
Linux ATM API

Draft� version ���

Werner Almesberger

EPFL� LRC

werner�almesberger�lrc�di�epfl�ch

July ��� ����

Contents

� About this document �
��� Related APIs �
��� Design considerations �
��� Description of API elements �
��� Changes since version ��� �
��� Changes since version ��� �
��� Changes since version ��� �
��� Changes since 	rst draft
version �� �

� Connection control �
��� Phases �
��� Address descriptors �
��� PVC addressing ��
��� SVC addressing ��
��� Attribution of incoming calls ��
��� QOS descriptors ��
��� Library functions �

��
 Connection preparation ��
��� Connection setup ��
���� Connection status ��
���� Connection teardown ��
���� Connection control summary ��

� Data exchange ��
��� Transfer scheduling ��
��� Sending and receiving ��
��� Alignment and size constraints �

��� Asynchronous I�O ��
��� Example ��

� Administrative functions ��
��� ioctl arguments ��
��� Interface con	guration ��
��� Connection con	guration ��
��� Physical layer ��
��� �proc ��

�

� Related services ��
��� IP over ATM ��
��� Arequipa ��

A Acronyms ��

�

� About this document

This document de	nes an API for ATM�related system services under Linux� The basic design idea is to
extend the ��� BSD release UNIX socket interface to support additional functionality needed for ATM
wherever possible�

Currently� only CBR and UBR are speci	ed� Support of ABR� ABT� VBR� etc� is left for further study�
Similarly� SVC multicast signaling is not speci	ed yet� Also� only an unreliable datagram transport is
de	ned�

Detailed descriptions of system calls and library functions are only given for items that are additions
speci	c for ATM or if their their use for ATM di�ers from their use for the INET protocol family� See
��� for a general introduction to the BSD socket API�

ATM functionality covered by this API is described in ��� and in ���� which are in turn based on several
ITU�T documents�

Pointers to previous and future versions of this document can be found at http���lrcwww�epfl�ch�
linux�atm�

��� Related APIs

This API is not directly aligned with the �Native ATM Services� API speci	cation ��� by the SAA API
ad�hoc work group of ATM Forum� but evolution of their work is being monitored and any development
requiring signi	cant changes to the API will be re�ected in this proposal� The SAA API work group
currently doesn�t intend to specify an ATM API for the BSD�style socket interface�

The SAA�Directory work group of ATM Forum is de	ning an ATM name resolution service ��� and is
also considering the issues of textual address representations� The Linux API document will be aligned
with the results of that work�

The IETF currently faces similar compatibility issues in preparation of the transition from IPv� to IPv��
The current Internet Draft describing IPv� extensions for BSD sockets ��� therefore provides useful
insights into problems which have to be addressed in the context of ATM too�

Finally� IEEE is drafting the standard POSIX socket API in ������g� Alignment with this imminent
important standard has priority over the other standards listed above�

Internal APIs of Linux ATM are covered by ����

��� Design considerations

The main considerations driving the design of this API are the following�

� when porting applications written for INET domain sockets� only source code parts using addresses
should need to be modi	ed

� where existing semantics are changed� the original design philosophy and also the original termin�
ology should be retained

� where semantics are modi	ed or new ones are added� work from related standardization e�orts is
adapted if possible

Also� care is being taken to make sure to follow up design decisions with implementation experience as
closely as possible�

�

��� Description of API elements

The API is described in terms of C data structures and function calls� Excerpts from the respective
header 	les are included only to illustrate the use of the structures � it should not be assumed that
any implementation uses identical declarations� In particular� no assumption should be made about the
following properties�

� order of elements in structs

� size of structs� unless explicitly indicated

� alignment of struct elements

� absence of additional struct elements

� numerical values of manifest constants� except for
absence of� equality with other manifest con�
stants from the same group of constants�

Include 	le names will change in the future�

Integers are assumed to have at least the following size�

Type Bits

char

short ��

int ��

long ��

��� Changes since version ���

The following items have been added�

� described how text�atm changes the address structure

� documented getsockname and getpeername

� added ATM ANYCLASS tra�c class

� new struct atm qos and socket option SO ATMQOS for QOS speci	cation

The following items have been changed�

� corrected the reference to �usr�include�atm�h
was mis�named as �usr�include�atmlib�h�

� terminology change� what was previously called �double connect� is now called �two�phase
connect�

� relaxed parameter restrictions for the second call in a two�phase connect

� socket addresses no longer contain the QOS speci	cation

� a �connection descriptor� is now either called �address descriptor� or �QOS descriptor�� depending
on which part of the former structure is used

� changed SO CIRANGE into a pair of ioctls

� BHLI matching changed� SAPs without BHLI are now incompatible with calls that specify a BHLI

�E�g� it is safe to use manifest constants in switch constructs�

�

��� Changes since version ���

The following items have been added�

� bind and connect are no longer allowed to modify their arguments� Instead� getsockname has to
be called to obtain the e�ective tra�c parameters�

� wildcard syntax and rules for SVC addressing

� described new library function atm�equal

� described new constant ATM�AAL��SDU

� the use of max�sdu is now strongly encouraged

� several minor changes and corrections

� renamed sdu�cr to sdu�cell

��� Changes since version ���

Known bugs�

� whitespace isn�t properly arranged in some of the code excerpts

� there are no program examples for SVCs yet

The following items have been added�

� SVC addressing

� raw ATM cell
�AAL��� transport

� system call behaviour for SVCs

� described new library functions text�atm and atm�text

� added max pcr

� added more details about select

The following items have been changed�

� 	xed document version numbers

� data structures are now described by giving excerpts from include 	les

� major restructuring and added some pictures� The text should now be more �implementor�friendly�
and also contains more introductory remarks�

� mis�use of two�phase connect
PVCs� now yields unspeci	ed behaviour

� 	rst connect
PVCs� now may allocate only some
or even none� of the resources

� changed many references from ��� to ���

� CDV is now speci	ed in microseconds� not in stupidities like �cell slots�

� many other minor changes and additions

�

��� Changes since 	rst draft
version ��

The following items have been added�

� a few introductory remarks

� indicated that PCR and CDV are ignored when UBR is chosen

� QOS guarantee only applies to network

� description of role and references to related APIs

� clari	ed that connect on incompletely speci	ed address allocates resources

� all values are stored in host byte order

� ATM NONE tra�c class for unidirectional tra�c

The following items have been changed�

� clari	ed use of address parameter in sendto� recvfrom� sendmsg� and recvmsg

� max pcr has been changed to min pcr

� maximum CDV explanation was ambiguous

� explained use of PVC�SVC and removed reference to ITU�T I����

� changed �VCC� to �VC�

� several bugs in the program examples

�

� Connection control

In ATM� the fundamental communication paradigm is the connection� This section describes the mech�
anisms to establish� use and release ATM connections�

��� Phases

A connection typically goes through the following four phases�

� connection preparation

� connection setup

� data exchange

� connection teardown

During connection preparation� parameters are set and general local resources
e�g� socket descriptors�
are allocated� Neither local nor remote networking resources are allocated during preparation� During
connection setup� local networking resources
bandwidth� connection identi	ers� bu�ers� etc�� are alloc�
ated� Resource allocation in the network may be handled by network management
PVCs� or it may
be done as part of the connection setup
SVCs�� In the data exchange� data is sent over a previously
established connection� Finally� during connection teardown� communication is stopped and resources
are deallocated�

Connection preparation� connection setup and data exchange are typically performed in this order� Con�
nection teardown is di�erent in that it can be initiated at any time� It may even overlap with other
phases
e�g� data may continue to �ow in one direction after a shutdown until the 	nal close��

����� Phases for PVC sockets

Opening a PVC socket means to attach an endpoint to a connection that normally already exists in the
network or that is established by a third party� The state diagram in 	gure � illustrates the life cycle of
PVC sockets��

PVC sockets are created with the socket system call� Then the QOS requirements are indicated� an
address descriptor is set up� and bind or connect is called
they have identical functionality when used
with PVCs� to open the VC� If the VC cannot be opened� the operation may be retried� possibly after
changing the address descriptor and�or the tra�c parameters�

One particularity with PVCs is that they can be opened in two steps� 	rst� only a part of the actual
address is provided� so that only the resources needed for the connection can be allocated� In the second
step� the complete address is provided� The address used in the 	rst step is called an incompletely
speci�ed address��

Once a VC is established� data can be exchanged until the socket is closed with the close system call�
It is of course possible to close the socket in any state�

����� Phases for SVC sockets

SVCs are connections whose establishment in the network is controlled by the communicating parties�
An endsystem can either accept an incoming connection
passive open� or it can try to establish an
outgoing connection
active open�� Figure � illustrates the life cycle of an outgoing connection�

�The states described in this document are only conceptual� They may not exist in an actual implementation�
�Note that the only way to undo the e�ect of binding to an incompletely speci�ed address is to close and re�create the

socket� i�e� it is not possible to bind to a di�erent incompletely speci�ed address or to an incompatible complete address�

�

CREATED

socket

close

CONNECTED

bind/connect error

CONNECTING
close

incompletely specified bind/connect

bind/connect

close

bind/connect error

bind/connect

setsockopt(SO_ATMQOS)

Figure �� Opening a PVC socket�

The most common way to establish a connection is to create the SVC socket with socket� to specify
the QOS requirements� to prepare the address descriptor� to request connection setup with a blocking
connect� to block until the network accepts
or rejects� the connection� to exchange data� and eventually
to close the socket with close�

The local endpoint can be bound to a speci	c address with the bind system call� If using a non�blocking
connect� the process continues to run while the connection is being set up and it may also decide to close
the socket prematurely� Note that there are two transitions for �connect error� from the CONNECTING
state� The choice of which of them is taken depends on whether the socket is bound or not�

The passive open is illustrated in 	gure ��

As usual� the socket is 	rst created with the socket system call and the QOS parameters are set� Then�
the address descriptor is set up to specify the type of connections that should be attributed to this socket�
and the socket is bound with the bind system call� The service access point
SAP� is registered at the
local signaling entity with the listen system call�

Now the process can block in the accept system call until a connection request is received� or it can
poll using non�blocking accepts or using select� If an incoming connection matches the speci	cation
of the SAP� the accept system call succeeds
or the socket becomes readable so that select returns and

CREATED BOUND
bind

close

close

socket

close

CONNECTED CONNECTING

non-blocking connectconnect error

non-blocking connect

connect error

close

connect complete

connect error

connect continuing (EALREADY)

(blocking) connect

(blocking) connect

bind error
connect error

setsockopt(SO_ATMQOS)
setsockopt(SO_ATMQOS)

Figure �� Active open of an SVC socket�

that accept can be invoked�� If accept succeeds� a new socket is created for the connection and data
exchange can begin�

The socket used to listen and the socket
s� used to exchange data can be individually closed with close�
Note that closing the listen socket only removes the SAP registration and does not a�ect any connections
which have already been set up�

��� Address descriptors

An address descriptor speci	es the actual address of a destination entity� It is used wherever an address
structure
struct sockaddr� is required� Its general structure is as follows�

struct sockaddr atmtype f
unsigned short pre�x family�

struct f
� � �

g pre�x addr�

g�

type is the address type� i�e� pvc for PVCs and svc for SVCs� pre�x is the corresponding 	eld name
pre	x� which follows the convention used for other address families� The pre	x is sap for PVCs and sas

�

CREATED BOUND
bind

close

close

socket

close
bind error

LISTENING

listen

accept
new socketclose

CONNECTED

setsockopt(SO_ATMQOS)
setsockopt(SO_ATMQOS)

Figure �� Passive open of an SVC socket�

for SVCs� pre�x family contains the address family� pre�x addr contains the actual address information�
The address format di�ers signi	cantly between PVCs and SVCs�

PVC addressing is described in section ���� SVC addressing is described in section ����

��� PVC addressing

PVCs are addressed by specifying the local interface and the connection identi	er
VPI and VCI� to use
on that interface� The address structure is de	ned in �usr�include�linux�atm�h�

struct �

short itf�

short vpi�

int vci�

	 sap�addr�

The contents of all 	elds are stored in host byte order� itf is the number of the local interface
zero�
based�� vpi is the virtual path identi�er in the range from � to ���� vci is the virtual channel identi�er

��

in the range from � to ������ Note that the VCIs from � to �� are reserved by ITU�T or by ATM Forum
and should not be used by applications� Therefore� only privileged processes are allowed to open VCs
using VCIs below ATM�NOT�RSV�VCI
����

The valid ranges for VCIs and VPIs may be further constrained by the interface and might be con	gurable

see section �������

Two PVC sockets can share the same address if one of them uses only the receive direction
i�e�
qos�txtp�class

 ATM�NONE� and the other uses only the transmit direction� Note that such sharing
may not be supported for all tra�c classes� Also note that qos�txtp�class and qos�rxtp�class must
not both be set to ATM�NONE�

����� Special PVC addresses

The following special values are recognized in PVC addresses�

itf

 ATM ITF ANY selects the lowest�numbered interface on which the speci	ed VPI�VCI pair is valid
and not yet in use�

vpi

 ATM VPI ANY selects the lowest�numbered free VPI on the speci	ed interface on which the spe�
ci	ed VCI is valid and not yet in use�

vci

 ATM VCI ANY selects the lowest�numbered
non�reserved� free VCI on the speci	ed interface for
which the VPIs correspond�

vpi

 ATM VPI UNSPEC does not allocate any VPI�VCI pair and uses the interface number for resource
control only� vpi

 ATM VPI UNSPEC also implies that the VCI is unspeci	ed� Therefore� the VCI
value is ignored�

vci

 ATM VCI UNSPEC does not allocate any VPI�VCI pair and uses the interface and VPI numbers
for resource control only�

Addresses containing ATM part ANY components are called wildcard addresses� Similarly� addresses
containing ATM part UNSPEC components are called incompletely speci�ed addresses�

An address may contain more than one wildcard component� e�g� itf

 ATM ITF ANY� vpi

ATM VPI ANY and vci

 ATM VCI ANY would select the lowest�numbered free PVC address� When
using more than one wildcard component in an address� interface numbers are more signi	cant than VPI
numbers� and VPI numbers are more signi	cant than VCI numbers when determining the lowest address�
Furthermore� wildcards and incompletely speci	ed components can be mixed� In this case� the wildcard
selection is based on incomplete information�

����� Textual representation

The formats for textual representation of PVC addresses are

�� vpi�vci

�� itf�vpi�vci

itf� vpi� and vci are non�negative decimal numbers without leading zeroes� or the special characters � or
�� indicating an unspeci	ed or wildcarded address component� respectively� If the 	rst format is used�
the interface number is assumed to be zero�

��

��� SVC addressing

SVCs addressing occurs at up to three levels��

� selection of a gateway relaying ATM connections between a public and a private network

� selection of an endsystem within a public or private network

� selection of a service on the selected endsystem

Public networks use E����
ISDN�telephony� �
�� numbers for addressing� Private networks use private
ATM Forum NSAP addresses� as described in section ������� of ���� As far as addressing is concerned�
those public networks which also use NSAP addresses are treated like private networks�

����� Endsystem addressing

To select an endsystem� the following address information is required
examples in 	gure � are in par�
entheses��

� if the destination is on a private network� the private address
A�B�

� if the destination is on a public network
using E���� addresses�� the public address
A�D� D�E�

� if the destination is on a private network� which is reached via a public network using E����
addresses� the private and the public address
A�F�G�

Public network using E.164 addresses

Public address ...

