
95-1082R31
2

PROJECT: ATM Forum Technical Committee3
LAN Emulation Sub Working Group4

5
**6

7
SOURCE: LAN Emulation SWG8
Editor: John D. Keene9

Interphase Corp.10
13800 Senlac11
Dallas, TX 7523412

13
Phone: (214)654-537614
Fax: (214)654-550015
E-mail: jkeene@iphase.com16

17
**18

19
TITLE: LAN Emulation over ATM Version 2 - LNNI Specification - Draft 320

21
**22

23
Date: April 15th, 199624

25
**26

27
ABSTRACT: This document contains current draft of revision 2.0 of the LNNI specification.28

29
**30

31
Distribution List: LAN Emulation SWG32

33
**34
Notice: This contribution has been prepared to assist the ATM Forum. This proposal is made by35
Interphase Corp. as a basis of discussion. This contribution should not be construed as a binding36
proposal on Interphase Corp. Specifically, Interphase reserves the right to amend or modify the37
statements made herein.38
**39

Change Log

Revision Changes

Initial Draft Created baseline document based on outline used by LANE 1.0 LUNI
specification

Incorporated text into baseline as per Motion 9 in 95-0811.

R1 Added text from 95-1177 to section 2.1 per Motion 8 (Oct ‘95).

Added editor’s notes for Motions 10 and 11 (Oct ‘95).

Added text from 1176 as per Motion 12 (Oct ‘95).

Added reference presented in 95-1159 to Section 3 from LUNI as per Motions 13
and 14 (Oct ‘95).

Added text from 95-1174 as per Motion 15 (Oct ‘95).

R2 Added text from 95-1575 (section 2) to Section 3 - editorial comments from
contribution were retained.

R3 Added text from 96-0233

Added text from 96-0235

Changed outline and moved text extensively within Section 2 and to Section 5.

Technical Committee

LAN Emulation over ATM
Version 2 - LNNI Specification

-
 Draft 3

ATM_Forum/95-1082R3

February 1996

LAN Emulation Over ATM Version 2 - LNNI Spec. - Draft 3 95-1082R3

ATM Forum Technical Committee Page 1

 (C) 1995 The ATM Forum. All Rights Reserved. No part of this publication may be reproduced in any form or by any
means.

The information in this publication is believed to be accurate as of its publication date. Such information is subject to
change without notice and the ATM Forum is not responsible for any errors. The ATM Forum does not assume any
responsibility to update or correct any information in this publication. Notwithstanding anything to the contrary, neither
The ATM Forum nor the publisher make any representation or warranty, expressed or implied, concerning the
completeness, accuracy, or applicability of any information contained in this publication. No liability of any kind shall be
assumed by The ATM Forum or the publisher as a result of reliance upon any information contained in this publication.

The receipt or any use of this document or its contents does not in any way create by implication or otherwise:

• Any express or implied license or right to or under any ATM Forum member company’s patent, copyright, trademark
or trade secret rights which are or may be associated with the ideas, techniques, concepts or expressions contained herein;
nor

• Any warranty or representation that any ATM Forum member companies will announce any product(s) and/or
service(s) related thereto, or if such announcements are made, that such announced product(s) and/or service(s) embody
any or all of the ideas, technologies, or concepts contained herein; nor

• Any form of relationship between any ATM Forum member companies and the recipient or user of this document.

Implementation or use of specific ATM standards or recommendations and ATM Forum specifications will be voluntary,
and no company shall agree or be obliged to implement them by virtue of participation in the ATM Forum.

The ATM Forum is a non-profit international organization accelerating industry cooperation on ATM technology. The
ATM Forum does not, expressly or otherwise, endorse or promote any specific products or services.

NOTE: The user's attention is called to the possibility that implementation of the ATM interoperability specification
contained herein may require use of an invention covered by patent rights held by ATM Forum Member companies or
others. By publication of this ATM interoperability specification, no position is taken by The ATM Forum with respect
to validity of any patent claims or of any patent rights related thereto or the ability to obtain the license to use such rights.
ATM Forum Member companies agree to grant licenses under the relevant patents they own on reasonable and
nondiscriminatory terms and conditions to applicants desiring to obtain such a license. For additional information
contact:

The ATM Forum
Worldwide Headquarters
303 Vintage Park Drive
Foster City, CA 94404-1138
Tel: +1-415-578-6860
Fax: +1-415-525-0182

95-1082R3 LAN Emulation Over ATM Version 2 - LNNI Spec. - Draft 3

Page 2 of 32 ATM Forum Technical Committee

Contents

1. Introduction ... 740

1.1 Purpose of Document .. 741

1.2 Terminology .. 742

1.3 References ... 843

1.4 ATM Network Service Assumptions .. 944

2. Architectural Overview ... 1045

2.1 Basic Concepts .. 1046

2.1.1 Reference Model .. 1147

2.1.2 Information Flows.. 1448

2.1.3 A Note on Reliable Propagation... 1449

2.2 Topology ... 1450

2.2.1 Spanning Tree Assumptions .. 1451

2.2.2 Spanning Tree Usage ... 1552

2.2.3 Server Discovery Mechanisms... 1653

2.2.4 Manual Configuration Considerations ... 1654

2.2.5 Configuration Operations... 1655

2.2.6 Failures... 1656

2.3 Support for LUNI Messages.. 1757

2.3.1 LE_TOPOLOGY_CHANGE Messages .. 1758

2.3.2 Response Packet Forwarding ... 1759

2.4 LNNI Protocol... 1760

2.4.1 Address Registration Model... 1761

2.4.2 Server Join Protocol ... 1762

2.4.3 Server Topology Changes.. 1863

2.4.4 LEC ID Allocation ... 1864

2.4.5 The Intelligent BUS Optimization ... 1965

2.4.6 LE_ARP Caching... 1966

2.4.7 Pre-Standard Distributed Implementation Considerations................................... 1967

3. Relationships to Other Services... 1968

3.1 LNNI to AAL Services.. 2069

LAN Emulation Over ATM Version 2 - LNNI Spec. - Draft 3 95-1082R3

ATM Forum Technical Committee Page 3

3.2 Connection Management Services .. 2070

3.3 LNNI To Layer Management.. 2071

3.4 LNNI Spanning Tree Versus 802.1D .. 2072

4. LNNI Frame Formats .. 2073

4.1 LNNI Control Frame ... 2074

5. LNNI Protocols and Procedures .. 2175

5.1 Overview ... 2176

5.2 LECS to LECS .. 2177

5.2.1 Initialization and Configuration ... 2178

5.2.2 Run Time Operation... 2179

5.3 Server Initialization and Configuration ... 2180

5.3.1 Configure Direct Connection ... 2181

5.3.2 Configuration Frames... 2182

5.3.3 Add/Delete LESs.. 2383

5.3.4 LES/BUS Initial Topology... 2384

5.3.5 Restart of LES/BUS ... 2485

5.4 Server Topology.. 2486

5.4.1 Spanning Tree .. 2487

5.4.2 LNNI_LES_JOIN .. 2488

5.4.3 Server Failure... 2489

5.5 Client Joining .. 2490

5.5.1 LNNI_LEC_JOIN.. 2491

5.5.2 LEC-ID Allocation... 2592

5.6 Client Address Registration... 2593

5.6.1 LNNI_REGISTER_REQUEST ... 2594

5.6.2 LNNI_LEC_UNREGISTER.. 2595

5.7 Client Address Resolution... 2696

5.7.1 Caching .. 2697

5.7.2 LNNI_ARP .. 2698

5.7.3 Address Resolution .. 2699

5.8 Client Data Transfer .. 27100

5.8.1 BUS Data Movement ... 27101

95-1082R3 LAN Emulation Over ATM Version 2 - LNNI Spec. - Draft 3

Page 4 of 32 ATM Forum Technical Committee

5.9 Client Flush ... 27102

5.10 Client Topology Change Notification ... 27103

5.11 Client Terminate.. 27104

6. Appendix ... 28105

LAN Emulation Over ATM Version 2 - LNNI Spec. - Draft 3 95-1082R3

ATM Forum Technical Committee Page 5

List of Figures
FIGURE 1 PEER-TREE MODEL 10106

FIGURE 2 LNNI REFERENCE MODEL 11107

95-1082R3 LAN Emulation Over ATM Version 2 - LNNI Spec. - Draft 3

Page 6 of 32 ATM Forum Technical Committee

List of Tables
TABLE 1. NORMATIVE STATEMENTS 8108

LAN Emulation Over ATM Version 2 - LNNI Spec. - Draft 3 95-1082R3

ATM Forum Technical Committee Page 7

1. Introduction109

[Editor’s Note: Contributions needed for this section.]110

1.1 Purpose of Document111

This document specifies an implementation agreement for the LAN Emulation Service. This set of protocols are referred112
to as the LAN Emulation Network-Network Interface (LNNI) protocols. The document includes the following:113

• Architectural Framework and Service Interfaces114
• Service Components and Functions115
• Frame Formats116
• Server/Server Protocols and Procedures117

1.2 Terminology118

The following acronyms and terminology are used throughout this document:119

120

AAL ATM Adaptation Layer121
ARE All Routes Explorer122
ATM Asynchronous Transfer Mode123
B-LLI Broadband Low Layer Information124
BN Bridge Number125
BPP Bridge Port Pair (Source Routing Descriptor)126
BPDU Bridge Protocol Data Unit127
BUS Broadcast and Unknown Server128
CPCS Common Part Convergence Sublayer129
CPN Customer Premises Network130
DA Destination MAC address 131
ELAN Emulated Local Area Network132
IE Information Element133
IEEE Institute of Electrical and Electronics Engineers134
IETF Internet Engineering Task Force135
IP Internet Protocol136
LAN Local Area Network137
LD LAN Destination138
LE LAN Emulation139
LE_ARP LAN Emulation Address Resolution Protocol140
LEC LAN Emulation Client141
LECID LAN Emulation Client Identifier142
LECS LAN Emulation Configuration Server143
LES LAN Emulation Server144
LNNI LAN Emulation Network-Network Interface145
LSB Least Significant Bit146
LTH Length Field147
LUNI LAN Emulation User-Network Interface148
MAC Medium Access Control149
MIB Management Information Base150
MSB Most Significant Bit151
MTU Message Transfer Unit152
NDIS Network Driver Interface Specification153
NSR Non-Source Routed154
ODI Open Data-Link Interface155

95-1082R3 LAN Emulation Over ATM Version 2 - LNNI Spec. - Draft 3

Page 8 of 32 ATM Forum Technical Committee

OSI Open Systems Interconnection156
OUI Organizational Unit Identifier157
PDU Protocol Data Unit158
QOS/QoS Quality of Service159
RC Routing Control160
RD Route Descriptor161
RFC Request For Comment (Document Series)162
RI Routing Information163
RII Routing Information Indicator164
RT Routing Type165
SA Source MAC address166
SAP Service Access Point167
SAAL Signaling AAL168
SDU Service Data Unit169
SR Source Routing (Bridging)170
SRF Specifically Routed Frame171
SRT Source Routing Transparent172
SSCS Service Specific Convergence Sublayer173
STE Spanning Tree Explorer174
TB Transparent Bridging175
TCP Transmission Control Protocol176
TLV Type / Length / Value177
UNI User-Network Interface178
VCC Virtual Channel Connection179
VPC Virtual Path Connection180
VCI Virtual Channel Identifier181
VPI Virtual Path Identifier182

183

This document uses normative statements throughout as follows:184

Table 1. Normative Statements185

Statement Verbal Form1

Requirement MUST/MUST NOT

Recommendation SHOULD/SHOULD NOT

Permission MAY

186

187

1.3 References188

[1] The ATM Forum, ATM User-Network Interface Specification, Version 3.0, September 10, 1993.189

[2] The ATM Forum, ATM User-Network Interface Version 3.1 (UNI 3.1) Specification, July 21, 1994.190

[3] The ATM Forum, LAN Emulation Over ATM Version 1.0 Specification (af-0021-000), January, 1995.191

1Verbal forms are based on ISO except for “Requirements,” where ISO uses the terms “SHALL/SHALL NOT” instead of
“MUST/MUST NOT” in this document.

LAN Emulation Over ATM Version 2 - LNNI Spec. - Draft 3 95-1082R3

ATM Forum Technical Committee Page 9

1.4 ATM Network Service Assumptions192

This LAN Emulation Over ATM specification is based on the ATM Forum User-Network Interface Specification,193
Version 3.0 [1] or later. The specification provides example Information Element codings for UNI 3.0 and 3.1[2].194

95-1082R3 LAN Emulation Over ATM Version 2 - LNNI Spec. - Draft 3

Page 10 of 32 ATM Forum Technical Committee

2. Architectural Overview195

2.1 Basic Concepts196

LAN Emulation as specified in [3] defines the interface between a LEC and the LAN Emulation Service entities.197
Interaction between the various LAN Emulation Service entities was not defined. This document defines the198
protocols and procedures used to implement interaction between these entities.199

200

The model upon which the interactions is defined is called the “peer tree” model. Each node in the tree may be a201
single server entity (i.e., LES or BUS instance) or a "complex node" containing a collection of peer server-entities202
with fully-meshed interconnections. In the model, logical LES and BUS instances always occur in pairs, and the203
server topology may be controlled by the LECS. Any LES-BUS pair may be assigned the role of a pure tree node, a204
pure peer node, or a hybrid node with connections to both peer and tree node neighbors. Pure trees contain no205
complex nodes and pure meshes consist of a single complex tree node. Any LES-BUS pair may also serve zero or206
more local LE clients; thus, the model is classless in the sense that the pairs may be arbitrarily interchanged in the207
topology.208

209

In addition to the tree connections between the peer nodes, the peer-tree model allows for inclusion of non-210
forwarding connections to provide redundancy to keep ELAN topology intact under LE Service entity failures. The211
non-forwarding connections can be located between any pair of simple peer nodes or between a simple peer node212
and a mesh node. When a LE Service entity fails along the tree or on the boundary between the tree and a mesh, the213
non-forwarding link connected to the nodes adjacent to the failed node will become active, thereby preventing loss214
of connectivity of the ELAN. The activation of non-forwarding links can be performed by the adjacent LE Service215
entities without requiring any LECS intervention.216

217

Figure 1 Peer-Tree Model218

D*B*

GE F

C

A

b1 b2

b3

d1 d2

d3 d4

D*B*Non forwarding link

219

220

[Editors Notes:221

1. The LNNI protocol discussions will use a flow abstraction to describe the server forwarding rules (see section222
below).223

2. The LNNI protocol will define behavior for both static and/or dynamic failover and loop resolution for a given224
VCC topology.]225

LAN Emulation Over ATM Version 2 - LNNI Spec. - Draft 3 95-1082R3

ATM Forum Technical Committee Page 11

2.1.1 Reference Model226

Figure 2 depicts the various components and their protocol interactions. The interfaces are LES-to-LES, BUS-to-227
BUS, LECS-to-LES, and LECS-to-BUS. This section contains a high-level outline of information flows across each228
of the interfaces. The discussion currently assumes that server-server topologies are managed by the LECS, and that229
LES-to-LES/BUS-to-BUS communications are intact as long as the associated VCC(s) are maintained (i.e., "hello"230
type status exchange messages are not part of the LES-to-LES and BUS-to-BUS flows).231

232

Figure 2 LNNI Reference Model233

LECS-BUS
LECS-LECS

LECS-BUS

LECS-LESLECS-LES

BUS-BUS

LES-LES

LECS #2LECS #1

BUS #1

LES #1

LUNILUNILUNILUNI

LEC #1 LEC #2 LEC #3 LEC #4

BUS #2

LES #2

234

235

2.1.1.1 LES-to-LES Information Flows236

The LE servers maintain two levels of communication between each server and its immediate neighbors. At the237
lowest level, a spanning tree algorithm is run [cite SPANOVER.TXT], determining which links in the tree are238
active, and which peer nodes within each complex node have external connections. This information can also be239
obtained via manual configuration, as per Civanlar and Gray's contribution [3], instead of from a spanning tree240
algorithm.241

At the higher level, LE servers must colaborate in order to handle address registration requests and queries. Each242
tree node stores the address registration information registered by all of its hosts, and by all of its child servers in the243
tree, and uses this information to answer ARP requests and forward packets efficiently. Address registration244
information propagates up the tree to the root node of the tree, and ARP queries also propagate up the tree to the245
root until they are answered. If an ARP request can not be handled at the top of the tree, the address may be an246
address learnable only via the proxy ARP mechanism, and thus, if the root server can not resolve an ARP query, it247
sets a special PROXYFLOOD bit in the LE_ARP_REQUEST packet and floods the updated message throughout248
the entire tree. This special LE_ARP_REQUEST message is flooded to all servers, and forces each server to send249
the appropriate ARP request message to all of its directly connected clients. Client registration requests are handled250
by servers sending an LNNI_JOIN_REQUEST message up to the root of the tree. As the message passes through251
all of the intermediate servers to the root server, they add the client's registration information to their local252
databases. When a client or server crashes, a LNNI_UNREGISTER_REQUEST message is propagated throughout253
the entire tree, directing each server to remove the appropriate client information from their caches.254

95-1082R3 LAN Emulation Over ATM Version 2 - LNNI Spec. - Draft 3

Page 12 of 32 ATM Forum Technical Committee

Most messages, thus, are sent to the root node, and no further. A few messages, such as proxy ARP requests,255
topology change messages, and address deregistration messages, are flooded to all nodes in the tree. None of the256
messages that are sent more than one hop require any acknowledgement beyond a hop-by-hop acknowledgement.257

2.1.1.1.1 LNNI_JOIN258

When a LEC sends a join/registration request to its LES, the LES receiving the request creates a259
LNNI_JOIN_REQUEST message to verify the uniqueness of the binding. Such registration requests are not260
forwarded by the receiving LES to its LECs.261

Any LES receiving such a request from the originator checks to determine if it has a duplicate binding already262
registered in its registration database. If there is a duplication, it sends back a negative LNNI_JOIN_RESPONSE to263
the requesting LES with a status code indicating the type of duplication. Any LES along the path to the originator,264
receiving the negative LNNI_JOIN_RESPONSE, must forward it back towards the originating LES. If it was the265
originating LES, it refuses to register the binding and returns a negative response to the LEC that requested it.266

If there is not any duplication and if the LES has no other connections on which to forward the request, the LES267
sends back a LNNI_JOIN_RESPONSE with "No Duplicate Destination" status code. Any intermediate LES, upon268
determining that there is no duplication, must generate a positive response back to the requester. If there is not any269
duplication, the originating LES will accept the registration, create a new binding in its database and send a270
successful registration response to the LEC.271

The LNNI_JOIN protocol must be reliable, possibly, by using a hop by hop acknowledgement scheme proposed in272
96-0235.273

2.1.1.1.2 LNNI_ARP274

A LES responds to an address resolution request for a destination registered in that LES without passing it onto275
another LES. A LES may also respond to an address resolution request for a valid cache entry. The entries that are276
cached in a LES are those entries that are registered within other LESs, and learned from an address resolution277
message that originates from a LES which has the address registered in its database.278

Since cached entries are learned from the address resolution messages, a flag is needed in the address resolution279
response to indicate whether that address is registered in the originating LES database, or not. The remote address280
flag may not be sufficient for this purpose as the learning-LES must differentiate between a response from a LES281
which cached the address as opposed to a LES which has the entry registered in its database. [Alternatively, a LES282
may decide to cache entries learned from another caching LES. This is for further study.]283

2.1.1.1.3 LNNI_UNREGISTER284

[Editors Note: This protocol allows each LES to maintain an up to date registration database and arp285
cache when LECs unregister.] When a LEC unregisters either explicitly or by dropping its connections from its286
LES, the LES generates an LNNI_UNREGISTER message and reliably sends to all its neighbors. Each LES287
receiving the LNNI_UNREGISTER_REQUEST will purge the corresponding registered and cached entry, and288
respond back with an LNNI_UNREGISTER_RESPONSE. This protocol allows each LES to maintain an up to date289
registration database and arp cache. Again, a reliable protocol is used.290

2.1.1.1.4 LNNI_TOPOLOGY_CHANGE291

[Editors Note: the LNNI_TOPOLOGY_CHANGE message in this section is one means of notifying LESs of a292
change. Other methods may be found which are more appropriate. The purpose of this section is to capture the293
discussion of the "marking flags" as a technique for reducing the amount of re-registration required after the294
healing of a network partition.] A new LNNI topology change protocol between LESs can be used as a means to295
identify failure/recovery of a LES. A LES issues a LNNI_TOPOLOGY_CHANGE when it identifies296
failure/recovery of a neighbor LES. The notice of a topology change is propagated through the mesh and tree of297
LESs by other LESs which receive it. This notification must be reliably propagated and thus can use the same hop298
by hop acknowledgement system used for the LNNI_JOIN. Multiple LNNI_TOPOLOGY_CHANGE messages299
might be initiated by different neighbors that identify the same failure. If such multiples of the same message are300
received, the receiving LES must make sure to propagate only one copy. The LNNI_TOPOLOGY_CHANGE301
message contains the id of the failed/recovered LES.302

When an LNNI topology change message indicating a LES failure is received, the LESs must purge all registered or303
cached bindings learned from that failed LES, preferably, after a timer expires. In the Master LES approach,304

LAN Emulation Over ATM Version 2 - LNNI Spec. - Draft 3 95-1082R3

ATM Forum Technical Committee Page 13

through this timer, the failed LES's registered entries can be retained for a while just in case the failed LES recovers305
shortly after a failure.306

When a LES receives its first topology change message indicating failure of a server, it will set the "marking flag"307
to indicate that a marking period starts. Until that flag is cleared, each LES will mark every newly registered308
address. Similarly, each LES will mark unregistered addresses keeping them in a database with a "marked" status.309
The marking is needed to ensure that when the network is healed, the registration/unregistration of "marked" entries,310
those that are processed during a likely network partitioning, are re-synchronized within the merged network.311

If there are other LES failures prior to the recovery of the first failed LES, the marking flag will be incremented312
while keeping a list of the failed LESs. The flag will be decremented as each failed LES recovers, but it will not be313
cleared until all failures are healed, or a timer expires.314

If a new LES joins the topology when the network is in a marking state, the LES adjacent to the newly joined LES315
will send its marking flag value so that the new LES knows whether it should perform marking or not.316

Once the marking flag is cleared, meaning that the network has completely healed, all LESs will re-validate the317
uniqueness of the marked registrations using LNNI_JOIN protocol. Similarly, using the LNNI_UNREGISTER318
protocol, LESs will inform each other of the marked unregistrations so that each LES can purge the marked319
unregistrations from their registration databases and ARP caches.320

2.1.1.2 BUS-to-BUS Information Flows321

In the LNNI baseline, LES and BUS servers are always colocated. Thus, the server registration procedures used by322
the LESs can be shared by the colocated BUS processes. Nevertheless, there are some data flows specific to the323
BUS processes.324

In general, true broadcast traffic, as opposed to unknown traffic, must be flooded to all BUSs in the network.325
Unknown packets, on the other hand, in an intelligent BUS environment, need only go up the tree as far as the326
common parent of the sender and the receiver. If the unknown packet reaches the root of the tree without327
encountering a server having the target MAC address registered, it needs to be flooded to all proxy hosts, since it is328
an unknown packet whose destination is not registered by any servers in the tree, and only proxy hosts may329
represent hosts having these unregistered MAC addresses.330

2.1.1.3 LECS-to-LES Information Flows331

The LECS-to-LES information flows are primarily for managing the distributed LES topology and tracking the332
status of LES instances. These flows are used to implement the server discovery mechanisms and333
redundancy/failover modes. From a topology perspective, the flows will support LES registration with the LECS334
and LECS assignment of LES neighbors. During registration, a LES may provide its ATM address(es) to the LECS.335
The LECS may provide each LES with a list of neighboring LESs. The ATM address and type (peer or parent) of336
each neighbor will be specified. The LECS may provide dynamic updates that add/delete neighbors to/from the list.337
The LECS will provide each LES with a LESID for use in server-server protocols, and may also manage the pool of338
LECIDs. From a status perspective, the flows will allow the LECS to query the status of each LES instance, and339
may allow the LECS to obtain resource utilization information for load balancing purposes. When a LES failure is340
detected, the LECS may inform other LES instances to initiate prompt deletion of cached registration information341
associated with clients of the failed LES.342

2.1.1.4 LECS-to-BUS Information Flows343

The LECS-to-BUS information flows may be viewed as being analogous to the LECS-to-LES flows. Alternatively,344
the LECS-to-BUS interface may be perceived as being superfluous; in this line of thinking, management of the BUS345
through the LES in LNNI is viewed as being orthogonal with LUNI v1.0, where the LES is the "logical manager" of346
BUS ATM addresses. Furthermore, concerns have been raised that introduction of a non-orthogonal approach (i.e.,347
the LECS-to-BUS interface) will require definition of a LES-to-BUS interface to resolve inconsistencies that may348
occur. Additional work is needed to sort this out. Related issues include: (1) independence of LES and BUS349
locations, (2) LES-to-BUS interface requirements in LNNI-aware LES-BUS pairs (i.e., how much coordination of350
the pair is performed through the LECS?), and (3) ease of integrating existing distributed implementations into the351
LNNI environment.352

95-1082R3 LAN Emulation Over ATM Version 2 - LNNI Spec. - Draft 3

Page 14 of 32 ATM Forum Technical Committee

2.1.2 Information Flows353

The LNNI Protocol uses the term “Information Flow” to describe communication paths between protocol entities.354
There are several reasons for this convention:355

356

a) future versions of LAN Emulation may support packet encapsulation techniques other than the VC-muxing used357
by LANE 1.0. If a LLC/SNAP encapsulation were to be supported by LNNI, there is the scope for sharing VCCs358
between multiple flows and a protocol definition that is independent of this issue would be useful.359

b) this clarifies the fact that there are no geographical constraints imposed on LANE protocol entities:360
communication between entities can occur over either dedicated or shared VCCs, or by some internal or proprietary361
ommunication path, without affecting the protocol definition itself.362

c) the LNNI protocols are defined to assume a communications path is available for each Flow. The management of363
this path (e.g., SVC establishment, PVC configuration, VCC sharing) is separated from the main protocol:364
specification of the redundancy and failover aspects of the “tree” model in particular is made easier by this365
separation (see Section 5).366

367

When the protocol requires an entity to establish a new “Flow,” this may result in a new VCC being set up or it may368
just indicate that another communication path be multiplexed onto an existing VCC. It may also be implemented as369
a propriteary communication or a local signal between colocated entities.370

2.1.3 A Note on Reliable Propagation371

[Editor’s Note: This section needs to be abstracted more.]372

Some LNNI procedures must be performed reliably, meaning that they must be performed even when packets are373
dropped. For messages traversing a single link, this may require that we be able to detect a duplicate message if it374
has side effects that should not be repeated on a retransmission.375

Other procedures require that a message propagate all the way to the root node before an acknowledgement is376
generated. For such messages, each server must generate a new transaction ID for each link of the path traversed by377
the message and require an acknowledgement. All of these messages are propagated hop-by-hop, and so there need378
not be any state maintained at a sending server after it has received the acknowledgment that its request packet has379
been received by the next server on the other side of the link. If a failure occurs up the line, the link will be reset.380
[Editor’s Note: We may be able to simplify this mechanism to avoid hop-by-hop acknowledgements.]381

[Editor’s Note: This section may need to be simplified and the detail moved elsewhere.] A few other messages must382
be flooded reliably throughout the entire graph, such as the procedures that propagate server failure information.383
This type of operation can be handled similarly to the preceding protocol, only each server needs to generate a new384
transaction ID for each link upon which the message is flooded. As with the messages that simply go up to the root,385
these messages require an acknowledgement for every link on which they are sent, but after they are transmitted386
successfully over a link, no further state is required to track, for example, their response packets. Again, if a request387
packet can not be transmitted over a particular link, the link is simply reset, and the servers on the leafward side of388
the link will have to rejoin the network before they can function again.389

2.2 Topology390

2.2.1 Spanning Tree Assumptions391

If spanning tree is used for configuration, we elect a root server for the entire tree. This node plays a very important392
role in the protocols described below.393

Over time, all nodes perform a join-like protocol with the nodes already joined to the tree's root node. As new394
nodes join the set of servers joined with the root node, the servers adjacent to the newly joined nodes then join with395
them, leading to an ever-expanding set of nodes joined with the root. These servers all synchronize their address396
registration databases as part of joining.397

LAN Emulation Over ATM Version 2 - LNNI Spec. - Draft 3 95-1082R3

ATM Forum Technical Committee Page 15

A simple link state protocol, described below, runs when a node wants to join the coordinated set of servers. At that398
time, the server will generate a unique (for all time) server instance ID (SII), which will be registered with all other399
server nodes on the path to the root node. This will enable a server still joined to the root to know exactly which400
servers have been lost, should a link fail. All address information registered by a server and stored at other servers401
is tagged with this SII, and thus can be removed easily should an SII becomes invalid. This algorithm is described in402
the next subsection.403

2.2.2 Spanning Tree Usage404

2.2.2.1 Mapping Spanning Tree to LNNI Peer-Tree Graphs405

In order to use the spanning tree within the Emulated LAN's server graph, we need to explicitly map the server406
graph into a bridged LAN in which the spanning tree could be run without significant change.407

2.2.2.1.1 Tree Portion408

For the tree portion of the peer-tree (with non-forwarding links), we propose to adopt the following mapping:409

 - each LNNI server (LES or BUS) maps into a "bridge".410

 - each server-to-server connection between a pair of servers maps into a "LAN".411

 - each server-to-server connection termination on a server maps into a "bridge port".412

Here, we assume that the server-to-server links along the tree portion are point-to-point.413

With the above mapping, each link between two simple nodes in the graph is equivalent to a LAN with two bridges,414
each of which has a single bridge port on that LAN.415

2.2.2.1.2 Mesh Portion416

We can model a mesh as a single LAN, with each peer node having one port onto that LAN, and the port417
representing *all* of its peer links. Any external (to the mesh) links for a peer node are represented as above: a418
separate port to a LAN having two bridges. Note that when spanning tree turns off a mesh port, it effectively turns419
off *all* of the server's connections to the other peer nodes in that mesh.420

By using this model, we can map the entire peer tree graph into a single collection of LANs and bridges whose421
spanning tree solution yields a loop free forwarding tree for LNNI control and data packets.422

The spanning tree will make sure that the mesh node with the most direct connection towards the root of the423
spanning tree (or the root itself, if the root is on the mesh) will be the "designated bridge" for the mesh. Links424
"downward" to other parts of the tree from the mesh may come from any node in the mesh, although links from the425
designated bridge will normally be preferred, because that node has the shortest path to the root.426

In short, by using this "looks like a multi-drop LAN to the spanning tree" trick for meshes, the single spanning tree427
algorithm allows any combination of connections between mesh nodes and non-mesh nodes, and builds the428
appropriate peer tree automatically. The only requirement is that all of the nodes in a particular mesh have the same429
idea about who is (and is not) in the mesh, but that requirement is not particular to spanning tree.430

2.2.2.2 LNNI Spanning Tree Protocol431

As the mapping from the LNNI graph to a bridged LAN is clear, it is possible to run the IEEE 802.1D spanning tree432
code within each server and to provide the proper mappings (port priority, path costs etc.) in a separate module.433
This allows to simply encapsulate 802.1D spanning tree packets in some LNNI header, and thus run 802.1D434
directly. With the proper abstractions, it should even possible for a bridge to be able to use the same code for435
running its real spanning tree code and for running the spanning tree within the LNNI algorithm.436

2.2.2.3 Forwarding Rules in the Spanning Tree437

The forwarding rules for this spanning tree are very simple. Whenever a packet is received from a port that has438
been turned off by spanning tree, the packet is discarded. Whenever a packet is received from an active port, it is439
forwarded out on all other active ports. Note that if a node is part of a mesh, one of its "ports" will represent all of440
its connections to the other peer nodes in the mesh, and forwarding a packet to that port results in either a packet441
transmission on a PMP connection, or N individual transmissions on a P2P connection. Similarly, if a mesh port is442
turned off, all packets received from any of the connections from other peers are discarded.443

95-1082R3 LAN Emulation Over ATM Version 2 - LNNI Spec. - Draft 3

Page 16 of 32 ATM Forum Technical Committee

2.2.3 Server Discovery Mechanisms444

The following server discovery mechanism relies on the LECS to provide server entities with the addresses of445
neighboring servers. Servers will locate the LECS using the techniques defined for LE Clients in the [3]. Servers446
will then check in with the LECS and provide server ATM addresses, ELAN Names, and Server Names (the names447
allow the LECS to identify servers when ATM addresses are not known a priori). The LECS will assign Server IDs448
for use in server-server protocols, and provide localized topology information. For tree connections, each server449
will be given the ATM address of its parent and may also be provided the ATM addresses of its children for450
verification purposes. For mesh connections, each server will be provided with the ATM addresses of all peers. A451
new server configuration frame format will be defined to accommodate the required one-to-many mappings.452

2.2.4 Manual Configuration Considerations453

LUNI v1.0 allows ELANs to be manually configured. Some members of the LAN Emulation SWG have expressed454
a desire for the LNNI to also be able to operate in a manual configuration mode. Additional work is needed to455
appreciate the protocol implications of achieving this goal.456

2.2.5 Configuration Operations457

2.2.5.1 Configure Direct Connection458

The LECS is the provider of the configuration information to both LECs and LESs/BUSs in an ELAN. A LES first459
determines its LECS address using the methods described in LUNI 1.0 and establishes a Configure Direct460
connection. A LECS which supports the LNNI protocol allows LES/BUS entities to establish Config Flows to it and461
handles queries. In this document, use of the term LECS implies one that can handle LES/BUS requests, as well as462
those from LECs.463

The protocol allows sharing of a single VCC by multiple Configure Direct flows to the LECS. Note that the protocol464
maintains the principle from LUNI 1.0 that the presence or absence of a Configuration VCC has no relationship to465
the operational state of the entities at either end i.e. the connection may be brought up and down at any time.466

2.2.5.2 LES/BUS Initial Topology467

After successfully completing the configuration with the LECS, the LES/BUS establish control plane Mesh <m>,468
Forwarding <f> and redundant Non-forwarding <nf> VCCs to its neighbors. The type of the VCC indicates the469
forwarding rules that LES/BUS should implement [Editor’s Note: see 95-1177. This needs to be clarified in the470
context of connections and flows].471

2.2.5.3 Add/Delete LESs/BUSs472

A LECS is allowed to add/delete LESs to an existing ELAN. The changed configuration information due to473
added/deleted LES is sent to each LES by an unsolicited notification which may include updated configuration474
information, e.g., new LES/BUS addresses, connection types, etc. These require acknowledgement by LES.475

LES is responsible for updating its associated BUS with any changes to the configuration: the protocol mechanisms476
for doing this are outside the scope of this document.477

2.2.6 Failures478

This section looks at server crashes and network partitions, both their occurrances and the recovery operations479
required after the crash or partition is repaired.480

2.2.6.1 Server Failures481

We look node and link failure, both of which are detected either by the loss of a control VC, or by a periodic482
LNNI_GETSYNC_REQUEST reporting that a link is in the unsynchronized state.483

When a failure occurs, we must remove any address registration information for clients registered at LE servers no484
longer connected to the root node. Clients that were connected to these servers may well try to connect to the485
surviving servers; we must thus purge this information without preventing these same clients from re-registering.486
And we must also do this promptly, since otherwise this stale information may prevent these reconnecting clients487
from successfully joining the ELAN.488

LAN Emulation Over ATM Version 2 - LNNI Spec. - Draft 3 95-1082R3

ATM Forum Technical Committee Page 17

When a child link fails, the parent server notes the set of SIIs associated with that link, and knows that potentially all489
of those servers are inaccessible. It thus removes any stored registration information tagged by any of those SIIs490
from its own address database, and floods an LNNI_UNREGISTERSERVER_REQUEST throughout the remaining491
set of joined servers, listing each affected SII. These requests tell the receiving server to flush all registration492
information tagged with the server's SII. These requests only travel to the servers still joined to the root; no attempt493
is made to send these messages to servers on the far side of a failed link. Instead, those servers will be forced to join494
the LNNI network again.495

If a LNNI_UNREGISTERSERVER_REQUEST message can not be sent along a link, the link must be put into the496
unsynchronized state by the server failing to send the message, so as to force the leafward side of the link to rejoin497
the LNNI network.498

2.2.6.2 Server Recovery499

When a network partition is repaired, two independently running ELANs must be merged. Each ELAN has a500
spanning tree root, and during the merge operation, one of those roots will cease being the spanning tree root.501

Given the synchronization protocol used here, a network partition's repair will manifest itself by various servers502
changing their idea of which server is the spanning tree root. When a server sees a spanning tree root change, it puts503
all of its links into the unsynchronized state, and then attempts to perform the server join protocol with the next504
server along the path to the spanning tree root.505

As each server joins with the next rootward server, the set of servers joined to the new root will grow, finally506
expanding to include all servers in the two previously disconnected ELANs. Note that only the servers in one of507
these two ELAN fragments will actually change their spanning tree root. The servers in the other fragment keep508
operating normally throughout the partition recovery.509

If the network is recovering from a simple server crash, the system goes through a similar recovery procedure. In510
the affected part of the tree, the spanning tree links may change, and some set of servers will find that their link to511
the root is no longer in the synchronized state. These servers will have to go through the basic server join protocol512
again, as if their link had failed and been restarted. This may at times require those servesr to re-register their513
clients with the root server.514

2.3 Support for LUNI Messages515

2.3.1 LE_TOPOLOGY_CHANGE Messages516

These messages are simply flooded to all servers, who in turn flood them to all connected hosts.517

2.3.2 Response Packet Forwarding518

Certain response packets, including the very common LE_FLUSH_RESPONSE and LE_ARP_RESPONSE packets,519
must be forwarded based upon the LEC ID of the REQUEST packet's originator. These packets can be efficiently520
forwarded because the address registration information present at each server node is precisely the information521
required to forward these response packets up to the common parent of the sender and receiver, and then back down522
to the receiver.523

2.4 LNNI Protocol524

2.4.1 Address Registration Model525

[Editor’s Note: Address Registration database model needs to be summarized here.]526

2.4.2 Server Join Protocol527

[Editor’s Note: This section needs abstraction.] The server join protocol deals with the tree of server nodes528
consisting of simple and complex nodes. Each node has a single parent link and one or more child links.529

95-1082R3 LAN Emulation Over ATM Version 2 - LNNI Spec. - Draft 3

Page 18 of 32 ATM Forum Technical Committee

Each server-to-server link has an associated link state, maintained at the parent side of the link. This state may be530
any one of "unsynchronized," "connecting," or "synchronized." The link state may be changed by either side of the531
link, but transitions in the direction from unsynchronized to synchronized may only be done at the request of the532
child.533

What do the link states mean? Loosely speaking, when a link is in the unsynchronized state, neither link control nor534
registration information is passed along the link. When a link is in the connecting state, the child is establishing the535
basic information needed to participate in the ELAN; in this state, link control information is passed up the link, but536
no registration information is passed on the link. A link in the synchronized state is fully operational, allowing537
registration information to pass in both directions. At this point, the server has joined the set of servers joined to the538
root.539

Servers have unique server instance IDs (SIIs), generated by the child server, and included on all control messages540
sent by that server. This SII is generated by the child at the time that the link leaves the unsynchronized state.541

As part of the spanning tree algorithm, each LE server maintains its own idea of the root server to which it is542
connected. When the link to the root server changes, or the server otherwise discovers that its link to its parent is in543
the unsynchronized state, the LE server must rejoin the LNNI network. It begins by sending an544
LNNI_GETSYNC_REQUEST, and if the response indicates that the link has been put into the unsynchronized state545
by its parent, the child sends its parent an LNNI_SETSYNC_REQUEST, requesting that the link be put into the546
connecting state.547

Once its link is in the connecting state, the child server sends a LNNI_SERVERJOIN_REQUEST containing its548
ATM address and newly generated SII to its parent; it retransmits this request until it receives an549
LNNI_SERVERJOIN_RESPONSE. When a node receives this request from a child on a link in the connecting550
state, it records the SII in memory, associating this SII with the VC, and forwards the551
LNNI_SERVERJOIN_REQUEST up the tree towards the root. The LNNI_SERVERJOIN_REQUEST propagates552
up the tree until the request reaches the root, which generates an LNNI_SERVERJOINED_REQUEST with an error553
code of 0 (success). The LNNI_SERVERJOINED_REQUEST packet is forwarded back down the tree until it gets554
back to the originating LE server; these packets are acknowledged with LNNI_SERVERJOINED_RESPONSEs.555

If anything goes wrong with this process, the link is put back into the unsynchronized state, and an attempt to556
resynchronize the link is tried again a short time later.557

Once a successful LNNI_SERVERJOINED_RESPONSE is received, the child sends an558
LNNI_SETSYNC_REQUEST, placing the link in the synchronized state.559

At this point, the newly joining LE server has two choices. If there are clients still registered with it, it can release560
their control direct VCs and force them to re-register, which has the advantage of simplicity. It also could re-561
register them, only disconnecting them if the attempt to re-register them fails (as suggested in 95-1393). Similarly,562
if there are child servers still connected, it can either put their links into the unsynchronized state, forcing them to go563
through the same server join protocol, or it can simply register all of their clients for them invisibly.564

A commonly asked question has been: Is there any difference between performing this server join protocol and565
simply killing off address registration info when a link to a child is lost.566

There are indeed several differences. First, since the server join protocol unregisters clients in blocks labelled by567
the servers' SIIs, this protocol is considerably more efficient at removing obsolete client registration information.568
Moreover, the server join protocol ensures that when a network partition is repaired, all of the servers in one side of569
the partition are forced to resend their address registration information to their new root server, thus providing a570
mechanism for detecting conflicting address registrations that occur during a partition.571

2.4.3 Server Topology Changes572

[Editor’s Note: This section needs text describing what happens when servers lose connectivity (partitioning) with573
each other.]574

2.4.4 LEC ID Allocation575

This model can, with essentially no extra effort, allocate LEC IDs at the root node of the graph, since all client576
registration requests must go through this node anyway. Static LEC ID allocation also works, although requires577

LAN Emulation Over ATM Version 2 - LNNI Spec. - Draft 3 95-1082R3

ATM Forum Technical Committee Page 19

additional network management overhead. The LECS assigns a block of LEC-ID numbers during the initial578
configuration of a LES. [Editor’s Note: We need clarification on LEC-ID allocation schemes.]579

2.4.5 The Intelligent BUS Optimization580

Each LES stores the address registration information for all of its descendants, including the link from which the581
host's registration information request arrived. Thus, any LES, given the MAC address or ATM address of a host,582
can easily determine the link over which the host's LES can be reached (or, more accurately, the link to use for the583
first hop to the server directly connected to the target host).584

An intelligent BUS can thus be implemented that, upon the receipt of an unknown packet, propagates the packet to585
the target host's BUS, following a path up to the closest common ancestor of the sending host and the target host,586
and then travelling back down the tree to the target host's BUS. If the unknown packet propagates all the way to the587
root without finding the target host's address registration information, the packet may be addressed to proxy588
connected host. In that case, the packet is flooded down the tree from the root, with a special encapsulation589
indicating that the packet should be flooded to all BUSs, to all proxy hosts, but not to any non-proxy hosts.590

2.4.6 LE_ARP Caching591

[Editor’s Note: This section needs to be abstracted.] LE ARP caching is an important LNNI performance592
optimization; it provides the easiest way of sharing the load for processing LE_ARP_REQUESTs among all the593
LESs in the network. Note that LE ARP caching denotes storing address registration information for hosts at LE594
servers other than the one to which the host is connected; it does not denote any caching of proxy ARP information,595
which is forbidden by the LUNI specification.596

ARP information can be learned by a server's watching LE_ARP_RESPONSE packets go by. In order for these597
caches to contain only up-to-date information, we must ensure that stale information is purged promptly. This598
happens automatically by virtue of the protocols already used for propagating server failures and host599
deregistrations. In both of these, cases, a request is propagated throughout the entire (remaining) LNNI tree,600
indicating the set of hosts no longer connected to the tree, and thus which should be flushed from any caches. In the601
case of a server crash, the protocol is a LNNI_UNREGISTERSERVER_REQUEST message, and in the case of a602
simple host de-registration, the protocol is the LNNI_TERMINATE_REQUEST message.603

2.4.7 Pre-Standard Distributed Implementation Considerations604

It may be desirable for existing distributed implementations of the LES and/or BUS be able to function as a logical605
LES-BUS pair in a LNNI environment. Additional work is needed to delineate the protocol support necessary to606
achieve this goal. Factors to be considered include:607

(1) a LES or BUS instance may have multiple ATM addresses on multiple UNIs,608

(2) the LES is currently the "logical manager" of BUS ATM addresses,609

(3) failure of a LES or BUS component of non-standard distributed implementation does not imply that the logical610
LES or logical BUS has failed,611

(4) failure of a LNNI-connecting component of a non-standard distributed implementation does not imply that the612
LES-BUS pair should be removed from the LNNI topology (perhaps, only the LNNI access address/interface needs613
to be changed), and614

(5) clients may not contact the LECS when BUS connections are released if conditions are such that the clients can615
reconnect to the logical BUS via the paired LES while maintaining compliance with LUNI v1.0.616

3. Relationships to Other Services617

This section specifies the service interfaces between the various LAN Emulation Service entities and the AAL,618
Connection Management and Layer Management entities. The services are described in an abstract way and do not619
imply any particular implementation, or any exposed interface.620

621

95-1082R3 LAN Emulation Over ATM Version 2 - LNNI Spec. - Draft 3

Page 20 of 32 ATM Forum Technical Committee

/* Editor’s Note: include by reference to save paper */622

#include <Section 3 from LUNI 2.0>623

624

[Editor’s Note: After including, add at the end of section 3.2.1, include “Support of PVC ony is TBD.]625

626

3.1 LNNI to AAL Services627

3.2 Connection Management Services628

3.3 LNNI To Layer Management629

3.4 LNNI Spanning Tree Versus 802.1D630

4. LNNI Frame Formats631

[Editor’s Note: This section could include all of the control frame text from the LUNI document assuming that we632
intend to use the same frame format.]633

4.1 LNNI Control Frame634

[Editor’s Note: Contributions needed for this section.]635

LAN Emulation Over ATM Version 2 - LNNI Spec. - Draft 3 95-1082R3

ATM Forum Technical Committee Page 21

5. LNNI Protocols and Procedures

[Editor’s Note: Contributions needed for this section.]

5.1 Overview
[Editor’s Note: Need to describe functional blocks and how they will interact.]

5.2 LECS to LECS

5.2.1 Initialization and Configuration

5.2.1.1 LECS-LECS Information Flows

5.2.2 Run Time Operation

5.3 Server Initialization and Configuration

5.3.1 Configure Direct Connection

The LECS is the provider of the configuration information to both LECs and LESs/BUSs in an ELAN. A LES first
determines its LECS address using the methods described in LUNI 1.0 and establishes a Configure Direct
connection. A LECS which supports the LNNI protocol must support LES and BUS entities establishing Config
Flows to it and queries in the format described below. In this document, use of the term LECS implies one that can
handle LES and BUS requests, as well as those from LECs.

The LES should not release its configure direct connection with the LECS after completing its configuration. The
LES is allowed to send additional LNNI_CONFIGURE_REQUESTs after the initialization. Similarly, the LECS is
allowed to send an unsolicited LNNI_CONFIGURE_RESPONSE to inform a LES about a change in the server
topology information.

The protocol does not preclude sharing of a single VCC by multiple configure direct connections to the LECS over
the same VCC. Note that the protocol maintains the principle from LUNI 1.0 that the presence or absence of a
Configuration VCC has no relationship to the operational state of the entities at either end i.e. the connection may be
brought up and down at any time.

5.3.2 Configuration Frames

A LES requests configuration information from LECS by sending a LNNI_CONFIGURE_REQUEST. In response,
the LES obtains the ATM address of all other LESs and may obtain additional configuration parameters specified in
LUNI 1.0. The basic fields in the REQUEST frames are as follows:

LNNI_CONFIG_REQUEST(

Source_ATM_Address,

Transaction_ID

)

95-1082R3 LAN Emulation Over ATM Version 2 - LNNI Spec. - Draft 3

Page 22 of 32 ATM Forum Technical Committee

In response to a LNNI_CONFIG_REQUEST, the LECS sends the requested information in an
LNNI_CONFIGURE_RESPONSE which includes:

LNNI_CONFIG_RESPONSE(

Source_ATM_Address,

Transaction_ID,

LES_ID,

ranges of LEC_IDs, optional

BUS_ATM_Address, optional

sequence of { LES_ID, LES_ATM_Address, ... }, optional

LES_Keepalive_Timeout, optional

BUS_Maximum_Frame_Age, optional

BUS_ID, optional

sequence of { BUS_ID, BUS_ATM_Address, ... },optional

 other reconfiguration-protocol config optional

)

[It is T.B.D. whether a new Opcode value actually needs to be used or whether the above information can be coded
as extensions to the LUNIv1.0 LE_CONFIGURE frame formats. Extra TLV values will need to be defined in any
case. Details to be provided later.]

The CONFIG_RESPONSE fields which are additional to the standard LUNI v1.0 fields are:

1. Transaction_ID: may be necessary for identifying lost messages or changed config information

2. LES-ID: An identifier for the LES, unique among all LESs on this ELAN.

3. Block of LEC-IDs: LEC-IDs for the LES to give out to LE Clients at Join time. [N.B. this block could be implied
by the LES-ID since LEC-IDs can be obtained by prepending the LES-ID].

4. LES Neighbor List: a list of {LES_ID, LES_ATM_Address, Conn_Type , Conn_Priority} of all other neighboring
LESs in the ELAN. Conn_Type is a flag indicating the desired type of connectivity to this neighbor: values are
“Forwarding”, “Non-forwarding” or “Mesh” (<f>, <nf>, <m> as defined in [95-1393]. There may be a Conn_Priority
for selecting which links to use and also to aid in determining the root of any dynamic tree (T.B.D.).

5. BUS ATM Address: optionally, may specify the BUS associated with this LES.

6. BUS-ID: An identifier for the BUS, unique among all BUSs on this ELAN.

7. BUS Neighbor List: a list of {BUS_ID, BUS_ATM_Address, Conn_Type , Conn_Priority} of all other
neighboring BUSs in the ELAN. Conn_Type is a flag indicating the desired type of connectivity to this neighbor:
values are “Forwarding”, “Non-forwarding” or “Mesh”. There may be a Conn_Priority for selecting which links to
use and also to aid in determining the root of any dynamic tree (T.B.D.).

8. Other per-node parameters for configuring any dynamic reconfiguration protocol may also be needed here e.g.
root priority for a spanning-tree protocol.

LAN Emulation Over ATM Version 2 - LNNI Spec. - Draft 3 95-1082R3

ATM Forum Technical Committee Page 23

At any time, LECS may issue a LNNI_UPDATECONFIG_REQUEST which may contain some or all of the
information listed above for a LNNI_CONFIG_RESPONSE. This is used primarily to update server components
with altered configuration data:

LNNI_UPDATECONFIG_REQUEST(

 [same fields as CONFIG_RESPONSE above]

)

On receipt of an UPDATECONFIG_REQUEST, an LESs must generate a LNNI_UPDATECONFIG_RESPONSE
frame:

LNNI_UPDATECONFIG_RESPONSE(

Source_ATM_Address,

Transaction_ID

)

[As discussed in [95-1393], it is expected that the LECS’s configuration data will be relatively static i.e. it will be
changing on a “human” sort of time scale: this makes the task of implementing a distributed LECS simpler and
removes any real-time requirement on the synchronisation of this database. Note, however, that protocols for
distribution of LECS functionality are outside the scope of this contribution.

The above assumes that BUS topology is not identical to LES topology: some configuration parameters are then
redundant if the topologies are equivalent.]

5.3.3 Add/Delete LESs

A LECS is allowed to add/delete LESs to an existing ELAN. The changed configuration information due to
added/deleted LES is sent to each LES by an unsolicited LNNI_UPDATECONFIG_REQUEST which will include
updated configuration information (new LES/BUS addresses, connection types, etc.). Such REQUESTs require
acknowledgement by LES with a LNNI_UPDATECONFIG_RESPONSE message back to the LECS.

LES is responsible for updating its associated BUS with any changes to the configuration: the protocol mechanisms
for doing this are outside the scope of this document.

5.3.4 LES/BUS Initial Topology

After successfully completing the configuration with the LECS, the LES and BUS establish control plane Mesh <m>,
Forwarding <f> and redundant Non-forwarding <nf> connections to its neighbors. The type of the connection
indicates the forwarding rules that LES/BUS should implement [see 95-1177].

Assuming that LES and BUS are paired, the configuration information provided to LESs is sufficient to establish
both the initial LES-LES and BUS-BUS topologies. Each LES already needs to know the ATM address(es) of it’s
paired BUS(s) as specified in LUNI 1.0. This may be locally configured or optionally provided by LECS at
configuration time.

[If the LES and BUS topologies are assumed to be the same then some of the configuration information discussed
above is redundant. There is also some scope for simplification of the configuration information based e.g. on a
single “mesh/tree” flag or from extensions to LE_ARP protocol for discovering BUSs.]

95-1082R3 LAN Emulation Over ATM Version 2 - LNNI Spec. - Draft 3

Page 24 of 32 ATM Forum Technical Committee

5.3.5 Restart of LES/BUS

[Editor’s Note: Need clarification on whether warm start is different than cold start for LES/BUS.] After recovering
from a failure, a LES establishes a configure direct connection to the LECS and reconfigures itself sending an
LNNI_CONFIGURE_REQUEST. The LECS may decide to continue using the LES-ID and LEC-ID block assigned
to that LES prior to the failure.

If that LES-ID and LEC-ID block are re-assigned to another newly initiated LES, then LECS must assign a new LES-
ID and LEC-ID block to the recovered LES. The are assignment of LES-IDs and LEC-IDs from a dead LES to
another LES may be performed upon a human intervention or upon expiration of a timer.

If LEC-ID blocks have been reassigned to another LES and then the previous owner becomes connected to the LES
topology again, it will be necessary to specify mechanisms for merging their LE Clients to avoid duplicate LEC-IDs:
this is for further study.

5.4 Server Topology

5.4.1 Spanning Tree

5.4.2 LNNI_LES_JOIN

5.4.3 Server Failure

5.5 Client Joining

5.5.1 LNNI_LEC_JOIN

[Editor’s Note: This section needs to be pruned and consolidated.]

When a LEC sends a join/registration request to its LES, the LES receiving the request creates a
LNNI_JOIN_REQUEST message to verify the uniqueness of the binding. Such registration requests are not
forwarded by the receiving LES to its LECs.

Any LES receiving such a request from the originator checks to determine if it has a duplicate binding already
registered in its registration database. If there is a duplication, it sends back a negative LNNI_JOIN_RESPONSE to
the requesting LES with a status code indicating the type of duplication. Any LES along the path to the originator,
receiving the negative LNNI_JOIN_RESPONSE, must forward it back towards the originating LES. If it was the
originating LES, it refuses to register the binding and returns a negative response to the LEC that requested it.

If there is not any duplication and if the LES has no other connections on which to forward the request, the LES
sends back a LNNI_JOIN_RESPONSE with "No Duplicate Destination" status code. Any intermediate LES, upon
determining that there is no duplication, must generate a positive response back to the requester. If there is not any
duplication, the originating LES will accept the registration, create a new binding in its database and send a
successful registration response to the LEC.

The LNNI_JOIN protocol must be reliable, possibly, by using a hop by hop acknowledgement scheme proposed in
96-0235.

Each node in the tree is a master LES in terms of its descendants in the tree. That is, each LES stores the complete
address registration database for all of its children. When an LE_JOIN_REQUEST is received by an LES, it must
be propagated up to the root server as a LNNI_JOIN_REQUEST. As servers relay this message up to the root, they
also update their local address registration databases to take note of the new client. This request is hop-by-hop
reliable, with each hop sending an LNNI_JOIN_RESPONSE packet as the packet advances towards the root server.

LAN Emulation Over ATM Version 2 - LNNI Spec. - Draft 3 95-1082R3

ATM Forum Technical Committee Page 25

Once the root has received the request, it generates an LNNI_JOINED_REQUEST message (acknowledged, hop-
by-hop via a LNNI_JOINED_RESPONSE packet). A JOINED request corresponding to the JOIN request must
eventually be received by the LES adding the registration information, or the registration request can not be
validated. The root node generates the LNNI_JOINED_REQUEST as follows: the root verifies that there are no
address duplications in the registration information, and also may allocate an LEC ID for the client. Once the root
has registered the client, an LNNI_JOINED_REQUEST is generated, and is directed back towards the originating
server.

One the host addresses have been registered, LE_ARP_REQUEST messages may be sent by host machines their
connected LE server. These LE_ARP_REQUEST messages are sent up the tree to the root, with the first server
having the ARP information for the target returning the response. If the request makes it all the way to the root
without a response, the request is flooded back down with its PROXYFLOOD flag bit set, and each server in turn
floods the corresponding LE_ARP_REQUEST message to all of its proxies, as well as propagating the modified
ARP request throughout the tree.

When a host unregisters, either by dropping its control VCCs, or by sending an LE_TERMINATE_REQUEST
protocol, the host's directly connected LES floods throughout the entire tree an LNNI_TERMINATE_REQUEST
protocol, whose goal is ensuring both that the registration information stored along the path to the root has been
removed, and that all LE ARP information cached by servers anywhere in the tree has been removed. This packet is
acknowledged on a hop-by-hop basis by a LNNI_TERMINATE_RESPONSE packet.

5.5.2 LEC-ID Allocation

The LECS assigns a block of LEC-ID numbers during the initial configuration of a LES. [Behavior of a LES when
this block is exhausted is not addressed. Note that it is proposed here that LECS be responsible for unique allocation
of LEC-IDs to LESs. An alternative approach, outlined in [95-1177], proposes a master LES be responsible for this.
We believe that the allocation of blocks of LEC-IDs by LECS ahead of time offers a simpler solution and that this
does not impose any significant real-time constraints on LECS and its failure modes. More dynamic methods of
LEC_ID assignment are for further study].

5.6 Client Address Registration

5.6.1 LNNI_REGISTER_REQUEST

[Editor’s Note: This text needs more detail.] Client registration requests are handled by servers sending an
LNNI_JOIN_REQUEST message up to the root of the tree. As the message passes through all of the intermediate
servers to the root server, they add the client's registration information to their local databases. When a client or
server crashes, a LNNI_UNREGISTER_REQUEST message is propagated throughout the entire tree, directing each
server to remove the appropriate client information from their caches.

Most messages, thus, are sent to the root node, and no further. A few messages, such as proxy ARP requests,
topology change messages, and address deregistration messages, are flooded to all nodes in the tree. None of the
messages that are sent more than one hop require any acknowledgement beyond a hop-by-hop acknowledgement.

5.6.2 LNNI_LEC_UNREGISTER

When a LEC unregisters either explicitly or by dropping its connections from its LES, the LES generates an
LNNI_UNREGISTER message and reliably sends to all its neighbors. Each LES receiving the
LNNI_UNREGISTER_REQUEST will purge the corresponding registered and cached entry, and respond back with
an LNNI_UNREGISTER_RESPONSE. This protocol allows each LES to maintain an up to date registration
database and arp cache. Again, a reliable protocol is used.

95-1082R3 LAN Emulation Over ATM Version 2 - LNNI Spec. - Draft 3

Page 26 of 32 ATM Forum Technical Committee

5.7 Client Address Resolution

5.7.1 Caching

LE ARP caching is an important LNNI performance optimization; it provides the easiest way of sharing the load for
processing LE_ARP_REQUESTs among all the LESs in the network. Note that LE ARP caching denotes storing
address registration information for hosts at LE servers other than the one to which the host is connected; it does not
denote any caching of proxy ARP information, which is forbidden by the LUNI specification.

ARP information can be learned by a server's watching LE_ARP_RESPONSE packets go by. In order for these
caches to contain only up-to-date information, we must ensure that stale information is purged promptly. This
happens automatically by virtue of the protocols already used for propagating server failures and host
deregistrations. In both of these, cases, a request is propagated throughout the entire (remaining) LNNI tree,
indicating the set of hosts no longer connected to the tree, and thus which should be flushed from any caches. In the
case of a server crash, the protocol is a LNNI_UNREGISTERSERVER_REQUEST message, and in the case of a
simple host de-registration, the protocol is the LNNI_TERMINATE_REQUEST message.

5.7.2 LNNI_ARP

A LES responds to an address resolution request for a destination registered in that LES without passing it onto
another LES. A LES may also respond to an address resolution request for a valid cache entry. The entries that are
cached in a LES are those entries that are registered within other LESs, and learned from an address resolution
message that originates from a LES which has the address registered in its database.

Since cached entries are learned from the address resolution messages, a flag is needed in the address resolution
response to indicate whether that address is registered in the originating LES database, or not. The remote address
flag may not be sufficient for this purpose as the learning-LES must differentiate between a response from a LES
which cached the address as opposed to a LES which has the entry registered in its database. [Alternatively, a LES
may decide to cache entries learned from another caching LES. This is for further study.]

5.7.3 Address Resolution

LE servers must colaborate in order to handle address registration requests and queries. Each tree node stores the
address registration information registered by all of its hosts, and by all of its child servers in the tree, and uses this
information to answer ARP requests and forward packets efficiently. Address registration information propagates
up the tree to the root node of the tree, and ARP queries also propagate up the tree to the root until they are
answered. If an ARP request can not be handled at the top of the tree, the address may be an address learnable only
via the proxy ARP mechanism, and thus, if the root server can not resolve an ARP query, it sets a special
PROXYFLOOD bit in the LE_ARP_REQUEST packet and floods the updated message throughout the entire tree.
This special LE_ARP_REQUEST message is flooded to all servers, and forces each server to send the appropriate
ARP request message to all of its directly connected clients. LNNI_TOPOLOGY_CHANGE

A new LNNI topology change protocol between LESs can be used as a means to identify failure/recovery of a LES.
A LES issues a LNNI_TOPOLOGY_CHANGE when it identifies failure/recovery of a neighbor LES. The notice of
a topology change is propagated through the mesh and tree of LESs by other LESs which receive it. This
notification must be reliably propagated and thus can use the same hop by hop acknowledgement system used for
the LNNI_JOIN. Multiple LNNI_TOPOLOGY_CHANGE messages might be initiated by different neighbors that
identify the same failure. If such multiples of the same message are received, the receiving LES must make sure to
propagate only one copy. The LNNI_TOPOLOGY_CHANGE message contains the id of the failed/recovered LES.

When an LNNI topology change message indicating a LES failure is received, the LESs must purge all registered or
cached bindings learned from that failed LES, preferably, after a timer expires. In the Master LES approach,
through this timer, the failed LES's registered entries can be retained for a while just in case the failed LES recovers
shortly after a failure.

LAN Emulation Over ATM Version 2 - LNNI Spec. - Draft 3 95-1082R3

ATM Forum Technical Committee Page 27

When a LES receives its first topology change message indicating failure of a server, it will set the "marking flag"
to indicate that a marking period starts. Until that flag is cleared, each LES will mark every newly registered
address. Similarly, each LES will mark unregistered addresses keeping them in a database with a "marked" status.
The marking is needed to ensure that when the network is healed, the registration/unregistration of "marked" entries,
those that are processed during a likely network partitioning, are re-synchronized within the merged network.

If there are other LES failures prior to the recovery of the first failed LES, the marking flag will be incremented
while keeping a list of the failed LESs. The flag will be decremented as each failed LES recovers, but it will not be
cleared until all failures are healed, or a timer expires.

If a new LES joins the topology when the network is in a marking state, the LES adjacent to the newly joined LES
will send its marking flag value so that the new LES knows whether it should perform marking or not.

Once the marking flag is cleared, meaning that the network has completely healed, all LESs will re-validate the
uniqueness of the marked registrations using LNNI_JOIN protocol. Similarly, using the LNNI_UNREGISTER
protocol, LESs will inform each other of the marked unregistrations so that each LES can purge the marked
unregistrations from their registration databases and ARP caches.

5.8 Client Data Transfer

5.8.1 BUS Data Movement

5.9 Client Flush

5.10 Client Topology Change Notification

5.11 Client Terminate

95-1082R3 LAN Emulation Over ATM Version 2 - LNNI Spec. - Draft 3

Page 28 of 32 ATM Forum Technical Committee

6. Appendix
TBD

[End of Document]

