode and in connectable mode.

� Devices that wish to be hidden from devices they never talked to before
shall be in non-discoverable mode and in connectable mode.

The setting of the CoD bits – together with the registration of all the local
imaging applications in the SDP database of the Imaging Responder – may
also be influenced by entry into Bluetooth Imaging Mode. Note that the
publication of the present profile is accompanied by the introduction of an
Imaging specific Major Device Class and associated Minor Device Class
values in the Assigned Numbers specification [14]

It is recommended that Bluetooth Imaging Mode be entered and exited via
user interaction, but depending on the nature of the Imaging Responder and
on the application it is running, this mode may be entered automatically.

On the inquiring side, limited inquiry as described in [10] is the preferred
inquiry procedure.

3.2 Features
There are six features associated with the Basic Imaging Profile:

• Image Push

• Image Pull

• Advanced Image Printing

• Automatic Archive

• Remote Camera

• Remote Display

User Interface Aspects 30 July 2003 15

<Title Of Document> Page 16 of 99
Confidential Bluetooth SIG, Inc.

The Image Push feature pushes one or more images to an Imaging
Responder device. As a result of being pushed, an image could be displayed,
stored, buffered, or printed.

The Image Pull feature browses through the images stored on the Imaging
Responder device and downloads one or more of them as requested by the
user.

The Advanced Image Printing feature is designed for the usage case where
the Imaging Responder is a printer or printing-enabled device. This feature
enables an Imaging Initiator device to specify print job options and produces
richer output than that obtained by using the Image Push feature.

The Automatic Archive feature triggers the Imaging Responder device to
download from the Imaging Initiator device all or part of the images stored on
that device. It is up to the Imaging Responder to determine which images to
download – the Automatic Archive feature could, for instance, be combined
with a synchronization application that would retrieve only new images from
the Imaging Initiator device.

The Remote Camera feature allows the user of the Imaging Initiator device to
view thumbnail size monitoring images as seen by the Imaging Responder
device and trigger the shutter of the Imaging Responder when desired. The
Imaging Responder is a device with image capture capability, such as a digital
still camera.

The Remote Display feature allows the user to push images to an Imaging
Responder with display capability and control the display sequence of those
images.

These basic imaging features should be triggered by the user. They should
not generally be performed automatically unless such action is the result of a
configuration setting that is under user control.

3.3 Example Feature Sequences

The sequences presented in this section are examples. Variations in
implementation are possible and allowed.

In the following sequences, with the exception of Automatic Archive, pairing
can be performed as necessary and is left to the implementer’s discretion. All
devices must support pairing as defined in the GAP. In the case of Automatic
Archive, it is highly recommended that pairing be a prerequisite to the use of
that feature.

Note that the list of Imaging Responders that is displayed on the Imaging
Initiator can be the result of a simple inquiry. It can also result from an inquiry

User Interface Aspects 30 July 2003 16

<Title Of Document> Page 17 of 99
Confidential Bluetooth SIG, Inc.

combined with a name request and/or SDP requests, or it can consist of a list
of previously paired devices that the Imaging Initiator maintains internally.

3.3.1 Example Image Push Sequence

When an Imaging Initiator wants to push an image to an Imaging Responder
the following sequence can occur:

Imaging Initiator Imaging Responder

 The user sets the device into
Bluetooth Imaging Mode.

The user of the Imaging Initiator
selects the Image Push feature on
the device.

A list of devices is displayed to the
user.

The user selects a device to push
the image to.
If the selected device does not
support the Basic Imaging Profile,
the user is prompted to select
another device.

The user selects an image and
sends it.

 When the image is received by the
Imaging Responder, the user is
asked to accept or reject the image.

The user is notified of the result of
the operation.

3.3.2 Example Image Pull Sequence

When an Imaging Initiator wants to browse the images stored on an Imaging
Responder, the following sequence can occur:

Imaging Initiator Imaging Responder

 The user sets the device into
Bluetooth Imaging Mode.

The user of the Initiator selects the
Image Pull feature on the device.

A list of devices is displayed to the
user.

The user selects a device to pull
images from.
If the selected device does not
support the Basic Imaging Profile,
the user is prompted to select
another device.

The list of stored pictures is
displayed to the user.

The user can at any moment decide
to retrieve an image or a collection of
images he or she is interested in.

The user is notified of the result of
the operation.

User Interface Aspects 30 July 2003 17

<Title Of Document> Page 18 of 99
Confidential Bluetooth SIG, Inc.

3.3.3 Example Advanced Image Printing Sequence

When an Imaging Initiator wants to print an image, the following sequence can
occur:

Imaging Initiator Imaging Responder

 The user sets the device into
Bluetooth Imaging Mode.

The user of the Imaging Initiator
selects the Advanced Image Printing
feature on the device.

A list of printers is displayed to the
user.

The user selects a printer to push the
image to.
If the selected printer does not
support the Basic Imaging Profile,
the user is prompted to select
another printer.

The user selects an image or a
collection of images and sends it.
The user specifies, for each
individual image, the number of
copies to produce, and (if necessary)
a date stamp, a title stamp, and a
frame number stamp.

 The printer prints the image(s).

The user is notified of the result of
the operation.

3.3.4 Example Automatic Archive Sequence

When an Imaging Initiator implements the Automatic Archive feature, the
following sequence can occur:

Imaging Initiator Imaging Responder

 The user configures the Imaging
Responder for Bluetooth Imaging
Mode (for example, through the
configuration panel of PC operating
systems).

The user of the Imaging Initiator
selects the Automatic Archive feature
on the device. The Imaging Initiator
connects automatically to the
Imaging Responder (the devices
have been previously paired).

 The Imaging Responder device
downloads images from the Imaging
Initiator device.

The user is notified of the result of
the operation.

By providing the means to identify new and modified images on the Imaging
Initiator, the Automatic Archive feature provides the necessary tools to allow

User Interface Aspects 30 July 2003 18

<Title Of Document> Page 19 of 99
Confidential Bluetooth SIG, Inc.

for intelligence in the Imaging Responder’s download application so that only
the necessary images are retrieved.

This feature can be potentially sensitive from a security point of view.
Implementers must ensure that the level of security they chose to provide is
appropriate.

3.3.5 Example Remote Camera Sequence

When an Imaging Initiator wants to remotely control an image capture device,
the following sequence can occur:

Imaging Initiator Imaging Responder

 The user sets the device into
Bluetooth Imaging Mode.

The user of the Imaging Initiator
selects the Remote Camera feature
on the device.

A list of devices is displayed to the
user.

The user selects a device to control.
If the selected device does not
support the Basic Imaging Profile,
the user is prompted to select
another device.

The current view is displayed to the
user.

The user triggers the shutter of the
Imaging Responder via the user
interface of the Imaging Initiator.

 The image is captured and stored.

The resulting image is displayed to
the user.

3.3.6 Example Remote Display Sequence

When an Imaging Initiator wants to remotely control an image display device,
the following sequence can occur:

Imaging Initiator Imaging Responder

 The user sets the device into
Bluetooth Imaging Mode.

The user of the Imaging Initiator
selects the Remote Display feature
on the device.

A list of devices is displayed to the
user.

The user selects a device to send
the images to and have them
displayed.
If the selected device does not
support the Basic Imaging Profile,
the user is prompted to select
another device.

User Interface Aspects 30 July 2003 19

<Title Of Document> Page 20 of 99
Confidential Bluetooth SIG, Inc.

The user pushes images to the
Imaging Responder and/or sends
commands to pilot the image display
sequence.

 The images are displayed as
specified by the Imaging Initiator.

User Interface Aspects 30 July 2003 20

<Title Of Document> Page 21 of 99
Confidential Bluetooth SIG, Inc.

4 Application Layer

This section describes the feature requirements for devices compliant with the
Basic Imaging Profile.

For each feature described in this chapter, an open OBEX Imaging Service
session is assumed. This means that all features can be invoked only after a
successful connection request/response to the Imaging Service of an Imaging
Responder. Whether to close the Imaging Service session after each feature
invocation or leave it open for future feature invocations is left to the
implementer’s discretion.

Note that for some features a secondary OBEX connection must be
established; for example, the Imaging Responder opens a Referenced
Objects session by issuing a connection request to the Imaging Initiator (these
procedures are detailed in Section 5). In such a case, the secondary
connection must be terminated before any other feature can be invoked on the
primary OBEX connection.

4.1 Imaging Devices Classification

The requirements imposed on devices by the Basic Imaging Profile depend on
the device’s declared capabilities. The one common requirement imposed on
all devices implementing the Basic Imaging Profile is the ability to exchange
imaging data. There are three optional capabilities that enable a device to
remotely control another device or to be remotely controlled itself:

The Basic Imaging Profile common capability:

� Generic Imaging: The ability to exchange imaging data.

The optional remote control capabilities:

� Bluetooth Controlled Capturing: The capture of an image, using an optical
system, via a Bluetooth interface. (A digital still camera that does not have
a shutter that can be triggered via a Bluetooth interface is not considered a
controlled capture device.)

� Bluetooth Controlled Printing: The printing of images via a Bluetooth
interface that is also used to transfer images.

� Bluetooth Controlled Display: The display of images, controlled via a
Bluetooth interface that is also used to transfer the images.

In all four capabilities, imaging data is transferred between a device that acts
as source and a device that acts as destination; the role (source or

Application Layer 30 July 2003 21

<Title Of Document> Page 22 of 99
Confidential Bluetooth SIG, Inc.

destination) is inconsequential when classifying a device according to these
capabilities.

Figure 4-1: Imaging Products Classification

4.2 Imaging Features Overview

This section lists the features provided by this profile and the required degree
of support classified by imaging capability.

 Imaging Capability
Feature Generic Imaging Bluetooth

Controlled
Printing

Bluetooth
Controlled
Capturing

Bluetooth
Controlled
Display

Image Push C1 M O O
Image Pull C1 O O O
Automatic Archive O O O O
Advanced Image Printing O M O O
Remote Camera O O M O
Remote Display O O O M

C1 indicates that at least one of the features must be supported.

Table 4-1: Imaging Features Overview

Consequently, for a device to qualify as a Basic Imaging Profile-enabled
device, it shall at least be able to act as Image Push Client or Image Pull
Client or Image Push Server or Image Pull Server.

Application Layer 30 July 2003 22

<Title Of Document> Page 23 of 99
Confidential Bluetooth SIG, Inc.

4.3 Imaging Features

The tables in this section describe the functions associated with each feature
and the level of support required for each function. There are two tables per
feature, one corresponding to the requirements applicable when the feature is
supported by an Imaging Initiator device, and one corresponding to the
requirements applicable when the feature is supported by an Imaging
Responder device.

Each table lists the functions that comprise a given feature; the columns
indicate the level of support required for each function. When a feature
requires only a primary OBEX session (see Section 5), the Imaging Initiator
only needs to support the client portion of the OBEX Imaging Service and the
Imaging Responder only needs to support the server portion of the OBEX
Imaging Service. When a feature requires both primary and secondary OBEX
sessions, some functions must be supported by both client and server portions
of the OBEX Imaging Service.

Note that it is illegal to use a function in the context of a given feature if that
function is not associated with the feature in this section. An illegal function
request should be rejected with a “Bad Request” error code (see 5.3).

4.3.1 Image Push Feature

This feature enables an Imaging Initiator to send one or more images to an
Imaging Responder.

This feature is comprised of four functions:

 Function
OBEX Imaging Service
Client

GetCapabilities O
PutImage M
PutLinkedThumbnail M

Functions as Imaging
Initiator

PutLinkedAttachment O

 Function
OBEX Imaging Service
Server

GetCapabilities M
PutImage M
PutLinkedThumbnail O

Functions as Imaging
Responder

PutLinkedAttachment O

Table 4-2: Function Overview for Image Push

The PutImage function pushes an image to an Imaging Responder.

When the PutImage function is used to push an image to a device where
printing is the only possible outcome for an exchange of imaging data, the
PutImage function results in the image being printed. If the Imaging
Responder has multiple services capable of receiving images, the channel

Application Layer 30 July 2003 23

<Title Of Document> Page 24 of 99
Confidential Bluetooth SIG, Inc.

used to open the OBEX connection determines the outcome of the image
exchange. See Section 6 for details.

It is always possible to send a thumbnail (see Section 4.4.2) to an imaging
device that supports the Image Push feature as an Imaging Responder.

Although optional to support on an Imaging Initiator device, it is highly
recommended that the Imaging Initiator use the GetCapabilities function prior
to making an attempt to push images to an Imaging Responder. The imaging-
capabilities object retrieved by the GetCapabilities function describes – among
other attributes – the Imaging Responder’s level of support for image
encodings and sizes. Ignoring this imaging-capabilities object may result in
attempts to push images in formats unacceptable to the Imaging Responder.

PutLinkedThumbnail is used to push the thumbnail version of an image that
was pushed to the Imaging Responder at an earlier time during the current
session; this action is taken in response to a request from the Imaging
Responder when it replies to a PutImage operation. A PutLinkedThumbnail
operation is always immediately preceded by a PutImage operation.

PutLinkedAttachment is used to push an attachment associated with an
image; PutLinkedAttachment is always preceded by a PutImage operation.

A typical function sequence for the Image Push feature is illustrated below.

Imaging Initiator
disconnects from the
Imaging Responder device

Imaging Initiator invokes
PutImage to send an
image, repeating this as
many times as there are
images to send

Imaging Initiator invokes
GetCapabilities to retrieve
information about the
capabilities of the Imaging
Responder

Imaging Initiator connects
to the Imaging Service of
the Imaging Responder

Figure 4-2: Typical Image Push Sequence

Application Layer 30 July 2003 24

<Title Of Document> Page 25 of 99
Confidential Bluetooth SIG, Inc.

4.3.2 Image Pull Feature

This feature enables an Imaging Initiator device to browse the images
available on an Imaging Responder and retrieve those of interest.

The Image Pull feature is comprised of seven functions:
 Function OBEX Imaging Service Client

GetCapabilities O
GetImagesList M
GetImageProperties O
GetImage C1
GetLinkedThumbnail C1
GetLinkedAttachment O

Functions as Imaging Initiator

DeleteImage O

 Function
OBEX Imaging Service
Server

GetCapabilities M
GetImagesList M
GetImageProperties M
GetImage M
GetLinkedThumbnail M
GetLinkedAttachment O

Functions as Imaging
Responder

DeleteImage O

C1 indicates that at least one of those functions must be supported.

Table 4-3: Function Overview for Image Pull

GetCapabilities enables an Imaging Initiator to discover an Imaging
Responder’s level of support for various imaging capabilities.

GetImagesList returns a list of handles for the images available on the
Imaging Responder, together with file information such as creation date and
modification date.

GetImageProperties is used to retrieve information regarding the image
formats, encodings, etc. available for an image.

GetImage enables an Imaging Initiator to retrieve an image from an Imaging
Responder with a specified format, encoding, etc.

GetLinkedThumbnail enables an Imaging Initiator to retrieve the thumbnail
version of an image. It is also possible to retrieve a thumbnail using the
GetImage function by specifying the thumbnail format – GetLinkedThumbnail
is essentially a shortcut useful on very limited devices that deal only with
thumbnail images.

GetLinkedAttachment enables an Imaging Initiator to retrieve an attachment
associated with an image.

Application Layer 30 July 2003 25

<Title Of Document> Page 26 of 99
Confidential Bluetooth SIG, Inc.

DeleteImage is used to delete an image from the Imaging Responder. It is
recommended that the Imaging Responder also delete any attachments
associated with the image, but this is left to the implementer’s discretion.

A typical function sequence for the Image Pull feature is illustrated below.

Imaging Initiator invokes
GetImagesList to get the
list of images available on
the Imaging Responder

Imaging Initiator invokes
GetImageProperties to
retrieve properties for an
image (size, encoding,
etc.)

Imaging Initiator
disconnects from the
Imaging Responder device

Imaging Initiator invokes
GetCapabilities to retrieve
information about the
capabilities of the Imaging
Responder

Imaging Initiator invokes
GetImage to retrieve an
image

Imaging Initator connects
to the Imaging Service of
the Imaging Responder

Figure 4-3: Typical Image Pull Sequence

4.3.3 Advanced Image Printing Feature

This feature provides enhanced capabilities for image printing. As described in
Section 4.3.1, it is possible to print images using the Image Push feature.

Application Layer 30 July 2003 26

<Title Of Document> Page 27 of 99
Confidential Bluetooth SIG, Inc.

Image Push, however, does not provide a mechanism to specify output
parameters such as the number of copies to print or how to print several
images on a single page. The Advanced Image Printing feature provides
these more advanced features.

The Advanced Image Print feature is comprised of four functions:

 Function
OBEX Imaging
Service Client

OBEX Referenced
Objects Service Server

GetCapabilities (C) O N/A
GetPartialImage (S) N/A M Functions as Imaging

Initiator StartPrint (C) M X
 GetStatus (C) O X

 Function
OBEX Imaging
Service Server

OBEX Referenced
Objects Service Client

GetCapabilities (S) M N/A
GetPartialImage (C) N/A M
StartPrint (S) M X

Functions as Imaging
Responder

GetStatus (S) M X

X indicates that the corresponding role is prohibited.
N/A indicates that the corresponding role is not applicable.
(C) indicates that the function is to be implemented as Client.
(S) indicates that the function is to be implemented as Server.

Table 4-4: Function Overview for Advanced Image Printing

GetCapabilities enables an Imaging Initiator to retrieve the printing capabilities
of an Imaging Responder.

StartPrint enables an Imaging Initiator to trigger a print job. The Imaging
Responder then opens a separate OBEX connection to the Referenced
Objects Service of the Imaging Initiator.

GetPartialImage is used by the Imaging Responder to retrieve the images that
are necessary to perform the print job requested by the Imaging Initiator. It is
an enhanced version of the GetImage function, specially designed for devices
with print capability but with very little or no buffer capacity.

A typical function sequence for the Advanced Imaging Printing feature is
illustrated below.

Application Layer 30 July 2003 27

<Title Of Document> Page 28 of 99
Confidential Bluetooth SIG, Inc.

Imaging Initiator
disconnects from the
Imaging Responder device

Imaging Responder
disconnects from the
Imaging Initiator device

Imaging Responder
invokes GetPartialImage
one or more times to
retrieve images

Imaging Responder
connects to the
Referenced Objects
Service of the Imaging
Initiator as a GOEP client

Imaging Initiator invokes
StartPrint

Imaging Initiator invokes
GetCapabilities to retrieve
information about the
printing capabilities of the
Imaging Responder

Imaging Initiator connects
to the Imaging Service of
the Imaging Responder

Figure 4-4: Typical Advanced Image Printing Sequence

In Figure 4-4, blocks in white describe actions by the Imaging Initiator device
with respect to the connection it establishes to the Imaging Responder’s
Imaging Service. Blocks in grey describe actions by the Imaging Responder
device with respect to the connection it establishes to the Imaging Initiator’s
Referenced Objects Service.

Application Layer 30 July 2003 28

<Title Of Document> Page 29 of 99
Confidential Bluetooth SIG, Inc.

4.3.4 Automatic Archive Feature

The Automatic Archive feature enables an Imaging Initiator to request that an
Imaging Responder with sufficient storage capacity retrieve all or part of its
stored images. The typical usage case is that of a digital still camera that
requests that a PC drain its recently captured images.

The Automatic Archive feature is comprised of nine functions:

 Function
OBEX Imaging
Service Client

OBEX Automatic
Archive Service Server

GetCapabilities (S) N/A M
GetImagesList (S) N/A M
GetImageProperties (S) N/A M
GetImage (S) N/A M
GetLinkedThumbnail (S) N/A M
GetLinkedAttachment (S) N/A O
DeleteImage (S) N/A O

Functions as
Imaging
Initiator

StartArchive (C) M X
 GetStatus (C) O X

 Function
OBEX Imaging
Service Server

OBEX Automatic
Archive Service Client

GetCapabilities (C) N/A O
GetImagesList (C) N/A M
GetImageProperties (C) N/A O
GetImage (C) N/A C1
GetLinkedThumbnail (C) N/A C1
GetLinkedAttachment (C) N/A O
DeleteImage (C) N/A O

Functions as
Imaging
Responder

StartArchive (S) M X
 GetStatus (S) M X

X indicates that the corresponding role is prohibited.
C1 indicates that at least one of those functions must be supported.
N/A indicates that the corresponding role is not applicable.
(C) indicates that the function is to be implemented as Client.
(S) indicates that the function is to be implemented as Server.

Table 4-5: Function Overview for Automatic Archive

GetCapabilities enables an Imaging Responder to discover an Imaging
Initiator’s level of support for various imaging capabilities.

GetImagesList returns a list of handles for the images available on the
Imaging Initiator, together with file information such as creation date and
modification date.

GetImageProperties is used to retrieve information regarding the formats,
encodings, etc. available for an image.

Application Layer 30 July 2003 29

<Title Of Document> Page 30 of 99
Confidential Bluetooth SIG, Inc.

GetImage enables an Imaging Responder to retrieve an image from an
Imaging Initiator with a specified format, encoding, etc.

GetLinkedThumbnail enables an Imaging Responder to retrieve the thumbnail
version of an image.

GetLinkedAttachment enables an Imaging Responder to retrieve an
attachment associated with an image.

DeleteImage is used to delete an image from the Imaging Initiator. It is
recommended that the Imaging Initiator also delete any attachments
associated with the image, but this is left to the implementer’s discretion.

StartArchive is used by the Imaging Initiator to request that the Imaging
Responder begin the archiving process.

A typical function sequence for the Automatic Archive feature is illustrated in
figure 4-5.

Application Layer 30 July 2003 30

<Title Of Document> Page 31 of 99
Confidential Bluetooth SIG, Inc.

Imaging Responder
invokes GetImagesList to
retrieve the list of images
available on the Imaging
Initiator

Imaging Initiator
disconnects from the
Imaging Responder device

Imaging Responder
disconnects from the
Imaging Initiator device

Imaging Responder
invokes GetImage to
retrieve the images to be
archived

Imaging Responder
connects to the Archive
service of the Imaging
Initiator as a GOEP client

Imaging Initiator invokes
StartArchive

Imaging Responder
invokes GetCapabilities to
retrieve information about
the capabilities of the
Imaging Initiator

Imaging Initiator connects
to the Imaging Service of
the Imaging Responder

Figure 4-5: Typical Automatic Archive Sequence

Application Layer 30 July 2003 31

<Title Of Document> Page 32 of 99
Confidential Bluetooth SIG, Inc.

4.3.5 Remote Camera Feature

This feature enables a user to view monitoring images as seen by an image
capture device, remotely trigger the shutter of the device, and have the device
store the resulting image.

 The Remote Camera feature is comprised of four functions:
 Function OBEX Imaging Service Client

GetMonitoringImage M
GetImageProperties O
GetImage O

Functions as Imaging
Initiator

GetLinkedThumbnail O

Functions as Imaging
Responder Function

OBEX Imaging Service
Server

GetMonitoringImage M
GetImageProperties M
GetImage M

Functions as Imaging
Responder

GetLinkedThumbnail M

Table 4-6: Function Overview for Remote Camera

GetMonitoringImage is used to retrieve the monitoring image object from an
Imaging Responder device with image capture capability. The Imaging Initiator
can also indicate whether the Imaging Responder should permanently store
the image corresponding to this monitoring image.

GetImageProperties is used to retrieve information regarding the image
formats, encodings, etc. available for an image.

GetImage enables an Imaging Initiator to retrieve an image from an Imaging
Responder with a specified format, encoding, etc.

GetLinkedThumbnail enables an Imaging Initiator to retrieve the thumbnail
version of an image. It is also possible to retrieve a thumbnail using the
GetImage function by specifying the thumbnail format – GetLinkedThumbnail
is essentially a shortcut useful on very limited devices that deal only with
thumbnail images.

A typical function sequence for the Remote Camera feature is illustrated in
figure 4-6.

Application Layer 30 July 2003 32

<Title Of Document> Page 33 of 99
Confidential Bluetooth SIG, Inc.

Application Layer 30 July 2003 33

Imaging Initiator
disconnects from the
Imaging Responder device

Imaging Initiator
repeatedly invokes
GetMonitoringImage with
StoreFlag = 0 to retrieve
the monitoring images
seen by the Imaging
Responder

Imaging Initiator invokes
GetMonitoringImage with
StoreFlag = 1, signaling
the Image Responder to
trigger its shutter, store the
image, and return the
monitoring image together
with the handle of the
corresponding stored
image

Imaging Initiator connects
to the Imaging Service of
the Imaging Responder

Figure 4-6: Typical Remote Camera Sequence

4.3.6 Remote Display Feature

This feature enables an Imaging Initiator to push images to a display device
and control the sequence used to display those images.

<Title Of Document> Page 34 of 99
Confidential Bluetooth SIG, Inc.

The Remote Display feature is comprised of five functions:
 Function OBEX Imaging Service Client

GetCapabilities O
PutImage M
PutLinkedThumbnail M
GetImagesList O

Functions as Imaging Initiator

RemoteDisplay M

 Function
OBEX Imaging Service
Server

GetCapabilities M
PutImage M
PutLinkedThumbnail O
GetImagesList M

Functions as Imaging
Responder

RemoteDisplay M

Table 4-7: Function Overview for Remote Display

The PutImage function pushes an image to the Imaging Responder. The
Imaging Responder should not immediately display the received image, but
instead should wait for the Imaging Initiator to invoke the RemoteDisplay
function.

Although optional to support on the Imaging Initiator device, it is highly
recommended that the Imaging Initiator use the GetCapabilities function prior
to making an attempt to push images to an Imaging Responder. The imaging-
capabilities object retrieved by the GetCapabilities function describes – among
other attributes – the Imaging Responder’s level of support for image
encodings and sizes. Ignoring this imaging-capabilities object may result in
attempts to push images in formats unacceptable to the Imaging Responder.

PutLinkedThumbnail is used by the Imaging Initiator to send the thumbnail
version of an image to the Imaging Responder.

GetImagesList returns a list of handles for the images available for display on
the Imaging Responder, together with file information such as creation date
and modification date. It is recommended that the Imaging Initiator keep track
of the handles returned as a result of each PutImage operation so the
command to display selected images can be used immediately. Devices that
do not wish to store the handles can use the GetImagesList function to
retrieve the list of handles.

The RemoteDisplay function is used to control the display of images on the
Imaging Responder. This command can be a simple “go to the next image” or
“go to the previous image”; the command can also select a specific image.

It is always possible to send images as thumbnails to an imaging device that
supports the Remote Display feature as an Imaging Responder.

Application Layer 30 July 2003 34

<Title Of Document> Page 35 of 99
Confidential Bluetooth SIG, Inc.

A typical function sequence for the Remote Display feature is illustrated in
figure 4-7.

Interleaved with the
ImagePush operations or
following completion of the
ImagePush operations, the
Imaging Initiator invokes
RemoteDisplay to control
the display of the Imaging
Responder

Imaging Initiator
disconnects from the
Imaging Responder device

Imaging Initiator invokes
GetCapabilities to retrieve
information about the
capabilities of the Imaging
Responder

Imaging Initiator invokes
ImagePush to push
images to the Imaging
Responder

Imaging Initiator connects
to the Imaging Service of
the Imaging Responder

Figure 4-7: Typical Remote Display Sequence

4.4 Imaging Profile Formats, Objects, and Parameters
4.4.1 Storage Formats Support

The present profile does not mandate support for any particular imaging data
storage format.

Application Layer 30 July 2003 35

<Title Of Document> Page 36 of 99
Confidential Bluetooth SIG, Inc.

4.4.2 Imaging File Formats Support

The present profile does not mandate support for any particular imaging file
format for local storage. The method used to store images in a Bluetooth
imaging device is left to the implementer’s discretion.

The only requirement, in terms of file formats, for an imaging device to be
compliant with the Basic Imaging Profile is that it must be able to produce a
thumbnail (called an imaging thumbnail) for each and every image that it
exposes to other devices. This imaging thumbnail may be a result of a
conversion performed locally or it may have been created when the
associated full-size image was captured.

Other image encodings, namely GIF, PNG, BMP, WBMP, and JPEG2000, are
also supported in this profile. There is, however, no interoperability guarantee:

� Interoperability presupposes that both parties (Initiator and Responder)
support the same encoding, while the only encoding mandated by this
profile is the imaging thumbnail.

� These other encodings have many variants using different encoding
parameters and options. Since most of these encodings have one or more
defacto variants that codecs are assumed to support, interoperability
problems should be rare. However, there are cases – especially for
JPEG2000, which has yet to be widely deployed in the imaging industry –
where it’s possible that an image file exchanged between two devices
supporting this profile may not be correctly interpreted even though both
devices indicate support for the encoding.

The specifications for JPEG, GIF, WBMP, PNG, BMP, and JPEG2000 are
[17], [20], [21], [22], [23], and [24], respectively.

4.4.3 Imaging Thumbnail

The definition of a thumbnail in Bluetooth Imaging (also called an imaging
thumbnail in this profile) is as follows:

� JPEG baseline-compliant

� sRGB as default colour space

� Pixel size: 160x120

� Sampling: YCC422

� One marker segment for each DHT and DQT

� Typical Huffman table

� DCF thumbnail file as file format (i.e. EXIF with the thumbnail container in
APP1 empty and the imaging thumbnail as basic main image as defined in
[19])

Application Layer 30 July 2003 36

<Title Of Document> Page 37 of 99
Confidential Bluetooth SIG, Inc.

If the aspect ratio of the original image differs from 4:3, it is left to the
implementer to decide which method to use to produce the thumbnail
(padding, filling, cropping, etc.).

4.4.4 Imaging Handles

The Basic Imaging Profile is based on image handles. Image handles are
indices (similar to pointers) that are created and assigned by a device to its
locally stored images. Image handles are 7 character long strings containing
only the digits 0 to 9. Handles are only required to be unique on the source
device. Image handles on a device must be valid and unique throughout the
duration of a primary OBEX connection (see Section 5.5). On some
implementations, handles may be valid throughout the lifespan of the imaging
device, but this is not a requirement of this profile – handles can change each
time a new primary OBEX connection is established.

Image handles are always transported in an OBEX User Defined header
called “Img-Handle” (see Section 5).

The choice was made to express these handles as character strings rather
than binary values in order to facilitate their handling by digital cameras and
other devices with relatively simple file storage structures. Annex B:
Implementation Guidelines for DCF Devices gives handling guidelines for DCF
devices. Other devices that also have a simple file storage structure (typically
no directory nesting) may also apply the same guidelines.

4.4.5 Imaging Attachments

This profile supports the exchange of attachments linked with an image via its
handle. All operations related to attachments are marked with an OBEX Type
header of “x-bt/img-attachment”.

4.4.6 XML Headers and Objects

All XML headers and bodies are encoded using UTF-8.

Note that XML declarations (for example, <?xml version=”1.0”?>) that
normally mark the beginning of XML documents are not to be used in the
Basic Imaging Profile. Implementations that for some reason need to reuse
Basic Imaging Profile XML descriptions for other purposes may have to add
XML declarations when interfacing to applications or services outside the
scope of the profile.

4.4.6.1 Images-Listing Object (x-bt/img-listing)

The images-listing object describes the images available on an object
exchange server in the context of an OBEX session. Object exchange clients
can request images-listing objects from servers and control whether or not the

Application Layer 30 July 2003 37

<Title Of Document> Page 38 of 99
Confidential Bluetooth SIG, Inc.

returned list of image handles is ordered (see Section 4.5.6); clients can also
request that servers apply a filter to the images-listing object to narrow the
list’s scope (see Section 4.4.7.1). The images-listing object is associated with
the OBEX Type header “x-bt/img-listing”.

Definition

The images-listing object is based on the folder-listing object defined in
Section 9.1 of [8]. It describes the content of the imaging device in terms of
the images that an object exchange client can retrieve in the current OBEX
session.

<!DOCTYPE images-listing [
<!ELEMENT images-listing (image)* >
<!ATTLIST images-listing version CDATA #FIXED “1.0” >
<!ELEMENT image EMPTY>
<!ATTLIST image
 handle CDATA #REQUIRED
 created CDATA #IMPLIED
 modified CDATA #IMPLIED>
]>

The elements used in the images-listing object are defined as follows:
Element Name Meaning
images-listing The list of image handles available on an object exchange server

in the context of the current OBEX session.
image Signals the existence of an image that can be referenced by its

handle.

Table 4-8: Elements used in the images-listing Object

The attributes used in the images-listing object are defined as follows:
Attribute Name Meaning
version The version of the images-listing XML string.
handle The image’s handle.
created The image’s creation time. The format is

YYYYMMDDTHHMMSS, where the capital letter ‘T’ is explicitly
inserted between the day and hour fields. It is recommended that
whenever possible UTC time be used; when UTC time is used,
the letter ‘Z’ is appended to the end of the string.

modified The image’s modification time. It uses the same format as the
created attribute.

Table 4-9: Attributes used in the images-listing Object

Example images-listing XML String

The source device has three images. Image 1000001 was created on the 1st
of August 2000 at 6:00 UTC. Image 1000003 was created on the 1st of
August 2000 at 6:01:15 UTC and modified on the 8th of August at 07:15:00
UTC. Image 1000004 was created on the 1st of August 2000 at 6:01:37 UTC.

Application Layer 30 July 2003 38

<Title Of Document> Page 39 of 99
Confidential Bluetooth SIG, Inc.

The following images-listing object represents the content of the source
device:

<images-listing version=“1.0” >
<image handle=“1000001” created=“20000801T060000Z” />
<image handle=“1000003” created=“20000801T060115Z” modified=“20000808T071500Z” />
<image handle=“1000004” created=“20000801T060137Z” />
</images-listing>

4.4.6.2 Image-Properties Object (x-bt/img-properties)

The image-properties object describes the details of an image, including its
available sizes/encodings. The details included in the object can be tailored to
the needs of an object exchange client using filtering parameters as explained
in Section 4.4.7.2. The image-properties object is associated with the OBEX
Type header “x-bt/img-properties”.

Definition

The DTD for the image-properties object is as follows:

<!DOCTYPE image-properties [
<!ELEMENT image-properties (native, variant* ,attachment*) >
<!ATTLIST image-properties
 version CDATA #FIXED “1.0”
 handle CDATA #REQUIRED
 friendly-name CDATA #IMPLIED>

<!ELEMENT native EMPTY>
<!ATTLIST native
 encoding CDATA #REQUIRED
 pixel CDATA #REQUIRED
 size CDATA #IMPLIED>

<!ELEMENT variant EMPTY>
<!ATTLIST variant
 encoding CDATA #REQUIRED
 pixel CDATA #REQUIRED
 maxsize CDATA #IMPLIED
 transformation NMTOKENS #IMPLIED “stretch crop fill”>

<!ELEMENT attachment EMPTY>
<!ATTLIST attachment
 content-type CDATA #REQUIRED
 charset CDATA #IMPLIED
 name CDATA #REQUIRED
 size CDATA #IMPLIED
 created CDATA #IMPLIED

Application Layer 30 July 2003 39

<Title Of Document> Page 40 of 99
Confidential Bluetooth SIG, Inc.

 modified CDATA #IMPLIED>
]>

Note that the imaging thumbnail format must be included as an available
size/encoding in either the variant-image element or native-image element.

The elements used in the image-properties object are defined as follows:
Element Name Meaning
image-properties A detailed description of an image.
native Describes the native formats in which the image is available.
variant Describes the variant formats in which the image is available. A

variant format is a size/encoding of an image that is produced by
an object exchange server on the fly by applying relevant
transformations to one or more native forms of the image.

attachment Describes the attachments associated with an image.

Table 4-10: Elements used in the image-properties Object

The attributes used in the image-properties object are defined as follows:
Attribute Name Meaning
version The version of the image-properties XML string.
handle The image’s handle.
friendly-name A human-readable name for the image. This name can be the

file name of the image.
encoding An encoding method in which the image is available. The

encodings supported by this profile include JPEG, GIF, WBMP,
PNG, JPEG2000, BMP, and USR-xxx. The tag USR-xxx is used
to represent proprietary encodings. The tag must begin with the
string “USR-” but the implementer assigns the characters of the
second half of the string. This tag can be used by a manufacturer
to enable its devices to exchange images under a proprietary
encoding. It is recommended that the name of the manufacturer
or its abbreviation be included in the tag (for instance, USR-
NOKIA-FORMAT1). It is highly probable that devices
manufactured by other companies would not understand this
encoding.

pixel The pixel size or the range of pixel sizes in which the image is
available.
A fixed pixel size is expressed using the format W(idth)*H(eight).
The possible values for W(idth) and H(eight) range from 0 to
65535.
If the image can be resized to allow for a modified aspect ratio,
the pixel range is indicated using the format W(idth)1*H(eight)1-
W(idth)2*H(eight)2, where W(idth)1*H(eight)1 indicates the
smallest image size and W(idth)2*H(eight)2 gives the largest
image size. 65535*65535 can be used as W(idth)2*H(eight)2 to
indicate the absence of an upper limit.
For image resizing with a fixed aspect ratio, the pixel range is
expressed using the format W(idth)1**- W(idth)2*H(eight)2,
where W1 is the smallest width possible and W2*H2 is the
largest size possible. For each possible intermediate value of
W(idth), the corresponding height is calculated using the formula
H=(W*H2)/W2.

transformation The list of supported image transformation methods. “stretch”
indicates that the object exchange server is capable of stretching

Application Layer 30 July 2003 40

<Title Of Document> Page 41 of 99
Confidential Bluetooth SIG, Inc.

Attribute Name Meaning

the image. “fill” indicates the object exchange server can fill the
image with padding data. “crop” indicates that the object
exchange server can crop the image.

content-type Gives the MIME content type of the attachment; for example,
content-type=“text/plain”.
See http://www.isi.edu/in-notes/iana/assignments/media-types/
for content types.

charset The MIME character set of the attachment; for example,
charset=“iso-8859-1”.

name The file name of the attachment, which must be provided to the
object exchange server to retrieve the attachment.

size The size in bytes of the image file or an attachment.
maxsize The estimated maximum size of the image after conversion from

the native image. This value is an estimation since it is very
difficult to compute what the size of an image’s variant encoding
will be without actually performing the conversion.
This attribute is useful to assess whether the variant would suit
the storage limitations imposed by the device that requested the
image-properties object.
Although highly recommended to support, this attribute is
optional.

created The attachment’s creation time. The format is
YYYYMMDDTHHMMSS, where the capital letter ‘T’ is explicitly
inserted between the day and hour fields. It is recommended that
whenever possible UTC time be used; when UTC time is used,
the letter ‘Z’ is appended to the end of the string.

modified The attachment’s modification time. It uses the same format as
the created attribute.

Table 4-11: Attributes used in the image-properties Object

Example image-properties XML String

The following example illustrates how to build an image-properties object.

Image 1000001 is available in JPEG and in GIF encodings. In JPEG, it can be
delivered in 1280*1024, 640*480, or 160*120 sizes. In GIF, it can be delivered
with any resolution between 80*60 and 640*480. The native format of the
image is JPEG 1280*1024 and its size is 1 Mbyte (1048576 bytes). Two
attachments are available, one text and one audio; their sizes are 5 Kbytes
(5120 bytes) and 100 Kbytes (102400 bytes), respectively.

Application Layer 30 July 2003 41

http://www.isi.edu/in-notes/iana/assignments/media-types/

<Title Of Document> Page 42 of 99
Confidential Bluetooth SIG, Inc.

Figure 4-8: Example image-properties Representation

Application Layer 30 July 2003 42

<Title Of Document> Page 43 of 99
Confidential Bluetooth SIG, Inc.

The corresponding image-properties XML string follows:

<image-properties version=“1.0” handle=“1000001”>
<native encoding=“JPEG” pixel=“1280*1024” size=“1048576”/>
<variant encoding=“JPEG” pixel=“640*480” />
<variant encoding=“JPEG” pixel=“160*120” />
<variant encoding=“GIF” pixel=“80*60-640*480”/>
<attachment content-type=“text/plain” name=“ABCD0001.txt” size=“5120”/>
<attachment content-type=“audio/basic” name=“ABCD0001.wav” size=“102400”/>
</image-properties>

4.4.6.3 Imaging-capabilities Object (x-bt/img-capabilities)

The imaging-capabilities object is a complement to the Imaging SDP service
record. Imaging-capabilities is a mandatory object that describes in more
detail the various options, formats, and attributes that are supported by a
device. The imaging-capabilities object is associated with the OBEX Type
header “x-bt/img-capabilities”.

Definition

The DTD for the imaging-capabilities object is as follows:

<DOCTYPE! Imaging-capabilities [

<!ELEMENT imaging-capabilities (preferred-format? ,image-formats* ,attachment-formats*,
filtering-parameters?, DPOF-options?) >
<!ATTLIST imaging-capabilities
 version CDATA #FIXED “1.0” >

<!ELEMENT preferred-format EMPTY>
<!ATTLIST preferred-format
 encoding CDATA #REQUIRED
 pixel CDATA #IMPLIED
 transformation NMTOKENS #IMPLIED “stretch crop fill”
 maxsize CDATA #IMPLIED>

<!ELEMENT image-formats EMPTY>
<!ATTLIST image-formats
 encoding CDATA #REQUIRED
 pixel CDATA #IMPLIED
 maxsize CDATA #IMPLIED>

<!ELEMENT attachment-formats EMPTY>
<!ATTLIST attachment-formats
 content-type CDATA #REQUIRED
 charset CDATA #IMPLIED>

Application Layer 30 July 2003 43

<Title Of Document> Page 44 of 99
Confidential Bluetooth SIG, Inc.

<ELEMENT filtering-parameters EMPTY >
<!ATTLIST filtering-parameters
 created CDATA #IMPLIED
 modified CDATA #IMPLIED
 encoding CDATA #IMPLIED
 pixel CDATA # IMPLIED>

<!ELEMENT DPOF-options EMPTY >
<!ATTLIST DPOF-options
 standard-print CDATA #IMPLIED
 index-print CDATA #IMPLIED
 multiple-image-print CDATA #IMPLIED
 specific-size-print CDATA #IMPLIED
 number-sets CDATA #IMPLIED
 character-stamp CDATA #IMPLIED
 trimming CDATA #IMPLIED>
]>

The elements used in the imaging-capabilities object are defined as follows:
Element Name Meaning
imaging-capabilities A detailed description of the options, attributes, and formats

supported by an imaging device.
Image-formats Describes the formats in which images can be received by the

device.
preferred-format Describes the format in which an imaging device prefers to

receive images. The preferred-format is to be chosen among the
formats that the image-formats element indicates as supported
on the imaging device.

attachment-formats Describes supported attachment formats.
filtering-parameters Describes an imaging device’s ability to filter images as it builds

images-listing objects. If a device supports filtering based on a
particular image attribute, that attribute is listed in this element
with the value “1”. If a device does not support filtering based on
a particular image attribute, that attribute is either listed in this
element with the value “0” or is not listed at all (these methods
are equivalent and must be properly understood by an object
exchange client that parses imaging-capabilities objects). If
multiple attributes are listed in this element, the imaging device
must be capable of filtering using any combination of the
supported attributes.

DPOF-options Describes supported DPOF options. If a device supports a
particular DPOF option, an attribute for that option appears in
this element with the value “1”. If a device does not support a
particular DPOF option, an attribute for that option appears in
this element with the value “0” or does not appear at all.

Table 4-12: Elements used in the imaging-capabilities Object

Application Layer 30 July 2003 44

<Title Of Document> Page 45 of 99
Confidential Bluetooth SIG, Inc.

The attributes used in the imaging-capabilities object are defined as follows:
Attribute Name Meaning
version The version of the imaging-capabilities XML string.
encoding In the image-formats or preferred-format elements, this attribute

describes the encodings supported by the device. The encodings
supported by this profile include JPEG, GIF, WBMP, PNG,
JPEG2000, BMP, and USR-xxx. The tag USR-xxx is used to
represent proprietary encodings. The tag must begin with the
string “USR-” but the implementer assigns the characters of the
second half of the string. This tag can be used by a manufacturer
to enable its devices to exchange images under a proprietary
encoding. It is recommended that the name of the manufacturer
or its abbreviation be included in the tag (for instance, USR-
NOKIA-FORMAT1). It is highly probable that devices
manufactured by other companies would not understand this
encoding.
In the filtering-parameters element, this attribute indicates
whether or not the device can filter the images-listing object
based on encoding.

pixel In the image-formats or preferred-format elements, this attribute
describes the pixel size or the range of pixel sizes supported by
the device.
A fixed pixel size is expressed using the format W(idth)*H(eight).
The possible values for W(idth) and H(eight) range from 0 to
65535.
If the image can be resized to allow for a modified aspect ratio,
the pixel range is indicated using the format W(idth)1*H(eight)1-
W(idth)2*H(eight)2, where W(idth)1*H(eight)1 indicates the
smallest image size and W(idth)2*H(eight)2 gives the largest
image size. 65535*65535 can be used as W(idth)2*H(eight)2 to
indicate the absence of an upper limit.
For image resizing with a fixed aspect ratio, the pixel range is
expressed using the format W(idth)1**- W(idth)2*H(eight)2,
where W1 is the smallest width possible and W2*H2 is the
largest size possible. For each possible intermediate value of
W(idth), the corresponding height is calculated using the formula
H=(W*H2)/W2.
In the filtering-parameters element, this attribute indicates
whether or not the device can filter the images-listing object
based on pixel size.

transformation This attribute describes the preferred transformation method. If
an object exchange client is sending an image to an object
exchange server and must apply a transformation to the image
before sending it, the client can learn the server’s preferred
transformation method from this attribute. “stretch” indicates
stretching is preferred, “fill” indicates filling with padding data is
preferred, and “crop” indicates cropping is preferred.

maxsize This attribute defines the maximum file size in bytes acceptable
for an image. This attribute is used to set an upper limit to the
size of image files that can be accepted in a particular format.

content-type This attribute lists the MIME content-type of a supported
attachment type; for example, content-type=“text/plain”.
See http://www.isi.edu/in-notes/iana/assignments/media-types/
for content types.

charset This attribute lists the MIME character set of a supported
attachment type; for example, charset=“iso-8859-1”.

created This attribute indicates whether or not the device can filter the

Application Layer 30 July 2003 45

http://www.isi.edu/in-notes/iana/assignments/media-types/

<Title Of Document> Page 46 of 99
Confidential Bluetooth SIG, Inc.

Attribute Name Meaning

images-listing object based on creation date.
modified This attribute indicates whether or not the device can filter the

images-listing object based on modification date.
standard-print This attribute indicates support for DPOF standard print (PRT

TYP=STD).
index-print This attribute indicates support for DPOF index print (PRT

TYP=IDX).
multiple-image-print This attribute indicates support for DPOF multiple image print

(PRT TYP=MUL).
specific-size-print This attribute indicates support for DPOF specific size print (PRT

TYP = SIZ).
number-sets This attribute indicates support for the DPOF QTY parameter.
character-stamp This attribute indicates support for the DPOF DSC parameter.
trimming This attribute indicates support for the DPOF TRM parameter.

Table 4-13: Attributes used in the imaging-capabilities Object

The table below indicates the level of support required for each element of the
imaging-capabilities object based on the imaging features implemented by a
device.
 Image

Push
Image Pull Image

Advanced
Print

Automatic
Archive

Remote
Camera

Remote
Display

Situation R R R I R R
image-formats M N/U M N/U N/U M
preferred-
format

O N/U O N/U N/U O

attachment-
formats

O N/U N/U N/U N/U N/U

filtering-
parameters

N/U O N/U O N/U O

DPOF-options N/U N/U M N/U N/U N/U

Table 4-14: Minimum Requirements for the imaging-capabilities Object Depending on the
Feature in which it is used

R: Imaging Responder returns the imaging-capabilities object.
I: Imaging Initiator returns the imaging-capabilities object.
M: Corresponding element must be included in the imaging-capabilities object.
O: Corresponding element may be included in the imaging-capabilities object.
N/U: The corresponding element may or may not be included in the imaging-
capabilities object, but is not used in the feature.

Example imaging-capabilities XML String

An example imaging-capabilities object for a device supporting the Image
Push and Image Pull features is shown below.

<imaging-capabilities version=“1.0”>
<preferred-format encoding=“JPEG” pixel=“1280*960” />
<image-formats encoding=“JPEG” pixel=“160*120” maxsize=“5000” />

Application Layer 30 July 2003 46

<Title Of Document> Page 47 of 99
Confidential Bluetooth SIG, Inc.

<image-formats encoding=“JPEG” pixel=“320*240” />
<image-formats encoding=“JPEG” pixel=“640*480” />
<image-formats encoding=“JPEG” pixel=“1280*960” />
<attachment-formats content-type=“audio/basic” />
<filtering-parameters
 created=“1” modified=“1” />
</imaging-capabilities>

Note that the preferred-format, image-formats, and attachment-formats
elements only make sense for an Image Push or Remote Display scenario
(where the Imaging Initiator has to learn which formats the Imaging Responder
supports) or an Advanced Image Printing scenario (where the Imaging Initiator
prepares the images in a format the Imaging Responder understands). The
filtering-parameters element is used only when the Imaging Initiator uses an
imaging feature that includes the GetImagesList function.

An example imaging-capabilities object for a device supporting the Advanced
Image Printing feature is shown below.

<imaging-capabilities version=“1.0”>
<image-formats encoding=“JPEG” pixel=“640*480-1600*1200” />
<DPOF-options standard-print=“1” index-print=“1” number-sets=“1” trimming=“1” />
</imaging-capabilities>

4.4.6.4 Printer-control Object (x-bt/img-print)

The printer-control object is a text description of a print job based on the
DPOF 1.1 standard; The following figure illustrates an example file system
structure and its associated DPOF file.

Application Layer 30 July 2003 47

<Title Of Document> Page 48 of 99
Confidential Bluetooth SIG, Inc.

Figure 4-9: Example File System Structure

[HDR]
GEN REV = 01.10
GEN CRT = “Bluetooth camera” -01.00
GEN DTM = 2001:01:01:12:00:00

[JOB]
PRT PID = 001
PRT TYP = STD
PRT QTY = 001
IMG FMT = EXIF2 -J

CFG DSC = “100-0001” -ATR FID

[JOB]
PRT PID = 002
PRT TYP = STD
PRT QTY = 002
IMG FMT = EXIF2 -J

CFG DSC = “2000.12.24” -ATR DTM
CFG DSC = “100-0002” -ATR FID

Application Layer 30 July 2003 48

<Title Of Document> Page 49 of 99
Confidential Bluetooth SIG, Inc.

[JOB]
PRT PID = 003
PRT TYP = STD
PRT QTY = 001
IMG FMT = EXIF2 -J

CFG DSC = “2000.12.25” -ATR DTM
CFG DSC = “100-0003” -ATR FID

[JOB]
PRT PID = 004
PRT TYP = STD
PRT QTY = 003
IMG FMT = EXIF2 -J

CFG DSC = “102-0001” -ATR FID

[JOB]
PRT PID = 100
PRT TYP = IDX
PRT QTY = 001
IMG FMT = EXIF2 -J
IMG SRC = “../DCIM/100ABCDE/ABCD0001.JPG”
IMG SRC = “../DCIM/100ABCDE/ABCD0002.JPG”
IMG SRC = “../DCIM/100ABCDE/ABCD0003.JPG”
IMG SRC = “../DCIM/102_BLUE/BLUE0001.JPG”

4.4.6.5 Monitoring-image Object (x-bt/img-monitoring)

The monitoring-image object is created in the Remote Camera feature by an
image capture device, typically a digital still camera. The monitoring-image is
the same image that is displayed in a digital still camera’s viewfinder or LCD
display, and it’s typically based on the through-the-lens image but might – in
some implementations – imply operating a mechanical shutter. A monitoring-
image is not permanently stored on a digital still camera and hence doesn’t
have an image handle associated with it. When an object exchange client
requests a monitoring-image it should specify an OBEX Type header with the
value “x-bt/img-monitoring”. The returned monitoring-image is in the imaging
thumbnail format defined in Section 4.4.2. Note, however, that the monitoring-
image is likely to be of lower quality than a true imaging thumbnail or full size
image because digital still cameras typically do not perform the same amount
of processing on their monitoring/viewfinder images as they do on captured
images.

4.4.7 Imaging Descriptors

The imaging descriptors are used to control the content of images-listing
objects, describe the characteristics of images as they’re transferred, and

Application Layer 30 July 2003 49

<Title Of Document> Page 50 of 99
Confidential Bluetooth SIG, Inc.

describe the characteristics of attachments associated with images as they’re
transferred. Imaging descriptors are transferred in an OBEX User Defined
Header called “Img-Description” (see Section 5).

4.4.7.1 Image Handles Descriptor

The image handles descriptor is based on the DTD for the images-listing XML
string (see Section 4.4.6.1).

<!DOCTYPE image-handles-descriptor [

<!ELEMENT image-handles-descriptor (filtering-parameters) >
<!ATTLIST image-handles-descriptor
 version CDATA #FIXED “1.0” >

<!ELEMENT filtering-parameters EMPTY>
<!ATTLIST filtering-parameters
 created CDATA #IMPLIED
 modified CDATA #IMPLIED
 encoding CDATA #IMPLIED
 pixel CDATA # IMPLIED>
]>

The elements used in the image handles descriptor are defined as follows:
Element Name Meaning
image-handles-
descriptor

Controls the content of an image-listing object.

filtering-parameters In a Request:
Describes the filtering parameters to be used by an object
exchange server when selecting the images in an images-listing
object. When the filtering-parameters element contains several
filtering parameters, the filtering parameters supported by the
Server are logically ANDed in the filtering operation. The other
ones are ignored.
In a Response:
Describes the filtering parameters that were applied to the
Images-Listing object. In case no filtering was applied (either
because no filtering was requested or because none of the
requested filtering parameters are supported by the Server), the
Server can return an empty Img-Description header or an Img-
Description header with a XML string lacking a filtering-
parameters attribute.

Table 4-15: Elements used in the Image Handles Descriptor

The attributes used in the image handles descriptor are defined as follows:
Attribute Name Meaning
version The version of the image-handles-descriptor XML string.
created The range of image creation dates to be included in the images-

listing object. The format is YYYYMMDDTHHMMSS-
YYYYMMDDTHHMMSS, where the capital letter ‘T’ is explicitly

Application Layer 30 July 2003 50

<Title Of Document> Page 51 of 99
Confidential Bluetooth SIG, Inc.

Attribute Name Meaning

inserted between the day and the hour fields. It is recommended
that whenever possible UTC time be used; when UTC time is
used, the letter ‘Z’ is appended to the end of the string.
It is possible to replace one side of the above expression with a
‘*’ to specify all images created before or after a given date.

modified The range of modification dates to be included in the images-
listing object. It uses the same format as the created attribute.

encoding This attribute describes the image encoding to be used in the
filtering operation. It is not possible to indicate more than one
encoding. The encodings that are supported by this profile
include JPEG, GIF, WBMP, PNG, JPEG2000, BMP, and USR-
xxx. The tag USR-xxx is used to represent proprietary
encodings. The tag must begin with the string “USR-” but the
implementer assigns the characters of the second half of the
string. This tag can be used by a manufacturer to enable its
devices to exchange images under a proprietary encoding. It is
recommended that the name of the manufacturer or its
abbreviation be included in the tag (for instance, USR-NOKIA-
FORMAT1). It is highly probable that devices manufactured by
other companies would not understand such an encoding.

pixel The pixel size or range of pixel sizes to use for the filtering
operation.
A fixed pixel size is expressed using the format W(idth)*H(eight).
The possible values for W(idth) and H(eight) range from 0 to
65535.
If the image can be resized to allow for a modified aspect ratio,
the pixel range is indicated using the format W(idth)1*H(eight)1-
W(idth)2*H(eight)2, where W(idth)1*H(eight)1 indicates the
smallest image size and W(idth)2*H(eight)2 gives the largest
image size. 65535*65535 can be used as W(idth)2*H(eight)2 to
indicate the absence of an upper limit.
For image resizing with a fixed aspect ratio, the pixel-range is
expressed using the format W(idth)1**- W(idth)2*H(eight)2,
where W1 is the smallest width possible and W2*H2 is the
largest size possible. For each possible intermediate value of
W(idth), the corresponding height is calculated using the formula
H=(W*H2)/W2.

Table 4-16: Attributes used in the Image Handles Descriptor

If a filtering parameter is not to be used, it can be omitted entirely or set to an
empty string.

The following example illustrates the use of the image handles descriptor. An
object exchange client that wants to retrieve images created on the 1st of
January 2000 would construct this image handles descriptor:

< image-handles-descriptor version=“1.0” >
< filtering-parameters created=“20000101T000000Z-20000101T235959Z” />
< /image-handles-descriptor >

Note carefully that, unlike the images-listing object, the created and modified
attributes in the images-handle descriptor are specified as ranges with start
and stop dates/times separated by a ‘-’ character.

Application Layer 30 July 2003 51

<Title Of Document> Page 52 of 99
Confidential Bluetooth SIG, Inc.

4.4.7.2 Image Descriptor

The image descriptor is based on the DTD for the image-properties XML string
(Section 4.4.6.2). It is used to specify the properties of an image as it is
transferred. For the PutImage function, the image descriptor describes the
properties of the image being pushed. For the GetImage function, the image
descriptor describes the image-properties the object exchange client wants
the object exchange server to provide.

<!DOCTYPE image-descriptor [

<!ELEMENT image-descriptor (image) >
<!ATTLIST image-descriptor version CDATA #FIXED “1.0” >

<!ELEMENT image EMPTY>
<!ATTLIST image
 encoding CDATA #REQUIRED
 pixel CDATA #REQUIRED
 size CDATA #IMPLIED

 maxsize CDATA #IMPLIED
 transformation (stretch | fill | crop) #IMPLIED
]>

The elements used in the image descriptor are defined as follows:
Element Name Meaning
image-descriptor A description of an image’s properties.
image An individual image and its properties.

Table 4-17: Elements used in the Image Descriptor

The attributes used in the image descriptor are defined as follows:
Attribute Name Meaning
version The version of the images-descriptor XML string.
encoding The encoding for an image. The encodings supported by this

profile include JPEG, GIF, WBMP, PNG, JPEG2000, BMP, and
USR-xxx. The tag USR-xxx is used to represent proprietary
encodings. The tag must begin with the string “USR-” but the
implementer assigns the characters of the second half of the
string. This tag can be used by a manufacturer to enable its
devices to exchange images under a proprietary encoding. It is
recommended that the name of the manufacturer or its
abbreviation be included in the tag (for instance, USR-NOKIA-
FORMAT1). It is highly probable that devices manufactured by
other companies would not understand this encoding.
This attribute is mandatory. For the PutImage function, it is
mandatory to inform the object exchange server of the image’s
encoding. For the GetImage operation, this attribute is
mandatory but can be empty – an empty value indicates to the
object exchange server that any encoding is acceptable.

pixel The pixel size (or range of acceptable pixel sizes) for an image.
This attribute is mandatory.

Application Layer 30 July 2003 52

<Title Of Document> Page 53 of 99
Confidential Bluetooth SIG, Inc.

Attribute Name Meaning

1. For the PutImage function:
It is mandatory to inform the object exchange server of the
image’s size. Ranges are not acceptable. Only fixed sizes are
acceptable and are expressed using the format W(idth)*H(eight).
The possible values for W(idth) and H(eight) range from 0 to
65535.
2. For the GetImage function:
This attribute may be empty – an empty value indicates to the
object exchange server that any pixel size is acceptable.
In addition to a fixed value, it is also possible to pass a range as
a value, to inform that any size belonging to this range is
acceptable.
A free pixel range (not bound by aspect ratio considerations) is
indicated using the format W(idth)1*H(eight)1-
W(idth)2*H(eight)2, where W(idth)1*H(eight)1 indicates the
smallest image size and W(idth)2*H(eight)2 gives the largest
image size. 65535*65535 can be used as W(idth)2*H(eight)2 to
indicate the absence of an upper limit.
If a range of pixel sizes is acceptable but with the extra
condition that the aspect ratio stays untouched, the range must
be expressed using the format W(idth)1**- W(idth)2*H(eight)2,
where W1 is the smallest width possible and W2*H2 is the
largest size possible. For each possible intermediate value of
W(idth), the corresponding height is calculated using the formula
H=(W*H2)/W2.

size The size in bytes of the image file. This attribute only makes
sense for image-descriptors used for the PutImage function.

maxsize The maximum size in bytes acceptable for the image file. This
attribute only makes sense for image-descriptors used for the
GetImage function. The value of the maxsize attribute is to be
used by the GetImage Server as target file size (best effort) for
the variant image to produce.

transformation 1. For the PutImage function, the transformation applied to an
image before it was transferred.
2. For the GetImage function, the transformation that should be
applied to an image before it will be transferred. “stretch”
indicates image stretching, “fill” indicates filling with padding
data, and “crop” indicates image cropping.

Table 4-18: Attributes used in the Image Descriptor

An object exchange client invoking the PutImage function with a JPEG
encoded image with size 1280*960 pixels and a size of 500000 bytes would
construct this image descriptor:

< image-descriptor version=“1.0” >
< image encoding=“JPEG” pixel=“1280*960” size=“500000”/>
< /image-descriptor >

An object exchange client invoking the GetImage function and desiring a
JPEG encoded image with size 1280*960 pixels and 180 Kbytes (184320
bytes) as maximum acceptable size would construct this image descriptor:

Application Layer 30 July 2003 53

<Title Of Document> Page 54 of 99
Confidential Bluetooth SIG, Inc.

<image-descriptor version=“1.0” >
< image encoding=“JPEG” pixel=“1280*960” maxsize=“184320” />
</image-descriptor>

Omitting an attribute from an imaging descriptor used in conjunction with a
GetImage function signals no preference with respect to the omitted attribute.
For example, if an object exchange client specifies only an encoding attribute
of JPEG, the object exchange server is free to deliver a JPEG image of any
size.

The pixel attribute can also describe a range of acceptable sizes. For
example, if an object exchange client invoking the GetImage function wants
an image of 640*480 or smaller, it would specify the pixel attribute as “0*0-
640*480”. If the client wants the aspect ratio of those 640*480 or smaller
images to be constant, it would specify the pixel attribute as “0**-640*480”.

4.4.7.3 Attachment Descriptor

The attachment descriptor is based on the DTD for the image-properties
object (Section 4.4.6.2).

<!DOCTYPE attachment-descriptor [
<!ELEMENT attachment-descriptor (attachment) >
<!ATTLIST attachment-descriptor version CDATA #FIXED “1.0” >
<!ELEMENT attachment EMPTY>
<!ATTLIST attachment
 content-type CDATA #IMPLIED
 charset CDATA #IMPLIED
 name CDATA #IMPLIED
 size CDATA #IMPLIED
 created CDATA #IMPLIED>
]>

The attachment descriptor is used in conjunction with the
PushLinkedAttachment function to describe the properties of the attachment
to the object exchange server.

The elements used in the attachment descriptor are defined as follows:
Element Name Meaning
attachment-descriptor A description of an attachment associated with an image.
attachment An individual attachment and its properties.

Table 4-19: Elements used in the Attachment Descriptor

The attributes used in the attachment descriptor are defined as follows:
Attribute Name Meaning
version The version of the attachment-descriptor XML string.
content-type The MIME content-type of the attachment; for example, content-

Application Layer 30 July 2003 54

<Title Of Document> Page 55 of 99
Confidential Bluetooth SIG, Inc.

type=“text/plain”.
See http://www.isi.edu/in-notes/iana/assignments/media-types/
for content types.

charset The MIME character set of the attachment; for example,
charset=“iso-8859-1”.

name The file name of the attachment, which may or may not include a
path. This name is intended to be human-readable.

size The size in bytes of the attachment.
created The attachment’s creation time. The format is

YYYYMMDDTHHMMSS, where the capital letter ‘T’ is explicitly
inserted between the day and the hour fields. It is recommended
that whenever possible UTC time is used; when UTC time is
used, the letter ‘Z’ is appended to the end of the string.

Table 4-20: Attributes used in the Attachment Descriptor

An example attachment descriptor follows:

< attachment-descriptor version=“1.0” >
< attachment name=“DSCF0001.txt” content-type=“text/plain” size=“5000” />
< /attachment-descriptor >

4.5 Imaging Functions

This section describes each function defined in the Basic Imaging Profile. The
request and response message formats associated with each function are
described in tables that show the mandatory OBEX fields and headers in the
OBEX frame. Note that the position of the fields and headers within the frame
as illustrated in the following tables must be strictly followed. Headers that are
not specified in the tables may be used and placed after the headers that are
specified, but this profile does not guarantee that other implementations will
interpret them as intended.

4.5.1 GetCapabilities Function

The GetCapabilities function is used to retrieve the imaging-capabilities object
of an object exchange server.

The GetCapabilities request is formatted as follows:
Fields Opcode Get
 Packet Length Length of the packet
Headers ConnectionID Connection identifier
 Type x-bt/img-capabilities

Table 4-21: Format of the GetCapabilities Request

The GetCapabilities response is formatted as follows:
Fields Response Code Success or error code*
 Packet Length Length of the packet
Headers Body/EndOfBody Imaging-capabilities object

* See Section 5.3 for OBEX error codes.

Application Layer 30 July 2003 55

http://www.isi.edu/in-notes/iana/assignments/media-types/

<Title Of Document> Page 56 of 99
Confidential Bluetooth SIG, Inc.

Table 4-22: Format of the GetCapabilities Response

4.5.2 PutImage Function

The PutImage function is used to push an image to an object exchange
server.

Although not a mandatory requirement, it is highly recommended that
PutImage attempts to be preceded by retrieving the imaging-capabilities object
of the object exchange server so that images are sent to a server in a format
the server supports.

An object exchange server may use the PutImage response to request that
the client send the thumbnail version of the image it just received. This
capability is designed for servers that don’t have the ability to convert images
into the imaging thumbnail format.

The PutImage request message is formatted as follows:
Fields Opcode Put
 Packet Length Length of the packet
Headers ConnectionID Connection identifier
 Type x-bt/img-img
 Name Image name
 Img-Description Image descriptor
 Body/EndOfBody Image file

Table 4-23: Format of the PutImage Request

The PutImage response is formatted as follows:
Fields Response Code Success or Partial Content or error

code*
 Packet Length Length of the packet
Headers Img-Handle Image handle

* See Section 5.3 for OBEX error codes.

Table 4-24: Format of the PutImage Response

The image handle assigned to the newly received image by the object
exchange server must always be returned in the response message. This is
done so the object exchange client can send the thumbnail and/or
attachments that might be linked to the image using the PutLinkedThumbnail
or PutLinkedAttachment functions.

The Partial Content response code indicates that the server requests the
thumbnail version of the image just sent by the PutImage function. If an
operation involves several request-response messages (i.e. the image being
transferred doesn’t fit in one OBEX request message), the server must
respond with Partial Content in the very last response packet (where it
replaces the Success response code). The intermediate response packets

Application Layer 30 July 2003 56

<Title Of Document> Page 57 of 99
Confidential Bluetooth SIG, Inc.

shall carry the Continue response code. It is mandatory for the client to supply
the thumbnail version of the image in the operation immediately following the
PutImage operation if so requested by the server. In no case shall the
connection be terminated without sending the corresponding thumbnail image
to the object exchange server.

4.5.3 PutLinkedThumbnail Function

The PutLinkedThumbnail function is a scaled-down version of the PutImage
function that does not use the image-descriptor header. It is only possible to
push the thumbnail version of an image; it is not possible to push any other
format using this function. The object exchange client uses this function only
in response to a PutImage response indicating the object exchange server
needs the thumbnail version of an image.

The PutLinkedThumbnail request is formatted as follows:
Fields Opcode Put
 Packet Length Length of the packet
Headers ConnectionID Connection identifier
 Type x-bt/img-thm
 Img-Handle Image handle
 Body/EndOfBody Imaging thumbnail file

Table 4-25: Format of the PutLinkedThumbnail Request

The PutLinkedThumbnail response is formatted as follows:
Fields Response Code Success or error code*
 Packet Length Length of the packet

* See Section 5.3 for OBEX error codes.

Table 4-26: Format of the PutLinkedThumbnail Response

4.5.4 PutLinkedAttachment

The PutLinkedAttachment is used to send attachments associated with an
image to an object exchange server after the image has been sent to the
server within the context of an OBEX session. The PutLinkedAttachment
function must be used within the OBEX session during which the image was
sent to the object exchange server.

The PutLinkedAttachment request is formatted as follows:
Fields Opcode Put
 Packet Length Length of the packet
Headers ConnectionID Connection identifier
 Type x-bt/img-attachment
 Img-Handle Image handle
 Img-Description Attachment descriptor
 Body/EndOfBody Attachment file

Table 4-27: Format of the PutLinkedAttachment Request

Application Layer 30 July 2003 57

<Title Of Document> Page 58 of 99
Confidential Bluetooth SIG, Inc.

The PutLinkedAttachment response is formatted as follows:

Fields Response Code Success or error code*
 Packet Length Length of the packet

* See Section 5.3 for OBEX error codes.

Table 4-28: Format of the PutLinkedAttachment Response

4.5.5 RemoteDisplay Function

The RemoteDisplay function is used to pilot the screen of an object exchange
server with display capability. The screen control commands are: NextImage
(display the next image), PreviousImage (display the previous image),
SelectImage (display a specific image), and CurrentImage (retrieve the handle
of the currently displayed image).

It is up to the object exchange server to determine which images to display
when the object exchange client sends the NextImage or PreviousImage
command. It is recommended that images be displayed in the order they were
pushed, assuming they were pushed within the same OBEX session. An
object exchange client may also learn the image order by retrieving the
images-listing object, or by examining the Img-Handle header in the response
packets.

When the object exchange client wants to display images that have been sent
to the server during a previous session, the client should retrieve the images-
listing object from the object exchange server, select an image, and send the
SelectImage command to the server.

It is strongly recommended that an object exchange client check the
availability of the RemoteDisplay function in the SDP database of the server
before attempting to use it. The minimum set of supported attributes should be
confirmed: imaging-capabilities should include storage and display and
supported features and functions should include image push and remote
display.

The RemoteDisplay request message is formatted as follows:
Fields Opcode Put
 Packet Length Length of the packet
Headers ConnectionID Connection identifier
 Type x-bt/img-display
 Img-Handle Image handle
 Application Parameters RemoteDisplay

Table 4-29: Format of the RemoteDisplay Request

The Application Parameters header is formed from one “tag ID” byte, one
“length” byte, and one “value” byte (see Section 2.2.12 in [8]). The tag ID byte
for RemoteDisplay is listed in Section 5.2.1. The values associated with the
RemoteDisplay tag ID are as follows:

Application Layer 30 July 2003 58

<Title Of Document> Page 59 of 99
Confidential Bluetooth SIG, Inc.

� NextImage = 0x01

� PreviousImage = 0x02

� SelectImage = 0x03

� CurrentImage = 0x04

If the SelectImage value is used, the Img-Handle header must be present and
must be set to the handle of the image to display. The Img-Handle header
must also be present for the NextImage, PreviousImage, and CurrentImage
values, but must be empty.

Devices that implement the Remote Display feature must not automatically
display images as they receive them via PutImage requests – instead, they
must wait for a RemoteDisplay request. Note that devices implementing
Remote Display must also set the display and store imaging-capabilities in
their SDP service record(s).

The RemoteDisplay response is formatted as follows:
Fields Response Code Success or error code*
 Packet Length Length of the packet
Headers Img-Handle Displayed image handle

* See Section 5.3 for OBEX error codes.

Table 4-30: Format of the RemoteDisplay Response

The Img-Handle header contains the handle of the currently displayed image.
If there is no currently displayed image, the Img-Handle header shall be
present but empty.

4.5.6 GetImagesList Function

The GetImagesList function retrieves the object exchange server’s images-
listing object.

The GetImagesList request is formatted as follows:
Fields Opcode Get
 Packet Length Length of the packet
Headers ConnectionID Connection identifier
 Type x-bt/img-listing
 Application Parameters NbReturnedHandles
 ListStartOffset
 LatestCapturedImages
 Img-Description Image handles descriptor

Table 4-31: Format of the GetImagesList Request

The Application Parameters headers are formed from one “tag ID” byte, one
“length” byte, and n “value” bytes (see Section 2.2.12 in [8]). The tag IDs for
the three Application Parameters headers are as follows:

Application Layer 30 July 2003 59

<Title Of Document> Page 60 of 99
Confidential Bluetooth SIG, Inc.

� NbReturnedHandles

� ListStartOffset

� LatestCapturedImages

The numeric values for these tag IDs are listed in Section 5.2.1.

The NbReturnedHandles tag ID indicates the maximum number of image
handles to be returned in the images-listing object. The length field for this
header is two bytes; these two bytes of data are represented in the value field
in big-endian order. The valid range for the value field is 0 to 65535, inclusive.

If an object exchange client does not want to limit the number of images
returned in the images-listing object, it should set the value field of the
NbReturnedHandles header to the maximum, 65535. If an object exchange
client wants to learn the number of images that would be included in the
images-listing object but doesn’t want the actual list, it should set the value
field of the NbReturnedHandles header to 0. The object exchange server will
respond with an empty images-listing object and an NbReturnedHandles
header describing the number of images that would have been included in the
list.

Note that responding with an images-listing object – or even calculating the
number of images that would go into an images-listing object – may take an
object exchange server a significant amount of time.

The ListStartOffset tag ID describes a zero-based offset from the beginning of
the images-listing object. Its value is encoded in two bytes using big-endian
byte ordering. This mechanism can be used to retrieve an object exchange
server’s images-listing object in pieces; for example, an object exchange client
could send a GetImagesList request with the NbReturnedHandles value set to
10 and the ListStartOffset value set to 0 to retrieve a list of the first ten
images, followed by a second GetImagesList request with the
NbReturnedHandles value again set to 10 and the ListStartOffset value set to
10 to retrieve a list of the next ten images, etc.

Note that when used in a Remote Display feature session, it is highly
recommended that the list of images in the images-listing object be listed in
the same order as the intended order of display.

The LatestCapturedImages tag ID restricts the scope of the images-listing
object to the most recently captured images and controls the order of images
within the list. Its value is encoded in one byte and can take only two values,
0x00 or 0x01 (all other values are illegal). Setting the LatestCapturedImages
header’s value to 0x01 indicates that the images-listing object shall include
only locally captured images sorted chronologically by descending capture
time. The size of the list is left to the implementer. In particular, the list does
not necessarily have to include all the images that have been captured by the

Application Layer 30 July 2003 60

<Title Of Document> Page 61 of 99
Confidential Bluetooth SIG, Inc.

object exchange server; the implementer could, for example, decide to keep
only a subset of its most recent images sorted in chronological order and
return that list. If an object exchange client sets the value of the
LatestCapturedImages header to 0x01, the value of the ListStartOffset header
must be 0. Setting the LatestCapturedImages header’s value to 0x00 results
in an unrestricted, unordered images-listing object.

The Img-Description header contains an image handles descriptor that
specifies a filtering mask to apply to the images-listing object. See Section
4.4.7.1 for details about the image handles descriptor. If no filtering is
required, an object exchange client can leave the Img-Description header
empty, although it must always be present.

An object exchange server is required to provide an object exchange client
with a consistent view of its images-listing object within the context of an
OBEX session. For example, if a client is stepping through the server’s
images-listing object piecewise via the NbReturnedHandles and
ListStartOffset Application Parameters headers, then any other activity on the
server that results in adding an image to or removing an image from the server
must not affect the images-listing object. This policy may result in the client
having a “stale” view of the images stored on the server, so the client must be
prepared to handle errors encountered in subsequent operations – for
example, using the GetImage function to retrieve an image from the server
that was deleted at some point in time between the client’s learning of the
image’s existence via a GetImagesList operation and the subsequent
GetImage operation will result in an error.

The GetImagesList response is formatted as follows:
Fields Response Code Success or error code*
 Packet Length Length of the packet
Headers Application Parameters NbReturnedHandles
 Img-Description Image handles descriptor
 Body/EndOfBody Images-listing object**

* See Section 5.3 for OBEX error codes.
** The images-listing object in the response message may be a subset of the object exchange
server’s full image list depending on how the NbReturnedHandles and ListStartOffset headers
in the request message were set.

Table 4-32: Format of the GetImagesList Response

The image handles descriptor included in the response is used to indicate the
filtering parameters that were applied when building the images-listing object.

If all the filtering parameters indicated in the GetImagesList request were
applied, the image handles descriptors in the request and response messages
will typically be identical. However, depending on the implementation of the
Server, and provided that the image handles descriptor of the response
contains the same filtering parameters as the image handles descriptor in the

Application Layer 30 July 2003 61

<Title Of Document> Page 62 of 99
Confidential Bluetooth SIG, Inc.

request, the values attributed those filtering parameters may differ from the
original ones. For instance, a Server implementation that does not support the
UTC notation used by the Client in the image handles descriptor of the
request, might return values for the created or modified filtering parameter in
local time format.

4.5.7 GetImageProperties Function

The GetImageProperties function retrieves a description of an image’s
characteristics. The object exchange client references the image via its image
handle and the object exchange server returns the image’s image-properties
object (see Section 4.4.6.2).

The GetImageProperties request is formatted as follows:
Fields Opcode Get
 Packet Length Length of the packet
Headers ConnectionID Connection identifier
 Type x-bt/img-properties
 Img-Handle Image handle

Table 4-33: Format of the GetImageProperties Request

The GetImageProperties response is formatted as follows:
Fields Response Code Success or error code*
 Packet Length Length of the packet
Headers Body/EndOfBody Image-properties object

* See Section 5.3 for OBEX error codes.

Table 4-34: Format of the GetImageProperties Response

4.5.8 GetImage Function

The GetImage function is used by an object exchange client to retrieve an
image from an object exchange server. The client references the image via its
image handle and supplies a description of the image format the server should
use.

The GetImage request is formatted as follows:
Fields Opcode Get
 Packet Length Length of the packet
Headers ConnectionID Connection identifier
 Type x-bt/img-img
 Img-Handle Image handle
 Img-Description Image-descriptor

Table 4-35: Format of the GetImage Request

It is possible for the object exchange client to supply an empty Img-Description
header, in which case the object exchange server returns the native version of

Application Layer 30 July 2003 62

<Title Of Document> Page 63 of 99
Confidential Bluetooth SIG, Inc.

the image. This is useful for clients that don’t need to negotiate image
encodings and sizes.

The GetImage response is formatted as follows:
Fields Response Code Success or error code*
 Packet Length Length of the packet
Headers Length Image file size
 Body/EndOfBody Image file

 * See Section 5.3 for OBEX error codes.

Table 4-36: Format of the GetImage Response

The Length header that indicates the size in bytes of the returned image is
mandatory but can be left empty, in case the byte size of the transferred
image is not known (this could happen, for instance, if the image is being
produced on the fly).

4.5.9 GetLinkedThumbnail Function

The GetLinkedThumbnail function is a scaled-down version of the GetImage
function that does not use the image descriptor. It is therefore only possible to
retrieve the thumbnail version of an image given its handle. It is not possible to
request any other format using this function. This function is designed for
devices that deal only with thumbnail images.

The GetLinkedThumbnail request is formatted as follows:
Fields Opcode Get
 Packet Length Length of the packet
Headers ConnectionID Connection identifier
 Type x-bt/img-thm
 Img-Handle Image handle

Table 4-37: Format of the GetLinkedThumbnail Request

The GetLinkedThumbnail response is formatted as follows:
Fields Response Code Success or error code*
 Packet Length Length of the packet
Headers Body/EndOfBody Imaging thumbnail file

* See Section 5.3 for OBEX error codes.

Table 4-38: Format of the GetLinkedThumbnail Response

The image file that is returned in the response message must be an imaging
thumbnail.

4.5.10 GetLinkedAttachment Function

The GetLinkedAttachment function is used to retrieve an attachment
associated with an image from an object exchange server. The presence of

Application Layer 30 July 2003 63

<Title Of Document> Page 64 of 99
Confidential Bluetooth SIG, Inc.

one or more attachments can be discovered by retrieving an image’s image-
properties object via the GetImageProperties function. Attachments are
referenced by the associated image’s handle and the attachment’s file name.

The GetLinkedAttachment request is formatted as follows:
Fields Opcode Get
 Packet Length Length of the packet
Headers ConnectionID Connection identifier
 Type x-bt/img-attachment
 Img-Handle Image handle
 Name Attachment file name

Table 4-39: Format of the GetLinkedAttachment Request

The GetLinkedAttachment response is formatted as follows:
Fields Response Code Success or error code*
 Packet Length Length of the packet
Headers Body/EndOfBody Attachment file

* See Section 5.3 for OBEX error codes.

Table 4-40: Format of the GetLinkedAttachment Response

4.5.11 DeleteImage Function

The DeleteImage function is used by an object exchange client to request an
object exchange server to delete an image. It is recommended that in addition
to deleting the image the server also delete any attachments associated with
the image, but this is left to the implementer’s discretion.

The DeleteImage request is formatted as follows:
Fields Opcode Put
 Packet Length Length of the packet
Headers ConnectionID Connection identifier
 Type x-bt/img-img
 Img-Handle Image handle

Table 4-41: Format of the DeleteImage Request

Note that there is no Body or EndOfBody header in the DeleteImage request
frame.

The DeleteImage response is formatted as follows:
Fields Response Code Success or error code*
 Packet Length Length of the packet

* See Section 5.3 for OBEX error codes.

Table 4-42: Format of the DeleteImage Response

Application Layer 30 July 2003 64

<Title Of Document> Page 65 of 99
Confidential Bluetooth SIG, Inc.

4.5.12 StartPrint Function

The StartPrint function is used by an object exchange client to trigger an
object exchange server with print capability to execute a print job. The print job
is described in the printer-control object sent to the server. As a result of a
StartPrint request, the server opens a new OBEX connection (referred to as a
secondary connection) to the Referenced Object service of the client (see
Section 5 for details).

The StartPrint request is formatted as follows:
Fields Opcode Put
 Packet Length Length of the packet
Headers ConnectionID Connection identifier
 Type x-bt/img-print
 Application Parameter ServiceID
 Body/EndOfBody Printer control object

Table 4-43: Format of the StartPrint Request

The ServiceID (see [6] for a complete definition of this service record attribute)
sent in the Application Parameters header is used by the object exchange
server to determine which Referenced Objects service record on the client to
read. If several Referenced Objects service records are available on the client
(for instance, if the client is running several applications that use the
Advanced Printing feature and each creates its own Referenced Objects
service record), it is necessary to tell the server which Referenced Objects
service record to use.

The Application Parameters header is formed from one tag ID byte, one length
byte, and n value bytes (see Section 2.2.12 in [8]). The tag ID byte for
ServiceID is listed in Section 5.2.1. The value associated with the ServiceID
tag ID is the 128-bit (16-byte) ServiceID UUID described in the Referenced
Objects service record of the client.

The StartPrint response is formatted as follows:
Fields Response Code Success or error code*
 Packet Length Length of the packet

* See Section 5.3 for OBEX error codes.

Table 4-44: Format of the StartPrint Response

4.5.13 GetPartialImage Function

The GetPartialImage function is a modified version of the GetImage function
that can be used to retrieve either an entire image file or part of an image file,
depending on the requirements of the object exchange server. The images
retrieved with the GetPartialImage function might be native images or variant
images depending on the choice of the object exchange server. The images
are not referenced using their image handles, but rather the path and image

Application Layer 30 July 2003 65

<Title Of Document> Page 66 of 99
Confidential Bluetooth SIG, Inc.

file names as described in the IMG SRC tag in the printer-control object; see
Section 4.4.6.4.

The GetPartialImage request is formatted as follows:
Fields Opcode Get
 Packet Length Length of the packet
Headers ConnectionID Connection identifier
 Type x-bt/img-partial
 Name Image file name
 Application Parameters PartialFileLength
 PartialFileStartOffset

Table 4-45: Format of the GetPartialImage Request

The Application Parameters header is formed from one tag ID byte, one length
byte, and n value bytes (see Section 2.2.12 of [8]). The PartialFileLength
header is the length of the partial file to be returned in the response; it is
encoded in four bytes in big-endian byte order. The PartialFileStartOffset
header specifies the first byte of the file from which the partial file starts. It is
encoded in four bytes in big-endian byte order.

To retrieve an entire image, the PartialFileStartOffset header’s value should
be set to 0x00000000 and the PartialFileLength header’s value should be set
to 0xFFFFFFFF.

In the event PartialFileStartOffset + PartialFileLength is greater than the actual
size of the image file, the last chunk of the image file (starting from
PartialFileStartOffset byte) shall be returned.

The GetPartialImage response is formatted as follows:
Fields Response Code Success or error code*
 Packet Length Length of the packet
Headers Length Length of partial file
 Application Parameter TotalFileSize
 EndFlag
 Body/EndOfBody Image subfile

* See Section 5.3 for OBEX error codes.

Table 4-46: Format of the GetPartialImage Response

The Length header specifies the length of the returned partial file in bytes; it is
encoded in four bytes in big-endian byte order. The TotalFileSize Application
Parameters header indicates the size of the entire file in bytes. The
TotalFileSize tag ID’s numerical value is listed in Section 5.2.1; the header’s
value field is encoded in four bytes in big-endian byte order. The EndFlag
Application Parameters header indicates whether or not the partial image file
transported in the response represents the end of the file. The EndFlag tag
ID’s numerical value is listed in Section 5.2.1; the header’s value field is
encoded in one byte, and is set to 0x01 when the partial file corresponds to

Application Layer 30 July 2003 66

<Title Of Document> Page 67 of 99
Confidential Bluetooth SIG, Inc.

the final part of the image file and is set to 0x00 otherwise – any other value is
illegal.

4.5.14 StartArchive Function

The StartArchive function is used by an object exchange client to trigger an
object exchange server to start draining the client of its image files (some of or
all of the image files depending on the server’s download algorithm).

The StartArchive request is formatted as follows:
Fields Opcode Put
 Packet Length Length of the packet
Headers ConnectionID Connection identifier
 Type x-bt/img-archive
 Application Parameter ServiceID

Table 4-47: Format of the StartArchive Request

The ServiceID (see [6] for a complete definition of this service record attribute)
sent in the Application Parameters header is used by the object exchange
server to determine which Automatic Archive service record on the client to
read. If several Referenced Objects service records are available on the client
(for instance, if the client is running several applications that use the Automatic
Archive feature and each creates its own Automatic Archive service record), it
is necessary to tell the server which Automatic service record to use.

The Application Parameters header is formed from one tag ID byte, one length
byte, and n value bytes (see Section 2.2.12 in [8]). The tag ID byte for
ServiceID is listed in Section 5.2.1. The value associated with the ServiceID
tag ID is the 128-bit (16-byte) ServiceID UUID described in the Automatic
Archive service record of the client.

The StartArchive response is formatted as follows:
Fields Response Code Success or error code*
 Packet Length Length of the packet

* See Section 5.3 for OBEX error codes.

Table 4-48: Format of the StartArchive Response

4.5.15 GetStatus Function

The GetStatus function is used by the primary object exchange client to
monitor a secondary connection (see Section 5.5.1).

The GetStatus request is formatted as follows:
Fields Opcode Get
 Packet Length Length of the packet

Application Layer 30 July 2003 67

<Title Of Document> Page 68 of 99
Confidential Bluetooth SIG, Inc.

Headers ConnectionID Connection identifier
 Type x-bt/img-status

Table 4-49: Format of the GetStatus Request

The GetStatus response is formatted as follows:
Fields Response Code Success or Continue or error code*
 Packet Length Length of the packet

* See Section 5.3 for OBEX error codes.

Table 4-50: Format of the GetStatus Response

A Success response code in the GetStatus response indicates that the
secondary connection has successfully terminated. A Continue response code
indicates that the secondary connection is still active. An error code indicates
that the secondary connection is being affected by an error.

GetStatus requests can be issued by a primary object exchange client only
upon reception of a StartArchive response message. Upon reception of a
Success response code, the primary object exchange client shall disconnect
the primary connection.

A primary object exchange server shall never issue a Success response code
prior to a Disconnect request having been issued by the secondary object
exchange client.

The rate at which a primary object exchange client issues GetStatus requests
– or whether it bothers to issue them at all – is implementation-dependent. If
there is an error condition on the secondary connection, the primary client can
terminate the primary session with an Abort or Disconnect request.

4.5.16 GetMonitoringImage Function

The GetMonitoringImage function is used by an object exchange client to
retrieve monitoring images from an object exchange server with capturing
capability. Monitoring images are retrieved in the monitoring-image format
(see Section 4.4.6.5). The client has the option of indicating whether the
monitoring-image retrieval operation should be accompanied by releasing the
shutter and storing the corresponding full size image on the object exchange
server (see Section 4.3.5).

The GetMonitoringImage request is formatted as follows:
Fields Opcode Get
 Packet Length Length of the packet
Headers ConnectionID Connection identifier
 Type x-bt/img-monitoring
 Application Parameters StoreFlag

Table 4-51: Format of the GetMonitoringImage Request

Application Layer 30 July 2003 68

<Title Of Document> Page 69 of 99
Confidential Bluetooth SIG, Inc.

The Application Parameters header is formed from one tag ID byte, one length
byte, and one value byte (see Section 2.2.12 of [8]). The numeric value for the
StoreFlag tag ID is listed in Section 5.2.1. The StoreFlag’s value field can take
the values 0x00 (indicating that the server should not store the full size image)
and 0x01 (indicating that the server should store the full size image); any other
value is illegal.

The GetMonitoringImage response is formatted as follows:
Fields Response Code Success or error code*
 Packet Length Length of the packet
Headers Img-Handle Image handle
 Body/EndOfBody Monitoring image object

* See Section 5.3 for OBEX error codes.

Table 4-52: Format of the GetMonitoringImage Response

When there is no image handle to return, the Img-Handle header shall be
empty.

Application Layer 30 July 2003 69

<Title Of Document> Page 70 of 99
Confidential Bluetooth SIG, Inc.

5 OBEX

5.1 OBEX Operations Used

Table 5-1 lists the OBEX operations required by the Basic Imaging Profile.
Any other operations listed in the GOEP should not be used in this profile.

Ability to Send Ability to Respond OBEX
Operation GOEP Client GOEP Server
Connect M M
Disconnect M M
Put M M
Get M M
Abort M M

Table 5-1: OBEX Operations

5.2 OBEX Headers

Table 5-2 lists the OBEX headers required by the Basic Imaging Profile. Any
other headers listed in GOEP should not be used in this profile.

OBEX Header Client Server
Name M M
Type M M
Length M M
Body M M
End of Body M M
Target M M*
Who M* M
Connection ID M M
Img-Description** M M
Img-Handle** M M
Authenticate Challenge M M
Authenticate Response M M
Application Parameters M M

* Ability to parse only (ability to send is not required).
** User-defined header.

Table 5-2: OBEX Headers

Img-Description and Img-Handle are both user-defined headers (as defined in
[8]).

Note that the profile does not exclude the headers that are not listed in Table
5-2. Some implementations might choose to use additional headers to enable
added value services. It is also the intention of the Bluetooth SIG to enrich
further Bluetooth Imaging with a second profile development phase, that could
lead to new headers being added to the Basic Imaging Profile functions.
Therefore unknown or unsupported headers shall always be skipped and
ignored.

OBEX 30 July 2003 70

<Title Of Document> Page 71 of 99
Confidential Bluetooth SIG, Inc.

5.2.1 Application Parameters Header

The tag IDs used in the Application Parameters header are listed below.
Value Tag ID Length Possible Values

NbReturnedHandles 0x01 2 bytes 0x0000 to 0xFFFF
ListStartOffset 0x02 2 bytes 0x0000 to 0xFFFF
LatestCapturedImages 0x03 1 byte 0x00 (= Boolean False)

0x01 (= Boolean True)
PartialFileLength 0x04 4 bytes 0x00000000 to 0xFFFFFFFF
PartialFileStartOffset 0x05 4 bytes 0x00000000 to 0xFFFFFFFF
TotalFileSize 0x06 4 bytes 0x00000000 to 0xFFFFFFFF
EndFlag 0x07 1 byte 0x00 (= Boolean False)

0x01 (= Boolean True)
RemoteDisplay 0x08 1 byte 0x01 (= NextImage)

0x02 (= PreviousImage)
0x03 (= SelectImage)
0x04 (= CurrentImage)

ServiceID 0x09 16 bytes UUID
StoreFlag 0x0A 1 byte 0x00 (= Boolean False)

0x01 (= Boolean True)

Table 5-3: Application Parameter Header Tag IDs

All of the Application Parameter header values use big-endian byte ordering.

5.2.2 User-Defined Headers

The user defined headers Img-Handle and Img-Descriptor are defined as
follows:

• Img-Handle header ID = 0x30 (null terminated, UTF-16 encoded Unicode
text length prefixed with a two-byte unsigned integer)

• Img-Descriptor header ID = 0x71 (byte sequence, length prefixed with a
two-byte unsigned integer)

(The Img-Descriptor header is not null terminated.)

5.2.3 OBEX Headers in Multi-Packet Responses

In the case of multi-packet responses, there is a need to specify which packet
contains the headers to be returned to the client. Although the IrOBEX
specification does not impose any restrictions in this area, the following rule is
used in the Basic Imaging Profile to encourage interoperability:

In the case of a multi-packet Put response (i.e., the object being transported is
large enough to require several packets), the headers are placed in the last
packet. All intermediate response packets shall contain only the Continue
response code or (when necessary) one of the error codes. Note that if the
Partial Content response code is used (see Section 4.5.2), it must be issued in
the last response packet, after the object has been completely received.

OBEX 30 July 2003 71

<Title Of Document> Page 72 of 99
Confidential Bluetooth SIG, Inc.

In the case of a multi-packet Get response (i.e., the object being transported is
large enough to require several packets), all the headers other than the body
header are placed in the first packet. If the first packet has enough room to
include a portion of the object body, then the first packet ends with the body
header that carries this portion of the object. Otherwise, the object is
transferred in subsequent packets.

The following figure illustrates a multi-packet PutImage operation. The
intermediate Put response messages do not contain any header.

OBEX 30 July 2003 72

<Title Of Document> Page 73 of 99
Confidential Bluetooth SIG, Inc.

PUT Request (Body)

PUT Response (Continue)

PUT Request: PutImage
(Name, Img-Description, Body)

PUT Request (EndOfBody)

PUT Response (Continue)

PUT Response
(Success,Img-Handle)

OBEX
Client

OBEX
Server

Figure 5-1: Example OBEX Packet Exchange Sequence for PutImage Operation

OBEX
Client

OBEX
Server

GET Request ()

GET Response (Continue,Length,
ApplicationParameters,1st chunk of Body)

GET Request: GetPartialImage
(Name, ApplicationParameters)

GET Request ()

PUT Response (Continue, 2nd chunk of Body)

GET Response(Success,last chunk of Body)

Figure 5-2: Example OBEX Packet Exchange Sequence for GetPartialImage Operation

Figure 5-2 illustrates a multi-packet GetImage operation. The first response
packet shall contain the headers other than Body/EndOfBody (and possibly a
Body header depending on the remaining number of bytes available in the
frame).

OBEX 30 July 2003 73

<Title Of Document> Page 74 of 99
Confidential Bluetooth SIG, Inc.

5.3 OBEX Error Codes

Imaging Responders are required to support only two OBEX response codes:

� Bad Request: Indicates that the request could not be correctly interpreted
or handled.

� Not Implemented: Indicates that the requested function is not supported.

Table 5-4 lists all of the OBEX response codes defined for the Basic Imaging
Profile.

Error Code Client
(Interprets
the Error
Codes)

Server
(Informs of
Errors)

Meaning in Basic Imaging Profile

Bad Request M* M Function not recognized or ill-formatted.
Not Implemented M* M Function recognized but not supported.
Forbidden M* O Function recognized and correctly formatted

but temporarily barred.
Unauthorised M* O In operations with actual exchange of an

object in the body header (either in the
request or the response), indicates that the
function was recognized and well-formatted,
but that the object to be handled is protected
and access is not authorized (either
temporarily or permanently).

Precondition Failed M* O The function was recognized and well-
formatted but there is a problem with one of
the request’s parameter values.

Not Found M* O The function was recognized and well-
formatted and all the parameters are proper,
but the image handle or file name (depending
on the function) could not be found.

Not Acceptable M* O In case of a Push operation, the function is
recognized and well-formatted, but the size of
the body (indicated in the length header) is
too big for the local buffers.
In the case of a Get operation with an Img-
Description, the function is recognized and
well-formatted, but the XML descriptor
requests a format that cannot be provided.

Service Unavailable M* O The function was recognized and well-
formatted and is normally executable, but a
system condition temporarily prevents it from
being performed.

M* indicates that the Imaging Initiator shall recognize this response code as an error code.

Table 5-4: OBEX Response Codes

On the Imaging Initiator side, all the response codes listed in Table 5-4 must
be recognized as error codes; how to handle these error codes is left to the
implementer’s discretion.

OBEX 30 July 2003 74

<Title Of Document> Page 75 of 99
Confidential Bluetooth SIG, Inc.

Support for response codes other than Bad Request and Not Implemented is
optional; it is recommended, however, that as many of the others as possible
be supported because they are more informative and give the client a better

indication of the nature of an error; this permits better error reporting. The “x
complements y” relationship between response codes is illustrated in Figure 5-
2.

OBEX Response Code

Success Bad Request
Not

Implemented

Service
Unavailable

Forbidden Unauthorized
Precondition

Failed

Not
Acceptable

Not Found

Mandatory Support Level
Optional, for more

detailed error reporting

 Figure 5-3: Logical Relationship between Basic Imaging OBEX Response Codes

When multi-packet responses are used, response codes must be returned as
early as possible, preferably in the first response packet. In some cases – for
example, Service Unavailable – it is possible that an error condition won’t
arise until the operation is underway, in which case it is acceptable to return a
response code in a packet other than the first one.

5.4 Initializing OBEX

The initialization procedure is defined in Section 5.3 in [10].

Support for OBEX authentication is mandatory, including support for OBEX
user IDs as described in [8], Section 3.5.2.2. Whether or not it is actually used
is left to the implementer’s discretion.

OBEX 30 July 2003 75

<Title Of Document> Page 76 of 99
Confidential Bluetooth SIG, Inc.

Note that if a device initiates OBEX authentication, interoperability cannot be
guaranteed with devices that lack a user interface. Therefore it is
recommended that OBEX authentication be turned off.

5.5 Establishing an OBEX Session

See Section 5.4.1 in [10] for a description of OBEX connection establishment
without authentication.

The use of the Target header is mandatory in the Basic Imaging Profile.

5.5.1 Primary and Secondary Sessions

Some Basic Imaging Profile features require bi-directional communication
between the Imaging Initiator and the Imaging Responder. For this reason two
related OBEX sessions are established.

The establishment of a secondary session does not imply switching of the
Imaging Initiator and Imaging Responder roles. The Imaging Initiator is always
an OBEX client in the primary session and an OBEX server in the secondary
session; the Imaging Responder is always an OBEX server in the primary
session and an OBEX client in the secondary session.

5.5.2 Primary Session Establishment

Primary sessions are OBEX sessions established using a Target header with
the Bluetooth Basic Imaging UUID value corresponding to the feature that is
initiated. All other OBEX sessions are referred to as secondary sessions.

Basic Imaging primary session UUID
Basic Imaging Image Push E33D9545-8374-4AD7-9EC5-C16BE31EDE8E
Basic Imaging Image Pull 8EE9B3D0-4608-11D5-841A-0002A5325B4E
Basic Imaging Advanced Image
Printing

92353350-4608-11D5-841A-0002A5325B4E

Basic Imaging Automatic Archive 940126C0-4608-11D5-841A-0002A5325B4E
Basic Imaging Remote Camera 947E7420-4608-11D5-841A-0002A5325B4E
Basic Imaging Remote Display 94C7CD20-4608-11D5-841A-0002A5325B4E

Table 5-5: Bluetooth Basic primary session UUIDs

5.5.3 Secondary Session Establishment

Secondary sessions are OBEX sessions established using a Target header
with either of the following values:
Basic Imaging secondary session UUID
Basic Imaging Referenced Objects 8E61F95D-1A79-11D4-8EA4-00805F9B9834
Basic Imaging Archived Objects 8E61F95E-1A79-11D4-8EA4-00805F9B9834

Table 5-6: Bluetooth Basic secondary session UUIDs

OBEX 30 July 2003 76

<Title Of Document> Page 77 of 99
Confidential Bluetooth SIG, Inc.

Primary
Client

Primary
Server

Imaging Initiator Imaging Responder

Connection establishment

Operation

Response

Secondary
Client

Secondary
Server

Connection establishment

GetStatus

Continue

GetStatus

Continue

Operation

GetStatus

Success

Disconnect

Disconnect

Response

Operation

Response

Figure 5-4: Establishment and disconnection of a secondary session

Secondary sessions can only be initiated and maintained while there is a
primary connection in place. A secondary session is initiated by the server of
the primary session. The client of the primary session can optionally monitor
the secondary session by issuing GetStatus requests (see Section 4.5.15).
Note that the secondary session can be terminated by the client of the primary
session at any time; for that purpose, the client of the primary session can
either issue an Abort (if the GetStatus function is used) or issue a Disconnect
for the primary session.

5.6 Disconnecting

See Section 5.7 in [10].

OBEX 30 July 2003 77

<Title Of Document> Page 78 of 99
Confidential Bluetooth SIG, Inc.

If for some reason the primary OBEX session is aborted or disconnected, the
secondary session must be aborted and disconnected as well. A secondary
session cannot exist outside the primary session to which it is related.

OBEX 30 July 2003 78

<Title Of Document> Page 79 of 99
Confidential Bluetooth SIG, Inc.

6 Service Discovery

6.1 Service Discovery Service Records
6.1.1 Imaging Responder Service

The service discovery service record for the Imaging service is defined in
Table 6-1.

If a Basic Imaging Profile implementation can offer several outcomes as result
of an Image Push operation, there shall be as many service discovery records
for that implementation as there are possible outcomes, each service
discovery record having bit 0 of the Supported Features attribute set to 0 and
one and only one of bits 1, 2, or 3 set. This allows an Imaging Initiator to
choose the outcome of an Image Push operation by opening the RFCOMM
channel indicated in the relevant service discovery record.

If a Basic Imaging Profile implementation does not need or does not wish to
specify the outcome of an Image Push operation, it provides one and only one
instance of the service discovery record, in which bit 0 of the Supported
Features attribute is set to 1 and bits 1, 2, and 3 are set to 0. For example, an
implementation on which the outcome of the Image Push operations can be
controlled from the user interface on an operation per operation basis would
probably choose not to indicate any specific outcome in its service discovery
record.

The Service Name attribute is used to further refine the nature of the service
available by providing a human readable name. It is especially useful in case
of multiple instances of service discovery record.

As an example of combined usage of the Supported Features and Service
Name attributes for differentiating multiple instances of the service discovery
record, let’s consider a hypothetical printer that also has image storage
capability. This printer would expose two imaging service records: the first
record would set the Service Name attribute to “storage” and the ImagePush-
Store bit in the Supported Features attribute to 1, while the second would set
the Service Name attribute to “print” and the ImagePush-Print bit in the
Supported Features attribute to 1. By connecting to the RFCOMM channel
number listed in the first record, a client device would specify that images it
sends to the printer should be stored. By connecting to the RFCOMM channel
number listed in the second record, the client device would indicate that
images it pushed to the printer should be printed.

Service Discovery 30 July 2003 79

<Title Of Document> Page 80 of 99
Confidential Bluetooth SIG, Inc.

The Supported Functions attribute is a straightforward declaration of the
functions that are supported by the implementation, among all the functions
that are defined in chapter 4.5 of the present specification.

The Total imaging data capacity attribute is used to indicate the maximum
amount of imaging data in bytes that the implementation is capable of storing.

Service Discovery 30 July 2003 80

<Title Of Document> Page 81 of 99
Confidential Bluetooth SIG, Inc.

Definition: Type/Size: Value: AttrID Status Default
See [14] M

UUID Imaging Responder M
See [14] M

UUID L2CAP M
UUID RFCOMM M

Param #0 Channel
number

Uint8 Varies M

UUID OBEX M
Displayable
text name

String Service-provider defined See [14] O “Imaging”

See [14] M
Supported
profile

UUID Imaging Imaging

Param #0 Profile version Unit16 0x0100 See [14] 0x0100
Bit 0 = Generic imaging
Bit 1 = Capturing
Bit 2 = Printing
Bit 3 = Displaying
Bit 4..7 = Reserved
Bit 0 = ImagePush
Bit 1 = ImagePush-Store
Bit 2 = ImagePush-Print
Bit 3 = ImagePush-Display
Bit 4 = ImagePull
Bit 5 = AdvancedImagePrinting
Bit 6 = AutomaticArchive
Bit 7 = RemoteCamera
Bit 8 = RemoteDisplay
Bit 9..15 = Reserved
Bit 0 = GetCapabilities
Bit 1 = PutImage
Bit 2 = PutLinkedAttachment
Bit 3 = PutLinkedThumbnail
Bit 4 = RemoteDisplay
Bit 5 = GetImagesList
Bit 6 = GetImageProperties
Bit 7 = GetImage
Bit 8 = GetLinkedThumbnail
Bit 9 = GetLinkedAttachment
Bit 10 = DeleteImage
Bit 11 = StartPrint
Bit 12 = Reserved
Bit 13 = StartArchive
Bit 14= GetMonitoringImage
Bit 16 = GetStatus
Bit 15, 17..31 = Reserved

Maximum
memory
available for
image storage

Uint64 Memory in bytes See [14] M

Item

Total imaging data
capacity

Profile ID #0

Service name

Bluetooth profile

Supported capabilities

Supported functions

Supported features

Service class ID list

Protocol descriptor list

Protocol ID #1

Protocol ID #2

Protocol ID #0

Service class #0

Uint8 0x00Imaging
capabilities
flags

MImaging
functions flags

Uint32 See [14]

See [14] M

Imaging
features flags

Uint16 See [14] M

Table 6-1: Imaging Service Record

Service Discovery 30 July 2003 81

<Title Of Document> Page 82 of 99
Confidential Bluetooth SIG, Inc.

Service Discovery 30 July 2003 82

;.

6.1.2 Referenced Objects Service

Definition: Type/Size: Value: AttrID Status Default
See [14] M

UUID Imaging Referenced Objects M
See [14] M

UUID L2CAP M
UUID RFCOMM M

Param #0 Channel
number

Uint8 Varies M

UUID OBEX M
Displayable
text name

String Service-provider defined See [14] O “Imaging
Referenced

Objects”
UUID Varies See [14] M

See [14] M
Supported
profile

UUID Imaging Imaging

Param #0 Profile version Uint16 0x0100 See [14] 0x0100
Bit 0 = GetCapabilities
Bit 1..11 = Reserved
Bit 12 = GetPartialImage
Bit 13..31 = Reserved

Service class ID list

Protocol descriptor list

Protocol ID #1

Protocol ID #2

Protocol ID #0

Service class #0

Supported Functions Imaging
functions flags

Item

Profile ID #0

M

Service name

Bluetooth profile

Uint32 See [14]

ServiceID*

Table 6-2: Referenced Objects Service Record

* The ServiceID attribute is defined in [6].

<Title Of Document> Page 83 of 99
Confidential Bluetooth SIG, Inc.

6.1.3 Archived Objects Service

Definition: Type/Size: Value: AttrID Status Default
See [14] M

UUID Imaging Automatic Archive M
See [14] M

UUID L2CAP M
UUID RFCOMM M

Param #0 Channel
number

Uint8 Varies M

UUID OBEX M
Displayable
text name

String Service-provider defined See [14] O “Imaging
Automatic
Archive”

UUID Varies See [14] M
See [14] M

Supported
profile

UUID Imaging Imaging

Param #0 Profile version Unit16 0x0100 See [14] 0x0100
Bit 0 = GetCapabilities
Bit 1..4 = Reserved
Bit 5 = GetImagesList
Bit 6 = GetImageProperty
Bit 7 = GetImage
Bit 8 = GetLinkedThumbnail
Bit 9 = GetLinkedAttachment
Bit 10 = DeleteImage
Bit 11..31 = Reserved

Service class ID list

Protocol descriptor list

Protocol ID #1

Protocol ID #2

Protocol ID #0

Service class #0

Supported functions Imaging
functions flags

Item

Profile ID #0

M

Service name

Bluetooth profile

Uint32 See [14]

ServiceID*

Table 6-3: Automatic Archive Service Record

* The ServiceID attribute is defined in [6].

6.2 Service Discovery Procedure

In the simplest form, service discovery signaling operates as follows:
Imaging Initiator Imaging Responder
 SdpServiceSearchAttributeRequest

=======================>

 SdpServiceSearchAttributeResponse
<=======================
SdpServiceSearchAttributeResponse
<=======================

The Imaging Initiator requests the following information related to the Imaging
service of the Imaging Responder:
The Imaging Initiator requests the following information related to the Imaging
service of the Imaging Responder:

� RFCOMM server channel used by OBEX � RFCOMM server channel used by OBEX

� The L2CAP PSM value for RFCOMM � The L2CAP PSM value for RFCOMM

The Imaging Initiator is required to perform the service discovery procedure as
specified in GOEP [10].
The Imaging Initiator is required to perform the service discovery procedure as
specified in GOEP [10].

Service Discovery 30 July 2003 83

<Title Of Document> Page 84 of 99
Confidential Bluetooth SIG, Inc.

All Imaging Initiators should check the Imaging Responder’s SDP database to
learn whether the features required by the Initiator are supported. The Imaging
Initiator may use a Basic Imaging Profile feature if and only if the SDP
database of the Imaging Responder advertises support for that feature.

The Imaging Initiator should also learn which optional functions are supported
by the Imaging Responder. Only functions which are advertised as supported
by the Imaging Responder should be invoked by the Imaging Initiator.

Note that the Imaging Initiator should be able to handle the case where there
are multiple Imaging service records in one Imaging Responder SDP
database. Imaging devices are encouraged to create multiple service records
if they offer more then one service as an object exchange server. The different
services can be identified by the service name and class of service fields in
the SDP service record.

If an Imaging Initiator wants to connect to a specific OBEX service, it should
learn where this service is located by selecting the appropriate SDP service
record before establishing the connection. The Imaging Initiator should use
the OBEX session UUID to establish an OBEX connection with the Imaging
Responder on top of the established Bluetooth connection.

Service Discovery 30 July 2003 84

<Title Of Document> Page 85 of 99
Confidential Bluetooth SIG, Inc.

7 Management Entity Procedures

7.1 Initialization

The use of initialization is mandatory in this profile. The procedures are
defined in Section 7 in GOEP.

Management Entity Procedures 30 July 2003 85

<Title Of Document> Page 86 of 99
Confidential Bluetooth SIG, Inc.

8 Annex A: Typical Message Sequence Charts

8.1 Image Push Feature

Imaging
Client

Imaging
Server

Imaging Initiator Imaging Responder

Where
 Name: ImageName
 Handle: ImageHandle
 THM: Thumbnail
 ATT: AttachmentFile

Possible 1 to
n times

Possible 1 to
m times

Subsequent
thumbnail push
is requested

Connection establishment to Image Push Service

PUT Request: PutImage(Name,ImageDescriptor,Image)

PUT Response: Success(Handle)

Disconnection of Image Push Service

GET Request: GetCapabilities()

GET Response: Success(ImagingCapabilities)

PUT Request: PutLinkedThumbnail(Handle,THM)

PUT Response: Success()

PUT Request: PutImage(Name,ImageDescriptor,Image)

PUT Response: PartialContent(Handle)

PUT Request: PutLinkedAttachment(Handle,ATT)

PUT Response: Success()

Annex A: Typical Message Sequence Charts30 July 2003 86

<Title Of Document> Page 87 of 99
Confidential Bluetooth SIG, Inc.

8.2 Image Pull Feature

Imaging
Client

Imaging
Server

Imaging Initiator Imaging Responder

Where
 NbHandle: NbReturnedHandle
 Offset: ListStartOffset
 Handle: ImageHandle
 THM: Thumbnail
 ATTName: AttachmentFileName
 ATT: AttachmentFile

Possible 1
to n times

Possible
1 to m
times

Connection establishment to Image Pull Service

GET Request:
GetImagesList(NbHandle,Offset,HandleDescriptor)

GET Response: Success(ImagesListing)

GET Request: GetImageProperties(Handle)

GET Response: Success(ImageProperties)

GET Request: GetImage(Handle)

GET Response: Success(Image)

Disconnection of Image Pull Service

Possible 1
to n times

GET Request: GetLinkedAttachment(Handle, ATTName)

GET Response: Success(ATT)

GET Request: GetLinkedThumbnail(Handle)

GET Response: Success(THM)

Possible 1
to n times

Annex A: Typical Message Sequence Charts30 July 2003 87

<Title Of Document> Page 88 of 99
Confidential Bluetooth SIG, Inc.

Annex A: Typical Message Sequence Charts30 July 2003 88

8.3 Advanced Image Printing Feature

Primary
Client

Primary
Server

Imaging Initiator Imaging Responder

Where
 FileName: ImageFileName
 Length: SubFileLength
 Offset: SubFileStartOffset

Possible 1
to n times

Possible 1
to m times

Secondary
Server

Secondary
Client

GET Request: GetCapabilities()

GET Response: Success(ImagingCapabilities)

PUT Request: StartPrint(PrinterControlObject)

GET Response: Success(Partial Image1)

GET Request: GetPartialImage(FileName,Length,Offset)

GET Response: Success(Partial Image 1)

GET Request: GetPartialImage(FileName,Length,Offset)

GET Response: Success(Partial Image m)

GET Request: GetPartialImage(FileName,Length,Offset)

GET Response: Success(Partial Image m)

GET Request: GetPartialImage(FileName,Length,Offset) Possible 1
to n times

Connection establishment to Advanced
Image Printing Service

Disconnection of Advanced Image Printing
Service

Connection establishment to Referenced Objects Service

Disconnection of Referenced Objects Service

PUT Response: Success()

GetStatus

Success

GetStatus

Continue

GetStatus

Continue

....

<Title Of Document> Page 89 of 99
Confidential Bluetooth SIG, Inc.

Annex A: Typical Message Sequence Charts30 July 2003 89

8.4 Automatic Archive Feature

Primary
Client

Primary
Server

Imaging Initiator Imaging Responder

Possible 1
to n times

Secondary
Server

Secondary
Client

Connection establishment to Automatic Archive
Service

PUT Request: StartArchive()

PUT Response: Success()

Disconnection of Automatic Archive Service

GET Request: GetImage(Handle)

GET Response: Success(Image)

GET Request: GetImage(Handle)

GET Response: Success(Image)

Connection establishment to Archived Objects Service

Disconnection of Archived Objects Service

GET Request: GetImagesList(NbHandle,Offset,HandleDescriptor)

GET Response: GetImagesList(ImagesListing)

GetStatus

Continue

GetStatus

Continue

GetStatus

Success

....

<Title Of Document> Page 90 of 99
Confidential Bluetooth SIG, Inc.

8.5 Remote Camera Feature

Imaging
Client

Imaging
Server

Imaging Initiator Imaging Responder

Where
 Handle: ImageHandle

Subsequent
GetImage for
stored image
is possible

Connection establishment to Remote Camera
Service

GET Request: GetMonitoringImage(StoreFlag=0x00)

GET Response: Success(MonitoringImage)

GET Request: GetImage(Handle)

GET Response: Success(Image)

Disconnection of Remote Camera Service

GET Request: GetMonitoringImage(StoreFlag=0x01)

GET Response: Success(MonitoringImage, Handle)

Possible 1
to n times

GET Request: GetMonitoringImage(StoreFlag=0x00)

GET Response: Success(MonitoringImage)

In order to
take a new
picture and
store it

Possible 1
to m times

Annex A: Typical Message Sequence Charts30 July 2003 90

<Title Of Document> Page 91 of 99
Confidential Bluetooth SIG, Inc.

8.6 Remote Display

Imaging
Client

Imaging
Server

Imaging Initiator Imaging Responder

Possible 1 to
m times

Possible 1
to q times

Connection establishment to Remote Display
Service

PUT Request: PutImage(Name,ImageDescriptor,Image)

PUT Response: Success(Handle)

Disconnection of Remote Display Service

GET Request: GetCapabilities()

GET Response: Success(ImagingCapabilities)

GET Request:
GetImagesList(NbHandle,Offset,HandleDescriptor)

GET Response: Success(ImagesListing)

Where
 NbHandle: NbReturnedHandle
 Offset: ListStartOffset
 Handle: ImageHandle
 DispTag: RemoteDisplay tag in Application Parameter header
 DispHandle: DisplayedImageHandle

PUT Request: RemoteDisplay(Handle, DispTag=0x03)

PUT Response: Success(DispHandle)

PUT Request: RemoteDisplay(DispTag=0x01/0x02)

PUT Response: Success(DispHandle)

Possible 1
to n times

Possible 1
to p times

Annex A: Typical Message Sequence Charts30 July 2003 91

<Title Of Document> Page 92 of 99
Confidential Bluetooth SIG, Inc.

9 Annex B: Implementation Guidelines for DCF
Devices

It is recommended that DCF devices use the handle creation policy outlined in
this annex.
The file storage structure on DCF devices is illustrated in Figure B-1.

Figure B-1: File Storage Structure on DCF Devices

Annex B: Implementation Guidelines for DCF Devices 30 July 2003
 92

<Title Of Document> Page 93 of 99
Confidential Bluetooth SIG, Inc.

Folder names under the DCIM DCF main folder are formed from three digits
plus five characters. The five characters can be chosen arbitrarily, but it is
imperative that each folder has three unique digits. Similarly, file names within
DCF folders are composed of four arbitrarily chosen characters plus four digits
that must be unique to an image – all files related to that image must have the
four digits in their names.
It is recommended that handles on such devices be produced by combining
the three digits from the folder name with the four digits from the file name in
this format: FFFffff, where FFF represents the three digits characteristic of the
folder and ffff represents the four digits specific to an image.

Annex B: Implementation Guidelines for DCF Devices 30 July 2003
 93

<Title Of Document> Page 94 of 99
Confidential Bluetooth SIG, Inc.

Annex C: Synopsis of the OBEX Frame Structures in the Basic Imaging Profile, Phase 1 30

10 Annex C: Synopsis of the OBEX Frame Structures
in the Basic Imaging Profile, Phase 1

Header

REQ U ESTS
GetCapabilities GET x-bt/img-capabilities
GetImageList GET x-bt/img-listing
GetImageProperties GET x-bt/img-properties
GetImage GET x-bt/img-img
GetLinkedThumbnail GET x-bt/img-thm
GetLinkedAttachment GET x-bt/img-attachment
GetPartialImage GET x-bt/img-partial
GetMonitoringImage GET x-bt/img-monitoring
GetStatus GET x-bt/img-status
PutImage PUT x-bt/img-img
PutLinkedThumbnail PUT x-bt/img-thm
PutLinkedAttachment PUT x-bt/img-attachment
RemoteDisplay PUT x-bt/img-display
DeleteImage PUT x-bt/img-img
StartPrint PUT x-bt/img-print
StartArchive PUT x-bt/img-archive
RESPO N SES
GetCapabilities GET-Response
GetImageList GET-Response
GetImageProperties GET-Response
GetImage GET-Response
GetLinkedThumbnail GET-Response
GetLinkedAttachment GET-Response
GetPartialImage GET-Response
GetMonitoringImage GET-Response
GetStatus GET-Response
PutImage PUT-Response
PutLinkedThumbnail PUT-Response
PutLinkedAttachment PUT-Response
RemoteDisplay PUT-Response
DeleteImage PUT-Response
StartPrint PUT-Response
StartArchive PUT-Response

Opcode Packed lengthConnection ID Type

Field

July 2003 94

<Title Of Document> Page 95 of 99
Confidential Bluetooth SIG, Inc.

Annex C: Synopsis of the OBEX Frame Structures in the Basic Imaging Profile, Phase 1 30

Img-Handle

REQ U ESTS
GetCapabilities
GetImageList XML-HandlesDescriptor
GetImageProperties ImageHandle
GetImage XML-ImageDescriptor ImageHandle
GetLinkedThumbnail ImageHandle
GetLinkedAttachment "Name" ImageHandle
GetPartialImage "Filename"
GetMonitoringImage
GetStatus
PutImage "Filename" XML-ImageDescriptor
PutLinkedThumbnail ImageHandle
PutLinkedAttachment "Name" XML-AttachmentDescriptor ImageHandle
RemoteDisplay ImageHandle
DeleteImage ImageHandle
StartPrint
StartArchive
RESPO N SES
GetCapabilities
GetImageList XML-HandlesDescriptor
GetImageProperties
GetImage
GetLinkedThumbnail
GetLinkedAttachment
GetPartialImage
GetMonitoringImage ImageHandle
GetStatus
PutImage ImageHandle
PutLinkedThumbnail
PutLinkedAttachment
RemoteDisplay ImageHandle
DeleteImage
StartPrint
StartArchive

Name Img-Description

July 2003 95

<Title Of Document> Page 96 of 99
Confidential Bluetooth SIG, Inc.

Header

Remote
Display

NbReturne
d Handles ListStartOffset

Latest
CapturedImage StoreFlag

SubFile
Length

SubFile
StartOffset Total FileSize

REQ U ESTS

GetCapabilities
GetImageList x x x
GetImageProperties
GetImage
GetLinkedThumbnail
GetLinkedAttachment
GetPartialImage x x
GetMonitoringImage x
GetStatus
PutImage
PutLinkedThumbnail
PutLinkedAttachment
RemoteDisplay x
DeleteImage
StartPrint
StartArchive
RESPO N SES
GetCapabilities
GetImageList x
GetImageProperties
GetImage
GetLinkedThumbnail
GetLinkedAttachment
GetPartialImage x
GetMonitoringImage
GetStatus
PutImage
PutLinkedThumbnail
PutLinkedAttachment
RemoteDisplay
DeleteImage
StartPrint
StartArchive

Application Param eters

Annex C: Synopsis of the OBEX Frame Structures in the Basic Imaging Profile, Phase 1 30
July 2003 96

<Title Of Document> Page 97 of 99
Confidential Bluetooth SIG, Inc.

11 Annex D: References

11.1 Normative References

[1] Specification of the Bluetooth System, Part B, Baseband Specification
[2] Specification of the Bluetooth System, Part C, Bluetooth LMP Specification
[3] Specification of the Bluetooth System, Part D, L2CAP Specification
[4] Specification of the Bluetooth System, Part F:1, RFCOMM with TS 07.10

Specification
[5] TS 101 369 (GSM 07.10) version 6.3.0: Digital cellular telecommunications

system (Phase 2+) (GSM);Terminal Equipment to Mobile Station (TE-MS)
multiplexer protocol

[6] Specification of the Bluetooth System, Part E, Service Discovery Protocol
Specification

[7] Specification of the Bluetooth System, Part F:2, Bluetooth IrDA
Interoperability Specification

[8] IrOBEX Specification, Version 1.2, Infrared Data Association, March 18,
1999

[9] Specification of the Bluetooth System, Part K:10, Bluetooth Generic Object
Exchange Profile

[10]Specification of the Bluetooth System, Part K:1, Bluetooth Generic Access
Profile Specification

[11]Specification of the Bluetooth System, Part K:12, Bluetooth File Transfer
Profile Specification

[12]Specification of the Bluetooth System, Part K:11, Bluetooth Object Push
Profile Specification

[13]Specification of the Bluetooth System, Part K:13, Bluetooth
Synchronization Profile Specification

[14]Specification of the Bluetooth System, Assigned Numbers Specification,
http://www.bluetooth.org/assigned-numbers

[15]Digital Print Order Format, Version 1.1
https://eww.panasonic.co.jp/avc/avn/it/video/dpof_bt/

[16]Extensible Markup Language (XML) 1.0 (Second Edition) W3C
Recommendation 6 October 2000 (http://www.w3c.org/TR/REC-xml)

[17]ISO/IEC 10918-1 (JPEG) International Standard – Information Technology
– Digital Compression and Coding of Continuous-tone Still Images:
Requirements and Guidelines

[18]JEIDA Standard Design Rule for Camera File System, Version 1.0

Annex D: References 30 July 2003 97

http://www.bluetooth.org/assigned-numbers
https://eww.panasonic.co.jp/avc/avn/it/video/dpof_bt/
http://www.w3c.org/TR/REC-xml

<Title Of Document> Page 98 of 99
Confidential Bluetooth SIG, Inc.

[19]JEIDA Standard Digital Still Camera Image File Format Standard, Version

2.1
[20]Graphics Interchange Format, Version 89a

(http://www.w3.org/Graphics/GIF/spec-gif89a.txt)
[21]WAP-190-WAESpec (Wireless Application Protocol, Wireless Application

Environment Specification, Version 1.3)
[22]PNG (Portable Network Graphics) Specification Version 1.0 W3C

Recommendation 01-October-1996 (http://www.w3c.org/TR/REC-png.html)
[23]BMP (Windows Bitmap) specification

(http://www.cica.indiana.edu/graphics/image_specs/bmp.format.txt)
[24]The JPEG2000 specifications are currently awaiting publication as the

ISO/IEC 15444 family of specifications. The latest drafts are available here:
http://www.jpeg.org/CDs15444.htm

Annex D: References 30 July 2003 98

http://www.w3.org/Graphics/GIF/spec-gif89a.txt
http://www.w3c.org/TR/REC-png.html
http://www.cica.indiana.edu/graphics/image_specs/bmp.format.txt
http://www.jpeg.org/CDs15444.htm

<Title Of Document> Page 99 of 99
Confidential Bluetooth SIG, Inc.

Annex E: Acronyms and Abbreviations 30 July 2003 99

12 Annex E: Acronyms and Abbreviations

Acronym or Abbreviation Meaning
BB Baseband
CoD Class of Device
DCF Design rules for Camera File system
GOEP Generic Object Exchange Profile
HCI Host Controller Interface
L2CAP Logical Link and Control Adaptation Protocol
LC Link Controller
LM Link Manager
LMP Link Manager Protocol
MSC Message Sequence Chart
OBEX Object Exchange Protocol
PIM Personal Information Management
PLMN Public Land Mobile Network
QoS Quality of Service
RFCOMM Serial Cable Emulation Protocol
SD Service Discovery
SDP Service Discovery Protocol
SDPDB Service Discovery Protocol Database
UI User Interface
EXIF Exchangeable image file for digital still cameras
XML Extensible Markup Language
DTD Document Type Definition
MIME Mutipurpose Internet Mail Extension
UUID Universal Unique Identifier
UTC Coordinated Universal Time

	Special Interest Group (SIG)
	Revision History
	Contributors
	Contents
	Foreword
	Introduction
	Profile Dependencies
	Bluetooth OBEX-Related Specifications
	Symbols and Conventions
	Requirement Status Symbols
	Signaling Diagram Conventions

	Profile Overview
	Protocol Stack
	Configurations and Roles
	User Requirements and Scenarios
	Profile Fundamentals
	Conformance

	User Interface Aspects
	Mode Selection
	Features
	Example Feature Sequences
	Example Image Push Sequence
	Example Image Pull Sequence
	Example Advanced Image Printing Sequence
	Example Automatic Archive Sequence
	Example Remote Camera Sequence
	Example Remote Display Sequence

	Application Layer
	Imaging Devices Classification
	Imaging Features Overview
	Imaging Features
	Image Push Feature
	Image Pull Feature
	Advanced Image Printing Feature
	Automatic Archive Feature
	Remote Camera Feature
	Remote Display Feature

	Imaging Profile Formats, Objects, and Parameters
	Storage Formats Support
	Imaging File Formats Support
	Imaging Thumbnail
	Imaging Handles
	Imaging Attachments
	XML Headers and Objects
	Images-Listing Object (x-bt/img-listing)
	Image-Properties Object (x-bt/img-properties)
	Imaging-capabilities Object (x-bt/img-capabilities)
	Printer-control Object (x-bt/img-print)
	Monitoring-image Object (x-bt/img-monitoring)

	Imaging Descriptors
	Image Handles Descriptor
	Image Descriptor
	Attachment Descriptor

	Imaging Functions
	GetCapabilities Function
	PutImage Function
	PutLinkedThumbnail Function
	PutLinkedAttachment
	RemoteDisplay Function
	GetImagesList Function
	GetImageProperties Function
	GetImage Function
	GetLinkedThumbnail Function
	GetLinkedAttachment Function
	DeleteImage Function
	StartPrint Function
	GetPartialImage Function
	StartArchive Function
	GetStatus Function
	GetMonitoringImage Function

	OBEX
	OBEX Operations Used
	OBEX Headers
	Application Parameters Header
	User-Defined Headers
	OBEX Headers in Multi-Packet Responses

	OBEX Error Codes
	Initializing OBEX
	Establishing an OBEX Session
	Primary and Secondary Sessions
	Primary Session Establishment
	Secondary Session Establishment

	Disconnecting

	Service Discovery
	Service Discovery Service Records
	Imaging Responder Service
	Referenced Objects Service
	Archived Objects Service

	Service Discovery Procedure

	Management Entity Procedures
	Initialization

	Annex A: Typical Message Sequence Charts
	Image Push Feature
	Image Pull Feature
	Advanced Image Printing Feature
	Automatic Archive Feature
	Remote Camera Feature
	Remote Display

	Annex B: Implementation Guidelines for DCF Devices
	Annex C: Synopsis of the OBEX Frame Structures in the Basic Imaging Profile, Phase 1
	Annex D: References
	Normative References

	Annex E: Acronyms and Abbreviations