Public address

Private address

Public address

Private network

... with private subaddress

Private network

A

B

C

D E

F

G

Figure �� SVC addressing�

�A fourth level� the selection of a transit network� is speci�ed in annex D of ���� The Linux ATM API currently does
not support the use of this mechanism�

��

The service on an endsystem is identi	ed by specifying either the low�layer protocol
OSI layers � or ���
or the high�layer protocol� or both� or neither of them� The latter case is probably not very relevant in
real networks�

The whole SVC address structure is de	ned in �usr�include�linux�atm�h�

struct �

unsigned char prv
ATM�ESA�LEN��

char pub
ATM�E����LEN����

struct atm�blli �blli�

struct atm�bhli bhli�

	 sas�addr�

The private address prv is an ATM Forum NSAP address of an ATM end system on a private network�
Its length is always ATM ESA LEN
twenty� bytes� See section ������� of ��� for encoding rules� The private
address is omitted by setting its 	rst byte to zero�

The public address pub is an E���� address� The public address is a NUL�terminated ASCII string of
up to ATM E��� LEN decimal digits� The public address is omitted by setting its 	rst byte to zero
i�e�
NUL��

blli and bhli identify the local service access point
SAP�� e�g� the calling or called application� or
a functional part of the latter� High�layer information is optional
its absence is indicated by setting
bhli�hl type to ATM HL NONE�� Low�layer information is optional too
its absence is indicated by setting
blli to NULL�� but in addition to that� it can also be repeated� In the latter case� blli points to a linked
list of
broadband� low�layer informations� See sections ����� and ����� for details�

����� Textual representation

The following formats can be used for textual representation of endsystem addresses�

�� �� hex digits

�� up to �� decimal digits

�� up to �� decimal digits��� hex digits

�� up to �� decimal digits��� hex digits

�� up to �� decimal digits�up to �� decimal digits��� hex digits

The 	rst format is used for
private� NSAP addresses� The second format is used for
public� E����
addresses� The third format is used for E���� addresses embedded in the NSAP address format� The
fourth and the 	fth format are used for public addresses with private subaddresses�

Periods
�� can be used to separate hexadecimal or decimal digits� Periods must neither appear next
to any non�digit
including other periods� nor at the beginning or at the end of the address string�
Hexadecimal digits corresponding to letters can be written in upper or in lower case� A public E����
address can optionally be pre	xed with a colon to disambiguate it� A leading zero is only allowed in the
NSAP address format and it is signi	cant� Note that an NSAP address must not start with a zero byte�
i�e� with two leading zeroes in hexadecimal representation�

In addition� in all contexts where wildcards are applicable� the textual representation of private NSAP
addresses can be extended by appending a slash� followed by the number of valid bits in the binary form

�A fourth possibility would be to reach a private network from a public network by passing through a gateway using
subaddressing� e�g� E�F�G�

�Which can be a protocol stack or a demultiplexer� e�g� IEEE �	
�� SNAP or IP�

��

of the address� e�g� ��������ffe�������f�����������ea���ee�������� Entirely unused hex digits
can be omitted� e�g� the example above could be abbreviated to ��������ffe�������f�����������

When using embedded E���� addresses� the number of bits must be greater than or equal to ��� i�e�
binary wildcarding doesn�t apply to the E���� part�� Since all forms of E���� addresses also imply the
length
in digits�� and the smallest unit is assumed to be one digit� no syntactical extension is necessary
to mark wildcards�

There is no textual representation for high�layer and for low�layer information�

����� Low�layer information

Each element of a list of low�layer information elements has the following structure
de	ned in
�usr�include�linux�atmsap�h��

struct atm�blli �

unsigned char l��proto�

union �

struct �

unsigned char mode�

unsigned char window�

	 itu�

unsigned char user�

	 l��

unsigned char l��proto�

union �

struct �

unsigned char mode�

unsigned char def�size�

unsigned char window�

	 itu�

unsigned char user�

struct �

unsigned char ipi�

unsigned char snap
���

	 tr�����

	 l��

struct atm�blli �next�

	�

The following values can be used for the layer � protocol
l� proto��

�define ATM�L��NONE �

�define ATM�L��ISO���� �x��

�define ATM�L��Q��� �x��

�define ATM�L��X���LL �x��

�define ATM�L��X���ML �x��

�define ATM�L��LAPB �x��

�define ATM�L��HDLC�ARM �x��

�define ATM�L��HDLC�NRM �x�a

�define ATM�L��HDLC�ABM �x�b

�The restriction is waived if the number of bits is less than eight and if a textual representation di�erent from the one
explicitly specifying an embedded E���
 address is used� i�e� if there is no way to tell that this is actually an E���
 address�

��

�define ATM�L��ISO���� �x�c

�define ATM�L��X�� �x�d

�define ATM�L��Q��� �x�e

�define ATM�L��USER �x��

�define ATM�L��ISO���� �x��

The value ATM L� NONE indicates that there is no layer � protocol information�

The following values can be used for the 	elds l��itu�mode and l��itu�mode�

�define ATM�IMD�NONE �

�define ATM�IMD�NORMAL �

�define ATM�IMD�EXTENDED �

The value ATM IMD NONE indicates that the mode is not speci	ed�

The following values can be used for l� proto� the layer � protocol�

�define ATM�L��NONE �

�define ATM�L��X�� �x��

�define ATM�L��ISO���� �x��

�define ATM�L��X��� �x��

�define ATM�L��ISO���� �x��

�define ATM�L��T�� �x�a

�define ATM�L��TR���� �x�b

�define ATM�L��USER �x��

The value ATM L� NONE indicates that there is no layer � protocol information�

The default window size l��itu�def size has to be in the range from �� to ���� and is encoded as log�
of the window size� The value � is used to indicate absence of default window size information�

The 	eld next either contains a pointer to the next low�layer information element or it is NULL�

Note that setting both l� proto and l� proto to the respective null value in the same information
element is invalid� i�e� if there is no information to convey� the entire element has to be omitted�

See section ������� of ��� for the exact coding of low layer information and for which 	elds are available
depending on the protocol used�

����� High�layer information

struct atm bhli is de	ned in �usr�include�linux�atmsap�h�

struct atm�bhli �

unsigned char hl�type�

unsigned char hl�length�

unsigned char hl�info
ATM�MAX�HLI��

	�

The following values can be used for hl type�

�define ATM�HL�NONE �

�define ATM�HL�ISO �x��

�define ATM�HL�USER �x��

�if defined�UNI��� �� defined�ALLOW�UNI���

��

�define ATM�HL�HLP �x��

�endif

�define ATM�HL�VENDOR �x��

The value ATM HL NONE is used to indicate absence of high�layer information� ATM HL HLP is only valid
when using UNI ��� signaling�

See section ������
 of ��� and of ��� for the exact coding of high layer information and for the content of
hl info depending on the information type used� The use of hl length is only required if the content
of hl info has variable size� hl length is always set in addresses returned by the operating system�

��� Attribution of incoming calls

An incoming call is attributed to the local SAP which ful	lls the following criteria�

� It is either not registered for a speci	c local address
i�e� the public and the private address 	elds
are null� or it is registered exactly for the called address�

� If high� or low�layer information is speci	ed in the SAP or in the incoming call� both must match
exactly� except for the negotiable 	elds l��itu�mode� l��itu�window� l��user� l��itu�mode�
l��itu�def size� and l��itu�window�� If a non�negotiable 	eld is present in the local SAP but
not in the incoming call or vice versa� they don�t match�

� If the incoming call or the local SAP contains more than one low�layer information element� a
pair�wise comparison is done� They match if at least one pair of low�layer information elements
matches�

In case of a draw� an arbitrary SAP is selected�

��� QOS descriptors

QOS descriptors are used to express the QOS requirements or settings of a connection� They are encoded
in a data structure of type struct atm qos� which is de	ned in �usr�include�linux�atm�h� It contains
the following 	elds�

struct atm�qos �

struct atm�trafprm txtp�

struct atm�trafprm rxtp�

	�

txtp and rxtp are the tra�c parameters in send and receive direction� respectively� Their structure is
described in the following section�

����� Tra	c parameters

Tra�c parameters are added to the QOS descriptor by simply assigning values to the corresponding
	elds�

Tra�c parameters are encoded in a data structure of type struct atm trafprm
de	ned in
�usr�include�linux�atm�h� which contains the following 	elds�

�See also annex C of ����

��

struct atm�trafprm �

unsigned char class�

int max�pcr�

int min�pcr�

int max�cdv�

int max�sdu�

	�

class is the tra�c class� indicating general tra�c properties� min pcr and max pcr indicate the desired
peak cell rate
PCR�� in cells per second� max cdv is the maximum cell delay variation
CDV�� in
microseconds� max sdu is the maximum service data unit
SDU� size� in bytes� The use of those 	elds is
described in the following sections�

Note that compatibility of the requested QOS with available resources is not checked during connection
preparation� This is only done during connection setup� Further� since only certain parameter values may
be supported� connection setup may be performed with tra�c parameters that di�er from the requested
ones� The e�ective parameters can be obtained by querying the socket option SO ATMQOS�
See section
��
����

Further parameters
variable bit rate� maximum cell loss probability� end�to�end delay� etc�� may be
added in the future� All parameter values are stored in host byte order�

Note that service guarantees
e�g� timely processing of CBR tra�c� only apply to the network� It is the
application�s responsibility to ensure that su�cient host resources are available to properly generate or
accept tra�c streams�

����� Tra	c classes

The following tra�c classes are de	ned�

ATM NONE no tra�c in this direction

ATM ANYCLASS accept any class

ATM CBR constant bit rate
CBR�

ATM UBR unassigned bit rate
UBR�

If no tra�c class is speci	ed
i�e� if the 	eld is set to zero�� ATM NONE is used as the default� When the
tra�c class is ATM NONE� all other tra�c parameters are ignored�

ATM ANYCLASS is used for specifying SVC SAPs that are compatible with any tra�c class that is requested
by the calling party�

Depending on the tra�c class� only certain tra�c parameter 	elds are used�

ATM NONE ATM CBR ATM UBR

max pcr � Yes �

min pcr � Yes �

max cdv � Yes �

max sdu � Yes Yes

����� Peak cell rate

The minimum peak cell rate min pcr and the maximum peak cell rate max pcr specify the bandwidth
that will be consumed by this connection� They are counted in cells per second�

��

Hardware normally does not allow to set the peak cell rate
PCR� at a resolution of one cell per second�
It will therefore choose a rate according to the following rules�

� if only min pcr is speci	ed
i�e� if it is non�zero�� the next possible rate above min pcr is used

� if only max pcr is speci	ed
i�e� if it is neither zero nor ATM MAX PCR�� the next possible rate below
the lower value of max pcr and the remaining bandwidth on the link is used

� if both min pcr and max pcr are speci	ed� the next possible rate above min pcr is used

The operation fails if the selected rate would exceed either the remaining bandwidth or the maximum
PCR
if speci	ed��

For sending� the tra�c shapers are adjusted to never exceed the selected cell rate� For receiving� the
receiver prepares to accept cells arriving at least at this rate�

The minimum PCR normally is zero or a positive integer� The maximum PCR normally is a positive
integer� The special value ATM MAX PCR indicates an unlimited cell rate
i�e� link speed�� ATM MAX PCR is
never used by the operating system for returning a cell rate� The maximum PCR is ignore if set to zero�
min pcr and max pcr are ignored when using UBR�

����� Cell delay variation

The maximum cell delay variation
CDV� max cdv speci	es the upper bound for the maximum number
of microseconds a cell can arrive ahead of its due time� relative to the preceding cell of the same VC��

i�e� the operating system may select a lower CDV than requested in max cdv� When sending� cells will
never be emitted at a pace exceeding this guarantee� For receiving� the receiver prepares to accept cells
arriving with at least the speci	ed CDV� The maximum CDV normally is a positive integer� Setting it
to zero indicates an unspeci	ed CDV� max cdv is ignored when using UBR�

����� SDU size

The maximum service data unit
SDU� size speci	es the maximum amount of data
counted in bytes�
the API user will attempt to send at a time� i�e� with a single system call� For receiving and for sending�
bu�ers are dimensioned accordingly� The SDU size is a positive integer� If set to zero� the maximumSDU
size supported by the respective protocol is assumed� The operating system never returns a maximum
SDU size of zero� Because this may lead to wasteful allocation of resources� max sdu should always be
set if the maximum message size is known or if it is implied by the application�

��� Library functions

A set of library functions is provided to encode� decode� and compare addresses and to convert SDU
rates to cell rates�

In order to use the library� the header 	le �usr�include�atm�h has to be included� In addition to that�
the library libatm�a has to be linked in�

Note that text�atm and atm�text might be changed in the future for better alignment with the ANS
API�
See also �����

�This de�nition of CDV is based on the �peak cell rate monitor algorithms accounting for cell delay variation tolerance�
described in annex A of ����

�

����� text�atm

text�atm converts a textual presentation of a PVC or SVC address to the corresponding binary encoding�

int text�atm�const char �text�struct sockaddr �addr�int length�int flags��

text points to a NUL�terminated string containing the textual representation of the address� addr

points to a data structure large enough to hold the resulting address structure� which can be either
a struct sockaddr�atmpvc or a struct sockaddr�atmsvc� length indicates the length of the data
structure� The conversion fails if not enough space is provided� flags is a set of processing options�

�define T�A�PVC �

�define T�A�SVC �

�define T�A�UNSPEC �

�define T�A�WILDCARD �

�define T�A�NNI ��

�define T�A�NAME ��

T�A PVC and T�A SVC enable the corresponding address formats� If neither of them is set� the presence
of both is assumed� T�A UNSPEC and T�A WILDCARD allow the use of unspeci	ed or wildcard parts�
respectively� in PVC addresses� T�A WILDCARD can also be used for SVC addresses� where it means to
allow extensions of the form �length� T�A NNI allows the use of �� bit VPI values��	 T�A NAME allows
further resolution using a directory service� Resolution based on numeric information takes precedence
over directory lookups�

text�atm returns the length of the NSAP part on success
� if there is no NSAP part� ��� if there is
one� or something in between if using wildcards�� a negative integer on failure� The de	nition of more
detailed failure indications is for further study�

On success� text�atm initializes the following 	elds in PVCs� sap�family and everything in
sap�addr� In SVCs� text�atm initializes sas�family� sas�addr�prv� and sas�addr�pub� Note that
sas�addr�blli and sas�addr�bhli are not touched� In case of failure� text�atmmay clobber the whole
address structure� It is therefore recommended to initialize all other 	elds after calling text�atm�

����� atm�text

atm�text performs the reverse operation of text�atm� it converts a binary encoded ATM address to its
textual representation�

int atm�text�char �buffer�int length�const struct sockaddr �addr�int flags��

buffer points to the bu�er where the resulting string will be stored� length indicates the size of the
bu�er� It must be large enough to hold the entire string� plus the terminating NUL� MAX�ATM�ADDR�LEN
is the maximum length of a string
excluding the terminating NUL� atm�textmay generate� addr points
to the address structure to convert� flags is a set of processing options�

�define A�T�PRETTY �

�define A�T�NAME �

A�T PRETTY enables the addition of periods and the use of the colon notation for NSAP�embedded E����
addresses� A�T NAME enables directory lookups to translate the address to a name�

atm�text returns the length of the resulting string
without the terminating NUL� on success� a negative
integer on failure� The de	nition of more detailed failure indications is for further study�

�	Note that such VPIs values are only allowed at the NNI� not at the UNI�

��

����� atm equal

atm equal is used to test ATM addresses for equality�

int atm equal�const struct sockaddr atmsvc �a�const struct sockaddr atmsvc �b�int len�int

flags��

a and b point to the two addresses to compare� len is the length
in bits� of the pre	x of the NSAP
address to consider when using wildcards� flags is a set of processing options�

�define AXE�WILDCARD �

�define AXE�PRVOPT �

If AXE WILDCARD is set� only len bits of an NSAP address are compared� Also� for E���� addresses� only
as many digits as are present in the shorter address are compared� This also applies to NSAP�embedded
E���� addresses� Because of the coding of the latter� len must be greater or equal than �
�

If AXE PRVOPT is set� two addresses are still considered to be equal if their public parts match� even if
only one of them has a private part� Note that addresses with the same private part are always equal�
regardless of the public part�

atm equal returns a non�zero integer if the addresses match� or zero� if they don�t� or if no comparison
is possible�

����� sdu�cell

sdu�cell calculates the number of data cells that would be generated by sending a set of SDUs on a
given socket�

int sdu�cell�int s�int sizes�const int �sdu size�int �num sdu��

s is the socket descriptor that has previously been returned by the socket system call� sizes is the
number of SDU sizes described in the sdu size and num sdu arrays� Each element of sdu size indicates
the length
in bytes� of an SDU� Each element of num sdu indicates the number of times an SDU with
the corresponding size is sent�

sdu�cell computes the total number of ATM data cells that would be sent on the connection and returns
either that number or �� if there is an error
e�g� an over�ow�� Note that sdu�cell does not check whether
the speci	ed SDU sizes are valid for the connection�

��� Connection preparation

The connection preparation phase consists of the following parts�

� socket creation

� QOS descriptor initialization

� address descriptor initialization

� tra�c parameter setting

Socket creation and QOS descriptor initialization must always be performed before tra�c parameter
setting�

��

��
�� Socket creation

Sockets are created with the socket system call�

socket�int domain�int type�int protocol��

The domain indicates whether signaling shall be used for this connection
SVC�� or not
PVC�� The
following domains are de	ned�

PF ATMPVC ATM PVC connection

PF ATMSVC ATM SVC connection

Merging of both domains into a single PF ATM domain is left for further study�

The type selects general transport layer protocol characteristics� Only the SOCK DGRAM transport protocol
type is currently available� specifying an unreliable datagram transport� Note that no explicit sequence
guarantees are given� although the use of ATM generally implies that sequence will be preserved�

With protocol� a speci	c protocol is selected� Currently� only the protocols ATM AAL� and ATM AAL� are
de	ned� for details see section ���� Support of additional protocols is for further study�

��
�� Address descriptor allocation and initialization

The address descriptor is a data structure containing the actual address information� See section ��� for
a detailed description�

Depending on the address family� one of the following data types is used for the connection descriptor�

� struct sockaddr atmpvc for a PVC

� struct sockaddr atmsvc for an SVC

The data structures are de	ned in �usr�include�linux�atm�h�

struct sockaddr�atmpvc �

unsigned short sap�family�

struct �

short itf�

short vpi�

int vci�

	 sap�addr�

struct atm�trafprm sap�txtp�

struct atm�trafprm sap�rxtp�

	�

sap family contains the address family and must be set to AF ATMPVC� sap addr is the PVC address as
described in section ���� sap txtp and sap rxtp are obsolete and support of them will be discontinued
in the future�

struct sockaddr�atmsvc �

unsigned short sas�family�

struct �

unsigned char prv
ATM�ESA�LEN��

char pub
ATM�E����LEN����

struct atm�blli �blli�

��

struct atm�bhli bhli�

	 sas�addr�

struct atm�trafprm sas�txtp�

struct atm�trafprm sas�rxtp�

	�

The 	elds are the same as for PVCs� with the obvious exceptions that the family has to be set to
AF ATMSVC� and that the address is an SVC address as described in section ���� sas txtp and sas rxtp

are obsolete and support of them will be discontinued in the future�

Note that the address structure as described here conforms to the de	nition of socket address structures
of the ��� BSD release� which has also been adopted by Linux���

The address descriptor is initialized by setting all bytes to zero using the memset C library function�

See ������ Note that setting all 	elds to their respective null values
e�g� � or NULL� is not a valid way
to initialize the address descriptor��� After that� its 	elds can be set to the desired values�

��
�� QOS descriptor allocation and initialization

The QOS descriptor is a data structure describing tra�c properties
e�g� o�ered data rate� SDU size� and
connection requirements
e�g� maximum cell delay variation�� See section ��� for a detailed description�

The QOS descriptor is initialized by setting all bytes to zero using the memset C library function� Note
that setting all 	elds to their respective null values
e�g� � or NULL� is not a valid way to initialize the
QOS descriptor� After that� its 	elds can be set to the desired values�

��
�� QOS parameter setting

The QOS parameters of a connection are set using the setsockopt system call� Likewise� they can be
queried with getsockopt�

For setting and for querying QOS parameters� the level SOL ATM and the option name SO ATMQOS are
used� The option value is a struct atm qos
see section ����� the option length is its size in bytes�

Merely setting the QOS parameters does not allocate any resources or check their availability�

Note that QOS parameters must be set before actually trying to establish a connection or to listen
for incoming calls� It is an error to attempt such an operation without successfully setting the QOS
parameters before�

The QOS parameters may be altered any number of times before issuing a call to connect or bind� but
they must not be changed when connection establishment is in progress and after the connection has
been established� Modi	cation of QOS parameters for active calls may be supported in the future�

��
�� Example

struct sockaddr�atmpvc addr�

struct atm�qos qos�

int s�

if ��s
 socket�PF�ATMPVC�SOCK�DGRAM�ATM�AAL��� � �� �

perror��socket���

exit����

	

��
�
 BSD introduced an additional length �eld� which is not supported by Linux�
��Because new �elds� which may be added in the future� would not be initialized�

��

memset��qos���sizeof�qos���

qos�txtp�class
 ATM�UBR�

qos�txtp�min�pcr
 ATM�MAX�PCR�

qos�txtp�max�sdu
 �����

qos�rxtp
 qos�txtp�

if �setsockopt�s�SOL�ATM�SO�ATMQOS��qos�sizeof�qos�� � �� �

perror��setsockopt�SO�ATMQOS����

exit����

	

memset��addr���sizeof�addr���

addr�sap�family
 AF�ATMPVC�

��
 Connection setup

For PVCs� connection setup consists simply of adding address information to the connection descriptor
and invoking connect or bind� For SVCs� the concept known from INET stream sockets involving bind�
connect� listen� and accept is used�

����� System calls for PVC setup

The connect and bind system calls are used to set up connections� The behaviour of both is identical
for PVCs� The following peculiarity has to be noted�

A connection to an incompletely speci	ed address is not yet ready to transport data after calling connect
for the 	rst time� it must be connected or bound a second time without any unspeci	ed components� On
this second call� only previously unspeci	ed address components are used
i�e� the values of all others
are ignored�� It is an error
yielding unspeci	ed behaviour� if there are still unspeci	ed components left�
The 	rst call to connect may reserve some or all of the resources that have been explicitly speci	ed� If
no second connect is to be attempted� the resources have to be released by calling close� Performing
a connect in two steps as described above is called a �two�phase connect��

The following values of errno have a special meaning when using connect or bind on ATM PVC sockets�

EADDRNOTAVAIL the requested address cannot be assigned on the existing interface
s� in the present
con	guration�

EOPNOTSUPP on the second call� either address parts already speci	ed in the 	rst call have been changed
or there are still unspeci	ed address parts�

ENETDOWN the speci	ed interface exists but is currently not operational�

ENETUNREACH the requested QOS criteria could not be met�

����� System calls for active SVC setup

The address of the caller
i�e� the local address� can optionally be set with the bind system call� Tra�c
parameters and high� and low�layer information speci	ed in the call to bind are ignored� The address
must correspond to one of the addresses the system recognizes as local� If a public address with a
subaddress is speci	ed� only the subaddress is checked� If the socket is not explicitly bound to a local
address� an arbitrary local address will be passed in the signaling messages�

The connection is set up with the connect system call� A non�blocking connect
i�e� if the socket has
previously been set to non�blocking� returns immediately with errno either set to some error condition
or to EINPROGRESS� indicating successful initiation of the connection setup� The status of a non�blocking

��

connect can be queried using select
see section ���� or by invoking connect again� In the latter case�
a negative value is returned and errno is set to EALREADY if the connection setup is still in progress� or
� if the setup has completed or failed � the result is indicated like by a blocking connect�

����� System calls for passive SVC setup

A passive open is performed in three steps� First� the local SAP is de	ned using bind� Tra�c parameters
and SAP information will later be used to select incoming calls� If a local address is speci	ed� only calls
with exactly this destination address will be attributed to the socket�
Equality of addresses is determined
using atm equal� see also ������� If using a subaddress� the public address is ignored in the comparison�

After the bind� the SAP has to be registered using listen� Note that listen may return an error if the
SAP con�icts with another registered SAP���

After an incoming connection has been attributed to a listening socket
which can be determined by
using select
section ���� or by polling with accept�� that connection can be accepted with the accept
system call�

����� Example

addr�sap�addr�itf
 ��

addr�sap�addr�vpi
 ATM�VPI�UNSPEC�

if �connect�s��struct sockaddr �� �addr�sizeof�addr�� � �� �

perror��connect������

exit����

	

�� some other activities ��

addr�sap�addr�vpi
 ��

addr�sap�addr�vci
 ���

if �connect�s��struct sockaddr �� �addr�sizeof�addr�� � �� �

perror��connect������

exit����

	

���� Connection status

The addresses of the parties communicating over a socket can be queried using the system calls
getsockname and getpeername�

The local address can be obtained with getsockname after a successful bind� or
for SVCs�� after a
successful accept or connect� The remote address can be obtained with getpeername after bind
or
connect� for PVCs� and after accept or connect for SVCs� respectively�

The tra�c parameters of a connection can be obtained with getsockopt for the option SO ATMQOS
see
section ��
����

Note that getsockname� getpeername and getsockoptmay return partial or invalid information if used
prematurely�

���� Connection teardown

Two steps are distinguished when connections are torn down�

��Unlike INET domain sockets� ATM SVC sockets only occupy SAP �address� space when listening� Therefore� con�icts
cannot be detected in the bind system call and bind only veri�es general validity of the address�

��

� connection shutdown

� closing

Connection shutdown stops data transmission in either or both directions� Resources associated with a
connection are deallocated when closing the connection� A connection shutdown is performed implicitly
when closing a connection�

������ Connection shutdown

When a connection is shut down for sending� no further data is accepted for sending� Data can still be
received unless the connection has also been shut down for receiving�

When a connection is shut down for receiving� no further data is accepted from the network� Data can
still be sent unless the connection has also been shut down for sending�

The shutdown system call is used to shut down connections�

Whether and how connection shutdown also implies releasing of resources allocated to the connection is
de	ned by the implementation�

������ Closing

When a connection has been closed� no further access to it is possible and all resources associated with
it are freed�

Connections are closed by closing all sockets referencing them with the close system call or by termin�
ating the processes owning the sockets�

A socket can be closed in any state� except if it has not yet been created or if it has already been closed
before�

������ Example

�void� close�s��

���� Connection control summary

All steps in connection handling are summarized below along with the principal system calls or library
functions used in each step�

� connection preparation

� socket creation
socket�

� connection descriptor initialization
memset�

� QOS descriptor initialization
memset�

� tra�c parameter speci	cation
assignments�

� tra�c parameter setting
setsockopt�

� address descriptor initialization
memset�

� connection setup

� PVC

� addressing
assignments�

��

� optional� partial setup
bind� connect�

� address completion
assignments�

� full setup
bind� connect�

� optional� check tra�c parameters
getsockopt�

� SVC� active open

� optional� binding of local side
addressing and bind�

� addressing of remote side
assignments�

� connection setup
connect�

� optional� polling of non�blocking connect with select

� optional� check tra�c parameters
getsockopt�

� SVC� passive open

� addressing of local side
assignments�

� binding of local side
bind�

� SAP registration
listen�

� optional� polling with select

� connection acceptance
accept�

� data exchange
see section ��

� transfer scheduling
select�

� sending and receiving
read� write� � � ��

� alignment and size constraints
getsockopt�

� connection teardown

� connection shutdown
shutdown�

� closing
close�

��

� Data exchange

The data exchange paradigm for ATM sockets is modeled as closely as possible after the one for BSD
sockets� The only signi	cant exceptions are addresses� and additional bu�er alignment and size con�
straints which apply when optimizing for throughput�

��� Transfer scheduling

The select system call can be used to schedule receive and send operations in order to minimize blocking
delays�

If select indicates that an ATM socket is readable� this means that at least one subsequent read operation
will succeed on it without blocking� If the remote side closes a socket� that socket becomes readable but
will return zero� indicating EOF� select also indicates readability if a listening socket has incoming
connections to accept�

If select indicates that an ATM socket is writable� this means that at least one write operation of up to
max sdu bytes�� on it will succeed without blocking��� select also indicates writability if a non�blocking
accept or connect has succeeded�

select indicates an exception if a non�blocking connect has failed�

��� Sending and receiving

The system calls read� readv� recv� recvfrom� recvmsg� send� sendto� sendmsg� write� and writev

are supported with their usual semantics�
See ���� and ����� Note that� however� the sockets have to be
connected and that the arguments of sendto� recvfrom� sendmsg� and recvmsg specifying a source or
destination address must be NULL�

����� AAL�

The use of AAL� as de	ned in section � of ���� is requested by setting the protocol argument of the
socket system call to ATM AAL�� AAL� supports message sizes from � to ����� bytes�

�����
AAL�� or
raw� cells

The use of �AAL�� is requested by setting the protocol argument of the socket system call to ATM AAL��
No AAL layer processing is performed on raw cells� Raw cells are presented to the application as four
bytes containing the cell header� followed by ATM CELL PAYLOAD
�
� bytes containing the cell payload�
The header checksum
HEC� is not visible for the application� The constant ATM AAL� SDU
��� is de	ned
in linux�atm�h�

The cell structure is described in section ��� of ��� or in �����

The following set of macros is de	ned in �usr�include�linux�atm�h to access 	elds in the cell header
if copied to an unsigned integer of appropriate size and if the byte order corresponds to host byte order

i�e� the kernel returns cell headers already with the correct byte order��

�define ATM�HDR�GFC�MASK �xf�������

�define ATM�HDR�GFC�SHIFT ��

�define ATM�HDR�VPI�MASK �x�ff�����

��Or the respective default size if max sdu is not de�ned or not applicable�
��This does not imply that multiple write operations with the same total number of bytes written would not block� since

some bu�er space may also be allocated per queued SDU�

��

�define ATM�HDR�VPI�SHIFT ��

�define ATM�HDR�VCI�MASK �x���ffff�

�define ATM�HDR�VCI�SHIFT �

�define ATM�HDR�PTI�MASK �x�������e

�define ATM�HDR�PTI�SHIFT �

�define ATM�HDR�CLP �x��������

An additional set of macros de	nes possible values for the payload type identi	er
PTI��

�define ATM�PTI�US� � �� user data cell� congestion not exp� SDU�type � ��

�define ATM�PTI�US� � �� user data cell� congestion not exp� SDU�type � ��

�define ATM�PTI�UCES� � �� user data cell� cong� experienced� SDU�type � ��

�define ATM�PTI�UCES� � �� user data cell� cong� experienced� SDU�type � ��

�define ATM�PTI�SEGF� � �� segment OAM F� flow related cell ��

�define ATM�PTI�E�EF� � �� end�to�end OAM F� flow related cell ��

�define ATM�PTI�RSV�RM � �� reserved for traffic control�resource mgmt ��

�define ATM�PTI�RSV � �� reserved ��

When sending or receiving AAL� packets� the application must specify a bu�er size of exactly
ATM AAL� SDU
��� bytes� When sending� the application must set the VCI and VPI 	elds to the connec�
tion identi	er the VC is bound to�

��� Alignment and size constraints

In order to optimize throughput� speci	c bu�er alignment and size considerations may be necessary� This
information can be used to adapt the send and receive procedures�

Bu�er constraints can be obtained with the getsockopt system call�

int getsockopt�int s�int level�int optname�void �optval�int �optlen��

The level is SOL SOCKET� the following values for optname are recognized
each parameter exists in the
send and in the receive direction��

SO BCTXOPT constraints for sending data with best throughput

SO BCRXOPT constraints for receiving data with best throughput

optval is a pointer to a data structure of type struct atm buffconst with the following 	elds�

struct atm�buffconst �

unsigned long buf�fac�

unsigned long buf�off�

unsigned long size�fac�

unsigned long size�off�

unsigned long min�size�

unsigned long max�size�

	�

buf fac is the factor which the bu�er address
minus buf off� should be an integer multiple of� size fac

times an integer plus size off should yield the SDU size� min size and max size are the respective
proposed limits for the SDU size�

The contents of all 	elds are stored in host byte order and they must have non�negative values� A
maximum size only limited by the general system architecture or by quotas is coded as zero� The
following relations are true�

�

buf off � buf fac

size off � size fac

min size � max size��

� � size fac � max size� min size

min size � size off
mod size fac�
max size � size off
mod size fac���

For �AAL��� the following parameters are returned�

size fac ��

size off �

min size ��

max size ��

buf fac and buf off have implementation�speci	c values�

��� Asynchronous I�O

Support for asynchronous I�O is left for further study�

��� Example

const char msg
�
 �Hello� world !n��

char �buffer��start�

struct atm�buffconst bc�

ptrdiff�t pos�

size�t length�buf�len�

ssize�t size�

length
 sizeof�bc��

if �getsockopt�s�SOL�SOCKET�SO�BCTXOPT��char �� �bc��length� � �� �

perror��getsockopt���

exit����

	

buf�len
 sizeof�msg��bc�size�off�bc�size�fac���

buf�len
 buf�len��buf�len " bc�size�fac��bc�size�off�

if �buf�len � bc�min�size� buf�len
 bc�min�size�

if � �buffer
 malloc�buf�len�bc�size�fac����� �

perror��malloc���

exit����

	

pos
 �ptrdiff�t� �buffer�bc�buf�off�bc�buf�fac����

start
 �char �� �pos��pos " bc�buf�fac��bc�buf�off��

if �sizeof�msg�
 buf�len�

memset�start�sizeof�msg����buf�len�sizeof�msg���

if ��size
 write�s�start�buf�len�� � �� �

perror��write���

exit����

	

if �size
 buf�len�

��Unless the maximum size is coded as zero� in which case the minimum size can have any value�
��Unless the maximum size is coded as zero� in which case the size alignment is not constrained by the maximum size�

��

fprintf�stderr��Wrote only "d of "d bytes!n��size�

sizeof�msg���

��

� Administrative functions

The section is still under construction � � �

Certain interface and low�layer parameters can be modi	ed in some implementations� In addition to
that� statistics of important system events can be queried�

��� ioctl arguments

Ioctls that exchange a variable amount of data with the kernel but which don�t apply to a speci	c
ATM interface use struct atm iobuf to describe the data area� struct atm iobuf is de	ned in
�usr�include�linux�atmdev�h�

struct atm�iobuf �

int length�

void �buffer�

	�

When sending data to the kernel or when returning data from the kernel� length is set to the length of
the actual data� When requesting data from the kernel� length is set to the size of the bu�er� buffer

points to the data area�

All ioctls that apply to a speci	c ATM interface use struct atmif sioc to exchange parameters with
the kernel� struct atmif sioc is de	ned in �usr�include�linux�atm�h�

struct atmif�sioc �

int number�

int length�

void �arg�

	�

number contains the interface number� length is used in the same way as in struct atm iobuf� arg

points to the data area�

��� Interface con	guration

Unless indicated otherwise� interface con	guration ioctls can be applied to PVC and to SVC sockets� All
the ioctls and related data structures are de	ned in �usr�include�linux�atmdev�h�

����� List of available ATM interfaces

The list of available ATM interfaces can be obtained with the ATM GETNAMES ioctl� In its argument of
type struct atm iobuf� it returns a list of integers with the interface numbers� The return value is the
number of interface numbers that have been returned� or a negative number in case of an error�

����� Interface attributes

The type name of a speci	c interface can be queried using the ATM GETTYPE ioctl� This ioctl takes
an argument of type struct atmif sioc and returns the NUL�terminated interface type name� The
maximum length of a type name
without the terminating NUL byte� is de	ned to be ATM ITFTYP LEN�

The end system identi	er
ESI� of an interface can be queried using the ATM GETESI ioctl� This ioctl takes
an argument of type struct atmif sioc and returns the ESI value� The length of an ESI is de	ned to
be ESI LEN
six bytes��

��

����� Connection identi�er ranges

The number of bits that are available for VPI and VCI values on an interface can be queried and set
with the ioctls ATM GETCIRANGE and ATM SETCIRANGE� respectively� Both ioctls operate on a struct

atm cirange�

struct atm�cirange �

char vpi�bits�

char vci�bits�

	�

Setting either value to ATM CI MAX when invoking ATM SETCIRANGE allocates the maximum number of
bits available� If both 	elds are set to ATM CI MAX� the maximum number of VCI bits is allocated and
the remaining bits are used for VPIs�

Note that an ATM device driver may put arbitrary restrictions on what values it accepts for
ATM SETCIRANGE�

����� AAL level statistics

Per�interface AAL level statistics can be obtained with the ATM GETSTAT and ATM GETSTATZ ioctls� They
di�er in that ATM GETSTATZ zeroes the statistics counters after obtaining their current values� It therefore
is only available to privileged users�

Both ioctls take a struct atmif sioc as their argument� The ioctls return a struct atm dev stats�

struct atm�dev�stats �

struct atm�aal�stats aal��

struct atm�aal�stats aal���

struct atm�aal�stats aal��

	�

This structure contains one block of statistics counter values for each AAL that is supported by the
implementation� Each block contains the following 	elds�

struct atm�aal�stats �

long tx�tx�err�

long rx�rx�err�

long rx�drop�

	�

tx and rx count the number of successfully transmitted PDUs� tx err and rx err count the number of
PDU whose transmission had failed due to some error condition� rx drop counts the number of PDUs
that were dropped because no memory was available for storing them on the local host�

����� Address con�guration

A variable�length list of ATM addresses can be con	gured per interface� This list can be manipulated
with the following ioctls� They all take a struct atmif sioc as their argument and they can only be
applied to SVC sockets� ATM addresses are always expressed as a struct sockaddr atmsvc�

ATM GETADDR returns the list of addresses of the speci	ed interface� The return value of ATM GETADDR is
the number of bytes that have been written� or a negative integer in case of an error�

��

ATM RSTADDR resets the list of ATM addresses� i�e� it removes all addresses�

ATM ADDADDR adds the speci	ed ATM address at the end of the list of local addresses� The address is
checked for validity� Addition of addresses that are already in the list is refused�

ATM DELADDR deletes the speci	ed ATM address from the list of local addresses� Note that the order of
the remaining addresses is preserved�

All address con	guration ioctls but ATM GETADDR are only available to privileged users�

��� Connection con	guration

Various lower�layer attributes can be set or queried on a per�connection basis�

����� AAL type

The AAL type of a socket can be queried with the SO AALTYPE socket option at level SOL AAL� All the
necessary de	nitions are in �usr�include�linux�atm�h� The option value is an integer containing the
AAL type number� Note that the AAL type can only be read� not set�

����� Cell loss priority

The cell loss priority of cells being sent on a VC can be set with the SO SETCLP socket option at level
SOL ATM� The option value is an integer which can be either � or �� indicating the value used in the cell
loss priority 	eld of ATM cells� SO SETCLP is de	ned in �usr�include�linux�atm�h�

This option is not yet implemented�

����� Receive timestamp

The arrival time of the SDU that has most recently been read from the socket can be obtained with the
SIOCGSTAMP ioctl� It returns the time in a struct timeval� An error is returned if no timemeasurements
are available�

Note that the accuracy of timestamps depends signi	cantly on the capabilities of the ATM adapter
hardware and the device driver�

��� Physical layer

Not yet documented

SONET�GETSTAT

SONET�GETSTATZ

SONET�SETDIAG

SONET�CLRDIAG

SONET�GETDIAG

SONET�SETFRAMING

SONET�GETFRAMING

SONET�GETFRSENSE

��� �proc

Not yet documented

��

� Related services

The section is still under construction � � �

This section describes support of services not de	ned in ���� which are commonly associated with ATM�

��� IP over ATM

This section is incomplete

API details for IP over ATM support
as speci	ed in ����� ����� ����� and ����� are for further study�

CLIP�NULENCAP

CLIP�LLCENCAP

��� Arequipa

The following library functions are provided in �usr�include�arequipa�h to support Arequipa
see
������

int arequipa preset�int sd�const struct sockaddr atmsvc �addr�const struct atm qos �qos��

Presets the speci	ed INET domain socket to use a direct ATM connection to addr with the QOS
parameters speci	ed in qos� If the socket is already connected� the ATM connection is set up immediately
and data is redirected to �ow over that connection�

int arequipa expect�int sd�int on��

Enables
if on is non�zero� or disables
if on is zero� the use of Arequipa for return tra�c on the speci	ed
INET domain socket� When enabling the use of Arequipa for return tra�c� the Arequipa connection on
which the next data packet or incoming connection for the socket is received is attached to that socket�

int arequipa close�int sd��

Dissociates an Arequipa VC from the speci	ed socket� After that� tra�c uses normal IP routing� Note
that the Arequipa connection is automatically closed when the INET socket is closed�

��

A Acronyms

This appendix lists some of the acronyms appearing in this document�

AAL ATM Adaption Layer

ABR Available Bit Rate

ABT ATM Block Transfer

API Application Program Interface

ATM Asynchronous Transfer Mode

BSD Berkeley Software Distribution

CBR Constant Bit Rate

CDV Cell Delay Variation

NNI Network Node Interface

NSAP Network Service Access Point

PCR Peak Cell Rate

PVC Permanent Virtual Circuit
see below�

QOS Quality Of Service

SAP Service Access Point

SDU Service Data Unit

SVC Switched Virtual Circuit
see below�

UBR Unassigned Bit Rate

UNI User�Network Interface

VBR Variable Bit Rate

VC Virtual Channel

VCI Virtual Channel Identi	er

VPI Virtual Path Identi	er

Note that the terms �PVC� and �SVC� are not o�cial ATM terminology as used by ITU� They originate
fromFrame Relay terminology and it is commonpractice by ATM Forum and other groups to use them to
describe the corresponding concepts in ATM� Unfortunately� ITU�T has re�used the abbreviation �SVC�
for ATM to mean �Signalling Virtual Channel�� which is the VC used to carry signaling messages�

��

References

��� Stevens� W� Richard� UNIX Network Programming� Prentice�Hall� �����

��� The ATM Forum� ATM User�Network Interface Speci�cation� Version 	
�� Prentice Hall� �����

��� The ATM Forum� ATM User�Network Interface �UNI� Speci�cation� Version 	
�� ftp���ftp�

atmforum�com�pub�UNI�ver���� Prentice Hall� �����

��� The ATM Forum� SAA API Ad�hoc Work Group� Native ATM Services
 Semantic Description
Version �
�� ATM Forum contribution ������
� January �����

��� The ATM Forum� SAA�Directory Work group� ATM Name Service �ANS� Speci�cation Version
�
�� ATM Forum contribution �������R�� April �����

��� Gilligan� Robert E�� Thomson� Susan� Bound� Jim� IPv� Program Interfaces for BSD Systems
work
in progress�� Internet Draft draft�ietf�ipngwg�bsd�api����txt� April �����

��� Almesberger� Werner� Linux ATM device driver interface� ftp���lrcftp�epfl�ch�pub�linux�

atm�docs�� January �����

�
� ITU�T Recommendation E�����I����� Numbering plan for the ISDN era� ITU� �����

��� ITU�T Recommendation I����� Tra�c control and congestion control in B�ISDN� ITU� �����

���� ANSI�ISO �
�������� Schildt� Herbert� The Annotated ANSI C Standard� Osborne McGraw�Hill�
�����

���� IEEE Std ������b������ IEEE Standard for Information Technology� Portable Operating System
Interface �POSIX�
 Part �
 System Application Program Interface �API�� IEEE� �����

���� ITU�T Recommendation I����� B�ISDN ATM adaptation layer �AAL� speci�cation� ITU� �����

���� ITU�T Recommendation I����� B�ISDN ATM layer speci�cation� ITU� �����

���� RFC��
�� Heinanen� Juha�Multiprotocol Encapsulation over ATM Adaptation Layer �� IETF� �����

���� RFC����� Laubach� Mark� Classical IP and ARP over ATM� IETF� �����

���� RFC����� Atkinson� Randall J� Default IP MTU for use over ATM AAL�� IETF� �����

���� RFC����� Perez� Maryann� Liaw� Fong�Ching� Mankin� Allison� Ho�man� Eric� Grossman� Dan�
Malis� Andrew� ATM Signaling Support for IP over ATM� IETF� �����

��
� ITU�T Recommendation Q������ Broadband Integrated Services Digital Network �B�ISDN� � Digital
subscriber signalling system no
 � �DSS �� � User�network interface �UNI� � Layer 	 speci�cation
for basic call�connection control� ITU� �����

���� Le Boudec� Jean�Yves� The Asynchronous Transfer Mode
 a tutorial� Computer Networks and ISDN
Systems� Volume ��� Number �� �����

���� Almesberger� Werner� ATM on Linux� magic numbers� http���lrcwww�epfl�ch�linux�atm�

magic�html

���� Almesberger� Werner� Le Boudec� Jean�Yves� Oechslin� Philippe� Application REQuested IP over
ATM �AREQUIPA�
work in progress�� Internet Draft draft�almesberger�arequipa����txt�
June �����

��

